Retterer, Kyle; Scuffins, Julie; Schmidt, Daniel; Lewis, Rachel; Pineda-Alvarez, Daniel; Stafford, Amanda; Schmidt, Lindsay; Warren, Stephanie; Gibellini, Federica; Kondakova, Anastasia; Blair, Amanda; Bale, Sherri; Matyakhina, Ludmila; Meck, Jeanne; Aradhya, Swaroop; Haverfield, Eden
2015-08-01
Detection of copy-number variation (CNV) is important for investigating many genetic disorders. Testing a large clinical cohort by array comparative genomic hybridization provides a deep perspective on the spectrum of pathogenic CNV. In this context, we describe a bioinformatics approach to extract CNV information from whole-exome sequencing and demonstrate its utility in clinical testing. Exon-focused arrays and whole-genome chromosomal microarray analysis were used to test 14,228 and 14,000 individuals, respectively. Based on these results, we developed an algorithm to detect deletions/duplications in whole-exome sequencing data and a novel whole-exome array. In the exon array cohort, we observed a positive detection rate of 2.4% (25 duplications, 318 deletions), of which 39% involved one or two exons. Chromosomal microarray analysis identified 3,345 CNVs affecting single genes (18%). We demonstrate that our whole-exome sequencing algorithm resolves CNVs of three or more exons. These results demonstrate the clinical utility of single-exon resolution in CNV assays. Our whole-exome sequencing algorithm approaches this resolution but is complemented by a whole-exome array to unambiguously identify intragenic CNVs and single-exon changes. These data illustrate the next advancements in CNV analysis through whole-exome sequencing and whole-exome array.Genet Med 17 8, 623-629.
Mohapatra, Gayatry; Engler, David A; Starbuck, Kristen D; Kim, James C; Bernay, Derek C; Scangas, George A; Rousseau, Audrey; Batchelor, Tracy T; Betensky, Rebecca A; Louis, David N
2011-04-01
Array comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA). Because diffuse malignant gliomas are often sampled by small biopsies, formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis; FFPE tissues are also needed to study the intratumoral heterogeneity that characterizes these neoplasms. In this paper, we present a combination of evaluations and technical advances that provide strong support for the ready use of oligonucleotide aCGH on FFPE diffuse gliomas. We first compared aCGH using bacterial artificial chromosome (BAC) arrays in 45 paired frozen and FFPE gliomas, and demonstrate a high concordance rate between FFPE and frozen DNA in an individual clone-level analysis of sensitivity and specificity, assuring that under certain array conditions, frozen and FFPE DNA can perform nearly identically. However, because oligonucleotide arrays offer advantages to BAC arrays in genomic coverage and practical availability, we next developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. To demonstrate utility in FFPE tissues, we applied this approach to biphasic anaplastic oligoastrocytomas and demonstrate CNA differences between DNA obtained from the two components. Therefore, BAC and oligonucleotide aCGH can be sensitive and specific tools for detecting CNAs in FFPE DNA, and novel labeling techniques enable the routine use of oligonucleotide arrays for FFPE DNA. In combination, these advances should facilitate genome-wide analysis of rare, small and/or histologically heterogeneous gliomas from FFPE tissues.
Laubinger, Sascha; Zeller, Georg; Henz, Stefan R; Sachsenberg, Timo; Widmer, Christian K; Naouar, Naïra; Vuylsteke, Marnik; Schölkopf, Bernhard; Rätsch, Gunnar; Weigel, Detlef
2008-01-01
Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage. PMID:18613972
NASA Astrophysics Data System (ADS)
Paul, Dilip K.; Razdan, Rajender; Goldman, Alfred M.
1996-10-01
Feasibility of photonics in beam forming and steering of large phased-array antennas onboard communications satellite/avionics systems is addressed in this paper. Specifically, a proof-of-concept demonstration of phased- array antenna feed network using fiber optic true time-delay (TTD) elements is reported for SATCOM phased-array antennas operating at C-band. Results of the photonic hardware design and performance analysis, including the measured radiation patterns of the antenna array fed by the photonic BFN, are presented. An excellent agreement between the analysis and measured data has been observed. In addition to being light- weight and compact, several unique characteristics such as rf carrier frequency agility and continuous steerability of the radiated beam achieved by the fiber optic TTD architecture are clear evidences of its superiority over other competing photonic architectures.
BeadArray Expression Analysis Using Bioconductor
Ritchie, Matthew E.; Dunning, Mark J.; Smith, Mike L.; Shi, Wei; Lynch, Andy G.
2011-01-01
Illumina whole-genome expression BeadArrays are a popular choice in gene profiling studies. Aside from the vendor-provided software tools for analyzing BeadArray expression data (GenomeStudio/BeadStudio), there exists a comprehensive set of open-source analysis tools in the Bioconductor project, many of which have been tailored to exploit the unique properties of this platform. In this article, we explore a number of these software packages and demonstrate how to perform a complete analysis of BeadArray data in various formats. The key steps of importing data, performing quality assessments, preprocessing, and annotation in the common setting of assessing differential expression in designed experiments will be covered. PMID:22144879
Tissue matrix arrays for high throughput screening and systems analysis of cell function
Beachley, Vince Z.; Wolf, Matthew T.; Sadtler, Kaitlyn; Manda, Srikanth S.; Jacobs, Heather; Blatchley, Michael; Bader, Joel S.; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H.
2015-01-01
Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here, we describe tissue extracellular matrix (ECM) arrays for screening biological outputs and systems analysis. We spotted processed tissue ECM particles as two-dimensional arrays or incorporated them with cells to generate three-dimensional cell-matrix microtissue arrays. We then investigated the response of human stem, cancer, and immune cells to tissue ECM arrays originating from 11 different tissues, and validated the 2D and 3D arrays as representative of the in vivo microenvironment through quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes following culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and translation. PMID:26480475
Performance Analysis of a Cost-Effective Electret Condenser Microphone Directional Array
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Gerhold, Carl H.; Zuckerwar, Allan J.; Herring, Gregory C.; Bartram, Scott M.
2003-01-01
Microphone directional array technology continues to be a critical part of the overall instrumentation suite for experimental aeroacoustics. Unfortunately, high sensor cost remains one of the limiting factors in the construction of very high-density arrays (i.e., arrays containing several hundred channels or more) which could be used to implement advanced beamforming algorithms. In an effort to reduce the implementation cost of such arrays, the authors have undertaken a systematic performance analysis of a prototype 35-microphone array populated with commercial electret condenser microphones. An ensemble of microphones coupling commercially available electret cartridges with passive signal conditioning circuitry was fabricated for use with the Langley Large Aperture Directional Array (LADA). A performance analysis consisting of three phases was then performed: (1) characterize the acoustic response of the microphones via laboratory testing and calibration, (2) evaluate the beamforming capability of the electret-based LADA using a series of independently controlled point sources in an anechoic environment, and (3) demonstrate the utility of an electret-based directional array in a real-world application, in this case a cold flow jet operating at high subsonic velocities. The results of the investigation revealed a microphone frequency response suitable for directional array use over a range of 250 Hz - 40 kHz, a successful beamforming evaluation using the electret-populated LADA to measure simple point sources at frequencies up to 20 kHz, and a successful demonstration using the array to measure noise generated by the cold flow jet. This paper presents an overview of the tests conducted along with sample data obtained from those tests.
NASA Astrophysics Data System (ADS)
Liu, Ling
The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.
Analysis of MMIC arrays for use in the ACTS Aero Experiment
NASA Technical Reports Server (NTRS)
Zimmerman, M.; Lee, R.; Rho, E.; Zaman, Z.
1993-01-01
The Aero Experiment is designed to demonstrate communication from an aircraft to an Earth terminal via the ACTS. This paper describes the link budget and antenna requirements for a 4.8 kbps full-duplex voice link at Ka-Band frequencies. Three arrays, one transmit array developed by TI and two receive arrays developed by GE and Boeing, were analyzed. The predicted performance characteristics of these arrays are presented and discussed in the paper.
A Novel Approach to Beam Steering Using Arrays Composed of Multiple Unique Radiating Modes
NASA Astrophysics Data System (ADS)
Labadie, Nathan Richard
Phased array antennas have found wide application in both radar and wireless communications systems particularly as implementation costs continue to decrease. The primary advantages of electronically scanned arrays are speed of beam scan and versatility of beamforming compared to mechanically scanned fixed beam antennas. These benefits come at the cost of a few well known design issues including element pattern rolloff and mutual coupling between elements. Our primary contribution to the field of research is the demonstration of significant improvement in phased array scan performance using multiple unique radiating modes. In short, orthogonal radiating modes have minimal coupling by definition and can also be generated with reduced rolloff at wide scan angles. In this dissertation, we present a combination of analysis, full-wave electromagnetic simulation and measured data to support our claims. The novel folded ring resonator (FRR) antenna is introduced as a wideband and multi-band element embedded in a grounded dielectric substrate. Multiple radiating modes of a small ground plane excited by a four element FRR array were also investigated. A novel hemispherical null steering antenna composed of two collocated radiating elements, each supporting a unique radiating mode, is presented in the context of an anti-jam GPS receiver application. Both the antenna aperture and active feed network were fabricated and measured showing excellent agreement with analytical and simulated data. The concept of using an antenna supporting multiple radiating modes for beam steering is also explored. A 16 element hybrid linear phased array was fabricated and measured demonstrating significantly improved scan range and scanned gain compared to a conventional phased array. This idea is expanded to 2 dimensional scanning arrays by analysis and simulation of a hybrid phased array composed of novel multiple mode monopole on patch antenna sub-arrays. Finally, we fabricated and characterized the 2D scanning hybrid phased array demonstrating wide angle scanning with high antenna efficiency.
Eijssen, Lars M T; Goelela, Varshna S; Kelder, Thomas; Adriaens, Michiel E; Evelo, Chris T; Radonjic, Marijana
2015-06-30
Illumina whole-genome expression bead arrays are a widely used platform for transcriptomics. Most of the tools available for the analysis of the resulting data are not easily applicable by less experienced users. ArrayAnalysis.org provides researchers with an easy-to-use and comprehensive interface to the functionality of R and Bioconductor packages for microarray data analysis. As a modular open source project, it allows developers to contribute modules that provide support for additional types of data or extend workflows. To enable data analysis of Illumina bead arrays for a broad user community, we have developed a module for ArrayAnalysis.org that provides a free and user-friendly web interface for quality control and pre-processing for these arrays. This module can be used together with existing modules for statistical and pathway analysis to provide a full workflow for Illumina gene expression data analysis. The module accepts data exported from Illumina's GenomeStudio, and provides the user with quality control plots and normalized data. The outputs are directly linked to the existing statistics module of ArrayAnalysis.org, but can also be downloaded for further downstream analysis in third-party tools. The Illumina bead arrays analysis module is available at http://www.arrayanalysis.org . A user guide, a tutorial demonstrating the analysis of an example dataset, and R scripts are available. The module can be used as a starting point for statistical evaluation and pathway analysis provided on the website or to generate processed input data for a broad range of applications in life sciences research.
Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima
2014-01-01
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.
Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima
2014-01-01
Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307
STS-74/MIR Photogrammetric Appendage Structural Dynamics Experiment Preliminary Data Analysis
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.; Welch, Sharon S.; Pappa, Richard S.; Demeo, Martha E.
1997-01-01
The Photogrammetric Appendage Structural Dynamics Experiment was designed, developed, and flown to demonstrate and prove measurement of the structural vibration response of a Russian Space Station Mir solar array using photogrammetric methods. The experiment flew on the STS-74 Space Shuttle mission to Mir in November 1995 and obtained video imagery of solar array structural response to various excitation events. The video imagery has been digitized and triangulated to obtain response time history data at discrete points on the solar array. This data has been further processed using the Eigensystem Realization Algorithm modal identification technique to determine the natural vibration frequencies, damping, and mode shapes of the solar array. The results demonstrate that photogrammetric measurement of articulating, nonoptically targeted, flexible solar arrays and appendages is a viable, low-cost measurement option for the International Space Station.
NASA Technical Reports Server (NTRS)
Berg, Melanie D.; LaBel, Kenneth; Kim, Hak
2014-01-01
An informative session regarding SRAM FPGA basics. Presenting a framework for fault injection techniques applied to Xilinx Field Programmable Gate Arrays (FPGAs). Introduce an overlooked time component that illustrates fault injection is impractical for most real designs as a stand-alone characterization tool. Demonstrate procedures that benefit from fault injection error analysis.
Hydrostar Thermal and Structural Deformation Analyses of Antenna Array Concept
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.; Hope, Drew J.
1998-01-01
The proposed Hydrostar mission used a large orbiting antenna array to demonstrate synthetic aperture technology in space while obtaining global soil moisture data. In order to produce accurate data, the array was required to remain as close as possible to its perfectly aligned placement while undergoing the mechanical and thermal stresses induced by orbital changes. Thermal and structural analyses for a design concept of this antenna array were performed. The thermal analysis included orbital radiation calculations, as well as parametric studies of orbit altitude, material properties and coating types. The thermal results included predicted thermal distributions over the array for several cases. The structural analysis provided thermally-driven deflections based on these cases, as well as based on a 1-g inertial load. In order to minimize the deflections of the array in orbit, the use of XN70, a carbon-reinforced polycyanate composite, was recommended.
NASA Astrophysics Data System (ADS)
Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin
2018-05-01
Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0 nM and 50 mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids.
Parallel processing in a host plus multiple array processor system for radar
NASA Technical Reports Server (NTRS)
Barkan, B. Z.
1983-01-01
Host plus multiple array processor architecture is demonstrated to yield a modular, fast, and cost-effective system for radar processing. Software methodology for programming such a system is developed. Parallel processing with pipelined data flow among the host, array processors, and discs is implemented. Theoretical analysis of performance is made and experimentally verified. The broad class of problems to which the architecture and methodology can be applied is indicated.
Rapid Analysis, Self-Calibrating Array for Air Monitoring
NASA Technical Reports Server (NTRS)
Homer, Margie L.; Shevade, Abhijit V.; Lara, Liana; Huerta, Ramon; Vergara, Alexander; Muezzinoglua, Mehmet K.
2012-01-01
Human space missions have critical needs for monitoring and control for life support systems. These systems have monitoring needs that include feedback for closed loop processes and quality control for environmental factors. Sensors and monitoring technologies assure that the air environment and water supply for the astronaut crew habitat fall within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the more distant the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. The lifetime of the calibration, for some analytes, was as long as 24 months. We are working on a sensor array and new algorithms that will include sensor response time in the analysis. The preliminary array analysis for two analytes shows that the analysis time, of an event, can be dropped from 45 minutes to less than10 minutes and array training time can be cut substantially. We will describe the lifetime testing of an array and show lifetime data on individual sensors. This progress will lead to more rapid identification of analytes, and faster training time of the array.
An analysis of three new infrasound arrays around Kīlauea Volcano
Thelen, Weston A.; Cooper, Jennifer
2015-01-01
A network of three new infrasound station arrays was installed around Kīlauea Volcano between July 2012 and September 2012, and a preliminary analysis of open-vent monitoring has been completed by Hawaiian Volcano Observatory (HVO). Infrasound is an emerging monitoring method in volcanology that detects perturbations in atmospheric pressure at frequencies below 20 Hz, which can result from volcanic events that are not always observed optically or thermally. Each array has the capability to detect various infrasound events as small as 0.05 Pa as measured at the array site. The infrasound monitoring network capabilities are demonstrated through case studies of rockfalls, pit collapses, and rise-fall cycles at Halema'uma'u Crater and Pu'u 'Ōʻō.
Schröder, Christoph; Jacob, Anette; Tonack, Sarah; Radon, Tomasz P.; Sill, Martin; Zucknick, Manuela; Rüffer, Sven; Costello, Eithne; Neoptolemos, John P.; Crnogorac-Jurcevic, Tatjana; Bauer, Andrea; Fellenberg, Kurt; Hoheisel, Jörg D.
2010-01-01
Antibody microarrays have the potential to enable comprehensive proteomic analysis of small amounts of sample material. Here, protocols are presented for the production, quality assessment, and reproducible application of antibody microarrays in a two-color mode with an array of 1,800 features, representing 810 antibodies that were directed at 741 cancer-related proteins. In addition to measures of array quality, we implemented indicators for the accuracy and significance of dual-color detection. Dual-color measurements outperform a single-color approach concerning assay reproducibility and discriminative power. In the analysis of serum samples, depletion of high-abundance proteins did not improve technical assay quality. On the contrary, depletion introduced a strong bias in protein representation. In an initial study, we demonstrated the applicability of the protocols to proteins derived from urine samples. We identified differences between urine samples from pancreatic cancer patients and healthy subjects and between sexes. This study demonstrates that biomedically relevant data can be produced. As demonstrated by the thorough quality analysis, the dual-color antibody array approach proved to be competitive with other proteomic techniques and comparable in performance to transcriptional microarray analyses. PMID:20164060
Discrimination of complex mixtures by a colorimetric sensor array: coffee aromas.
Suslick, Benjamin A; Feng, Liang; Suslick, Kenneth S
2010-03-01
The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 degrees C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures.
Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas
Suslick, Benjamin A.; Feng, Liang; Suslick, Kenneth S.
2010-01-01
The analysis of complex mixtures presents a difficult challenge even for modern analytical techniques, and the ability to discriminate among closely similar such mixtures often remains problematic. Coffee provides a readily available archetype of such highly multicomponent systems. The use of a low-cost, sensitive colorimetric sensor array for the detection and identification of coffee aromas is reported. The color changes of the sensor array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis (PCA) and hierarchical clustering analysis (HCA). PCA revealed that the sensor array has exceptionally high dimensionality with 18 dimensions required to define 90% of the total variance. In quintuplicate runs of 10 commercial coffees and controls, no confusions or errors in classification by HCA were observed in 55 trials. In addition, the effects of temperature and time in the roasting of green coffee beans were readily observed and distinguishable with a resolution better than 10 °C and 5 min, respectively. Colorimetric sensor arrays demonstrate excellent potential for complex systems analysis in real-world applications and provide a novel method for discrimination among closely similar complex mixtures. PMID:20143838
Faster Array Training and Rapid Analysis for a Sensor Array Intended for an Event Monitor in Air
NASA Technical Reports Server (NTRS)
Homer, Margie L.; Shevade, A. V.; Fonollosa, J.; Huerta, R.
2013-01-01
Environmental monitoring, in particular, air monitoring, is a critical need for human space flight. Both monitoring and life support systems have needs for closed loop process feedback and quality control for environmental factors. Monitoring protects the air environment and water supply for the astronaut crew and different sensors help ensure that the habitat falls within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the farther the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. There is an acknowledged need for an event monitor which samples the air continuously and provides near real-time information on changes in the air. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. We are working on a sensor array and new algorithms that will incorporate transient sensor responses in the analysis. Preliminary work has already showed more rapid quantification and identification of analytes and the potential for faster training time of the array. We will look at some of the factors that contribute to demonstrating faster training time for the array. Faster training will decrease the integrated sensor exposure to training analytes, which will also help extend sensor lifetime.
Milliken, Sarah; Fraser, Jeff; Poirier, Shawn; Hulse, John; Tay, Li-Lin
2018-05-05
Self-assembled multi-layered vertically aligned gold nanorod (AuNR) arrays have been fabricated by a simple preparation process that requires a balance between the particle concentration and the ionic strength of the solvent. An experimentally determined critical AuNR concentration of 2.0nM and 50mM NaCl produces well-ordered vertically aligned hexagonally close-packed AuNR arrays. We demonstrate surface treatment via UV Ozone cleaning of such samples to allow introduction of analyte molecules (benzenethiol and cannabinol) for effective surface enhanced Raman scattering detection. This is the first demonstration of the SERS analysis of cannabinol. This approach demonstrates a cost-effective, high-yield and simple fabrication route to SERS sensors with application in the screening for the cannabinoids. Copyright © 2018. Published by Elsevier B.V.
2016-09-23
Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s
Array Detector Modules for Spent Fuel Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, Aleksey
Brookhaven National Laboratory (BNL) proposes to evaluate the arrays of position-sensitive virtual Frisch-grid (VFG) detectors for passive gamma-ray emission tomography (ET) to verify the spent fuel in storage casks before storing them in geo-repositories. Our primary objective is to conduct a preliminary analysis of the arrays capabilities and to perform field measurements to validate the effectiveness of the proposed array modules. The outcome of this proposal will consist of baseline designs for the future ET system which can ultimately be used together with neutrons detectors. This will demonstrate the usage of this technology in spent fuel storage casks.
Li, Xingrui; Zhang, Dongfeng; Zhang, Huimin; Guan, Zhichao; Song, Yanling; Liu, Ruochen; Zhu, Zhi; Yang, Chaoyong
2018-02-20
Compartmentalization of aqueous samples in uniform emulsion droplets has proven to be a useful tool for many chemical, biological, and biomedical applications. Herein, we introduce an array-based emulsification method for rapid and easy generation of monodisperse agarose-in-oil droplets in a PDMS microwell array. The microwells are filled with agarose solution, and subsequent addition of hot oil results in immediate formation of agarose droplets due to the surface-tension of the liquid solution. Because droplet size is determined solely by the array unit dimensions, uniform droplets with preselectable diameters ranging from 20 to 100 μm can be produced with relative standard deviations less than 3.5%. The array-based droplet generation method was used to perform digital PCR for absolute DNA quantitation. The array-based droplet isolation and sol-gel switching property of agarose enable formation of stable beads by chilling the droplet array at -20 °C, thus, maintaining the monoclonality of each droplet and facilitating the selective retrieval of desired droplets. The monoclonality of droplets was demonstrated by DNA sequencing and FACS analysis, suggesting the robustness and flexibility of the approach for single molecule amplification and analysis. We believe our approach will lead to new possibilities for a great variety of applications, such as single-cell gene expression studies, aptamer selection, and oligonucleotide analysis.
Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip
2014-01-01
Aim To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). Methods A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Results Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. Conclusions We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH. PMID:23969274
Berry, Nadine Kaye; Bain, Nicole L; Enjeti, Anoop K; Rowlings, Philip
2014-01-01
To evaluate the role of whole genome comparative genomic hybridisation microarray (array-CGH) in detecting genomic imbalances as compared to conventional karyotype (GTG-analysis) or myeloma specific fluorescence in situ hybridisation (FISH) panel in a diagnostic setting for plasma cell dyscrasia (PCD). A myeloma-specific interphase FISH (i-FISH) panel was carried out on CD138 PC-enriched bone marrow (BM) from 20 patients having BM biopsies for evaluation of PCD. Whole genome array-CGH was performed on reference (control) and neoplastic (test patient) genomic DNA extracted from CD138 PC-enriched BM and analysed. Comparison of techniques demonstrated a much higher detection rate of genomic imbalances using array-CGH. Genomic imbalances were detected in 1, 19 and 20 patients using GTG-analysis, i-FISH and array-CGH, respectively. Genomic rearrangements were detected in one patient using GTG-analysis and seven patients using i-FISH, while none were detected using array-CGH. I-FISH was the most sensitive method for detecting gene rearrangements and GTG-analysis was the least sensitive method overall. All copy number aberrations observed in GTG-analysis were detected using array-CGH and i-FISH. We show that array-CGH performed on CD138-enriched PCs significantly improves the detection of clinically relevant and possibly novel genomic abnormalities in PCD, and thus could be considered as a standard diagnostic technique in combination with IGH rearrangement i-FISH.
Speller, Nicholas C; Siraj, Noureen; Regmi, Bishnu P; Marzoughi, Hassan; Neal, Courtney; Warner, Isiah M
2015-01-01
Herein, we demonstrate an alternative strategy for creating QCM-based sensor arrays by use of a single sensor to provide multiple responses per analyte. The sensor, which simulates a virtual sensor array (VSA), was developed by depositing a thin film of ionic liquid, either 1-octyl-3-methylimidazolium bromide ([OMIm][Br]) or 1-octyl-3-methylimidazolium thiocyanate ([OMIm][SCN]), onto the surface of a QCM-D transducer. The sensor was exposed to 18 different organic vapors (alcohols, hydrocarbons, chlorohydrocarbons, nitriles) belonging to the same or different homologous series. The resulting frequency shifts (Δf) were measured at multiple harmonics and evaluated using principal component analysis (PCA) and discriminant analysis (DA) which revealed that analytes can be classified with extremely high accuracy. In almost all cases, the accuracy for identification of a member of the same class, that is, intraclass discrimination, was 100% as determined by use of quadratic discriminant analysis (QDA). Impressively, some VSAs allowed classification of all 18 analytes tested with nearly 100% accuracy. Such results underscore the importance of utilizing lesser exploited properties that influence signal transduction. Overall, these results demonstrate excellent potential of the virtual sensor array strategy for detection and discrimination of vapor phase analytes utilizing the QCM. To the best of our knowledge, this is the first report on QCM VSAs, as well as an experimental sensor array, that is based primarily on viscoelasticity, film thickness, and harmonics.
An Optoelectronic Nose for Detection of Toxic Gases
Lim, Sung H.; Feng, Liang; Kemling, Jonathan W.; Musto, Christopher J.; Suslick, Kenneth S.
2009-01-01
We have developed a simple colorimetric sensor array (CSA) for the detection of a wide range of volatile analytes and applied it to the detection of toxic gases. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Although no single chemically responsive pigment is specific for any one analyte, the pattern of color change for the array is a unique molecular fingerprint. Clear differentiation among 19 different toxic industrial chemicals (TICs) within two minutes of exposure at IDLH (immediately dangerous to life or health) concentration has been demonstrated. Quantification of each analyte is easily accomplished based on the color change of the array, and excellent detection limits have been demonstrated, generally below the PELs (permissible exposure limits). Identification of the TICs was readily achieved using a standard chemometric approach, i.e., hierarchical clustering analysis (HCA), with no misclassifications over 140 trials. PMID:20160982
Morgenstern, Hai; Rafaely, Boaz; Noisternig, Markus
2017-03-01
Spherical microphone arrays (SMAs) and spherical loudspeaker arrays (SLAs) facilitate the study of room acoustics due to the three-dimensional analysis they provide. More recently, systems that combine both arrays, referred to as multiple-input multiple-output (MIMO) systems, have been proposed due to the added spatial diversity they facilitate. The literature provides frameworks for designing SMAs and SLAs separately, including error analysis from which the operating frequency range (OFR) of an array is defined. However, such a framework does not exist for the joint design of a SMA and a SLA that comprise a MIMO system. This paper develops a design framework for MIMO systems based on a model that addresses errors and highlights the importance of a matched design. Expanding on a free-field assumption, errors are incorporated separately for each array and error bounds are defined, facilitating error analysis for the system. The dependency of the error bounds on the SLA and SMA parameters is studied and it is recommended that parameters should be chosen to assure matched OFRs of the arrays in MIMO system design. A design example is provided, demonstrating the superiority of a matched system over an unmatched system in the synthesis of directional room impulse responses.
Integrated dynamic analysis simulation of space stations with controllable solar array
NASA Technical Reports Server (NTRS)
Heinrichs, J. A.; Fee, J. J.
1972-01-01
A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.
Characterization of transformation related genes in oral cancer cells.
Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M
1998-04-16
A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.
Cook, Michael A; Chan, Chi-Kin; Jorgensen, Paul; Ketela, Troy; So, Daniel; Tyers, Mike; Ho, Chi-Yip
2008-02-06
Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20-60 base) unique sequence tags, or "barcodes", associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5'-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM), we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis.
Fabrication of plasmonic cavity arrays for SERS analysis
NASA Astrophysics Data System (ADS)
Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan
2017-05-01
The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 105 and 9.97 × 105 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.
Fabrication of plasmonic cavity arrays for SERS analysis.
Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan
2017-05-05
The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 10 5 and 9.97 × 10 5 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.
Evaluating Tilt for Wind Farms: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Scholbrock, Andrew; Churchfield, Matthew
The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and threeturbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array,more » the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.« less
Evaluating Tilt for Wind Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Scholbrock, Andrew K.; Churchfield, Matthew J.
The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and three-turbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array,more » the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.« less
Multiplexed operation of a micromachined ultrasonic droplet ejector array.
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2007-10-01
A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk between the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of approximately 5 microm diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.
Multiplexed operation of a micromachined ultrasonic droplet ejector array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2007-10-15
A dual-sample ultrasonic droplet ejector array is developed for use as a soft-ionization ion source for multiplexed mass spectrometry (MS). Such a multiplexed ion source aims to reduce MS analysis time for multiple analyte streams, as well as allow for the synchronized ejection of the sample(s) and an internal standard for quantitative results and mass calibration. Multiplexing is achieved at the device level by division of the fluid reservoir and separating the active electrodes of the piezoelectric transducer for isolated application of ultrasonic wave energy to each domain. The transducer is mechanically shaped to further reduce the acoustical crosstalk betweenmore » the domains. Device design is performed using finite-element analysis simulations and supported by experimental characterization. Isolated ejection of {approx}5 {mu}m diameter water droplets from individual domains in the micromachined droplet ejector array at around 1 MHz frequency is demonstrated by experiments. The proof-of-concept demonstration using a dual-sample device also shows potential for multiplexing with larger numbers of analytes.« less
A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners.
Niu, Weifen; Kong, Hao; Wang, He; Zhang, Yantu; Zhang, Sichun; Zhang, Xinrong
2012-01-01
In this paper, we report a chemiluminescence (CL) sensor array based on catalytic nanomaterials for the discrimination of ten sweeteners, including five natural sugars and five artificial sweeteners. The CL response patterns ("fingerprints") can be obtained for a given compound on the nanomaterial array and then identified through linear discriminant analysis (LDA). Moreover, each pure sweetener was quantified based on the emission intensities of selected sensor elements. The linear ranges for these sweeteners lie within 0.05-100 mM, but vary with the type of sweetener. The applicability of this array to real-life samples was demonstrated by applying it to various beverages, and the results showed that the sensor array possesses excellent discrimination power and reversibility.
NASA Astrophysics Data System (ADS)
Holland, Stephen D.; Song, Jun-Ho; Chimenti, D. E.; Roberts, Ron
2006-03-01
We demonstrate an array sensor method intended to locate leaks in manned spacecraft using leak-generated, structure-borne ultrasonic noise. We have developed and tested a method for sensing and processing leak noise to reveal the leak location involving the use of a 64-element phased-array. Cross-correlations of ultrasonic noise waveforms from a leak into vacuum have been used with a phased-array analysis to find the direction from the sensor to the leak. This method measures the propagation of guided ultrasonic Lamb waves passing under the PZT array sensor in the spacecraft skin structure. This paper will describe the custom-designed array with integrated electronics, as well as the performance of the array in prototype applications. We show that this method can be used to successfully locate leaks to within a few millimeters on a 0.6-m square aluminum plate.
Demonstration of transparent solar array module design
NASA Technical Reports Server (NTRS)
Pack, G. J.
1984-01-01
This report discusses the design, development, fabrication and testing of IR transparent solar array modules. Three modules, consisting of a baseline design using back surface reflector cells, and two modules using gridded back contact, IR transparent cells, were subjected to vacuum thermal balance testing to verify analytical predictions of lower operating emperature and increased efficiency. As a result of this test program, LMSC has verified that a significant degree of IR transparency can be designed into a flexible solar array. Test data correlates with both steady state and transient thermal analysis.
Schaeffer, Anthony J. ; Chung, June ; Heretis, Konstantina ; Wong, Andrew ; Ledbetter, David H. ; Lese Martin, Christa
2004-01-01
Miscarriage is a condition that affects 10%–15% of all clinically recognized pregnancies, most of which occur in the first trimester. Approximately 50% of first-trimester miscarriages result from fetal chromosome abnormalities. Currently, G-banded chromosome analysis is used to determine if large-scale genetic imbalances are the cause of these pregnancy losses. This technique relies on the culture of cells derived from the fetus, a technique that has many limitations, including a high rate of culture failure, maternal overgrowth of fetal cells, and poor chromosome morphology. Comparative genomic hybridization (CGH)–array analysis is a powerful new molecular cytogenetic technique that allows genomewide analysis of DNA copy number. By hybridizing patient DNA and normal reference DNA to arrays of genomic clones, unbalanced gains or losses of genetic material across the genome can be detected. In this study, 41 product-of-conception (POC) samples, which were previously analyzed by G-banding, were tested using CGH arrays to determine not only if the array could identify all reported abnormalities, but also whether any previously undetected genomic imbalances would be discovered. The array methodology detected all abnormalities as reported by G-banding analysis and revealed new abnormalities in 4/41 (9.8%) cases. Of those, one trisomy 21 POC was also mosaic for trisomy 20, one had a duplication of the 10q telomere region, one had an interstitial deletion of chromosome 9p, and the fourth had an interstitial duplication of the Prader-Willi/Angelman syndrome region on chromosome 15q, which, if maternally inherited, has been implicated in autism. This retrospective study demonstrates that the DNA-based CGH-array technology overcomes many of the limitations of routine cytogenetic analysis of POC samples while enhancing the detection of fetal chromosome aberrations. PMID:15127362
2016-10-10
AFRL-RX-WP-JA-2017-0189 EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...March 2016 – 23 May 2016 4. TITLE AND SUBTITLE EXPERIMENTAL DEMONSTRATION OF ADAPTIVE INFRARED MULTISPECTRAL IMAGING USING PLASMONIC FILTER ARRAY...experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios
Identification of the mechanism underlying a human chimera by SNP array analysis.
Shin, So Youn; Yoo, Han-Wook; Lee, Beom Hee; Kim, Kun Suk; Seo, Eul-Ju
2012-09-01
Human chimerism resulting from the fusion of two different zygotes is a rare phenomenon. Two mechanisms of chimerism have been hypothesized: dispermic fertilization of an oocyte and its second polar body and dispermic fertilization of two identical gametes from parthenogenetic activation, and these can be identified and discriminated using DNA polymorphism. In the present study we describe a patient with chimerism presenting as a true hermaphrodite and applied single nucleotide polymorphism array analysis to demonstrate dispermic fertilization of two identical gametes from parthenogenetic activation as the underlying mechanism at the whole chromosome level. We suggest that application of genotyping array analysis to the diagnostic process in patients with disorders of sex development will help identify more human chimera patients and increase our understanding of the underlying mechanisms. Copyright © 2012 Wiley Periodicals, Inc.
Conductive polymer sensor arrays for smart orthopaedic implants
NASA Astrophysics Data System (ADS)
Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.
2017-04-01
This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.
Design analysis tracking and data relay satellite simulation system
NASA Technical Reports Server (NTRS)
1974-01-01
The design and development of the equipment necessary to simulate the S-band multiple access link between user spacecraft, the Tracking and Data Relay Satellite, and a ground control terminal are discussed. The core of the S-band multiple access concept is the use of an Adaptive Ground Implemented Phased Array. The array contains thirty channels and provides the multiplexing and demultiplexing equipment required to demonstrate the ground implemented beam forming feature. The system provided will make it possible to demonstrate the performance of a desired user and ten interfering sources attempting to pass data through the multiple access system.
TES X-ray microcalorimeters for X-ray astronomy and material analysis
NASA Astrophysics Data System (ADS)
Mitsuda, Kazuhisa
2016-11-01
TES X-ray microcalorimeter arrays provide not only high-energy resolution (FWHM < 10eV) in X-ray spectroscopy but also imaging and high-counting-rate capabilities. They are very promising spectrometer for X-ray astronomy and material analysis. In this paper, we report our recent progress. For material analysis, we have fabricated 8 × 8 format array with a fast signal response ( 40 μs) and proved the energy resolution of 5.8 eV FWHM at 5.9 keV. We developed common biasing scheme to reduce number of wirings from room temperature to the cryogenic stage. From measurements using the newly-designed common-bias SQUID array amplifier chips, and from numerical simulations, we demonstrated that signal cross talks due to the common bias is enough small. For space applications, we are developing frequency-division signal multiplexing system. We have fabricated a baseband feedback system and demonstrated that the noise added by the feedback system is about 4 eV FWHM equivalent for 16 ch multiplexing system. The digital to analog converter (DAC) dominates the noise, and needs be reduced by a factor of four for future astronomy missions.
Cook, Michael A.; Chan, Chi-Kin; Jorgensen, Paul; Ketela, Troy; So, Daniel; Tyers, Mike; Ho, Chi-Yip
2008-01-01
Background Molecular barcode arrays provide a powerful means to analyze cellular phenotypes in parallel through detection of short (20–60 base) unique sequence tags, or “barcodes”, associated with each strain or clone in a collection. However, costs of current methods for microarray construction, whether by in situ oligonucleotide synthesis or ex situ coupling of modified oligonucleotides to the slide surface are often prohibitive to large-scale analyses. Methodology/Principal Findings Here we demonstrate that unmodified 20mer oligonucleotide probes printed on conventional surfaces show comparable hybridization signals to covalently linked 5′-amino-modified probes. As a test case, we undertook systematic cell size analysis of the budding yeast Saccharomyces cerevisiae genome-wide deletion collection by size separation of the deletion pool followed by determination of strain abundance in size fractions by barcode arrays. We demonstrate that the properties of a 13K unique feature spotted 20 mer oligonucleotide barcode microarray compare favorably with an analogous covalently-linked oligonucleotide array. Further, cell size profiles obtained with the size selection/barcode array approach recapitulate previous cell size measurements of individual deletion strains. Finally, through atomic force microscopy (AFM), we characterize the mechanism of hybridization to unmodified barcode probes on the slide surface. Conclusions/Significance These studies push the lower limit of probe size in genome-scale unmodified oligonucleotide microarray construction and demonstrate a versatile, cost-effective and reliable method for molecular barcode analysis. PMID:18253494
NASA Astrophysics Data System (ADS)
Jang, Yoon Hee; Chung, Kyungwha; Quan, Li Na; Špačková, Barbora; Šípová, Hana; Moon, Seyoung; Cho, Won Joon; Shin, Hae-Young; Jang, Yu Jin; Lee, Ji-Eun; Kochuveedu, Saji Thomas; Yoon, Min Ji; Kim, Jihyeon; Yoon, Seokhyun; Kim, Jin Kon; Kim, Donghyun; Homola, Jiří; Kim, Dong Ha
2013-11-01
Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated.Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated. Electronic supplementary information (ESI) available: TEM image and UV-vis absorption spectrum of citrate-capped Au NPs, AFM images of Au NC arrays on the PS-b-P4VP (41k-24k) template, ImageJ-analyzed results of PS-b-P4VP (41k-24k)-templated Au NC arrays, calculated %-surface coverage values, SEM images of Au NC arrays on the PS-b-P2VP (172k-42k) template for SPR biosensing, corresponding ImageJ-analyzed images by varying the Au NP deposition time and results of image analysis. See DOI: 10.1039/c3nr03860b
The scope and control of attention as separate aspects of working memory.
Shipstead, Zach; Redick, Thomas S; Hicks, Kenny L; Engle, Randall W
2012-01-01
The present study examines two varieties of working memory (WM) capacity task: visual arrays (i.e., a measure of the amount of information that can be maintained in working memory) and complex span (i.e., a task that taps WM-related attentional control). Using previously collected data sets we employ confirmatory factor analysis to demonstrate that visual arrays and complex span tasks load on separate, but correlated, factors. A subsequent series of structural equation models and regression analyses demonstrate that these factors contribute both common and unique variance to the prediction of general fluid intelligence (Gf). However, while visual arrays does contribute uniquely to higher cognition, its overall correlation to Gf is largely mediated by variance associated with the complex span factor. Thus we argue that visual arrays performance is not strictly driven by a limited-capacity storage system (e.g., the focus of attention; Cowan, 2001), but may also rely on control processes such as selective attention and controlled memory search.
Computer-Aided Modeling and Analysis of Power Processing Systems (CAMAPPS), phase 1
NASA Technical Reports Server (NTRS)
Kim, S.; Lee, J.; Cho, B. H.; Lee, F. C.
1986-01-01
The large-signal behaviors of a regulator depend largely on the type of power circuit topology and control. Thus, for maximum flexibility, it is best to develop models for each functional block a independent modules. A regulator can then be configured by collecting appropriate pre-defined modules for each functional block. In order to complete the component model generation for a comprehensive spacecraft power system, the following modules were developed: solar array switching unit and control; shunt regulators; and battery discharger. The capability of each module is demonstrated using a simplified Direct Energy Transfer (DET) system. Large-signal behaviors of solar array power systems were analyzed. Stability of the solar array system operating points with a nonlinear load is analyzed. The state-plane analysis illustrates trajectories of the system operating point under various conditions. Stability and transient responses of the system operating near the solar array's maximum power point are also analyzed. The solar array system mode of operation is described using the DET spacecraft power system. The DET system is simulated for various operating conditions. Transfer of the software program CAMAPPS (Computer Aided Modeling and Analysis of Power Processing Systems) to NASA/GSFC (Goddard Space Flight Center) was accomplished.
Unique volatolomic signatures of TP53 and KRAS in lung cells
Davies, M P A; Barash, O; Jeries, R; Peled, N; Ilouze, M; Hyde, R; Marcus, M W; Field, J K; Haick, H
2014-01-01
Background: Volatile organic compounds (VOCs) are potential biomarkers for cancer detection in breath, but it is unclear if they reflect specific mutations. To test this, we have compared human bronchial epithelial cell (HBEC) cell lines carrying the KRASV12 mutation, knockdown of TP53 or both with parental HBEC cells. Methods: VOC from headspace above cultured cells were collected by passive sampling and analysed by thermal desorption gas chromatography mass spectrometry (TD-GC–MS) or sensor array with discriminant factor analysis (DFA). Results: In TD-GC–MS analysis, individual compounds had limited ability to discriminate between cell lines, but by applying DFA analysis combinations of 20 VOCs successfully discriminated between all cell types (accuracies 80–100%, with leave-one-out cross validation). Sensor array detection DFA demonstrated the ability to discriminate samples based on their cell type for all comparisons with accuracies varying between 77% and 93%. Conclusions: Our results demonstrate that minimal genetic changes in bronchial airway cells lead to detectable differences in levels of specific VOCs identified by TD-GC–MS or of patterns of VOCs identified by sensor array output. From the clinical aspect, these results suggest the possibility of breath analysis for detection of minimal genetic changes for earlier diagnosis or for genetic typing of lung cancers. PMID:25051409
Li, Xiao-jun; Yi, Eugene C; Kemp, Christopher J; Zhang, Hui; Aebersold, Ruedi
2005-09-01
There is an increasing interest in the quantitative proteomic measurement of the protein contents of substantially similar biological samples, e.g. for the analysis of cellular response to perturbations over time or for the discovery of protein biomarkers from clinical samples. Technical limitations of current proteomic platforms such as limited reproducibility and low throughput make this a challenging task. A new LC-MS-based platform is able to generate complex peptide patterns from the analysis of proteolyzed protein samples at high throughput and represents a promising approach for quantitative proteomics. A crucial component of the LC-MS approach is the accurate evaluation of the abundance of detected peptides over many samples and the identification of peptide features that can stratify samples with respect to their genetic, physiological, or environmental origins. We present here a new software suite, SpecArray, that generates a peptide versus sample array from a set of LC-MS data. A peptide array stores the relative abundance of thousands of peptide features in many samples and is in a format identical to that of a gene expression microarray. A peptide array can be subjected to an unsupervised clustering analysis to stratify samples or to a discriminant analysis to identify discriminatory peptide features. We applied the SpecArray to analyze two sets of LC-MS data: one was from four repeat LC-MS analyses of the same glycopeptide sample, and another was from LC-MS analysis of serum samples of five male and five female mice. We demonstrate through these two study cases that the SpecArray software suite can serve as an effective software platform in the LC-MS approach for quantitative proteomics.
Chapman, Peter J; Vogt, Frank; Dutta, Pampa; Datskos, Panos G; Devault, Gerald L; Sepaniak, Michael J
2007-01-01
The very simple coupling of a standard, packed-column gas chromatograph with a microcantilever array (MCA) is demonstrated for enhanced selectivity and potential analyte identification in the analysis of volatile organic compounds (VOCs). The cantilevers in MCAs are differentially coated on one side with responsive phases (RPs) and produce bending responses of the cantilevers due to analyte-induced surface stresses. Generally, individual components are difficult to elucidate when introduced to MCA systems as mixtures, although pattern recognition techniques are helpful in identifying single components, binary mixtures, or composite responses of distinct mixtures (e.g., fragrances). In the present work, simple test VOC mixtures composed of acetone, ethanol, and trichloroethylene (TCE) in pentane and methanol and acetonitrile in pentane are first separated using a standard gas chromatograph and then introduced into a MCA flow cell. Significant amounts of response diversity to the analytes in the mixtures are demonstrated across the RP-coated cantilevers of the array. Principal component analysis is used to demonstrate that only three components of a four-component VOC mixture could be identified without mixture separation. Calibration studies are performed, demonstrating a good linear response over 2 orders of magnitude for each component in the primary study mixture. Studies of operational parameters including column temperature, column flow rate, and array cell temperature are conducted. Reproducibility studies of VOC peak areas and peak heights are also carried out showing RSDs of less than 4 and 3%, respectively, for intra-assay studies. Of practical significance is the facile manner by which the hyphenation of a mature separation technique and the burgeoning sensing approach is accomplished, and the potential to use pattern recognition techniques with MCAs as a new type of detector for chromatography with analyte-identifying capabilities.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
DAMAS Processing for a Phased Array Study in the NASA Langley Jet Noise Laboratory
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Humphreys, William M.; Plassman, Gerald e.
2010-01-01
A jet noise measurement study was conducted using a phased microphone array system for a range of jet nozzle configurations and flow conditions. The test effort included convergent and convergent/divergent single flow nozzles, as well as conventional and chevron dual-flow core and fan configurations. Cold jets were tested with and without wind tunnel co-flow, whereas, hot jets were tested only with co-flow. The intent of the measurement effort was to allow evaluation of new phased array technologies for their ability to separate and quantify distributions of jet noise sources. In the present paper, the array post-processing method focused upon is DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) for the quantitative determination of spatial distributions of noise sources. Jet noise is highly complex with stationary and convecting noise sources, convecting flows that are the sources themselves, and shock-related and screech noise for supersonic flow. The analysis presented in this paper addresses some processing details with DAMAS, for the array positioned at 90 (normal) to the jet. The paper demonstrates the applicability of DAMAS and how it indicates when strong coherence is present. Also, a new approach to calibrating the array focus and position is introduced and demonstrated.
Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity
Raghavan, Shreya; Rowley, Katelyn R.; Mehta, Geeta
2016-01-01
Multicellular tumor spheroids are powerful in vitro models to perform preclinical chemosensitivity assays. We compare different methodologies to generate tumor spheroids in terms of resultant spheroid morphology, cellular arrangement and chemosensitivity. We used two cancer cell lines (MCF7 and OVCAR8) to generate spheroids using i) hanging drop array plates; ii) liquid overlay on ultra-low attachment plates; iii) liquid overlay on ultra-low attachment plates with rotating mixing (nutator plates). Analysis of spheroid morphometry indicated that cellular compaction was increased in spheroids generated on nutator and hanging drop array plates. Collagen staining also indicated higher compaction and remodeling in tumor spheroids on nutator and hanging drop arrays compared to conventional liquid overlay. Consequently, spheroids generated on nutator or hanging drop plates had increased chemoresistance to cisplatin treatment (20-60% viability) compared to spheroids on ultra low attachment plates (10-20% viability). Lastly, we used a mathematical model to demonstrate minimal changes in oxygen and cisplatin diffusion within experimentally generated spheroids. Our results demonstrate that in vitro methods of tumor spheroid generation result in varied cellular arrangement and chemosensitivity. PMID:26918944
Sweetwater, Texas Large N Experiment
NASA Astrophysics Data System (ADS)
Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.
2015-12-01
From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.
A CMOS Time-Resolved Fluorescence Lifetime Analysis Micro-System
Rae, Bruce R.; Muir, Keith R.; Gong, Zheng; McKendry, Jonathan; Girkin, John M.; Gu, Erdan; Renshaw, David; Dawson, Martin D.; Henderson, Robert K.
2009-01-01
We describe a CMOS-based micro-system for time-resolved fluorescence lifetime analysis. It comprises a 16 × 4 array of single-photon avalanche diodes (SPADs) fabricated in 0.35 μm high-voltage CMOS technology with in-pixel time-gated photon counting circuitry and a second device incorporating an 8 × 8 AlInGaN blue micro-pixellated light-emitting diode (micro-LED) array bump-bonded to an equivalent array of LED drivers realized in a standard low-voltage 0.35 μm CMOS technology, capable of producing excitation pulses with a width of 777 ps (FWHM). This system replaces instrumentation based on lasers, photomultiplier tubes, bulk optics and discrete electronics with a PC-based micro-system. Demonstrator lifetime measurements of colloidal quantum dot and Rhodamine samples are presented. PMID:22291564
Yamada, Keita; Hirabayashi, Jun; Kakehi, Kazuaki
2013-03-19
A method is proposed for the analysis of O-glycans as 9-fluorenylmethyl (Fmoc) derivatives. After releasing the O-glycans from the protein backbone in the presence of ammonia-based media, the glycosylamines thus formed are conveniently labeled with Fmoc-Cl and analyzed by HPLC and MALDI-TOF MS after easy purification. Fmoc labeled O-glycans showed 3.5 times higher sensitivities than those labeled with 2-aminobenzoic acid in fluorescent detection. Various types of O-glycans having sialic acids, fucose, and/or sulfate residues were successfully labeled with Fmoc and analyzed by HPLC and MALDI-TOF MS. The method was applied to the comprehensive analysis of O-glycans expressed on MKN45 cells (human gastric adenocarcinoma). In addition, Fmoc-derivatized O-glycans were easily converted to free hemiacetal or glycosylamine-form glycans that are available for fabrication of glycan array and neoglycoproteins. To demonstrate the availability of our methods, we fabricate the glycan array with Fmoc labeled glycans derived from mucin samples and cancer cells. The model studies using the glycan array showed clear interactions between immobilized glycans and some lectins.
Metallic Nanohole Arrays on Fluoropolymer Substrates as Small Label-Free Real-Time Bioprobes
Yang, Jiun-Chan; Ji, Jin; Hogle, James M.; Larson, Dale N.
2009-01-01
We describe a nanoplasmonic probing platform that exploits small-dimension (≤ 20 μm2) ordered arrays of subwavelength holes for multiplexed, high spatial resolution, and real-time analysis on biorecognition events. Nanohole arrays are perforated on a super smooth gold surface (roughness RMS < 2.7 Å) attached on a fluoropolymer (FEP) substrate fabricated by a replica technique. The smooth surface of gold provides a superb environment for fabricating nanometer features and uniform immobilization of biomolecules. The refractive index matching between FEP and biological solutions contributes to ∼ 20% improvement on the sensing performance. Spectral studies on a series of small-dimension nanohole arrays from 1 μm2 to 20 μm2 indicate that the plasmonic sensing sensitivity improves as the gold-solution contact area increases. Our results also demonstrate that nanohole arrays with dimension as small as 1 μm2 can be used to effectively detect biomolecular binding events and analyze the binding kinetics. The future scientific opportunities opened by this nanohole platform include highly multiplexed analysis of ligand interactions with membrane proteins on high quality supported lipid bilayers. PMID:18710296
Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment
NASA Astrophysics Data System (ADS)
Pitarka, A.
2014-12-01
Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
Dispersion analysis of passive surface-wave noise generated during hydraulic-fracturing operations
Forghani-Arani, Farnoush; Willis, Mark; Snieder, Roel; Haines, Seth S.; Behura, Jyoti; Batzle, Mike; Davidson, Michael
2014-01-01
Surface-wave dispersion analysis is useful for estimating near-surface shear-wave velocity models, designing receiver arrays, and suppressing surface waves. Here, we analyze whether passive seismic noise generated during hydraulic-fracturing operations can be used to extract surface-wave dispersion characteristics. Applying seismic interferometry to noise measurements, we extract surface waves by cross-correlating several minutes of passive records; this approach is distinct from previous studies that used hours or days of passive records for cross-correlation. For comparison, we also perform dispersion analysis for an active-source array that has some receivers in common with the passive array. The active and passive data show good agreement in the dispersive character of the fundamental-mode surface-waves. For the higher mode surface waves, however, active and passive data resolve the dispersive properties at different frequency ranges. To demonstrate an application of dispersion analysis, we invert the observed surface-wave dispersion characteristics to determine the near-surface, one-dimensional shear-wave velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.
2016-02-10
Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar PSR J0437–4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz revealmore » a similar parabolic feature with a curvature that scales approximately as the square of the observing wavelength (λ{sup 2}) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437–4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected location of the edge of the Local Bubble that envelopes the local Solar neighborhood. As well as demonstrating new and improved pulsar science capabilities of the MWA, our analysis underscores the potential of low-frequency pulsar observations for gaining valuable insights into the local ISM and for characterizing the ISM toward timing-array pulsars.« less
Design of high energy laser pulse delivery in a multimode fiber for photoacoustic tomography.
Ai, Min; Shu, Weihang; Salcudean, Tim; Rohling, Robert; Abolmaesumi, Purang; Tang, Shuo
2017-07-24
In photoacoustic tomography (PAT), delivering high energy pulses through optical fiber is critical for achieving high quality imaging. A fiber coupling scheme with a beam homogenizer is demonstrated for coupling high energy pulses in a single multimode fiber. This scheme can benefit PAT applications that require miniaturized illumination or internal illumination with a small fiber. The beam homogenizer is achieved by using a cross cylindrical lens array, which provides a periodic spatial modulation on the phase of the input light. Thus the lens array acts as a phase grating which diffracts the beam into a 2D diffraction pattern. Both theoretical analysis and experiments demonstrate that the focused beam can be split into a 2D spot array that can reduce the peak power on the fiber tip surface and thus enhance the coupling performance. The theoretical analysis of the intensity distribution of the focused beam is carried out by Fourier optics. In experiments, coupled energy at 48 mJ/pulse and 60 mJ/pulse have been achieved and the corresponding coupling efficiency is 70% and 90% in a 1000-μm and a 1500-μm-core-diameter fiber, respectively. The high energy pulses delivered by the multimode fiber are further tested for PAT imaging in phantoms. PAT imaging of a printed dot array shows a large illumination area of 7 cm 2 under 5 mm thick chicken breast tissue. In vivo imaging is also demonstrated on the human forearm. The large improvement in coupling energy can potentially benefit PAT with single fiber delivery to achieve large area imaging and deep penetration detection.
Improvements in analysis techniques for segmented mirror arrays
NASA Astrophysics Data System (ADS)
Michels, Gregory J.; Genberg, Victor L.; Bisson, Gary R.
2016-08-01
The employment of actively controlled segmented mirror architectures has become increasingly common in the development of current astronomical telescopes. Optomechanical analysis of such hardware presents unique issues compared to that of monolithic mirror designs. The work presented here is a review of current capabilities and improvements in the methodology of the analysis of mechanically induced surface deformation of such systems. The recent improvements include capability to differentiate surface deformation at the array and segment level. This differentiation allowing surface deformation analysis at each individual segment level offers useful insight into the mechanical behavior of the segments that is unavailable by analysis solely at the parent array level. In addition, capability to characterize the full displacement vector deformation of collections of points allows analysis of mechanical disturbance predictions of assembly interfaces relative to other assembly interfaces. This capability, called racking analysis, allows engineers to develop designs for segment-to-segment phasing performance in assembly integration, 0g release, and thermal stability of operation. The performance predicted by racking has the advantage of being comparable to the measurements used in assembly of hardware. Approaches to all of the above issues are presented and demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.
