Calibration Errors in Interferometric Radio Polarimetry
NASA Astrophysics Data System (ADS)
Hales, Christopher A.
2017-08-01
Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.
Polarimetry With Phased Array Antennas: Theoretical Framework and Definitions
NASA Astrophysics Data System (ADS)
Warnick, Karl F.; Ivashina, Marianna V.; Wijnholds, Stefan J.; Maaskant, Rob
2012-01-01
For phased array receivers, the accuracy with which the polarization state of a received signal can be measured depends on the antenna configuration, array calibration process, and beamforming algorithms. A signal and noise model for a dual-polarized array is developed and related to standard polarimetric antenna figures of merit, and the ideal polarimetrically calibrated, maximum-sensitivity beamforming solution for a dual-polarized phased array feed is derived. A practical polarimetric beamformer solution that does not require exact knowledge of the array polarimetric response is shown to be equivalent to the optimal solution in the sense that when the practical beamformers are calibrated, the optimal solution is obtained. To provide a rough initial polarimetric calibration for the practical beamformer solution, an approximate single-source polarimetric calibration method is developed. The modeled instrumental polarization error for a dipole phased array feed with the practical beamformer solution and single-source polarimetric calibration was -10 dB or lower over the array field of view for elements with alignments perturbed by random rotations with 5 degree standard deviation.
NASA Technical Reports Server (NTRS)
Schuman, H. K.
1992-01-01
An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.
CryoPAF4: a cryogenic phased array feed design
NASA Astrophysics Data System (ADS)
Locke, Lisa; Garcia, Dominic; Halman, Mark; Henke, Doug; Hovey, Gary; Jiang, Nianhua; Knee, Lewis; Lacy, Gordon; Loop, David; Rupen, Michael; Veidt, Bruce; Wierzbicki, Ramunas
2016-07-01
Phased array feed (PAF) receivers used on radio astronomy telescopes offer the promise of increased fields of view while maintaining the superlative performance attained with traditional single pixel feeds (SPFs). However, the much higher noise temperatures of room temperature PAFs compared to cryogenically-cooled SPFs have prevented their general adoption. Here we describe a conceptual design for a cryogenically cooled 2.8 - 5.18 GHz dual linear polarization PAF with estimated receiver temperature of 11 K. The cryogenic PAF receiver will comprise a 140 element Vivaldi antenna array and low-noise amplifiers housed in a 480 mm diameter cylindrical dewar covered with a RF transparent radome. A broadband two-section coaxial feed is integrated within each metal antenna element to withstand the cryogenic environment and to provide a 50 ohm impedance for connection to the rest of the receiver. The planned digital beamformer performs digitization, frequency band selection, beam forming and array covariance matrix calibration. Coupling to a 15 m offset Gregorian dual-reflector telescope, cryoPAF4 can expect to form 18 overlapping beams increasing the field of view by a factor of 8x compared to a single pixel receiver of equal system temperature.
A flux calibration device for the SuperNova Integral Field Spectrograph (SNIFS)
NASA Astrophysics Data System (ADS)
Lombardo, Simona; Aldering, Greg; Hoffmann, Akos; Kowalski, Marek; Kuesters, Daniel; Reif, Klaus; Rigault, Michael
2014-07-01
Observational cosmology employing optical surveys often require precise flux calibration. In this context we present SNIFS Calibration Apparatus (SCALA), a flux calibration system developed for the SuperNova Integral Field Spectrograph (SNIFS), operating at the University of Hawaii 2.2 m telescope. SCALA consists of a hexagonal array of 18 small parabolic mirrors distributed over the face of, and feeding parallel light to, the telescope entrance pupil. The mirrors are illuminated by integrating spheres and a wavelength-tunable (from UV to IR) light source, generating light beams with opening angles of 1°. These nearly parallel beams are flat and flux-calibrated at a subpercent level, enabling us to calibrate our "telescope + SNIFS system" at the required precision.
Method and system for gathering a library of response patterns for sensor arrays
Zaromb, Solomon
1992-01-01
A method of gathering a library of response patterns for one or more sensor arrays used in the detection and identification of chemical components in a fluid includes the steps of feeding samples of fluid with time-spaced separation of known components to the sensor arrays arranged in parallel or series configurations. Modifying elements such as heating filaments of differing materials operated at differing temperatures are included in the configurations to duplicate operational modes designed into the portable detection systems with which the calibrated sensor arrays are to be used. The response patterns from the known components are collected into a library held in the memory of a microprocessor for comparison with the response patterns of unknown components.
Northey, G W; Oliver, M L; Rittenhouse, D M
2006-01-01
Biomechanics studies often require the analysis of position and orientation. Although a variety of transducer and camera systems can be utilized, a common inexpensive alternative is the Hall effect sensor. Hall effect sensors have been used extensively for one-dimensional position analysis but their non-linear behavior and cross-talk effects make them difficult to calibrate for effective and accurate two- and three-dimensional position and orientation analysis. The aim of this study was to develop and calibrate a displacement measurement system for a hydraulic-actuation joystick used for repetitive motion analysis of heavy equipment operators. The system utilizes an array of four Hall effect sensors that are all active during any joystick movement. This built-in redundancy allows the calibration to utilize fully connected feed forward neural networks in conjunction with a Microscribe 3D digitizer. A fully connected feed forward neural network with one hidden layer containing five neurons was developed. Results indicate that the ability of the neural network to accurately predict the x, y and z coordinates of the joystick handle was good with r(2) values of 0.98 and higher. The calibration technique was found to be equally as accurate when used on data collected 5 days after the initial calibration, indicating the system is robust and stable enough to not require calibration every time the joystick is used. This calibration system allowed an infinite number of joystick orientations and positions to be found within the range of joystick motion.
Reduction and Analysis of GALFACTS Data in Search of Compact Variable Sources
NASA Astrophysics Data System (ADS)
Wenger, Trey; Barenfeld, S.; Ghosh, T.; Salter, C.
2012-01-01
The Galactic ALFA Continuum Transit Survey (GALFACTS) is an all-Arecibo sky, full-Stokes survey from 1225 to 1525 MHz using the multibeam Arecibo L-band Feed Array (ALFA). Using data from survey field N1, the first field covered by GALFACTS, we are searching for compact sources that vary in intensity and/or polarization. The multistep procedure for reducing the data includes radio frequency interference (RFI) removal, source detection, Gaussian fitting in multiple dimensions, polarization leakage calibration, and gain calibration. We have developed code to analyze and calculate the calibration parameters from the N1 calibration sources, and apply these to the data of the main run. For detected compact sources, our goal is to compare results from multiple passes over a source to search for rapid variability, as well as to compare our flux densities with those from the NRAO VLA Sky Survey (NVSS) to search for longer time-scale variations.
Technique for Radiometer and Antenna Array Calibration with a Radiated Noise Diode
NASA Technical Reports Server (NTRS)
Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul
2009-01-01
This paper presents a new technique to calibrate a microwave radiometer and antenna array system. This calibration technique uses a radiated noise source in addition to two calibration sources internal to the radiometer. The method accurately calibrates antenna arrays with embedded active devices (such as amplifiers) which are used extensively in active phased array antennas.
Calibration of a fluxgate magnetometer array and its application in magnetic object localization
NASA Astrophysics Data System (ADS)
Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu
2013-07-01
The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are -0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions.
NASA Astrophysics Data System (ADS)
Roshi, D. Anish; Shillue, W.; Simon, B.; Warnick, K. F.; Jeffs, B.; Pisano, D. J.; Prestage, R.; White, S.; Fisher, J. R.; Morgan, M.; Black, R.; Burnett, M.; Diao, J.; Ruzindana, M.; van Tonder, V.; Hawkins, L.; Marganian, P.; Chamberlin, T.; Ray, J.; Pingel, N. M.; Rajwade, K.; Lorimer, D. R.; Rane, A.; Castro, J.; Groves, W.; Jensen, L.; Nelson, J. D.; Boyd, T.; Beasley, A. J.
2018-05-01
A new 1.4 GHz, 19-element, dual-polarization, cryogenic phased-array feed (PAF) radio astronomy receiver has been developed for the Robert C. Byrd Green Bank Telescope (GBT) as part of the Focal L-band Array for the GBT (FLAG) project. Commissioning observations of calibrator radio sources show that this receiver has the lowest reported beam-formed system temperature (T sys) normalized by aperture efficiency (η) of any phased-array receiver to date. The measured T sys/η is 25.4 ± 2.5 K near 1350 MHz for the boresight beam, which is comparable to the performance of the current 1.4 GHz cryogenic single-feed receiver on the GBT. The degradation in T sys/η at ∼4‧ (required for Nyquist sampling) and ∼8‧ offsets from the boresight is, respectively, ∼1% and ∼20% of the boresight value. The survey speed of the PAF with seven formed beams is larger by a factor between 2.1 and 7 compared to a single-beam system, depending on the observing application. The measured performance, both in frequency and offset from the boresight, qualitatively agrees with predictions from a rigorous electromagnetic model of the PAF. The astronomical utility of the receiver is demonstrated by observations of the pulsar B0329+54 and an extended H II region, the Rosette Nebula. The enhanced survey speed with the new PAF receiver will enable the GBT to carry out exciting new science, such as more efficient observations of diffuse, extended neutral hydrogen emission from galactic inflows and searches for fast radio bursts.
Uplink Array Calibration via Far-Field Power Maximization
NASA Technical Reports Server (NTRS)
Vilnrotter, V.; Mukai, R.; Lee, D.