Graphene Microcapsule Arrays for Combinatorial Electron Microscopy and Spectroscopy in Liquids
Yulaev, Alexander; Guo, Hongxuan; Strelcov, Evgheni; ...
2017-04-27
Atomic-scale thickness, molecular impermeability, low atomic number, and mechanical strength make graphene an ideal electron-transparent membrane for material characterization in liquids and gases with scanning electron microscopy and spectroscopy. Here in this paper, we present a novel sample platform made of an array of thousands of identical isolated graphene-capped microchannels with high aspect ratio. A combination of a global wide field of view with high resolution local imaging of the array allows for high throughput in situ studies as well as for combinatorial screening of solutions, liquid interfaces, and immersed samples. We demonstrate the capabilities of this platform by studyingmore » a pure water sample in comparison with alkali halide solutions, a model electrochemical plating process, and beam-induced crystal growth in liquid electrolyte. Spectroscopic characterization of liquid interfaces and immersed objects with Auger and X-ray fluorescence analysis through the graphene membrane are also demonstrated.« less
Telescoping Solar Array Concept for Achieving High Packaging Efficiency
NASA Technical Reports Server (NTRS)
Mikulas, Martin; Pappa, Richard; Warren, Jay; Rose, Geoff
2015-01-01
Lightweight, high-efficiency solar arrays are required for future deep space missions using high-power Solar Electric Propulsion (SEP). Structural performance metrics for state-of-the art 30-50 kW flexible blanket arrays recently demonstrated in ground tests are approximately 40 kW/cu m packaging efficiency, 150 W/kg specific power, 0.1 Hz deployed stiffness, and 0.2 g deployed strength. Much larger arrays with up to a megawatt or more of power and improved packaging and specific power are of interest to mission planners for minimizing launch and life cycle costs of Mars exploration. A new concept referred to as the Compact Telescoping Array (CTA) with 60 kW/cu m packaging efficiency at 1 MW of power is described herein. Performance metrics as a function of array size and corresponding power level are derived analytically and validated by finite element analysis. Feasible CTA packaging and deployment approaches are also described. The CTA was developed, in part, to serve as a NASA reference solar array concept against which other proposed designs of 50-1000 kW arrays for future high-power SEP missions could be compared.
Dang, Fuquan; Tabata, Osamu; Kurokawa, Masaya; Ewis, Ashraf A; Zhang, Lihua; Yamaoka, Yoshihisa; Shinohara, Shouji; Shinohara, Yasuo; Ishikawa, Mitsuru; Baba, Yoshinobu
2005-04-01
We have developed a novel technique for mass production of microfabricated capillary array electrophoresis (mu-CAE) plastic chips for high-speed, high-throughput genetic analysis. The mu-CAE chips, containing 10 individual separation channels of 50-microm width, 50-microm depth, and a 100-microm lane-to-lane spacing at the detection region and a sacrificial channel network, were fabricated on a poly(methyl methacrylate) substrate by injection molding and then bonded manually using a pressure-sensitive sealing tape within several seconds at room temperature. The conditions for injection molding and bonding were carefully characterized to yield mu-CAE chips with well-defined channel and injection structures. A CCD camera equipped with an image intensifier was used to monitor simultaneously the separation in a 10-channel array with laser-induced fluorescence detection. High-performance electrophoretic separations of phiX174 HaeIII DNA restriction fragments and PCR products related to the human beta-globin gene and SP-B gene (the surfactant protein B) have been demonstrated on mu-CAE plastic chips using a methylcellulose sieving matrix in individual channels. The current work demonstrated greatly simplified the fabrication process as well as a detection scheme for mu-CAE chips and will bring the low-cost mass production and application of mu-CAE plastic chips for genetic analysis.
Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS
NASA Technical Reports Server (NTRS)
1996-01-01
Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful performance of experimental, proof-of-concept MMIC K/Ka-band arrays developed with U.S. industry in field demonstrations with ACTS indicates that high density MMIC integration at 20 and 30 GHz is indeed feasible. The successful development and demonstration of the MMIC array systems was possible only because of significant intergovernmental and Government/industry cooperation and the high level of teamwork within Lewis. The results provide a strong incentive for continuing the focused development of MMIC-array technology for satellite communications applications, with emphasis on packaging and cost issues, and for continuing the planning and conducting of other appropriate demonstrations or experiments of phased-array technology with ACTS. Given the present pressures on reducing funding for research and development in Government and industry, the extent to which this can be continued in a cooperative manner will determine whether MMIC array technology will make the transition from the proof-of-concept level to the operational system level.
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan, C.G.; De Geronimo, G.; Kirkham, R.
2009-11-13
The fundamental parameter method for quantitative SXRF and PIXE analysis and imaging using the dynamic analysis method is extended to model the changing X-ray yields and detector sensitivity with angle across large detector arrays. The method is implemented in the GeoPIXE software and applied to cope with the large solid-angle of the new Maia 384 detector array and its 96 detector prototype developed by CSIRO and BNL for SXRF imaging applications at the Australian and NSLS synchrotrons. Peak-to-background is controlled by mitigating charge-sharing between detectors through careful optimization of a patterned molybdenum absorber mask. A geological application demonstrates the capabilitymore » of the method to produce high definition elemental images up to {approx}100 M pixels in size.« less
First experimental demonstration of self-synchronous phase locking of an optical array
NASA Astrophysics Data System (ADS)
Shay, T. M.; Benham, Vincent; Baker, J. T.; Ward, Benjamin; Sanchez, Anthony D.; Culpepper, Mark A.; Pilkington, D.; Spring, Justin; Nelson, Douglas J.; Lu, Chunte A.
2006-12-01
A novel, highly accurate, all electronic technique for phase locking arrays of optical fibers is demonstrated. We report the first demonstration of the only electronic phase locking technique that doesn’t require a reference beam. The measured phase error is λ/20. Excellent phase locking has been demonstrated for fiber amplifier arrays.
Detecting novel genes with sparse arrays
Haiminen, Niina; Smit, Bart; Rautio, Jari; Vitikainen, Marika; Wiebe, Marilyn; Martinez, Diego; Chee, Christine; Kunkel, Joe; Sanchez, Charles; Nelson, Mary Anne; Pakula, Tiina; Saloheimo, Markku; Penttilä, Merja; Kivioja, Teemu
2014-01-01
Species-specific genes play an important role in defining the phenotype of an organism. However, current gene prediction methods can only efficiently find genes that share features such as sequence similarity or general sequence characteristics with previously known genes. Novel sequencing methods and tiling arrays can be used to find genes without prior information and they have demonstrated that novel genes can still be found from extensively studied model organisms. Unfortunately, these methods are expensive and thus are not easily applicable, e.g., to finding genes that are expressed only in very specific conditions. We demonstrate a method for finding novel genes with sparse arrays, applying it on the 33.9 Mb genome of the filamentous fungus Trichoderma reesei. Our computational method does not require normalisations between arrays and it takes into account the multiple-testing problem typical for analysis of microarray data. In contrast to tiling arrays, that use overlapping probes, only one 25mer microarray oligonucleotide probe was used for every 100 b. Thus, only relatively little space on a microarray slide was required to cover the intergenic regions of a genome. The analysis was done as a by-product of a conventional microarray experiment with no additional costs. We found at least 23 good candidates for novel transcripts that could code for proteins and all of which were expressed at high levels. Candidate genes were found to neighbour ire1 and cre1 and many other regulatory genes. Our simple, low-cost method can easily be applied to finding novel species-specific genes without prior knowledge of their sequence properties. PMID:20691772
2012-01-01
Background For decades the tobacco plant has served as a model organism in plant biology to answer fundamental biological questions in the areas of plant development, physiology, and genetics. Due to the lack of sufficient coverage of genomic sequences, however, none of the expressed sequence tag (EST)-based chips developed to date cover gene expression from the whole genome. The availability of Tobacco Genome Initiative (TGI) sequences provides a useful resource to build a whole genome exon array, even if the assembled sequences are highly fragmented. Here, the design of a Tobacco Exon Array is reported and an application to improve the understanding of genes regulated by cadmium (Cd) in tobacco is described. Results From the analysis and annotation of the 1,271,256 Nicotiana tabacum fasta and quality files from methyl filtered genomic survey sequences (GSS) obtained from the TGI and ~56,000 ESTs available in public databases, an exon array with 272,342 probesets was designed (four probes per exon) and tested on two selected tobacco varieties. Two tobacco varieties out of 45 accumulating low and high cadmium in leaf were identified based on the GGE biplot analysis, which is analysis of the genotype main effect (G) plus analysis of the genotype by environment interaction (GE) of eight field trials (four fields over two years) showing reproducibility across the trials. The selected varieties were grown under greenhouse conditions in two different soils and subjected to exon array analyses using root and leaf tissues to understand the genetic make-up of the Cd accumulation. Conclusions An Affymetrix Exon Array was developed to cover a large (~90%) proportion of the tobacco gene space. The Tobacco Exon Array will be available for research use through Affymetrix array catalogue. As a proof of the exon array usability, we have demonstrated that the Tobacco Exon Array is a valuable tool for studying Cd accumulation in tobacco leaves. Data from field and greenhouse experiments supported by gene expression studies strongly suggested that the difference in leaf Cd accumulation between the two specific tobacco cultivars is dependent solely on genetic factors and genetic variability rather than on the environment. PMID:23190529
Morgenstern, Hai; Rafaely, Boaz
2018-02-01
Spatial analysis of room acoustics is an ongoing research topic. Microphone arrays have been employed for spatial analyses with an important objective being the estimation of the direction-of-arrival (DOA) of direct sound and early room reflections using room impulse responses (RIRs). An optimal method for DOA estimation is the multiple signal classification algorithm. When RIRs are considered, this method typically fails due to the correlation of room reflections, which leads to rank deficiency of the cross-spectrum matrix. Preprocessing methods for rank restoration, which may involve averaging over frequency, for example, have been proposed exclusively for spherical arrays. However, these methods fail in the case of reflections with equal time delays, which may arise in practice and could be of interest. In this paper, a method is proposed for systems that combine a spherical microphone array and a spherical loudspeaker array, referred to as multiple-input multiple-output systems. This method, referred to as modal smoothing, exploits the additional spatial diversity for rank restoration and succeeds where previous methods fail, as demonstrated in a simulation study. Finally, combining modal smoothing with a preprocessing method is proposed in order to increase the number of DOAs that can be estimated using low-order spherical loudspeaker arrays.
Using Network Theory to Understand Seismic Noise in Dense Arrays
NASA Astrophysics Data System (ADS)
Riahi, N.; Gerstoft, P.
2015-12-01
Dense seismic arrays offer an opportunity to study anthropogenic seismic noise sources with unprecedented detail. Man-made sources typically have high frequency, low intensity, and propagate as surface waves. As a result attenuation restricts their measurable footprint to a small subset of sensors. Medium heterogeneities can further introduce wave front perturbations that limit processing based on travel time. We demonstrate a non-parametric technique that can reliably identify very local events within the array as a function of frequency and time without using travel-times. The approach estimates the non-zero support of the array covariance matrix and then uses network analysis tools to identify clusters of sensors that are sensing a common source. We verify the method on simulated data and then apply it to the Long Beach (CA) geophone array. The method exposes a helicopter traversing the array, oil production facilities with different characteristics, and the fact that noise sources near roads tend to be around 10-20 Hz.
Reliability of high-power QCW arrays
NASA Astrophysics Data System (ADS)
Feeler, Ryan; Junghans, Jeremy; Remley, Jennifer; Schnurbusch, Don; Stephens, Ed
2010-02-01
Northrop Grumman Cutting Edge Optronics has developed a family of arrays for high-power QCW operation. These arrays are built using CTE-matched heat sinks and hard solder in order to maximize the reliability of the devices. A summary of a recent life test is presented in order to quantify the reliability of QCW arrays and associated laser gain modules. A statistical analysis of the raw lifetime data is presented in order to quantify the data in such a way that is useful for laser system designers. The life tests demonstrate the high level of reliability of these arrays in a number of operating regimes. For single-bar arrays, a MTTF of 19.8 billion shots is predicted. For four-bar samples, a MTTF of 14.6 billion shots is predicted. In addition, data representing a large pump source is analyzed and shown to have an expected lifetime of 13.5 billion shots. This corresponds to an expected operational lifetime of greater than ten thousand hours at repetition rates less than 370 Hz.
Flat-plate solar array project. Volume 5: Process development
NASA Technical Reports Server (NTRS)
Gallagher, B.; Alexander, P.; Burger, D.
1986-01-01
The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly.
Semiconductor nanomembrane-based sensors for high frequency pressure measurements
NASA Astrophysics Data System (ADS)
Ruan, Hang; Kang, Yuhong; Homer, Michelle; Claus, Richard O.; Mayo, David; Sibold, Ridge; Jones, Tyler; Ng, Wing
2017-04-01
This paper demonstrates improvements on semiconductor nanomembrane based high frequency pressure sensors that utilize silicon on insulator techniques in combination with nanocomposite materials. The low-modulus, conformal nanomembrane sensor skins with integrated interconnect elements and electronic devices could be applied to vehicles or wind tunnel models for full spectrum pressure analysis. Experimental data demonstrates that: 1) silicon nanomembrane may be used as single pressure sensor transducers and elements in sensor arrays, 2) the arrays may be instrumented to map pressure over the surfaces of test articles over a range of Reynolds numbers, temperature and other environmental conditions, 3) in the high frequency range, the sensor is comparable to the commercial high frequency sensor, and 4) in the low frequency range, the sensor is much better than the commercial sensor. This supports the claim that nanomembrane pressure sensors may be used for wide bandwidth flow analysis.
Stanaćević, Milutin; Li, Shuo; Cauwenberghs, Gert
2016-07-01
A parallel micro-power mixed-signal VLSI implementation of independent component analysis (ICA) with reconfigurable outer-product learning rules is presented. With the gradient sensing of the acoustic field over a miniature microphone array as a pre-processing method, the proposed ICA implementation can separate and localize up to 3 sources in mild reverberant environment. The ICA processor is implemented in 0.5 µm CMOS technology and occupies 3 mm × 3 mm area. At 16 kHz sampling rate, ASIC consumes 195 µW power from a 3 V supply. The outer-product implementation of natural gradient and Herault-Jutten ICA update rules demonstrates comparable performance to benchmark FastICA algorithm in ideal conditions and more robust performance in noisy and reverberant environment. Experiments demonstrate perceptually clear separation and precise localization over wide range of separation angles of two speech sources presented through speakers positioned at 1.5 m from the array on a conference room table. The presented ASIC leads to a extreme small form factor and low power consumption microsystem for source separation and localization required in applications like intelligent hearing aids and wireless distributed acoustic sensor arrays.
Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Garver, Billy; Holmes, Andrea E
2018-02-01
With the increasing availability of digital imaging devices, colorimetric sensor arrays are rapidly becoming a simple, yet effective tool for the identification and quantification of various analytes. Colorimetric arrays utilize colorimetric data from many colorimetric sensors, with the multidimensional nature of the resulting data necessitating the use of chemometric analysis. Herein, an 8 sensor colorimetric array was used to analyze select acid and basic samples (0.5 - 10 M) to determine which chemometric methods are best suited for classification quantification of analytes within clusters. PCA, HCA, and LDA were used to visualize the data set. All three methods showed well-separated clusters for each of the acid or base analytes and moderate separation between analyte concentrations, indicating that the sensor array can be used to identify and quantify samples. Furthermore, PCA could be used to determine which sensors showed the most effective analyte identification. LDA, KNN, and HQI were used for identification of analyte and concentration. HQI and KNN could be used to correctly identify the analytes in all cases, while LDA correctly identified 95 of 96 analytes correctly. Additional studies demonstrated that controlling for solvent and image effects was unnecessary for all chemometric methods utilized in this study.
Beamforming array techniques for acoustic emission monitoring of large concrete structures
NASA Astrophysics Data System (ADS)
McLaskey, Gregory C.; Glaser, Steven D.; Grosse, Christian U.
2010-06-01
This paper introduces a novel method of acoustic emission (AE) analysis which is particularly suited for field applications on large plate-like reinforced concrete structures, such as walls and bridge decks. Similar to phased-array signal processing techniques developed for other non-destructive evaluation methods, this technique adapts beamforming tools developed for passive sonar and seismological applications for use in AE source localization and signal discrimination analyses. Instead of relying on the relatively weak P-wave, this method uses the energy-rich Rayleigh wave and requires only a small array of 4-8 sensors. Tests on an in-service reinforced concrete structure demonstrate that the azimuth of an artificial AE source can be determined via this method for sources located up to 3.8 m from the sensor array, even when the P-wave is undetectable. The beamforming array geometry also allows additional signal processing tools to be implemented, such as the VESPA process (VElocity SPectral Analysis), whereby the arrivals of different wave phases are identified by their apparent velocity of propagation. Beamforming AE can reduce sampling rate and time synchronization requirements between spatially distant sensors which in turn facilitates the use of wireless sensor networks for this application.
Barbee, Kristopher D.; Hsiao, Alexander P.; Roller, Eric E.; Huang, Xiaohua
2011-01-01
We report the development of a microfabricated electrophoretic device for assembling high-density arrays of antibody-conjugated microbeads for chip-based protein detection. The device consists of a flow cell formed between a gold-coated silicon chip with an array of microwells etched in a silicon dioxide film and a glass coverslip with a series of thin gold counter electrode lines. We have demonstrated that 0.4 and 1 μm beads conjugated with antibodies can be rapidly assembled into the microwells by applying a pulsed electric field across the chamber. By assembling step-wise a mixture of fluorescently labeled antibody-conjugated microbeads, we incorporated both spatial and fluorescence encoding strategies to demonstrate significant multiplexing capabilities. We have shown that these antibody-conjugated microbead arrays can be used to perform on-chip sandwich immunoassays to detect test antigens at concentrations as low as 40 pM (6 ng/mL). A finite element model was also developed to examine the electric field distribution within the device for different counter electrode configurations over a range of line pitches and chamber heights. This device will be useful for assembling high-density, encoded antibody arrays for multiplexed detection of proteins and other types of protein-conjugated microbeads for applications such as the analysis of protein-protein interactions. PMID:20820631
Du, Xuemin; Wang, Juan; Cui, Huanqing; Zhao, Qilong; Chen, Hongxu; He, Le; Wang, Yunlong
2017-11-01
Surfaces patterned with hydrophilic and hydrophobic regions provide robust and versatile means for investigating the wetting behaviors of liquids, surface properties analysis, and producing patterned arrays. However, the fabrication of integral and uniform arrays onto these open systems remains a challenge, thus restricting them from being used in practical applications. Here, we present a simple yet powerful approach for the fabrication of water droplet arrays and the assembly of photonic crystal bead arrays based on hydrophilic-hydrophobic patterned substrates. Various integral arrays are simply prepared in a high-quality output with a low cost, large scale, and uniform size control. By simply taking a breath, which brings moisture to the substrate surface, complex hydrophilic-hydrophobic outlined images can be revisualized in the discontinuous hydrophilic regions. Integration of hydrogel photonic crystal bead arrays into the "breath-taking" process results in breath-responsive photonic crystal beads, which can change their colors upon a mild exhalation. This state-of-the-art technology not only provides an effective methodology for the preparation of patterned arrays but also demonstrates intriguing applications in information storage and biochemical sensors.
Large Ka-Band Slot Array for Digital Beam-Forming Applications
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam; Zawadzki, Mark S.; Hodges, Richard E.
2011-01-01
This work describes the development of a large Ka Band Slot Array for the Glacier and Land Ice Surface Topography Interferometer (GLISTIN), a proposed spaceborne interferometric synthetic aperture radar for topographic mapping of ice sheets and glaciers. GLISTIN will collect ice topography measurement data over a wide swath with sub-seasonal repeat intervals using a Ka-band digitally beamformed antenna. For technology demonstration purpose a receive array of size 1x1 m, consisting of 160x160 radiating elements, was developed. The array is divided into 16 sticks, each stick consisting of 160x10 radiating elements, whose outputs are combined to produce 16 digital beams. A transmit array stick was also developed. The antenna arrays were designed using Elliott's design equations with the use of an infinite-array mutual-coupling model. A Floquet wave model was used to account for external coupling between radiating slots. Because of the use of uniform amplitude and phase distribution, the infinite array model yielded identical values for all radiating elements but for alternating offsets, and identical coupling elements but for alternating positive and negative tilts. Waveguide-fed slot arrays are finding many applications in radar, remote sensing, and communications applications because of their desirable properties such as low mass, low volume, and ease of design, manufacture, and deployability. Although waveguide-fed slot arrays have been designed, built, and tested in the past, this work represents several advances to the state of the art. The use of the infinite array model for the radiating slots yielded a simple design process for radiating and coupling slots. Method of moments solution to the integral equations for alternating offset radiating slots in an infinite array environment was developed and validated using the commercial finite element code HFSS. For the analysis purpose, a method of moments code was developed for an infinite array of subarrays. Overall the 1x1 m array was found to be successful in meeting the objectives of the GLISTIN demonstration antenna, especially with respect to the 0.042deg, 1/10th of the beamwidth of each stick, relative beam alignment between sticks.
Cramer-Rao bound analysis of wideband source localization and DOA estimation
NASA Astrophysics Data System (ADS)
Yip, Lean; Chen, Joe C.; Hudson, Ralph E.; Yao, Kung
2002-12-01
In this paper, we derive the Cramér-Rao Bound (CRB) for wideband source localization and DOA estimation. The resulting CRB formula can be decomposed into two terms: one that depends on the signal characteristic and one that depends on the array geometry. For a uniformly spaced circular array (UCA), a concise analytical form of the CRB can be given by using some algebraic approximation. We further define a DOA beamwidth based on the resulting CRB formula. The DOA beamwidth can be used to design the sampling angular spacing for the Maximum-likelihood (ML) algorithm. For a randomly distributed array, we use an elliptical model to determine the largest and smallest effective beamwidth. The effective beamwidth and the CRB analysis of source localization allow us to design an efficient algorithm for the ML estimator. Finally, our simulation results of the Approximated Maximum Likelihood (AML) algorithm are demonstrated to match well to the CRB analysis at high SNR.
Qin, Zong; Wang, Kai; Chen, Fei; Luo, Xiaobing; Liu, Sheng
2010-08-02
In this research, the condition for uniform lighting generated by array of LEDs with large view angle was studied. The luminous intensity distribution of LED is not monotone decreasing with view angle. A LED with freeform lens was designed as an example for analysis. In a system based on LEDs designed in house with a thickness of 20mm and rectangular arrangement, the condition for uniform lighting was derived and the analytical results demonstrated that the uniformity was not decreasing monotonously with the increasing of LED-to-LED spacing. The illuminance uniformities were calculated with Monte Carlo ray tracing simulations and the uniformity was found to increase with the increasing of certain LED-to-LED spacings anomalously. Another type of large view angle LED and different arrangements were discussed in addition. Both analysis and simulation results showed that the method is available for LED array lighting system design on the basis of large view angle LED..
[Phenotypic and genetic analysis of a patient presented with Tietz/Waardenburg type II a syndrome].
Wang, Huanhuan; Tang, Lifang; Zhang, Jingmin; Hu, Qin; Chen, Yingwei; Xiao, Bing
2015-08-01
To determine the genetic cause for a patient featuring decreased pigmentation of the skin and iris, hearing loss and multiple congenital anomalies. Routine chromosomal banding was performed to analyze the karyotype of the patient and his parents. Single nucleotide polymorphism array (SNP array) was employed to identify cryptic chromosome aberrations, and quantitative real-time PCR was used to confirm the results. Karyotype analysis has revealed no obvious anomaly for the patient and his parents. SNP array analysis of the patient has demonstrated a 3.9 Mb deletion encompassing 3p13p14.1, which caused loss of entire MITF gene. The deletion was confirmed by quantitative real-time PCR. Clinical features of the patient have included severe bilateral hearing loss, decreased pigmentation of the skin and iris and multiple congenital anomalies. The patient, carrying a 3p13p14.1 deletion, has features of Tietz syndrome/Waardenburg syndrome type IIa. This case may provide additional data for the study of genotype-phenotype correlation of this disease.
MMIC Phased Array Demonstrations with ACTS
NASA Technical Reports Server (NTRS)
Raquet, Charles A. (Compiler); Martzaklis, Konstantinos (Compiler); Zakrajsek, Robert J. (Compiler); Andro, Monty (Compiler); Turtle, John P.
1996-01-01
Over a one year period from May 1994 to May 1995, a number of demonstrations were conducted by the NASA Lewis Research Center (LeRC) in which voice, data, and/or video links were established via NASA's advanced communications technology satellite (ACTS) between the ACTS link evaluation terminal (LET) in Cleveland, OH, and aeronautical and mobile or fixed Earth terminals having monolithic microwave integrated circuit (MMIC) phased array antenna systems. This paper describes four of these. In one, a duplex voice link between an aeronautical terminal on the LeRC Learjet and the ACTS was achieved. Two others demonstrated duplex voice (and in one case video as well) links between the ACTS and an Army vehicle. The fourth demonstrated a high data rate downlink from ACTS to a fixed terminal. Array antenna systems used in these demonstrations were developed by LeRC and featured LeRC and Air Force experimental arrays using gallium arsenide MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The single 30 GHz transmit array was developed by NASA/LeRC and Texas Instruments. The three 20 GHz receive arrays were developed in a cooperative effort with the Air Force Rome Laboratory, taking advantage of existing Air Force array development contracts with Boeing and Lockheed Martin. The paper describes the four proof-of-concept arrays and the array control system. The system configured for each of the demonstrations is described, and results are discussed.
Burger, R; Kurzbuch, D; Gorkin, R; Kijanka, G; Glynn, M; McDonagh, C; Ducrée, J
2015-01-21
In this work we present a centrifugal microfluidic system enabling highly efficient collective trapping and alignment of particles such as microbeads and cells, their multi-colour fluorescent detection and subsequent manipulation by optical tweezers. We demonstrate array-based capture and imaging followed by "cherry-picking" of individual particles, first for fluorescently labelled polystyrene (PS) beads and then for cells. Different cell lines are discriminated based on intracellular as well as surface-based markers.
Implementation of a noise reduction circuit for spaceflight IR spectrometers
NASA Technical Reports Server (NTRS)
Ramirez, L.; Hickok, R.; Pain, B.; Staller, C.
1992-01-01
The paper discusses the implementation and analysis of a correlated triple sampling circuit using analog subtractor/integrators. The software and test setup for noise measurements are also described. The correlation circuitry is part of the signal chain for a 256-element InSb line array used in the Visible and Infrared Mapping Spectrometer. Using a focal-plane array (FPA) simulator, system noise measurements of 0.7 DN are obtained. A test setup for FPA/SPE (signal processing electronics) characterization along with noise measurements is demonstrated.
Murphy, Brian M; Dandy, David S; Henry, Charles S
2009-04-27
Immunoassays represent a core workhorse methodology for many applications ranging from clinical diagnostics to environmental monitoring. In traditional formats such as the enzyme linked immunosorbent assay (ELISA), analytes are measured singly or in small sets. As more biomarkers are identified for disease states, there is a need to develop methods that can measure multiple markers simultaneously. Immunoaffinity arrays are one such chemistry that can achieve multi-marker screening. Most arrays are performed in either competitive or non-competitive formats, where the former are used predominantly for small molecules and the later for macromolecules. To date, ELISA and immunoaffinity array methods have relied exclusively on one of these formats and not the other. Here an immunoaffinity array method capable of performing simultaneous competitive and non-competitive analysis generated using micromosaic immunoassay techniques is introduced for the analysis of metabolites and proteins. In this report, three markers of oxidative stress were used as a model system. The method described here demonstrates the simultaneous analysis of 3-nitrotyrosine, by indirect competitive immunoassay while the enzymes catalase and superoxide dismutase are analyzed by non-competitive sandwich immunoassay. The method requires less than 1 microL sample and 45 min for completion. Logistic curve fits and LOD (limits of detection) statistical analysis of the binding results are presented and show good agreement with published data for these antibody-antigen systems.
Douglas, Erik S; Hsiao, Sonny C; Onoe, Hiroaki; Bertozzi, Carolyn R; Francis, Matthew B; Mathies, Richard A
2009-07-21
A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min(-1), while primary T cells exhibited only 2 milli-pH min(-1). This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties.
Douglas, Erik S.; Hsiao, Sonny C.; Onoe, Hiroaki; Bertozzi, Carolyn R.; Francis, Matthew B.; Mathies, Richard A.
2010-01-01
A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min−1, while primary T cells exhibited only 2 milli-pH min−1. This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties. PMID:19568668
Buck, Thomas; Hwang, Shawn M; Plicht, Björn; Mucci, Ronald A; Hunold, Peter; Erbel, Raimund; Levine, Robert A
2008-06-01
Cardiac ultrasound imaging systems are limited in the noninvasive quantification of valvular regurgitation due to indirect measurements and inaccurate hemodynamic assumptions. We recently demonstrated that the principle of integration of backscattered acoustic Doppler power times velocity can be used for flow quantification in valvular regurgitation directly at the vena contracta of a regurgitant flow jet. We now aimed to accomplish implementation of automated Doppler power flow analysis software on a standard cardiac ultrasound system utilizing novel matrix-array transducer technology with detailed description of system requirements, components and software contributing to the system. This system based on a 3.5 MHz, matrix-array cardiac ultrasound scanner (Sonos 5500, Philips Medical Systems) was validated by means of comprehensive experimental signal generator trials, in vitro flow phantom trials and in vivo testing in 48 patients with mitral regurgitation of different severity and etiology using magnetic resonance imaging (MRI) for reference. All measurements displayed good correlation to the reference values, indicating successful implementation of automated Doppler power flow analysis on a matrix-array ultrasound imaging system. Systematic underestimation of effective regurgitant orifice areas >0.65 cm(2) and volumes >40 ml was found due to currently limited Doppler beam width that could be readily overcome by the use of new generation 2D matrix-array technology. Automated flow quantification in valvular heart disease based on backscattered Doppler power can be fully implemented on board a routinely used matrix-array ultrasound imaging systems. Such automated Doppler power flow analysis of valvular regurgitant flow directly, noninvasively, and user independent overcomes the practical limitations of current techniques.
Loudspeaker line array educational demonstration.
Anderson, Brian E; Moser, Brad; Gee, Kent L
2012-03-01
This paper presents a physical demonstration of an audio-range line array used to teach interference of multiple sources in a classroom or laboratory exercise setting. Software has been developed that permits real-time control and steering of the array. The graphical interface permits a user to vary the frequency, the angular response by phase shading, and reduce sidelobes through amplitude shading. An inexpensive, eight-element loudspeaker array has been constructed to test the control program. Directivity measurements of this array in an anechoic chamber and in a large classroom are presented. These measurements have good agreement with theoretical directivity predictions, thereby allowing its use as a quantitative learning tool for advanced students as well as a qualitative demonstration of arrays in other settings. Portions of this paper are directed toward educators who may wish to implement a similar demonstration for their advanced undergraduate or graduate level course in acoustics. © 2012 Acoustical Society of America
Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay
NASA Astrophysics Data System (ADS)
He, Qinghua; Li, Dongmei; He, Yonghong; Guan, Tian; Zhang, Yilong; Shen, Zhiyuan; Chen, Xuejing; Liu, Siyu; Lu, Bangrong; Ji, Yanhong
2017-09-01
A laser-induced breakdown spectroscopy and fluorescence spectroscopy-coupled optical system is reported to demodulate digitally encoded suspension array in fluoroimmunoassay. It takes advantage of the plasma emissions of assembled elemental materials to digitally decode the suspension array, providing a more stable and accurate recognition to target biomolecules. By separating the decoding procedure of suspension array and adsorption quantity calculation of biomolecules into two independent channels, the cross talk between decoding and label signals in traditional methods had been successfully avoided, which promoted the accuracy of both processes and realized more sensitive quantitative detection of target biomolecules. We carried a multiplexed detection of several types of anti-IgG to verify the quantitative analysis performance of the system. A limit of detection of 1.48×10-10 M was achieved, demonstrating the detection sensitivity of the optical demodulation system.
Chu, Shu-Chun; Chen, Yun-Ting; Tsai, Ko-Fan; Otsuka, Kenju
2012-03-26
This study reports the first systematic approach to the excitation of all high-order Hermite-Gaussian modes (HGMs) in end-pumped solid-state lasers. This study uses a metal-wire-inserted laser resonator accompanied with the "off axis pumping" approach. This study presents numerical analysis of the excitation of HGMs in end-pumped solid-state lasers and experimentally generated HGM patterns. This study also experimentally demonstrates the generation of an square vortex array laser beams by passing specific high-order HGMs (HGn,n + 1 or HGn + 1,n modes) through a Dove prism-embedded unbalanced Mach-Zehnder interferometer [Optics Express 16, 19934-19949]. The resulting square vortex array laser beams with embedded vortexes aligned in a square array can be applied to multi-spot dark optical traps in the future.
Monitoring and Evaluation of Alcoholic Fermentation Processes Using a Chemocapacitor Sensor Array
Oikonomou, Petros; Raptis, Ioannis; Sanopoulou, Merope
2014-01-01
The alcoholic fermentation of Savatiano must variety was initiated under laboratory conditions and monitored daily with a gas sensor array without any pre-treatment steps. The sensor array consisted of eight interdigitated chemocapacitors (IDCs) coated with specific polymers. Two batches of fermented must were tested and also subjected daily to standard chemical analysis. The chemical composition of the two fermenting musts differed from day one of laboratory monitoring (due to different storage conditions of the musts) and due to a deliberate increase of the acetic acid content of one of the musts, during the course of the process, in an effort to spoil the fermenting medium. Sensor array responses to the headspace of the fermenting medium were compared with those obtained either for pure or contaminated samples with controlled concentrations of standard ethanol solutions of impurities. Results of data processing with Principal Component Analysis (PCA), demonstrate that this sensing system could discriminate between a normal and a potential spoiled grape must fermentation process, so this gas sensing system could be potentially applied during wine production as an auxiliary qualitative control instrument. PMID:25184490
Wei, Xile; Li, Yao; Lu, Meili; Wang, Jiang; Yi, Guosheng
2017-11-14
Multi-coil arrays applied in transcranial magnetic stimulation (TMS) are proposed to accurately stimulate brain tissues and modulate neural activities by an induced electric field (EF). Composed of numerous independently driven coils, a multi-coil array has alternative energizing strategies to evoke EFs targeting at different cerebral regions. To improve the locating resolution and the stimulating focality, we need to fully understand the variation properties of induced EFs and the quantitative control method of the spatial arrangement of activating coils, both of which unfortunately are still unclear. In this paper, a comprehensive analysis of EF properties was performed based on multi-coil arrays. Four types of planar multi-coil arrays were used to study the relationship between the spatial distribution of EFs and the structure of stimuli coils. By changing coil-driven strategies in a basic 16-coil array, we find that an EF induced by compactly distributed coils decays faster than that induced by dispersedly distributed coils, but the former has an advantage over the latter in terms of the activated brain volume. Simulation results also indicate that the attenuation rate of an EF induced by the 36-coil dense array is 3 times and 1.5 times greater than those induced by the 9-coil array and the 16-coil array, respectively. The EF evoked by the 36-coil dispense array has the slowest decay rate. This result demonstrates that larger multi-coil arrays, compared to smaller ones, activate deeper brain tissues at the expense of decreased focality. A further study on activating a specific field of a prescribed shape and size was conducted based on EF variation. Accurate target location was achieved with a 64-coil array 18 mm in diameter. A comparison between the figure-8 coil, the planar array, and the cap-formed array was made and demonstrates an improvement of multi-coil configurations in the penetration depth and the focality. These findings suggest that there is a tradeoff between attenuation rate and focality in the application of multi-coil arrays. Coil-energizing strategies and array dimensions should be based on an adequate evaluation of these two important demands and the topological structure of target tissues.
Blanchard, Raymond K.; Moore, J. Bernadette; Green, Calvert L.; Cousins, Robert J.
2001-01-01
Mammalian nutritional status affects the homeostatic balance of multiple physiological processes and their associated gene expression. Although DNA array analysis can monitor large numbers of genes, there are no reports of expression profiling of a micronutrient deficiency in an intact animal system. In this report, we have tested the feasibility of using cDNA arrays to compare the global changes in expression of genes of known function that occur in the early stages of rodent zinc deficiency. The gene-modulating effects of this deficiency were demonstrated by real-time quantitative PCR measurements of altered mRNA levels for metallothionein 1, zinc transporter 2, and uroguanylin, all of which have been previously documented as zinc-regulated genes. As a result of the low level of inherent noise within this model system and application of a recently reported statistical tool for statistical analysis of microarrays [Tusher, V.G., Tibshirani, R. & Chu, G. (2001) Proc. Natl. Acad. Sci. USA 98, 5116–5121], we demonstrate the ability to reproducibly identify the modest changes in mRNA abundance produced by this single micronutrient deficiency. Among the genes identified by this array profile are intestinal genes that influence signaling pathways, growth, transcription, redox, and energy utilization. Additionally, the influence of dietary zinc supply on the expression of some of these genes was confirmed by real-time quantitative PCR. Overall, these data support the effectiveness of cDNA array expression profiling to investigate the pleiotropic effects of specific nutrients and may provide an approach to establishing markers for assessment of nutritional status. PMID:11717422
Initial Results: An Ultra-Low-Background Germanium Crystal Array
2010-09-01
data (focused on γ -γ coincidence signatures) (Smith et al., 2004) and the Multi- Isotope Coincidence Analysis code (MICA) (Warren et al., 2006). The...The follow-on “CASCADES” project aims to develop a multicoincidence data- analysis package and make robust fission-product demonstration measurements...sensitivity. This effort is focused on improving gamma analysis capabilities for nuclear detonation detection (NDD) applications, e.g., nuclear treaty
NASA Astrophysics Data System (ADS)
Kang, Joo H.; Driscoll, Harry; Super, Michael; Ingber, Donald E.
2016-05-01
Here, we describe a versatile application of a planar Halbach permanent magnet array for an efficient long-range magnetic separation of living cells and microparticles over distances up to 30 mm. A Halbach array was constructed from rectangular bar magnets using 3D-printed holders and compared to a conventional alternating array of identical magnets. We theoretically predicted the superiority of the Halbach array for a long-range magnetic separation and then experimentally validated that the Halbach configuration outperforms the alternating array for isolating magnetic microparticles or microparticle-bound bacterial cells at longer distances. Magnetophoretic velocities (ymag) of magnetic particles (7.9 μm diameter) induced by the Halbach array in a microfluidic device were significantly higher and extended over a larger area than those induced by the alternating magnet array (ymag = 178 versus 0 μm/s at 10 mm, respectively). When applied to 50 ml tubes (˜30 mm diameter), the Halbach array removed >95% of Staphylococcus aureus bacterial cells bound with 1 μm magnetic particles compared to ˜70% removed using the alternating array. In addition, the Halbach array enabled manipulation of 1 μm magnetic beads in a deep 96-well plate for ELISA applications, which was not possible with the conventional magnet arrays. Our analysis demonstrates the utility of the Halbach array for the future design of devices for high-throughput magnetic separations of cells, molecules, and toxins.
Jobs, Magnus; Howell, W. Mathias; Strömqvist, Linda; Mayr, Torsten; Brookes, Anthony J.
2003-01-01
Genotyping technologies need to be continually improved in terms of their flexibility, cost-efficiency, and throughput, to push forward genome variation analysis. To this end, we have leveraged the inherent simplicity of dynamic allele-specific hybridization (DASH) and coupled it to recent innovations of centrifugal arrays and iFRET. We have thereby created a new genotyping platform we term DASH-2, which we demonstrate and evaluate in this report. The system is highly flexible in many ways (any plate format, PCR multiplexing, serial and parallel array processing, spectral-multiplexing of hybridization probes), thus supporting a wide range of application scales and objectives. Precision is demonstrated to be in the range 99.8–100%, and assay costs are 0.05 USD or less per genotype assignment. DASH-2 thus provides a powerful new alternative for genotyping practice, which can be used without the need for expensive robotics support. PMID:12727908
NASA Astrophysics Data System (ADS)
Landry, Markita Patricia; Ando, Hiroki; Chen, Allen Y.; Cao, Jicong; Kottadiel, Vishal Isaac; Chio, Linda; Yang, Darwin; Dong, Juyao; Lu, Timothy K.; Strano, Michael S.
2017-05-01
A distinct advantage of nanosensor arrays is their ability to achieve ultralow detection limits in solution by proximity placement to an analyte. Here, we demonstrate label-free detection of individual proteins from Escherichia coli (bacteria) and Pichia pastoris (yeast) immobilized in a microfluidic chamber, measuring protein efflux from single organisms in real time. The array is fabricated using non-covalent conjugation of an aptamer-anchor polynucleotide sequence to near-infrared emissive single-walled carbon nanotubes, using a variable chemical spacer shown to optimize sensor response. Unlabelled RAP1 GTPase and HIV integrase proteins were selectively detected from various cell lines, via large near-infrared fluorescent turn-on responses. We show that the process of E. coli induction, protein synthesis and protein export is highly stochastic, yielding variability in protein secretion, with E. coli cells undergoing division under starved conditions producing 66% fewer secreted protein products than their non-dividing counterparts. We further demonstrate the detection of a unique protein product resulting from T7 bacteriophage infection of E. coli, illustrating that nanosensor arrays can enable real-time, single-cell analysis of a broad range of protein products from various cell types.
Parallel traveling-wave MRI: a feasibility study.
Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang
2012-04-01
Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments. Copyright © 2011 Wiley-Liss, Inc.
Microstamped Petri Dishes for Scanning Electrochemical Microscopy Analysis of Arrays of Microtissues
Sridhar, Adithya; de Boer, Hans L.; van den Berg, Albert; Le Gac, Séverine
2014-01-01
While scanning electrochemical microscopy (SECM) is a powerful technique for non-invasive analysis of cells, SECM-based assays remain scarce and have been mainly limited so far to single cells, which is mostly due to the absence of suitable platform for experimentation on 3D cellular aggregates or microtissues. Here, we report stamping of a Petri dish with a microwell array for large-scale production of microtissues followed by their in situ analysis using SECM. The platform is realized by hot embossing arrays of microwells (200 μm depth; 400 μm diameter) in commercially available Petri dishes, using a PDMS stamp. Microtissues form spontaneously in the microwells, which is demonstrated here using various cell lines (e.g., HeLa, C2C12, HepG2 and MCF-7). Next, the respiratory activity of live HeLa microtissues is assessed by monitoring the oxygen reduction current in constant height mode and at various distances above the platform surface. Typically, at a 40 μm distance from the microtissue, a 30% decrease in the oxygen reduction current is measured, while above 250 μm, no influence of the presence of the microtissues is detected. After exposure to a model drug (50% ethanol), no such changes in oxygen concentration are found at any height in solution, which reflects that microtissues are not viable anymore. This is furthermore confirmed using conventional live/dead fluorescent stains. This live/dead assay demonstrates the capability of the proposed approach combining SECM and microtissue arrays formed in a stamped Petri dish for conducting cellular assays in a non-invasive way on 3D cellular models. PMID:24690887
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jassal, K; Sarkar, B; Mohanti, B
Objective: The study presents the application of a simple concept of statistical process control (SPC) for pre-treatment quality assurance procedure analysis for planar dose measurements performed using 2D-array and a-Si electronic portal imaging device (a-Si EPID). Method: A total of 195 patients of four different anatomical sites: brain (n1=45), head & neck (n2=45), thorax (n3=50) and pelvis (n4=55) were selected for the study. Pre-treatment quality assurance for the clinically acceptable IMRT/VMAT plans was measured with 2D array and a-Si EPID of the accelerator. After the γ-analysis, control charts and the quality index Cpm was evaluated for each cohort. Results: Meanmore » and σ of γ ( 3%/3 mm) were EPID γ %≤1= 99.9% ± 1.15% and array γ %<1 = 99.6% ± 1.06%. Among all plans γ max was consistently lower than for 2D array as compared to a-Si EPID. Fig.1 presents the X-bar control charts for every cohort. Cpm values for a-Si EPID were found to be higher than array, detailed results are presented in table 1. Conclusion: Present study demonstrates the significance of control charts used for quality management purposes in newer radiotherapy clinics. Also, provides a pictorial overview of the clinic performance for the advanced radiotherapy techniques.Higher Cpm values for EPID indicate its higher efficiency than array based measurements.« less
Yokoi, Takahide; Kaku, Yoshiko; Suzuki, Hiroyuki; Ohta, Masayuki; Ikuta, Hajime; Isaka, Kazuichi; Sumino, Tatsuo; Wagatsuma, Masako
2007-08-01
To investigate uncharacterized microbial communities, a custom DNA microarray named 'FloraArray' was developed for screening specific probes that would represent the characteristics of a microbial community. The array was prepared by spotting 2000 plasmid DNAs from a genomic shotgun library of a sludge sample on a DNA microarray. By comparative hybridization of the array with two different samples of genomic DNA, one from the activated sludge and the other from a nonactivated sludge sample of an anaerobic ammonium oxidation (anammox) bacterial community, specific spots were visualized as a definite fluctuating profile in an MA (differential intensity ratio vs. spot intensity) plot. About 300 spots of the array accounted for the candidate probes to represent anammox reaction of the activated sludge. After sequence analysis of the probes and examination of the results of blastn searches against the reported anammox reference sequence, complete matches were found for 161 probes (58.3%) and >90% matches were found for 242 probes (87.1%). These results demonstrate that 'FloraArray' could be a useful tool for screening specific DNA molecules of unknown microbial communities.
Nine-analyte detection using an array-based biosensor
NASA Technical Reports Server (NTRS)
Taitt, Chris Rowe; Anderson, George P.; Lingerfelt, Brian M.; Feldstein, s. Mark. J.; Ligler, Frances S.
2002-01-01
A fluorescence-based multianalyte immunosensor has been developed for simultaneous analysis of multiple samples. While the standard 6 x 6 format of the array sensor has been used to analyze six samples for six different analytes, this same format has the potential to allow a single sample to be tested for 36 different agents. The method described herein demonstrates proof of principle that the number of analytes detectable using a single array can be increased simply by using complementary mixtures of capture and tracer antibodies. Mixtures were optimized to allow detection of closely related analytes without significant cross-reactivity. Following this facile modification of patterning and assay procedures, the following nine targets could be detected in a single 3 x 3 array: Staphylococcal enterotoxin B, ricin, cholera toxin, Bacillus anthracis Sterne, Bacillus globigii, Francisella tularensis LVS, Yersiniapestis F1 antigen, MS2 coliphage, and Salmonella typhimurium. This work maximizes the efficiency and utility of the described array technology, increasing only reagent usage and cost; production and fabrication costs are not affected.
Plant chromosomes from end to end: telomeres, heterochromatin and centromeres.
Lamb, Jonathan C; Yu, Weichang; Han, Fangpu; Birchler, James A
2007-04-01
Recent evidence indicates that heterochromatin in plants is composed of heterogeneous sequences, which are usually composed of transposable elements or tandem repeat arrays. These arrays are associated with chromatin modifications that produce a closed configuration that limits transcription. Centromere sequences in plants are usually composed of tandem repeat arrays that are homogenized across the genome. Analysis of such arrays in closely related taxa suggests a rapid turnover of the repeat unit that is typical of a particular species. In addition, two lines of evidence for an epigenetic component of centromere specification have been reported, namely an example of a neocentromere formed over sequences without the typical repeat array and examples of centromere inactivation. Although the telomere repeat unit is quite prevalent in the plant kingdom, unusual repeats have been found in some families. Recently, it was demonstrated that the introduction of telomere sequences into plants cells causes truncation of the chromosomes, and that this technique can be used to produce artificial chromosome platforms.
Towards dualband megapixel QWIP focal plane arrays
NASA Astrophysics Data System (ADS)
Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Hill, C. J.; Rafol, S. B.; Salazar, D.; Woolaway, J.; LeVan, P. D.; Tidrow, M. Z.
2007-04-01
Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024 × 1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEΔT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEΔT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEΔT, uniformity, operability, and modulation transfer functions of the 1024 × 1024 pixel arrays and the progress of dualband QWIP focal plane array development work.
Multicolor megapixel QWIP focal plane arrays for remote sensing instruments
NASA Astrophysics Data System (ADS)
Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Trinh, J. T.; Tidrow, M. Z.; LeVan, P. D.
2006-08-01
Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEΔT) of 17 mK at a 95K operating temperature with f/2.5 optics at 300K background and the LWIR detector array has demonstrated a NEΔT of 13 mK at a 70K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90K and 70K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEΔT, uniformity, operability, and modulation transfer functions of the 1024x1024 pixel arrays and the progress of dualband QWIP focal plane array development work.
Integrally regulated solar array demonstration using an Intel 8080 microprocessor
NASA Technical Reports Server (NTRS)
Petrik, E. J.
1977-01-01
A concept for regulating the voltage of a solar array by using a microprocessor to effect discrete voltage changes was demonstrated. Eight shorting switches were employed to regulate a simulated array at set-point voltages between 10,000 and 15,000 volts. The demonstration showed that the microprocessor easily regulated the solar array output voltage independently of whether or not the switched cell groups were binary sized in voltage. In addition, the microprocessor provided logic memory capability to perform additional tasks such as locating and insolating a faulty switch.
Quick and Selective Dual Mode Detection of H2S Gas by Mobile App Employing Silver Nanorods Array.
Gahlaut, Shashank Kumar; Yadav, Kavita; Sharan, Chandrashekhar; Singh, Jitendra Pratap
2017-12-19
Hydrogen sulfide (H 2 S) is a hazardous gas, which not only harms living beings but also poses a significant risk to damage materials placed in culture and art museums, due to its corrosive nature. We demonstrate a novel approach for selective rapid detection of H 2 S gas using silver nanorods (AgNRs) arrays on glass substrates at ambient conditions. The arrays were prepared by glancing angle deposition method. The colorimetric and water wetting properties of as-fabricated arrays were found to be highly sensitive toward the sulfurization, in the presence of H 2 S gas with a minimal concentration in ppm range. The performance of AgNRs as H 2 S gas sensor is investigated by its sensing ability of 5 ppm of gas with an exposure time of only 30 s. We have developed an android-based mobile app to monitor real-time colorimetric detection of H 2 S. The wettability detection has been carried out by a mobile camera. A comparative analysis for different gases reveals the highest sensitivity and selectivity of the array AgNRs toward H 2 S. The rapid detection has also been demonstrated for H 2 S emission from aged wool fabric. Thus, high sensing ability of AgNRs toward H 2 S gas may have potential applications in health monitoring and art conservation.
A proposed metric for assessing the measurement quality of individual microarrays
Kim, Kyoungmi; Page, Grier P; Beasley, T Mark; Barnes, Stephen; Scheirer, Katherine E; Allison, David B
2006-01-01
Background High-density microarray technology is increasingly applied to study gene expression levels on a large scale. Microarray experiments rely on several critical steps that may introduce error and uncertainty in analyses. These steps include mRNA sample extraction, amplification and labeling, hybridization, and scanning. In some cases this may be manifested as systematic spatial variation on the surface of microarray in which expression measurements within an individual array may vary as a function of geographic position on the array surface. Results We hypothesized that an index of the degree of spatiality of gene expression measurements associated with their physical geographic locations on an array could indicate the summary of the physical reliability of the microarray. We introduced a novel way to formulate this index using a statistical analysis tool. Our approach regressed gene expression intensity measurements on a polynomial response surface of the microarray's Cartesian coordinates. We demonstrated this method using a fixed model and presented results from real and simulated datasets. Conclusion We demonstrated the potential of such a quantitative metric for assessing the reliability of individual arrays. Moreover, we showed that this procedure can be incorporated into laboratory practice as a means to set quality control specifications and as a tool to determine whether an array has sufficient quality to be retained in terms of spatial correlation of gene expression measurements. PMID:16430768
Ding, Liang-Hao; Xie, Yang; Park, Seongmi; Xiao, Guanghua; Story, Michael D.
2008-01-01
Despite the tremendous growth of microarray usage in scientific studies, there is a lack of standards for background correction methodologies, especially in single-color microarray platforms. Traditional background subtraction methods often generate negative signals and thus cause large amounts of data loss. Hence, some researchers prefer to avoid background corrections, which typically result in the underestimation of differential expression. Here, by utilizing nonspecific negative control features integrated into Illumina whole genome expression arrays, we have developed a method of model-based background correction for BeadArrays (MBCB). We compared the MBCB with a method adapted from the Affymetrix robust multi-array analysis algorithm and with no background subtraction, using a mouse acute myeloid leukemia (AML) dataset. We demonstrated that differential expression ratios obtained by using the MBCB had the best correlation with quantitative RT–PCR. MBCB also achieved better sensitivity in detecting differentially expressed genes with biological significance. For example, we demonstrated that the differential regulation of Tnfr2, Ikk and NF-kappaB, the death receptor pathway, in the AML samples, could only be detected by using data after MBCB implementation. We conclude that MBCB is a robust background correction method that will lead to more precise determination of gene expression and better biological interpretation of Illumina BeadArray data. PMID:18450815
Imaging antenna array at 119 microns. [for plasma diagnostics
NASA Technical Reports Server (NTRS)
Neikirk, N. P.; Tong, P. P.; Putledge, D. B.; Park, H.; Young, P. E.
1982-01-01
A focal-plane imaging antenna array has been demonstrated at 119 microns. The array is a line of evaporated silver bow-tie antennas with bismuth microbolometer detectors on a silicon substrate. Radiation is coupled into the array by a lens placed on the back of the substrate. The bolometers are thermally isolated from the silicon substrate with a half-micron layer of polyimide. The array performance is demonstrated by coherent imaging of a series of holes at half the diffraction-limited cut-off frequency.
Poritz, Mark A.; Blaschke, Anne J.; Byington, Carrie L.; Meyers, Lindsay; Nilsson, Kody; Jones, David E.; Thatcher, Stephanie A.; Robbins, Thomas; Lingenfelter, Beth; Amiott, Elizabeth; Herbener, Amy; Daly, Judy; Dobrowolski, Steven F.; Teng, David H. -F.; Ririe, Kirk M.
2011-01-01
The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the “FilmArray”, which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon. PMID:22039434
NASA Astrophysics Data System (ADS)
Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain
2015-10-01
Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.
Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs)
Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario
2018-01-01
In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved. PMID:29713626
Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs).
Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario
2018-01-01
In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Kurt; James, Scott C.; Roberts, Jesse D.