2006-01-01
Uplink antenna arrays have the potential to greatly increase the Deep Space Network s high-data-rate uplink capabilities as well as useful range, and to provide additional uplink signal power during critical spacecraft emergencies. While techniques for calibrating an array of receive antennas have been addressed previously, proven concepts for uplink array calibration have yet to be demonstrated. This article describes a method of utilizing the Moon as a natural far-field reflector for calibrating a phased array of uplink antennas. Using this calibration technique, the radio frequency carriers transmitted by each antenna of the array are optimally phased to ensure that the uplink power received by the spacecraft is maximized.
Technique for Radiometer and Antenna Array Calibration with Two Antenna Noise Diodes
NASA Technical Reports Server (NTRS)
Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Meyer, Paul
2011-01-01
This paper presents a new technique to calibrate a microwave radiometer and phased array antenna system. This calibration technique uses a radiated noise source in addition to an injected noise sources for calibration. The plane of reference for this calibration technique is the face of the antenna and therefore can effectively calibration the gain fluctuations in the active phased array antennas. This paper gives the mathematical formulation for the technique and discusses the improvements brought by the method over the existing calibration techniques.
Variability Search in GALFACTS
NASA Astrophysics Data System (ADS)
Kania, Joseph; Wenger, Trey; Ghosh, Tapasi; Salter, Christopher J.
2015-01-01
The Galactic ALFA Continuum Transit Survey (GALFACTS) is an all-Arecibo-sky survey using the seven-beam Arecibo L-band Feed Array (ALFA). The Survey is centered at 1.375 GHz with 300-MHz bandwidth, and measures all four Stokes parameters. We are looking for compact sources that vary in intensity or polarization on timescales of about a month via intra-survey comparisons and long term variations through comparisons with the NRAO VLA Sky Survey. Data processing includes locating and rejecting radio frequency interference, recognizing sources, two-dimensional Gaussian fitting to multiple cuts through the same source, and gain corrections. Our Python code is being used on the calibrations sources observed in conjunction with the survey measurements to determine the calibration parameters that will then be applied to data for the main field.
Design and test of porous-tungsten mercury vaporizers
NASA Technical Reports Server (NTRS)
Kerslake, W. R.
1972-01-01
Future use of large size Kaufman thrusters and thruster arrays will impose new design requirements for porous plug type vaporizers. Larger flow rate coupled with smaller pores to prevent liquid intrusion will be desired. The results of testing samples of porous tungsten for flow rate, liquid intrusion pressure level, and mechanical strength are presented. Nitrogen gas was used in addition to mercury flow for approximate calibration. Liquid intrusion pressure levels will require that flight thruster systems with long feed lines have some way (a valve) to restrict dynamic line pressures during launch.
Compensation of relector antenna surface distortion using an array feed
NASA Technical Reports Server (NTRS)
Cherrette, A. R.; Acosta, R. J.; Lam, P. T.; Lee, S. W.
1988-01-01
The dimensional stability of the surface of a large reflector antenna is important when high gain or low sidelobe performance is desired. If the surface is distorted due to thermal or structural reasons, antenna performance can be improved through the use of an array feed. The design of the array feed and its relation to the surface distortion are examined. The sensitivity of antenna performance to changing surface parameters for fixed feed array geometries is also studied. This allows determination of the limits of usefulness for feed array compensation.
NASA Astrophysics Data System (ADS)
Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.
2015-06-01
One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.
First Results from the Telescope Array RAdar (TARA) Detector
NASA Astrophysics Data System (ADS)
Myers, Isaac
2014-03-01
The TARA cosmic ray detector has been in operation for about a year and a half. This bi-static radar detector was designed with the goal of detecting cosmic rays in coincidence with Telescope Array (TA). A new high power (25 kW, 5 MW effective radiated power) transmitter and antenna array and 250 MHz fPGA-based DAQ have been operational since August 2013. The eight-Yagi antenna array broadcasts a 54.1 MHz tone across the TA surface detector array toward our receiver station 50 km away at the Long Ridge fluorescence detector. Receiving antennas feed an intelligent DAQ that self-adjusts to the fluctuating radio background and which employs a bank of matched filters that search in real-time for chirp radar echoes. Millions of triggers have been collected in this mode. A second mode is a forced trigger scheme that uses the trigger status of the fluorescence telescope. Of those triggers collected in FD-triggered mode, about 800 correspond with well-reconstructed TA events. I will describe recent advancements in calibrating key components in the transmitter and receiver RF chains and the analysis of FD-triggered data. Work supported by W.M. Keck Foundation and NSF.
Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda. Felix, A.
2013-01-01
The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays.
Shape calibration of a conformal ultrasound therapy array.
McGough, R J; Cindric, D; Samulski, T V
2001-03-01
A conformal ultrasound phased array prototype with 96 elements was recently calibrated for electronic steering and focusing in a water tank. The procedure for calibrating the shape of this 2D therapy array consists of two steps. First, a least squares triangulation algorithm determines the element coordinates from a 21 x 21 grid of time delays. The triangulation algorithm also requires temperature measurements to compensate for variations in the speed of sound. Second, a Rayleigh-Sommerfeld formulation of the acoustic radiation integral is aligned to a second grid of measured pressure amplitudes in a least squares sense. This shape calibration procedure, which is applicable to a wide variety of ultrasound phased arrays, was tested on a square array panel consisting of 7- x 7-mm elements operating at 617 kHz. The simulated fields generated by an array of 96 equivalent elements are consistent with the measured data, even in the fine structure away from the primary focus and sidelobes. These two calibration steps are sufficient for the simulation model to predict successfully the pressure field generated by this conformal ultrasound phased array prototype.
Frequency Domain Beamforming for a Deep Space Network Downlink Array
NASA Technical Reports Server (NTRS)
Navarro, Robert
2012-01-01
This paper describes a frequency domain beamformer to array up to 8 antennas of NASA's Deep Space Network currently in development. The objective of this array is to replace and enhance the capability of the DSN 70m antennas with multiple 34m antennas for telemetry, navigation and radio science use. The array will coherently combine the entire 500 MHz of usable bandwidth available to DSN receivers. A frequency domain beamforming architecture was chosen over a time domain based architecture to handle the large signal bandwidth and efficiently perform delay and phase calibration. The antennas of the DSN are spaced far enough apart that random atmospheric and phase variations between antennas need to be calibrated out on an ongoing basis in real-time. The calibration is done using measurements obtained from a correlator. This DSN Downlink Array expands upon a proof of concept breadboard array built previously to develop the technology and will become an operational asset of the Deep Space Network. Design parameters for frequency channelization, array calibration and delay corrections will be presented as well a method to efficiently calibrate the array for both wide and narrow bandwidth telemetry.
Characterization of tapered slot antenna feeds and feed arrays
NASA Technical Reports Server (NTRS)
Kim, Young-Sik; Yngvesson, K. Sigfrid
1990-01-01
A class of feed antennas and feed antenna arrays used in the focal plane of paraboloid reflectors and exhibiting higher than normal levels of cross-polarized radiation in the diagonal planes is addressed. A model which allows prediction of element gain and aperture efficiency of the feed/reflector system is presented. The predictions are in good agreement with experimental results. Tapered slot antenna (TSA) elements are used an example of an element of this type. It is shown that TSA arrays used in multibeam systems with small beam spacings are competitive in terms of aperture efficiency with other, more standard types of arrays incorporating waveguide type elements.
Design and calibration of a six-axis MEMS sensor array for use in scoliosis correction surgery
NASA Astrophysics Data System (ADS)
Benfield, David; Yue, Shichao; Lou, Edmond; Moussa, Walied A.
2014-08-01
A six-axis sensor array has been developed to quantify the 3D force and moment loads applied in scoliosis correction surgery. Initially this device was developed to be applied during scoliosis correction surgery and augmented onto existing surgical instrumentation, however, use as a general load sensor is also feasible. The development has included the design, microfabrication, deployment and calibration of a sensor array. The sensor array consists of four membrane devices, each containing piezoresistive sensing elements, generating a total of 16 differential voltage outputs. The calibration procedure has made use of a custom built load application frame, which allows quantified forces and moments to be applied and compared to the outputs from the sensor array. Linear or non-linear calibration equations are generated to convert the voltage outputs from the sensor array back into 3D force and moment information for display or analysis.
Research on calibration error of carrier phase against antenna arraying
NASA Astrophysics Data System (ADS)
Sun, Ke; Hou, Xiaomin
2016-11-01
It is the technical difficulty of uplink antenna arraying that signals from various quarters can not be automatically aligned at the target in deep space. The size of the far-field power combining gain is directly determined by the accuracy of carrier phase calibration. It is necessary to analyze the entire arraying system in order to improve the accuracy of the phase calibration. This paper analyzes the factors affecting the calibration error of carrier phase of uplink antenna arraying system including the error of phase measurement and equipment, the error of the uplink channel phase shift, the position error of ground antenna, calibration receiver and target spacecraft, the error of the atmospheric turbulence disturbance. Discuss the spatial and temporal autocorrelation model of atmospheric disturbances. Each antenna of the uplink antenna arraying is no common reference signal for continuous calibration. So it must be a system of the periodic calibration. Calibration is refered to communication of one or more spacecrafts in a certain period. Because the deep space targets are not automatically aligned to multiplexing received signal. Therefore the aligned signal should be done in advance on the ground. Data is shown that the error can be controlled within the range of demand by the use of existing technology to meet the accuracy of carrier phase calibration. The total error can be controlled within a reasonable range.
40 CFR 60.36e - Inspection guidelines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... bypass stack components; (xvi) Ensure proper calibration of thermocouples, sorbent feed systems and any...) for proper operation, if applicable; (ii) Ensure proper calibration of thermocouples, sorbent feed...
40 CFR 60.36e - Inspection guidelines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... bypass stack components; (xvi) Ensure proper calibration of thermocouples, sorbent feed systems and any...) for proper operation, if applicable; (ii) Ensure proper calibration of thermocouples, sorbent feed...