A modelling framework identifies deployment locations for current-energy-capture devices that maximise power output while minimising potential environmental impacts. The framework, based on the Environmental Fluid Dynamics Code, can incorporate site-specific environmental constraints. Over a 29-day period, energy outputs from three array layouts were estimated for: (1) the preliminary configuration (baseline), (2) an updated configuration that accounted for environmental constraints, (3) and an improved configuration subject to no environmental constraints. Of these layouts, array placement that did not consider environmental constraints extracted the most energy from flow (4.38 MW-hr/day), 19% higher than output from the baseline configuration (3.69 MW-hr/day). Array placementmore » that considered environmental constraints removed 4.27 MW-hr/day of energy (16% more than baseline). In conclusion, this analysis framework accounts for bathymetry and flow-pattern variations that typical experimental studies cannot, demonstrating that it is a valuable tool for identifying improved array layouts for field deployments.« less
Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays
NASA Astrophysics Data System (ADS)
Lee, J.-I.; Pyo, Soonjae; Kim, Min-Ook; Kim, Jongbaeg
2018-02-01
We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.
Crescentini, Marco; Thei, Frederico; Bennati, Marco; Saha, Shimul; de Planque, Maurits R R; Morgan, Hywel; Tartagni, Marco
2015-06-01
Lipid bilayer membrane (BLM) arrays are required for high throughput analysis, for example drug screening or advanced DNA sequencing. Complex microfluidic devices are being developed but these are restricted in terms of array size and structure or have integrated electronic sensing with limited noise performance. We present a compact and scalable multichannel electrophysiology platform based on a hybrid approach that combines integrated state-of-the-art microelectronics with low-cost disposable fluidics providing a platform for high-quality parallel single ion channel recording. Specifically, we have developed a new integrated circuit amplifier based on a novel noise cancellation scheme that eliminates flicker noise derived from devices under test and amplifiers. The system is demonstrated through the simultaneous recording of ion channel activity from eight bilayer membranes. The platform is scalable and could be extended to much larger array sizes, limited only by electronic data decimation and communication capabilities.
An optoelectronic nose for the detection of toxic gases.
Lim, Sung H; Feng, Liang; Kemling, Jonathan W; Musto, Christopher J; Suslick, Kenneth S
2009-10-01
We have developed a simple colorimetric sensor array that detects a wide range of volatile analytes and then applied it to the detection of toxic gases. The sensor consists of a disposable array of cross-responsive nanoporous pigments with colours that are changed by diverse chemical interactions with analytes. Although no single chemically responsive pigment is specific for any one analyte, the pattern of colour change for the array is a unique molecular fingerprint. Clear differentiation among 19 different toxic industrial chemicals (TICs) within two minutes of exposure at concentrations immediately dangerous to life or health were demonstrated. Based on the colour change of the array, quantification of each analyte was accomplished easily, and excellent detection limits were achieved, generally below the permissible exposure limits. Different TICs were identified readily using a standard chemometric approach (hierarchical clustering analysis), with no misclassifications over 140 trials.
Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs)
NASA Astrophysics Data System (ADS)
Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario
2018-04-01
In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modelled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modelled demonstrated a nice fitting of modelling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability and discrimination ability of the array was achieved.
System design of ELITE power processing unit
NASA Astrophysics Data System (ADS)
Caldwell, David J.
The Electric Propulsion Insertion Transfer Experiment (ELITE) is a space mission planned for the mid 1990s in which technological readiness will be demonstrated for electric orbit transfer vehicles (EOTVs). A system-level design of the power processing unit (PPU), which conditions solar array power for the arcjet thruster, was performed to optimize performance with respect to reliability, power output, efficiency, specific mass, and radiation hardness. The PPU system consists of multiphased parallel switchmode converters, configured as current sources, connected directly from the array to the thruster. The PPU control system includes a solar array peak power tracker (PPT) to maximize the power delivered to the thruster regardless of variations in array characteristics. A stability analysis has been performed to verify that the system is stable despite the nonlinear negative impedance of the PPU input and the arcjet thruster. Performance specifications are given to provide the required spacecraft capability with existing technology.
Zhao, Yaju; Tang, Minmin; Liao, Qiaobo; Li, Zhoumin; Li, Hui; Xi, Kai; Tan, Li; Zhang, Mei; Xu, Danke; Chen, Hong-Yuan
2018-04-27
In this work, we demonstrate, for the first time, the development of a disposable MoS 2 -arrayed matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) chip combined with an immunoaffinity enrichment method for high-throughput, rapid, and simultaneous quantitation of multiple sulfonamides (SAs). The disposable MALDI MS chip was designed and fabricated by MoS 2 array formation on a commercial indium tin oxide (ITO) glass slide. A series of SAs were analyzed, and clear deprotonated signals were obtained in negative-ion mode. Compared with MoS 2 -arrayed commercial steel plate, the prepared MALDI MS chip exhibited comparable LDI efficiency, providing a good alternative and disposable substrate for MALDI MS analysis. Furthermore, internal standard (IS) was previously deposited onto the MoS 2 array to simplify the experimental process for MALDI MS quantitation. 96 sample spots could be analyzed within 10 min in one single chip to perform quantitative analysis, recovery studies, and real foodstuff detection. Upon targeted extraction and enrichment by antibody conjugated magnetic beads, five SAs were quantitatively determined by the IS-first method with the linear range of 0.5-10 ng/mL ( R 2 > 0.990). Good recoveries and repeatability were obtained for spiked pork, egg, and milk samples. SAs in several real foodstuffs were successfully identified and quantified. The developed method may provide a promising tool for the routine analysis of antibiotic residues in real samples.
NASA Astrophysics Data System (ADS)
Gibbons, Steven J.; Näsholm, S. P.; Ruigrok, E.; Kværna, T.
2018-04-01
Seismic arrays enhance signal detection and parameter estimation by exploiting the time-delays between arriving signals on sensors at nearby locations. Parameter estimates can suffer due to both signal incoherence, with diminished waveform similarity between sensors, and aberration, with time-delays between coherent waveforms poorly represented by the wave-front model. Sensor-to-sensor correlation approaches to parameter estimation have an advantage over direct beamforming approaches in that individual sensor-pairs can be omitted without necessarily omitting entirely the data from each of the sensors involved. Specifically, we can omit correlations between sensors for which signal coherence in an optimal frequency band is anticipated to be poor or for which anomalous time-delays are anticipated. In practice, this usually means omitting correlations between more distant sensors. We present examples from International Monitoring System seismic arrays with poor parameter estimates resulting when classical f-k analysis is performed over the full array aperture. We demonstrate improved estimates and slowness grid displays using correlation beamforming restricted to correlations between sufficiently closely spaced sensors. This limited sensor-pair correlation (LSPC) approach has lower slowness resolution than would ideally be obtained by considering all sensor-pairs. However, this ideal estimate may be unattainable due to incoherence and/or aberration and the LSPC estimate can often exploit all channels, with the associated noise-suppression, while mitigating the complications arising from correlations between very distant sensors. The greatest need for the method is for short-period signals on large aperture arrays although we also demonstrate significant improvement for secondary regional phases on a small aperture array. LSPC can also provide a robust and flexible approach to parameter estimation on three-component seismic arrays.
Multibeam Phased Array Antennas
NASA Technical Reports Server (NTRS)
Popovic, Zoya; Romisch, Stefania; Rondineau, Sebastien
2004-01-01
In this study, a new architecture for Ka-band multi-beam arrays was developed and demonstrated experimentally. The goal of the investigation was to demonstrate a new architecture that has the potential of reducing the cost as compared to standard expensive phased array technology. The goals of this specific part of the project, as stated in the yearly statement of work in the original proposal are: 1. Investigate bounds on performance of multi-beam lens arrays in terms of beamwidths, volume (size), isolation between beams, number of simultaneous beams, etc. 2. Design a small-scale array to demonstrate the principle. The array will be designed for operation around 3OGHz (Ka-band), with two 10-degree beamwidth beams. 3. Investigate most appropriate way to accomplish fine-tuning of the beam pointing within 5 degrees around the main beam pointing angle.
Qualitative assessment of gene expression in affymetrix genechip arrays
NASA Astrophysics Data System (ADS)
Nagarajan, Radhakrishnan; Upreti, Meenakshi
2007-01-01
Affymetrix Genechip microarrays are used widely to determine the simultaneous expression of genes in a given biological paradigm. Probes on the Genechip array are atomic entities which by definition are randomly distributed across the array and in turn govern the gene expression. In the present study, we make several interesting observations. We show that there is considerable correlation between the probe intensities across the array which defy the independence assumption. While the mechanism behind such correlations is unclear, we show that scaling behavior and the profiles of perfect match (PM) as well as mismatch (MM) probes are similar and immune-to-background subtraction. We believe that the observed correlations are possibly an outcome of inherent non-stationarities or patchiness in the array devoid of biological significance. This is demonstrated by inspecting their scaling behavior and profiles of the PM and MM probe intensities obtained from publicly available Genechip arrays from three eukaryotic genomes, namely: Drosophila melanogaster (fruit fly), Homo sapiens (humans) and Mus musculus (house mouse) across distinct biological paradigms and across laboratories, with and without background subtraction. The fluctuation functions were estimated using detrended fluctuation analysis (DFA) with fourth-order polynomial detrending. The results presented in this study provide new insights into correlation signatures of PM and MM probe intensities and suggests the choice of DFA as a tool for qualitative assessment of Affymetrix Genechip microarrays prior to their analysis. A more detailed investigation is necessary in order to understand the source of these correlations.
NASA Astrophysics Data System (ADS)
Moon, Hokyu; Kim, Kyung Min; Park, Jun Su; Kim, Beom Seok; Cho, Hyung Hee
2015-12-01
The after-shell section, which is part of the gas turbine combustion liner, is exposed to the hottest combustion gas. Various cooling schemes have been applied to protect against severe thermal load. However, there is a significant discrepancy in the thermal expansion with large temperature differences, resulting in thermo-mechanical crack formation. In this study, to reduce combustion liner damage, thermo-mechanical analysis was conducted on three after-shell section configurations: inline-discrete divider wall, staggered divider wall, and swirler wall arrays. These array components are well-known heat-transfer enhancement structures in the duct. In the numerical analyses, the heat transfer characteristics, temperature and thermo-mechanical stress distribution were evaluated using finite volume method and finite element method commercial codes. As a result, we demonstrated that the temperature and the thermo-mechanical stress distribution were readily dependent on the structural array for cooling effectiveness and structural support in each modified cooling system. Compared with the reference model, the swirler wall array was most effective in diminishing the thermo-mechanical stress concentration, especially on the inner ring that is vulnerable to crack formation.
Labanieh, Louai; Nguyen, Thi N.; Zhao, Weian; Kang, Dong-Ku
2016-01-01
We describe the design, fabrication and use of a dual-layered microfluidic device for ultrahigh-throughput droplet trapping, analysis, and recovery using droplet buoyancy. To demonstrate the utility of this device for digital quantification of analytes, we quantify the number of droplets, which contain a β-galactosidase-conjugated bead among more than 100,000 immobilized droplets. In addition, we demonstrate that this device can be used for droplet clustering and real-time analysis by clustering several droplets together into microwells and monitoring diffusion of fluorescein, a product of the enzymatic reaction of β-galactosidase and its fluorogenic substrate FDG, between droplets. PMID:27134760
NASA Astrophysics Data System (ADS)
Missaggia, Leo; Wang, Christine; Connors, Michael; Saar, Brian; Sanchez-Rubio, Antonio; Creedon, Kevin; Turner, George; Herzog, William
2016-03-01
There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.
Flight Test of a Technology Transparent Light Concentration Panel on SMEX/WIRE
NASA Technical Reports Server (NTRS)
Stern, Theodore G.; Lyons, John
2000-01-01
A flight experiment has demonstrated a modular solar concentrator that can be used as a direct substitute replacement for planar photovoltaic panels in spacecraft solar arrays. The Light Concentrating Panel (LCP) uses an orthogrid arrangement of composite mirror strips to form an array of rectangular mirror troughs that reflect light onto standard, high-efficiency solar cells at a concentration ratio of approximately 3:1. The panel area, mass, thickness, and pointing tolerance has been shown to be similar to a planar array using the same cells. Concentration reduces the panel's cell area by 2/3, which significantly reduces the cost of the panel. An opportunity for a flight experiment module arose on NASA's Small Explorer / Wide-Field Infrared Explorer (SMEX/WIRE) spacecraft, which uses modular solar panel modules integrated into a solar panel frame structure. The design and analysis that supported implementation of the LCP as a flight experiment module is described. Easy integration into the existing SMEX-LITE wing demonstrated the benefits of technology transparency. Flight data shows the stability of the LCP module after nearly one year in Low Earth Orbit.
NASA Astrophysics Data System (ADS)
Gkogkou, Dimitra; Shaykhutdinov, Timur; Oates, Thomas W. H.; Gernert, Ulrich; Schreiber, Benjamin; Facsko, Stefan; Hildebrandt, Peter; Weidinger, Inez M.; Esser, Norbert; Hinrichs, Karsten
2017-11-01
The present investigation aims to study the optical response of anisotropic Ag nanoparticle arrays deposited on rippled silicon substrates by performing a qualitative comparison between experimental and theoretical results. Spectroscopic ellipsometry was used along with numerical calculations using finite-difference time-domain (FDTD) method and rigorous coupled wave analysis (RCWA) to reveal trends in the optical and geometrical properties of the nanoparticle array. Ellipsometric data show two resonances, in the orthogonal x and y directions, that originate from localized plasmon resonances as demonstrated by the calculated near-fields from FDTD calculations. The far-field calculations by RCWA point to decoupled resonances in x direction and possible coupling effects in y direction, corresponding to the short and long axis of the anisotropic nanoparticles, respectively.
Rad-hard Dual-threshold High-count-rate Silicon Pixel-array Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Adam
In this program, a Voxtel-led team demonstrates a full-format (192 x 192, 100-µm pitch, VX-810) high-dynamic-range x-ray photon-counting sensor—the Dual Photon Resolved Energy Acquisition (DUPREA) sensor. Within the Phase II program the following tasks were completed: 1) system analysis and definition of the DUPREA sensor requirements; 2) design, simulation, and fabrication of the full-format VX-810 ROIC design; 3) design, optimization, and fabrication of thick, fully depleted silicon photodiodes optimized for x-ray photon collection; 4) hybridization of the VX-810 ROIC to the photodiode array in the creation of the optically sensitive focal-plane array; 5) development of an evaluation camera; and 6)more » electrical and optical characterization of the sensor.« less
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.
1992-01-01
A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of three-dimensional cavity arrays recessed in a ground plane. The technique combines the finite element and boundary integral methods and invokes Floquet's representation to formulate a system of equations for the fields at the apertures and those inside the cavities. The system is solved via the conjugate gradient method in conjunction with the Fast Fourier Transform (FFT) thus achieving an O(N) storage requirement. By virtue of the finite element method, the proposed technique is applicable to periodic arrays comprised of cavities having arbitrary shape and filled with inhomogeneous dielectrics. Several numerical results are presented, along with new measured data, which demonstrate the validity, efficiency, and capability of the technique.
Performance of Backshort-Under-Grid Kilopixel TES Arrays for HAWC+
NASA Technical Reports Server (NTRS)
Staguhn, J. G.; Benford, D. J.; Dowell, C. D.; Fixsen, D. J.; Hilton, G. C.; Irwin, K. D.; Jhabvala, C. A.; Maher, S. F.; Miller, T. M.; Moseley, S. H.;
2016-01-01
We present results from laboratory detector characterizations of the first kilopixel BUG arrays for the High- resolution Wideband Camera Plus (HAWC+) which is the imaging far-infrared polarimeter camera for the Stratospheric Observatory for Infrared Astronomy (SOFIA). Our tests demonstrate that the array performance is consistent with the predicted properties. Here, we highlight results obtained for the thermal conductivity, noise performance, detector speed, and first optical results demonstrating the pixel yield of the arrays.
Demonstration of four immunoassay formats using the array biosensor
NASA Technical Reports Server (NTRS)
Sapsford, Kim E.; Charles, Paul T.; Patterson, Charles H Jr; Ligler, Frances S.
2002-01-01
The ability of a fluorescence-based array biosensor to measure and quantify the binding of an antigen to an immobilized antibody has been demonstrated using the four different immunoassay formats: direct, competitive, displacement, and sandwich. A patterned array of antibodies specific for 2,4,6-trinitrotoluene (TNT) immobilized onto the surface of a planar waveguide and used to measure signals from different antigen concentrations simultaneously. For direct, competitive, and displacement assays, which are one-step assays, measurements were obtained in real time. Dose-response curves were calculated for all four assay formats, demonstrating the array biosensor's ability to quantify the amount of antigen present in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Raad, Markus; de Rond, Tristan; Rübel, Oliver
Mass spectrometry imaging (MSI) has primarily been applied in localizing biomolecules within biological matrices. Although well-suited, the application of MSI for comparing thousands of spatially defined spotted samples has been limited. One reason for this is a lack of suitable and accessible data processing tools for the analysis of large arrayed MSI sample sets. In this paper, the OpenMSI Arrayed Analysis Toolkit (OMAAT) is a software package that addresses the challenges of analyzing spatially defined samples in MSI data sets. OMAAT is written in Python and is integrated with OpenMSI (http://openmsi.nersc.gov), a platform for storing, sharing, and analyzing MSI data.more » By using a web-based python notebook (Jupyter), OMAAT is accessible to anyone without programming experience yet allows experienced users to leverage all features. OMAAT was evaluated by analyzing an MSI data set of a high-throughput glycoside hydrolase activity screen comprising 384 samples arrayed onto a NIMS surface at a 450 μm spacing, decreasing analysis time >100-fold while maintaining robust spot-finding. The utility of OMAAT was demonstrated for screening metabolic activities of different sized soil particles, including hydrolysis of sugars, revealing a pattern of size dependent activities. Finally, these results introduce OMAAT as an effective toolkit for analyzing spatially defined samples in MSI. OMAAT runs on all major operating systems, and the source code can be obtained from the following GitHub repository: https://github.com/biorack/omaat.« less
Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph
2016-05-20
The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.
2011-04-01
Proceedings, Bristol, UK (2006). 5. M. A. Mentzer, Applied Optics Fundamentals and Device Applications: Nano, MOEMS , and Biotechnology, CRC Taylor...ballistic sensing, flash x-ray cineradiography, digital image correlation, image processing al- gorithms, and applications of MOEMS to nano- and
Zhu, Yuerong; Zhu, Yuelin; Xu, Wei
2008-01-01
Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103
Zhang, Xiao; Chen, Jiamin; Radcliffe, Tom; LeBrun, Dave P.; Tron, Victor A.; Feilotter, Harriet
2008-01-01
MicroRNAs (miRNAs) are small, noncoding RNAs that suppress gene expression at the posttranscriptional level via an antisense RNA-RNA interaction. miRNAs used for array-based profiling are generally purified from either snap-frozen or fresh samples. Because tissues found in most pathology departments are available only in formalin-fixed and paraffin-embedded (FFPE) states, we sought to evaluate miRNA derived from FFPE samples for microarray analysis. In this study, miRNAs extracted from matched snap-frozen and FFPE samples were profiled using the Agilent miRNA array platform (Agilent, Santa Clara, CA). Each miRNA sample was hybridized to arrays containing probes interrogating 470 human miRNAs. Seven cases were compared in either duplicate or triplicate. Intrachip and interchip analyses demonstrated that the processes of miRNA extraction, labeling, and hybridization from both frozen and FFPE samples are highly reproducible and add little variation to the results; technical replicates showed high correlations with one another (Kendall tau, 0.722 to 0.853; Spearman rank correlation coefficient, 0.891 to 0.954). Our results showed consistent high correlations between matched frozen and FFPE samples (Kendall tau, 0.669 to 0.815; Spearman rank correlation coefficient, 0.847 to 0.948), supporting the use of FFPE-derived miRNAs for array-based, gene expression profiling. PMID:18832457
Rectenna array measurement results
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1980-01-01
The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.
Localized temperature and chemical reaction control in nanoscale space by nanowire array.
Jin, C Yan; Li, Zhiyong; Williams, R Stanley; Lee, K-Cheol; Park, Inkyu
2011-11-09
We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time < 2 μs). By taking advantage of this capability, several nanoscale chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.
NASA Technical Reports Server (NTRS)
1978-01-01
Design concepts of an array for the formation of multiple, simultaneous, independently pointed beams for satellite communication links were investigated through tradeoffs of various approaches which were conceived as possible solutions to the problem. After the preferred approach was selected, a more detailed design was configured and is presented as a candidate system that should be given further consideration for development leading to a preliminary design. This array uses an attenuator and a phase shifter with every element. The aperture excitation necessary to form the four beams is calculated and then placed across the array using these devices. Pattern analysis was performed for two beam and four beam cases with numerous patterns being presented. Parameter evaluation shown includes pointing accuracy and beam shape, sidelobe characteristics, gain control, and beam normalization. It was demonstrated that a 4 bit phase shifter and a 6 bit, 30 dB attenuator were sufficient to achieve adequate pattern performances. The phase amplitude steered multibeam array offers the flexibility of 1 to 4 beams with an increase in gain of 6 dB if only one beam is selected.
Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing
Wiszniewska, Joanna; Bi, Weimin; Shaw, Chad; Stankiewicz, Pawel; Kang, Sung-Hae L; Pursley, Amber N; Lalani, Seema; Hixson, Patricia; Gambin, Tomasz; Tsai, Chun-hui; Bock, Hans-Georg; Descartes, Maria; Probst, Frank J; Scaglia, Fernando; Beaudet, Arthur L; Lupski, James R; Eng, Christine; Wai Cheung, Sau; Bacino, Carlos; Patel, Ankita
2014-01-01
In clinical diagnostics, both array comparative genomic hybridization (array CGH) and single nucleotide polymorphism (SNP) genotyping have proven to be powerful genomic technologies utilized for the evaluation of developmental delay, multiple congenital anomalies, and neuropsychiatric disorders. Differences in the ability to resolve genomic changes between these arrays may constitute an implementation challenge for clinicians: which platform (SNP vs array CGH) might best detect the underlying genetic cause for the disease in the patient? While only SNP arrays enable the detection of copy number neutral regions of absence of heterozygosity (AOH), they have limited ability to detect single-exon copy number variants (CNVs) due to the distribution of SNPs across the genome. To provide comprehensive clinical testing for both CNVs and copy-neutral AOH, we enhanced our custom-designed high-resolution oligonucleotide array that has exon-targeted coverage of 1860 genes with 60 000 SNP probes, referred to as Chromosomal Microarray Analysis – Comprehensive (CMA-COMP). Of the 3240 cases evaluated by this array, clinically significant CNVs were detected in 445 cases including 21 cases with exonic events. In addition, 162 cases (5.0%) showed at least one AOH region >10 Mb. We demonstrate that even though this array has a lower density of SNP probes than other commercially available SNP arrays, it reliably detected AOH events >10 Mb as well as exonic CNVs beyond the detection limitations of SNP genotyping. Thus, combining SNP probes and exon-targeted array CGH into one platform provides clinically useful genetic screening in an efficient manner. PMID:23695279
Hubble, Lee J; Cooper, James S; Sosa-Pintos, Andrea; Kiiveri, Harri; Chow, Edith; Webster, Melissa S; Wieczorek, Lech; Raguse, Burkhard
2015-02-09
Chemiresistor sensor arrays are a promising technology to replace current laboratory-based analysis instrumentation, with the advantage of facile integration into portable, low-cost devices for in-field use. To increase the performance of chemiresistor sensor arrays a high-throughput fabrication and screening methodology was developed to assess different organothiol-functionalized gold nanoparticle chemiresistors. This high-throughput fabrication and testing methodology was implemented to screen a library consisting of 132 different organothiol compounds as capping agents for functionalized gold nanoparticle chemiresistor sensors. The methodology utilized an automated liquid handling workstation for the in situ functionalization of gold nanoparticle films and subsequent automated analyte testing of sensor arrays using a flow-injection analysis system. To test the methodology we focused on the discrimination and quantitation of benzene, toluene, ethylbenzene, p-xylene, and naphthalene (BTEXN) mixtures in water at low microgram per liter concentration levels. The high-throughput methodology identified a sensor array configuration consisting of a subset of organothiol-functionalized chemiresistors which in combination with random forests analysis was able to predict individual analyte concentrations with overall root-mean-square errors ranging between 8-17 μg/L for mixtures of BTEXN in water at the 100 μg/L concentration. The ability to use a simple sensor array system to quantitate BTEXN mixtures in water at the low μg/L concentration range has direct and significant implications to future environmental monitoring and reporting strategies. In addition, these results demonstrate the advantages of high-throughput screening to improve the performance of gold nanoparticle based chemiresistors for both new and existing applications.
Promising Results from Three NASA SBIR Solar Array Technology Development Programs
NASA Technical Reports Server (NTRS)
Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael
2005-01-01
Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.
Printed strain sensors for early damage detection in engineering structures
NASA Astrophysics Data System (ADS)
Zymelka, Daniel; Yamashita, Takahiro; Takamatsu, Seiichi; Itoh, Toshihiro; Kobayashi, Takeshi
2018-05-01
In this paper, we demonstrate the analysis of strain measurements recorded using a screen-printed sensors array bonded to a metal plate and subjected to high strains. The analysis was intended to evaluate the capabilities of the printed strain sensors to detect abnormal strain distribution before actual defects (cracks) in the analyzed structures appear. The results demonstrate that the developed device can accurately localize the enhanced strains at the very early stage of crack formation. The promising performance and low fabrication cost confirm the potential suitability of the printed strain sensors for applications within the framework of structural health monitoring (SHM).
Scaria, Joy; Sreedharan, Aswathy; Chang, Yung-Fu
2008-01-01
Background Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Methods Microbial Diagnostic Array Workstation (MDAW) is a database driven application designed in MS Access and front end designed in ASP.NET. Conclusion MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays. PMID:18811969
Scaria, Joy; Sreedharan, Aswathy; Chang, Yung-Fu
2008-09-23
Microarrays are becoming a very popular tool for microbial detection and diagnostics. Although these diagnostic arrays are much simpler when compared to the traditional transcriptome arrays, due to the high throughput nature of the arrays, the data analysis requirements still form a bottle neck for the widespread use of these diagnostic arrays. Hence we developed a new online data sharing and analysis environment customised for diagnostic arrays. Microbial Diagnostic Array Workstation (MDAW) is a database driven application designed in MS Access and front end designed in ASP.NET. MDAW is a new resource that is customised for the data analysis requirements for microbial diagnostic arrays.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
NASA Astrophysics Data System (ADS)
Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.
2015-06-01
One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.
Liu, Jing; Gupta, Naveen K; Wise, Kensall D; Gianchandani, Yogesh B; Fan, Xudong
2011-10-21
This paper reports the investigation of a micro-gas chromatography (μGC) system that utilizes an array of miniaturized motionless Knudsen pumps (KPs) as well as microfabricated separation columns and optical detectors. A prototype system was built to achieve a flow rate of 1 mL min(-1) and 0.26 mL min(-1) for helium and dry air, respectively, when they were used as carrier gas. This system was then employed to evaluate GC performance compromises and demonstrate the ability to separate and detect gas mixtures containing analytes of different volatilities and polarities. Furthermore, the use of pressure programming of the KP array was demonstrated to significantly shorten the analysis time while maintaining a high detection resolution. Using this method, we obtained a high resolution detection of 5 alkanes of different volatilities within 5 min. Finally, we successfully detected gas mixtures of various polarities using a tandem-column μGC configuration by installing two on-column optical detectors to obtain complementary chromatograms.
NASA Technical Reports Server (NTRS)
Gunapala, Sarath D.; Bandara, Sumith V.; Liu, John K.; Hill, Cory J.; Rafol, S. B.; Mumolo, Jason M.; Trinh, Joseph T.; Tidrow, M. Z.; Le Van, P. D.
2005-01-01
Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NE(Delta)T) of 17 mK at a 95K operating temperature with f/2.5 optics at 300K background and the LWIR detector array has demonstrated a NE(Delta)T of 13 mK at a 70K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90K and 70K operating-temperatures respectively, with similar optical and background conditions. In addition, we are in the process of developing MWIR and LWIR pixel collocated simultaneously readable dualband QWIP focal plane arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier
The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetricmore » objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.« less
Fabrication and analysis of microfiber array platform for optogenetics with cellular resolution
Chen, Jian-Hong; Chou, Ming-Yi; Pan, Chien-Yuan; Wang, Lon A.
2016-01-01
Optogenetics has emerged as a revolutionary technology especially for neuroscience and has advanced continuously over the past decade. Conventional approaches for patterned in vivo optical illumination have a limitation on the implanted device size and achievable spatio-temporal resolution. In this work, we developed a fabrication process for a microfiber array platform. Arrayed poly(methyl methacrylate) (PMMA) microfibers were drawn from a polymer solution and packaged with polydimethylsiloxane (PDMS). The exposed end face of a packaged microfiber was tuned to have a size corresponding to a single cell. To demonstrate its capability for single cell optogenetics, HEK293T cells expressing channelrhodopsin-2 (ChR2) were cultured on the platform and excited with UV laser. We could then observe an elevation in the intracellular Ca2+ concentrations due to the influx of Ca2+ through the activated ChR2 into the cytosol. The statistical and simulation results indicate that the proposed microfiber array platform can be used for single cell optogenetic applications. PMID:27895984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proudnikov, D.; Kirillov, E.; Chumakov, K.
2000-01-01
This paper describes use of a new technology of hybridization with a micro-array of immobilized oligonucleotides for detection and quantification of neurovirulent mutants in Oral Poliovirus Vaccine (OPV). We used a micro-array consisting of three-dimensional gel-elements containing all possible hexamers (total of 4096 probes). Hybridization of fluorescently labelled viral cDNA samples with such microchips resulted in a pattern of spots that was registered and quantified by a computer-linked CCD camera, so that the sequence of the original cDNA could be deduced. The method could reliably identify single point mutations, since each of them affected fluorescence intensity of 12 micro-array elements.more » Micro-array hybridization of DNA mixtures with varying contents of point mutants demonstrated that the method can detect as little as 10% of revertants in a population of vaccine virus. This new technology should be useful for quality control of live viral vaccines, as well as for other applications requiring identification and quantification of point mutations.« less
Nelson, Kurt; James, Scott C.; Roberts, Jesse D.; ...
2017-06-05
A modelling framework identifies deployment locations for current-energy-capture devices that maximise power output while minimising potential environmental impacts. The framework, based on the Environmental Fluid Dynamics Code, can incorporate site-specific environmental constraints. Over a 29-day period, energy outputs from three array layouts were estimated for: (1) the preliminary configuration (baseline), (2) an updated configuration that accounted for environmental constraints, (3) and an improved configuration subject to no environmental constraints. Of these layouts, array placement that did not consider environmental constraints extracted the most energy from flow (4.38 MW-hr/day), 19% higher than output from the baseline configuration (3.69 MW-hr/day). Array placementmore » that considered environmental constraints removed 4.27 MW-hr/day of energy (16% more than baseline). In conclusion, this analysis framework accounts for bathymetry and flow-pattern variations that typical experimental studies cannot, demonstrating that it is a valuable tool for identifying improved array layouts for field deployments.« less
Ren, Kangning; Liang, Qionglin; Mu, Xuan; Luo, Guoan; Wang, Yiming
2009-03-07
A novel miniaturized, portable fluorescence detection system for capillary array electrophoresis (CAE) on a microfluidic chip was developed, consisting of a scanning light-emitting diode (LED) light source and a single point photoelectric sensor. Without charge coupled detector (CCD), lens, fibers and moving parts, the system was extremely simplified. Pulsed driving of the LED significantly increased the sensitivity, and greatly reduced the power consumption and photobleaching effect. The highly integrated system was robust and easy to use. All the advantages realized the concept of a portable micro-total analysis system (micro-TAS), which could work on a single universal serial bus (USB) port. Compared with traditional CAE detecting systems, the current system could scan the radial capillary array with high scanning rate. An 8-channel CAE of fluorescein isothiocyanate (FITC) labeled arginine (Arg) on chip was demonstrated with this system, resulting in a limit of detection (LOD) of 640 amol.
NASA Astrophysics Data System (ADS)
Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min
2018-01-01
When a conventional Halbach type Hollow Cylindrical Permanent Magnet Array (HCPMA) is used to generate magnetic induction over the magnitude of coercivity μ0Hc, some detrimental parasitic magnetic phenomena, such as the demagnetization, magnetization reversal, and vortexes of magnetization, can appear in the interior of the magnets. We present a self-consistent quantitative analysis of the magnetization and magnetic induction distributions inside the magnetic array by considering the anisotropic and nonlinear magnetization functions of the materials consisting of the array. These numeric simulations reveal novel magnetization structures resulted from the self-field of array. We demonstrate that both the field uniformity and magnetic flux in the pole gap can be modulated by partially substituting the magnets of high energy products with the soft irons and the superhard magnets. We also show how the optimized substitution parameters can be obtained for a HCPMA achieving the best field uniformity or the maximum magnetic flux.
NASA Astrophysics Data System (ADS)
Troian, Sandra; Dietzel, Mathias
2010-03-01
Nanoscale structures manifest exceedingly large surface to volume ratios and are therefore highly susceptible to control by surface stresses. Actuation techniques which can exploit this feature provide a key strategy for construction and self-organization of large area arrays. During the past decade, several groups have reported that molten polymer nanofilms subject to an ultra-large transverse thermal gradient undergo spontaneous formation of nanopillar arrays. The prevailing explanation is that coherent interfacial reflection of acoustic phonons causes periodic modulation of the radiation pressure leading to instability and pillar growth. We demonstrate instead that thermocapillary forces play a crucial if not dominant role in the formation process due to the strong modulation of surface tension with temperature. Any nanoscale viscous film is prone to such formations, not just polymeric films. Analysis of the governing interface equation reveals the mechanism controlling the growth, spacing and symmetry of these self-assembling arrays. We discuss how these findings are being used in our laboratory to construct nanoscale components for optical and photonic applications.
Discussion on the solar concentrating thermoelectric generation using micro-channel heat pipe array
NASA Astrophysics Data System (ADS)
Li, Guiqiang; Feng, Wei; Jin, Yi; Chen, Xiao; Ji, Jie
2017-11-01
Heat pipe is a high efficient tool in solar energy applications. In this paper, a novel solar concentrating thermoelectric generation using micro-channel heat pipe array (STEG-MCHP) was presented. The flat-plate micro-channel heat pipe array not only has a higher heat transfer performance than the common heat pipe, but also can be placed on the surface of TEG closely, which can further reduce the thermal resistance between the heat pipe and the TEG. A preliminary comparison experiment was also conducted to indicate the advantages of the STEG-MCHP. The optimization based on the model verified by the experiment was demonstrated, and the concentration ratio and selective absorbing coating area were also discussed. In addition, the cost analysis was also performed to compare between the STEG-MCHP and the common solar concentrating TEGs in series. The outcome showed that the solar concentrating thermoelectric generation using micro-channel heat pipe array has the higher electrical efficiency and lower cost, which may provide a suitable way for solar TEG applications.
Lesser-Rojas, Leonardo; Sriram, K. K.; Liao, Kuo-Tang; Lai, Shui-Chin; Kuo, Pai-Chia; Chu, Ming-Lee; Chou, Chia-Fu
2014-01-01
We have developed a two-step electron-beam lithography process to fabricate a tandem array of three pairs of tip-like gold nanoelectronic detectors with electrode gap size as small as 9 nm, embedded in a coplanar fashion to 60 nm deep, 100 nm wide, and up to 150 μm long nanochannels coupled to a world-micro-nanofluidic interface for easy sample introduction. Experimental tests with a sealed device using DNA-protein complexes demonstrate the coplanarity of the nanoelectrodes to the nanochannel surface. Further, this device could improve transverse current detection by correlated time-of-flight measurements of translocating samples, and serve as an autocalibrated velocimeter and nanoscale tandem Coulter counters for single molecule analysis of heterogeneous samples. PMID:24753731
Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas; ...
2016-07-11
The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korte, Andrew R.; Stopka, Sylwia A.; Morris, Nicholas
The unique challenges presented by metabolomics have driven the development of new mass spectrometry (MS)-based techniques for small molecule analysis. We have previously demonstrated silicon nanopost arrays (NAPA) to be an effective substrate for laser desorption ionization (LDI) of small molecules for MS. However, the utility of NAPA-LDI-MS for a wide range of metabolite classes has not been investigated. Here we apply NAPA-LDI-MS to the large-scale acquisition of high-resolution mass spectra and tandem mass spectra from a collection of metabolite standards covering a range of compound classes including amino acids, nucleotides, carbohydrates, xenobiotics, lipids, and other classes. In untargeted analysismore » of metabolite standard mixtures, detection was achieved for 374 compounds and useful MS/MS spectra were obtained for 287 compounds, without individual optimization of ionization or fragmentation conditions. Metabolite detection was evaluated in the context of 31 metabolic pathways, and NAPA-LDI-MS was found to provide detection for 63% of investigated pathway metabolites. Individual, targeted analysis of the 20 common amino acids provided detection of 100% of the investigated compounds, demonstrating that improved coverage is possible through optimization and targeting of individual analytes or analyte classes. In direct analysis of aqueous and organic extracts from human serum samples, spectral features were assigned to a total of 108 small metabolites and lipids. Glucose and amino acids were quantitated within their physiological concentration ranges. Finally, the broad coverage demonstrated by this large-scale screening experiment opens the door for use of NAPA-LDI-MS in numerous metabolite analysis applications« less
Gach, Philip C; Attayek, Peter J; Whittlesey, Rebecca L; Yeh, Jen Jen; Allbritton, Nancy L
2014-04-15
Circulating tumor cells (CTCs) are important biomarkers of cancer progression and metastatic potential. The rarity of CTCs in peripheral blood has driven the development of technologies to isolate these tumor cells with high specificity; however, there are limited techniques available for isolating target CTCs following enumeration. A strategy is described to capture and isolate viable tumor cells from whole blood using an array of releasable microstructures termed micropallets. Specific capture of nucleated cells or cells expressing epithelial cell adhesion molecules (EpCAM) was achieved by functionalizing micropallet surfaces with either fibronectin, Matrigel or anti-EpCAM antibody. Surface grafting of poly(acrylic acid) followed by covalent binding of protein A/G enabled efficient capture of EpCAM antibody on the micropallet surface. MCF-7 cells, a human breast adenocarcinoma, were retained on the array surface with 90±8% efficiency when using an anti-EpCAM-coated array. To demonstrate the efficiency of tumor cell retention on micropallet arrays in the presence of blood, MCF-7 cells were mixed into whole blood and added to small arrays (71 mm(2)) coated with fibronectin, Matrigel or anti-EpCAM. These approaches achieved MCF-7 cell capture from ≤10 µL of whole blood with efficiencies greater than 85%. Furthermore, MCF-7 cells intermixed with 1 mL blood and loaded onto large arrays (7171 mm(2)) were captured with high efficiencies (≥97%), could be isolated from the array by a laser-based approach and were demonstrated to yield a high rate of colony formation (≥85%) after removal from the array. Clinical utility of this technology was shown through the capture, isolation and successful culture of CTCs from the blood of mice engrafted with primary human pancreatic tumors. Direct capture and isolation of living tumor cells from blood followed by analysis or culture will be a valuable tool for cancer cell characterization. © 2013 Elsevier B.V. All rights reserved.
Managing PV Power on Mars - MER Rovers
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Chin, Keith; Wood, Eric; Herman, Jennifer; Ewell, Richard
2009-01-01
The MER Rovers have recently completed over 5 years of operation! This is a remarkable demonstration of the capabilities of PV power on the Martian surface. The extended mission required the development of an efficient process to predict the power available to the rovers on a day-to-day basis. The performance of the MER solar arrays is quite unlike that of any other Space array and perhaps more akin to Terrestrial PV operation, although even severe by that comparison. The impact of unpredictable factors, such as atmospheric conditions and dust accumulation (and removal) on the panels limits the accurate prediction of array power to short time spans. Based on the above, it is clear that long term power predictions are not sufficiently accurate to allow for detailed long term planning. Instead, the power assessment is essentially a daily activity, effectively resetting the boundary points for the overall predictive power model. A typical analysis begins with the importing of the telemetry from each rover's previous day's power subsystem activities. This includes the array power generated, battery state-of-charge, rover power loads, and rover orientation, all as functions of time. The predicted performance for that day is compared to the actual performance to identify the extent of any differences. The model is then corrected for these changes. Details of JPL's MER power analysis procedure are presented, including the description of steps needed to provide the final prediction for the mission planners. A dust cleaning event of the solar array is also highlighted to illustrate the impact of Martian weather on solar array performance
NASA Astrophysics Data System (ADS)
Na, Xieyu; Poirier, Michel
2017-06-01
This paper is devoted to the analysis of transition arrays of magnetic-dipole (M1) type in highly charged ions. Such transitions play a significant role in highly ionized plasmas, for instance in the tungsten plasma present in tokamak devices. Using formulas recently published and their implementation in the Flexible Atomic Code for M1-transition array shifts and widths, absorption and emission spectra arising from transitions inside the 3*n complex of highly-charged tungsten ions are analyzed. A comparison of magnetic-dipole transitions with electric-dipole (E1) transitions shows that, while the latter are better described by transition array formulas, M1 absorption and emission structures reveal some insufficiency of these formulas. It is demonstrated that the detailed spectra account for significantly richer structures than those predicted by the transition array formalism. This is due to the fact that M1 transitions may occur between levels inside the same relativistic configuration, while such inner configuration transitions are not accounted for by the currently available averaging expression. In addition, because of configuration interaction, transition processes involving more than one electron jump, such as 3p1/23d5/2 → 3p3/23d3/2, are possible but not accounted for in the transition array formulas. These missing transitions are collected in pseudo-arrays using a post-processing method described in this paper. The relative influence of inner- and inter-configuration transitions is carefully analyzed in cases of tungsten ions with net charge around 50. The need for an additional theoretical development is emphasized.
Cuneo, M E; Vesey, R A; Sinars, D B; Chittenden, J P; Waisman, E M; Lemke, R W; Lebedev, S V; Bliss, D E; Stygar, W A; Porter, J L; Schroen, D G; Mazarakis, M G; Chandler, G A; Mehlhorn, T A
2005-10-28
Nested wire-array pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.
Rectenna array measurement results. [Satellite power transmission and reception
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1980-01-01
The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining are demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array are demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.
Phase-locked, high power, mid-infrared quantum cascade laser arrays
NASA Astrophysics Data System (ADS)
Zhou, W.; Slivken, S.; Razeghi, M.
2018-04-01
We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.
Advanced photovoltaic solar array design assessment
NASA Technical Reports Server (NTRS)
Stella, Paul; Scott-Monck, John
1987-01-01
The Advanced Photovoltaic Solar Array (APSA) program seeks to bring to flight readiness a solar array that effectively doubles the specific power of the Solar Array Flight Experiment/Solar Electric Propulsion (SAFE/SEP) design that was successfully demonstrated during the Shuttle 41-D mission. APSA is a critical intermediate milestone in the effort to demonstrate solar array technologies capable of 300 W/kg and 300 W/square m at beginning of life (BOL). It is not unreasonable to anticipate the development of solar array designs capable of 300 W/kg at BOL for operational power levels approx. greater than 25 kW sub e. It is also quite reasonable to expect that high performance solar arrays capable of providing at least 200 W/kg at end of life for most orbits now being considered by mission planners will be realized in the next decade.
NASA Astrophysics Data System (ADS)
Yusvana, Rama; Headon, Denis; Markx, Gerard H.
2009-08-01
The use of dielectrophoresis for the construction of artificial skin tissue with skin cells in follicle-like 3D cell aggregates in well-defined patterns is demonstrated. To analyse the patterns produced and to study their development after their formation a Virtual Instrument (VI) system was developed using the LabVIEW IMAQ Vision Development Module. A series of programming functions (algorithms) was used to isolate the features on the image (in our case; the patterned aggregates) and separate them from all other unwanted regions on the image. The image was subsequently converted into a binary version, covering only the desired microarray regions which could then be analysed by computer for automatic object measurements. The analysis utilized the simple and easy-to-use User-Specified Multi-Regions Masking (MRM) technique, which allows one to concentrate the analysis on the desired regions specified in the mask. This simplified the algorithms for the analysis of images of cell arrays having similar geometrical properties. By having a collection of scripts containing masks of different patterns, it was possible to quickly and efficiently develop sets of custom virtual instruments for the offline or online analysis of images of cell arrays in the database.
Measuring Uncertainty within Organizational Relationships: An Analysis of the CLUES Instrument.
ERIC Educational Resources Information Center
Jorgensen, Jerry D.; Petelle, John L.
1992-01-01
Presents an overview of the CLUES (also known as the CL7) instrument. Discusses the instrument's reliability and validity and its application to organizational communication research. Suggests that the instrument demonstrates unidimensionality in low-context cultures, high reliability, and known validity in a wide array of relational types. (RS)
Joint estimation of 2D-DOA and frequency based on space-time matrix and conformal array.
Wan, Liang-Tian; Liu, Lu-Tao; Si, Wei-Jian; Tian, Zuo-Xi
2013-01-01
Each element in the conformal array has a different pattern, which leads to the performance deterioration of the conventional high resolution direction-of-arrival (DOA) algorithms. In this paper, a joint frequency and two-dimension DOA (2D-DOA) estimation algorithm for conformal array are proposed. The delay correlation function is used to suppress noise. Both spatial and time sampling are utilized to construct the spatial-time matrix. The frequency and 2D-DOA estimation are accomplished based on parallel factor (PARAFAC) analysis without spectral peak searching and parameter pairing. The proposed algorithm needs only four guiding elements with precise positions to estimate frequency and 2D-DOA. Other instrumental elements can be arranged flexibly on the surface of the carrier. Simulation results demonstrate the effectiveness of the proposed algorithm.
Diameter modulation of vertically aligned single-walled carbon nanotubes.
Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo
2012-08-28
We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.
Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures
Horie, Yu; Arbabi, Amir; Arbabi, Ehsan; ...
2016-05-19
Here, we propose and experimentally demonstrate a planar array of optical bandpass filters composed of low loss dielectric metasurface layers sandwiched between two distributed Bragg reflectors (DBRs). The two DBRs form a Fabry-Perot resonator whose center wavelength is controlled by the design of the transmissive metasurface layer which functions as a phase shifting element. We demonstrate an array of bandpass filters with spatially varying center wavelengths covering a wide range of operation wavelengths of 250nm around λ = 1550nm (Δλ/λ = 16%). The center wavelengths of each filter are independently controlled only by changing the in-plane geometry of the sandwichedmore » metasurfaces, and the experimentally measured quality factors are larger than 700. The demonstrated filter array can be directly integrated on top of photodetector arrays to realize on-chip high-resolution spectrometers with free-space coupling.« less
GMR biosensor arrays: a system perspective.
Hall, D A; Gaster, R S; Lin, T; Osterfeld, S J; Han, S; Murmann, B; Wang, S X
2010-05-15
Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1-8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4s). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multiplexing capability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. 2010 Elsevier B.V. All rights reserved.
GMR Biosensor Arrays: A System Perspective
Hall, D. A.; Gaster, R. S.; Lin, T.; Osterfeld, S. J.; Han, S.; Murmann, B.; Wang, S. X.
2010-01-01
Giant magnetoresistive biosensors are becoming more prevalent for sensitive, quantifiable biomolecular detection. However, in order for magnetic biosensing to become competitive with current optical protein microarray technology, there is a need to increase the number of sensors while maintaining the high sensitivity and fast readout time characteristic of smaller arrays (1 – 8 sensors). In this paper, we present a circuit architecture scalable for larger sensor arrays (64 individually addressable sensors) while maintaining a high readout rate (scanning the entire array in less than 4 seconds). The system utilizes both time domain multiplexing and frequency domain multiplexing in order to achieve this scan rate. For the implementation, we propose a new circuit architecture that does not use a classical Wheatstone bridge to measure the small change in resistance of the sensor. Instead, an architecture designed around a transimpedance amplifier is employed. A detailed analysis of this architecture including the noise, distortion, and potential sources of errors is presented, followed by a global optimization strategy for the entire system comprising the magnetic tags, sensors, and interface electronics. To demonstrate the sensitivity, quantifiable detection of two blindly spiked samples of unknown concentrations has been performed at concentrations below the limit of detection for the enzyme-linked immunosorbent assay. Lastly, the multipexability and reproducibility of the system was demonstrated by simultaneously monitoring sensors functionalized with three unique proteins at different concentrations in real-time. PMID:20207130
Qi, Yanyu; Xu, Wenjun; Kang, Rui; Ding, Nannan; Wang, Yelei; He, Gang; Fang, Yu
2018-02-21
This work reports a conceptual sensor array for the highly discriminative analysis of 20 clinically and environmentally relevant volatile small organic molecules (VSOMs), including saturated alkanes and common solvents, in the air at room temperature. For the construction of the sensor array, a four coordinated, non-planar mono-boron complex and four relevant polymers are synthesized. Based on the polymers and the use of different substrates, 8 fluorescent films have been fabricated. Integration of the film-based sensors results in the sensor array, which demonstrates unprecedented discriminating capability toward the VSOMs. Moreover, for the signal molecule of lung cancer, n -pentane, the response time is less than 1 s, the experimental detection limit is lower than 3.7 ppm, and after repeating the tests over 50 times no observable degradation was observed. The superior sensing performance is partially ascribed to the tetrahedral structure of the boron centers in the polymers as it may produce molecular channels in the films, which are a necessity for fast and reversible sensing. In addition, the polarity of the micro-channels may endow the films with additional selectivity towards the analytes. The design as demonstrated provides an effective strategy to improve the sensing performance of fluorescent films to very challenging analytes, such as saturated alkanes.
NASA Astrophysics Data System (ADS)
Shay, T. M.; Benham, Vincent; Baker, J. T.; Ward, Benjamin; Sanchez, Anthony D.; Culpepper, Mark A.; Pilkington, D.; Spring, Justin; Nelson, Douglas J.; Lu, Chunte A.
2006-08-01
A novel high accuracy all electronic technique for phase locking arrays of optical fibers is demonstrated. We report the first demonstration of the only electronic phase locking technique that doesn't require a reference beam. The measured phase error is λ/20. Excellent phase locking has been demonstrated for fiber amplifier arrays.
Induced charge electroosmosis micropumps using arrays of Janus micropillars.
Paustian, Joel S; Pascall, Andrew J; Wilson, Neil M; Squires, Todd M
2014-09-07
We report on a microfluidic AC-driven electrokinetic pump that uses Induced Charge Electro-Osmosis (ICEO) to generate on-chip pressures. ICEO flows occur when a bulk electric field polarizes a metal object to induce double layer formation, then drives electroosmotic flow. A microfabricated array of metal-dielectric Janus micropillars breaks the symmetry of ICEO flow, so that an AC electric field applied across the array drives ICEO flow along the length of the pump. When pumping against an external load, a pressure gradient forms along the pump length. The design was analyzed theoretically with the reciprocal theorem. The analysis reveals a maximum pressure and flow rate that depend on the ICEO slip velocity and micropillar geometry. We then fabricate and test the pump, validating our design concept by demonstrating non-local pressure driven flow using local ICEO slip flows. We varied the voltage, frequency, and electrolyte composition, measuring pump pressures of 15-150 Pa. We use the pump to drive flows through a high-resistance microfluidic channel. We conclude by discussing optimization routes suggested by our theoretical analysis to enhance the pump pressure.
A novel miniaturized PCR multi-reactor array fabricated using flip-chip bonding techniques
NASA Astrophysics Data System (ADS)
Zou, Zhi-Qing; Chen, Xiang; Jin, Qing-Hui; Yang, Meng-Su; Zhao, Jian-Long
2005-08-01
This paper describes a novel miniaturized multi-chamber array capable of high throughput polymerase chain reaction (PCR). The structure of the proposed device is verified by using finite element analysis (FEA) to optimize the thermal performance, and then implemented on a glass-silicon substrate using a standard MEMS process and post-processing. Thermal analysis simulation and verification of each reactor cell is equipped with integrated Pt temperature sensors and heaters at the bottom of the reaction chamber for real-time accurate temperature sensing and control. The micro-chambers are thermally separated from each other, and can be controlled independently. The multi-chip array was packaged on a printed circuit board (PCB) substrate using a conductive polymer flip-chip bonding technique, which enables effective heat dissipation and suppresses thermal crosstalk between the chambers. The designed system has successfully demonstrated a temperature fluctuation of ±0.5 °C during thermal multiplexing of up to 2 × 2 chambers, a full speed of 30 min for 30 cycle PCR, as well as the capability of controlling each chamber digitally and independently.
NASA Astrophysics Data System (ADS)
Wu, Sheldon S. Q.; Baker, Bradford W.; Rotter, Mark D.; Rubenchik, Alexander M.; Wiechec, Maxwell E.; Brown, Zachary M.; Beach, Raymond J.; Matthews, Manyalibo J.
2017-12-01
Localized heating of roughened steel surfaces using highly divergent laser light emitted from high-power laser diode arrays was experimentally demonstrated and compared with theoretical predictions. Polarization dependence was analyzed using Fresnel coefficients to understand the laser-induced temperature rise of HY-80 steel plates under 383- to 612-W laser irradiation. Laser-induced, transient temperature distributions were directly measured using bulk thermocouple probes and thermal imaging. Finite-element analysis yielded quantitative assessment of energy deposition and heat transport in HY-80 steel using absorptivity as a tuning parameter. The extracted absorptivity values ranged from 0.62 to 0.75 for S-polarized and 0.63 to 0.85 for P-polarized light, in agreement with partially oxidized iron surfaces. Microstructural analysis using electron backscatter diffraction revealed a heat affected zone for the highest temperature conditions (612 W, P-polarized) as evidence of rapid quenching and an austenite to martensite transformation. The efficient use of diode arrays for laser-assisted advanced manufacturing technologies, such as hybrid friction stir welding, is discussed.
Hartmann, Luise; Stephenson, Christine F; Verkamp, Stephanie R; Johnson, Krystal R; Burnworth, Bettina; Hammock, Kelle; Brodersen, Lisa Eidenschink; de Baca, Monica E; Wells, Denise A; Loken, Michael R; Zehentner, Barbara K
2014-12-01
Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample. This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies. Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies. Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated. © 2014 American Association for Clinical Chemistry.
NASA Astrophysics Data System (ADS)
Cerwin, Steve; Barnes, Julie; Kell, Scott; Walters, Mark
2003-09-01
This paper describes development and application of a novel method to accomplish real-time solid angle acoustic direction finding using two 8-element orthogonal microphone arrays. The developed prototype system was intended for localization and signature recognition of ground-based sounds from a small UAV. Recent advances in computer speeds have enabled the implementation of microphone arrays in many audio applications. Still, the real-time presentation of a two-dimensional sound field for the purpose of audio target localization is computationally challenging. In order to overcome this challenge, a crosspower spectrum phase1 (CSP) technique was applied to each 8-element arm of a 16-element cross array to provide audio target localization. In this paper, we describe the technique and compare it with two other commonly used techniques; Cross-Spectral Matrix2 and MUSIC3. The results show that the CSP technique applied to two 8-element orthogonal arrays provides a computationally efficient solution with reasonable accuracy and tolerable artifacts, sufficient for real-time applications. Additional topics include development of a synchronized 16-channel transmitter and receiver to relay the airborne data to the ground-based processor and presentation of test data demonstrating both ground-mounted operation and airborne localization of ground-based gunshots and loud engine sounds.
Broadband moth-eye antireflection coatings on silicon
NASA Astrophysics Data System (ADS)
Sun, Chih-Hung; Jiang, Peng; Jiang, Bin
2008-02-01
We report a bioinspired templating technique for fabricating broadband antireflection coatings that mimic antireflective moth eyes. Wafer-scale, subwavelength-structured nipple arrays are directly patterned on silicon using spin-coated silica colloidal monolayers as etching masks. The templated gratings exhibit excellent broadband antireflection properties and the normal-incidence specular reflection matches with the theoretical prediction using a rigorous coupled-wave analysis (RCWA) model. We further demonstrate that two common simulation methods, RCWA and thin-film multilayer models, generate almost identical prediction for the templated nipple arrays. This simple bottom-up technique is compatible with standard microfabrication, promising for reducing the manufacturing cost of crystalline silicon solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sommer, A., E-mail: a.sommer@lte.uni-saarland.de; Farle, O., E-mail: o.farle@lte.uni-saarland.de; Dyczij-Edlinger, R., E-mail: edlinger@lte.uni-saarland.de
2015-10-15
This paper presents a fast numerical method for computing certified far-field patterns of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles. The proposed scheme combines finite-element analysis, dual-corrected model-order reduction, and empirical interpolation. To assure the reliability of the results, improved a posteriori error bounds for the radiated power and directive gain are derived. Both the reduced-order model and the error-bounds algorithm feature offline–online decomposition. A real-world example is provided to demonstrate the efficiency and accuracy of the suggested approach.
Real-time radar signal processing using GPGPU (general-purpose graphic processing unit)
NASA Astrophysics Data System (ADS)
Kong, Fanxing; Zhang, Yan Rockee; Cai, Jingxiao; Palmer, Robert D.
2016-05-01
This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.
Passivated aluminum nanohole arrays for label-free biosensing applications.
Canalejas-Tejero, Víctor; Herranz, Sonia; Bellingham, Alyssa; Moreno-Bondi, María Cruz; Barrios, Carlos Angulo
2014-01-22
We report the fabrication and performance of a surface plasmon resonance aluminum nanohole array refractometric biosensor. An aluminum surface passivation treatment based on oxygen plasma is developed in order to circumvent the undesired effects of oxidation and corrosion usually found in aluminum-based biosensors. Immersion tests in deionized water and device simulations are used to evaluate the effectiveness of the passivation process. A label-free bioassay based on biotin analysis through biotin-functionalized dextran-lipase conjugates immobilized on the biosensor-passivated surface in aqueous media is performed as a proof of concept to demonstrate the suitability of these nanostructured aluminum films for biosensing.
Ultramicroelectrode Array Based Sensors: A Promising Analytical Tool for Environmental Monitoring
Orozco, Jahir; Fernández-Sánchez, César; Jiménez-Jorquera, Cecilia
2010-01-01
The particular analytical performance of ultramicroelectrode arrays (UMEAs) has attracted a high interest by the research community and has led to the development of a variety of electroanalytical applications. UMEA-based approaches have demonstrated to be powerful, simple, rapid and cost-effective analytical tools for environmental analysis compared to available conventional electrodes and standardised analytical techniques. An overview of the fabrication processes of UMEAs, their characterization and applications carried out by the Spanish scientific community is presented. A brief explanation of theoretical aspects that highlight their electrochemical behavior is also given. Finally, the applications of this transducer platform in the environmental field are discussed. PMID:22315551
NASA Astrophysics Data System (ADS)
Anderson, D.; Andrais, B.; Mirzayans, R.; Siegbahn, E. A.; Fallone, B. G.; Warkentin, B.
2013-06-01
Microbeam radiation therapy (MRT) delivers single fractions of very high doses of synchrotron x-rays using arrays of microbeams. In animal experiments, MRT has achieved higher tumour control and less normal tissue toxicity compared to single-fraction broad beam irradiations of much lower dose. The mechanism behind the normal tissue sparing of MRT has yet to be fully explained. An accurate method for evaluating DNA damage, such as the γ-H2AX immunofluorescence assay, will be important for understanding the role of cellular communication in the radiobiological response of normal and cancerous cell types to MRT. We compare two methods of quantifying γ-H2AX nuclear fluorescence for uniformly irradiated cell cultures: manual counting of γ-H2AX foci by eye, and an automated, MATLAB-based fluorescence intensity measurement. We also demonstrate the automated analysis of cell cultures irradiated with an array of microbeams. In addition to offering a relatively high dynamic range of γ-H2AX signal versus irradiation dose ( > 10 Gy), our automated method provides speed, robustness, and objectivity when examining a series of images. Our in-house analysis facilitates the automated extraction of the spatial distribution of the γ-H2AX intensity with respect to the microbeam array — for example, the intensities in the peak (high dose area) and valley (area between two microbeams) regions. The automated analysis is particularly beneficial when processing a large number of samples, as is needed to systematically study the relationship between the numerous dosimetric and geometric parameters involved with MRT (e.g., microbeam width, microbeam spacing, microbeam array dimensions, peak dose, valley dose, and geometric arrangement of multiple arrays) and the resulting DNA damage.
Reconfigurable Antennas for High Data Rate Multi-beam Communication Systems
NASA Technical Reports Server (NTRS)
Bernhard, Jennifer T.; Michielssen, Eric
2005-01-01
High-speed (2-100 Mb/sec) wireless data communication - whether land- or satellite-based - faces a major challenge: high error rates caused by interference and unpredictable environments. A planar antenna system that can be reconfigured to respond to changing conditions has the potential to dramatically improve data throughput and system reliability. Moreover, new planar antenna designs that reduce array size, weight, and cost can have a significant impact on terrestrial and satellite communication system performance. This research developed new individually-reconfigurable planar antenna array elements that can be adjusted to provide multiple beams while providing increased scan angles and higher aperture efficiency than traditional diffraction-limited arrays. These new elements are microstrip spiral antennas with specialized tuning mechanisms that provide adjustable radiation patterns. We anticipate that these new elements can be used in both large and small arrays for inter-satellite communication as well as tracking of multiple mobile surface-based units. Our work has developed both theoretical descriptions as well as experimental prototypes of the antennas in both single element and array embodiments. The technical summary of the results of this work is divided into six sections: A. Cavity model for analysis and design of pattern reconfigurable antennas; B. Performance of antenna in array configurations for broadside and endfire operation; C. Performance of antenna in array configurations for beam scanning operation; D. Simulation of antennas in infinite phased arrays; E. Demonstration of antenna with commercially-available RF MEMS switches; F. Design of antenna MEMS switch combinations for direct simultaneous fabrication.
Ka-band MMIC arrays for ACTS Aero Terminal Experiment
NASA Technical Reports Server (NTRS)
Raquet, C.; Zakrajsek, R.; Lee, R.; Turtle, J.
1992-01-01
An antenna system consisting of three experimental Ka-band active arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification is presented. The MMIC arrays are to be demonstrated in the ACTS Aeronautical Terminal Experiment, planned for early 1994. The experiment is outlined, with emphasis on a description of the antenna system. Attention is given to the way in which proof-of-concept MMIC arrays featuring three different state-of-the-art approaches to Ka-band MMIC insertion are being incorporated into an experimental aircraft terminal for the demonstration of an aircraft-to-satellite link, providing a basis for follow-on MMIC array development.
Conformal array design on arbitrary polygon surface with transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng
2016-06-15
A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.
Outer Planet Science Missions enabled by Solar Power
NASA Astrophysics Data System (ADS)
Kaplan, M.; Klaus, K.; Smith, D. B.
2009-12-01
Our studies demonstrate that New Frontiers-class science missions to the Jupiter and Saturn systems are possible with commercial solar powered space craft. These spacecraft are flight proven with more than 60 years of in-space operation and are equipped with highly efficient solar arrays capable of up to 25kW in low earth orbit. Such a vehicle could generate nearly 1kW in the Jovian System. Our analysis shows substantially greater power at the end of mission with this solar array system than the system that is planned for use in the Europa Jupiter System Flagship mission study. In the next few years, a new solar array technology will be developed and demonstrated by DARPA that will provide even higher power. DARPA’s Fast Access Space Testbed (FAST) program objective is to develop a revolutionary approach to spacecraft high power generation. This high power generation Subsystem, when combined with electric propulsion, will form the technological basis for a light weight, high power, highly mobile spacecraft platform. The FAST program will demonstrate the implementation of solar concentrators and high flux solar cells in conjunction with high specific impulse electric propulsion, to produce a high performance, lightweight power and propulsion system. A basic FAST spacecraft design provides about 60 kW in LEO, which scales to > 2 kW at 5 AU, or a little less than 1 kW at 10 AU. In principle, higher power levels (120 kW or even 180kW at 1 AU) could be accommodated with this technology. We envision missions using this FAST array and NASA’s NEXT engines for solar electric propulsion (SEP) Jovian and Saturn system maneuvers. We envision FAST arrays to cost in the tens of millions, making this an affordable, plutonium-free way to do outer planets science. Continued funding will mean flight experiments conducted in the 2012 timeframe that could make this technology flight proven for the New Frontiers 4 opportunity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulaev, Alexander; Guo, Hongxuan; Strelcov, Evgheni
Atomic-scale thickness, molecular impermeability, low atomic number, and mechanical strength make graphene an ideal electron-transparent membrane for material characterization in liquids and gases with scanning electron microscopy and spectroscopy. Here in this paper, we present a novel sample platform made of an array of thousands of identical isolated graphene-capped microchannels with high aspect ratio. A combination of a global wide field of view with high resolution local imaging of the array allows for high throughput in situ studies as well as for combinatorial screening of solutions, liquid interfaces, and immersed samples. We demonstrate the capabilities of this platform by studyingmore » a pure water sample in comparison with alkali halide solutions, a model electrochemical plating process, and beam-induced crystal growth in liquid electrolyte. Spectroscopic characterization of liquid interfaces and immersed objects with Auger and X-ray fluorescence analysis through the graphene membrane are also demonstrated.« less
Experimental demonstration of conformal phased array antenna via transformation optics.
Lei, Juan; Yang, Juxing; Chen, Xi; Zhang, Zhiya; Fu, Guang; Hao, Yang
2018-02-28
Transformation Optics has been proven a versatile technique for designing novel electromagnetic devices and it has much wider applicability in many subject areas related to general wave equations. Among them, quasi-conformal transformation optics (QCTO) can be applied to minimize anisotropy of transformed media and has opened up the possibility to the design of broadband antennas with arbitrary geometries. In this work, a wide-angle scanning conformal phased array based on all-dielectric QCTO lens is designed and experimentally demonstrated. Excited by the same current distribution as such in a conventional planar array, the conformal system in presence of QCTO lens can preserve the same radiation characteristics of a planar array with wide-angle beam-scanning and low side lobe level (SLL). Laplace's equation subject to Dirichlet-Neumann boundary conditions is adopted to construct the mapping between the virtual and physical spaces. The isotropic lens with graded refractive index is realized by all-dielectric holey structure after an effective parameter approximation. The measurements of the fabricated system agree well with the simulated results, which demonstrate its excellent wide-angle beam scanning performance. Such demonstration paves the way to a robust but efficient array synthesis, as well as multi-beam and beam forming realization of conformal arrays via transformation optics.
High Aspect Ratio Semiconductor Heterojunction Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redwing, Joan; Mallouk, Tom; Mayer, Theresa
2013-05-17
The project focused on the development of high aspect ratio silicon heterojunction (HARSH) solar cells. The solar cells developed in this study consisted of high density vertical arrays of radial junction silicon microwires/pillars formed on Si substrates. Prior studies have demonstrated that vertical Si wire/pillar arrays enable reduced reflectivity and improved light trapping characteristics compared to planar solar cells. In addition, the radial junction structure offers the possibility of increased carrier collection in solar cells fabricated using material with short carrier diffusion lengths. However, the high junction and surface area of radial junction Si wire/pillar array devices can be problematicmore » and lead to increased diode leakage and enhanced surface recombination. This study investigated the use of amorphous hydrogenated Si in the form of a heterojunction-intrinsic-thin layer (HIT) structure as a junction formation method for these devices. The HIT layer structure has widely been employed to reduce surface recombination in planar crystalline Si solar cells. Consequently, it was anticipated that it would also provide significant benefits to the performance of radial junction Si wire/pillar array devices. The overall goals of the project were to demonstrate a HARSH cell with a HIT-type structure in the radial junction Si wire/pillar array configuration and to develop potentially low cost pathways to fabricate these devices. Our studies demonstrated that the HIT structure lead to significant improvements in the open circuit voltage (V oc>0.5) of radial junction Si pillar array devices compared to devices fabricated using junctions formed by thermal diffusion or low pressure chemical vapor deposition (LPCVD). In addition, our work experimentally demonstrated that the radial junction structure lead to improvements in efficiency compared to comparable planar devices for devices fabricated using heavily doped Si that had reduced carrier diffusion lengths. Furthermore, we made significant advances in employing the bottom-up vapor-liquid-solid (VLS) growth technique for the fabrication of the Si wire arrays. Our work elucidated the effects of growth conditions and substrate pattern geometry on the growth of large area Si microwire arrays grown with SiCl4. In addition, we also developed a process to grow p-type Si nanowire arrays using aluminum as the catalyst metal instead of gold. Finally, our work demonstrated the feasibility of growing vertical arrays of Si wires on non-crystalline glass substrates using polycrystalline Si template layers. The accomplishments demonstrated in this project will pave the way for future advances in radial junction wire array solar cells.« less
NASA Astrophysics Data System (ADS)
Valdivia, V.; Barrado, A.; Lazaro, A.; Rueda, P.; Tonicello, F.; Fernandez, A.; Mourra, O.
2011-10-01
Solar array simulators (SASs) are hardware devices, commonly applied instead of actual solar arrays (SAs) during the design process of spacecrafts power conditioning and distribution units (PCDUs), and during spacecrafts assembly integration and tests. However, the dynamic responses between SASs and actual SAs are usually different. This fact plays an important role, since the dynamic response of the SAS may influence significantly the dynamic behaviour of the PCDU under certain conditions, even leading to instability. This paper deals with the dynamic interactions between SASs and PCDUs. Several methods for dynamic characterization of the SASs are discussed, and the response of commercial SASs widely applied in the space industry is compared to that of actual SAs. After that, the interactions are experimentally analyzed by using a boost converter connected to the aforementioned SASs, thus demonstrating their critical importance. The interactions are first tackled analytically by means of small-signal models, and finally a black-box modelling method of SASs is proposed as a useful tool to analyze the interactions by means of simulation. The capabilities of both the analytical method and the black- box model to predict the interactions are demonstrated.
Jeux, François; Desfarges-Berthelemot, Agnès; Kermène, Vincent; Barthelemy, Alain
2012-12-17
We report experiments on a new laser architecture involving phase contrast filtering to coherently combine an array of fiber lasers. We demonstrate that the new technique yields a more stable phase-locking than standard methods using only amplitude filtering. A spectral analysis of the output beams shows that the new scheme generates more resonant frequencies common to the coupled lasers. This property can enhance the combining efficiency when the number of lasers to be coupled is large.
NASA Astrophysics Data System (ADS)
Cho, I.; Tada, T.; Shinozaki, Y.
2005-12-01
We have developed a Centerless Circular Array (CCA) method of microtremor exploration, an algorithm that enables to estimate phase velocities of Rayleigh waves by analyzing vertical-component records of microtremors that are obtained with an array of three or five seismic sensors placed around a circumference. Our CCA method shows a remarkably high performance in long-wavelength ranges because, unlike the frequency-wavenumber spectral method, our method does not resolve individual plane-wave components in the process of identifying phase velocities. Theoretical considerations predict that the resolving power of our CCA method in long-wavelength ranges depends upon the SN ratio, or the ratio of power of the propagating components to that of the non-propagating components (incoherent noise) contained in the records from the seismic array. The applicability of our CCA method to small-sized arrays on the order of several meters in radius has already been confirmed in our earlier work (Cho et al., 2004). We have deployed circular seismic arrays of different sizes at test sites in Japan where the underground structure is well documented through geophysical exploration, and have applied our CCA method to microtremor records to estimate phase velocities of Rayleigh waves. The estimates were then checked against "model" phase velocities that are derived from theoretical calculations. For arrays of 5, 25, 300 and 600 meters in radii, the estimated and model phase velocities demonstrated fine agreement within a broad wavelength range extending from a little larger than 3r (r: the array radius) up to at least 40r, 14r, 42r and 9r, respectively. This demonstrates the applicability of our CCA method to arrays on the order of several to several hundreds of meters in radii, and also illustrates, in a typical way, the markedly high performance of our CCA method in long-wavelength ranges. We have also invented a mathematical model that enables to evaluate the SN ratio in a given microtremor field, and have applied it to real data. Theory predicts that our CCA method underestimates the phase velocities when noise is present. Using the evaluated SN ratio and the phase velocity dispersion curve model, we have calculated the apparent values of phase velocities which theory expects should be obtained by our CCA method in long-wavelength ranges, and have confirmed that the outcome agreed very well with the phase velocities estimated from real data. This demonstrates that the mathematical assumptions, on which our CCA method relies, remains valid over a wide range of wavelengths which we are examining, and also implies that, even in the absence of a priori knowledge of the phase velocity dispersion curve, the SN ratio evaluated with our mathematical model could be used to identify the resolution limit of our CCA method in long-wavelength ranges. We have thus been able to demonstrate, on the basis of theoretical considerations and real data analysis, both the capabilities and limitations of our CCA method.
Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng
2017-11-20
The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals.
Wu, Zhaofeng; Duan, Haiming; Li, Zhijun; Guo, Jixi; Zhong, Furu; Cao, Yali; Jia, Dianzeng
2017-01-01
The multichannel fluorescent sensor array based on nanofibrous membranes loaded with ZnS quantum dots (QDs) was created and demonstrated for the discriminative detection of explosives. The synergistic effect of the high surface-to-volume ratio of QDs, the good permeability of nanofibrous membranes and the differential response introduced by surface ligands was played by constructing the sensing array using nanofibrous membranes loaded with ZnS QDs featuring several surface ligands. Interestingly, although the fluorescence quenching of the nanofibrous membranes is not linearly related to the exposure time, the fingerprint of each explosive at different times is very similar in shape, and the fingerprints of the three explosives show different shapes. Three saturated vapors of nitroaromatic explosives could be reliably detected and discriminated by the array at room temperature. This work is the first step toward devising a monitoring system for explosives in the field of public security and defense. It could, for example, be coupled with the technology of image recognition and large data analysis for a rapid diagnostic test of explosives. This work further highlights the power of differential, multichannel arrays for the rapid and discriminative detection of a wide range of chemicals. PMID:29156627
Li, Longsheng; Bi, Meihua; Miao, Xin; Fu, Yan; Hu, Weisheng
2018-01-22
In this paper, we firstly demonstrate an advanced arraying scheme in the TDM-based analog mobile fronthaul system to enhance the signal fidelity, in which the segment of the antenna carrier signal (AxC) with an appropriate length is served as the granularity for TDM aggregation. Without introducing extra processing, the entire system can be realized by simple DSP. The theoretical analysis is presented to verify the feasibility of this scheme, and to evaluate its effectiveness, the experiment with ~7-GHz bandwidth and 20 8 × 8 MIMO group signals are conducted. Results show that the segment-wise TDM is completely compatible with the MIMO-interleaved arraying, which is employed in an existing TDM scheme to improve the bandwidth efficiency. Moreover, compared to the existing TDM schemes, our scheme can not only satisfy the latency requirement of 5G but also significantly reduce the multiplexed signal bandwidth, hence providing higher signal fidelity in the bandwidth-limited fronthaul system. The experimental result of EVM verifies that 256-QAM is supportable using the segment-wise TDM arraying with only 250-ns latency, while with the ordinary TDM arraying, only 64-QAM is bearable.
NASA Astrophysics Data System (ADS)
Huang, Xiaoping; Zhang, Peifeng; Lin, En; Wang, Peng; Mei, Mingwei; Huang, Qiuying; Jiao, Jiao; Zhao, Qing
2017-09-01
We present the design and fabrication of a novel regularly arrayed plasmonic nanolasers. This main microstructure of the device is composed of a hexagonal array of n-ZnO/p-GaN nanoheterojunctions fabricated using the micro-fabrication method. Furthermore, the optically pumped lasing in the device is demonstrated. The spectroscopy characterization results of the device show that the surface plasmon excited around the NWs surface can be used to stimulate and strongly compress the optical modes in the NW cavity. This electromagnetic confinement effect is employed to optimize the beam quality and increase the light intensity compared to the laser fabricated with the bare NWs array. The impact of the array arrangement on the coherent combining efficiency of the arrayed nanolasers has been numerically studied. The results show that the arrayed hexagonal nanolasers could improve the combining efficiency compared to the nanolaser with the randomly positioned array. Qualitatively, these calculated results agree well with the experimental results of the laser beam spot mapping. This demonstrates the scope for using such architectures to improve the combination efficiency of the arrayed nanolasers.
Analysis techniques for background rejection at the Majorana Demonstrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuestra, Clara; Rielage, Keith Robert; Elliott, Steven Ray
2015-06-11
The MAJORANA Collaboration is constructing the MAJORANA DEMONSTRATOR, an ultra-low background, 40-kg modular HPGe detector array to search for neutrinoless double beta decay in 76Ge. In view of the next generation of tonne-scale Ge-based 0νββ-decay searches that will probe the neutrino mass scale in the inverted-hierarchy region, a major goal of the MAJORANA DEMONSTRATOR is to demonstrate a path forward to achieving a background rate at or below 1 count/tonne/year in the 4 keV region of interest around the Q-value at 2039 keV. The background rejection techniques to be applied to the data include cuts based on data reduction, pulsemore » shape analysis, event coincidences, and time correlations. The Point Contact design of the DEMONSTRATOR's germanium detectors allows for significant reduction of gamma background.« less
Analysis of surface EMG baseline for detection of hidden muscle activity
NASA Astrophysics Data System (ADS)
Zhang, Xu; Zhou, Ping
2014-02-01
Objective. This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach. Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used. Both analyses were applied to computer simulations of surface EMG baseline with the presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results. Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance. The findings implied the presence of a hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level.
Analysis of Surface EMG Baseline for Detection of Hidden Muscle Activity
Zhang, Xu; Zhou, Ping
2014-01-01
Objective This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used respectively. Both analyses were applied to computer simulations of surface EMG baseline with presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance The findings implied presence of hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level. PMID:24445526
SAVANT: Solar Array Verification and Analysis Tool Demonstrated
NASA Technical Reports Server (NTRS)
Chock, Ricaurte
2000-01-01
The photovoltaics (PV) industry is now being held to strict specifications, such as end-oflife power requirements, that force them to overengineer their products to avoid contractual penalties. Such overengineering has been the only reliable way to meet such specifications. Unfortunately, it also results in a more costly process than is probably necessary. In our conversations with the PV industry, the issue of cost has been raised again and again. Consequently, the Photovoltaics and Space Environment Effects branch at the NASA Glenn Research Center at Lewis Field has been developing a software tool to address this problem. SAVANT, Glenn's tool for solar array verification and analysis is in the technology demonstration phase. Ongoing work has proven that more efficient and less costly PV designs should be possible by using SAVANT to predict the on-orbit life-cycle performance. The ultimate goal of the SAVANT project is to provide a user-friendly computer tool to predict PV on-orbit life-cycle performance. This should greatly simplify the tasks of scaling and designing the PV power component of any given flight or mission. By being able to predict how a particular PV article will perform, designers will be able to balance mission power requirements (both beginning-of-life and end-of-life) with survivability concerns such as power degradation due to radiation and/or contamination. Recent comparisons with actual flight data from the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) mission validate this approach.
Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.
NASA Astrophysics Data System (ADS)
Mancusi, Joseph Edward
This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.
Optical Demonstrations with a Scanning Photodiode Array.
ERIC Educational Resources Information Center
Turman, Bobby N.
1980-01-01
Describes the photodiode array and the electrical connections necessary for it. Also shows a few of the optical demonstration possibilities-shadowgraphs for measuring small objects, interference and diffraction effects, angular resolution of an optical system, and a simple spectrometer. (Author/DS)
Li, Long; Zhou, Xiaoxiao
2018-03-23
In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.
Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina; Guldberg, Per; Dufva, Martin; Wang, Shan X; Hansen, Mikkel F
2017-09-26
Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.
Zufferey, Flore; Martinet, Danielle; Osterheld, Maria-Chiara; Niel-Bütschi, Florence; Giannoni, Eric; Schmutz, Nathalie Besuchet; Xia, Zhilian; Beckmann, Jacques S; Shaw-Smith, Charles; Stankiewicz, Pawel; Langston, Claire; Fellmann, Florence
2011-11-01
Report of a 16q24.1 deletion in a premature newborn, demonstrating the usefulness of array-based comparative genomic hybridization in persistent pulmonary hypertension of the newborn and multiple congenital malformations. Descriptive case report. Genetic department and neonatal intensive care unit of a tertiary care children's hospital. None. We report the case of a preterm male infant, born at 26 wks of gestation. A cardiac malformation and bilateral hydronephrosis were diagnosed at 19 wks of gestation. Karyotype analysis was normal, and a 22q11.2 microdeletion was excluded by fluorescence in situ hybridization analysis. A cesarean section was performed due to fetal distress. The patient developed persistent pulmonary hypertension unresponsive to mechanical ventilation and nitric oxide treatment and expired at 16 hrs of life. An autopsy revealed partial atrioventricular canal malformation and showed bilateral dilation of the renal pelvocaliceal system with bilateral ureteral stenosis and annular pancreas. Array-based comparative genomic hybridization analysis (Agilent oligoNT 44K, Agilent Technologies, Santa Clara, CA) showed an interstitial microdeletion encompassing the forkhead box gene cluster in 16q24.1. Review of the pulmonary microscopic examination showed the characteristic features of alveolar capillary dysplasia with misalignment of pulmonary veins. Some features were less prominent due to the gestational age. Our review of the literature shows that alveolar capillary dysplasia with misalignment of pulmonary veins is rare but probably underreported. Prematurity is not a usual presentation, and histologic features are difficult to interpret. In our case, array-based comparative genomic hybridization revealed a 16q24.1 deletion, leading to the final diagnosis of alveolar capillary dysplasia with misalignment of pulmonary veins. It emphasizes the usefulness of array-based comparative genomic hybridization analysis as a diagnostic tool with implications for both prognosis and management decisions in newborns with refractory persistent pulmonary hypertension and multiple congenital malformations.
Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi
2017-02-16
The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix effect contributed to the sensitivity and selectivity of the optimized sensor array. The developed MISGs were expected to be promising materials for the detection and recognition of volatile aldehydes contained in exhaled breath or human body odor.
Liu, Chuanjun; Wyszynski, Bartosz; Yatabe, Rui; Hayashi, Kenshi; Toko, Kiyoshi
2017-01-01
The detection and recognition of metabolically derived aldehydes, which have been identified as important products of oxidative stress and biomarkers of cancers; are considered as an effective approach for early cancer detection as well as health status monitoring. Quartz crystal microbalance (QCM) sensor arrays based on molecularly imprinted sol-gel (MISG) materials were developed in this work for highly sensitive detection and highly selective recognition of typical aldehyde vapors including hexanal (HAL); nonanal (NAL) and bezaldehyde (BAL). The MISGs were prepared by a sol-gel procedure using two matrix precursors: tetraethyl orthosilicate (TEOS) and tetrabutoxytitanium (TBOT). Aminopropyltriethoxysilane (APT); diethylaminopropyltrimethoxysilane (EAP) and trimethoxy-phenylsilane (TMP) were added as functional monomers to adjust the imprinting effect of the matrix. Hexanoic acid (HA); nonanoic acid (NA) and benzoic acid (BA) were used as psuedotemplates in view of their analogous structure to the target molecules as well as the strong hydrogen-bonding interaction with the matrix. Totally 13 types of MISGs with different components were prepared and coated on QCM electrodes by spin coating. Their sensing characters towards the three aldehyde vapors with different concentrations were investigated qualitatively. The results demonstrated that the response of individual sensors to each target strongly depended on the matrix precursors; functional monomers and template molecules. An optimization of the 13 MISG materials was carried out based on statistical analysis such as principle component analysis (PCA); multivariate analysis of covariance (MANCOVA) and hierarchical cluster analysis (HCA). The optimized sensor array consisting of five channels showed a high discrimination ability on the aldehyde vapors; which was confirmed by quantitative comparison with a randomly selected array. It was suggested that both the molecularly imprinting (MIP) effect and the matrix effect contributed to the sensitivity and selectivity of the optimized sensor array. The developed MISGs were expected to be promising materials for the detection and recognition of volatile aldehydes contained in exhaled breath or human body odor. PMID:28212347
NASA Astrophysics Data System (ADS)
Hussein, Ali Abdulsattar
This thesis presents an introduction to the design and simulation of a novel class of integrated photonic phased array switch elements. The main objective is to use nano-electromechanical (NEMS) based phase shifters of cascaded under-etched slot nanowires that are compact in size and require a small amount of power to operate them. The structure of the switch elements is organized such that it brings the phase shifting elements to the exterior sides of the photonic circuits. The transition slot couplers, used to interconnect the phase shifters, are designed to enable biasing one of the silicon beams of each phase shifter from an electrode located at the side of the phase shifter. The other silicon beam of each phase shifter is biased through the rest of the silicon structure of the switch element, which is taken as a ground. Phased array switch elements ranging from 2x2 up to 8x8 multiple-inputs/multiple-outputs (MIMO) are conveniently designed within reasonable footprints native to the current fabrication technologies. Chapter one presents the general layout of the various designs of the switch elements and demonstrates their novel features. This demonstration will show how waveguide disturbances in the interconnecting network from conventional switch elements can be avoided by adopting an innovative design. Some possible applications for the designed switch elements of different sizes and topologies are indicated throughout the chapter. Chapter two presents the design of the multimode interference (MMI) couplers used in the switch elements as splitters, combiners and waveguide crossovers. Simulation data and design methodologies for the multimode couplers of interest are detailed in this chapter. Chapter three presents the design and analysis of the NEMS-operated phase shifters. Both simulations and numerical analysis are utilized in the design of a 0°-180° capable NEMS-operated phase shifter. Additionally, the response of some of the designed photonic phased array switch elements is demonstrated in this chapter. An executive summary and conclusions sections are also included in the thesis.
Orbital construction demonstration study. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
A conceptual design and program plan for an Orbital Construction Demonstration Article (OCDA), that can be used for technology growth and verification, and as the construction facility for a variety of large structures is presented. The OCDA design includes a large work platform, a rotating manipulator boom, a 250 kw solar array, and a core module of subsystems with a total mass of 37,093 kg, that can be assembled in three shuttle flights. An analysis of OCDA continued utility potential indicates that a shuttle tended platform with 250 kW of power can effectively be used to construct highly beneficial antenna systems and large demonstration articles that advance solar power satellite technologies. The construction of 100 m parabolic reflectors for use as a radiometer for measuring soil moisture and water salinity was found to be within the capabilities of OCDA concept. With 252 fixed beams for high population centers, and 16 scanning beams for rural areas, the antenna has the potential to significantly improve U.S. space based communications systems. The OCDA, that is slightly increased in size, was found adequate to build a large 2 MW solar array which, when coupled to a transmit antenna, demonstrate power transfer from space to ground.
arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays
Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo
2005-01-01
Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681
Test plane uniformity analysis for the MSFC solar simulator lamp array
NASA Technical Reports Server (NTRS)
Griner, D. B.
1976-01-01
A preliminary analysis was made on the solar simulator lamp array. It is an array of 405 tungsten halogen lamps with Fresnel lenses to achieve the required spectral distribution and collimation. A computer program was developed to analyze lamp array performance at the test plane. Measurements were made on individual lamp lens combinations to obtain data for the computer analysis. The analysis indicated that the performance of the lamp array was about as expected, except for a need to position the test plane within 2.7 m of the lamp array to achieve the desired 7 percent uniformity of illumination tolerance.
NASA Technical Reports Server (NTRS)
Sapp, C. A.; Dragg, J. L.; Snyder, M. W.; Gaunce, M. T.; Decker, J. E.
1998-01-01
This report documents the photogrammetric assessment of the Hubble Space Telescope (HST) solar arrays conducted by the NASA c Center Image Science and Analysis Group during Second Servicing Mission 2 (SM-2) on STS-82 in February 1997. Two type solar array analyses were conducted during the mission using Space Shuttle payload bay video: (1) measurement of solar array motion due to induced loads, and (2) measurement of the solar array static or geometric twist caused by the cumulative array loading. The report describes pre-mission planning and analysis technique development activities conducted to acquire and analyze solar array imagery data during SM-2. This includes analysis of array motion obtained during SM-1 as a proof-of-concept of the SM-2 measurement techniques. The report documents the results of real-time analysis conducted during the mission and subsequent analysis conducted post-flight. This report also provides a summary of lessons learned on solar array imagery analysis from SM-2 and recommendations for future on-orbit measurements applicable to HST SM-3 and to the International Space Station. This work was performed under the direction of the Goddard Space Flight Center HST Flight Systems and Servicing Project.
Stekel, Dov J.; Sarti, Donatella; Trevino, Victor; Zhang, Lihong; Salmon, Mike; Buckley, Chris D.; Stevens, Mark; Pallen, Mark J.; Penn, Charles; Falciani, Francesco
2005-01-01
A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of very large numbers of biological samples, replication is not always practical. Therefore, there is a need for a method to select differentially expressed genes in a rational way from insufficiently replicated data. In this paper, we describe a simple method that uses bootstrapping to generate an error model from a replicated pilot study that can be used to identify differentially expressed genes in subsequent large-scale studies on the same platform, but in which there may be no replicated arrays. The method builds a stratified error model that includes array-to-array variability, feature-to-feature variability and the dependence of error on signal intensity. We apply this model to the characterization of the host response in a model of bacterial infection of human intestinal epithelial cells. We demonstrate the effectiveness of error model based microarray experiments and propose this as a general strategy for a microarray-based screening of large collections of biological samples. PMID:15800204
Nonlinear plasmonic behavior of nanohole arrays in thin gold films for imaging lipids
NASA Astrophysics Data System (ADS)
Subramaniyam, Nagarajan; Shah, Ali; Dreser, Christoph; Isomäki, Antti; Fleischer, Monika; Sopanen, Markku
2018-06-01
We demonstrate linear and nonlinear plasmonic behaviors of periodic nanohole arrays in thin gold (Au) films with varying periodicities. As expected, the linear optical transmission spectra of the nanohole arrays show a red-shift of the resonance wavelength and Wood's anomaly with increasing hole spacing. The optical transmission and electric near-field intensity distribution of the nanohole arrays are simulated using the finite element method. The nonlinear plasmonic behavior of the nanohole arrays is studied by using picosecond pulsed excitation at near-infrared wavelengths. The characteristic nonlinear signals indicating two-photon excited luminescence (TPEL), sum frequency generation, second harmonic generation, and four-wave mixing (FWM) are observed. A maximum FWM/TPEL signal intensity ratio is achieved for nanohole arrays with a periodicity of 500 nm. Furthermore, the significant FWM signal intensity and contrast compared to the background were harnessed to demonstrate the ability of surface-enhanced coherent anti-Stokes Raman scattering to visualize low concentrations of lipids deposited on the nanohole array with a periodicity of 500 nm.
Kiselev, Ilia; Sysoev, Victor; Kaikov, Igor; Koronczi, Ilona; Adil Akai Tegin, Ruslan; Smanalieva, Jamila; Sommer, Martin; Ilicali, Coskan; Hauptmannl, Michael
2018-02-11
The paper deals with a functional instability of electronic nose (e-nose) units which significantly limits their real-life applications. Here we demonstrate how to approach this issue with example of an e-nose based on a metal oxide sensor array developed at the Karlsruhe Institute of Technology (Germany). We consider the instability of e-nose operation at different time scales ranging from minutes to many years. To test the e-nose we employ open-air and headspace sampling of analyte odors. The multivariate recognition algorithm to process the multisensor array signals is based on the linear discriminant analysis method. Accounting for the received results, we argue that the stability of device operation is mostly affected by accidental changes in the ambient air composition. To overcome instabilities, we introduce the add-training procedure which is found to successfully manage both the temporal changes of ambient and the drift of multisensor array properties, even long-term. The method can be easily implemented in practical applications of e-noses and improve prospects for device marketing.
Kaikov, Igor; Koronczi, Ilona; Adil Akai Tegin, Ruslan; Smanalieva, Jamila; Sommer, Martin; Ilicali, Coskan; Hauptmannl, Michael
2018-01-01
The paper deals with a functional instability of electronic nose (e-nose) units which significantly limits their real-life applications. Here we demonstrate how to approach this issue with example of an e-nose based on a metal oxide sensor array developed at the Karlsruhe Institute of Technology (Germany). We consider the instability of e-nose operation at different time scales ranging from minutes to many years. To test the e-nose we employ open-air and headspace sampling of analyte odors. The multivariate recognition algorithm to process the multisensor array signals is based on the linear discriminant analysis method. Accounting for the received results, we argue that the stability of device operation is mostly affected by accidental changes in the ambient air composition. To overcome instabilities, we introduce the add-training procedure which is found to successfully manage both the temporal changes of ambient and the drift of multisensor array properties, even long-term. The method can be easily implemented in practical applications of e-noses and improve prospects for device marketing. PMID:29439468
Ma, Qianqian; Sun, Jingbo; Mao, Tonglin
2016-05-15
The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation. © 2016. Published by The Company of Biologists Ltd.
Recrystallized arrays of bismuth nanowires with trigonal orientation.
Limmer, Steven J; Yelton, W Graham; Erickson, Kristopher J; Medlin, Douglas L; Siegal, Michael P
2014-01-01
We demonstrate methods to improve the crystalline-quality of free-standing Bi nanowires arrays on a Si substrate and enhance the preferred trigonal orientation for thermoelectric performance by annealing the arrays above the 271.4 °C Bi melting point. The nanowires maintain their geometry during melting due to the formation of a thin Bi-oxide protective shell that contains the molten Bi. Recrystallizing nanowires from the melt improves crystallinity; those cooled rapidly demonstrate a strong trigonal orientation preference.
Integrated optical phased arrays for quasi-Bessel-beam generation.
Notaros, Jelena; Poulton, Christopher V; Byrd, Matthew J; Raval, Manan; Watts, Michael R
2017-09-01
Integrated optical phased arrays for generating quasi-Bessel beams are proposed and experimentally demonstrated in a CMOS-compatible platform. Owing to their elongated central beams, Bessel beams have applications in a range of fields, including multiparticle trapping and laser lithography. In this Letter, continuous Bessel theory is manipulated to formulate the phase and amplitude conditions necessary for generating free-space-propagating Bessel-Gauss beams using on-chip optical phased arrays. Discussion of the effects of select phased array parameters on the generated beam's figures of merit is included. A one-dimensional splitter-tree-based phased array architecture is modified to enable arbitrary passive control of the array's element phase and amplitude distributions. This architecture is used to experimentally demonstrate on-chip quasi-Bessel-beam generation with a ∼14 mm Bessel length and ∼30 μm power full width at half maximum.
Mohapatra, Gayatry; Engler, David A.; Starbuck, Kristen D.; Kim, James C.; Bernay, Derek C.; Scangas, George A.; Rousseau, Audrey; Batchelor, Tracy T.; Betensky, Rebecca A.; Louis, David N.
2010-01-01
Molecular genetic analysis of cancer is rapidly evolving as a result of improvement in genomic technologies and the growing applicability of such analyses to clinical oncology. Array based comparative genomic hybridization (aCGH) is a powerful tool for detecting DNA copy number alterations (CNA), particularly in solid tumors, and has been applied to the study of malignant gliomas. In the clinical setting, however, gliomas are often sampled by small biopsies and thus formalin-fixed paraffin-embedded (FFPE) blocks are often the only tissue available for genetic analysis, especially for rare types of gliomas. Moreover, the biological basis for the marked intratumoral heterogeneity in gliomas is most readily addressed in FFPE material. Therefore, for gliomas, the ability to use DNA from FFPE tissue is essential for both clinical and research applications. In this study, we have constructed a custom bacterial artificial chromosome (BAC) array and show excellent sensitivity and specificity for detecting CNAs in a panel of paired frozen and FFPE glioma samples. Our study demonstrates a high concordance rate between CNAs detected in FFPE compared to frozen DNA. We have also developed a method of labeling DNA from FFPE tissue that allows efficient hybridization to oligonucleotide arrays. This labeling technique was applied to a panel of biphasic anaplastic oligoastrocytomas (AOA) to identify genetic changes unique to each component. Together, results from these studies suggest that BAC and oligonucleotide aCGH are sensitive tools for detecting CNAs in FFPE DNA, and can enable genome-wide analysis of rare, small and/or histologically heterogeneous gliomas. PMID:21080181
Vitis Phylogenomics: Hybridization Intensities from a SNP Array Outperform Genotype Calls
Miller, Allison J.; Matasci, Naim; Schwaninger, Heidi; Aradhya, Mallikarjuna K.; Prins, Bernard; Zhong, Gan-Yuan; Simon, Charles; Buckler, Edward S.; Myles, Sean
2013-01-01
Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera and has general implications for addressing ascertainment bias in array-enabled phylogeny reconstruction. PMID:24236035
Rishinaramangalam, Ashwin K.; Mishkat Ul Masabih, Saadat; Fairchild, Michael N.; ...
2014-10-21
In our paper, we demonstrate the growth of ordered arrays of nonpolar {101 ¯ 0} core–shell nanowalls and semipolar {101 ¯ 1} core–shell pyramidal nanostripes on c-plane (0001) sapphire substrates using selective-area epitaxy and metal organic chemical vapor deposition. The nanostructure arrays are controllably patterned into LED mesa regions, demonstrating a technique to impart secondary lithography features into the arrays. Moreover, we study the dependence of the nanostructure cores on the epitaxial growth conditions and show that the geometry and morphology are strongly influenced by growth temperature, V/III ratio, and pulse interruption time. We also demonstrate the growth of InGaNmore » quantum well shells on the nanostructures and characterize the structures by using micro-photoluminescence and cross-section scanning tunneling electron microscopy.« less
NASA Technical Reports Server (NTRS)
Ralph, E. L.; Linder, E.
1995-01-01
This paper describes solar cell panel designs that utilize new hgih efficiency solar cells along with lightweight rigid panel technology. The resulting designs push the W/kg and W/sq m parameters to new high levels. These new designs are well suited to meet the demand for higher performance small satellites. This paper reports on progress made on two SBIR Phase 1 contracts. One panel design involved the use of large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells of 19% efficiency combined with a lightweight rigid graphite fiber epoxy isogrid substrate configuration. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power level of 60 W/kg with a potential of reaching 80 W/kg. The second panel design involved the use of newly developed high efficiency (22%) dual junction GaInP2/GaAs/Ge solar cells combined with an advanced lightweight rigid substrate using aluminum honeycomb core with high strength graphite fiber mesh facesheets. A coupon (38 cm x 38 cm) was fabricated and tested which demonstrated an array specific power of 105 W/kg and 230 W/sq m. This paper will address the construction details of the panels and an a analysis of the component weights. A strawman array design suitable for a typical small-sat mission is described for each of the two panel design technologies being studied. Benefits in respect to weight reduction, area reduction, and system cost reduction are analyzed and compared to conventional arrays.
Performance and characterization of new micromachined high-frequency linear arrays.
Lukacs, Marc; Yin, Jianhua; Pang, Guofeng; Garcia, Richard C; Cherin, Emmanuel; Williams, Ross; Mehi, Jim; Foster, F Stuart
2006-10-01
A new approach for fabricating high frequency (> 20 MHz) linear array transducers, based on laser micromachining, has been developed. A 30 MHz, 64-element, 74-microm pitch, linear array design is presented. The performance of the device is demonstrated by comparing electrical and acoustic measurements with analytical, equivalent circuit, and finite-element analysis (FEA) simulations. All FEA results for array performance have been generated using one global set of material parameters. Each fabricated array has been integrated onto a flex circuit for ease of handling, and the flex has been integrated onto a custom printed circuit board test card for ease of testing. For a fully assembled array, with an acoustic lens, the center frequency was 28.7 MHz with a one-way -3 dB and -6 dB bandwidth of 59% and 83%, respectively, and a -20 dB pulse width of -99 ns. The per-element peak acoustic power, for a +/- 30 V single cycle pulse, measured at the 10 mm focal length of the lens was 590 kPa with a -6 dB directivity span of about 30 degrees. The worst-case total cross talk of the combined array and flex assembly is for nearest neighboring elements and was measured to have an average level -40 dB across the -6 dB bandwidth of the device. Any significant deviation from simulation can be explained through limitations in apparatus calibration and in device packaging.
SU-F-T-270: A Technique for Modeling a Diode Array Into the TPS for Lung SBRT Patient Specific QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curley, C; Leventouri, T; Ouhib, Z
2016-06-15
Purpose: To accurately match the treatment planning system (TPS) with the measurement environment, where quality assurance (QA) devices are used to collect data, for lung Stereotactic Body Radiation Therapy (SBRT) patient specific QA. Incorporation of heterogeneities is also studied. Methods: Dual energy computerized tomography (DECT) and single energy computerized tomography (SECT) were used to model phantoms incorporating a 2-D diode array into the TPS. A water-equivalent and a heterogeneous phantom (simulating the thoracic region of a patient) were studied. Monte Carlo and pencil beam planar dose distributions were compared to measured distributions. Composite and individual fields were analyzed for normallymore » incident and planned gantry angle deliveries. γ- analysis was used with criteria 3% 3mm, 2% 2mm, and 1% 1mm. Results: The Monte Carlo calculations for the DECT resulted in improved agreements with the diode array for 46.4% of the fields at 3% 3mm, 85.7% at 2% 2mm, and 92.9% at 1% 1mm.For the SECT, the Monte Carlo calculations gave no agreement for the same γ-analysis criteria. Pencil beam calculations resulted in lower agreements with the diode array in the TPS. The DECT showed improvements for 14.3% of the fields at 3% 3mm and 2% 2mm, and 28.6% at 1% 1mm.In SECT comparisons, 7.1% of the fields at 3% 3mm, 10.7% at 2% 2mm, and 17.9% at 1% 1mm showed improved agreements with the diode array. Conclusion: This study demonstrates that modeling the diode array in the TPS is viable using DECT with Monte Carlo for patient specific lung SBRT QA. As recommended by task groups (e.g. TG 65, TG 101, TG 244) of the American Association of Physicists in Medicine (AAPM), pencil beam algorithms should be avoided in the presence of heterogeneous materials, including a diode array.« less
Array Biosensor for Toxin Detection: Continued Advances
Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Ngundi, Miriam M.; Ligler, Frances S.
2008-01-01
The following review focuses on progress made in the last five years with the NRL Array Biosensor, a portable instrument for rapid and simultaneous detection of multiple targets. Since 2003, the Array Biosensor has been automated and miniaturized for operation at the point-of-use. The Array Biosensor has also been used to demonstrate (1) quantitative immunoassays against an expanded number of toxins and toxin indicators in food and clinical fluids, and (2) the efficacy of semi-selective molecules as alternative recognition moieties. Blind trials, with unknown samples in a variety of matrices, have demonstrated the versatility, sensitivity, and reliability of the automated system. PMID:27873991
Shadpour, Hamed; Zawistowski, Jon S.; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L.
2011-01-01
Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronection coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4 fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays should enable novel cell separations in which cell selection is based on complex cellular signaling properties. PMID:21621038
β-Decay Studies of r-Process Nuclei Using the Advanced Implantation Detector Array (AIDA)
NASA Astrophysics Data System (ADS)
Griffin, C. J.; Davinson, T.; Estrade, A.; Braga, D.; Burrows, I.; Coleman-Smith, P. J.; Grahn, T.; Grant, A.; Harkness-Brennan, L. J.; Kiss, G.; Kogimtzis, M.; Lazarus, I. H.; Letts, S. C.; Liu, Z.; Lorusso, G.; Matsui, K.; Nishimura, S.; Page, R. D.; Prydderch, M.; Phong, V. H.; Pucknell, V. F. E.; Rinta-Antila, S.; Roberts, O. J.; Seddon, D. A.; Simpson, J.; Thomas, S. L.; Woods, P. J.
Thought to produce around half of all isotopes heavier than iron, the r-process is a key mechanism for nucleosynthesis. However, a complete description of the r-process is still lacking and many unknowns remain. Experimental determination of β-decay half-lives and β-delayed neutron emission probabilities along the r-process path would help to facilitate a greater understanding of this process. The Advanced Implantation Detector Array (AIDA) represents the latest generation of silicon implantation detectors for β-decay studies with fast radioactive ion beams. Preliminary results from commissioning experiments demonstrate successful operation of AIDA and analysis of the data obtained during the first official AIDA experiments is now under-way.
Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture
NASA Astrophysics Data System (ADS)
Chen, Chih-Hung; Cambonie, Tristan; Lazarus, Veronique; Nicoli, Matteo; Pons, Antonio J.; Karma, Alain
2015-12-01
A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self-similar process driven by a spatial period-doubling instability of facet arrays.
Effects of laser source parameters on the generation of narrow band and directed laser ultrasound
NASA Technical Reports Server (NTRS)
Spicer, James B.; Deaton, John B., Jr.; Wagner, James W.
1992-01-01
Predictive and prescriptive modeling of laser arrays is performed to demonstrate the effects of the extension of array elements on laser array performance. For a repetitively pulsed laser source (the temporal laser array), efficient frequency compression is best achieved by detecting longitudinal waves off-epicenter in plates where the source size and shape directly influence the longitudinal wave shape and duration; the longitudinal array may be tailored for a given repetition frequency to yield efficient overtone energy compression into the fundamental frequency band. For phased arrays, apparent array directivity is heavily influenced by array element size.
Analysis of severe atmospheric disturbances from airline flight records
NASA Technical Reports Server (NTRS)
Wingrove, R. C.; Bach, R. E., Jr.; Schultz, T. A.
1989-01-01
Advanced methods were developed to determine time varying winds and turbulence from digital flight data recorders carried aboard modern airliners. Analysis of several cases involving severe clear air turbulence encounters at cruise altitudes has shown that the aircraft encountered vortex arrays generated by destabilized wind shear layers above mountains or thunderstorms. A model was developed to identify the strength, size, and spacing of vortex arrays. This model is used to study the effects of severe wind hazards on operational safety for different types of aircraft. The study demonstrates that small remotely piloted vehicles and executive aircraft exhibit more violent behavior than do large airliners during encounters with high-altitude vortices. Analysis of digital flight data from the accident at Dallas/Ft. Worth in 1985 indicates that the aircraft encountered a microburst with rapidly changing winds embedded in a strong outflow near the ground. A multiple-vortex-ring model was developed to represent the microburst wind pattern. This model can be used in flight simulators to better understand the control problems in severe microburst encounters.
Járvás, Gábor; Varga, Tamás; Szigeti, Márton; Hajba, László; Fürjes, Péter; Rajta, István; Guttman, András
2018-02-01
As a continuation of our previously published work, this paper presents a detailed evaluation of a microfabricated cell capture device utilizing a doubly tilted micropillar array. The device was fabricated using a novel hybrid technology based on the combination of proton beam writing and conventional lithography techniques. Tilted pillars offer unique flow characteristics and support enhanced fluidic interaction for improved immunoaffinity based cell capture. The performance of the microdevice was evaluated by an image sequence analysis based in-house developed single-cell tracking system. Individual cell tracking allowed in-depth analysis of the cell-chip surface interaction mechanism from hydrodynamic point of view. Simulation results were validated by using the hybrid device and the optimized surface functionalization procedure. Finally, the cell capture capability of this new generation microdevice was demonstrated by efficiently arresting cells from a HT29 cell-line suspension. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wavespace-Based Coherent Deconvolution
NASA Technical Reports Server (NTRS)
Bahr, Christopher J.; Cattafesta, Louis N., III
2012-01-01
Array deconvolution is commonly used in aeroacoustic analysis to remove the influence of a microphone array's point spread function from a conventional beamforming map. Unfortunately, the majority of deconvolution algorithms assume that the acoustic sources in a measurement are incoherent, which can be problematic for some aeroacoustic phenomena with coherent, spatially-distributed characteristics. While several algorithms have been proposed to handle coherent sources, some are computationally intractable for many problems while others require restrictive assumptions about the source field. Newer generalized inverse techniques hold promise, but are still under investigation for general use. An alternate coherent deconvolution method is proposed based on a wavespace transformation of the array data. Wavespace analysis offers advantages over curved-wave array processing, such as providing an explicit shift-invariance in the convolution of the array sampling function with the acoustic wave field. However, usage of the wavespace transformation assumes the acoustic wave field is accurately approximated as a superposition of plane wave fields, regardless of true wavefront curvature. The wavespace technique leverages Fourier transforms to quickly evaluate a shift-invariant convolution. The method is derived for and applied to ideal incoherent and coherent plane wave fields to demonstrate its ability to determine magnitude and relative phase of multiple coherent sources. Multi-scale processing is explored as a means of accelerating solution convergence. A case with a spherical wave front is evaluated. Finally, a trailing edge noise experiment case is considered. Results show the method successfully deconvolves incoherent, partially-coherent, and coherent plane wave fields to a degree necessary for quantitative evaluation. Curved wave front cases warrant further investigation. A potential extension to nearfield beamforming is proposed.
Numerical Investigation of Vortex Generator Flow Control for External-Compression Supersonic Inlets
NASA Astrophysics Data System (ADS)
Baydar, Ezgihan
Vortex generators (VGs) within external-compression supersonic inlets for Mach 1.6 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. Ramp and vane-type VGs were studied. The geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Previous research of downstream VGs in the low-boom supersonic inlet demonstrated improvement in radial distortion up to 24% while my work on external-compression supersonic inlets improved radial distortion up to 86%, which is significant. The design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of VGs and search for optimal VG arrays. From the analysis, VG angle-of-incidence and VG height were the most influential factors in increasing total pressure recovery and reducing distortion. The study on the two-dimensional external-compression inlet determined which passive flow control devices, such as counter-rotating vanes or ramps, reduce high distortion levels and improve the health of the boundary layer, relative to the baseline. Downstream vanes demonstrate up to 21% improvement in boundary layer health and 86% improvement in radial distortion. Upstream vanes demonstrated up to 3% improvement in boundary layer health and 9% improvement in radial distortion. Ramps showed no improvement in boundary layer health and radial distortion. Micro-VGs were preferred for their reduced viscous drag and improvement in total pressure recovery at the AIP. Although traditional VGs energize the flow with stronger vortex structures compared to micro-VGs, the AIP is affected with overwhelming amounts of reduced and enhanced flow regions. In summary, vanes are exceptional in reducing radial distortion and improving the health of the boundary layer compared to the ramps. In the study of the STEX inlet, vane-type vortex generators were the preferred devices for boundary layer flow control. In the supersonic diffuser, co-rotating vane arrays and counter-rotating vane arrays did not show improvement. In the subsonic diffuser, co-rotating vane arrays with negative angles-of-incidence and counter-rotating vane arrays were exceptional in reducing radial distortion and improving total pressure recovery. Downstream co-rotating vanes demonstrated up to 41% improvement in radial distortion whereas downstream counter-rotating vanes demonstrated up to 73% improvement. For downstream counter-rotating vanes, a polynomial trend between VG height and radial distortion indicate that increasing VG height improves inlet distortion. In summary, downstream vanes are exceptional in improving total pressure recovery compared to upstream vanes.