40 CFR 60.36e - Inspection guidelines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... bypass stack components; (xvi) Ensure proper calibration of thermocouples, sorbent feed systems and any...) for proper operation, if applicable; (ii) Ensure proper calibration of thermocouples, sorbent feed...
NASA Astrophysics Data System (ADS)
Cianciara, Aleksander J.; Anderson, Christopher J.; Chen, Xuelei; Chen, Zhiping; Geng, Jingchao; Li, Jixia; Liu, Chao; Liu, Tao; Lu, Wing; Peterson, Jeffrey B.; Shi, Huli; Steffel, Catherine N.; Stebbins, Albert; Stucky, Thomas; Sun, Shijie; Timbie, Peter T.; Wang, Yougang; Wu, Fengquan; Zhang, Juyong
A wide bandwidth, dual polarized, modified four-square antenna is presented as a feed antenna for radio astronomical measurements. A linear array of these antennas is used as a line-feed for cylindrical reflectors for Tianlai, a radio interferometer designed for 21cm intensity mapping. Simulations of the feed antenna beam patterns and scattering parameters are compared to experimental results at multiple frequencies across the 650-1420MHz range. Simulations of the beam patterns of the combined feed array/reflector are presented as well.
Technique for Radiometer and Antenna Array Calibration - TRAAC
NASA Technical Reports Server (NTRS)
Meyer, Paul; Sims, William; Varnavas, Kosta; McCracken, Jeff; Srinivasan, Karthik; Limaye, Ashutosh; Laymon, Charles; Richeson. James
2012-01-01
Highly sensitive receivers are used to detect minute amounts of emitted electromagnetic energy. Calibration of these receivers is vital to the accuracy of the measurements. Traditional calibration techniques depend on calibration reference internal to the receivers as reference for the calibration of the observed electromagnetic energy. Such methods can only calibrate errors in measurement introduced by the receiver only. The disadvantage of these existing methods is that they cannot account for errors introduced by devices, such as antennas, used for capturing electromagnetic radiation. This severely limits the types of antennas that can be used to make measurements with a high degree of accuracy. Complex antenna systems, such as electronically steerable antennas (also known as phased arrays), while offering potentially significant advantages, suffer from a lack of a reliable and accurate calibration technique. The proximity of antenna elements in an array results in interaction between the electromagnetic fields radiated (or received) by the individual elements. This phenomenon is called mutual coupling. The new calibration method uses a known noise source as a calibration load to determine the instantaneous characteristics of the antenna. The noise source is emitted from one element of the antenna array and received by all the other elements due to mutual coupling. This received noise is used as a calibration standard to monitor the stability of the antenna electronics.
40 CFR 62.14442 - What must my inspection include?
Code of Federal Regulations, 2014 CFR
2014-07-01
...; (15) Inspect bypass stack components; (16) Ensure proper calibration of thermocouples, sorbent feed... calibration of thermocouples, sorbent feed systems and any other monitoring equipment; and (3) Include...
40 CFR 62.14442 - What must my inspection include?
Code of Federal Regulations, 2013 CFR
2013-07-01
...; (15) Inspect bypass stack components; (16) Ensure proper calibration of thermocouples, sorbent feed... calibration of thermocouples, sorbent feed systems and any other monitoring equipment; and (3) Include...
Calibration strategies for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher
2014-08-01
The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.
Test surfaces useful for calibration of surface profilometers
Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z
2013-12-31
The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.
NASA Astrophysics Data System (ADS)
Chiarucci, Simone; Wijnholds, Stefan J.
2018-02-01
Blind calibration, i.e. calibration without a priori knowledge of the source model, is robust to the presence of unknown sources such as transient phenomena or (low-power) broad-band radio frequency interference that escaped detection. In this paper, we present a novel method for blind calibration of a radio interferometric array assuming that the observed field only contains a small number of discrete point sources. We show the huge computational advantage over previous blind calibration methods and we assess its statistical efficiency and robustness to noise and the quality of the initial estimate. We demonstrate the method on actual data from a Low-Frequency Array low-band antenna station showing that our blind calibration is able to recover the same gain solutions as the regular calibration approach, as expected from theory and simulations. We also discuss the implications of our findings for the robustness of regular self-calibration to poor starting models.
A microstrip array feed for MSAT spacecraft reflector antenna
NASA Technical Reports Server (NTRS)
Huang, John
1988-01-01
An L-band circularly polarized microstrip array antenna with relatively wide bandwidth has been developed. The array has seven subarrays which form a single cluster as part of a large overlapping cluster reflector feed array. Each of the seven subarrays consists of four uniquely arranged linearly polarized microstrip elements. A 7.5 percent impedance (VSWR less than 1.5) as well as axial ratio (less than 1 dB) bandwidths have been achieved by employing a relatively thick honeycomb substrate with special impedance matching feed probes.
Reproducible, high performance patch antenna array apparatus and method of fabrication
Strassner, II, Bernd H.
2007-01-23
A reproducible, high-performance patch antenna array apparatus includes a patch antenna array provided on a unitary dielectric substrate, and a feed network provided on the same unitary substrate and proximity coupled to the patch antenna array. The reproducibility is enhanced by using photolithographic patterning and etching to produce both the patch antenna array and the feed network.
Absolute photometric calibration of IRAC: lessons learned using nine years of flight data
NASA Astrophysics Data System (ADS)
Carey, S.; Ingalls, J.; Hora, J.; Surace, J.; Glaccum, W.; Lowrance, P.; Krick, J.; Cole, D.; Laine, S.; Engelke, C.; Price, S.; Bohlin, R.; Gordon, K.
2012-09-01
Significant improvements in our understanding of various photometric effects have occurred in the more than nine years of flight operations of the Infrared Array Camera aboard the Spitzer Space Telescope. With the accumulation of calibration data, photometric variations that are intrinsic to the instrument can now be mapped with high fidelity. Using all existing data on calibration stars, the array location-dependent photometric correction (the variation of flux with position on the array) and the correction for intra-pixel sensitivity variation (pixel-phase) have been modeled simultaneously. Examination of the warm mission data enabled the characterization of the underlying form of the pixelphase variation in cryogenic data. In addition to the accumulation of calibration data, significant improvements in the calibration of the truth spectra of the calibrators has taken place. Using the work of Engelke et al. (2006), the KIII calibrators have no offset as compared to the AV calibrators, providing a second pillar of the calibration scheme. The current cryogenic calibration is better than 3% in an absolute sense, with most of the uncertainty still in the knowledge of the true flux densities of the primary calibrators. We present the final state of the cryogenic IRAC calibration and a comparison of the IRAC calibration to an independent calibration methodology using the HST primary calibrators.
Whole-machine calibration approach for phased array radar with self-test
NASA Astrophysics Data System (ADS)
Shen, Kai; Yao, Zhi-Cheng; Zhang, Jin-Chang; Yang, Jian
2017-06-01
The performance of the missile-borne phased array radar is greatly influenced by the inter-channel amplitude and phase inconsistencies. In order to ensure its performance, the amplitude and the phase characteristics of radar should be calibrated. Commonly used methods mainly focus on antenna calibration, such as FFT, REV, etc. However, the radar channel also contains T / R components, channels, ADC and messenger. In order to achieve on-based phased array radar amplitude information for rapid machine calibration and compensation, we adopt a high-precision plane scanning test platform for phase amplitude test. A calibration approach for the whole channel system based on the radar frequency source test is proposed. Finally, the advantages and the application prospect of this approach are analysed.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.
1992-01-01
Virginia Tech has several articles which support the NASA Langley effort in the area of large aperture radiometric antenna systems. This semi-annual report reports on the following activities: a feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas and the design of array feeds for large reflector antennas.
Configuration study for a 30 GHz monolithic receive array: Technical assessment
NASA Technical Reports Server (NTRS)
Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.
1984-01-01
The current status of monolithic microwave integrated circuits (MMICs) in phased array feeds is discussed from the point of view of cost performance, reliability, and design considerations. Transitions to MMICs, compatible antenna radiating elements and reliability considerations are addressed. Hybrid antennas, feed array antenna technology, and offset reflectors versus phased arrays are examined.
Large-N correlator systems for low frequency radio astronomy
NASA Astrophysics Data System (ADS)
Foster, Griffin
Low frequency radio astronomy has entered a second golden age driven by the development of a new class of large-N interferometric arrays. The low frequency array (LOFAR) and a number of redshifted HI Epoch of Reionization (EoR) arrays are currently undergoing commission and regularly observing. Future arrays of unprecedented sensitivity and resolutions at low frequencies, such as the square kilometer array (SKA) and the hydrogen epoch of reionization array (HERA), are in development. The combination of advancements in specialized field programmable gate array (FPGA) hardware for signal processing, computing and graphics processing unit (GPU) resources, and new imaging and calibration algorithms has opened up the oft underused radio band below 300 MHz. These interferometric arrays require efficient implementation of digital signal processing (DSP) hardware to compute the baseline correlations. FPGA technology provides an optimal platform to develop new correlators. The significant growth in data rates from these systems requires automated software to reduce the correlations in real time before storing the data products to disk. Low frequency, widefield observations introduce a number of unique calibration and imaging challenges. The efficient implementation of FX correlators using FPGA hardware is presented. Two correlators have been developed, one for the 32 element BEST-2 array at Medicina Observatory and the other for the 96 element LOFAR station at Chilbolton Observatory. In addition, calibration and imaging software has been developed for each system which makes use of the radio interferometry measurement equation (RIME) to derive calibrations. A process for generating sky maps from widefield LOFAR station observations is presented. Shapelets, a method of modelling extended structures such as resolved sources and beam patterns has been adapted for radio astronomy use to further improve system calibration. Scaling of computing technology allows for the development of larger correlator systems, which in turn allows for improvements in sensitivity and resolution. This requires new calibration techniques which account for a broad range of systematic effects.