Stano, Kelly L; Carroll, Murphy; Padbury, Richard; McCord, Marian; Jur, Jesse S; Bradford, Philip D
2014-11-12
Atomic layer deposition (ALD) can be used to coat high aspect ratio and high surface area substrates with conformal and precisely controlled thin films. Vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) with lengths up to 1.5 mm were conformally coated with alumina from base to tip. The nucleation and growth behaviors of Al2O3 ALD precursors on the MWCNTs were studied as a function of CNT surface chemistry. CNT surfaces were modified through a series of post-treatments including pyrolytic carbon deposition, high temperature thermal annealing, and oxygen plasma functionalization. Conformal coatings were achieved where post-treatments resulted in increased defect density as well as the extent of functionalization, as characterized by X-ray photoelectron spectroscopy and Raman spectroscopy. Using thermogravimetric analysis, it was determined that MWCNTs treated with pyrolytic carbon and plasma functionalization prior to ALD coating were more stable to thermal oxidation than pristine ALD coated samples. Functionalized and ALD coated arrays had a compressive modulus more than two times higher than a pristine array coated for the same number of cycles. Cross-sectional energy dispersive X-ray spectroscopy confirmed that Al2O3 could be uniformly deposited through the entire thickness of the vertically aligned MWCNT array by manipulating sample orientation and mounting techniques. Following the ALD coating, the MWCNT arrays demonstrated hydrophilic wetting behavior and also exhibited foam-like recovery following compressive strain.
Khalid, Muhammad Waqas; Ahmed, Rajib; Yetisen, Ali K.
2018-01-01
Optical sensors for detecting temperature and strain play a crucial role in the analysis of environmental conditions and real-time remote sensing. However, the development of a single optical device that can sense temperature and strain simultaneously remains a challenge. Here, a flexible corner cube retroreflector (CCR) array based on passive dual optical sensing (temperature and strain) is demonstrated. A mechanical embossing process was utilised to replicate a three-dimensional (3D) CCR array in a soft flexible polymer film. The fabricated flexible CCR array samples were experimentally characterised through reflection measurements followed by computational modelling. As fabricated samples were illuminated with a monochromatic laser beam (635, 532, and 450 nm), a triangular shape reflection was obtained at the far-field. The fabricated flexible CCR array samples tuned retroreflected light based on external stimuli (temperature and strain as an applied force). For strain and temperature sensing, an applied force and temperature, in the form of weight suspension, and heat flow was applied to alter the replicated CCR surface structure, which in turn changed its optical response. Directional reflection from the heated flexible CCR array surface was also measured with tilt angle variation (max. up to 10°). Soft polymer CCRs may have potential in remote sensing applications, including measuring the temperature in space and in nuclear power stations. PMID:29568510
Howarth, KD; Blood, KA; Ng, BL; Beavis, JC; Chua, Y; Cooke, SL; Raby, S; Ichimura, K; Collins, VP; Carter, NP; Edwards, PAW
2008-01-01
Chromosome translocations in the common epithelial cancers are abundant, yet little is known about them. They have been thought to be almost all unbalanced and therefore dismissed as mostly mediating tumour suppressor loss. We present a comprehensive analysis by array painting of the chromosome translocations of breast cancer cell lines HCC1806, HCC1187 and ZR-75-30. In array painting, chromosomes are isolated by flow cytometry, amplified and hybridized to DNA microarrays. A total of 200 breakpoints were identified and all were mapped to 1Mb resolution on BAC arrays, then 40 selected breakpoints, including all balanced breakpoints, were further mapped on tiling-path BAC arrays or to around 2kb resolution using oligonucleotide arrays. Many more of the translocations were balanced at 1Mb resolution than expected, either reciprocal (eight in total) or balanced for at least one participating chromosome (19 paired breakpoints). Secondly, many of the breakpoints were at genes that are plausible targets of oncogenic translocation, including balanced breaks at CTCF, EP300/p300, and FOXP4. Two gene fusions were demonstrated, TAX1BP1-AHCY and RIF1-PKD1L1. Our results support the idea that chromosome rearrangements may play an important role in common epithelial cancers such as breast cancer. PMID:18084325
Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array
NASA Astrophysics Data System (ADS)
Schröder, Frank G.; Pierre Auger Collaboration
2016-07-01
The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.
Schilling, Gregory D; Shelley, Jacob T; Barnes, James H; Sperline, Roger P; Denton, M Bonner; Barinaga, Charles J; Koppenaal, David W; Hieftje, Gary M
2010-01-01
An ambient desorption/ionization (ADI) source, known as the flowing atmospheric pressure afterglow (FAPA), has been coupled to a Mattauch-Herzog mass spectrograph (MHMS) equipped with a focal plane camera (FPC) array detector. The FAPA ionization source enables direct mass spectral analysis of solids, liquids, and gases through either positive or negative ionization modes. In either case, spectra are generally simple with dominant peaks being the molecular ions or protonated molecular ions. Use of the FAPA source with the MHMS allows the FPC detector to be characterized for the determination of molecular species, whereas previously only atomic mass spectrometry (MS) has been demonstrated. Furthermore, the FPC is shown to be sensitive to negative ions without the need to change any detector parameters. The analysis of solid, liquid, and gaseous samples through positive and negative ionization is demonstrated with detection limits (1-25 fmol/s, approximately 0.3-10 pg of analyte per mL of helium) surpassing those obtained with the FAPA source coupled to a time-of-flight mass analyzer. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.
Roda, Barbara; Mirasoli, Mara; Zattoni, Andrea; Casale, Monica; Oliveri, Paolo; Bigi, Alessandro; Reschiglian, Pierluigi; Simoni, Patrizia; Roda, Aldo
2016-10-01
An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system analysis.
NASA Astrophysics Data System (ADS)
Liu, Xiaohua; Zhou, Tianfeng; Zhang, Lin; Zhou, Wenchen; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.
2018-07-01
Silicon is a promising mold material for compression molding because of its properties of hardness and abrasion resistance. Silicon wafers with carbide-bonded graphene coating and micro-patterns were evaluated as molds for the fabrication of microlens arrays. This study presents an efficient but flexible manufacturing method for microlens arrays that combines a lapping method and a rapid molding procedure. Unlike conventional processes for microstructures on silicon wafers, such as diamond machining and photolithography, this research demonstrates a unique approach by employing precision steel balls and diamond slurries to create microlenses with accurate geometry. The feasibility of this method was demonstrated by the fabrication of several microlens arrays with different aperture sizes and pitches on silicon molds. The geometrical accuracy and surface roughness of the microlens arrays were measured using an optical profiler. The measurement results indicated good agreement with the optical profile of the design. The silicon molds were then used to copy the microstructures onto polymer substrates. The uniformity and quality of the samples molded through rapid surface molding were also assessed and statistically quantified. To further evaluate the optical functionality of the molded microlens arrays, the focal lengths of the microlens arrays were measured using a simple optical setup. The measurements showed that the microlens arrays molded in this research were compatible with conventional manufacturing methods. This research demonstrated an alternative low-cost and efficient method for microstructure fabrication on silicon wafers, together with the follow-up optical molding processes.
Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart
2017-04-24
High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.
THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Daniel C.; Beardsley, A. P.; Bowman, Judd D.
2016-07-10
We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed,more » accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.« less
Development of nine-channel 10-micrometer (Hg, Cd)Te pushbroom IR/CCD system
NASA Technical Reports Server (NTRS)
White, W. J.; Wasa, S.
1977-01-01
The engineering development of the 9-channel detector array is documented. The development of the array demonstrates the feasibility of a self scanned multi-element infrared detector focal plane. Procedures for operating the array are outlined.
NASA Astrophysics Data System (ADS)
Brady, Gerald J.; Jinkins, Katherine R.; Arnold, Michael S.
2017-09-01
Recent advances in the solution-phase sorting and assembly of semiconducting single-walled carbon nanotubes (SWCNTs) have enabled significant gains in the performance of field-effect transistors (FETs) constructed from dense arrays of aligned SWCNTs. However, the channel length (LCH) downscaling behaviors of these arrays, which contain some organizational disorder (i.e., rotational misalignment and non-uniform pitch), have not yet been studied in detail below LCH of 100 nm. This study compares the behaviors of individualized SWCNTs with arrays of aligned, solution-cast SWCNTs in FETs with LCH ranging from 30 to 240 nm. The on-state conductance of both individual and array SWCNTs rises with decreasing LCH. Nearly ballistic transport is observed for LCH < 40 nm in both cases, reaching a conductance of 0.82 Go per SWCNT in arrays, where Go = 2e2/h is the quantum conductance. In the off-state, the off-current and subthreshold swing of the individual SWCNTs remain nearly invariant with decreasing LCH whereas array SWCNT FETs suffer from increasing off-state current and deteriorating subthreshold swing for LCH below 100 nm. We analyze array disorder using atomic force microscopy, which shows that crossing SWCNTs that arise from misoriented alignment raise SWCNTs off of the substrate for large portions of the channel when LCH is small. Electrostatics modeling analysis indicates that these raised SWCNTs are a likely contributor to the deteriorating off-current and subthreshold characteristics of arrays. These results demonstrate that improved inter-SWCNT pitch uniformity and alignment with minimal inter-SWCNT interactions will be necessary in order for solution processed SWCNT arrays to reach subthreshold performance on par with isolated SWCNTs. These results are also promising because they show that arrays of solution-processed SWCNTs can nearly reach ballistic conductance in the on-state despite imperfections in pitch and alignment.
Penza, M; Rossi, R; Alvisi, M; Serra, E
2010-03-12
Vertically aligned carbon nanotube (CNT) layers were synthesized on Fe-coated low-cost alumina substrates using radio-frequency plasma enhanced chemical vapour deposition (RF-PECVD) technology. A miniaturized CNT-based gas sensor array was developed for monitoring landfill gas (LFG) at a temperature of 150 degrees C. The sensor array was composed of 4 sensing elements with unmodified CNT, and CNT loaded with 5 nm nominally thick sputtered nanoclusters of platinum (Pt), ruthenium (Ru) and silver (Ag). Chemical analysis of multicomponent gas mixtures constituted of CO(2), CH(4), H(2), NH(3), CO and NO(2) has been performed by the array sensor responses and pattern recognition based on principal component analysis (PCA). The PCA results demonstrate that the metal-decorated and vertically aligned CNT sensor array is able to discriminate the NO(2) presence in the multicomponent mixture LFG. The NO(2) gas detection in the mixture LFG was proved to be very sensitive, e.g.: the CNT:Ru sensor shows a relative change in the resistance of 1.50% and 0.55% for NO(2) concentrations of 3.3 ppm and 330 ppb dispersed in the LFG, respectively, with a wide NO(2) gas concentration range measured from 0.33 to 3.3 ppm, at the sensor temperature of 150 degrees C. The morphology and structure of the CNT networks have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. A forest-like nanostructure of vertically aligned CNT bundles in the multi-walled form appeared with a height of about 10 microm and a single-tube diameter varying in the range of 5-35 nm. The intensity ratio of the Raman spectroscopy D-peak and G-peak indicates the presence of disorder and defects in the CNT networks. The size of the metal (Pt, Ru, Ag) nanoclusters decorating the CNT top surface varies in the range of 5-50 nm. Functional characterization based on electrical charge transfer sensing mechanisms in the metal-modified CNT-chemoresistor array demonstrates high sensitivity by providing minimal sub-ppm level detection, e.g., download up to 100 ppb NO(2), at the sensor temperature of 150 degrees C. The gas sensitivity of the CNT sensor array depends on operating temperature, showing a lower optimal temperature of maximum sensitivity for the metal-decorated CNT sensors compared to unmodified CNT sensors. Results indicate that the recovery mechanisms in the CNT chemiresistors can be altered by a rapid heating pulse from room temperature to about 110 degrees C. A comparison of the NO(2) gas sensitivity for the chemiresistors based on disorderly networked CNTs and vertically aligned CNTs is also reported. Cross-sensitivity towards relative humidity of the CNT sensors array is investigated. Finally, the sensing properties of the metal-decorated and vertically aligned CNT sensor arrays are promising to monitor gas events in the LFG for practical applications with low power consumption and moderate sensor temperature.
NASA Astrophysics Data System (ADS)
Chen, Yingzhi; Li, Aoxiang; Yue, Xiaoqi; Wang, Lu-Ning; Huang, Zheng-Hong; Kang, Feiyu; Volinsky, Alex A.
2016-07-01
Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi) layer were fabricated for photoelectrochemical water splitting. In this arrayed architecture, a PDi layer with a tunable thickness was coated on anodic TiO2 nanotube arrays by physical vapor deposition, which is advantageous for the formation of a uniform layer and an adequate interface contact between PDi and TiO2. The obtained PDi/TiO2 junction exhibited broadened visible light absorption, and an effective interface for enhanced photogenerated electron-hole separation, which is supported by the reduced charge transfer resistance and prolonged excitation lifetime via impedance spectroscopy analysis and fluorescence emission decay investigations. Consequently, such a heterojunction photoanode was photoresponsive to a wide visible light region of 400-600 nm, and thus demonstrated a highly enhanced photocurrent density at 1.23 V vs. a reversible hydrogen electrode. Additionally, the durability of such a photoanode can be guaranteed after long-time illumination because of the geometrical restraint imposed by the PDi aggregates. These results pave the way to discover new organic/inorganic assemblies for high-performance photoelectric applications and device integration.Organic/inorganic heterojunction photoanodes are appealing for making concurrent use of the highly photoactive organic semiconductors, and the efficient dielectric screening provided by their inorganic counterparts. In the present work, organic/inorganic nanotube heterojunction arrays composed of TiO2 nanotube arrays and a semiconducting N,N-(dicyclohexyl) perylene-3,4,9,10-tetracarboxylic diimide (PDi) layer were fabricated for photoelectrochemical water splitting. In this arrayed architecture, a PDi layer with a tunable thickness was coated on anodic TiO2 nanotube arrays by physical vapor deposition, which is advantageous for the formation of a uniform layer and an adequate interface contact between PDi and TiO2. The obtained PDi/TiO2 junction exhibited broadened visible light absorption, and an effective interface for enhanced photogenerated electron-hole separation, which is supported by the reduced charge transfer resistance and prolonged excitation lifetime via impedance spectroscopy analysis and fluorescence emission decay investigations. Consequently, such a heterojunction photoanode was photoresponsive to a wide visible light region of 400-600 nm, and thus demonstrated a highly enhanced photocurrent density at 1.23 V vs. a reversible hydrogen electrode. Additionally, the durability of such a photoanode can be guaranteed after long-time illumination because of the geometrical restraint imposed by the PDi aggregates. These results pave the way to discover new organic/inorganic assemblies for high-performance photoelectric applications and device integration. Electronic supplementary information (ESI) available: Additional structural characterization. See DOI: 10.1039/c5nr07893h
NASA Astrophysics Data System (ADS)
Lu, Chih-Hao; Hon, Min Hsiung; Leu, Ing-Chi
2017-04-01
Transparent crystalline tungsten oxide nanorod arrays for use as an electrochromic layer have been directly prepared on fluorine-doped tin oxide-coated glass via a facile tungsten film-assisted hydrothermal process using aqueous tungsten hexachloride solution. X-ray diffraction analysis and field-emission scanning electron microscopy were used to characterize the phase and morphology of the grown nanostructures. Arrays of tungsten oxide nanorods with diameter of ˜22 nm and length of ˜240 nm were obtained at 200°C after 8 h of hydrothermal reaction. We propose a growth mechanism for the deposition of the monoclinic tungsten oxide phase in the hydrothermal environment. The tungsten film was first oxidized to tungsten oxide to provide seed sites for crystal growth and address the poor connection between the growing tungsten oxide and substrate. Aligned tungsten oxide nanorod arrays can be grown by a W thin film-assisted heterogeneous nucleation process with NaCl as a structure-directing agent. The fabricated electrochromic device demonstrated optical modulation (coloration/bleaching) at 632.8 nm of ˜41.2% after applying a low voltage of 0.1 V for 10 s, indicating the potential of such nanorod array films for use in energy-saving smart windows.
Power balance and loss mechanism analysis in RF transmit coil arrays.
Kuehne, Andre; Goluch, Sigrun; Waxmann, Patrick; Seifert, Frank; Ittermann, Bernd; Moser, Ewald; Laistler, Elmar
2015-10-01
To establish a framework for transmit array power balance calculations based on power correlation matrices to accurately quantify the loss contributions from different mechanisms such as coupling, lumped components, and radiation. Starting from Poynting's theorem, power correlation matrices are derived for all terms in the power balance, which is formulated as a matrix equation. Finite-difference time-domain simulations of two 7 T eight-channel head array coils at 297.2 MHz are used to verify the theoretical considerations and demonstrate their application. Care is taken to accurately incorporate all loss mechanisms. The power balance for static B1 phase shims as well as two-dimensional spatially selective transmit SENSE pulses is shown. The simulated power balance shows an excellent agreement with theory, with a maximum power imbalance of less than 0.11%. Power loss contributions from the different loss mechanisms vary significantly between the investigated setups, and depending on the excitation mode imposed on the coil. The presented approach enables a straightforward loss evaluation for an arbitrary excitation of transmit coil arrays. Worst-case power imbalance and losses are calculated in a straightforward manner. This allows for deeper insight into transmit array loss mechanisms, incorporation of radiated power components in specific absorption rate calculations and verification of electromagnetic simulations. © 2014 Wiley Periodicals, Inc.
Laser diode arrays for naval reconnaissance
NASA Astrophysics Data System (ADS)
Holloway, John H., Jr.; Crosby, Frank J.; Petee, Danny A.; Suiter, Harold R.; Witherspoon, Ned H.
2003-09-01
The Airborne Littoral Reconnaissance Technologies (ALRT) Project has demonstrated a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). Historically, optical aerial detection of minefields has primarily been limited to daytime operations but LDAs promise compact and efficient lighting to allow for enhanced reconnaissance operations for future mine detection systems. When combined with high-resolution intensified imaging systems, LDAs can illuminate otherwise unseen areas. Future wavelength options will open the way for active multispectral imaging with LDAs. The Coastal Systems Station working for the Office of Naval Research on the ALRT project has designed, developed, integrated, and tested both prototype and commercial arrays from a Cessna airborne platform. Detailed test results show the ability to detect several targets of interest in a variety of background conditions. Initial testing of the prototype arrays, reported on last year, was completed and further investigations of the commercial versions were performed. Polarization-state detection studies were performed, and advantageous properties of the source-target-sensor geometry noted. Current project plans are to expand the field-of-view coverage for Naval exercises in the summer of 2003. This paper describes the test collection, data library products, array information, on-going test analysis results, and future planned testing of the LDAs.
Modiolus-Hugging Intracochlear Electrode Array with Shape Memory Alloy
Min, Kyou Sik; Lim, Yoon Seob; Park, Se-Ik; Kim, Sung June
2013-01-01
In the cochlear implant system, the distance between spiral ganglia and the electrodes within the volume of the scala tympani cavity significantly affects the efficiency of the electrical stimulation in terms of the threshold current level and spatial selectivity. Because the spiral ganglia are situated inside the modiolus, the central axis of the cochlea, it is desirable that the electrode array hugs the modiolus to minimize the distance between the electrodes and the ganglia. In the present study, we propose a shape-memory-alloy-(SMA-) embedded intracochlear electrode which gives a straight electrode a curved modiolus-hugging shape using the restoration force of the SMA as triggered by resistive heating after insertion into the cochlea. An eight-channel ball-type electrode array is fabricated with an embedded titanium-nickel SMA backbone wire. It is demonstrated that the electrode array changes its shape in a transparent plastic human cochlear model. To verify the safe insertion of the electrode array into the human cochlea, the contact pressures during insertion at the electrode tip and the contact pressures over the electrode length after insertion were calculated using a 3D finite element analysis. The results indicate that the SMA-embedded electrode is functionally and mechanically feasible for clinical applications. PMID:23762181
Status of air-shower measurements with sparse radio arrays
NASA Astrophysics Data System (ADS)
Schröder, Frank G.
2017-03-01
This proceeding gives a summary of the current status and open questions of the radio technique for cosmic-ray air showers, assuming that the reader is already familiar with the principles. It includes recent results of selected experiments not present at this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex have demonstrated that areas of several km2 can be instrumented for reasonable costs with antenna spacings of the order of 200m. For the energy of the primary particle such sparse antenna arrays can already compete in absolute accuracy with other precise techniques, like the detection of air-fluorescence or air-Cherenkov light. With further improvements in the antenna calibration, the radio detection might become even more accurate. For the atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR features a precision similar to the fluorescence technique, but analysis methods for the radio measurement of Xmax are still under development. Moreover, the combination of radio and muon measurements is expected to increase the accuracy of the mass composition, and this around-the-clock recording is not limited to clear nights as are the light-detection methods. Consequently, radio antennas will be a valuable add-on for any air shower array targeting the energy range above 100 PeV.
Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen
2015-11-01
Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.
Yang, Zhaoshou; Hou, Yongheng; Hao, Taofang; Rho, Hee-Sool; Wan, Jun; Luan, Yizhao; Gao, Xin; Yao, Jianping; Pan, Aihua; Xie, Zhi; Qian, Jiang; Liao, Wanqin; Zhu, Heng; Zhou, Xingwang
2017-01-01
Toxoplasma kinase ROP18 is a key molecule responsible for the virulence of Toxoplasma gondii; however, the mechanisms by which ROP18 exerts parasite virulence via interaction with host proteins remain limited to a small number of identified substrates. To identify a broader array of ROP18 substrates, we successfully purified bioactive mature ROP18 and used it to probe a human proteome array. Sixty eight new putative host targets were identified. Functional annotation analysis suggested that these proteins have a variety of functions, including metabolic process, kinase activity and phosphorylation, cell growth, apoptosis and cell death, and immunity, indicating a pleiotropic role of ROP18 kinase. Among these proteins, four candidates, p53, p38, UBE2N, and Smad1, were further validated. We demonstrated that ROP18 targets p53, p38, UBE2N, and Smad1 for degradation. Importantly, we demonstrated that ROP18 phosphorylates Smad1 Ser-187 to trigger its proteasome-dependent degradation. Further functional characterization of the substrates of ROP18 may enhance understanding of the pathogenesis of Toxoplasma infection and provide new therapeutic targets. Similar strategies could be used to identify novel host targets for other microbial kinases functioning at the pathogen-host interface. PMID:28087594
EPOXI Uplink Array Experiment of June 27, 2008
NASA Astrophysics Data System (ADS)
Vilnrotter, V.; Tsao, P. C.; Lee, D. K.; Cornish, T. P.; Paal, L.; Jamnejad, V.
2008-08-01
Uplink array technology is currently being developed for NASA's Deep Space Network (DSN) to provide greater range and data throughput for future NASA missions, including manned missions to Mars and exploratory missions to the outer planets, the Kuiper Belt, and beyond. The DSN uplink arrays employ N microwave antennas transmitting at 7.2 GHz (X-band) to produce signals that add coherently at the spacecraft, hence providing a power gain of N^2 over a single antenna. This gain can be traded off directly for an N^2 higher data rate at a given distance such as Mars, providing, for example, high-definition video broadcast from Earth to a future human mission, or it can provide a given data rate for commands and software uploads at a distance N times greater than would be possible with a single antenna. The uplink arraying concept has been recently demonstrated using the three operational 34-m antennas of the Apollo Complex at the Goldstone Deep Space Communications Complex in California, which transmitted arrayed signals to the EPOXI spacecraft (an acronym formed from EPOCh and DIXI: Extrasolar Planetary Observation and Characterization and Deep Impact Extended Investigation). Both two-element and three-element uplink arrays were configured, and the theoretical array gains of 6 dB and 9.5 dB, respectively, were demonstrated experimentally. This required initial phasing of the array elements, the generation of accurate frequency predicts to maintain phase from each antenna despite relative velocity components due to Earth rotation and spacecraft trajectory, and monitoring of the ground-system phase for possible drifts caused by thermal effects over the 16-km fiber-optic signal distribution network. This article provides a description of the equipment and techniques used to demonstrate the uplink arraying concept in a relevant operational environment. Data collected from the EPOXI spacecraft are also analyzed to verify array calibration, array gain, and system stability over the entire five-hour duration of this experiment.
Solution-processed single-wall carbon nanotube transistor arrays for wearable display backplanes
NASA Astrophysics Data System (ADS)
Kang, Byeong-Cheol; Ha, Tae-Jun
2018-01-01
In this paper, we demonstrate solution-processed single-wall carbon nanotube thin-film transistor (SWCNT-TFT) arrays with polymeric gate dielectrics on the polymeric substrates for wearable display backplanes, which can be directly attached to the human body. The optimized SWCNT-TFTs without any buffer layer on flexible substrates exhibit a linear field-effect mobility of 1.5cm2/V-s and a threshold voltage of around 0V. The statistical plot of the key device metrics extracted from 35 SWCNT-TFTs which were fabricated in different batches at different times conclusively support that we successfully demonstrated high-performance solution-processed SWCNT-TFT arrays which demand excellent uniformity in the device performance. We also investigate the operational stability of wearable SWCNT-TFT arrays against an applied strain of up to 40%, which is the essential for a harsh degree of strain on human body. We believe that the demonstration of flexible SWCNT-TFT arrays which were fabricated by all solution-process except the deposition of metal electrodes at process temperature below 130oC can open up new routes for wearable display backplanes.
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)
2000-01-01
A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.
NASA Astrophysics Data System (ADS)
Koshelev, V. I.; Plisko, V. V.; Sevostyanov, E. A.
2017-05-01
To broaden the spectrum of high-power ultrawideband radiation, it is suggested to synthesize an electromagnetic pulse summing the pulses of different length in free space. On the example of model pulses corresponding to radiation of combined antennas excited by bipolar voltage pulses of the length of 2 and 3 ns, the possibility of twofold broadening of the radiation spectrum was demonstrated. Radiation pulses with the spectrum width exceeding three octaves were obtained. Pattern formation by the arrays of different geometry excited by the pulses having different time shifts was considered. Optimum array structure with the pattern maximum in the main direction was demonstrated on the example of a 2×2 array.
Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array
NASA Astrophysics Data System (ADS)
Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel W.; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.
2016-11-01
Many components for free-space optical (FSO) communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Nonmechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. A phased array that can steer in two dimensions using the thermo-optic effect is demonstrated. No wavelength tuning of the input laser is needed and the design allows a simple control system with only two inputs. A benchtop FSO link with the phased array in both transmit and receive mode is demonstrated.
Kilometer-Spaced GNSS Array for Ionospheric Irregularity Monitoring
NASA Astrophysics Data System (ADS)
Su, Yang
This dissertation presents automated, systematic data collection, processing, and analysis methods for studying the spatial-temporal properties of Global Navigation Satellite Systems (GNSS) scintillations produced by ionospheric irregularities at high latitudes using a closely spaced multi-receiver array deployed in the northern auroral zone. The main contributions include 1) automated scintillation monitoring, 2) estimation of drift and anisotropy of the irregularities, 3) error analysis of the drift estimates, and 4) multi-instrument study of the ionosphere. A radio wave propagating through the ionosphere, consisting of ionized plasma, may suffer from rapid signal amplitude and/or phase fluctuations known as scintillation. Caused by non-uniform structures in the ionosphere, intense scintillation can lead to GNSS navigation and high-frequency (HF) communication failures. With specialized GNSS receivers, scintillation can be studied to better understand the structure and dynamics of the ionospheric irregularities, which can be parameterized by altitude, drift motion, anisotropy of the shape, horizontal spatial extent and their time evolution. To study the structuring and motion of ionospheric irregularities at the sub-kilometer scale sizes that produce L-band scintillations, a closely-spaced GNSS array has been established in the auroral zone at Poker Flat Research Range, Alaska to investigate high latitude scintillation and irregularities. Routinely collecting low-rate scintillation statistics, the array database also provides 100 Hz power and phase data for each channel at L1/L2C frequency. In this work, a survey of seasonal and hourly dependence of L1 scintillation events over the course of a year is discussed. To efficiently and systematically study scintillation events, an automated low-rate scintillation detection routine is established and performed for each day by screening the phase scintillation index. The spaced-receiver technique is applied to cross-correlated phase and power measurements from GNSS receivers. Results of horizontal drift velocities and anisotropy ellipses derived from the parameters are shown for several detected events. Results show the possibility of routinely quantifying ionospheric irregularities by drifts and anisotropy. Error analysis on estimated properties is performed to further evaluate the estimation quality. Uncertainties are quantified by ensemble simulation of noise on the phase signals carried through to the observations of the spaced-receiver linear system. These covariances are then propagated through to uncertainties on drifts. A case study of a single scintillating satellite observed by the array is used to demonstrate the uncertainty estimation process. The distributed array is used in coordination with other measuring techniques such as incoherent scatter radar and optical all-sky imagers. These scintillations are correlated with auroral activity, based on all-sky camera images. Measurements and uncertainty estimates made over a 30-minute period are made and compared to a collocated incoherent scatter radar, and show good agreement in horizontal drift speed and direction during periods of scintillation for cases when the characteristic velocity is less than the drift velocity. The methods demonstrated are extensible to other zones and other GNSS arrays of varying size, number, ground distribution, and transmitter frequency.
Design and fabrication of microstrip antenna arrays
NASA Technical Reports Server (NTRS)
1978-01-01
A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.
2007-05-01
BOX 25046, FEDERAL CENTER, M.S. 964 DENVER, CO 80225-0046 TECHNOLOGY TYPE/PLATFORM: TMGS MAGNETOMETER/TOWED ARRAY PREPARED BY: U.S. ARMY...GEOLOGICAL SURVEY, TMGS MAGNETOMETER/TOWED ARRAY) 8-CO-160-UXO-021 Karwatka, Michael... TMGS Magnetometer/Towed Array, MEC Unclassified Unclassified Unclassified SAR (Page ii Blank) i ACKNOWLEDGMENTS
NASA Astrophysics Data System (ADS)
Wu, Jianing; Yan, Shaoze; Xie, Liyang
2011-12-01
To address the impact of solar array anomalies, it is important to perform analysis of the solar array reliability. This paper establishes the fault tree analysis (FTA) and fuzzy reasoning Petri net (FRPN) models of a solar array mechanical system and analyzes reliability to find mechanisms of the solar array fault. The index final truth degree (FTD) and cosine matching function (CMF) are employed to resolve the issue of how to evaluate the importance and influence of different faults. So an improvement reliability analysis method is developed by means of the sorting of FTD and CMF. An example is analyzed using the proposed method. The analysis results show that harsh thermal environment and impact caused by particles in space are the most vital causes of the solar array fault. Furthermore, other fault modes and the corresponding improvement methods are discussed. The results reported in this paper could be useful for the spacecraft designers, particularly, in the process of redesigning the solar array and scheduling its reliability growth plan.
Ka-Band MMIC Subarray Technology Program (Ka-Mist)
NASA Technical Reports Server (NTRS)
Pottinger, W.
1995-01-01
Ka-band monolithic microwave integrated circuit (MMIC) arrays have been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in closed proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments. The objective of this program was to demonstrate the technical feasibility of the 'tile' array packaging architecture at EHF via the insertion of 1990 MMIC technology into a functional tile array or subarray module. The means test of this objective was to demonstrate and deliver to NASA a minimum of two 4 x 4 (16 radiating element) subarray modules operating in a transmit mode at 29.6 GHz. Available (1990) MMIC technology was chosen to focus the program effort on the novel interconnect schemes and packaging requirements rather than focusing on MMIC development. Major technical achievements of this program include the successful integration of two 4 x 4 subarray modules into a single antenna array. This 32 element array demonstrates a transmit EIRP of over 300 watts yielding an effective directive power gain in excess of 55 dB at 29.63 GHz. The array has been actively used as the transmit link in airborne/terrestrial mobile communication experiments accomplished via the ACTS satellite launched in August 1993.
NASA Astrophysics Data System (ADS)
Duparré, Jacques; Wippermann, Frank; Dannberg, Peter; Schreiber, Peter; Bräuer, Andreas; Völkel, Reinhard; Scharf, Toralf
2005-09-01
Two novel objective types on the basis of artificial compound eyes are examined. Both imaging systems are well suited for fabrication using microoptics technology due to the small required lens sags. In the apposition optics a microlens array (MLA) and a photo detector array of different pitch in its focal plane are applied. The image reconstruction is based on moire magnification. Several generations of demonstrators of this objective type are manufactured by photo lithographic processes. This includes a system with opaque walls between adjacent channels and an objective which is directly applied onto a CMOS detector array. The cluster eye approach, which is based on a mixture of superposition compound eyes and the vision system of jumping spiders, produces a regular image. Here, three microlens arrays of different pitch form arrays of Keplerian microtelescopes with tilted optical axes, including a field lens. The microlens arrays of this demonstrator are also fabricated using microoptics technology, aperture arrays are applied. Subsequently the lens arrays are stacked to the overall microoptical system on wafer scale. Both fabricated types of artificial compound eye imaging systems are experimentally characterized with respect to resolution, sensitivity and cross talk between adjacent channels. Captured images are presented.
Ka-Band Digital Beamforming and SweepSAR Demonstration for Ice and Solid Earth Topography
NASA Technical Reports Server (NTRS)
Sadowy, Gregory; Ghaemi, Hirad; Heavy, Brandon; Perkovic, Dragana; Quddus, Momin; Zawadzki, Mark; Moller, Delwyn
2010-01-01
GLISTIN is an instrument concept for a single-pass interferometric SAR operating at 35.6 GHz. To achieve large swath widths using practical levels of transmitter power, a digitally-beamformed planar waveguide array is used. This paper describes results from a ground-based demonstration of a 16-receiver prototype. Furthermore, SweepSAR is emerging as promising technique for achieving very wide swaths for surface change detection. NASA and DLR are studying this approach for the DESDynI and Tandem-L missions. SweepSAR employs a reflector with a digitally-beamformed array feed. We will describe development of an airborne demonstration of SweepSAR using the GLISTIN receiver array and a reflector.
Small aperture seismic arrays for studying planetary interiors and seismicity
NASA Astrophysics Data System (ADS)
Schmerr, N. C.; Lekic, V.; Fouch, M. J.; Panning, M. P.; Siegler, M.; Weber, R. C.
2017-12-01
Seismic arrays are a powerful tool for understanding the interior structure and seismicity across objects in the Solar System. Given the operational constraints of ground-based lander investigations, a small aperture seismic array can provide many of the benefits of a larger-scale network, but does not necessitate a global deployment of instrumentation. Here we define a small aperture array as a deployment of multiple seismometers, with a separation between instruments of 1-1000 meters. For example, small aperture seismic arrays have been deployed on the Moon during the Apollo program, the Active Seismic Experiments of Apollo 14 and 16, and the Lunar Seismic Profiling Experiment deployed by the Apollo 17 astronauts. Both were high frequency geophone arrays with spacing of 50 meters that provided information on the layering and velocity structure of the uppermost kilometer of the lunar crust. Ideally such arrays would consist of instruments that are 3-axis short period or broadband seismometers. The instruments must have a sampling rate and frequency range sensitivity capable of distinguishing between waves arriving at each station in the array. Both terrestrial analogs and the data retrieved from the Apollo arrays demonstrate the efficacy of this approach. Future opportunities exist for deployment of seismic arrays on Europa, asteroids, and other objects throughout the Solar System. Here we will present both observational data and 3-D synthetic modeling results that reveal the sensing requirements and the primary advantages of a small aperture seismic array over single station approach. For example, at the smallest apertures of < 1 m, we constrain that sampling rates must exceed 500 Hz and instrument sensitivity must extend to 100 Hz or greater. Such advantages include the improved ability to resolve the location of the sources near the array through detection of backazimuth and differential timing between stations, determination of the small-scale structure (layering, scattering bodies, density and velocity variations) in the vicinity of the array, as well as the ability to improve the signal to noise ratio of distant body waves by additive methods such as stacking and velocity-slowness analysis. These results will inform future missions on the surfaces of objects throughout the Solar System.
Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator
1992-12-01
Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the
Combinatorial fabrication and screening of organic light-emitting device arrays
NASA Astrophysics Data System (ADS)
Shinar, Joseph; Shinar, Ruth; Zhou, Zhaoqun
2007-11-01
The combinatorial fabrication and screening of 2-dimensional (2-d) small molecular UV-violet organic light-emitting device (OLED) arrays, 1-d blue-to-red arrays, 1-d intense white OLED libraries, 1-d arrays to study Förster energy transfer in guest-host OLEDs, and 2-d arrays to study exciplex emission from OLEDs is described. The results demonstrate the power of combinatorial approaches for screening OLED materials and configurations, and for studying their basic properties.
Proposed biomimetic molecular sensor array for astrobiology applications
NASA Astrophysics Data System (ADS)
Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.
2001-08-01
A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.
A Demonstration of Big Data Technology for Data Intensive Earth Science (Invited)
NASA Astrophysics Data System (ADS)
Kuo, K.; Clune, T.; Ramachandran, R.; Rushing, J.; Fekete, G.; Lin, A.; Doan, K.; Oloso, A. O.; Duffy, D.
2013-12-01
Big Data technologies exhibit great potential to change the way we conduct scientific investigations, especially analysis of voluminous and diverse data sets. Obviously, not all Big Data technologies are applicable to all aspects of scientific data analysis. Our NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) project, Automated Event Service (AES), pioneers the exploration of Big Data technologies for data intensive Earth science. Since Earth science data are largely stored and manipulated in the form of multidimensional arrays, the project first evaluates array performance of several candidate Big Data technologies, including MapReduce (Hadoop), SciDB, and a custom-built Polaris system, which have one important feature in common: shared nothing architecture. The evaluation finds SicDB to be the most promising. In this presentation, we demonstrate SciDB using a couple of use cases, each operating on a distinct data set in the regular latitude-longitude grid. The first use case is the discovery and identification of blizzards using NASA's Modern Era Retrospective-analysis for Research and Application (MERRA) data sets. The other finds diurnal signals in the same 8-year period using SSMI data from three different instruments with different equator crossing times by correlating their retrieved parameters. In addition, the AES project is also developing a collaborative component to enable the sharing of event queries and results. Preliminary capabilities will be presented as well.
NASA Astrophysics Data System (ADS)
Thomas, Joseph; Sudhakar, M.; Agarwal, Anil; Sankaran, M.; Mudramachary, P.
2008-09-01
The INSAT 4CR spacecraft, the third in the INSAT 4 series of Indian Space Research Organization (ISRO)'s Communication satellite program, is a high power communication satellite in Geo- stationary Earth Orbit (GEO), configured using the ISRO I2K bus. The primary power is provided by two-wing sun tracking, deployable solar array and the eclipse load requirement is supported by two 70 Ah nickel hydrogen batteries. The power output of the solar array is regulated by Sequential Switching Shunt Regulators to 42V±0.5V. The salient feature of the solar array design is that it uses the new generation multi junction solar cells for all the four panels of size 2.54m x 1.525m to meet the higher power requirement with the available array area. The solar panel fabrication process with the Advanced Triple Junction (ATJ) solar cells from M/s. EMCORE, USA, has been demonstrated for the GEO life cycle through qualification coupon fabrication and testing.This paper describes the INSAT 4CR solar array photovoltaic assemblies design, layout optimization and realization of the Flight Model (FM) panels. It focuses on the power generation prediction, electrical performance measurement under Large Area Pulsed Sun Simulator (LAPSS) and verification of the ground level test results. The indigenously built Geostationary Launch Vehicle (GSLV F04) has successfully launched the INSAT 4CR spacecraft into the orbit on September 2nd, 2007. This paper also presents the analysis of telemetry data to validate the initial phase in-orbit performance of the solar array with prediction.
Novel Photon-Counting Detectors for Free-Space Communication
NASA Technical Reports Server (NTRS)
Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff
2016-01-01
We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.
Comparison of ISS Power System Telemetry with Analytically Derived Data for Shadowed Cases
NASA Technical Reports Server (NTRS)
Fincannon, H. James
2002-01-01
Accurate International Space Station (ISS) power prediction requires the quantification of solar array shadowing. Prior papers have discussed the NASA Glenn Research Center (GRC) ISS power system tool SPACE (System Power Analysis for Capability Evaluation) and its integrated shadowing algorithms. On-orbit telemetry has become available that permits the correlation of theoretical shadowing predictions with actual data. This paper documents the comparison of a shadowing metric (total solar array current) as derived from SPACE predictions and on-orbit flight telemetry data for representative significant shadowing cases. Images from flight video recordings and the SPACE computer program graphical output are used to illustrate the comparison. The accuracy of the SPACE shadowing capability is demonstrated for the cases examined.
Highly efficient color filter array using resonant Si3N4 gratings.
Uddin, Mohammad Jalal; Magnusson, Robert
2013-05-20
We demonstrate the design and fabrication of a highly efficient guided-mode resonant color filter array. The device is designed using numerical methods based on rigorous coupled-wave analysis and is patterned using UV-laser interferometric lithography. It consists of a 60-nm-thick subwavelength silicon nitride grating along with a 105-nm-thick homogeneous silicon nitride waveguide on a glass substrate. The fabricated device exhibits blue, green, and red color response for grating periods of 274, 327, and 369 nm, respectively. The pixels have a spectral bandwidth of ~12 nm with efficiencies of 94%, 96%, and 99% at the center wavelength of blue, green, and red color filter, respectively. These are higher efficiencies than reported in the literature previously.
Grow, Laura L; Kodak, Tiffany; Carr, James E
2014-01-01
Previous research has demonstrated that the conditional-only method (starting with a multiple-stimulus array) is more efficient than the simple-conditional method (progressive incorporation of more stimuli into the array) for teaching receptive labeling to children with autism spectrum disorders (Grow, Carr, Kodak, Jostad, & Kisamore,). The current study systematically replicated the earlier study by comparing the 2 approaches using progressive prompting with 2 boys with autism. The results showed that the conditional-only method was a more efficient and reliable teaching procedure than the simple-conditional method. The results further call into question the practice of teaching simple discriminations to facilitate acquisition of conditional discriminations. © Society for the Experimental Analysis of Behavior.
Colorimetric Recognition of Aldehydes and Ketones.
Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S
2017-08-07
A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Widely tunable long-period waveguide grating couplers
NASA Astrophysics Data System (ADS)
Bai, Y.; Liu, Q.; Lor, K. P.; Chiang, K. S.
2006-12-01
We demonstrate experimentally two widely tunable optical couplers formed with parallel long-period polymer waveguide gratings. One of the couplers consists of two parallel gratings and shows a peak coupling efficiency of ~34%. The resonance wavelength of the coupler can be tuned thermally with a sensitivity of 4.7 nm/°C. The experimental results agree well with the coupled-mode analysis. The other coupler consists of an array of ten widely separated gratings. A peak coupling efficiency of ~11% is obtained between the two best matched gratings in the array and the resonance wavelength can be tuned thermally with a sensitivity of -3.8 nm/°C. These couplers have the potential to be further developed into practical broadband add/drop multiplexers and signal dividers.
NASA Astrophysics Data System (ADS)
Afonin, Nikita; Kozlovskaya, Elena; Kukkonen, Ilmo; Dafne/Finland Working Group
2017-04-01
Understanding the inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of local seismic events and ambient seismic noise recorded by the temporary DAFNE array in the northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä postglacial fault (SPGF), which was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised an area of about 20 to 100 km and consisted of eight short-period and four broadband three-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September 2011-May 2013. Recordings of the array have being analysed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä gold mine. As a result, we found a number of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single-station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate corresponding surface wave dispersion curves. The S-wave velocity models were obtained as a result of dispersion curve inversion. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low-velocity region as a non-healed mechanically weak fault damage zone (FDZ) formed due to the last major earthquake that occurred after the last glaciation.
NASA Solar Array Demonstrates Commercial Potential
NASA Technical Reports Server (NTRS)
Creech, Gray
2006-01-01
A state-of-the-art solar-panel array demonstration site at NASA's Dryden Flight Research Center provides a unique opportunity for studying the latest in high-efficiency solar photovoltaic cells. This five-kilowatt solar-array site (see Figure 1) is a technology-transfer and commercialization success for NASA. Among the solar cells at this site are cells of a type that was developed in Dryden Flight Research Center s Environmental Research Aircraft and Sensor Technology (ERAST) program for use in NASA s Helios solar-powered airplane. This cell type, now denoted as A-300, has since been transferred to SunPower Corporation of Sunnyvale, California, enabling mass production of the cells for the commercial market. High efficiency separates these advanced cells from typical previously commercially available solar cells: Whereas typical previously commercially available cells are 12 to 15 percent efficient at converting sunlight to electricity, these advanced cells exhibit efficiencies approaching 23 percent. The increase in efficiency is due largely to the routing of electrical connections behind the cells (see Figure 2). This approach to increasing efficiency originated as a solution to the problem of maximizing the degree of utilization of the limited space available atop the wing of the Helios airplane. In retrospect, the solar cells in use at this site could be used on Helios, but the best cells otherwise commercially available could not be so used, because of their lower efficiencies. Historically, solar cells have been fabricated by use of methods that are common in the semiconductor industry. One of these methods includes the use of photolithography to define the rear electrical-contact features - diffusions, contact openings, and fingers. SunPower uses these methods to produce the advanced cells. To reduce fabrication costs, SunPower continues to explore new methods to define the rear electrical-contact features. The equipment at the demonstration site includes two fixed-angle solar arrays and one single-axis Sun-tracking array. One of the fixed arrays contains typical less-efficient commercial solar cells and is being used as a baseline for comparison of the other fixed array, which contains the advanced cells. The Sun-tracking array tilts to follow the Sun, using an advanced, real-time tracking device rather than customary pre-programmed mechanisms. Part of the purpose served by the demonstration is to enable determination of any potential advantage of a tracking array over a fixed array. The arrays are monitored remotely on a computer that displays pertinent information regarding the functioning of the arrays.
Lin, Mu-Han; Veltchev, Iavor; Koren, Sion; Ma, Charlie; Li, Jinsgeng
2015-07-08
Robotic radiosurgery system has been increasingly employed for extracranial treatments. This work is aimed to study the feasibility of a cylindrical diode array and a planar ion chamber array for patient-specific QA with this robotic radiosurgery system and compare their performance. Fiducial markers were implanted in both systems to enable image-based setup. An in-house program was developed to postprocess the movie file of the measurements and apply the beam-by-beam angular corrections for both systems. The impact of noncoplanar delivery was then assessed by evaluating the angles created by the incident beams with respect to the two detector arrangements and cross-comparing the planned dose distribution to the measured ones with/without the angular corrections. The sensitivity of detecting the translational (1-3 mm) and the rotational (1°-3°) delivery errors were also evaluated for both systems. Six extracranial patient plans (PTV 7-137 cm³) were measured with these two systems and compared with the calculated doses. The plan dose distributions were calculated with ray-tracing and the Monte Carlo (MC) method, respectively. With 0.8 by 0.8 mm² diodes, the output factors measured with the cylindrical diode array agree better with the commissioning data. The maximum angular correction for a given beam is 8.2% for the planar ion chamber array and 2.4% for the cylindrical diode array. The two systems demonstrate a comparable sensitivity of detecting the translational targeting errors, while the cylindrical diode array is more sensitive to the rotational targeting error. The MC method is necessary for dose calculations in the cylindrical diode array phantom because the ray-tracing algorithm fails to handle the high-Z diodes and the acrylic phantom. For all the patient plans, the cylindrical diode array/ planar ion chamber array demonstrate 100% / > 92% (3%/3 mm) and > 96% / ~ 80% (2%/2 mm) passing rates. The feasibility of using both systems for robotic radiosurgery system patient-specific QA has been demonstrated. For gamma evaluation, 2%/2 mm criteria for cylindrical diode array and 3%/3 mm criteria for planar ion chamber array are suggested. The customized angular correction is necessary as proven by the improved passing rate, especially with the planar ion chamber array system.
Electrochemical DNA biosensor based on the BDD nanograss array electrode.
Jin, Huali; Wei, Min; Wang, Jinshui
2013-04-10
The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability.
Electrochemical DNA biosensor based on the BDD nanograss array electrode
2013-01-01
Background The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Results Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. Conclusions The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability. PMID:23575250
Arnfinnsdottir, Nina Bjørk; Ottesen, Vegar; Lale, Rahmi; Sletmoen, Marit
2015-01-01
In this paper we demonstrate a procedure for preparing bacterial arrays that is fast, easy, and applicable in a standard molecular biology laboratory. Microcontact printing is used to deposit chemicals promoting bacterial adherence in predefined positions on glass surfaces coated with polymers known for their resistance to bacterial adhesion. Highly ordered arrays of immobilized bacteria were obtained using microcontact printed islands of polydopamine (PD) on glass surfaces coated with the antiadhesive polymer polyethylene glycol (PEG). On such PEG-coated glass surfaces, bacteria were attached to 97 to 100% of the PD islands, 21 to 62% of which were occupied by a single bacterium. A viability test revealed that 99% of the bacteria were alive following immobilization onto patterned surfaces. Time series imaging of bacteria on such arrays revealed that the attached bacteria both divided and expressed green fluorescent protein, both of which indicates that this method of patterning of bacteria is a suitable method for single-cell analysis.
Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation.
Buchholz, K; Tinazli, A; Kleefen, A; Dorfner, D; Pedone, D; Rant, U; Tampé, R; Abstreiter, G; Tornow, M
2008-11-05
We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 µm down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedd E. Lister; Patrick J. Pinhero
2005-03-01
Scanning electrochemical microscopy (SECM) and a recently developed microelectrode array microscope have been used to study localized corrosion and electron-transfer characteristics of native oxide layers of type 304 stainless steels. The I-/I3- redox couple was employed as a mediator and allowed sensitive detection of oxide breakdown events. In solutions containing I-, a signal at the microelectrode was observed on type 304 stainless steel surfaces at active pitting corrosion sites. Under conditions where pitting corrosion occurs, SECM was used to track the temporal characteristics of the reaction in a spatial manner. However, because of the time required to create an image,more » much of the temporal information was not obtained. To improve the temporal resolution of the measurement, microelectrode array microscopy (MEAM) was developed as a parallel method of performing SECM. The demonstration shown reveals the potential of MEAM for analysis of surface chemistry on temporal and spatial domains.« less
A 4-channel coil array interconnection by analog direct modulation optical link for 1.5-T MRI.
Yuan, Jing; Wei, Juan; Shen, Gary X
2008-10-01
Optical glass fiber shows great advantages over coaxial cables in terms of electromagnetic interference, thus, it should be considered a potential alternative for magnetic resonance imaging (MRI) receive coil interconnection, especially for a large number coil array at high field. In this paper, we propose a 4-channel analog direct modulation optical link for a 1.5-T MRI coil array interconnection. First, a general direct modulated optical link is compared to an external modulated optical link. And then the link performances of the proposed direct modulated optical link, including power gain, frequency response, and dynamic range, are analyzed and measured. Phantom and in vivo head images obtained using this optical link are demonstrated for comparison with those obtained by cable connections. The signal-to-noise (SNR) analysis shows that the optical link achieves 6%-8% SNR a improvement over coaxial cables by elimination of electrical interference between cables during MR signal transmission.
Kawamura, Ryuzo; Miyazaki, Minami; Shimizu, Keita; Matsumoto, Yuta; Silberberg, Yaron R; Sathuluri, Ramachandra Rao; Iijima, Masumi; Kuroda, Shun'ichi; Iwata, Futoshi; Kobayashi, Takeshi; Nakamura, Chikashi
2017-11-08
Focusing on intracellular targets, we propose a new cell separation technique based on a nanoneedle array (NNA) device, which allows simultaneous insertion of multiple needles into multiple cells. The device is designed to target and lift ("fish") individual cells from a mixed population of cells on a substrate using an antibody-functionalized NNA. The mechanics underlying this approach were validated by force analysis using an atomic force microscope. Accurate high-throughput separation was achieved using one-to-one contacts between the nanoneedles and the cells by preparing a single-cell array in which the positions of the cells were aligned with 10,000 nanoneedles in the NNA. Cell-type-specific separation was realized by controlling the adhesion force so that the cells could be detached in cell-type-independent manner. Separation of nestin-expressing neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) was demonstrated using the proposed technology, and successful differentiation to neuronal cells was confirmed.
Kinetics of antigen binding to arrays of antibodies in different sized spots
NASA Technical Reports Server (NTRS)
Sapsford, K. E.; Liron, Z.; Shubin, Y. S.; Ligler, F. S.
2001-01-01
A fluorescence-based array biosensor has been developed which can measure the binding kinetics of an antigen to an immobilized antibody in real time. A patterned array of antibodies immobilized on the surface of a planar waveguide was used to capture a Cy5-labeled antigen present in a solution that was continuously flowed over the surface. The CCD image of the waveguide was monitored continuously for 25 min. The resulting exponential rise in fluorescence signal was determined by image analysis software and fitted to a reaction-limited kinetics model, giving a kf of 3.6 x 10(5) M(-1) s(-1). Different spot sizes were then patterned on the surface of the waveguide using either a PDMS flow cell or laser exposure, producing width sizes ranging from 80 to 1145 microm. It was demonstrated that under flow conditions, the reduction of spot size did not alter the association rate of the antigen with immobilized antibody; however, as the spot width decreased to < 200 nm, the signal intensity also decreased.
Early commercial demonstration of space solar power using ultra-lightweight arrays
NASA Astrophysics Data System (ADS)
Reed, Kevin; Willenberg, Harvey J.
2009-11-01
Space solar power shows great promise for future energy sources worldwide. Most central power stations operate with power capacity of 1000 MW or greater. Due to launch size limitations and specific power of current, rigid solar arrays, the largest solar arrays that have flown in space are around 50 kW. Thin-film arrays offer the promise of much higher specific power and deployment of array sizes up to several MW with current launch vehicles. An approach to early commercial applications for space solar power to distribute power to charge hand-held, mobile battery systems by wireless power transmission (WPT) from thin-film solar arrays in quasi-stationary orbits will be presented. Four key elements to this prototype will be discussed: (1) Space and near-space testing of prototype wireless power transmission by laser and microwave components including WPT space to space and WPT space to near-space HAA transmission demonstrations; (2) distributed power source for recharging hand-held batteries by wireless power transmission from MW space solar power systems; (3) use of quasi-geostationary satellites to generate electricity and distribute it to targeted areas; and (4) architecture and technology for ultra-lightweight thin-film solar arrays with specific energy exceeding 1 kW/kg. This approach would yield flight demonstration of space solar power and wireless power transmission of 1.2 MW. This prototype system will be described, and a roadmap will be presented that will lead to still higher power levels.
Miniaturized Cassegrainian concentrator concept demonstration
NASA Technical Reports Server (NTRS)
Patterson, R. E.; Rauschenbach, H. S.
1982-01-01
High concentration ratio photovoltaic systems for space applications have generally been considered impractical because of perceived difficulties in controlling solar cell temperatures to reasonably low values. A miniaturized concentrator system is now under development which surmounts this objection by providing acceptable solar cell temperatures using purely passive cell cooling methods. An array of identical miniaturized, rigid Cassegrainian optical systems having a low f-number with resulting short dimensions along their optical axes are rigidly mounted into a frame to form a relatively thin concentrator solar array panel. A number of such panels, approximately 1.5 centimeters thick, are wired as an array and are folded against one another for launch in a stowed configuration. Deployment on orbit is similar to the deployment of conventional planar honeycomb panel arrays or flexible blanket arrays. The miniaturized concept was conceived and studied in the 1978-80 time frame. Progress in the feasibility demonstration to date is reported.
A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.
Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi
2016-08-30
This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.
NASA Technical Reports Server (NTRS)
Woodgate, Bruce E.; Moseley, Harvey; Fettig, Rainer; Kutyrev, Alexander; Ge, Jian; Fisher, Richard R. (Technical Monitor)
2001-01-01
The 6.5-m NASA/ESA/Canada New Generation Space Telescope to be operated at the L2 Lagrangian point will require a multi-object spectrograph (MOS) operating from 1 to 5 microns. Up to 3000 targets will be selected for simultaneous spectroscopy using a programmable cryogenic (approx. 35K) aperture array, consisting of a mosaic of arrays of micromirrors or microshutters. We describe the current status of the GSFC microshutter array development. The 100 micron square shutters are opened magnetically and latched open or closed electrostatically. Selection will be by two crossed one-dimensional addressing circuits. We will demonstrate the use of a 512 x 512 unit array on a ground-based IR MOS which will cover 0.6 to 5 microns, and operate rapidly to include spectroscopy of gamma ray burst afterglows.
Superconducting micro-resonator arrays with ideal frequency spacing
NASA Astrophysics Data System (ADS)
Liu, X.; Guo, W.; Wang, Y.; Dai, M.; Wei, L. F.; Dober, B.; McKenney, C. M.; Hilton, G. C.; Hubmayr, J.; Austermann, J. E.; Ullom, J. N.; Gao, J.; Vissers, M. R.
2017-12-01
We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode mapper technique demonstrated previously, we first map the measured resonance frequencies to the physical resonators. Then, we fine-tune each resonator's frequency by lithographically trimming a small length, calculated from the deviation of the measured frequency from its design value, from the interdigitated capacitor. We demonstrate this technique on a 127-resonator array made from titanium-nitride and show that the uniformity of frequency spacing is greatly improved. The array yield in terms of frequency collisions improves from 84% to 97%, while the quality factors and noise properties are unaffected. The wafer trimming technique provides an easy-to-implement tool to improve the yield and multiplexing density of large resonator arrays, which is important for various applications in photon detection and quantum computing.
Goyal, Anish; Myers, Travis; Wang, Christine A; Kelly, Michael; Tyrrell, Brian; Gokden, B; Sanchez, Antonio; Turner, George; Capasso, Federico
2014-06-16
We demonstrate active hyperspectral imaging using a quantum-cascade laser (QCL) array as the illumination source and a digital-pixel focal-plane-array (DFPA) camera as the receiver. The multi-wavelength QCL array used in this work comprises 15 individually addressable QCLs in which the beams from all lasers are spatially overlapped using wavelength beam combining (WBC). The DFPA camera was configured to integrate the laser light reflected from the sample and to perform on-chip subtraction of the passive thermal background. A 27-frame hyperspectral image was acquired of a liquid contaminant on a diffuse gold surface at a range of 5 meters. The measured spectral reflectance closely matches the calculated reflectance. Furthermore, the high-speed capabilities of the system were demonstrated by capturing differential reflectance images of sand and KClO3 particles that were moving at speeds of up to 10 m/s.
Development of theoretical models of integrated millimeter wave antennas
NASA Technical Reports Server (NTRS)
Yngvesson, K. Sigfrid; Schaubert, Daniel H.
1991-01-01
Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.
From MAD to SAD: The Italian experience for the low-frequency aperture array of SKA1-LOW
NASA Astrophysics Data System (ADS)
Bolli, P.; Pupillo, G.; Virone, G.; Farooqui, M. Z.; Lingua, A.; Mattana, A.; Monari, J.; Murgia, M.; Naldi, G.; Paonessa, F.; Perini, F.; Pluchino, S.; Rusticelli, S.; Schiaffino, M.; Schillirò, F.; Tartarini, G.; Tibaldi, A.
2016-03-01
This paper describes two small aperture array demonstrators called Medicina and Sardinia Array Demonstrators (MAD and SAD, respectively). The objectives of these instruments are to acquire experience and test new technologies for a possible application to the low-frequency aperture array of the low-frequency telescope of the Square Kilometer Array phase 1 (SKA1-LOW). The MAD experience was concluded in 2014, and it turned out to be an important test bench for implementing calibration techniques based on an artificial source mounted in an aerial vehicle. SAD is based on 128 dual-polarized Vivaldi antennas and is 1 order of magnitude larger than MAD. The architecture and the station size of SAD, which is along the construction phase, are more similar to those under evaluation for SKA1-LOW, and therefore, SAD is expected to provide useful hints for SKA1-LOW.
Intracavitary ultrasound phased arrays for thermal therapies
NASA Astrophysics Data System (ADS)
Hutchinson, Erin
Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated that the heating capabilities of the constructed phased arrays were adequate for hyperthermia and thermal surgery treatments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)
Demonstration of Lasercom and Spatial Tracking with a Silicon Geiger-Mode APD Array
2016-02-26
standardized pixel mask as described in the previous paragraph disabling 167 of the 1024 detectors in the array , this gives an absolute maximum rate...number of elements in an array based detector .5 In this paper, we present the results of photon-counting communication tests based on an arrayed ...semiconductor photon-counting detector .6 The array also has the ability to sense the spatial distribution of the received light giving it the potential to act
Multicore fiber beamforming network for broadband satellite communications
NASA Astrophysics Data System (ADS)
Zainullin, Airat; Vidal, Borja; Macho, Andres; Llorente, Roberto
2017-02-01
Multi-core fiber (MCF) has been one of the main innovations in fiber optics in the last decade. Reported work on MCF has been focused on increasing the transmission capacity of optical communication links by exploiting space-division multiplexing. Additionally, MCF presents a strong potential in optical beamforming networks. The use of MCF can increase the compactness of the broadband antenna array controller. This is of utmost importance in platforms where size and weight are critical parameters such as communications satellites and airplanes. Here, an optical beamforming architecture that exploits the space-division capacity of MCF to implement compact optical beamforming networks is proposed, being a new application field for MCF. The experimental demonstration of this system using a 4-core MCF that controls a four-element antenna array is reported. An analysis of the impact of MCF on the performance of antenna arrays is presented. The analysis indicates that the main limitation comes from the relatively high insertion loss in the MCF fan-in and fan-out devices, which leads to angle dependent losses which can be mitigated by using fixed optical attenuators or a photonic lantern to reduce MCF insertion loss. The crosstalk requirements are also experimentally evaluated for the proposed MCF-based architecture. The potential signal impairment in the beamforming network is analytically evaluated, being of special importance when MCF with a large number of cores is considered. Finally, the optimization of the proposed MCF-based beamforming network is addressed targeting the scalability to large arrays.
Cai, Long-Fei; Zhu, Ying; Du, Guan-Sheng; Fang, Qun
2012-01-03
We described a microfluidic chip-based system capable of generating droplet array with a large scale concentration gradient by coupling flow injection gradient technique with droplet-based microfluidics. Multiple modules including sample injection, sample dispersion, gradient generation, droplet formation, mixing of sample and reagents, and online reaction within the droplets were integrated into the microchip. In the system, nanoliter-scale sample solution was automatically injected into the chip under valveless flow injection analysis mode. The sample zone was first dispersed in the microchannel to form a concentration gradient along the axial direction of the microchannel and then segmented into a linear array of droplets by immiscible oil phase. With the segmentation and protection of the oil phase, the concentration gradient profile of the sample was preserved in the droplet array with high fidelity. With a single injection of 16 nL of sample solution, an array of droplets with concentration gradient spanning 3-4 orders of magnitude could be generated. The present system was applied in the enzyme inhibition assay of β-galactosidase to preliminarily demonstrate its potential in high throughput drug screening. With a single injection of 16 nL of inhibitor solution, more than 240 in-droplet enzyme inhibition reactions with different inhibitor concentrations could be performed with an analysis time of 2.5 min. Compared with multiwell plate-based screening systems, the inhibitor consumption was reduced 1000-fold. © 2011 American Chemical Society
Development of Individually Addressable Micro-Mirror-Arrays for Space Applications
NASA Technical Reports Server (NTRS)
Dutta, Sanghamitra B.; Ewin, Audrey J.; Jhabvala, Murzy; Kotecki, Carl A.; Kuhn, Jonathan L.; Mott, D. Brent
2000-01-01
We have been developing a 32 x 32 prototype array of individually addressable Micro-Mirrors capable of operating at cryogenic temperature for Earth and Space Science applications. Micro-Mirror-Array technology has the potential to revolutionize imaging and spectroscopy systems for NASA's missions of the 21st century. They can be used as programmable slits for the Next Generation Space Telescope, as smart sensors for a steerable spectrometer, as neutral density filters for bright scene attenuation etc. The, entire fabrication process is carried out in the Detector Development Laboratory at NASA, GSFC. The fabrication process is low temperature compatible and involves integration of conventional CMOS technology and surface micro-machining used in MEMS. Aluminum is used as the mirror material and is built on a silicon substrate containing the CMOS address circuit. The mirrors are 100 microns x l00 microns in area and deflect by +/- 10 deg induced by electrostatic actuation between two parallel plate capacitors. A pair of thin aluminum torsion straps allow the mirrors to tilt. Finite-element-analysis and closed form solutions using electrostatic and mechanical torque for mirror operation were developed and the results were compared with laboratory performance. The results agree well both at room temperature and at cryogenic temperature. The development demonstrates the first cryogenic operation of two-dimensional Micro-Mirrors with bi-state operation. Larger arrays will be developed meeting requirements for different science applications. Theoretical analysis, fabrication process, laboratory test results and different science applications will be described in detail.
Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process
NASA Astrophysics Data System (ADS)
Wodarz, Siggi; Hasegawa, Takashi; Ishio, Shunji; Homma, Takayuki
2017-05-01
CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated.
Lei, Ting; Poon, Andrew W
2013-01-28
We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.
Cui, Nan; Ren, Hang; Tang, Qingxin; Zhao, Xiaoli; Tong, Yanhong; Hu, Wenping; Liu, Yichun
2018-02-22
A fully transparent conformal organic thin-film field-effect transistor array is demonstrated based on a photolithography-compatible ultrathin metallic grid gate electrode and a solution-processed C 8 -BTBT film. The resulting organic field-effect transistor array exhibits a high optical transparency of >80% over the visible spectrum, mobility up to 2 cm 2 V -1 s -1 , on/off ratio of 10 5 -10 6 , switching current of >0.1 mA, and excellent light stability. The transparent conformal transistor array is demonstrated to adhere well to flat and curved LEDs as front driving. These results present promising applications of the solution-processed wide-bandgap organic semiconductor thin films in future large-scale transparent conformal active-matrix displays.
Highly exothermic and superhydrophobic Mg/fluorocarbon core/shell nanoenergetic arrays.
Zhou, Xiang; Xu, Daguo; Yang, Guangcheng; Zhang, Qiaobao; Shen, Jinpeng; Lu, Jian; Zhang, Kaili
2014-07-09
Mg/fluorocarbon core/shell nanoenergetic arrays are prepared onto silicon substrate, with Mg nanorods as the core and fluorocarbon as the shell. Mg nanorods are deposited by the glancing angle deposition technique, and the fluorocarbon layer is then prepared as a shell to encase the Mg nanorods by the magnetron sputtering deposition process. Scanning electron microscopy and transmission electron microscopy show the core/shell structure of the Mg/fluorocarbon arrays. X-ray energy-dispersive spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy are used to characterize the structural composition of the Mg/fluorocarbon. It is found that the as-prepared fluorocarbon layer consists of shorter molecular chains compared to that of bulk polytetrafluoroethylene, which is proven beneficial to the low onset reaction temperature of Mg/fluorocarbon. Water contact angle test demonstrates the superhydrophobicity of the Mg/fluorocarbon arrays, and a static contact angle as high as 162° is achieved. Thermal analysis shows that the Mg/fluorocarbon material exhibits a very low onset reaction temperature of about 270 °C as well as an ultrahigh heat of reaction approaching 9 kJ/g. A preliminary combustion test reveals rapid combustion wave propagation, and a convective mechanism is adopted to explain the combustion behaviors.
NASA Technical Reports Server (NTRS)
Clark, D. L.; Cosgrove, M.; Vanvranken, R.; Park, H.; Fitzmaurice, M.
1989-01-01
Functions of acquisition, tracking, and point-ahead in space optical communications are being combined into a single system utilizing an area array detector. An analysis is presented of the feasibility concept. The key parameters are: optical power less than 1 pW at 0.86 micrometer, acquisition in less than 30 seconds in an acquisition field of view (FOV) of 1 mrad, tracking with 0.5 microrad rms noise at 1000 Hz update rate, and point ahead transfer function precision of 0.25 microrad over a region of 150 microrad. Currently available array detectors were examined. The most demanding specifications are low output noise, a high detection efficiency, a large number of pixels, and frame rates over 1kHz. A proof of concept (POC) demonstration system is currently being built utilizing the Kodak HS-40 detector (a 128 x 128 photodiode array with a 64 channel CCD readout architecture which can be operated at frame rates as high as 40,000/sec). The POC system implements a windowing scheme and special purpose digital signal processing electronic for matched filter acquisition and tracking algorithms.
NASA Astrophysics Data System (ADS)
Gruszko, J.; Majorana Collaboration
2017-09-01
The Majorana Demonstrator searches for neutrinoless double-beta decay of 76Ge using arrays of high-purity germanium detectors. If observed, this process would demonstrate that lepton number is not a conserved quantity in nature, with implications for grand-unification and for explaining the predominance of matter over antimatter in the universe. A problematic background in such large granular detector arrays is posed by alpha particles. In the Majorana Demonstrator, events have been observed that are consistent with energy-degraded alphas originating on the passivated surface, leading to a potential background contribution in the region-of-interest for neutrinoless double-beta decay. However, it is also observed that when energy deposition occurs very close to the passivated surface, charges drift through the bulk onto that surface, and then drift along it with greatly reduced mobility. This leads to both a reduced prompt signal and a measurable change in slope of the tail of a recorded pulse. In this contribution we discuss the characteristics of these events and the development of a filter that can identify the occurrence of this delayed charge recovery, allowing for the efficient rejection of passivated surface alpha events in analysis.
Multidimensional Normalization to Minimize Plate Effects of Suspension Bead Array Data.
Hong, Mun-Gwan; Lee, Woojoo; Nilsson, Peter; Pawitan, Yudi; Schwenk, Jochen M
2016-10-07
Enhanced by the growing number of biobanks, biomarker studies can now be performed with reasonable statistical power by using large sets of samples. Antibody-based proteomics by means of suspension bead arrays offers one attractive approach to analyze serum, plasma, or CSF samples for such studies in microtiter plates. To expand measurements beyond single batches, with either 96 or 384 samples per plate, suitable normalization methods are required to minimize the variation between plates. Here we propose two normalization approaches utilizing MA coordinates. The multidimensional MA (multi-MA) and MA-loess both consider all samples of a microtiter plate per suspension bead array assay and thus do not require any external reference samples. We demonstrate the performance of the two MA normalization methods with data obtained from the analysis of 384 samples including both serum and plasma. Samples were randomized across 96-well sample plates, processed, and analyzed in assay plates, respectively. Using principal component analysis (PCA), we could show that plate-wise clusters found in the first two components were eliminated by multi-MA normalization as compared with other normalization methods. Furthermore, we studied the correlation profiles between random pairs of antibodies and found that both MA normalization methods substantially reduced the inflated correlation introduced by plate effects. Normalization approaches using multi-MA and MA-loess minimized batch effects arising from the analysis of several assay plates with antibody suspension bead arrays. In a simulated biomarker study, multi-MA restored associations lost due to plate effects. Our normalization approaches, which are available as R package MDimNormn, could also be useful in studies using other types of high-throughput assay data.
Yan, Xinqiang; Zhang, Xiaoliang; Wei, Long; Xue, Rong
2015-01-01
Radio-frequency coil arrays using dipole antenna technique have been recently applied for ultrahigh field magnetic resonance (MR) imaging to obtain the better signal-noise-ratio (SNR) gain at the deep area of human tissues. However, the unique structure of dipole antennas makes it challenging to achieve sufficient electromagnetic decoupling among the dipole antenna elements. Currently, there is no decoupling methods proposed for dipole antenna arrays in MR imaging. The recently developed magnetic wall (MW) or induced current elimination decoupling technique has demonstrated its feasibility and robustness in designing microstrip transmission line arrays, L/C loop arrays and monopole arrays. In this study, we aim to investigate the possibility and performance of MW decoupling technique in dipole arrays for MR imaging at the ultrahigh field of 7T. To achieve this goal, a two-channel MW decoupled dipole array was designed, constructed and analyzed experimentally through bench test and MR imaging. Electromagnetic isolation between the two dipole elements was improved from about -3.6 dB (without any decoupling treatments) to -16.5 dB by using the MW decoupling method. MR images acquired from a water phantom using the MW decoupled dipole array and the geometry factor maps were measured, calculated and compared with those acquired using the dipole array without decoupling treatments. The MW decoupled dipole array demonstrated well-defined image profiles from each element and had better geometry factor over the array without decoupling treatments. The experimental results indicate that the MW decoupling technique might be a promising solution to reducing the electromagnetic coupling of dipole arrays in ultrahigh field MRI, consequently improving their performance in SNR and parallel imaging.
Si:Bi switched photoconducttor infrared detector array
NASA Technical Reports Server (NTRS)
Eakin, C. E.
1983-01-01
A multiplexed infrared detector array is described. The small demonstration prototype consisted of two cryogenically cooled, bismuth doped silicon, extrinsic photoconductor pixels multiplexed onto a single output channel using an on focal plane switch integration sampling technique. Noise levels of the order of 400 to 600 rms electrons per sample were demonstrated for this chip and wire hybrid version.
Ferroelectric liquid crystal device based photonic controllers for microwave antenna arrays
NASA Astrophysics Data System (ADS)
Madamopoulos, Nicholas
For the first time, this dissertation proposes, studies, analyzes, and experimentally demonstrates the use of ferroelectric liquid crystal (FLC) technology for wideband phased array control applications. FLC devices are used as polarization switches in photonic delay lines (PDLs) to control and process optical signals that drive the elements of a phased array antenna (PAA). The use of photonics for PAA control is, at present, a vital area of applied research. This dissertation work concludes with the demonstration of a multichannel 7-bit PDL system for a wideband PAA such as the Navy's advanced Aegis radar system. The unique system issues and problems to be examined and solved in this Ph.D. dissertation include the theoretical analysis and experimental demonstration of different PDL architectures covering a sub-nanosecond to several nanoseconds time delay range. New noise reduction/suppression schemes are proposed, studied and applied to give record level time delay system performance in terms of signal-to-leakage noise ratio, and switching speeds (e.g., 35 microseconds) required for fast radar scan. We show that the external modulation FO link gives more degrees of freedom to the system engineer, and we propose a novel synchronous RF signal calibration time delay control technique to obtain optimum dynamic range performance for our PDL. The use of low loss fibers for remoting of the photonic beamformer, as well as the losses associated with multiple fiber interconnects that limit the maximum number of array channels in the systems are studied. Different fiber optic coupling techniques are investigated for enhanced fiber coupling. Multimode fibers are used, for the first time, at the output plane of the PDL to obtain improved coupling efficiency. We demonstrate a low ~1.7 dB optical insertion loss/bit, which is very close to the desired insertion loss required for the Navy system. A novel approach for hardware reduction based on wavelength multiplexing is proposed, where the use of a combination of wavelength dependent and wavelength independent optical paths provides the required time delays. Finally, new switching fabric approaches are studied based on polarization selective holograms and their potential use for the implementation of PDLs is discussed.
Paillet, Frederick L.
1993-01-01
Nearly a decade of intensive geophysical logging at fractured rock hydrology research sites indicates that geophysical logs can be used to identify and characterize fractures intersecting boreholes. However, borehole-to-borehole flow tests indicate that only a few of the apparently open fractures found to intersect boreholes conduct flow under test conditions. This paper presents a systematic approach to fracture characterization designed to define the distribution of fractures along boreholes, relate the measured fracture distribution to structure and lithology of the rock mass, and define the nature of fracture flow paths across borehole arrays. Conventional electrical resistivity, gamma, and caliper logs are used to define lithology and large-scale structure. Borehole wall image logs obtained with the borehole televiewer are used to give the depth, orientation, and relative size of fractures in situ. High-resolution flowmeter measurements are used to identify fractures conducting flow in the rock mass adjacent to the boreholes. Changes in the flow field over time are used to characterize the hydraulic properties of fracture intersections between boreholes. Application of this approach to an array of 13 boreholes at the Mirror Lake, New Hamsphire site demonstrates that the transient flow analysis can be used to distinguish between fractures communicating with each other between observation boreholes, and those that are hydraulically isolated from each other in the surrounding rock mass. The Mirror Lake results also demonstrate that the method is sensitive to the effects of boreholes on the hydraulic properties of the fractured-rock aquifer. Experiments conducted before and after the drilling of additional boreholes in the array and before and after installation of packers in existing boreholes demonstrate that the presence of new boreholes or the inflation of packers in existing boreholes has a large effect on the measured hydraulic properties of the rock mass surrounding the borehole array. ?? 1993.
Sunlight-Driven Hydrogen Formation by Membrane-Supported Photoelectrochemical Water Splitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Nathan S.
2014-03-26
This report describes the significant advances in the development of the polymer-supported photoelectrochemical water-splitting system that was proposed under DOE grant number DE-FG02-05ER15754. We developed Si microwire-array photoelectrodes, demonstrated control over the material and light-absorption properties of the microwire-array photoelectrodes, developed inexpensive processes for synthesizing the arrays, and doped the arrays p-type for use as photocathodes. We also developed techniques for depositing metal-nanoparticle catalysts of the hydrogen-evolution reaction (HER) on the wire arrays, investigated the stability and catalytic performance of the nanoparticles, and demonstrated that Ni-Mo alloys are promising earth-abundant catalysts of the HER. We also developed methods that allowmore » reuse of the single-crystalline Si substrates used for microwire growth and methods of embedding the microwire photocathodes in plastic to enable large-scale processing and deployment of the technology. Furthermore we developed techniques for controlling the structure of WO3 films, and demonstrated that structural control can improve the quantum yield of photoanodes. Thus, by the conclusion of this project, we demonstrated significant advances in the development of all components of a sunlight-driven membrane-supported photoelectrochemical water-splitting system. This final report provides descriptions of some of the scientific accomplishments that were achieved under the support of this project and also provides references to the peer-reviewed publications that resulted from this effort.« less
Producibility of Vertically Integrated Photodiode (VIP)tm scanning focal plane arrays
NASA Astrophysics Data System (ADS)
Turner, Arthur M.; Teherani, Towfik; Ehmke, John C.; Pettitt, Cindy; Conlon, Peggy; Beck, Jeffrey D.; McCormack, Kent; Colombo, Luigi; Lahutsky, Tom; Murphy, Terry; Williams, Robert L.
1994-07-01
Vertically integrated photodiode, VIPTM, technology is now being used to produce second generation infrared focal plane arrays with high yields and performance. The VIPTM process employs planar, ion implanted, n on p diodes in HgCdTe which is epoxy hybridized directly to the read out integrated circuits on 100 mm Si wafers. The process parameters that are critical for high performance and yield include: HgCdTe dislocation density and thickness, backside passivation, frontside passivation, and junction formation. Producibility of infrared focal plane arrays (IRFPAs) is also significantly enhanced by read out integrated circuits (ROICs) which have the ability to deselect defective pixels. Cold probe screening before lab dewar assembly reduces costs and improves cycle times. The 240 X 1 and 240 X 2 scanning array formats are used to demonstrate the effect of process optimization, deselect, and cold probe screening on yield and cycle time. The versatility of the VIPTM technology and its extension to large area arrays is demonstrated using 240/288 X 4 and 480 X 5 TDI formats. Finally, the high performance of VIPTM IRFPAs is demonstrated by comparing data from a 480 X 5 to the SADA-II specification.
Spatiotemporal norepinephrine mapping using a high-density CMOS microelectrode array.
Wydallis, John B; Feeny, Rachel M; Wilson, William; Kern, Tucker; Chen, Tom; Tobet, Stuart; Reynolds, Melissa M; Henry, Charles S
2015-10-21
A high-density amperometric electrode array containing 8192 individually addressable platinum working electrodes with an integrated potentiostat fabricated using Complementary Metal Oxide Semiconductor (CMOS) processes is reported. The array was designed to enable electrochemical imaging of chemical gradients with high spatiotemporal resolution. Electrodes are arranged over a 2 mm × 2 mm surface area into 64 subarrays consisting of 128 individual Pt working electrodes as well as Pt pseudo-reference and auxiliary electrodes. Amperometric measurements of norepinephrine in tissue culture media were used to demonstrate the ability of the array to measure concentration gradients in complex media. Poly(dimethylsiloxane) microfluidics were incorporated to control the chemical concentrations in time and space, and the electrochemical response at each electrode was monitored to generate electrochemical heat maps, demonstrating the array's imaging capabilities. A temporal resolution of 10 ms can be achieved by simultaneously monitoring a single subarray of 128 electrodes. The entire 2 mm × 2 mm area can be electrochemically imaged in 64 seconds by cycling through all subarrays at a rate of 1 Hz per subarray. Monitoring diffusional transport of norepinephrine is used to demonstrate the spatiotemporal resolution capabilities of the system.
Self-bending elastic waves and obstacle circumventing in wireless power transfer
NASA Astrophysics Data System (ADS)
Tol, S.; Xia, Y.; Ruzzene, M.; Erturk, A.
2017-04-01
We demonstrate self-bending of elastic waves along convex trajectories by means of geometric and phased arrays. Potential applications include ultrasonic imaging and manipulation, wave focusing, and wireless power transfer around obstacles. The basic concept is illustrated through a geometric array, which is designed to implement a phase delay profile among the array elements that leads to self-bending along a specified circular trajectory. Experimental validation is conducted for the lowest asymmetric Lamb wave mode in a thin plate over a range of frequencies to investigate the bandwidth of the approach. Experiments also illustrate the functionality of the array as a transmitter to deliver elastic wave energy to a receiver/harvester located behind a large obstacle for electrical power extraction. It is shown that the trajectory is not distorted by the presence of the obstacle and circumventing is achieved. A linear phased array counterpart of the geometric array is then constructed to illustrate the concept by imposing proper time delays to the array elements, which allows the generation of different trajectories using the same line source. This capability is demonstrated by tailoring the path diameter in the phased array setting, which offers the flexibility and versatility to induce a variety of convex trajectories for self-bending elastic waves.
Fully parallel write/read in resistive synaptic array for accelerating on-chip learning
NASA Astrophysics Data System (ADS)
Gao, Ligang; Wang, I.-Ting; Chen, Pai-Yu; Vrudhula, Sarma; Seo, Jae-sun; Cao, Yu; Hou, Tuo-Hung; Yu, Shimeng
2015-11-01
A neuro-inspired computing paradigm beyond the von Neumann architecture is emerging and it generally takes advantage of massive parallelism and is aimed at complex tasks that involve intelligence and learning. The cross-point array architecture with synaptic devices has been proposed for on-chip implementation of the weighted sum and weight update in the learning algorithms. In this work, forming-free, silicon-process-compatible Ta/TaO x /TiO2/Ti synaptic devices are fabricated, in which >200 levels of conductance states could be continuously tuned by identical programming pulses. In order to demonstrate the advantages of parallelism of the cross-point array architecture, a novel fully parallel write scheme is designed and experimentally demonstrated in a small-scale crossbar array to accelerate the weight update in the training process, at a speed that is independent of the array size. Compared to the conventional row-by-row write scheme, it achieves >30× speed-up and >30× improvement in energy efficiency as projected in a large-scale array. If realistic synaptic device characteristics such as device variations are taken into an array-level simulation, the proposed array architecture is able to achieve ∼95% recognition accuracy of MNIST handwritten digits, which is close to the accuracy achieved by software using the ideal sparse coding algorithm.
Measurement of transverse emittance and coherence of double-gate field emitter array cathodes
Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne
2016-01-01
Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918
Measurement of transverse emittance and coherence of double-gate field emitter array cathodes
NASA Astrophysics Data System (ADS)
Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne
2016-12-01
Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.
Design and Fabrication Highlights Enabling a 2 mm, 128 Element Bolometer Array for GISMO
NASA Technical Reports Server (NTRS)
Allen, Christine; Benford, Dominic; Miller, Timothy; Staguhn, Johannes; Wollack, Edward; Moseley, Harvey
2007-01-01
The Backshort-Under-Grid (BUG) superconducting bolometer array architecture is intended to be highly versatile, operating in a large range of wavelengths and background conditions. We have undertaken a three-year program to develop key technologies and processes required to build kilopixel arrays. To validate the basic array design and to demonstrate its applicability for future kilopixel arrays, we have chosen to demonstrate a 128 element bolometer array optimized for 2 mm wavelength using a newly built Goddard instrument, GISMO (Goddard /RAM Superconducting 2-millimeter Observer). The arrays are fabricated using batch wafer processing developed and optimized for high pixel yield, low noise, and high uniformity. The molybdenum-gold superconducting transition edge sensors are fabricated using batch sputter deposition and are patterned using dry etch techniques developed at Goddard. With a detector pitch of 2 mm 8x16 array for GISMO occupies nearly one half of the processing area of a 100 mm silicon-on-insulator starting wafer. Two such arrays are produced from a single wafer along with witness samples for process characterization. To provide thermal isolation for the detector elements, at the end of the process over 90% of the silicon must be removed using deep reactive ion etching techniques. The electrical connections for each bolometer element are patterned on the top edge of the square grid supporting the array. The design considerations unique to GISMO, key fabrication challenges, and laboratory experimental results will be presented.
DAnTE: a statistical tool for quantitative analysis of –omics data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polpitiya, Ashoka D.; Qian, Weijun; Jaitly, Navdeep
2008-05-03
DAnTE (Data Analysis Tool Extension) is a statistical tool designed to address challenges unique to quantitative bottom-up, shotgun proteomics data. This tool has also been demonstrated for microarray data and can easily be extended to other high-throughput data types. DAnTE features selected normalization methods, missing value imputation algorithms, peptide to protein rollup methods, an extensive array of plotting functions, and a comprehensive ANOVA scheme that can handle unbalanced data and random effects. The Graphical User Interface (GUI) is designed to be very intuitive and user friendly.
NASA Astrophysics Data System (ADS)
Jiang, Shulan; Shi, Tielin; Gao, Yang; Long, Hu; Xi, Shuang; Tang, Zirong
2014-04-01
An easily accessible method is proposed for the fabrication of a 3D micro/nano dual-scale carbon array with a large surface area. The process mainly consists of three critical steps. Firstly, a hemispherical photoresist micro-array was obtained by the cost-effective nanoimprint lithography process. Then the micro-array was transformed into hierarchical structures with longitudinal nanowires on the microstructure surface by oxygen plasma etching. Finally, the micro/nano dual-scale carbon array was fabricated by carbonizing these hierarchical photoresist structures. It has also been demonstrated that the micro/nano dual-scale carbon array can be used as the microelectrodes for supercapacitors by the electrodeposition of a manganese dioxide (MnO2) film onto the hierarchical carbon structures with greatly enhanced electrochemical performance. The specific gravimetric capacitance of the deposited micro/nano dual-scale microelectrodes is estimated to be 337 F g-1 at the scan rate of 5 mV s-1. This proposed approach of fabricating a micro/nano dual-scale carbon array provides a facile way in large-scale microstructures’ manufacturing for a wide variety of applications, including sensors and on-chip energy storage devices.
Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array.
Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J; Urbas, Augustine
2016-10-10
In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed "algorithmic spectrometry". We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme.
High Resolution Radar for NASA and Space Situational Awareness for Observation and Monitoring
NASA Astrophysics Data System (ADS)
Geldzahler, B.; D'Addario, L.; Ott, M.; Birr, R.; Woods, G.; Miller, M.
2014-09-01
NASA has embarked on a series of demonstrations that will enable the implementation of a high power, high resolution X/Ka-band radar system using a phased array of widely spaced 12m antennas to better track and characterize near Earth objects and orbital debris. This radar system also has applications for cost effective space situational awareness. Ka band can provide 5cm ranging resolution, and, with arrays in the western United States and Australia used in an astrometric mode, ? 10 cm resolution at GEO. Here we report the results of a successful X-band demonstration of coherent uplink arraying with real time compensation for atmospheric phase fluctuations at the Kennedy Space Center (KSC) using a system simplified from work previously undertaken. The X-band system is a prelude to the Ka-band work currently underway. The target satellites were components of the DSCS and WGS systems. KSC was chosen for the demonstration site because [a] of reduced implementation costs, [b] there is a lot of water vapor in the air (not Ka-band friendly), and [c] some of the test satellites have low elevations thereby adding more attenuation and turbulence to the demonstration. When Ka-band coherent uplink arraying is demonstrated to work at KSC, it will work and can be deployed anywhere.
Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S
2015-12-28
Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.
Shipstead, Zach; Engle, Randall W
2013-01-01
One approach to understanding working memory (WM) holds that individual differences in WM capacity arise from the amount of information a person can store in WM over short periods of time. This view is especially prevalent in WM research conducted with the visual arrays task. Within this tradition, many researchers have concluded that the average person can maintain approximately 4 items in WM. The present study challenges this interpretation by demonstrating that performance on the visual arrays task is subject to time-related factors that are associated with retrieval from long-term memory. Experiment 1 demonstrates that memory for an array does not decay as a product of absolute time, which is consistent with both maintenance- and retrieval-based explanations of visual arrays performance. Experiment 2 introduced a manipulation of temporal discriminability by varying the relative spacing of trials in time. We found that memory for a target array was significantly influenced by its temporal compression with, or isolation from, a preceding trial. Subsequent experiments extend these effects to sub-capacity set sizes and demonstrate that changes in the size of k are meaningful to prediction of performance on other measures of WM capacity as well as general fluid intelligence. We conclude that performance on the visual arrays task does not reflect a multi-item storage system but instead measures a person's ability to accurately retrieve information in the face of proactive interference.
Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza
2017-01-01
A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.
Dielectrophoresis-Assisted Integration of 1024 Carbon Nanotube Sensors into a CMOS Microsystem.
Seichepine, Florent; Rothe, Jörg; Dudina, Alexandra; Hierlemann, Andreas; Frey, Urs
2017-05-01
Carbon-nanotube (CNT)-based sensors offer the potential to detect single-molecule events and picomolar analyte concentrations. An important step toward applications of such nanosensors is their integration in large arrays. The availability of large arrays would enable multiplexed and parallel sensing, and the simultaneously obtained sensor signals would facilitate statistical analysis. A reliable method to fabricate an array of 1024 CNT-based sensors on a fully processed complementary-metal-oxide-semiconductor microsystem is presented. A high-yield process for the deposition of CNTs from a suspension by means of liquid-coupled floating-electrode dielectrophoresis (DEP), which yielded 80% of the sensor devices featuring between one and five CNTs, is developed. The mechanism of floating-electrode DEP on full arrays and individual devices to understand its self-limiting behavior is studied. The resistance distributions across the array of CNT devices with respect to different DEP parameters are characterized. The CNT devices are then operated as liquid-gated CNT field-effect-transistors (LG-CNTFET) in liquid environment. Current dependency to the gate voltage of up to two orders of magnitude is recorded. Finally, the sensors are validated by studying the pH dependency of the LG-CNTFET conductance and it is demonstrated that 73% of the CNT sensors of a given microsystem show a resistance decrease upon increasing the pH value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hossain, Md Eftekhar; Rahman, G M Aminur; Freund, Michael S; Jayas, Digvir S; White, Noel D G; Shafai, Cyrus; Thomson, Douglas J
2012-03-21
During storage, grain can experience significant degradation in quality due to a variety of physical, chemical, and biological interactions. Most commonly, these losses are associated with insects or fungi. Continuous monitoring and an ability to differentiate between sources of spoilage are critical for rapid and effective intervention to minimize deterioration or losses. Therefore, there is a keen interest in developing a straightforward, cost-effective, and efficient method for monitoring of stored grain. Sensor arrays are currently used for classifying liquors, perfumes, and the quality of food products by mimicking the mammalian olfactory system. The use of this technology for monitoring of stored grain and identification of the source of spoilage is a new application, which has the potential for broad impact. The main focus of the work described herein is on the fabrication and optimization of a carbon black (CB) polymer sensor array to monitor stored grain model volatiles associated with insect secretions (benzene derivatives) and fungi (aliphatic hydrocarbon derivatives). Various methods of statistical analysis (RSD, PCA, LDA, t test) were used to select polymers for the array that were optimum for distinguishing between important compound classes (quinones, alcohols) and to minimize the sensitivity for other parameters such as humidity. The performance of the developed sensor array was satisfactory to demonstrate identification and separation of stored grain model volatiles at ambient conditions.
High speed holographic digital recorder.
Roberts, H N; Watkins, J W; Johnson, R H
1974-04-01
Concepts, feasibility experiments, and key component developments are described for a holographic digital record/reproduce system with the potential for 1.0 Gbit/sec rates and higher. Record rates of 500 Mbits/sec have been demonstrated with a ten-channel acoustooptic modulator array and a mode-locked, cavity-dumped argon-ion laser. Acoustooptic device technology has been advanced notably during the development of mode lockers, cavity dumpers, beam deflectors, and multichannel modulator arrays. The development of high speed multichannel photodetector arrays for the readout subsystem requires special attention. The feasibility of 1.0 Gbits/sec record rates has been demonstrated.
NASA Astrophysics Data System (ADS)
Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.
2017-07-01
We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.
Integrated Solar-Panel Antenna Array for CubeSats
NASA Technical Reports Server (NTRS)
Baktur, Reyhan
2016-01-01
The goal of the Integrated Solar-Panel Antenna Array for CubeSats (ISAAC) project is to design and demonstrate an effective and efficien toptically transparent, high-gain, lightweight, conformal X-band antenna array that is integrated with the solar panels of a CubeSat. The targeted demonstration is for a Near Earth Network (NEN)radio at X-band, but the design can be easilyscaled to other network radios for higher frequencies. ISAAC is a less expensive and more flexible design for communication systemscompared to a deployed dish antenna or the existing integrated solar panel antenna design.
NASA Astrophysics Data System (ADS)
Ajo Franklin, J. B.; Lindsey, N.; Wagner, A. M.; Dou, S.; Martin, E. R.; Ekblaw, I.; Ulrich, C.; James, S. R.; Freifeld, B. M.; Daley, T. M.
2016-12-01
Distributed Acoustic Sensing (DAS) is a recently developed technique that allows the spatially dense ( 1m) continuous recording of seismic signals on long strands of commercial fiber optic cables. The availability of continuous recording on dense arrays offers unique possibilities for long-term timelapse monitoring of environmental processes in arctic environments. In the absence of a repeatable semi-permanent seismic source, the use of ambient surface wave noise from infrastructure use (e.g. moving vehicles) for seismic imaging allows tomographic monitoring of evolving subsurface systems. Challenges in such scenarios include (1) the processing requirements for dense (1000+ channel) arrays recording weeks to months of seismic data, (2) appropriate methods to retrieve empirical noise correlation functions (NCFs) in environments with non-optimal array geometries and both coherent as well as incoherent noise, and (3) semi-automated approaches to invert timelapse NCFs for near-surface soil properties.We present an exploratory study of data from a sparse 2D DAS array acquisition on 4000 linear meters of trenched fiber deployed in 10 crossing profiles. The dataset, collected during July and August of 2016, covers a zone of permafrost undergoing a controlled thaw induced by an array of resistive heaters. The site, located near a heavily used road, has a high level of infrastructure noise but exhibits distance-dependent variation in both noise amplitude and spectrum. We apply seismic interferometry to retrieve the empirical NCF across array subsections, and use collocated geophone and broadband sensors to measure the NCF against the true impulse response function of the medium. We demonstrate that the combination of vehicle tracking and data windowing allows improved reconstruction of stable NCFs appropriate for dispersion analysis and inversion. We also show both spatial and temporal patterns of background noise at the site using 2D beamforming and spectral analysis. Our results suggest that valuable information can be extracted from ambient noise recorded with DAS, particularly in the context of monitoring transformations in cold region environments.
Holloway, Andrew J; Oshlack, Alicia; Diyagama, Dileepa S; Bowtell, David DL; Smyth, Gordon K
2006-01-01
Background Concerns are often raised about the accuracy of microarray technologies and the degree of cross-platform agreement, but there are yet no methods which can unambiguously evaluate precision and sensitivity for these technologies on a whole-array basis. Results A methodology is described for evaluating the precision and sensitivity of whole-genome gene expression technologies such as microarrays. The method consists of an easy-to-construct titration series of RNA samples and an associated statistical analysis using non-linear regression. The method evaluates the precision and responsiveness of each microarray platform on a whole-array basis, i.e., using all the probes, without the need to match probes across platforms. An experiment is conducted to assess and compare four widely used microarray platforms. All four platforms are shown to have satisfactory precision but the commercial platforms are superior for resolving differential expression for genes at lower expression levels. The effective precision of the two-color platforms is improved by allowing for probe-specific dye-effects in the statistical model. The methodology is used to compare three data extraction algorithms for the Affymetrix platforms, demonstrating poor performance for the commonly used proprietary algorithm relative to the other algorithms. For probes which can be matched across platforms, the cross-platform variability is decomposed into within-platform and between-platform components, showing that platform disagreement is almost entirely systematic rather than due to measurement variability. Conclusion The results demonstrate good precision and sensitivity for all the platforms, but highlight the need for improved probe annotation. They quantify the extent to which cross-platform measures can be expected to be less accurate than within-platform comparisons for predicting disease progression or outcome. PMID:17118209
Experimental results for a prototype 3-D acoustic imaging system using an ultra-sparse planar array
NASA Astrophysics Data System (ADS)
Impagliazzo, John M.; Chiang, Alice M.; Broadstone, Steven R.
2002-11-01
A handheld high resolution sonar has been under development to provide Navy Divers with a 3-D acoustic imaging system for mine reconnaissance. An ultra-sparse planar array, consisting of 121 1 mm x1 mm, 2 MHz elements, was fabricated to provide 3-D acoustic images. The array was 10 cm x10 cm. A full array at this frequency with elements at half-wavelength spacing would consist of 16384 elements. The first phase of testing of the planar array was completed in September 2001 with the characterization of the array in the NUWC Acoustic Test Facility (ATF). The center frequency was 2 MHz with a 667 kHz bandwidth. A system-level technology demonstration will be conducted in July 2002 with a real-time beamformer and near real-time 3-D imaging software. The demonstration phase consists of imaging simple targets at a range of 3 m in the ATF. Experimental results obtained will be reported on. [Work supported by the Defense Applied Research Project Agency, Advance Technology Office, Dr. Theo Kooij, Program Manager.
Patterson, Brian M; Havrilla, George J
2006-11-01
The number of techniques and instruments available for Fourier transform infrared (FT-IR) microspectroscopic imaging has grown significantly over the past few years. Attenuated total internal reflectance (ATR) FT-IR microspectroscopy reduces sample preparation time and has simplified the analysis of many difficult samples. FT-IR imaging has become a powerful analytical tool using either a focal plane array or a linear array detector, especially when coupled with a chemometric analysis package. The field of view of the ATR-IR microspectroscopic imaging area can be greatly increased from 300 x 300 microm to 2500 x 2500 microm using a larger internal reflection element of 12.5 mm radius instead of the typical 1.5 mm radius. This gives an area increase of 70x before aberrant effects become too great. Parameters evaluated include the change in penetration depth as a function of beam displacement, measurements of the active area, magnification factor, and change in spatial resolution over the imaging area. Drawbacks such as large file size will also be discussed. This technique has been successfully applied to the FT-IR imaging of polydimethylsiloxane foam cross-sections, latent human fingerprints, and a model inorganic mixture, which demonstrates the usefulness of the method for pharmaceuticals.
Robertson, Albert J.; Trost, Brett; Scruten, Erin; Robertson, Thomas; Mostajeran, Mohammad; Connor, Wayne; Kusalik, Anthony; Griebel, Philip; Napper, Scott
2014-01-01
Recent investigations associate Varroa destructor (Mesostigmata: Varroidae) parasitism and its associated pathogens and agricultural pesticides with negative effects on colony health, resulting in sporadic global declines in domestic honeybee (Apis mellifera) populations. These events have motivated efforts to develop research tools that can offer insight into the causes of declining bee health as well as identify biomarkers to guide breeding programs. Here we report the development of a bee-specific peptide array for characterizing global cellular kinase activity in whole bee extracts. The arrays reveal distinct, developmentally-specific signaling profiles between bees with differential susceptibility to infestation by Varroa mites. Gene ontology analysis of the differentially phosphorylated peptides indicates that the differential susceptibility to Varroa mite infestation does not reflect compromised immunity; rather, there is evidence for mite-mediated immune suppression within the susceptible phenotype that may reduce the ability of these bees to counter secondary viral infections. This hypothesis is supported by the demonstration of more diverse viral infections in mite-infested, susceptible adult bees. The bee-specific peptide arrays are an effective tool for understanding the molecular basis of this complex phenotype as well as for the discovery and utilization of phosphorylation biomarkers for breeding programs. PMID:24904639
Hashim, Noor Haza Fazlin; Bharudin, Izwan; Abu Bakar, Mohd Faizal; Huang, Kie Kyon; Alias, Halimah; Lee, Bernard K. B.; Mat Isa, Mohd Noor; Mat-Sharani, Shuhaila; Sulaiman, Suhaila; Tay, Lih Jinq; Zolkefli, Radziah; Muhammad Noor, Yusuf; Law, Douglas Sie Nguong; Abdul Rahman, Siti Hamidah; Md-Illias, Rosli; Abu Bakar, Farah Diba; Najimudin, Nazalan; Abdul Murad, Abdul Munir; Mahadi, Nor Muhammad
2018-01-01
Extremely low temperatures present various challenges to life that include ice formation and effects on metabolic capacity. Psyhcrophilic microorganisms typically have an array of mechanisms to enable survival in cold temperatures. In this study, we sequenced and analysed the genome of a psychrophilic yeast isolated in the Antarctic region, Glaciozyma antarctica. The genome annotation identified 7857 protein coding sequences. From the genome sequence analysis we were able to identify genes that encoded for proteins known to be associated with cold survival, in addition to annotating genes that are unique to G. antarctica. For genes that are known to be involved in cold adaptation such as anti-freeze proteins (AFPs), our gene expression analysis revealed that they were differentially transcribed over time and in response to different temperatures. This indicated the presence of an array of adaptation systems that can respond to a changing but persistent cold environment. We were also able to validate the activity of all the AFPs annotated where the recombinant AFPs demonstrated anti-freeze capacity. This work is an important foundation for further collective exploration into psychrophilic microbiology where among other potential, the genes unique to this species may represent a pool of novel mechanisms for cold survival. PMID:29385175
Sun, Meng; Yan, Donghui; Yang, Xiaolu; Xue, Xingyang; Zhou, Sujuan; Liang, Shengwang; Wang, Shumei; Meng, Jiang
2017-05-01
Raw Arecae Semen, the seed of Areca catechu L., as well as Arecae Semen Tostum and Arecae semen carbonisata are traditionally processed by stir-baking for subsequent use in a variety of clinical applications. These three Arecae semen types, important Chinese herbal drugs, have been used in China and other Asian countries for thousands of years. In this study, the sensory technologies of a colorimeter and sensitive validated high-performance liquid chromatography with diode array detection were employed to discriminate raw Arecae semen and its processed drugs. The color parameters of the samples were determined by a colorimeter instrument CR-410. Moreover, the fingerprints of the four alkaloids of arecaidine, guvacine, arecoline and guvacoline were surveyed by high-performance liquid chromatography. Subsequently, Student's t test, the analysis of variance, fingerprint similarity analysis, hierarchical cluster analysis, principal component analysis, factor analysis and Pearson's correlation test were performed for final data analysis. The results obtained demonstrated a significant color change characteristic for components in raw Arecae semen and its processed drugs. Crude and processed Arecae semen could be determined based on colorimetry and high-performance liquid chromatography with a diode array detector coupled with chemometrics methods for a comprehensive quality evaluation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Gin-Shin; Lin, Che-Yu; Jeong, Jong Seob; Cannata, Jonathan M.; Lin, Win-Li; Chang, Hsu; Shung, K. Kirk
2013-01-01
A dual-curvature focused ultrasound phased-array transducer with a symmetric control has been developed for noninvasive ablative treatment of tumors. The 1.5-D array was constructed in-house and the electro-acoustic conversion efficiency was measured to be approximately 65%. In vitro experiments demonstrated that the array uses 256 independent elements to achieve 2-D wide-range high-intensity electronic focusing. PMID:22293745
Synthetic Aperture Imaging Polarimeter: Postprint
2010-02-01
mechanical design of the SAlP prototype revol .... es around the concept of a modular array. The modular aspect allows for the array to be built in...imagery of source . The top row images are of the actual fringe pattern incident on the SAlP prototype array. These pictures were taken through the...processed images associated with each of the inputs. The results demonstrated that the SAlP prototype array works in conjunction with the algorithm
The Advanced Photovoltaic Solar Array (APSA) technology status and performance
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Kurland, Richard M.
1991-01-01
In 1985, the Jet Propulsion Laboratory initiated the Advanced Photovoltaic Solar Array (APSA) program. The program objective is to demonstrate a producible array system by the early 1990s with a specific performance of at least 130 W/kG (beginning-of-life) as an intermediate milestone towards the long range goal of 300 W/kG. The APSA performance represents an approximately four-fold improvement over existing rigid array technology and a doubling of the performance of the first generation NASA/OAST SAFE flexible blanket array of the early 1980s.
Stretched Lens Array (SLA) Photovoltaic Concentrator Hardware Development and Testing
NASA Technical Reports Server (NTRS)
Piszczor, Michael; O'Neill, Mark J.; Eskenazi, Michael
2003-01-01
Over the past two years, the Stretched Lens Array (SLA) photovoltaic concentrator has evolved, under a NASA contract, from a concept with small component demonstrators to operational array hardware that is ready for space validation testing. A fully-functional four panel SLA solar array has been designed, built and tested. This paper will summarize the focus of the hardware development effort, discuss the results of recent testing conducted under this program and present the expected performance of a full size 7kW array designed to meet the requirements of future space missions.
Huang, Yunrui; Zhou, Qingxiang; Xie, Guohong
2013-01-01
Fungicides have been widely used throughout the world, and the resulted pollution has absorbed great attention in recent years. Present study described an effective measurement technique for fungicides including thiram, metalaxyl, diethofencarb, myclobutanil and tebuconazole in environmental water samples. A micro-solid phase extraction (μSPE) was developed utilizing ordered TiO(2) nanotube array for determination of target fungicides prior to a high performance liquid chromatography (HPLC). The experimental results indicated that TiO(2) nanotube arrays demonstrated excellent merits on the preconcentration of fungicides, and excellent linear relationship between peak area and the concentration of fungicides was obtained in the range of 0.1-50 μg L(-1). The detection limits for the targeted fungicides were in the range of 0.016-0.086 μg L(-1) (S/N=3). Four real environmental water samples were used to validate the applicability of the proposed method, and good spiked recoveries in the range of 73.9-114% were achieved. A comparison of present method with conventional solid phase extraction was made and the results exhibited that proposed method resulted in better recoveries. The results demonstrated that this μ-SPE technique was a viable alternative for the analysis of fungicides in complex samples. Copyright © 2012 Elsevier Ltd. All rights reserved.
Scherer, James R; Liu, Peng; Mathies, Richard A
2010-11-01
We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.
NASA Astrophysics Data System (ADS)
Scherer, James R.; Liu, Peng; Mathies, Richard A.
2010-11-01
We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.
Scholma, Jetse; Fuhler, Gwenny M.; Joore, Jos; Hulsman, Marc; Schivo, Stefano; List, Alan F.; Reinders, Marcel J. T.; Peppelenbosch, Maikel P.; Post, Janine N.
2016-01-01
Massive parallel analysis using array technology has become the mainstay for analysis of genomes and transcriptomes. Analogously, the predominance of phosphorylation as a regulator of cellular metabolism has fostered the development of peptide arrays of kinase consensus substrates that allow the charting of cellular phosphorylation events (often called kinome profiling). However, whereas the bioinformatical framework for expression array analysis is well-developed, no advanced analysis tools are yet available for kinome profiling. Especially intra-array and interarray normalization of peptide array phosphorylation remain problematic, due to the absence of “housekeeping” kinases and the obvious fallacy of the assumption that different experimental conditions should exhibit equal amounts of kinase activity. Here we describe the development of analysis tools that reliably quantify phosphorylation of peptide arrays and that allow normalization of the signals obtained. We provide a method for intraslide gradient correction and spot quality control. We describe a novel interarray normalization procedure, named repetitive signal enhancement, RSE, which provides a mathematical approach to limit the false negative results occuring with the use of other normalization procedures. Using in silico and biological experiments we show that employing such protocols yields superior insight into cellular physiology as compared to classical analysis tools for kinome profiling. PMID:27225531
Chronic In Vivo Stability Assessment of Carbon Fiber Microelectrode Arrays
Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.
2016-01-01
Objective Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks. PMID:27705958
Chronic in vivo stability assessment of carbon fiber microelectrode arrays
NASA Astrophysics Data System (ADS)
Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.
2016-12-01
Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.
Phased Array Radar Network Experiment for Severe Weather
NASA Astrophysics Data System (ADS)
Ushio, T.; Kikuchi, H.; Mega, T.; Yoshikawa, E.; Mizutani, F.; Takahashi, N.