A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed
NASA Technical Reports Server (NTRS)
Chrysler, Andrew; Furse, Cynthia; Simons, Rainee N.; Miranda, Felix A.
2017-01-01
A Ka-Band (26 gigahertz) 2 by 2 sub-array with square-shaped microstrip patch antenna elements having two truncated corners for circular polarization (CP) is presented. In addition, the layout for a new compact microstrip feed network for the sub-array is also presented. The compact feed network offers a footprint size reduction of near 60 percent over traditional sub-array at 26 gigahertz. Experimental data indicates that a truncation amount a equals 0.741 millimeters for an isolated patch element results in a return loss (S (sub II)) of minus 35 decibels at 26.3 gigahertz. Furthermore, the measured S (sub II) for the proof-of-concept sub-array with the above elements is better than minus 10.0 decibels at 27.7 gigahertz. However, the impedance match and the operating frequency can be fine-tuned to 26 gigahertz by adjusting the feed network dimensions. Lastly, good agreement is observed between the measured and simulated S (sub II) for the subarray for both right hand and left hand CP. The goal of this effort is utilize the above sub-array as a building block for a larger N by N element array, which would serve as a feed for a reflector antenna for satellite communications.
Realizable feed-element patterns and optimum aperture efficiency in multibeam antenna systems
NASA Technical Reports Server (NTRS)
Yngvesson, K. S.; Rahmat-Samii, Y.; Johansson, J. F.; Kim, Y. S.
1988-01-01
The results of an earlier paper by Rahmat-Samii et al. (1981), regarding realizable patterns from feed elements that are part of an array that feeds a reflector antenna, are extended. The earlier paper used a cos exp q theta model for the element radiation pattern, whereas here a parametric study is performed, using a model that assumes a central beam of cos exp q theta shape, with a constant sidelobe level outside the central beam. Realizable q-values are constrained by the maximum directivity based on feed element area. The optimum aperture efficiency (excluding array feed network losses) in an array-reflector system is evaluated as a function of element spacing using this model as well as the model of the earlier paper. Experimental data for tapered slot antenna (TSA) arrays are in agreement with the conclusions based on the model.
Orthogonal feeding techniques for tapered slot antennas
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1998-01-01
For array of "brick" configuration there are electrical and mechanical advantages to feed the antenna with a feed on a substrate perpendicular to the antenna substrate. Different techniques have been proposed for exciting patch antennas using such a feed structure.Rncently, an aperture-coupled dielectric resonator antenna using a perpendicular feed substrate has been demonstrated to have very good power coupling efficiency. For a two-dimensional rectangular array with tapered slot antenna elements, a power combining network on perpendicular substrate is generally required to couple power to or from the array. In this paper, we will describe two aperture-coupled techniques for coupling microwave power from a linearly tapered slot antenna (LTSA) to a microstrip feed on a perpendicular substrate. In addition, we will present measured results for return losses and radiation patterns.
Bromaghin, Jeffrey F.; Budge, Suzanne M.; Thiemann, Gregory W.; Rode, Karyn D.
2017-01-01
Knowledge of animal diets provides essential insights into their life history and ecology, although diet estimation is challenging and remains an active area of research. Quantitative fatty acid signature analysis (QFASA) has become a popular method of estimating diet composition, especially for marine species. A primary assumption of QFASA is that constants called calibration coefficients, which account for the differential metabolism of individual fatty acids, are known. In practice, however, calibration coefficients are not known, but rather have been estimated in feeding trials with captive animals of a limited number of model species. The impossibility of verifying the accuracy of feeding trial derived calibration coefficients to estimate the diets of wild animals is a foundational problem with QFASA that has generated considerable criticism. We present a new model that allows simultaneous estimation of diet composition and calibration coefficients based only on fatty acid signature samples from wild predators and potential prey. Our model performed almost flawlessly in four tests with constructed examples, estimating both diet proportions and calibration coefficients with essentially no error. We also applied the model to data from Chukchi Sea polar bears, obtaining diet estimates that were more diverse than estimates conditioned on feeding trial calibration coefficients. Our model avoids bias in diet estimates caused by conditioning on inaccurate calibration coefficients, invalidates the primary criticism of QFASA, eliminates the need to conduct feeding trials solely for diet estimation, and consequently expands the utility of fatty acid data to investigate aspects of ecology linked to animal diets.
Wideband Microstrip Antenna-Feeding Array
NASA Technical Reports Server (NTRS)
Huang, John
1990-01-01
Special impedance-matching probes help reduce feed complexity. Lightweight array of microstrip antenna elements designed to transmit and illuminate reflector antenna with circularly polarized radiation at 1,545 to 1,550 MHz and to receive circularly polarized radiation at 1,646 to 1,660 MHz. Microstrip array is cluster of 7 subarrays containing total of 28 microstrip patches. Produces cicularly polarized beam with suitable edge taper to illuminate reflector antenna. Teardrop-shaped feed probe provides gradual change of field from coaxial transmission line into microstrip substrate. Intended to be part of larger overlapping-cluster array generating multiple contiguous beams.
A combined microphone and camera calibration technique with application to acoustic imaging.
Legg, Mathew; Bradley, Stuart
2013-10-01
We present a calibration technique for an acoustic imaging microphone array, combined with a digital camera. Computer vision and acoustic time of arrival data are used to obtain microphone coordinates in the camera reference frame. Our new method allows acoustic maps to be plotted onto the camera images without the need for additional camera alignment or calibration. Microphones and cameras may be placed in an ad-hoc arrangement and, after calibration, the coordinates of the microphones are known in the reference frame of a camera in the array. No prior knowledge of microphone positions, inter-microphone spacings, or air temperature is required. This technique is applied to a spherical microphone array and a mean difference of 3 mm was obtained between the coordinates obtained with this calibration technique and those measured using a precision mechanical method.
NASA Astrophysics Data System (ADS)
Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang
2018-06-01
In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.
Treasure of the Past IX: Exposure Standardization of Iodine-125 Seeds Used for Brachytherapy
Loftus, T. P.
2001-01-01
A method for calibrating iodine-125 seeds in terms of exposure has been established. The standard free-air ionization chamber, used for measuring soft x rays, was chosen for the measurements. Arrays of four to six seeds were used to enhance the ionization-current-to-background-current ratio. Seeds from an array were measured individually in a re-entrant chamber. The quotient of the exposure rate for the array by the sum of the ionization currents in the re-entrant chamber is the calibration factor for the re-entrant chamber. Calibration factors were established for three types of iodine-125 seeds. The overall uncertainty for the seed exposure calibrations is less than 6%. PMID:27500052
Design and fabrication of microstrip antenna arrays
NASA Technical Reports Server (NTRS)
1978-01-01
A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.
Concave Surround Optics for Rapid Multi-View Imaging
2006-11-01
thus is amenable to capturing dynamic events avoiding the need to construct and calibrate an array of cameras. We demonstrate the system with a high...hard to assemble and calibrate . In this paper we present an optical system capable of rapidly moving the viewpoint around a scene. Our system...flexibility, large camera arrays are typically expensive and require significant effort to calibrate temporally, geometrically and chromatically
Steerable Space Fed Lens Array for Low-Cost Adaptive Ground Station Applications
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Popovic, Zoya; Rondineau, Sebastien; Miranda, Felix A.
2007-01-01
The Space Fed Lens Array (SFLA) is an alternative to a phased array antenna that replaces large numbers of expensive solid-state phase shifters with a single spatial feed network. SFLA can be used for multi-beam application where multiple independent beams can be generated simultaneously with a single antenna aperture. Unlike phased array antennas where feed loss increases with array size, feed loss in a lens array with more than 50 elements is nearly independent of the number of elements, a desirable feature for large apertures. In addition, SFLA has lower cost as compared to a phased array at the expense of total volume and complete beam continuity. For ground station applications, both of these tradeoff parameters are not important and can thus be exploited in order to lower the cost of the ground station. In this paper, we report the development and demonstration of a 952-element beam-steerable SFLA intended for use as a low cost ground station for communicating and tracking of a low Earth orbiting satellite. The dynamic beam steering is achieved through switching to different feed-positions of the SFLA via a beam controller.
An Ultra-Wideband Millimeter-Wave Phased Array
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Miranda, Felix A.; Volakis, John L.
2016-01-01
Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.
SU-F-P-49: Comparison of Mapcheck 2 Commission for Photon and Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, J; Yang, C; Morris, B
2016-06-15
Purpose: We will investigate the performance variation of the MapCheck2 detector array with different array calibration and dose calibration pairs from different radiation therapy machine. Methods: A MapCheck2 detector array was calibrated on 3 Elekta accelerators with different energy of photon (6 MV, 10 MV, 15 MV and 18 MV) and electron (6 MeV, 9 MeV, 12 MeV, 15 MeV, 18 MeV and 20 MeV) beams. Dose calibration was conducted by referring a water phantom measurement following TG-51 protocol and commission data for each accelerator. A 10 cm × 10 cm beam was measured. This measured map was morphed bymore » applying different calibration pairs. Then the difference was quantified by comparing the doses and similarity using gamma analysis of criteria (0.5 %, 0 mm). Profile variation was evaluated on a same dataset with different calibration pairs. The passing rate of an IMRT QA planar dose was calculated by using 3 mm and 3% criteria and compared with respect to each calibration pairs. Results: In this study, a dose variation up to 0.67% for matched photons and 1.0% for electron beams is observed. Differences of flatness and symmetry can be as high as 1% and 0.7% respectively. Gamma analysis shows a passing rate ranging from 34% to 85% for the standard 10 × 10 cm field. Conclusion: Our work demonstrated that a customized array calibration and dose calibration for each machine is preferred to fulfill a high standard patient QA task.« less
NASA Astrophysics Data System (ADS)
Jeong-hun, Yang; Chung, Kyoung-Jae; An, YoungHwa; Jung, Bong Ki; Jo, Jong Gab; Hwang, Y. S.