2017-12-01
Phased Array Weather Radar (PAWR) was firstly developed in 2012 by Osaka University and Toshiba under a grant of NICT using the Digital Beamforming Technique, and showed a impressive thunderstorm behavior with 30 second resolution. After that development, second PAWR was installed in Kobe city about 60 km away from the first PAWR site, and Tokyo Metropolitan University, Osaka Univeristy, Toshiba and the Osaka Local Government started a new project to develop the Osaka Urban Demonstration Network. The main sensor of the Osaka Network is a 2-node Phased Array Radar Network and lightning location system. Data products that are created both in local high performance computer and Toshiba Computer Cloud, include single and multi-radar data, vector wind, quantitative precipitation estimation, VIL, nowcasting, lightning location and analysis. Each radar node is calibarated by the baloon measurement and through the comparison with the GPM (Global Precipitation Measurement)/ DPR (Dual Frequency Space borne Radar) within 1 dB. The attenuated radar reflectivities obtained by the Phased Array Radar Network at X band are corrected based on the bayesian scheme proposed in Shimamura et al. [2016]. The obtained high resolution (every 30 seconds/ 100 elevation angles) 3D reflectivity and rain rate fields are used to nowcast the surface rain rate up to 30 minutes ahead. These new products are transferred to Osaka Local Government in operational mode and evaluated by several section in Osaka Prefecture. Furthermore, a new Phased Array Radar with polarimetric function has been developed in 2017, and will be operated in the fiscal year of 2017. In this presentation, Phased Array Radar, network architecuture, processing algorithm, evalution of the social experiment and first Multi-Prameter Phased Array Radar experiment are presented.
Salehi, Reza; Tsoi, Stephen C M; Colazo, Marcos G; Ambrose, Divakar J; Robert, Claude; Dyck, Michael K
2017-01-30
Early embryonic loss is a large contributor to infertility in cattle. Moreover, bovine becomes an interesting model to study human preimplantation embryo development due to their similar developmental process. Although genetic factors are known to affect early embryonic development, the discovery of such factors has been a serious challenge. Microarray technology allows quantitative measurement and gene expression profiling of transcript levels on a genome-wide basis. One of the main decisions that have to be made when planning a microarray experiment is whether to use a one- or two-color approach. Two-color design increases technical replication, minimizes variability, improves sensitivity and accuracy as well as allows having loop designs, defining the common reference samples. Although microarray is a powerful biological tool, there are potential pitfalls that can attenuate its power. Hence, in this technical paper we demonstrate an optimized protocol for RNA extraction, amplification, labeling, hybridization of the labeled amplified RNA to the array, array scanning and data analysis using the two-color analysis strategy.
Geng, Tao; Bredeweg, Erin L.; Szymanski, Craig J.; ...
2015-11-04
Here, interrogating polarized growth is technologically challenging due to extensive cellular branching and uncontrollable environmental conditions in conventional assays. Here we present a robust and high-performance microfluidic system that enables observations of polarized growth with enhanced temporal and spatial control over prolonged periods. The system has built-in tunability and versatility to accommodate a variety of science applications requiring precisely controlled environments. Using the model filamentous fungus, Neurospora crassa, this microfluidic system enabled direct visualization and analysis of cellular heterogeneity in a clonal fungal cell population, nuclear distribution and dynamics at the subhyphal level, and quantitative dynamics of gene expression withmore » single hyphal compartment resolution in response to carbon source starvation and exchange experiments. Although the microfluidic device is demonstrated on filamentous fungi, our technology is immediately extensible to a wide array of other biosystems that exhibit similar polarized cell growth with applications ranging from bioenergy production to human health.« less
Mountain building triggered late cretaceous North American megaherbivore dinosaur radiation.
Gates, Terry A; Prieto-Márquez, Albert; Zanno, Lindsay E
2012-01-01
Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB). Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone.
Mountain Building Triggered Late Cretaceous North American Megaherbivore Dinosaur Radiation
Gates, Terry A.; Prieto-Márquez, Albert; Zanno, Lindsay E.
2012-01-01
Prior studies of Mesozoic biodiversity document a diversity peak for dinosaur species in the Campanian stage of the Late Cretaceous, yet have failed to provide explicit causal mechanisms. We provide evidence that a marked increase in North American dinosaur biodiversity can be attributed to dynamic orogenic episodes within the Western Interior Basin (WIB). Detailed fossil occurrences document an association between the shift from Sevier-style, latitudinally arrayed basins to smaller Laramide-style, longitudinally arrayed basins and a well substantiated decreased geographic range/increased taxonomic diversity of megaherbivorous dinosaur species. Dispersal-vicariance analysis demonstrates that the nearly identical biogeographic histories of the megaherbivorous dinosaur clades Ceratopsidae and Hadrosauridae are attributable to rapid diversification events within restricted basins and that isolation events are contemporaneous with known tectonic activity in the region. SymmeTREE analysis indicates that megaherbivorous dinosaur clades exhibited significant variation in diversification rates throughout the Late Cretaceous. Phylogenetic divergence estimates of fossil clades offer a new lower boundary on Laramide surficial deformation that precedes estimates based on sedimentological data alone. PMID:22876302
Security enhancement of optical encryption based on biometric array keys
NASA Astrophysics Data System (ADS)
Yan, Aimin; Wei, Yang; Zhang, Jingtao
2018-07-01
A novel optical image encryption method is proposed by using Dammann grating and biometric array keys. Dammann grating is utilized to create a 2D finite uniform-intensity spot array. In encryption, a fingerprint array is used as private encryption keys. An original image can be encrypted by a scanning Fresnel zone plate array. Encrypted signals are processed by an optical coherent heterodyne detection system. Biometric array keys and optical scanning cryptography are integrated with each other to enhance information security greatly. Numerical simulations are performed to demonstrate the feasibility and validity of this method. Analyses on key sensitivity and the resistance against to possible attacks are provided.
MnO 2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors
NASA Astrophysics Data System (ADS)
Xia, Hui; Feng, Jinkui; Wang, Hailong; Lai, Man On; Lu, Li
Highly ordered MnO 2 nanotube and nanowire arrays are successfully synthesized via a electrochemical deposition technique using porous alumina templates. The morphologies and microstructures of the MnO 2 nanotube and nanowire arrays are investigated by field emission scanning electron microscopy and transmission electron microscopy. Electrochemical characterization demonstrates that the MnO 2 nanotube array electrode has superior capacitive behaviour to that of the MnO 2 nanowire array electrode. In addition to high specific capacitance, the MnO 2 nanotube array electrode also exhibits good rate capability and good cycling stability, which makes it promising candidate for supercapacitors.
Jackson, Eric M.; Sievert, Angela J.; Gai, Xiaowu; Hakonarson, Hakon; Judkins, Alexander R; Tooke, Laura; Perin, Juan Carlos; Xie, Hongbo; Shaikh, Tamim H.; Biegel, Jaclyn A.
2009-01-01
Translational Relevance Previous reports suggested that abnormalities of INI1 could be detected in 70–75% of malignant rhabdoid tumors. The mechanism of inactivation in the other 25% remained unclear. The goal of this study was to perform a high-resolution genomic analysis of a large series of rhabdoid tumors with the expectation of identifying additional loci related to the initiation or progression of these malignancies. We also developed a comprehensive set of assays, including a new MLPA assay, to interrogate the INI1 locus in 22q11.2. Intragenic deletions could be detected using the Illumina 550K Beadchip, whereas single exon deletions could be detected using MLPA. The current study demonstrates that with a multi-platform approach, alterations at the INI1 locus can be detected in almost all cases. Thus, appropriate molecular genetic testing can be used as an aid in the diagnosis and for treatment planning for most patients. Purpose A high-resolution genomic profiling and comprehensive targeted analysis of INI1/SMARCB1 of a large series of pediatric rhabdoid tumors was performed. The aim was to identify regions of copy number change and loss of heterozygosity that might pinpoint additional loci involved in the development or progression of rhabdoid tumors, and define the spectrum of genomic alterations of INI1 in this malignancy. Experimental Design A multi-platform approach, utilizing Illumina single nucleotide polymorphism (SNP) based oligonucleotide arrays, multiplex ligation dependent probe amplification (MLPA), fluorescence in situ hybridization (FISH), and coding sequence analysis was used to characterize genome wide copy number changes, loss of heterozygosity, and genomic alterations of INI1/SMARCB1 in a series of pediatric rhabdoid tumors. Results The bi-allelic alterations of INI1 that led to inactivation were elucidated in 50 of 51 tumors. INI1 inactivation was demonstrated by a variety of mechanisms, including deletions, mutations, and loss of heterozygosity. The results from the array studies highlighted the complexity of rearrangements of chromosome 22, compared to the low frequency of alterations involving the other chromosomes. Conclusions The results from the genome wide SNP-array analysis suggest that INI1 is the primary tumor suppressor gene involved in the development of rhabdoid tumors with no second locus identified. In addition, we did not identify hot spots for the breakpoints in sporadic tumors with deletions of chromosome 22q11.2. By employing a multimodality approach, the wide spectrum of alterations of INI1 can be identified in the majority of patients, which increases the clinical utility of molecular diagnostic testing. PMID:19276269
Directed liquid phase assembly of highly ordered metallic nanoparticle arrays
Wu, Yueying; Dong, Nanyi; Fu, Shaofang; ...
2014-04-01
Directed assembly of nanomaterials is a promising route for the synthesis of advanced materials and devices. We demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal–solid substrate interaction potential drives the directed assembly. Lastly, asmore » an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.« less
NASA Technical Reports Server (NTRS)
Gentzsch, W.
1982-01-01
Problems which can arise with vector and parallel computers are discussed in a user oriented context. Emphasis is placed on the algorithms used and the programming techniques adopted. Three recently developed supercomputers are examined and typical application examples are given in CRAY FORTRAN, CYBER 205 FORTRAN and DAP (distributed array processor) FORTRAN. The systems performance is compared. The addition of parts of two N x N arrays is considered. The influence of the architecture on the algorithms and programming language is demonstrated. Numerical analysis of magnetohydrodynamic differential equations by an explicit difference method is illustrated, showing very good results for all three systems. The prognosis for supercomputer development is assessed.
Do textbooks address known learning challenges in area measurement? A comparative analysis
NASA Astrophysics Data System (ADS)
Hong, Dae S.; Choi, Kyong Mi; Runnalls, Cristina; Hwang, Jihyun
2018-02-01
This study compared area lessons from Korean textbooks and US standard-based textbooks to understand differences and similarities among these textbooks, as well as how these textbooks address known learning challenges in area measurement. Several well-known challenges have been identified in previous studies, such as covering, array structure, and linking array structure to area formula. We were interested in knowing if textbooks addressed these issues in their treatments of area measurement and, in doing so, provided students with opportunities to overcome or become familiar with known challenges. The results show that both countries' textbooks demonstrated similar limitations; only few area and area-related lessons are covered and three important learning challenges in area measurement are not covered well, which need to be informed to practicing teachers.
Rapid phenotypic antimicrobial susceptibility testing using nanoliter arrays.
Avesar, Jonathan; Rosenfeld, Dekel; Truman-Rosentsvit, Marianna; Ben-Arye, Tom; Geffen, Yuval; Bercovici, Moran; Levenberg, Shulamit
2017-07-18
Antibiotic resistance is a major global health concern that requires action across all sectors of society. In particular, to allow conservative and effective use of antibiotics clinical settings require better diagnostic tools that provide rapid determination of antimicrobial susceptibility. We present a method for rapid and scalable antimicrobial susceptibility testing using stationary nanoliter droplet arrays that is capable of delivering results in approximately half the time of conventional methods, allowing its results to be used the same working day. In addition, we present an algorithm for automated data analysis and a multiplexing system promoting practicality and translatability for clinical settings. We test the efficacy of our approach on numerous clinical isolates and demonstrate a 2-d reduction in diagnostic time when testing bacteria isolated directly from urine samples.
Newberry Volcano EGS Demonstration - Phase I Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, William L.; Petty, Susan; Cladouhos, Trenton T.
Phase I of the Newberry Volcano Enhanced Geothermal System (EGS) Demonstration included permitting, community outreach, seismic hazards analysis, initial microseismic array deployment and calibration, final MSA design, site characterization, and stimulation planning. The multi-disciplinary Phase I site characterization supports stimulation planning and regulatory permitting, as well as addressing public concerns including water usage and induced seismicity. A review of the project's water usage plan by an independent hydrology consultant found no expected impacts to local stakeholders, and recommended additional monitoring procedures. The IEA Protocol for Induced Seismicity Associated with Enhanced Geothermal Systems was applied to assess site conditions, properly informmore » stakeholders, and develop a comprehensive mitigation plan. Analysis of precision LiDAR elevation maps has concluded that there is no evidence of recent faulting near the target well. A borehole televiewer image log of the well bore revealed over three hundred fractures and predicted stress orientations. No natural, background seismicity has been identified in a review of historic data, or in more than seven months of seismic data recorded on an array of seven seismometers operating around the target well. A seismic hazards and induced seismicity risk assessment by an independent consultant concluded that the Demonstration would contribute no additional risk to residents of the nearest town of La Pine, Oregon. In Phase II of the demonstration, an existing deep hot well, NWG 55-29, will be stimulated using hydroshearing techniques to create an EGS reservoir. The Newberry Volcano EGS Demonstration is allowing geothermal industry and academic experts to develop, validate and enhance geoscience and engineering techniques, and other procedures essential to the expansion of EGS throughout the country. Successful development will demonstrate to the American public that EGS can play a significant role in reducing foreign energy dependence, and provide clean, renewable, baseload geothermal power generation in the State of Oregon.« less
Toward a comprehensive and systematic methylome signature in colorectal cancers.
Ashktorab, Hassan; Rahi, Hamed; Wansley, Daniel; Varma, Sudhir; Shokrani, Babak; Lee, Edward; Daremipouran, Mohammad; Laiyemo, Adeyinka; Goel, Ajay; Carethers, John M; Brim, Hassan
2013-08-01
CpG Island Methylator Phenotype (CIMP) is one of the underlying mechanisms in colorectal cancer (CRC). This study aimed to define a methylome signature in CRC through a methylation microarray analysis and a compilation of promising CIMP markers from the literature. Illumina HumanMethylation27 (IHM27) array data was generated and analyzed based on statistical differences in methylation data (1st approach) or based on overall differences in methylation percentages using lower 95% CI (2nd approach). Pyrosequencing was performed for the validation of nine genes. A meta-analysis was used to identify CIMP and non-CIMP markers that were hypermethylated in CRC but did not yet make it to the CIMP genes' list. Our 1st approach for array data analysis demonstrated the limitations in selecting genes for further validation, highlighting the need for the 2nd bioinformatics approach to adequately select genes with differential aberrant methylation. A more comprehensive list, which included non-CIMP genes, such as APC, EVL, CD109, PTEN, TWIST1, DCC, PTPRD, SFRP1, ICAM5, RASSF1A, EYA4, 30ST2, LAMA1, KCNQ5, ADHEF1, and TFPI2, was established. Array data are useful to categorize and cluster colonic lesions based on their global methylation profiles; however, its usefulness in identifying robust methylation markers is limited and rely on the data analysis method. We have identified 16 non-CIMP-panel genes for which we provide rationale for inclusion in a more comprehensive characterization of CIMP+ CRCs. The identification of a definitive list for methylome specific genes in CRC will contribute to better clinical management of CRC patients.
In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.
Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko
2015-03-23
The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.
Hsiao, Amy Y; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R; Pienta, Kenneth J; Takayama, Shuichi
2012-05-01
We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. Copyright © 2011 Wiley Periodicals, Inc.
Hsiao, Amy Y.; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R.; Pienta, Kenneth J.; Takayama, Shuichi
2012-01-01
We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. PMID:22161651
Pang, Yong; Yu, Baiying; Vigneron, Daniel B; Zhang, Xiaoliang
2014-02-01
Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.
Ji, Yongsung; Zeigler, David F; Lee, Dong Su; Choi, Hyejung; Jen, Alex K-Y; Ko, Heung Cho; Kim, Tae-Wook
2013-01-01
Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.
Low Cost Solar Array Project: Composition Measurements by Analytical Photon Catalysis
NASA Technical Reports Server (NTRS)
Sutton, D. G.; Galvan, L.; Melzer, J.; Heidner, R. F., III
1979-01-01
The applicability of the photon catalysis technique for effecting composition analysis of silicon samples was assessed. Third quarter activities were devoted to the study of impurities in silicon matrices. The evaporation process was shown to be congruent; thus, the spectral analysis of the vapor yields the composition of the bulk sample. Qualitative analysis of metal impurities in silicon was demonstrated e part per million level. Only one atomic spectral interference was noted; however, it is imperative to maintain a leak tight system due to chemical and spectral interferences caused by the presence of even minute amounts of oxygen in the active nitrogen afterglow.
Validation Report for the EO-1 Lightweight Flexible Solar Array Experiment
NASA Technical Reports Server (NTRS)
Carpenter, Bernie; Lyons, John; Day, John (Technical Monitor)
2001-01-01
The controlled deployment of the Lightweight Flexible Solar Array (LFSA) experiment using the shape memory alloy release and deployment system has been demonstrated. Work remains to be done in increasing the efficiency of Copper Indium Diselinide (CIS) terminations to the flexible harness that carries current from the array to the I-V measurement electronics.
A 928 sq m (10000 sq ft) solar array
NASA Technical Reports Server (NTRS)
Lindberg, D. E.
1972-01-01
As the power requirements for space vehicles increases, the area of solar arrays that convert solar energy to usable electrical power increases. The requirements for a 928 sq m (10,000 sq ft) array, its design, and a full-scale demonstration of one quadrant (232 sq m (2500 sq ft)) deployed in a one-g field are described.
Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems.
Niederriter, Robert D; Watson, Alexander M; Zahreddine, Ramzi N; Cogswell, Carol J; Cormack, Robert H; Bright, Victor M; Gopinath, Juliet T
2013-05-10
We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.
Optical Epitaxial Growth of Gold Nanoparticle Arrays.
Huang, Ningfeng; Martínez, Luis Javier; Jaquay, Eric; Nakano, Aiichiro; Povinelli, Michelle L
2015-09-09
We use an optical analogue of epitaxial growth to assemble gold nanoparticles into 2D arrays. Particles are attracted to a growth template via optical forces and interact through optical binding. Competition between effects determines the final particle arrangements. We use a Monte Carlo model to design a template that favors growth of hexagonal particle arrays. We experimentally demonstrate growth of a highly stable array of 50 gold particles with 200 nm diameter, spaced by 1.1 μm.
Solar array maximum power tracking with closed-loop control of a 30-centimeter ion thruster
NASA Technical Reports Server (NTRS)
Gruber, R. P.
1977-01-01
A new solar array/ion thruster system control concept has been developed and demonstrated. An ion thruster beam load is used to automatically and continuously operate an unregulated solar array at its maximum power point independent of variations in solar array voltage and current. Preliminary tests were run which verified that this method of control can be implemented with a few, physically small, signal level components dissipating less than two watts.
HKUST-1 Membranes Anchored on Porous Substrate by Hetero MIL-110 Nanorod Array Seeds.
Mao, Yiyin; Cao, Wei; Li, Junwei; Sun, Luwei; Peng, Xinsheng
2013-09-02
Great anchors and seeds: Hetero-seeding growth processes and anchored nanorod arrays were successfully utilized in the synthesis of HKUST-1 membranes. These arrays were firmly anchored on porous substrates by using a MIL-110 nanorod array as both the anchor and seed. The resulting HKUST-1 membranes demonstrated good separation factors for binary gases exceeding the Knudson selectivity. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanowire active-matrix circuitry for low-voltage macroscale artificial skin.
Takei, Kuniharu; Takahashi, Toshitake; Ho, Johnny C; Ko, Hyunhyub; Gillies, Andrew G; Leu, Paul W; Fearing, Ronald S; Javey, Ali
2010-10-01
Large-scale integration of high-performance electronic components on mechanically flexible substrates may enable new applications in electronics, sensing and energy. Over the past several years, tremendous progress in the printing and transfer of single-crystalline, inorganic micro- and nanostructures on plastic substrates has been achieved through various process schemes. For instance, contact printing of parallel arrays of semiconductor nanowires (NWs) has been explored as a versatile route to enable fabrication of high-performance, bendable transistors and sensors. However, truly macroscale integration of ordered NW circuitry has not yet been demonstrated, with the largest-scale active systems being of the order of 1 cm(2) (refs 11,15). This limitation is in part due to assembly- and processing-related obstacles, although larger-scale integration has been demonstrated for randomly oriented NWs (ref. 16). Driven by this challenge, here we demonstrate macroscale (7×7 cm(2)) integration of parallel NW arrays as the active-matrix backplane of a flexible pressure-sensor array (18×19 pixels). The integrated sensor array effectively functions as an artificial electronic skin, capable of monitoring applied pressure profiles with high spatial resolution. The active-matrix circuitry operates at a low operating voltage of less than 5 V and exhibits superb mechanical robustness and reliability, without performance degradation on bending to small radii of curvature (2.5 mm) for over 2,000 bending cycles. This work presents the largest integration of ordered NW-array active components, and demonstrates a model platform for future integration of nanomaterials for practical applications.
Noh, Joo Hyon; Noh, Jiyong; Kreit, Eric; Heikenfeld, Jason; Rack, Philip D
2012-01-21
Agile micro- and nano-fluidic control is critical to numerous life science and chemical science synthesis as well as kinetic and thermodynamic studies. To this end, we have demonstrated the use of thin film transistor arrays as an active matrix addressing method to control an electrofluidic array. Because the active matrix method minimizes the number of control lines necessary (m + n lines for the m×n element array), the active matrix addressing method integrated with an electrofluidic platform can be a significant breakthrough for complex electrofluidic arrays (increased size or resolution) with enhanced function, agility and programmability. An amorphous indium gallium zinc oxide (a-IGZO) semiconductor active layer is used because of its high mobility of 1-15 cm(2) V(-1) s(-1), low-temperature processing and transparency for potential spectroscopy and imaging. Several electrofluidic functionalities are demonstrated using a simple 2 × 5 electrode array connected to a 2 × 5 IGZO thin film transistor array with the semiconductor channel width of 50 μm and mobility of 6.3 cm(2) V(-1) s(-1). Additionally, using the TFT device characteristics, active matrix addressing schemes are discussed as the geometry of the electrode array can be tailored to act as a storage capacitor element. Finally, requisite material and device parameters are discussed in context with a VGA scale active matrix addressed electrofluidic platform.
NASA Astrophysics Data System (ADS)
Brokešová, Johana; Málek, Jiří
2018-07-01
A new method for representing seismograms by using zero-crossing points is described. This method is based on decomposing a seismogram into a set of quasi-harmonic components and, subsequently, on determining the precise zero-crossing times of these components. An analogous approach can be applied to determine extreme points that represent the zero-crossings of the first time derivative of the quasi-harmonics. Such zero-crossing and/or extreme point seismogram representation can be used successfully to reconstruct single-station seismograms, but the main application is to small-aperture array data analysis to which standard methods cannot be applied. The precise times of the zero-crossing and/or extreme points make it possible to determine precise time differences across the array used to retrieve the parameters of a plane wave propagating across the array, namely, its backazimuth and apparent phase velocity along the Earth's surface. The applicability of this method is demonstrated using two synthetic examples. In the real-data example from the Příbram-Háje array in central Bohemia (Czech Republic) for the Mw 6.4 Crete earthquake of October 12, 2013, this method is used to determine the phase velocity dispersion of both Rayleigh and Love waves. The resulting phase velocities are compared with those obtained by employing the seismic plane-wave rotation-to-translation relations. In this approach, the phase velocity is calculated by obtaining the amplitude ratios between the rotation and translation components. Seismic rotations are derived from the array data, for which the small aperture is not only an advantage but also an applicability condition.
Integrating Low-Cost Mems Accelerometer Mini-Arrays (mama) in Earthquake Early Warning Systems
NASA Astrophysics Data System (ADS)
Nof, R. N.; Chung, A. I.; Rademacher, H.; Allen, R. M.
2016-12-01
Current operational Earthquake Early Warning Systems (EEWS) acquire data with networks of single seismic stations, and compute source parameters assuming earthquakes to be point sources. For large events, the point-source assumption leads to an underestimation of magnitude, and the use of single stations leads to large uncertainties in the locations of events outside the network. We propose the use of mini-arrays to improve EEWS. Mini-arrays have the potential to: (a) estimate reliable hypocentral locations by beam forming (FK-analysis) techniques; (b) characterize the rupture dimensions and account for finite-source effects, leading to more reliable estimates for large magnitudes. Previously, the high price of multiple seismometers has made creating arrays cost-prohibitive. However, we propose setting up mini-arrays of a new seismometer based on low-cost (<$150), high-performance MEMS accelerometer around conventional seismic stations. The expected benefits of such an approach include decreasing alert-times, improving real-time shaking predictions and mitigating false alarms. We use low-resolution 14-bit Quake Catcher Network (QCN) data collected during Rapid Aftershock Mobilization Program (RAMP) in Christchurch, NZ following the M7.1 Darfield earthquake in September 2010. As the QCN network was so dense, we were able to use small sub-array of up to ten sensors spread along a maximum area of 1.7x2.2 km2 to demonstrate our approach and to solve for the BAZ of two events (Mw4.7 and Mw5.1) with less than ±10° error. We will also present the new 24-bit device details, benchmarks, and real-time measurements.
Supporting Current Energy Conversion Projects through Numerical Modeling
NASA Astrophysics Data System (ADS)
James, S. C.; Roberts, J.
2016-02-01
The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.
An analysis of image storage systems for scalable training of deep neural networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Young, Steven R; Patton, Robert M
This study presents a principled empirical evaluation of image storage systems for training deep neural networks. We employ the Caffe deep learning framework to train neural network models for three different data sets, MNIST, CIFAR-10, and ImageNet. While training the models, we evaluate five different options to retrieve training image data: (1) PNG-formatted image files on local file system; (2) pushing pixel arrays from image files into a single HDF5 file on local file system; (3) in-memory arrays to hold the pixel arrays in Python and C++; (4) loading the training data into LevelDB, a log-structured merge tree based key-valuemore » storage; and (5) loading the training data into LMDB, a B+tree based key-value storage. The experimental results quantitatively highlight the disadvantage of using normal image files on local file systems to train deep neural networks and demonstrate reliable performance with key-value storage based storage systems. When training a model on the ImageNet dataset, the image file option was more than 17 times slower than the key-value storage option. Along with measurements on training time, this study provides in-depth analysis on the cause of performance advantages/disadvantages of each back-end to train deep neural networks. We envision the provided measurements and analysis will shed light on the optimal way to architect systems for training neural networks in a scalable manner.« less
Solar array electrical performance assessment for Space Station Freedom
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Brisco, Holly
1993-01-01
Electrical power for Space Station Freedom will be generated by large Photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis, and test data to date. A description of the LMSC performance model, future test plans, and predicted performance ranges are also given.
Solar array electrical performance assessment for Space Station Freedom
NASA Technical Reports Server (NTRS)
Smith, Bryan K.; Brisco, Holly
1993-01-01
Electrical power for Space Station Freedom will be generated by large photovoltaic arrays with a beginning of life power requirement of 30.8 kW per array. The solar arrays will operate in a Low Earth Orbit (LEO) over a design life of fifteen years. This paper provides an analysis of the predicted solar array electrical performance over the design life and presents a summary of supporting analysis and test data for the assigned model parameters and performance loss factors. Each model parameter and loss factor is assessed based upon program requirements, component analysis and test data to date. A description of the LMSC performance model future test plans and predicted performance ranges are also given.
High-Frequency Ultrasonic Imaging of the Anterior Segment Using an Annular Array Transducer
Silverman, Ronald H.; Ketterling, Jeffrey A.; Coleman, D. Jackson
2006-01-01
Objective Very-high-frequency (>35 MHz) ultrasound (VHFU) allows imaging of anterior segment structures of the eye with a resolution of less than 40-μm. The low focal ratio of VHFU transducers, however, results in a depth-of-field (DOF) of less than 1-mm. Our aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity and resolution compared to conventional transducers. Design Experimental Study Participants Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. Methods A spherically curved annular array ultrasound transducer was fabricated. The array consisted of five concentric rings of equal area, had an overall aperture of 6 mm and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit/receive annuli combinations. The echo data were then synthetically focused and composite images produced. Transducer operation was tested by scanning a test object consisting of a series of 25-μm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit and human cadaver eyes. Main Outcome Measures Depth of field, resolution and sensitivity. Results The wire scans verified the operation of the array and demonstrated a 6.0 mm DOF compared to the 1.0 mm DOF of a conventional single-element transducer of comparable frequency, aperture and focal length. B-mode images of ex vivo bovine, in vivo rabbit and cadaver eyes showed that while the single-element transducer had high sensitivity and resolution within 1–2 mm of its focus, the array with synthetic focusing maintained this quality over a 6 mm DOF. Conclusion An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved depth-of-field, sensitivity and lateral resolution compared to single-element fixed focus transducers currently used for VHFU imaging of the eye. PMID:17141314
High-frequency ultrasonic imaging of the anterior segment using an annular array transducer.
Silverman, Ronald H; Ketterling, Jeffrey A; Coleman, D Jackson
2007-04-01
Very high-frequency ultrasound (VHFU; >35 megahertz [MHz]) allows imaging of anterior segment structures of the eye with a resolution of less than 40 microm. The low focal ratio of VHFU transducers, however, results in a depth of field (DOF) of less than 1 mm. The aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity, and resolution compared with conventional transducers. Experimental study. Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. A spherically curved annular array ultrasound transducer was fabricated. The array consisted of 5 concentric rings of equal area, had an overall aperture of 6 mm, and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data were recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit-and-receive annuli combinations. The echo data then were focused synthetically and composite images were produced. Transducer operation was tested by scanning a test object consisting of a series of 25-microm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit, and human cadaver eyes. Depth of field, resolution, and sensitivity. The wire scans verified the operation of the array and demonstrated a 6.0-mm DOF, compared with the 1.0-mm DOF of a conventional single-element transducer of comparable frequency, aperture, and focal length. B-mode images of ex vivo bovine, in vivo rabbit, and cadaver eyes showed that although the single-element transducer had high sensitivity and resolution within 1 to 2 mm of its focus, the array with synthetic focusing maintained this quality over a 6-mm DOF. An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved DOF, sensitivity, and lateral resolution compared with single-element fixed focus transducers currently used for VHFU imaging of the eye.
Droplet sizing instrumentation used for icing research: Operation, calibration, and accuracy
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1989-01-01
The accuracy of the Forward Scattering Spectrometer Probe (FSSP) is determined using laboratory tests, wind tunnel comparisons, and computer simulations. Operation in an icing environment is discussed and a new calibration device for the FSSP (the rotating pinhole) is demonstrated to be a valuable tool. Operation of the Optical Array Probe is also presented along with a calibration device (the rotating reticle) which is suitable for performing detailed analysis of that instrument.
Quantum Well Intrasubband Photodetector for Far Infared and Terahertz Radiation Detection
NASA Technical Reports Server (NTRS)
Ting, David Z. -Y.; Chang, Yia-Chung; Bandara, Sumith V.; Gunapala, Sarath D.
2007-01-01
The authors present a theoretical analysis on the possibility of using the dopant-assisted intrasubband absorption mechanism in quantum wells for normal-incidence far infrared/terahertz radiation detection. The authors describe the proposed concept of the quantum well intrasubband photodetector (QWISP), which is a compact semiconductor heterostructure device compatible with existing GaAs focal-plane array technology, and present theoretical results demonstrating strong normal-incidence absorption and responsivity in the QWISP.
Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging
NASA Astrophysics Data System (ADS)
Byun, Minsueop; Lee, Dasol; Kim, Minkyung; Kim, Yangdoo; Kim, Kwan; Ok, Jong G.; Rho, Junsuk; Lee, Heon
2017-04-01
Overcoming the resolution limit of conventional optics is regarded as the most important issue in optical imaging science and technology. Although hyperlenses, super-resolution imaging devices based on highly anisotropic dispersion relations that allow the access of high-wavevector components, have recently achieved far-field sub-diffraction imaging in real-time, the previously demonstrated devices have suffered from the extreme difficulties of both the fabrication process and the non-artificial objects placement. This results in restrictions on the practical applications of the hyperlens devices. While implementing large-scale hyperlens arrays in conventional microscopy is desirable to solve such issues, it has not been feasible to fabricate such large-scale hyperlens array with the previously used nanofabrication methods. Here, we suggest a scalable and reliable fabrication process of a large-scale hyperlens device based on direct pattern transfer techniques. We fabricate a 5 cm × 5 cm size hyperlenses array and experimentally demonstrate that it can resolve sub-diffraction features down to 160 nm under 410 nm wavelength visible light. The array-based hyperlens device will provide a simple solution for much more practical far-field and real-time super-resolution imaging which can be widely used in optics, biology, medical science, nanotechnology and other closely related interdisciplinary fields.
Meremonte, M.; Frankel, A.; Cranswick, E.; Carver, D.; Worley, D.
1996-01-01
We deployed portable digital seismographs in the San Fernando Valley (SFV), the Los Angeles basin (LAB), and surrounding hills to record aftershocks of the 17 January 1994 Northridge California earthquake. The purpose of the deployment was to investigate factors relevant to seismic zonation in urban areas, such as site amplification, sedimentary basin effects, and the variability of ground motion over short baselines. We placed seismographs at 47 sites (not all concurrently) and recorded about 290 earthquakes with magnitudes up to 5.1 at five stations or more. We deployed widely spaced stations for profiles across the San Fernando Valley, as well as five dense arrays (apertures of 200 to 500 m) in areas of high damage, such as the collapsed Interstate 10 overpass, Sherman Oaks, and the collapsed parking garage at CalState Northridge. Aftershock data analysis indicates a correlation of site amplification with mainshock damage. We found several cases where the site amplification depended on the azimuth of the aftershock, possibly indicating focusing from basin structures. For the parking garage array, we found large ground-motion variabilities (a factor of 2) over 200-m distances for sites on the same mapped soil unit. Array analysis of the aftershock seismograms demonstrates that sizable arrivals after the direct 5 waves consist of surface waves traveling from the same azimuth as that of the epicenter. These surface waves increase the duration of motions and can have frequencies as high as about 4 Hz. For the events studied here, we do not observe large arrivals reflected from the southern edge of the San Fernando Valley.
SU-F-P-49: Comparison of Mapcheck 2 Commission for Photon and Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J; Yang, C; Morris, B
2016-06-15
Purpose: We will investigate the performance variation of the MapCheck2 detector array with different array calibration and dose calibration pairs from different radiation therapy machine. Methods: A MapCheck2 detector array was calibrated on 3 Elekta accelerators with different energy of photon (6 MV, 10 MV, 15 MV and 18 MV) and electron (6 MeV, 9 MeV, 12 MeV, 15 MeV, 18 MeV and 20 MeV) beams. Dose calibration was conducted by referring a water phantom measurement following TG-51 protocol and commission data for each accelerator. A 10 cm × 10 cm beam was measured. This measured map was morphed bymore » applying different calibration pairs. Then the difference was quantified by comparing the doses and similarity using gamma analysis of criteria (0.5 %, 0 mm). Profile variation was evaluated on a same dataset with different calibration pairs. The passing rate of an IMRT QA planar dose was calculated by using 3 mm and 3% criteria and compared with respect to each calibration pairs. Results: In this study, a dose variation up to 0.67% for matched photons and 1.0% for electron beams is observed. Differences of flatness and symmetry can be as high as 1% and 0.7% respectively. Gamma analysis shows a passing rate ranging from 34% to 85% for the standard 10 × 10 cm field. Conclusion: Our work demonstrated that a customized array calibration and dose calibration for each machine is preferred to fulfill a high standard patient QA task.« less
Clinical implementation of RNA signatures for pharmacogenomic decision-making
Tang, Weihua; Hu, Zhiyuan; Muallem, Hind; Gulley, Margaret L
2011-01-01
RNA profiling is increasingly used to predict drug response, dose, or toxicity based on analysis of drug pharmacokinetic or pharmacodynamic pathways. Before implementing multiplexed RNA arrays in clinical practice, validation studies are carried out to demonstrate sufficient evidence of analytic and clinical performance, and to establish an assay protocol with quality assurance measures. Pathologists assure quality by selecting input tissue and by interpreting results in the context of the input tissue as well as the technologies that were used and the clinical setting in which the test was ordered. A strength of RNA profiling is the array-based measurement of tens to thousands of RNAs at once, including redundant tests for critical analytes or pathways to promote confidence in test results. Instrument and reagent manufacturers are crucial for supplying reliable components of the test system. Strategies for quality assurance include careful attention to RNA preservation and quality checks at pertinent steps in the assay protocol, beginning with specimen collection and proceeding through the various phases of transport, processing, storage, analysis, interpretation, and reporting. Specimen quality is checked by probing housekeeping transcripts, while spiked and exogenous controls serve as a check on analytic performance of the test system. Software is required to manipulate abundant array data and present it for interpretation by a laboratory physician who reports results in a manner facilitating therapeutic decision-making. Maintenance of the assay requires periodic documentation of personnel competency and laboratory proficiency. These strategies are shepherding genomic arrays into clinical settings to provide added value to patients and to the larger health care system. PMID:23226056
NASA Astrophysics Data System (ADS)
Liu, Robin H.; Lodes, Mike; Fuji, H. Sho; Danley, David; McShea, Andrew
Microarray assays typically involve multistage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Automation of these processes would improve robustness, reduce run-to-run and operator-to-operator variation, and reduce costs. In this chapter, a fully integrated and self-contained microfluidic biochip device that has been developed to automate the fluidic handling steps for microarray-based gene expression or genotyping analysis is presented. The device consists of a semiconductor-based CustomArray® chip with 12,000 features and a microfluidic cartridge. The CustomArray was manufactured using a semiconductor-based in situ synthesis technology. The micro-fluidic cartridge consists of microfluidic pumps, mixers, valves, fluid channels, and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. Gene expression study of the human leukemia cell line (K562) and genotyping detection and sequencing of influenza A subtypes have been demonstrated using this integrated biochip platform. For gene expression assays, the microfluidic CustomArray device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than three orders of magnitude. Experiment also showed that chip-to-chip variability was low indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis. The genotyping results showed that the device identified influenza A hemagglutinin and neuraminidase subtypes and sequenced portions of both genes, demonstrating the potential of integrated microfluidic and microarray technology for multiple virus detection. The device provides a cost-effective solution to eliminate labor-intensive and time-consuming fluidic handling steps and allows microarray-based DNA analysis in a rapid and automated fashion.
Abdiche, Yasmina Noubia; Miles, Adam; Eckman, Josh; Foletti, Davide; Van Blarcom, Thomas J.; Yeung, Yik Andy; Pons, Jaume; Rajpal, Arvind
2014-01-01
Here, we demonstrate how array-based label-free biosensors can be applied to the multiplexed interaction analysis of large panels of analyte/ligand pairs, such as the epitope binning of monoclonal antibodies (mAbs). In this application, the larger the number of mAbs that are analyzed for cross-blocking in a pairwise and combinatorial manner against their specific antigen, the higher the probability of discriminating their epitopes. Since cross-blocking of two mAbs is necessary but not sufficient for them to bind an identical epitope, high-resolution epitope binning analysis determined by high-throughput experiments can enable the identification of mAbs with similar but unique epitopes. We demonstrate that a mAb's epitope and functional activity are correlated, thereby strengthening the relevance of epitope binning data to the discovery of therapeutic mAbs. We evaluated two state-of-the-art label-free biosensors that enable the parallel analysis of 96 unique analyte/ligand interactions and nearly ten thousand total interactions per unattended run. The IBIS-MX96 is a microarray-based surface plasmon resonance imager (SPRi) integrated with continuous flow microspotting technology whereas the Octet-HTX is equipped with disposable fiber optic sensors that use biolayer interferometry (BLI) detection. We compared their throughput, versatility, ease of sample preparation, and sample consumption in the context of epitope binning assays. We conclude that the main advantages of the SPRi technology are its exceptionally low sample consumption, facile sample preparation, and unparalleled unattended throughput. In contrast, the BLI technology is highly flexible because it allows for the simultaneous interaction analysis of 96 independent analyte/ligand pairs, ad hoc sensor replacement and on-line reloading of an analyte- or ligand-array. Thus, the complementary use of these two platforms can expedite applications that are relevant to the discovery of therapeutic mAbs, depending upon the sample availability, and the number and diversity of the interactions being studied. PMID:24651868
Experimental Demonstration of Adaptive Infrared Multispectral Imaging using Plasmonic Filter Array
Jang, Woo-Yong; Ku, Zahyun; Jeon, Jiyeon; Kim, Jun Oh; Lee, Sang Jun; Park, James; Noyola, Michael J.; Urbas, Augustine
2016-01-01
In our previous theoretical study, we performed target detection using a plasmonic sensor array incorporating the data-processing technique termed “algorithmic spectrometry”. We achieved the reconstruction of a target spectrum by extracting intensity at multiple wavelengths with high resolution from the image data obtained from the plasmonic array. The ultimate goal is to develop a full-scale focal plane array with a plasmonic opto-coupler in order to move towards the next generation of versatile infrared cameras. To this end, and as an intermediate step, this paper reports the experimental demonstration of adaptive multispectral imagery using fabricated plasmonic spectral filter arrays and proposed target detection scenarios. Each plasmonic filter was designed using periodic circular holes perforated through a gold layer, and an enhanced target detection strategy was proposed to refine the original spectrometry concept for spatial and spectral computation of the data measured from the plasmonic array. Both the spectrum of blackbody radiation and a metal ring object at multiple wavelengths were successfully reconstructed using the weighted superposition of plasmonic output images as specified in the proposed detection strategy. In addition, plasmonic filter arrays were theoretically tested on a target at extremely high temperature as a challenging scenario for the detection scheme. PMID:27721506
Experimental demonstration of an optical phased array antenna for laser space communications.
Neubert, W M; Kudielka, K H; Leeb, W R; Scholtz, A L
1994-06-20
The feasibility of an optical phased array antenna applicable for spaceborne laser communications was experimentally demonstrated. Heterodyne optical phase-locked loops provide for a defined phase relationship between the collimated output beams of three single-mode fibers. In the far field the beams interfere with a measured efficiency of 99%. The main lobe of the interference pattern can be moved by phase shifting the subaperture output beams. The setup permitted agile beam steering within an angular range of 1 mr and a response time of 0.7 ms. We propose an operational optical phased array antenna fed by seven lasers, featuring high transmit power and redundance.
2007-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WIRELESSLY NETWORKED...DIGITAL PHASED ARRAY: ANALYSIS AND DEVELOPMENT OF A PHASE SYNCHRONIZATION CONCEPT by Micael Grahn September 2007 Thesis Advisor...September 2007 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Wirelessly Networked Digital Phased Array: Analysis and
Acoustic detection, tracking, and characterization of three tornadoes.
Frazier, William Garth; Talmadge, Carrick; Park, Joseph; Waxler, Roger; Assink, Jelle
2014-04-01
Acoustic data recorded at 1000 samples per second by two sensor arrays located at ranges of 1-113 km from three tornadoes that occurred on 24 May 2011 in Oklahoma are analyzed. Accurate bearings to the tornadoes have been obtained using beamforming methods applied to the data at infrasonic frequencies. Beamforming was not viable at audio frequencies, but the data demonstrate the ability to detect significant changes in the shape of the estimated power spectral density in the band encompassing 10 Hz to approximately 100 Hz at distances of practical value from the sensors. This suggests that arrays of more closely spaced sensors might provide better bearing accuracy at practically useful distances from a tornado. Additionally, a mathematical model, based on established relationships of aeroacoustic turbulence, is demonstrated to provide good agreement to the estimated power spectra produced by the tornadoes at different times and distances from the sensors. The results of this analysis indicate that, qualitatively, an inverse relationship appears to exist between the frequency of an observed peak of the power spectral density and the reported tornado intensity.
Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile
Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno
2015-01-01
ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515
Interaction between confined phonons and photons in periodic silicon resonators
NASA Astrophysics Data System (ADS)
Iskandar, A.; Gwiazda, A.; Younes, J.; Kazan, M.; Bruyant, A.; Tabbal, M.; Lerondel, G.
2018-03-01
In this paper, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. The interaction between confined phonons and confined photons in silicon resonator arrays is observed by means of Raman scattering. The Raman spectra from large arrays of dielectric silicon resonators exhibited Raman enhancement accompanied with a downshift and broadening. The analysis of the Raman intensity and line shape using finite-difference time-domain simulations and a spatial correlation model demonstrated an interaction between photons confined in the resonators and phonons confined in highly defective regions prompted by the structuring process. It was shown that the Raman enhancement is due to collective lattice resonance inducing field confinement in the resonators, while the spectra downshift and broadening are signatures of the relaxation of the phonon wave vector due to phonon confinement in defective regions located in the surface layer of the Si resonators. We found that as the resonators increase in height and their shape becomes cylindrical, the amplitude of their coherent oscillation increases and hence their ability to confine the incoming electric field increases.
Development of an Infrared Lamp Array for the Smap Spacecraft Thermal Balance Test
NASA Technical Reports Server (NTRS)
Miller, Jennifer R.; Emis, Nickolas; Forgette, Daniel
2015-01-01
NASA launched the SMAP observatory in January 2015 aboard a Delta II into a sun-synchronous orbit around Earth. The science payload of a radar and a radiometer utilizes a shared rotating six-meter antenna to provide a global map of the Earth's soil moisture content and its freeze/thaw state on a global, high-resolution scale in this three-year mission. An observatory-level thermal balance test conducted in May/June 2014 validated the thermal design and demonstrated launch readiness as part of the planned environmental test campaign. An infrared lamp array was designed and used in the thermal balance test to replicate solar heating on the solar array and sunlit side of the spacecraft that would normally be seen in orbit. The design, implementation, and operation of an infrared lamp array used for this nineteen-day system thermal test are described in this paper. Instrumental to the smooth operation of this lamp array was a characterization test performed in the same chamber two months prior to the observatory test to provide insight into its array operation and flux uniformity. This knowledge was used to identify the lamp array power settings that would provide the worst case predicted on-orbit fluxes during eclipse, cold, and hot cases. It also showed the lamp array variation when adjustments in flux were needed. Calorimeters calibrated prior to testing determined a relationship between calorimeter temperature and lamp array flux. This allowed the team to adjust the lamp output for the desired absorbed flux on the solar array. Flux levels were within 10% of the desired value at the center of the solar array with an ability to maintain these levels within 5% during steady state cases. All tests demonstrated the infrared lamp array functionality and furthered lamp array understanding for modeling purposes. This method contributed to a high-fidelity environmental simulation, which was required to replicate the extreme on-orbit thermal environments.
Fully Tunable Silicon Nanowire Arrays Fabricated by Soft Nanoparticle Templating.
Rey, By Marcel; Elnathan, Roey; Ditcovski, Ran; Geisel, Karen; Zanini, Michele; Fernandez-Rodriguez, Miguel-Angel; Naik, Vikrant V; Frutiger, Andreas; Richtering, Walter; Ellenbogen, Tal; Voelcker, Nicolas H; Isa, Lucio
2016-01-13
We demonstrate a fabrication breakthrough to produce large-area arrays of vertically aligned silicon nanowires (VA-SiNWs) with full tunability of the geometry of the single nanowires and of the whole array, paving the way toward advanced programmable designs of nanowire platforms. At the core of our fabrication route, termed "Soft Nanoparticle Templating", is the conversion of gradually compressed self-assembled monolayers of soft nanoparticles (microgels) at a water-oil interface into customized lithographical masks to create VA-SiNW arrays by means of metal-assisted chemical etching (MACE). This combination of bottom-up and top-down techniques affords excellent control of nanowire etching site locations, enabling independent control of nanowire spacing, diameter and height in a single fabrication route. We demonstrate the fabrication of centimeter-scale two-dimensional gradient photonic crystals exhibiting continuously varying structural colors across the entire visible spectrum on a single silicon substrate, and the formation of tunable optical cavities supported by the VA-SiNWs, as unambiguously demonstrated through numerical simulations. Finally, Soft Nanoparticle Templating is combined with optical lithography to create hierarchical and programmable VA-SiNW patterns.
Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.
A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.
Arrayed waveguide Sagnac interferometer.
Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso
2003-02-01
We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.
NASA Technical Reports Server (NTRS)
Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.;
2015-01-01
NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver
Cold plasma decontamination using flexible jet arrays
NASA Astrophysics Data System (ADS)
Konesky, Gregory
2010-04-01
Arrays of atmospheric discharge cold plasma jets have been used to decontaminate surfaces of a wide range of microorganisms quickly, yet not damage that surface. Its effectiveness in decomposing simulated chemical warfare agents has also been demonstrated, and may also find use in assisting in the cleanup of radiological weapons. Large area jet arrays, with short dwell times, are necessary for practical applications. Realistic situations will also require jet arrays that are flexible to adapt to contoured or irregular surfaces. Various large area jet array prototypes, both planar and flexible, are described, as is the application to atmospheric decontamination.
Brightness field distributions of microlens arrays using micro molding.
Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Yi; Shen, Yung-Kang
2010-12-20
This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.
Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal
NASA Technical Reports Server (NTRS)
Masters, R. M.
1975-01-01
A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.
NASA Astrophysics Data System (ADS)
Palmer, A. L.; Nisbet, A.; Bradley, D. A.
2013-06-01
There is a need to modernise clinical brachytherapy dosimetry measurement beyond traditional point dose verification to enable appropriate quality control within 3D treatment environments. This is to keep pace with the 3D clinical and planning approaches which often include significant patient-specific optimisation away from 'standard loading patterns'. A multi-dimension measurement system is required to provide assurance of the complex 3D dose distributions, to verify equipment performance, and to enable quality audits. However, true 3D dose measurements around brachytherapy applicators are often impractical due to their complex shapes and the requirement for close measurement distances. A solution utilising an array of radiochromic film (Gafchromic EBT3) positioned within a water filled phantom is presented. A calibration function for the film has been determined over 0 to 90Gy dose range using three colour channel analysis (FilmQAPro software). Film measurements of the radial dose from a single HDR source agree with TPS and Monte Carlo calculations within 5 % up to 50 mm from the source. Film array measurements of the dose distribution around a cervix applicator agree with TPS calculations generally within 4 mm distance to agreement. The feasibility of film array measurements for semi-3D dosimetry in clinical HDR applications is demonstrated.
Aberration analysis and calculation in system of Gaussian beam illuminates lenslet array
NASA Astrophysics Data System (ADS)
Zhao, Zhu; Hui, Mei; Zhou, Ping; Su, Tianquan; Feng, Yun; Zhao, Yuejin
2014-09-01
Low order aberration was founded when focused Gaussian beam imaging at Kodak KAI -16000 image detector, which is integrated with lenslet array. Effect of focused Gaussian beam and numerical simulation calculation of the aberration were presented in this paper. First, we set up a model of optical imaging system based on previous experiment. Focused Gaussian beam passed through a pinhole and was received by Kodak KAI -16000 image detector whose microlenses of lenslet array were exactly focused on sensor surface. Then, we illustrated the characteristics of focused Gaussian beam and the effect of relative space position relations between waist of Gaussian beam and front spherical surface of microlenses to the aberration. Finally, we analyzed the main element of low order aberration and calculated the spherical aberration caused by lenslet array according to the results of above two steps. Our theoretical calculations shown that , the numerical simulation had a good agreement with the experimental result. Our research results proved that spherical aberration was the main element and made up about 93.44% of the 48 nm error, which was demonstrated in previous experiment. The spherical aberration is inversely proportional to the value of divergence distance between microlens and waist, and directly proportional to the value of the Gaussian beam waist radius.
Temperature-Modulated Array High-Performance Liquid Chromatography
Premstaller, Andreas; Xiao, Wenzhong; Oberacher, Herbert; O'Keefe, Matthew; Stern, David; Willis, Thomas; Huber, Christian G.; Oefner, Peter J.
2001-01-01
Using novel monolithic poly(styrene-divinylbenzene) capillary columns with an internal diameter of 0.2 mm, we demonstrate for the first time the feasibility of constructing high-performance liquid chromatography arrays for the detection of mutations by heteroduplex analysis under partially denaturing conditions. In one embodiment, such an array can be used to analyze one sample simultaneously at different temperatures to maximize the detection of mutations in DNA fragments containing multiple discrete melting domains. Alternatively, one may inject different samples onto columns kept at the same effective temperature. Further improvements in throughput can be obtained by means of laser-induced fluorescence detection and the differential labeling of samples with up to four different fluorophores. Major advantages of monolithic capillary high-performance liquid chromatographic arrays over their capillary electrophoretic analogs are the chemical inertness of the poly(styrene-divinylbenzene) stationary phase, the physical robustness of the column bed due to its covalent linkage to the inner surface of the fused silica capillary, and the feasibility to modify the stationary phase thereby allowing the separation of compounds not only on the principle of size exclusion, but also adsorption, distribution, and ion exchange. Analyses times are on the order of a few minutes and turnaround time is extremely short as there is no need for the replenishment of the separation matrix between runs. PMID:11691859
NASA Astrophysics Data System (ADS)
Buitink, S.; Hörandel, J. R.; de Jong, S.; Lahmann, R.; Nahnhauer, R.; Scholten, O.
2017-03-01
This proceeding gives a summary of the current status and open questions of the radio technique for cosmic-ray air showers, assuming that the reader is already familiar with the principles. It includes recent results of selected experiments not present at this conference, e.g., LOPES and TREND. Current radio arrays like AERA or Tunka-Rex have demonstrated that areas of several km2 can be instrumented for reasonable costs with antenna spacings of the order of 200m. For the energy of the primary particle such sparse antenna arrays can already compete in absolute accuracy with other precise techniques, like the detection of air-fluorescence or air-Cherenkov light. With further improvements in the antenna calibration, the radio detection might become even more accurate. For the atmospheric depth of the shower maximum, Xmax, currently only the dense array LOFAR features a precision similar to the fluorescence technique, but analysis methods for the radio measurement of Xmax are still under development. Moreover, the combination of radio and muon measurements is expected to increase the accuracy of the mass composition, and this around-the-clock recording is not limited to clear nights as are the light-detection methods. Consequently, radio antennas will be a valuable add-on for any air shower array targeting the energy range above 100 PeV.
NASA Astrophysics Data System (ADS)
McCarrick, H.; Jones, G.; Johnson, B. R.; Abitbol, M. H.; Ade, P. A. R.; Bryan, S.; Day, P.; Essinger-Hileman, T.; Flanigan, D.; Leduc, H. G.; Limon, M.; Mauskopf, P.; Miller, A.; Tucker, C.