2012-10-01
A dual sensor probe array is designed and constructed for internal magnetic field measurement at Versatile Experiment Spherical Torus (VEST) at the Seoul National University. Simultaneous use of Hall sensors and chip inductors allows cross-calibration among the measurements and compensation for each other's weaknesses while their small sizes are expected to cause only mild plasma perturbations. Calibration of the dual sensor probe array, using a Helmholtz coil, shows good sensitivity for the magnetic field measurement of the VEST. Prior to Ohmic start-up, the magnetic field structure inside the vacuum chamber is measured by using the calibrated probe array. The dual sensor probe array is expected to be useful in analyzing the temporal magnetic field structure change during the magnetic reconnection and in reconstruction of the current profile during the discharge of the VEST device.
A Microfabricated 8-40 GHz Dual-Polarized Reflector Feed
NASA Technical Reports Server (NTRS)
Vanhille, Kenneth; Durham, Tim; Stacy, William; Karasiewicz, David; Caba, Aaron; Trent, Christopher; Lambert, Kevin; Miranda, Felix
2014-01-01
Planar antennas based on tightly coupled dipole arrays (also known as a current sheet antenna or CSA) are amenable for use as electronically scanned phased arrays. They are capable of performance nearing a decade of bandwidth. These antennas have been demonstrated in many implementations at frequencies below 18 GHz. This paper describes the implementation using a relatively new multi-layer microfabrication process resulting in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 GHz. The beamformer includes baluns that feed the dual-polarized differential antenna elements and reactive splitter networks that also cover the full frequency range of operation. This antenna array serves as a reflector feed for a multi-band instrument designed to measure snow water equivalent (SWE) from airborne platforms. The instrument has both radar and radiome try capability at multiple frequencies. Scattering-parameter and time-domain measurements have been used to characterize the array feed. Radiation patterns of the antenna have been measured and are compared to simulation. To the best of the authors' knowledge, this work represents the most integrated multi-octave millimeter-wave antenna feed fabricated to date.
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
Research on Geometric Calibration of Spaceborne Linear Array Whiskbroom Camera
Sheng, Qinghong; Wang, Qi; Xiao, Hui; Wang, Qing
2018-01-01
The geometric calibration of a spaceborne thermal-infrared camera with a high spatial resolution and wide coverage can set benchmarks for providing an accurate geographical coordinate for the retrieval of land surface temperature. The practice of using linear array whiskbroom Charge-Coupled Device (CCD) arrays to image the Earth can help get thermal-infrared images of a large breadth with high spatial resolutions. Focusing on the whiskbroom characteristics of equal time intervals and unequal angles, the present study proposes a spaceborne linear-array-scanning imaging geometric model, whilst calibrating temporal system parameters and whiskbroom angle parameters. With the help of the YG-14—China’s first satellite equipped with thermal-infrared cameras of high spatial resolution—China’s Anyang Imaging and Taiyuan Imaging are used to conduct an experiment of geometric calibration and a verification test, respectively. Results have shown that the plane positioning accuracy without ground control points (GCPs) is better than 30 pixels and the plane positioning accuracy with GCPs is better than 1 pixel. PMID:29337885
Novel Phased Array Scanning Employing A Single Feed Without Using Individual Phase Shifters
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2012-01-01
Phased arrays afford many advantages over mechanically steered systems. However, they are also more complex, heavy, and most of all costly. The high cost mainly originates from the complex feeding structure. This paper proposes a novel feeding scheme to eliminate all phase shifters and achieve scanning via one-dimensional motion. Beam scanning is achieved via a series fed array incorporating feeding transmission lines whose wave velocity can be mechanically adjusted. Along with the line design, ideal element impedances to be used in conjunction with the line are derived. Practical designs are shown which achieve scanning to +/-30deg from boresight. Finally, a prototype is fabricated and measured, demonstrating the concept.
Synthesis Polarimetry Calibration
NASA Astrophysics Data System (ADS)
Moellenbrock, George
2017-10-01
Synthesis instrumental polarization calibration fundamentals for both linear (ALMA) and circular (EVLA) feed bases are reviewed, with special attention to the calibration heuristics supported in CASA. Practical problems affecting modern instruments are also discussed.
Waveform synthesis for imaging and ranging applications
Doerry, Armin W.; Dudley, Peter A.; Dubert, Dale F.; Tise, Bertice L.
2004-12-07
Frequency dependent corrections are provided for quadrature imbalance and Local Oscillator (LO) feed-through. An operational procedure filters imbalance and LO feed-through effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as LO feed-through and/or imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of LO feed-through and imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.
Waveform Synthesizer For Imaging And Ranging Applications
Dubbert, Dale F.; Dudley, Peter A.; Doerry, Armin W.; Tise, Bertice L.
2004-12-28
Frequency dependent corrections are provided for Local Oscillator (LO) feed-through. An operational procedure filters LO feed-through effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver, unwanted energies, such as LO feed-through energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of LO feed-through can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.
Soldado, A; Fearn, T; Martínez-Fernández, A; de la Roza-Delgado, B
2013-02-15
As a first step in a project whose aim is to implement near infrared (NIR) analysis of animal feed on the farm, the present work has examined the possibility of transferring undried grass silage calibrations for dry matter, crude protein, and neutral detergent fiber from a dispersive laboratory NIR instrument (Foss NIRSystem 6500) to a diode array on-site NIR instrument (Zeiss Corona 45 visNIR 1.7). Because the samples are complex and heterogeneous and have high humidity levels it is not easy to establish good calibrations, and it is even more of a challenge to transfer them. By cutting the spectral range to 1100-1650 nm and treating with first or second derivative followed by standard normal variate (SNV) scatter correction, it was possible to obtain very similar spectra from the two instruments. To make the transfer, two approaches were tried. Simply correcting the Corona spectra by subtracting the mean difference spectrum from a transfer set met with only limited success. Making a calibration on the Foss using a calibration set of 503 samples with spectra orthogonalized to the all the difference spectra in the transfer set of 10 samples resulted in a successful transfer for all three calibrations, as judged by performance on two prediction sets of size 22 and 29. Measuring 5 replicate subsamples with the Corona allows it to see a similar surface area to that of 3 replicates in the Foss transport cell, and it is suggested that this is an appropriate level of replication for the Corona. Copyright © 2012 Elsevier B.V. All rights reserved.
Calibration artefacts in radio interferometry - II. Ghost patterns for irregular arrays
NASA Astrophysics Data System (ADS)
Wijnholds, S. J.; Grobler, T. L.; Smirnov, O. M.
2016-04-01
Calibration artefacts, like the self-calibration bias, usually emerge when data are calibrated using an incomplete sky model. In the first paper of this series, in which we analysed calibration artefacts in data from the Westerbork Synthesis Radio Telescope, we showed that these artefacts take the form of spurious positive and negative sources, which we refer to as ghosts or ghost sources. We also developed a mathematical framework with which we could predict the ghost pattern of an east-west interferometer for a simple two-source test case. In this paper, we extend our analysis to more general array layouts. This provides us with a useful method for the analysis of ghosts that we refer to as extrapolation. Combining extrapolation with a perturbation analysis, we are able to (1) analyse the ghost pattern for a two-source test case with one modelled and one unmodelled source for an arbitrary array layout, (2) explain why some ghosts are brighter than others, (3) define a taxonomy allowing us to classify the different ghosts, (4) derive closed form expressions for the fluxes and positions of the brightest ghosts, and (5) explain the strange two-peak structure with which some ghosts manifest during imaging. We illustrate our mathematical predictions using simulations of the KAT-7 (seven-dish Karoo Array Telescope) array. These results show the explanatory power of our mathematical model. The insights gained in this paper provide a solid foundation to study calibration artefacts in arbitrary, I.e. more complicated than the two-source example discussed here, incomplete sky models or full synthesis observations including direction-dependent effects.
The LED and fiber based calibration system for the photomultiplier array of SNO+
NASA Astrophysics Data System (ADS)
Seabra, L.; Alves, R.; Andringa, S.; Bradbury, S.; Carvalho, J.; Clark, K.; Coulter, I.; Descamps, F.; Falk, L.; Gurriana, L.; Kraus, C.; Lefeuvre, G.; Maio, A.; Maneira, J.; Mottram, M.; Peeters, S.; Rose, J.; Sinclair, J.; Skensved, P.; Waterfield, J.; White, R.; Wilson, J.; SNO+ Collaboration
2015-02-01
A new external LED/fiber light injection calibration system was designed for the calibration and monitoring of the photomultiplier array of the SNO+ experiment at SNOLAB. The goal of the calibration system is to allow an accurate and regular measurement of the photomultiplier array's performance, while minimizing the risk of radioactivity ingress. The choice in SNO+ was to use a set of optical fiber cables to convey into the detector the light pulses produced by external LEDs. The quality control was carried out using a modified test bench that was used in QC of optical fibers for TileCal/ATLAS. The optical fibers were characterized for transmission, timing and angular dispersions. This article describes the setups used for the characterization and quality control of the system based on LEDs and optical fibers and their results.
The detector calibration system for the CUORE cryogenic bolometer array
Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; ...
2016-11-14
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less
Microwave time delays for the dual L-C-band feed system
NASA Technical Reports Server (NTRS)
Chen, J.