2018-02-01
Aims: Lumped-element kinetic inductance detectors (LEKIDs) are an attractive technology for millimeter-wave observations that require large arrays of extremely low-noise detectors. We designed, fabricated and characterized 64-element (128 LEKID) arrays of horn-coupled, dual-polarization LEKIDs optimized for ground-based CMB polarimetry. Our devices are sensitive to two orthogonal polarizations in a single spectral band centered on 150 GHz with Δν/ν = 0.2. The 65 × 65 mm square arrays are designed to be tiled into the focal plane of an optical system. We demonstrate the viability of these dual-polarization LEKIDs with laboratory measurements. Methods: The LEKID modules are tested with an FPGA-based readout system in a sub-kelvin cryostat that uses a two-stage adiabatic demagnetization refrigerator. The devices are characterized using a blackbody and a millimeter-wave source. The polarization properties are measured with a cryogenic stepped half-wave plate. We measure the resonator parameters and the detector sensitivity, noise spectrum, dynamic range, and polarization response. Results: The resonators have internal quality factors approaching 1 × 106. The detectors have uniform response between orthogonal polarizations and a large dynamic range. The detectors are photon-noise limited above 1 pW of absorbed power. The noise-equivalent temperatures under a 3.4 K blackbody load are <100 μK √s. The polarization fractions of detectors sensitive to orthogonal polarizations are >80%. The entire array is multiplexed on a single readout line, demonstrating a multiplexing factor of 128. The array and readout meet the requirements for 4 arrays to be read out simultaneously for a multiplexing factor of 512. Conclusions: This laboratory study demonstrates the first dual-polarization LEKID array optimized specifically for CMB polarimetry and shows the readiness of the detectors for on-sky observations.
Qi, Xiubin; Crooke, Emma; Ross, Andrew; Bastow, Trevor P; Stalvies, Charlotte
2011-09-21
This paper presents a system and method developed to identify a source oil's characteristic properties by testing the oil's dissolved components in water. Through close examination of the oil dissolution process in water, we hypothesise that when oil is in contact with water, the resulting oil-water extract, a complex hydrocarbon mixture, carries the signature property information of the parent oil. If the dominating differences in compositions between such extracts of different oils can be identified, this information could guide the selection of various sensors, capable of capturing such chemical variations. When used as an array, such a sensor system can be used to determine parent oil information from the oil-water extract. To test this hypothesis, 22 oils' water extracts were prepared and selected dominant hydrocarbons analyzed with Gas Chromatography-Mass Spectrometry (GC-MS); the subsequent Principal Component Analysis (PCA) indicates that the major difference between the extract solutions is the relative concentration between the volatile mono-aromatics and fluorescent polyaromatics. An integrated sensor array system that is composed of 3 volatile hydrocarbon sensors and 2 polyaromatic hydrocarbon sensors was built accordingly to capture the major and subtle differences of these extracts. It was tested by exposure to a total of 110 water extract solutions diluted from the 22 extracts. The sensor response data collected from the testing were processed with two multivariate analysis tools to reveal information retained in the response patterns of the arrayed sensors: by conducting PCA, we were able to demonstrate the ability to qualitatively identify and distinguish different oil samples from their sensor array response patterns. When a supervised PCA, Linear Discriminate Analysis (LDA), was applied, even quantitative classification can be achieved: the multivariate model generated from the LDA achieved 89.7% of successful classification of the type of the oil samples. By grouping the samples based on the level of viscosity and density we were able to reveal the correlation between the oil extracts' sensor array responses and their original oils' feature properties. The equipment and method developed in this study have promising potential to be readily applied in field studies and marine surveys for oil exploration or oil spill monitoring.
High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design
NASA Technical Reports Server (NTRS)
Soibel, Alexander; Nguyen, Jean; Rafol, Sir B.; Liao, Anna; Hoeglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Ting, David Z.-Y.;
2011-01-01
We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of focal plane arrays based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-wavelength infrared focal plane array utilizing CBIRD design. An 11.5 micrometer cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 micrometer cutoff focal plane array are also presented. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.
High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design
NASA Technical Reports Server (NTRS)
Soibel, Alexander; Nguyen, Jean; Rafol, Sir B.; Liao, Anna; Hoeglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Ting, David Z.-Y.;
2011-01-01
We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of focal plane arrays based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-waveleng thinfrared focal plane array utilizing CBIRD design. An 11.5 micrometer cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 micrometer cutoff focal plane array are also presented. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.
NASA Astrophysics Data System (ADS)
Mates, J. A. B.; Becker, D. T.; Bennett, D. A.; Dober, B. J.; Gard, J. D.; Hays-Wehle, J. P.; Fowler, J. W.; Hilton, G. C.; Reintsema, C. D.; Schmidt, D. R.; Swetz, D. S.; Vale, L. R.; Ullom, J. N.
2017-08-01
The number of elements in most cryogenic sensor arrays is limited by the technology available to multiplex signals from the arrays into a smaller number of wires and readout amplifiers. The largest demonstrated arrays of transition-edge sensor (TES) microcalorimeters contain roughly 250 detectors and use time-division multiplexing with Superconducting Quantum Interference Devices (SQUIDs). The bandwidth limits of this technology constrain the number of sensors per amplifier chain, a quantity known as the multiplexing factor, to several 10s. With microwave SQUID multiplexing, we can expand the readout bandwidth and enable much larger multiplexing factors. While microwave SQUID multiplexing of TES microcalorimeters has been previously demonstrated with small numbers of detectors, we now present a fully scalable demonstration in which 128 TES detectors are read out on a single pair of coaxial cables.
Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun
2015-06-01
A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.
Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.
Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen
2011-08-01
A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.
NASA Astrophysics Data System (ADS)
Afonin, Nikita; Kozlovskaya, Elena
2016-04-01
Understanding inner structure of seismogenic faults and their ability to reactivate is particularly important in investigating the continental intraplate seismicity regime. In our study we address this problem using analysis of ambient seismic noise recorded by the temporary DAFNE array in northern Fennoscandian Shield. The main purpose of the DAFNE/FINLAND passive seismic array experiment was to characterize the present-day seismicity of the Suasselkä post-glacial fault (SPGF) that was proposed as one potential target for the DAFNE (Drilling Active Faults in Northern Europe) project. The DAFNE/FINLAND array comprised the area of about 20 to 100 km and consisted of 8 short-period and 4 broad-band 3-component autonomous seismic stations installed in the close vicinity of the fault area. The array recorded continuous seismic data during September, 2011-May, 2013. Recordings of the array have being analyzed in order to identify and locate natural earthquakes from the fault area and to discriminate them from the blasts in the Kittilä Gold Mine. As a result, we found several dozens of natural seismic events originating from the fault area, which proves that the fault is still seismically active. In order to study the inner structure of the SPGF we use cross-correlation of ambient seismic noise recorded by the array. Analysis of azimuthal distribution of noise sources demonstrated that that during the time interval under consideration the distribution of noise sources is close to the uniform one. The continuous data were processed in several steps including single station data analysis, instrument response removal and time-domain stacking. The data were used to estimate empirical Green's functions between pairs of stations in the frequency band of 0.1-1 Hz and to calculate correspondent surface wave dispersion curves. After that S-wave velocity models were obtained as a result of dispersion curves inversion using Geopsy software. The results suggest that the area of the SPGF corresponds to a narrow region of low S-wave velocities surrounded by rocks with high S-wave velocities. We interpret this low velocity region as a non-healed mechanically weak fault damage zone (FDZ) remained after the last major earthquake that occurred after the last glaciation. Seismic instruments for the DAFNE/FINLAND experiment were provided by the institute of Seismology of the University of Helsinki and by the Sodankylä Geophysical Observatory. The study was partly funded by Posiva Oy and Geological Survey of Finland. DAFNE/FINLAND Working Group: Ilmo Kukkonen Pekka Heikkinen Kari Komminaho Elena Kozlovskaya Riitta Hurskainen Tero Raita Hanna Silvennoinen
Uplink Array Calibration via Far-Field Power Maximization
NASA Technical Reports Server (NTRS)
Vilnrotter, V.; Mukai, R.; Lee, D.
2006-01-01
Uplink antenna arrays have the potential to greatly increase the Deep Space Network s high-data-rate uplink capabilities as well as useful range, and to provide additional uplink signal power during critical spacecraft emergencies. While techniques for calibrating an array of receive antennas have been addressed previously, proven concepts for uplink array calibration have yet to be demonstrated. This article describes a method of utilizing the Moon as a natural far-field reflector for calibrating a phased array of uplink antennas. Using this calibration technique, the radio frequency carriers transmitted by each antenna of the array are optimally phased to ensure that the uplink power received by the spacecraft is maximized.
Kitahara, Hideaki; Tani, Masahiko; Hangyo, Masanori
2009-07-01
We developed a high-repetition-rate optical delay line based on a micromirror array and galvanometer mirror for terahertz time-domain spectroscopy. The micromirror array is fabricated by using the x-ray lithographic technology. The measurement of terahertz time-domain waveforms with the new optical delay line is demonstrated successfully up to 25 Hz.
NASA Technical Reports Server (NTRS)
Bailey, M. C.
1985-01-01
A 6X6 array of fan-dipoles was designed to operate in the 510 to 660 MHz frequency range for aircraft flight test and evaluation of a UHF radiometer system. A broad-band dipole design operating near the first resonance is detailed. Measured VSWR and radiation patterns for the dipole array demonstrate achievable bandwidths in the 35 percent to 40 percent range.
Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples
Genslein, Christa; Hausler, Peter; Kirchner, Eva-Maria; Bierl, Rudolf; Baeumner, Antje J
2016-01-01
The label-free nature of surface plasmon resonance techniques (SPR) enables a fast, specific, and sensitive analysis of molecular interactions. However, detection of highly diluted concentrations and small molecules is still challenging. It is shown here that in contrast to continuous gold films, gold nanohole arrays can significantly improve the performance of SPR devices in angle-dependent measurement mode, as a signal amplification arises from localized surface plasmons at the nanostructures. This leads consequently to an increased sensing capability of molecules bound to the nanohole array surface. Furthermore, a reduced graphene oxide (rGO) sensor surface was layered over the nanohole array. Reduced graphene oxide is a 2D nanomaterial consisting of sp2-hybridized carbon atoms and is an attractive receptor surface for SPR as it omits any bulk phase and therefore allows fast response times. In fact, it was found that nanohole arrays demonstrated a higher shift in the resonance angle of 250–380% compared to a continuous gold film. At the same time the nanohole array structure as characterized by its diameter-to-periodicity ratio had minimal influence on the binding capacity of the sensor surface. As a simple and environmentally highly relevant model, binding of the plasticizer diethyl phthalate (DEP) via π-stacking was monitored on the rGO gold nanohole array realizing a limit of detection of as low as 20 nM. The concentration-dependent signal change was studied with the best performing rGO-modified nanohole arrays. Compared to continuous gold films a diameter-to-periodicity ratio (D/P) of 0.43 lead to a 12-fold signal enhancement. Finally, the effect of environmental waters on the sensor was evaluated using samples from sea, lake and river waters spiked with analytically relevant amounts of DEP during which significant changes in the SPR signal are observed. It is expected that this concept can be successfully transferred to enhance the sensitivity in SPR sensors. PMID:28144507
Optimum SNR data compression in hardware using an Eigencoil array.
King, Scott B; Varosi, Steve M; Duensing, G Randy
2010-05-01
With the number of receivers available on clinical MRI systems now ranging from 8 to 32 channels, data compression methods are being explored to lessen the demands on the computer for data handling and processing. Although software-based methods of compression after reception lessen computational requirements, a hardware-based method before the receiver also reduces the number of receive channels required. An eight-channel Eigencoil array is constructed by placing a hardware radiofrequency signal combiner inline after preamplification, before the receiver system. The Eigencoil array produces signal-to-noise ratio (SNR) of an optimal reconstruction using a standard sum-of-squares reconstruction, with peripheral SNR gains of 30% over the standard array. The concept of "receiver channel reduction" or MRI data compression is demonstrated, with optimal SNR using only four channels, and with a three-channel Eigencoil, superior sum-of-squares SNR was achieved over the standard eight-channel array. A three-channel Eigencoil portion of a product neurovascular array confirms in vivo SNR performance and demonstrates parallel MRI up to R = 3. This SNR-preserving data compression method advantageously allows users of MRI systems with fewer receiver channels to achieve the SNR of higher-channel MRI systems. (c) 2010 Wiley-Liss, Inc.
Development of FIR arrays with integrating amplifiers
NASA Technical Reports Server (NTRS)
Young, Erick T.
1988-01-01
The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.
Development of FIR arrays with integrating amplifiers
NASA Astrophysics Data System (ADS)
Young, Erick T.
1988-08-01
The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.
Mariano, Marina; Rodríguez, Francisco J.; Romero-Gomez, Pablo; Kozyreff, Gregory; Martorell, Jordi
2014-01-01
We propose the use of whispering gallery mode coupling in a novel configuration based on implementing a thin film cell on the backside of an array of parallel fibers. We performed numerical calculations using the parameters of a thin film organic cell which demonstrate that light coupling becomes more effective as the angle for the incident light relative to the fiber array normal increases up to an optimal angle close to 55 deg. At this angle the power conversion efficiency of the fiber array solar cell we propose becomes 30% times larger than the one from an equivalent planar cell configuration. We demonstrate that the micro fiber array solar cell we propose may perform an effective partial tracking of the sun movement for over 100 degrees without any mechanical help. In addition, in the event that such fiber array cell would be installed with the adequate orientation on a vertical façade, an optimal photon-to-charge conversion would be reached for sunlight incident at 55 deg with respect to the horizon line, very close to the yearly average position for the sun at Latitude of 40 deg.
McCue, Molly E.; Bannasch, Danika L.; Petersen, Jessica L.; Gurr, Jessica; Bailey, Ernie; Binns, Matthew M.; Distl, Ottmar; Guérin, Gérard; Hasegawa, Telhisa; Hill, Emmeline W.; Leeb, Tosso; Lindgren, Gabriella; Penedo, M. Cecilia T.; Røed, Knut H.; Ryder, Oliver A.; Swinburne, June E.; Tozaki, Teruaki; Valberg, Stephanie J.; Vaudin, Mark; Lindblad-Toh, Kerstin
2012-01-01
An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species. PMID:22253606
Artificial Roughness Encoding with a Bio-inspired MEMS- based Tactile Sensor Array
Oddo, Calogero Maria; Beccai, Lucia; Felder, Martin; Giovacchini, Francesco; Carrozza, Maria Chiara
2009-01-01
A compliant 2×2 tactile sensor array was developed and investigated for roughness encoding. State of the art cross shape 3D MEMS sensors were integrated with polymeric packaging providing in total 16 sensitive elements to external mechanical stimuli in an area of about 20 mm2, similarly to the SA1 innervation density in humans. Experimental analysis of the bio-inspired tactile sensor array was performed by using ridged surfaces, with spatial periods from 2.6 mm to 4.1 mm, which were indented with regulated 1N normal force and stroked at constant sliding velocity from 15 mm/s to 48 mm/s. A repeatable and expected frequency shift of the sensor outputs depending on the applied stimulus and on its scanning velocity was observed between 3.66 Hz and 18.46 Hz with an overall maximum error of 1.7%. The tactile sensor could also perform contact imaging during static stimulus indentation. The experiments demonstrated the suitability of this approach for the design of a roughness encoding tactile sensor for an artificial fingerpad. PMID:22412304
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Xuyao; Zhou, Xiaosong, E-mail: zxs801213@163.com; Li, Xiaoyu, E-mail: lixiaoyu@iga.ac.cn
2014-11-15
Highlights: • MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposites are prepared by electrodeposition. • MnO{sub 2}/TiO{sub 2} exhibits high visible light photocatalytic activity. • The results of XRD show the depositions are attributed to α-MnO{sub 2}. • A photocatalytic mechanism is discussed under visible light irradiation. - Abstract: MnO{sub 2}/TiO{sub 2} nanotube arrays nanocomposite photocatalysts have been synthesized through an electrodeposition method. X-ray powder diffraction analysis and X-ray photoelectron spectroscopy measurements reveal that the products of electrodeposition method are MnO{sub 2}. Scanning electron microscopy measurements suggest that the depositions are deposited on the surface or internal of the nanotube. UV–vis lightmore » absorbance spectra demonstrate the excellent adsorption properties of MnO{sub 2}/TiO{sub 2} over the whole region of visible light, which enables this novel photocatalytic material to possess remarkable activity in the photocatalytic degradation of acid Orange II under visible light radiation. Moreover, a possible photocatalytic mechanism is discussed.« less
Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays
Grosberg, Lauren E.; Madugula, Sasidhar; Litke, Alan; Cunningham, John; Chichilnisky, E. J.; Paninski, Liam
2017-01-01
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible. PMID:29131818
Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R
2006-07-01
Determining how gene expression profiles change with toxicant dose will improve the utility of arrays in identifying biomarkers and modes of toxic action. Isogenic rainbow trout, Oncorhyncus mykiss,were exposed to 10, 50 or 100 ng/L ethynylestradiol (a xeno-estrogen) for 7 days. Following exposure hepatic RNA was extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNAs. Transcript expression in treated vs control fish was analyzed via Genespring (Silicon Genetics) to identify genes with altered expression, as well as to determine gene clustering patterns that can be used as "expression signatures". Array results were confirmed via qRT PCR. Our analysis indicates that gene expression profiles varied somewhat with dose. Established biomarkers of exposure to estrogenic chemicals, such as vitellogenin, vitelline envelope proteins, and the estrogen receptor alpha, were induced at every dose. Other genes were dose specific, suggesting that different doses induce distinct physiological responses. These findings demonstrate that cDNA microarrays could be used to identify both toxicant class and relative dose.
Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array.
Devault, Alison M; McLoughlin, Kevin; Jaing, Crystal; Gardner, Shea; Porter, Teresita M; Enk, Jacob M; Thissen, James; Allen, Jonathan; Borucki, Monica; DeWitte, Sharon N; Dhody, Anna N; Poinar, Hendrik N
2014-03-06
Ancient human remains of paleopathological interest typically contain highly degraded DNA in which pathogenic taxa are often minority components, making sequence-based metagenomic characterization costly. Microarrays may hold a potential solution to these challenges, offering a rapid, affordable, and highly informative snapshot of microbial diversity in complex samples without the lengthy analysis and/or high cost associated with high-throughput sequencing. Their versatility is well established for modern clinical specimens, but they have yet to be applied to ancient remains. Here we report bacterial profiles of archaeological and historical human remains using the Lawrence Livermore Microbial Detection Array (LLMDA). The array successfully identified previously-verified bacterial human pathogens, including Vibrio cholerae (cholera) in a 19th century intestinal specimen and Yersinia pestis ("Black Death" plague) in a medieval tooth, which represented only minute fractions (0.03% and 0.08% alignable high-throughput shotgun sequencing reads) of their respective DNA content. This demonstrates that the LLMDA can identify primary and/or co-infecting bacterial pathogens in ancient samples, thereby serving as a rapid and inexpensive paleopathological screening tool to study health across both space and time.
Refractive multiple optical tweezers for parallel biochemical analysis in micro-fluidics
NASA Astrophysics Data System (ADS)
Merenda, Fabrice; Rohner, Johann; Pascoal, Pedro; Fournier, Jean-Marc; Vogel, Horst; Salathé, René-Paul
2007-02-01
We present a multiple laser tweezers system based on refractive optics. The system produces an array of 100 optical traps thanks to a refractive microlens array, whose focal plane is imaged into the focal plane of a high-NA microscope objective. This refractive multi-tweezers system is combined to micro-fluidics, aiming at performing simultaneous biochemical reactions on ensembles of free floating objects. Micro-fluidics allows both transporting the particles to the trapping area, and conveying biochemical reagents to the trapped particles. Parallel trapping in micro-fluidics is achieved with polystyrene beads as well as with native vesicles produced from mammalian cells. The traps can hold objects against fluid flows exceeding 100 micrometers per second. Parallel fluorescence excitation and detection on the ensemble of trapped particles is also demonstrated. Additionally, the system is capable of selectively and individually releasing particles from the tweezers array using a complementary steerable laser beam. Strategies for high-yield particle capture and individual particle release in a micro-fluidic environment are discussed. A comparison with diffractive optical tweezers enhances the pros and cons of refractive systems.
Mena, Gonzalo E; Grosberg, Lauren E; Madugula, Sasidhar; Hottowy, Paweł; Litke, Alan; Cunningham, John; Chichilnisky, E J; Paninski, Liam
2017-11-01
Simultaneous electrical stimulation and recording using multi-electrode arrays can provide a valuable technique for studying circuit connectivity and engineering neural interfaces. However, interpreting these measurements is challenging because the spike sorting process (identifying and segregating action potentials arising from different neurons) is greatly complicated by electrical stimulation artifacts across the array, which can exhibit complex and nonlinear waveforms, and overlap temporarily with evoked spikes. Here we develop a scalable algorithm based on a structured Gaussian Process model to estimate the artifact and identify evoked spikes. The effectiveness of our methods is demonstrated in both real and simulated 512-electrode recordings in the peripheral primate retina with single-electrode and several types of multi-electrode stimulation. We establish small error rates in the identification of evoked spikes, with a computational complexity that is compatible with real-time data analysis. This technology may be helpful in the design of future high-resolution sensory prostheses based on tailored stimulation (e.g., retinal prostheses), and for closed-loop neural stimulation at a much larger scale than currently possible.
Xia, Xinhui; Chao, Dongliang; Zhang, Yongqi; Zhan, Jiye; Zhong, Yu; Wang, Xiuli; Wang, Yadong; Shen, Ze Xiang; Tu, Jiangping; Fan, Hong Jin
2016-06-01
A new and generic strategy to construct interwoven carbon nanotube (CNT) branches on various metal oxide nanostructure arrays (exemplified by V2 O3 nanoflakes, Co3 O4 nanowires, Co3 O4 -CoTiO3 composite nanotubes, and ZnO microrods), in order to enhance their electrochemical performance, is demonstrated for the first time. In the second part, the V2 O3 /CNTs core/branch composite arrays as the host for Na(+) storage are investigated in detail. This V2 O3 /CNTs hybrid electrode achieves a reversible charge storage capacity of 612 mAh g(-1) at 0.1 A g(-1) and outstanding high-rate cycling stability (a capacity retention of 100% after 6000 cycles at 2 A g(-1) , and 70% after 10 000 cycles at 10 A g(-1) ). Kinetics analysis reveals that the Na(+) storage is a pseudocapacitive dominating process and the CNTs improve the levels of pseudocapacitive energy by providing a conductive network. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Micolini, Carolina; Holness, Frederick Benjamin; Johnson, James A.
2017-01-01
Load transfer through orthopaedic joint implants is poorly understood. The longer-term outcomes of these implants are just starting to be studied, making it imperative to monitor contact loads across the entire joint implant interface to elucidate the force transmission and distribution mechanisms exhibited by these implants in service. This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smart polymer sensor array using conductive polyaniline (PANI) structures embedded within a polymeric parent phase. The piezoresistive characteristics of PANI were investigated to characterize the sensing behaviour inherent to these embedded pressure sensor arrays, including the experimental determination of the stable response of PANI to continuous loading, stability throughout the course of loading and unloading cycles, and finally sensor repeatability and linearity in response to incremental loading cycles. This specially developed multi-material additive manufacturing process for PANI is shown be an attractive approach for the fabrication of implant components having embedded smart-polymer sensors, which could ultimately be employed for the measurement and analysis of joint loads in orthopaedic implants for in vitro testing. PMID:29186079
Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission.
van Beijnum, Frerik; Rétif, Chris; Smiet, Chris B; Liu, Haitao; Lalanne, Philippe; van Exter, Martin P
2012-12-20
A metal film perforated by a regular array of subwavelength holes shows unexpectedly large transmission at particular wavelengths, a phenomenon known as the extraordinary optical transmission (EOT) of metal hole arrays. EOT was first attributed to surface plasmon polaritons, stimulating a renewed interest in plasmonics and metallic surfaces with subwavelength features. Experiments soon revealed that the field diffracted at a hole or slit is not a surface plasmon polariton mode alone. Further theoretical analysis predicted that the extra contribution, from quasi-cylindrical waves, also affects EOT. Here we report the experimental demonstration of the relative importance of surface plasmon polaritons and quasi-cylindrical waves in EOT by considering hole arrays of different hole densities. From the measured transmission spectra, we determine microscopic scattering parameters which allow us to show that quasi-cylindrical waves affect EOT only for high densities, when the hole spacing is roughly one wavelength. Apart from providing a deeper understanding of EOT, the determination of microscopic scattering parameters from the measurement of macroscopic optical properties paves the way to novel design strategies.
Dark Current Reduction of IR Detectors
2017-10-19
demonstrating a novel dark current reduction approach for dense infrared detector arrays. This technique is based on the diffusion control junction (DCJ...fabricate and test detector arrays with and without DCJs on the same wafer and demonstrate the effectiveness of the DCJ approach in reducing dark current...subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE
NASA Technical Reports Server (NTRS)
Heinrichs, J. A.; Fee, J. J.
1972-01-01
Space station and solar array data and the analyses which were performed in support of the integrated dynamic analysis study. The analysis methods and the formulated digital simulation were developed. Control systems for space station altitude control and solar array orientation control include generic type control systems. These systems have been digitally coded and included in the simulation.
Investigating brain functional evolution and plasticity using microelectrode array technology.
Napoli, Alessandro; Obeid, Iyad
2015-10-01
The aim of this work was to investigate long and short-term plasticity responsible for memory formation in dissociated neuronal networks. In order to address this issue, a set of experiments was designed and implemented in which the microelectrode array electrode grid was divided into four quadrants, two of which were chronically stimulated, every two days for one hour with a stimulation paradigm that varied over time. Overall network and quadrant responses were then analyzed to quantify what level of plasticity took place in the network and how this was due to the stimulation interruption. The results demonstrate that there were no spatial differences in the stimulus-evoked activity within quadrants. Furthermore, the implemented stimulation protocol induced depression effects in the neuronal networks as demonstrated by the consistently lower network activity following stimulation sessions. Finally, the analysis demonstrated that the inhibitory effects of the stimulation decreased over time, thus suggesting a habituation phenomenon. These findings are sufficient to conclude that electrical stimulation is an important tool to interact with dissociated neuronal cultures, but localized stimuli are not enough to drive spatial synaptic potentiation or depression. On the contrary, the ability to modulate synaptic temporal plasticity was a feasible task to achieve by chronic network stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Harvey, John J; Chester, Stephanie; Burke, Stephen A; Ansbro, Marisela; Aden, Tricia; Gose, Remedios; Sciulli, Rebecca; Bai, Jing; DesJardin, Lucy; Benfer, Jeffrey L; Hall, Joshua; Smole, Sandra; Doan, Kimberly; Popowich, Michael D; St George, Kirsten; Quinlan, Tammy; Halse, Tanya A; Li, Zhen; Pérez-Osorio, Ailyn C; Glover, William A; Russell, Denny; Reisdorf, Erik; Whyte, Thomas; Whitaker, Brett; Hatcher, Cynthia; Srinivasan, Velusamy; Tatti, Kathleen; Tondella, Maria Lucia; Wang, Xin; Winchell, Jonas M; Mayer, Leonard W; Jernigan, Daniel; Mawle, Alison C
2016-02-01
In this study, a multicenter evaluation of the Life Technologies TaqMan(®) Array Card (TAC) with 21 custom viral and bacterial respiratory assays was performed on the Applied Biosystems ViiA™ 7 Real-Time PCR System. The goal of the study was to demonstrate the analytical performance of this platform when compared to identical individual pathogen specific laboratory developed tests (LDTs) designed at the Centers for Disease Control and Prevention (CDC), equivalent LDTs provided by state public health laboratories, or to three different commercial multi-respiratory panels. CDC and Association of Public Health Laboratories (APHL) LDTs had similar analytical sensitivities for viral pathogens, while several of the bacterial pathogen APHL LDTs demonstrated sensitivities one log higher than the corresponding CDC LDT. When compared to CDC LDTs, TAC assays were generally one to two logs less sensitive depending on the site performing the analysis. Finally, TAC assays were generally more sensitive than their counterparts in three different commercial multi-respiratory panels. TAC technology allows users to spot customized assays and design TAC layout, simplify assay setup, conserve specimen, dramatically reduce contamination potential, and as demonstrated in this study, analyze multiple samples in parallel with good reproducibility between instruments and operators. Copyright © 2015 Elsevier B.V. All rights reserved.
ArrayInitiative - a tool that simplifies creating custom Affymetrix CDFs
2011-01-01
Background Probes on a microarray represent a frozen view of a genome and are quickly outdated when new sequencing studies extend our knowledge, resulting in significant measurement error when analyzing any microarray experiment. There are several bioinformatics approaches to improve probe assignments, but without in-house programming expertise, standardizing these custom array specifications as a usable file (e.g. as Affymetrix CDFs) is difficult, owing mostly to the complexity of the specification file format. However, without correctly standardized files there is a significant barrier for testing competing analysis approaches since this file is one of the required inputs for many commonly used algorithms. The need to test combinations of probe assignments and analysis algorithms led us to develop ArrayInitiative, a tool for creating and managing custom array specifications. Results ArrayInitiative is a standalone, cross-platform, rich client desktop application for creating correctly formatted, custom versions of manufacturer-provided (default) array specifications, requiring only minimal knowledge of the array specification rules and file formats. Users can import default array specifications, import probe sequences for a default array specification, design and import a custom array specification, export any array specification to multiple output formats, export the probe sequences for any array specification and browse high-level information about the microarray, such as version and number of probes. The initial release of ArrayInitiative supports the Affymetrix 3' IVT expression arrays we currently analyze, but as an open source application, we hope that others will contribute modules for other platforms. Conclusions ArrayInitiative allows researchers to create new array specifications, in a standard format, based upon their own requirements. This makes it easier to test competing design and analysis strategies that depend on probe definitions. Since the custom array specifications are easily exported to the manufacturer's standard format, researchers can analyze these customized microarray experiments using established software tools, such as those available in Bioconductor. PMID:21548938
Sha, Zhichao; Liu, Zhengmeng; Huang, Zhitao; Zhou, Yiyu
2013-08-29
This paper addresses the problem of direction-of-arrival (DOA) estimation of multiple wideband coherent chirp signals, and a new method is proposed. The new method is based on signal component analysis of the array output covariance, instead of the complicated time-frequency analysis used in previous literatures, and thus is more compact and effectively avoids possible signal energy loss during the hyper-processes. Moreover, the a priori information of signal number is no longer a necessity for DOA estimation in the new method. Simulation results demonstrate the performance superiority of the new method over previous ones.
The optimization of force inputs for active structural acoustic control using a neural network
NASA Technical Reports Server (NTRS)
Cabell, R. H.; Lester, H. C.; Silcox, R. J.
1992-01-01
This paper investigates the use of a neural network to determine which force actuators, of a multi-actuator array, are best activated in order to achieve structural-acoustic control. The concept is demonstrated using a cylinder/cavity model on which the control forces, produced by piezoelectric actuators, are applied with the objective of reducing the interior noise. A two-layer neural network is employed and the back propagation solution is compared with the results calculated by a conventional, least-squares optimization analysis. The ability of the neural network to accurately and efficiently control actuator activation for interior noise reduction is demonstrated.
An All Silicon Feedhorn-Coupled Focal Plane for Cosmic Microwave Background Polarimetry
NASA Technical Reports Server (NTRS)
Hubmayr, J.; Appel, J. W.; Austermann, J. E.; Beall, J. A.; Becker, D.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.;
2011-01-01
Upcoming experiments aim to produce high fidelity polarization maps of the cosmic microwave background. To achieve the required sensitivity, we are developing monolithic, feedhorn-coupled transition edge sensor polarimeter arrays operating at 150 GHz. We describe this focal plane architecture and the current status of this technology, focusing on single-pixel polarimeters being deployed on the Atacama B-mode Search (ABS) and an 84-pixel demonstration feedhorn array backed by four 10-pixel polarimeter arrays. The feedhorn array exhibits symmetric beams, cross-polar response less than -23 dB and excellent uniformity across the array. Monolithic polarimeter arrays, including arrays of silicon feedhorns, will be used in the Atacama Cosmology Telescope Polarimeter (ACTPol) and the South Pole Telescope Polarimeter (SPTpol) and have been proposed for upcoming balloon-borne instruments.
Wang, Sibo; Wu, Yunchao; Miao, Ran; ...
2017-07-26
Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Sibo; Wu, Yunchao; Miao, Ran
Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less
Array signal recovery algorithm for a single-RF-channel DBF array
NASA Astrophysics Data System (ADS)
Zhang, Duo; Wu, Wen; Fang, Da Gang
2016-12-01
An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.
NASA Astrophysics Data System (ADS)
McCold, Cliff E.; Fu, Qiang; Howe, Jane Y.; Hihath, Joshua
2015-09-01
Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems.Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems. Electronic supplementary information (ESI) available: Temperature dependent measurements, activation energies, particle size distributions, void density-polydispersity relation, and DLS data. See DOI: 10.1039/c5nr04460j
Acoustic imaging of aircraft wake vortex dynamics
DOT National Transportation Integrated Search
2005-06-01
The experience in utilizing a phased microphone array to passively image aircraft wake : vortices is highlighted. It is demonstrated that the array can provide visualization of wake : dynamics similar to smoke release or natural condensation of vorti...
Flexible Organic Electronics for Use in Neural Sensing
Bink, Hank; Lai, Yuming; Saudari, Sangameshwar R.; Helfer, Brian; Viventi, Jonathan; Van der Spiegel, Jan; Litt, Brian; Kagan, Cherie
2016-01-01
Recent research in brain-machine interfaces and devices to treat neurological disease indicate that important network activity exists at temporal and spatial scales beyond the resolution of existing implantable devices. High density, active electrode arrays hold great promise in enabling high-resolution interface with the brain to access and influence this network activity. Integrating flexible electronic devices directly at the neural interface can enable thousands of multiplexed electrodes to be connected using many fewer wires. Active electrode arrays have been demonstrated using flexible, inorganic silicon transistors. However, these approaches may be limited in their ability to be cost-effectively scaled to large array sizes (8×8 cm). Here we show amplifiers built using flexible organic transistors with sufficient performance for neural signal recording. We also demonstrate a pathway for a fully integrated, amplified and multiplexed electrode array built from these devices. PMID:22255558
In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P
2012-09-25
We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.
NASA Astrophysics Data System (ADS)
Kumar, Manasvi; Sharifi Dehsari, Hamed; Anwar, Saleem; Asadi, Kamal
2018-03-01
Organic bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers have emerged as promising candidates for non-volatile information storage for low-cost solution processable electronics. One of the bottlenecks impeding upscaling is stability and reliable operation of the array in air. Here, we present a memory array fabricated with an air-stable amine-based semiconducting polymer. Memory diode fabrication and full electrical characterizations were carried out in atmospheric conditions (23 °C and 45% relative humidity). The memory diodes showed on/off ratios greater than 100 and further exhibited robust and stable performance upon continuous write-read-erase-read cycles. Moreover, we demonstrate a 4-bit memory array that is free from cross-talk with a shelf-life of several months. Demonstration of the stability and reliable air operation further strengthens the feasibility of the resistance switching in ferroelectric memory diodes for low-cost applications.
Unidirectional waveguide grating antennas with uniform emission for optical phased arrays.
Raval, Manan; Poulton, Christopher V; Watts, Michael R
2017-07-01
We demonstrate millimeter-scale optical waveguide grating antennas with unidirectional emission for integrated optical phased arrays. Unidirectional emission eliminates the fundamental problem of blind spots in the element factor of a phased array caused by reflections of antenna radiation within the substrate. Over 90% directionality is demonstrated using a design consisting of two silicon nitride layers. Furthermore, the perturbation strength along the antenna is apodized to achieve uniform emission for the first time, to the best of our knowledge, on a millimeter scale. This allows for a high effective aperture and receiving efficiency. The emission profile of the measured 3 mm long antenna has a standard deviation of 8.65% of the mean. These antennas are state of the art and will allow for integrated optical phased arrays with blind-spot-free high transmission output power and high receiving efficiency for LIDAR and free-space communication systems.
Satellite-borne active phased array techniques for mobile communications
NASA Astrophysics Data System (ADS)
Sheehan, P. G.; Forrest, J. R.
1986-07-01
This paper investigates the design of active phased arrays for communications satellites. In particular, consideration is given to the problems occurring when active arrays are required to produce multiple beams. There is a real need to keep the complexity of the array electronics to a minimum, but this conflicts with the desire to obtain the greatest possible freedom of control of the radiation pattern produced. The paper demonstrates a method of coping with the problem. Low-gain elements are used to provide design freedom and they are grouped into subarrays to limit the complexity of the rest of the system. With appropriate configurations of subarrays, greatly improved radiation pattern characteristics can be obtained and frequency reuse between multiple beams becomes feasible. A demonstration model of 108 microstrip patches grouped into 32 subarrays, operating at 12 GHz, has been constructed and verifies that the technique is effective.
Geometric analysis and restitution of digital multispectral scanner data arrays
NASA Technical Reports Server (NTRS)
Baker, J. R.; Mikhail, E. M.
1975-01-01
An investigation was conducted to define causes of geometric defects within digital multispectral scanner (MSS) data arrays, to analyze the resulting geometric errors, and to investigate restitution methods to correct or reduce these errors. Geometric transformation relationships for scanned data, from which collinearity equations may be derived, served as the basis of parametric methods of analysis and restitution of MSS digital data arrays. The linearization of these collinearity equations is presented. Algorithms considered for use in analysis and restitution included the MSS collinearity equations, piecewise polynomials based on linearized collinearity equations, and nonparametric algorithms. A proposed system for geometric analysis and restitution of MSS digital data arrays was used to evaluate these algorithms, utilizing actual MSS data arrays. It was shown that collinearity equations and nonparametric algorithms both yield acceptable results, but nonparametric algorithms possess definite advantages in computational efficiency. Piecewise polynomials were found to yield inferior results.
Read margin analysis of crossbar arrays using the cell-variability-aware simulation method
NASA Astrophysics Data System (ADS)
Sun, Wookyung; Choi, Sujin; Shin, Hyungsoon
2018-02-01
This paper proposes a new concept of read margin analysis of crossbar arrays using cell-variability-aware simulation. The size of the crossbar array should be considered to predict the read margin characteristic of the crossbar array because the read margin depends on the number of word lines and bit lines. However, an excessively high-CPU time is required to simulate large arrays using a commercial circuit simulator. A variability-aware MATLAB simulator that considers independent variability sources is developed to analyze the characteristics of the read margin according to the array size. The developed MATLAB simulator provides an effective method for reducing the simulation time while maintaining the accuracy of the read margin estimation in the crossbar array. The simulation is also highly efficient in analyzing the characteristic of the crossbar memory array considering the statistical variations in the cell characteristics.
Pauwelyn, Thomas; Stahl, Richard; Mayo, Lakyn; Zheng, Xuan; Lambrechts, Andy; Janssens, Stefan; Lagae, Liesbet; Reumers, Veerle; Braeken, Dries
2018-01-01
The high rate of drug attrition caused by cardiotoxicity is a major challenge for drug development. Here, we developed a reflective lens-free imaging (RLFI) approach to non-invasively record in vitro cell deformation in cardiac monolayers with high temporal (169 fps) and non-reconstructed spatial resolution (352 µm) over a field-of-view of maximally 57 mm2. The method is compatible with opaque surfaces and silicon-based devices. Further, we demonstrated that the system can detect the impairment of both contractility and fast excitation waves in cardiac monolayers. Additionally, the RLFI device was implemented on a CMOS-based microelectrode array to retrieve multi-parametric information of cardiac cells, thereby offering more in-depth analysis of drug-induced (cardiomyopathic) effects for preclinical cardiotoxicity screening applications. PMID:29675322
Tensor sufficient dimension reduction
Zhong, Wenxuan; Xing, Xin; Suslick, Kenneth
2015-01-01
Tensor is a multiway array. With the rapid development of science and technology in the past decades, large amount of tensor observations are routinely collected, processed, and stored in many scientific researches and commercial activities nowadays. The colorimetric sensor array (CSA) data is such an example. Driven by the need to address data analysis challenges that arise in CSA data, we propose a tensor dimension reduction model, a model assuming the nonlinear dependence between a response and a projection of all the tensor predictors. The tensor dimension reduction models are estimated in a sequential iterative fashion. The proposed method is applied to a CSA data collected for 150 pathogenic bacteria coming from 10 bacterial species and 14 bacteria from one control species. Empirical performance demonstrates that our proposed method can greatly improve the sensitivity and specificity of the CSA technique. PMID:26594304
Hexagonal arrays of round-head silicon nanopillars for surface anti-reflection applications
NASA Astrophysics Data System (ADS)
Yan, Wensheng; Dottermusch, Stephan; Reitz, Christian; Richards, Bryce S.
2016-10-01
We designed and fabricated an anti-reflection surface of hexagonal arrays of round-head silicon nanopillars. The measurements show a significant reduction in reflectivity across a broad spectral range. However, we then grew a conformal titanium dioxide coating via atomic layer deposition to achieve an extremely low weighted average reflection of 2.1% over the 460-1040 nm wavelength range. To understand the underlying reasons for the reduced reflectance, the simulations were conducted and showed that it is due to strong forward scattering of incident light into the silicon substrate. The calculated normalized scattering cross section demonstrates a broadband distribution feature, and the peak has a red-shift to longer wavelengths. Finally, we report two-dimensional weighted average reflectance as a function of both wavelength and angle of incidence and present the resulting analysis contour map.
NASA Astrophysics Data System (ADS)
Joshi, Tenzing H. Y.; Quiter, Brian J.; Maltz, Jonathan S.; Bandstra, Mark S.; Haefner, Andrew; Eikmeier, Nicole; Wagner, Eric; Luke, Tanushree; Malchow, Russell; McCall, Karen
2017-07-01
The Airborne Radiological Enhanced-sensor System (ARES) includes a prototype helicopter-borne CsI(Na) detector array that has been developed as part of the DHS Domestic Nuclear Detection Office Advanced Technology Demonstration. The detector system geometry comprises two pairs of 23-detector arrays designed to function as active masks, providing additional angular resolution of measured gamma rays in the roll dimension. Experimental measurements, using five radioisotopes (137Cs, 60Co, 241Am, 131I, and 99mTc), were performed to map the detector response in both roll and pitch dimensions. This paper describes the acquisition and analysis of these characterization measurements, calculation of the angular response of the ARES system, and how this response function is used to improve aerial detection and localization of radiological and nuclear threat sources.
Application of silicon zig-zag wall arrays for anodes of Li-ion batteries
NASA Astrophysics Data System (ADS)
Li, G. V.; Rumyantsev, A. M.; Levitskii, V. S.; Beregulin, E. V.; Zhdanov, V. V.; Terukov, E. I.; Astrova, E. V.
2016-01-01
Cyclic tests of anodes based on zigzag wall arrays fabricated by the electrochemical etching and post-anodization treatment of silicon have been performed. Compared with anodes based on nanowires and planar thin films, these structures have several advantages. An ex situ analysis of the morphology and structural transformations in a material subjected to cyclic lithiation was conducted by electron microscopy and micro-Raman spectroscopy. The effect of geometrical parameters and a cycling mode on the degradation rate was studied. It is shown that a significant rise in the cycle life of the anode can be obtained by the restriction of the inserted amount of lithium. The anode, subjected to galvanostatic cycling at a rate C/2.8 at a limited charge capacity of 1000 mA · h g-1, demonstrates no degradation after 1200 cycles.
Rampini, S; Kilinc, D; Li, P; Monteil, C; Gandhi, D; Lee, G U
2015-08-21
Nonlinear magnetophoresis (NLM) is a novel approach for on-chip transport and separation of superparamagnetic (SPM) beads, based on a travelling magnetic field wave generated by the combination of a micromagnet array (MMA) and an applied rotating magnetic field. Here, we present two novel MMA designs that allow SPM beads to be focused, sorted, and separated on-chip. Converging MMAs were used to rapidly collect the SPM beads from a large region of the chip and focus them into synchronised lines. We characterise the collection efficiency of the devices and demonstrate that they can facilitate on-chip analysis of populations of SPM beads using a single-point optical detector. The diverging MMAs were used to control the transport of the beads and to separate them based on their size. The separation efficiency of these devices was determined by the orientation of the magnetisation of the micromagnets relative to the external magnetic field and the size of the beads and relative to that of micromagnets. By controlling these parameters and the rotation of the external magnetic field we demonstrated the controlled transport of SPM bead-labelled single MDA-MB-231 cells. The use of these novel MMAs promises to allow magnetically-labelled cells to be efficiently isolated and then manipulated on-chip for analysis with high-resolution chemical and physical techniques.
Dielectrophoresis-Enhanced Plasmonic Sensing with Gold Nanohole Arrays
2015-01-01
We experimentally demonstrate dielectrophoretic concentration of biological analytes on the surface of a gold nanohole array, which concurrently acts as a nanoplasmonic sensor and gradient force generator. The combination of nanohole-enhanced dielectrophoresis, electroosmosis, and extraordinary optical transmission through the periodic gold nanohole array enables real-time label-free detection of analyte molecules in a 5 μL droplet using concentrations as low as 1 pM within a few minutes, which is more than 1000 times faster than purely diffusion-based binding. The nanohole-based optofluidic platform demonstrated here is straightforward to construct, applicable to both charged and neutral molecules, and performs a novel function that cannot be accomplished using conventional surface plasmon resonance sensors. PMID:24646075
Physics Teacher Demonstrations for the Classroom
NASA Astrophysics Data System (ADS)
Murfee, Lee
2005-04-01
A sharing of physics and physics teaching demonstrations by Lee Murfee, a teacher of students learning physics and mathematics at Berkeley Preparatory School and the United States Military Academy for 21 years, and active member of the Florida Section of American Association of Physics Teachers (AAPT). Presentation is a fast paced array of physics and physics teaching demonstrations. Topics include who and what we teach, a successful science department philosophy, forces, acceleration, impulse, momentum, observations, pendulums, springs, friction, inclined plane, rotational motion, moment of inertia, teaching description of motion with data, equations and graphing, slope, uniform circular motion, derivatives, integrals, PASCO Data Studio sensor applications, students presenting to students, flashboards, sound, pressure, and sensitivity analysis in determining specific heat. Demonstrations apply to high school and college introductory physics teaching; handouts and some door prizes/gifts will be provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wnek, W.J.; Ramshaw, J.D.; Trapp, J.A.
1975-11-01
A mathematical model and a numerical solution scheme for thermal- hydraulic analysis of fuel rod arrays are given. The model alleviates the two major deficiencies associated with existing rod array analysis models, that of a correct transverse momentum equation and the capability of handling reversing and circulatory flows. Possible applications of the model include steady state and transient subchannel calculations as well as analysis of flows in heat exchangers, other engineering equipment, and porous media. (auth)
Bechstein, Daniel J B; Ng, Elaine; Lee, Jung-Rok; Cone, Stephanie G; Gaster, Richard S; Osterfeld, Sebastian J; Hall, Drew A; Weaver, James A; Wilson, Robert J; Wang, Shan X
2015-11-21
We demonstrate microfluidic partitioning of a giant magnetoresistive sensor array into individually addressable compartments that enhances its effective use. Using different samples and reagents in each compartment enables measuring of cross-reactive species and wide dynamic ranges on a single chip. This compartmentalization technique motivates the employment of high density sensor arrays for highly parallelized measurements in lab-on-a-chip devices.
Wavelength shift in vertical cavity laser arrays on a patterned substrate
NASA Astrophysics Data System (ADS)
Eng, L. E.; Bacher, K.; Yuen, W.; Larson, M.; Ding, G.; Harris, J. S., Jr.; Chang-Hasnain, C. J.
1995-03-01
The authors demonstrate a spatially chirped emission wavelength in vertical cavity surface emitting laser (VCSEL) arrays grown by molecular beam epitaxy. The wavelength shift is due to a lateral thickness variation in the Al(0.2)Ga(0.8)As cavity, which is induced by a substrate temperature profile during growth. A 20 nm shift in lasing wavelength is obtained in a VCSEL array.
A simplified solar cell array modelling program
NASA Technical Reports Server (NTRS)
Hughes, R. D.
1982-01-01
As part of the energy conversion/self sufficiency efforts of DSN engineering, it was necessary to have a simplified computer model of a solar photovoltaic (PV) system. This article describes the analysis and simplifications employed in the development of a PV cell array computer model. The analysis of the incident solar radiation, steady state cell temperature and the current-voltage characteristics of a cell array are discussed. A sample cell array was modelled and the results are presented.
Integrating Scientific Array Processing into Standard SQL
NASA Astrophysics Data System (ADS)
Misev, Dimitar; Bachhuber, Johannes; Baumann, Peter
2014-05-01
We live in a time that is dominated by data. Data storage is cheap and more applications than ever accrue vast amounts of data. Storing the emerging multidimensional data sets efficiently, however, and allowing them to be queried by their inherent structure, is a challenge many databases have to face today. Despite the fact that multidimensional array data is almost always linked to additional, non-array information, array databases have mostly developed separately from relational systems, resulting in a disparity between the two database categories. The current SQL standard and SQL DBMS supports arrays - and in an extension also multidimensional arrays - but does so in a very rudimentary and inefficient way. This poster demonstrates the practicality of an SQL extension for array processing, implemented in a proof-of-concept multi-faceted system that manages a federation of array and relational database systems, providing transparent, efficient and scalable access to the heterogeneous data in them.
Distributions-per-level: a means of testing level detectors and models of patch-clamp data.
Schröder, I; Huth, T; Suitchmezian, V; Jarosik, J; Schnell, S; Hansen, U P
2004-01-01
Level or jump detectors generate the reconstructed time series from a noisy record of patch-clamp current. The reconstructed time series is used to create dwell-time histograms for the kinetic analysis of the Markov model of the investigated ion channel. It is shown here that some additional lines in the software of such a detector can provide a powerful new means of patch-clamp analysis. For each current level that can be recognized by the detector, an array is declared. The new software assigns every data point of the original time series to the array that belongs to the actual state of the detector. From the data sets in these arrays distributions-per-level are generated. Simulated and experimental time series analyzed by Hinkley detectors are used to demonstrate the benefits of these distributions-per-level. First, they can serve as a test of the reliability of jump and level detectors. Second, they can reveal beta distributions as resulting from fast gating that would usually be hidden in the overall amplitude histogram. Probably the most valuable feature is that the malfunctions of the Hinkley detectors turn out to depend on the Markov model of the ion channel. Thus, the errors revealed by the distributions-per-level can be used to distinguish between different putative Markov models of the measured time series.
Gunderson, Felizza F.; Cianciotto, Nicholas P.
2013-01-01
ABSTRACT Recent studies have shown that the clustered regularly interspaced palindromic repeats (CRISPR) array and its associated (cas) genes can play a key role in bacterial immunity against phage and plasmids. Upon analysis of the Legionella pneumophila strain 130b chromosome, we detected a subtype II-B CRISPR-Cas locus that contains cas9, cas1, cas2, cas4, and an array with 60 repeats and 58 unique spacers. Reverse transcription (RT)-PCR analysis demonstrated that the entire CRISPR-Cas locus is expressed during 130b extracellular growth in both rich and minimal media as well as during intracellular infection of macrophages and aquatic amoebae. Quantitative reverse transcription-PCR (RT-PCR) further showed that the levels of cas transcripts, especially those of cas1 and cas2, are elevated during intracellular growth relative to exponential-phase growth in broth. Mutants lacking components of the CRISPR-Cas locus were made and found to grow normally in broth and on agar media. cas9, cas1, cas4, and CRISPR array mutants also grew normally in macrophages and amoebae. However, cas2 mutants, although they grew typically in macrophages, were significantly impaired for infection of both Hartmannella and Acanthamoeba species. A complemented cas2 mutant infected the amoebae at wild-type levels, confirming that cas2 is required for intracellular infection of these host cells. PMID:23481601
Wang, Chao; Ye, Min; Cheng, Liang; Li, Rui; Zhu, Wenwen; Shi, Zhen; Fan, Chunhai; He, Jinkang; Liu, Jian; Liu, Zhuang
2015-06-01
The development of sensitive and convenient methods for detection, enrichment, and analysis of circulating tumor cells (CTCs), which serve as an importance diagnostic indicator for metastatic progression of cancer, has received tremendous attention in recent years. In this work, a new approach characteristic of simultaneous CTC capture and detection is developed by integrating a microfluidic silicon nanowire (SiNW) array with multifunctional magnetic upconversion nanoparticles (MUNPs). The MUNPs were conjugated with anti-EpCAM antibody, thus capable to specifically recognize tumor cells in the blood samples and pull them down under an external magnetic field. The capture efficiency of CTCs was further improved by the integration with a microfluidic SiNW array. Due to the autofluorescence free nature in upconversion luminescence (UCL) imaging, our approach allows for highly sensitive detection of small numbers of tumor cells, which afterward could be collected for further analysis and re-culturing. We have further demonstrated that this approach can be applied to detect CTCs in clinical blood samples from lung cancer patients, and obtained consistent results by analyzing the UCL signals and the clinical outcomes of lung cancer metastasis. Therefore our approach represents a promising platform in CTC capture and detection with potential clinical utilization in cancer diagnosis and prognosis. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Miller, Timothy M.; Costen, Nick; Allen, Christine
2007-01-01
This conference poster reviews the Indium hybridization of the large format TES bolometer arrays. We are developing a key technology to enable the next generation of detectors. That is the Hybridization of Large Format Arrays using Indium bonded detector arrays containing 32x40 elements which conforms to the NIST multiplexer readout architecture of 1135 micron pitch. We have fabricated and hybridized mechanical models with the detector chips bonded after being fully back-etched. The mechanical support consists of 30 micron walls between elements Demonstrated electrical continuity for each element. The goal is to hybridize fully functional array of TES detectors to NIST readout.
Martinez-Perdiguero, Josu; Retolaza, Aritz; Otaduy, Deitze; Juarros, Aritz; Merino, Santos
2013-01-01
In this work we present a surface plasmon resonance sensor based on enhanced optical transmission through sub-wavelength nanohole arrays. This technique is extremely sensitive to changes in the refractive index of the surrounding medium which result in a modulation of the transmitted light. The periodic gold nanohole array sensors were fabricated by high-throughput thermal nanoimprint lithography. Square periodic arrays with sub-wavelength hole diameters were obtained and characterized. Using solutions with known refractive index, the array sensitivities were obtained. Finally, protein absorption was monitored in real-time demonstrating the label-free biosensing capabilities of the fabricated devices. PMID:24135989
Development of an Ultraflex-Based Thin Film Solar Array for Space Applications
NASA Technical Reports Server (NTRS)
White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.
2003-01-01
As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.
Maximum bandwidth snapshot channeled imaging polarimeter with polarization gratings
NASA Astrophysics Data System (ADS)
LaCasse, Charles F.; Redman, Brian J.; Kudenov, Michael W.; Craven, Julia M.
2016-05-01
Compact snapshot imaging polarimeters have been demonstrated in literature to provide Stokes parameter estimations for spatially varying scenes using polarization gratings. However, the demonstrated system does not employ aggressive modulation frequencies to take full advantage of the bandwidth available to the focal plane array. A snapshot imaging Stokes polarimeter is described and demonstrated through results. The simulation studies the challenges of using a maximum bandwidth configuration for a snapshot polarization grating based polarimeter, such as the fringe contrast attenuation that results from higher modulation frequencies. Similar simulation results are generated and compared for a microgrid polarimeter. Microgrid polarimeters are instruments where pixelated polarizers are superimposed onto a focal plan array, and this is another type of spatially modulated polarimeter, and the most common design uses a 2x2 super pixel of polarizers which maximally uses the available bandwidth of the focal plane array.