1989-01-01
A new dual-frequency feed system at Goldstone is designed to receive the Phobos spacecraft signal at L-band (1668 + or - 40 MHz) and transmit to the spacecraft at C-band (5008.75 + or - 5.00 MHz) simultaneously. Hence, calculations of the time delay from the C-band range calibration coupler to the phase center of the L-C dual feed and back to the L-band range calibration coupler are required to correct the range measurements. Time delays of the elements in the dual-frequency feed system are obtained mostly from computer calculations and partly from experimental measurements. The method used and results obtained are described.
Array feed synthesis for correction of reflector distortion and Vernier Beamsteering
NASA Technical Reports Server (NTRS)
Blank, S. J.; Imbriale, W. A.
1986-01-01
An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum choice of planar array feed configuration (i.e., number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.
Determination of para red, Sudan dyes, canthaxanthin, and astaxanthin in animal feeds using UPLC.
Hou, Xiaolin; Li, Yonggang; Wu, Guojuan; Wang, Lei; Hong, Miao; Wu, Yongnin
2010-01-01
A simple high-performance liquid chromatography method was developed for quantitative determination of para red, Sudan I, Sudan II, Sudan III, Sudan IV, canthaxanthin, and astaxanthin in feedstuff. The sample was extracted using acetonitrile and cleaned up on a C(18) SPE column. The residues were analyzed using ultra-performance liquid chromatography coupled to a diode array detector at 500 nm. The mobile phase was acetonitrile-formic acid-water with a gradient elution condition. The external standard curves were calibrated. The mean recoveries of the seven colorants were 62.7-91.0% with relative standard deviation 2.6-10.4% (intra-day) and 4.0-13.2% (inter-day). The detection limits were in the range of 0.006-0.02 mg/kg.
SweepSAR: Beam-forming on Receive Using a Reflector-Phased Array Feed Combination for Spaceborne SAR
NASA Technical Reports Server (NTRS)
Freeman, A.; Krieger, G.; Rosen, P.; Younis, M.; Johnson, W. T. K.; Huber, S.; Jordan, R.; Moreira, A.
2012-01-01
In this paper, an alternative approach is described that is suited for longer wavelength SARs in particular, employing a large, deployable reflector antenna and a much simpler phased array feed. To illuminate a wide swath, a substantial fraction of the phased array feed is excited on transmit to sub-illuminate the reflector. Shorter transmit pulses are required than for conventional SAR. On receive, a much smaller portion of the phased array feed is used to collect the return echo, so that a greater portion of the reflector antenna area is used. The locus of the portion of the phased array used on receive is adjusted using an analog beam steering network, to 'sweep' the receive beam(s) across the illuminated swath, tracking the return echo. This is similar in some respects to the whiskbroom approach to optical sensors, hence the name: SweepSAR.SweepSAR has advantages over conventional SAR in that it requires less transmit power, and if the receive beam is narrow enough, it is relatively immune to range ambiguities. Compared to direct radiating arrays with digital beam- forming, it is much simpler to implement, uses currently available technologies, is better suited for longer wavelength systems, and does not require extremely high data rates or onboard processing.
Proportional Counter Calibration and Analysis for 12C + p Resonance Scattering
NASA Astrophysics Data System (ADS)
Nelson, Austin; Rogachev, Grigory; Uberseder, Ethan; Hooker, Josh; Koshchiy, Yevgen
2014-09-01
Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Light exotic nuclei provide a unique opportunity to test the predictions of modern ab initio theoretical calculations near the drip line. In ab initio approaches, nuclear structure is described starting from bare nucleon-nucleon and three-nucleon interactions. Calculations are very heavy and can only be performed for the lightest nuclei (A < 16). Experimental information on the structure of light exotic nuclei is crucial to determine the validity of these calculations and to fix the parameters for the three-nucleon forces. Resonance scattering with rare isotope beams is a very effective tool to study spectroscopy of nuclei near the drip line. A new setup was developed at the Cyclotron Institute for effective resonance scattering measurements. The setup includes ionization chamber, silicon array, and an array of proportional counters. The proportional counter array, consisting of 8 anode wires arranged in a parallel cellular grid, is used for particle identification and to track the positioning of light recoils. The main objective of this project was to test the performance and perform position calibration of this proportional counter array. The test was done using 12C beam. The excitation function for 12C + p elastic scattering was measured and calibration of the proportional counter was performed using known resonances in 13N. The method of calibration, including solid angle calculations, normalization corrections, and position calibration will be presented. Funded by DOE and NSF-REU Program; Grant No. PHY-1263281.
Probe Array Correction With Strong Target Interactions
2012-08-01
exciting each probe array feed with a unit voltage source and computing the short circuit currents, ii, i = 1 , 2 , . . . , 5, at each probe array feed...that only one probe array element has unit terminal currents. In this case I2 = Îi = IN − Y NV 2 = IN − Y N [ Y is + Y N ]− 1 IN = (I − Y N [ Y is + Y...YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YY) 2 . REPORT TYPE 3. DATES COVERED (From - To) August 2012 Interim 01 May 2011 – 31 May
The NSLS 100 element solid state array detector
Furenlid, L.R.; Kraner, H.W.; Rogers, L.C.; Cramer, S.P.; Stephani, D.; Beuttenmuller, R.H.; Beren, J.
2015-01-01
X-ray absorption studies of dilute samples require fluorescence detection techniques. Since signal-to-noise ratios are governed by the ratio of fluorescent to scattered photons counted by a detector, solid state detectors which can discriminate between fluorescence and scattered photons have become the instruments of choice for trace element measurements. Commercially available 13 element Ge array detectors permitting total count rates < 500000 counts per second are now in routine use. Since X-ray absorption beamlines at high brightness synchrotron sources can already illuminate most dilute samples with enough flux to saturate the current generation of solid state detectors, the development of next-generation instruments with significantly higher total count rates is essential. We present the design and current status of the 100 element Si array detector being developed in a collaboration between the NSLS and the Instrumentation Division at Brookhaven National Laboratory. The detecting array consists of a 10×10 matrix of 4 mm×4 mm elements laid out on a single piece of ultrahigh purity silicon mounted at the front end of a liquid nitrogen dewar assembly. A matrix of charge sensitive integrating preamplifiers feed signals to an array of shaping amplifiers, single channel analyzers, and scalers. An electronic switch, delay amplifier, linear gate, digital scope, peak sensing A/D converter, and histogramining memory module provide for complete diagnostics and channel calibration. The entire instrument is controlled by a LabView 2 application on a MacII ci; the software also provides full control over beamline hardware and performs the data collection. PMID:26722135
Automated calibration of multistatic arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderer, Bruce
A method is disclosed for calibrating a multistatic array having a plurality of transmitter and receiver pairs spaced from one another along a predetermined path and relative to a plurality of bin locations, and further being spaced at a fixed distance from a stationary calibration implement. A clock reference pulse may be generated, and each of the transmitters and receivers of each said transmitter/receiver pair turned on at a monotonically increasing time delay interval relative to the clock reference pulse. Ones of the transmitters and receivers may be used such that a previously calibrated transmitter or receiver of a givenmore » one of the transmitter/receiver pairs is paired with a subsequently un-calibrated one of the transmitters or receivers of an immediately subsequently positioned transmitter/receiver pair, to calibrate the transmitter or receiver of the immediately subsequent transmitter/receiver pair.« less
Task-Level Control for a Full Semi-Autonomous Mission: Test Platform Development and Demonstration
NASA Technical Reports Server (NTRS)
Rock, Stephen M.; LeMaster, Edward A.
2001-01-01
Pseudolites can extend the availability of GPS-type positioning systems to a wide range of applications not possible with satellite-only GPS, including indoor and deep-space applications. Conventional GPS pseudolite arrays require that the devices be pre-calibrated through a survey of their locations, typically to sub-centimeter accuracy. This can sometimes be a difficult task, especially in remote or hazardous environments. By using the GPS signals that the pseudolites broadcast, however, it is possible to have the array self-survey its own relative locations, creating a Self-Calibrating Pseudolite Array (SCPA). In order to provide the bi-directional ranging signals between devices necessary for array self-calibration, pseudolite transceivers must be used. The basic principles behind the use of transceivers to create an SCPA were first presented in paper presented to the Institute of Navigation GPS-98 Conference. This paper begins with a brief review of the transceiver architecture and the fundamental direct-ranging algorithm presented in that paper. This is followed by a description of a prototype self-differencing transceiver system that has been constructed, and a presentation of experimental code- and carrier-phase ranging data obtained using that system. A second algorithm is then described which uses these fundamental range measurements between transceiver pairs to self-calibrate a larger stationary array and to provide positioning information for a vehicle moving within that array. Simulation results validating the accuracy and effective convergence of this algorithm are also presented.
Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector.
Muir, Ryan D; Pogranichniy, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J
2015-03-12
Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.
Spectral x-ray diffraction using a 6 megapixel photon counting array detector
NASA Astrophysics Data System (ADS)
Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.
2015-03-01
Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.
3D morphology reconstruction using linear array CCD binocular stereo vision imaging system
NASA Astrophysics Data System (ADS)
Pan, Yu; Wang, Jinjiang
2018-01-01
Binocular vision imaging system, which has a small field of view, cannot reconstruct the 3-D shape of the dynamic object. We found a linear array CCD binocular vision imaging system, which uses different calibration and reconstruct methods. On the basis of the binocular vision imaging system, the linear array CCD binocular vision imaging systems which has a wider field of view can reconstruct the 3-D morphology of objects in continuous motion, and the results are accurate. This research mainly introduces the composition and principle of linear array CCD binocular vision imaging system, including the calibration, capture, matching and reconstruction of the imaging system. The system consists of two linear array cameras which were placed in special arrangements and a horizontal moving platform that can pick up objects. The internal and external parameters of the camera are obtained by calibrating in advance. And then using the camera to capture images of moving objects, the results are then matched and 3-D reconstructed. The linear array CCD binocular vision imaging systems can accurately measure the 3-D appearance of moving objects, this essay is of great significance to measure the 3-D morphology of moving objects.
Stray light correction of array spectroradiometer measurement in ultraviolet
NASA Astrophysics Data System (ADS)
Wu, Zhifeng; Dai, Caihong; Wang, Yanfei; Li, Ling
2018-02-01
For most of the array spectroradiometer, stray light is significant in UV band. Stray light correction of a UV array spectroradiometer is investigated using optical filters. If a group of filters with continuous bandpass are chosen, stray light contribution due to all the bands can be obtained using a numerical algorithm. The array spectroradiometer with the stray light corrected is used to measure the spectral irradiance of several UV lamps. The measurement results are compared to a double monochromator spectroradiometer. When xenon lamp is the array spectroradiometer calibration lamp, after stray light correction, the difference can be improved from nearly 10% to 2.0% in UVC band. When tungsten lamp is the calibration lamp, the difference can be improved from around 90% to less than 20%.
Array feed synthesis for correction of reflector distortion and Vernier beamsteering
NASA Technical Reports Server (NTRS)
Blank, Stephen J.; Imbriale, William A.
1988-01-01
An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum chioce of planar array feed configuration (i.e., the number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Rodemich, E. R.
1990-01-01
A real-time digital signal combining system for use with Ka-band feed arrays is proposed. The combining system attempts to compensate for signal-to-noise ratio (SNR) loss resulting from antenna deformations induced by gravitational and atmospheric effects. The combining weights are obtained directly from the observed samples by using a sliding-window implementation of a vector maximum-likelihood parameter estimator. It is shown that with averaging times of about 0.1 second, combining loss for a seven-element array can be limited to about 0.1 dB in a realistic operational environment. This result suggests that the real-time combining system proposed here is capable of recovering virtually all of the signal power captured by the feed array, even in the presence of severe wind gusts and similar disturbances.
Calibrating Images from the MINERVA Cameras
NASA Astrophysics Data System (ADS)
Mercedes Colón, Ana
2016-01-01
The MINiature Exoplanet Radial Velocity Array (MINERVA) consists of an array of robotic telescopes located on Mount Hopkins, Arizona with the purpose of performing transit photometry and spectroscopy to find Earth-like planets around Sun-like stars. In order to make photometric observations, it is necessary to perform calibrations on the CCD cameras of the telescopes to take into account possible instrument error on the data. In this project, we developed a pipeline that takes optical images, calibrates them using sky flats, darks, and biases to generate a transit light curve.
NASA Technical Reports Server (NTRS)
Ellsworth, Joel C.
2017-01-01
During flight-testing of the National Aeronautics and Space Administration (NASA) Gulfstream III (G-III) airplane (Gulfstream Aerospace Corporation, Savannah, Georgia) SubsoniC Research Aircraft Testbed (SCRAT) between March 2013 and April 2015 it became evident that the sensor array used for stagnation point detection was not functioning as expected. The stagnation point detection system is a self calibrating hot-film array; the calibration was unknown and varied between flights, however, the channel with the lowest power consumption was expected to correspond with the point of least surface shear. While individual channels showed the expected behavior for the hot-film sensors, more often than not the lowest power consumption occurred at a single sensor (despite in-flight maneuvering) in the array located far from the expected stagnation point. An algorithm was developed to process the available system output and determine the stagnation point location. After multiple updates and refinements, the final algorithm was not sensitive to the failure of a single sensor in the array, but adjacent failures beneath the stagnation point crippled the algorithm.
NASA Astrophysics Data System (ADS)
Brown, Anthony M.
2018-01-01
Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA's telescopes of the same size class is found to be achievable with a 6 - 8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8 - 10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes' optical system, allowing us to not only maintain this 6 - 10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight.
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.
1988-01-01
The feasibility of electromagnetic compensation for reflector antenna surface distortions is investigated. The performance characteristics of large satellite communication reflector antenna systems degrade as the reflector surface distorts, mainly due to thermal effects from solar radiation. The technique developed can be used to maintain the antenna boresight directivity and sidelobe level independent of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array fed reflector antenna systems can be achieved. MMIC arrays provide independent control of amplitude and phase for each of the many radiating elements in the feed array. By assuming a known surface distortion profile, a simulation study is carried out to examine the antenna performance as a function of feed array size and number of elements. Results indicate that the compensation technique can effectively control boresight directivity and sidelobe level under peak surface distortion in the order of tenth of a wavelength.
Pang, Yong; Yu, Baiying; Vigneron, Daniel B; Zhang, Xiaoliang
2014-02-01
Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Astrophysics Data System (ADS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
1986-01-01
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
Impulse Testing of Corporate-Fed Patch Array Antennas
NASA Technical Reports Server (NTRS)
Chamberlain, Neil F.
2011-01-01
This paper discusses a novel method for detecting faults in antenna arrays. The method, termed Impulse Testing, was developed for corporate-fed patch arrays where the element is fed by a probe and is shorted at its center. Impulse Testing was devised to supplement conventional microwave measurements in order to quickly verify antenna integrity. The technique relies on exciting each antenna element in turn with a fast pulse (or impulse) that propagates through the feed network to the output port of the antenna. The resulting impulse response is characteristic of the path through the feed network. Using an oscilloscope, a simple amplitude measurement can be made to detect faults. A circuit model of the antenna elements and feed network was constructed to assess various fault scenarios and determine fault-detection thresholds. The experimental setup and impulse measurements for two patch array antennas are presented. Advantages and limitations of the technique are discussed along with applications to other antenna array topologies
Least-Squares Self-Calibration of Imaging Array Data
NASA Technical Reports Server (NTRS)
Arendt, R. G.; Moseley, S. H.; Fixsen, D. J.
2004-01-01
When arrays are used to collect multiple appropriately-dithered images of the same region of sky, the resulting data set can be calibrated using a least-squares minimization procedure that determines the optimal fit between the data and a model of that data. The model parameters include the desired sky intensities as well as instrument parameters such as pixel-to-pixel gains and offsets. The least-squares solution simultaneously provides the formal error estimates for the model parameters. With a suitable observing strategy, the need for separate calibration observations is reduced or eliminated. We show examples of this calibration technique applied to HST NICMOS observations of the Hubble Deep Fields and simulated SIRTF IRAC observations.
Conjugate field approaches for active array compensation
NASA Technical Reports Server (NTRS)
Acosta, R. J.
1989-01-01
Two approaches for calculating the compensating feed array complex excitations are namely, the indirect conjugate field matching (ICFM) and the direct conjugate field matching (DCFM) approach. In the ICFM approach the compensating feed array excitations are determined by considering the transmitting mode and the reciprocity principle. The DCF, in contrast calculates the array excitations by integrating directly the induced surface currents on the reflector under a receiving mode. DCFM allows the reflector to be illuminated by an incident plane wave with a tapered amplitude. The level of taper can effectively control the sidelobe level of the compensated antenna pattern. Both approaches are examined briefly.
Results of the 1980 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Weiss, R. S.
1981-01-01
Thirty-eight modules were carried to an altitude of about 36 kilometers. In addition to the cell calibration program, an experiment to evaluate the calibration error versus altitude was performed. The calibrated cells can be used as reference standards in simulator testing of cells and arrays.
Optical calibration of the Auger fluorescence telescopes
NASA Astrophysics Data System (ADS)
Matthews, John A. J.
2003-02-01
The Pierre Auger Observatory is optimized to study the cosmic ray spectrum in the region of the Greisen-Zatsepin-Kuz'min (GZK) cutoff, i.e.cosmic rays with energies of ~1020eV. Cosmic rays are detected as extensive air showers. To measure these showers each Auger site combines a 3000sq-km ground array with air fluorescence telescopes into a hybrid detector. Our design choice is motivated by the heightened importance of the energy scale, and related systematic uncertainties in shower energies, for experiments investigating the GZK cutoff. This paper focuses on the optical calibration of the Auger fluorescence telescopes. The optical calibration is done three independent ways: an absolute end-to-end calibration using a uniform, calibrated intensity, light-source at the telescope entrance aperture, a component by component calibration using both laboratory and in-situ measurements, and Rayleigh scattered light from external laser beams. The calibration concepts and related instrumentation are summarized. Results from the 5-month engineering array test are presented.
The Challenges of Low-Frequency Radio Polarimetry: Lessons from the Murchison Widefield Array
NASA Astrophysics Data System (ADS)
Lenc, E.; Anderson, C. S.; Barry, N.; Bowman, J. D.; Cairns, I. H.; Farnes, J. S.; Gaensler, B. M.; Heald, G.; Johnston-Hollitt, M.; Kaplan, D. L.; Lynch, C. R.; McCauley, P. I.; Mitchell, D. A.; Morgan, J.; Morales, M. F.; Murphy, Tara; Offringa, A. R.; Ord, S. M.; Pindor, B.; Riseley, C.; Sadler, E. M.; Sobey, C.; Sokolowski, M.; Sullivan, I. S.; O'Sullivan, S. P.; Sun, X. H.; Tremblay, S. E.; Trott, C. M.; Wayth, R. B.
2017-09-01
We present techniques developed to calibrate and correct Murchison Widefield Array low-frequency (72-300 MHz) radio observations for polarimetry. The extremely wide field-of-view, excellent instantaneous (u, v)-coverage and sensitivity to degree-scale structure that the Murchison Widefield Array provides enable instrumental calibration, removal of instrumental artefacts, and correction for ionospheric Faraday rotation through imaging techniques. With the demonstrated polarimetric capabilities of the Murchison Widefield Array, we discuss future directions for polarimetric science at low frequencies to answer outstanding questions relating to polarised source counts, source depolarisation, pulsar science, low-mass stars, exoplanets, the nature of the interstellar and intergalactic media, and the solar environment.
A Cryogenic SiGe Low-noise Amplifier Optimized for Phased-array Feeds
NASA Astrophysics Data System (ADS)
Groves, Wavley M., III; Morgan, Matthew A.
2017-08-01
The growing number of phased-array feeds (PAF) being built for radio astronomy demonstrates an increasing need for low-noise amplifiers (LNA), which are designed for repeatability, low noise, and ease of manufacture. Specific design features that help to achieve these goals include the use of unpackaged transistors (for cryogenic operation); single-polarity biasing; straight plug-in radio frequency (RF) interfaces to facilitate installation and re-work; and the use of off-the-shelf components. The focal L-band array for the Green Bank Telescope (FLAG) is a cooperative effort by Brigham Young University and the National Radio Astronomy Observatory using warm dipole antennae and cryogenic Silicon Germanium Heterojunction Bipolar Transistor (SiGe HBT) LNAs. These LNAs have an in band gain average of 38 dB and 4.85 Kelvin average noise temperature. Although the FLAG instrument was the driving instrument behind this development, most of the key features of the design and the advantages they offer apply broadly to other array feeds, including independent-beam and phased, and for many antenna types such as horn, dipole, Vivaldi, connected-bowtie, etc. This paper focuses on the unique requirements array feeds have for low-noise amplifiers and how amplifier manufacturing can accommodate these needs.
New 30-50 Ghz Wideband Receiver for Nobeyama 45-M Telescope with Capability to Observe Three Zeeman
NASA Astrophysics Data System (ADS)
Huang, Yau De
2018-01-01
Zeeman measurement is the only tool to probe the magnetic field strengths directly. A new receiver covering 30-50 GHz frequency range is proposed for Nobeyama 45-m telescope based on the design of the ALMA Band 1 receiver. With dual linear polarization feed, wide IF bandwidth and state-of-the-art noise performance, it is capable to observe three Zeeman transitions (SO at 30.0 GHz and CCS at 33.7 and 45.4 GHz) toward the pre-protostellar cores simultaneously. This feature will not only increase the survey efficiency but also provide a reliable tool to calibrate the unwanted instrumental cross-polarization. Slim receiver layout also allows easy expansion to form focal plane array. We will present the receiver design and the current status of the pro
Advanced Precipitation Radar Antenna to Measure Rainfall From Space
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen
2008-01-01
To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds reduces the complexity from "NxN" transmit/receive (T/R) modules of a conventional planar-phased array to just "N" T/R modules. The antenna uses T/R modules with electronic phase-shifters for beam steering. The offset reflector does not provide poor cross-polarization like a double- curved offset reflector would, and it allows the wide scan angle in one plane required by the mission. Also, the cylindrical reflector with two linear array feeds provides dual-frequency performance with a single, shared aperture. The aperture comprises a reflective surface with a focal length of 1.89 m and is made from aluminized Kapton film. The reflective surface is of uniform thickness in the range of a few thousandths of an inch and is attached to the chain-link support structure via an adjustable suspension system. The film aperture rolls up, together with the chain-link structure, for launch and can be deployed in space by the deployment of the chain-link structure.
Calibrating the orientation between a microlens array and a sensor based on projective geometry
NASA Astrophysics Data System (ADS)
Su, Lijuan; Yan, Qiangqiang; Cao, Jun; Yuan, Yan
2016-07-01
We demonstrate a method for calibrating a microlens array (MLA) with a sensor component by building a plenoptic camera with a conventional prime lens. This calibration method includes a geometric model, a setup to adjust the distance (L) between the prime lens and the MLA, a calibration procedure for determining the subimage centers, and an optimization algorithm. The geometric model introduces nine unknown parameters regarding the centers of the microlenses and their images, whereas the distance adjustment setup provides an initial guess for the distance L. The simulation results verify the effectiveness and accuracy of the proposed method. The experimental results demonstrate the calibration process can be performed with a commercial prime lens and the proposed method can be used to quantitatively evaluate whether a MLA and a sensor is assembled properly for plenoptic systems.
Redundant interferometric calibration as a complex optimization problem
NASA Astrophysics Data System (ADS)
Grobler, T. L.; Bernardi, G.; Kenyon, J. S.; Parsons, A. R.; Smirnov, O. M.
2018-05-01
Observations of the redshifted 21 cm line from the epoch of reionization have recently motivated the construction of low-frequency radio arrays with highly redundant configurations. These configurations provide an alternative calibration strategy - `redundant calibration' - and boost sensitivity on specific spatial scales. In this paper, we formulate calibration of redundant interferometric arrays as a complex optimization problem. We solve this optimization problem via the Levenberg-Marquardt algorithm. This calibration approach is more robust to initial conditions than current algorithms and, by leveraging an approximate matrix inversion, allows for further optimization and an efficient implementation (`redundant STEFCAL'). We also investigated using the preconditioned conjugate gradient method as an alternative to the approximate matrix inverse, but found that its computational performance is not competitive with respect to `redundant STEFCAL'. The efficient implementation of this new algorithm is made publicly available.
Statistical photocalibration of photodetectors for radiometry without calibrated light sources
NASA Astrophysics Data System (ADS)
Yielding, Nicholas J.; Cain, Stephen C.; Seal, Michael D.
2018-01-01
Calibration of CCD arrays for identifying bad pixels and achieving nonuniformity correction is commonly accomplished using dark frames. This kind of calibration technique does not achieve radiometric calibration of the array since only the relative response of the detectors is computed. For this, a second calibration is sometimes utilized by looking at sources with known radiances. This process can be used to calibrate photodetectors as long as a calibration source is available and is well-characterized. A previous attempt at creating a procedure for calibrating a photodetector using the underlying Poisson nature of the photodetection required calculations of the skewness of the photodetector measurements. Reliance on the third moment of measurement meant that thousands of samples would be required in some cases to compute that moment. A photocalibration procedure is defined that requires only first and second moments of the measurements. The technique is applied to image data containing a known light source so that the accuracy of the technique can be surmised. It is shown that the algorithm can achieve accuracy of nearly 2.7% of the predicted number of photons using only 100 frames of image data.
Calibration of the Microcalorimeter Spectrometer On-Board the Hitomi (Astro-H) Observatory (invited)
NASA Technical Reports Server (NTRS)
Eckart, M. E.; Boyce, K. R.; Brown, G. V.; Chiao, M. P.; Fujimoto, R.; Haas, D.; Den Herder, J.-W.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.;
2016-01-01
The Hitomi Soft X-ray Spectrometer (SXS) was a pioneering non-dispersive imaging x-ray spectrometer with 5 eV FWHM energy resolution, consisting of an array of 36 silicon-thermistor microcalorimeters at the focus of a high-throughput soft x-ray telescope. The instrument enabled astrophysical plasma diagnostics in the 0.3-12 keV band. We introduce the SXS calibration strategy and corresponding ground calibration measurements that took place from 2012-2015, including both the characterization of the microcalorimeter array and measurements of the x-ray transmission of optical blocking filters.
Time-delayed directional beam phased array antenna
Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron
2004-10-19
An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary
2016-01-01
A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.
NASA Astrophysics Data System (ADS)
Greene, Amy
2013-04-01
MicroBooNE is a neutrino experiment at Fermilab designed to investigate the 3σ low-energy electron candidate events measured by the MiniBooNE experiment. Neutrinos from the Booster Neutrino Beam are detected by a 89-ton liquid argon time projection chamber, which is expected to start taking data in 2014. MicroBooNE measures both the ionization electrons and scintillation light produced by neutrino interactions in the liquid argon. The scintillation light is collected by an array of 30 PMTs located at one side of the detector. This array can be calibrated using Michel electrons from stopping cosmic ray muons, by fitting the measured PMT response with the theoretical expectation. I will report on the progress of the PMT calibration software that has been developed using the MicroBooNE Monte Carlo.
Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array
NASA Technical Reports Server (NTRS)
Mukai, Ryan; Lee, Dennis; Vilnrotter, Victor
2010-01-01
A spatio-temporal equalizer has been conceived as an improved means of suppressing multipath effects in the reception of aeronautical telemetry signals, and may be adaptable to radar and aeronautical communication applications as well. This equalizer would be an integral part of a system that would also include a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal antenna that would be nominally aimed at or near the aircraft that would be the source of the signal that one seeks to receive (see Figure 1). This spatio-temporal equalizer would consist mostly of a bank of seven adaptive finite-impulse-response (FIR) filters one for each element in the array - and the outputs of the filters would be summed (see Figure 2). The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank would afford better multipath-suppression performance than is achievable by means of temporal equalization alone. The seven-element feed array would supplant the single feed horn used in a conventional paraboloidal ground telemetry-receiving antenna. The radio-frequency telemetry signals re ceiv ed by the seven elements of the array would be digitized, converted to complex baseband form, and sent to the FIR filter bank, which would adapt itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of multipath of the type found at many flight test ranges.
Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.
1985-01-01
Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.
Results of the 1979 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Weiss, R. S.
1980-01-01
Calibration of solar cells to be used as reference standards in simulator testing of cells and arrays was accomplished. Thirty-eight modules were carried to an altitude of about 36 kilometers during the solar cell calibration balloon flight.
NASA Astrophysics Data System (ADS)
Langston, C. A.
2017-12-01
The seismic wave gradient tensor can be derived from a variety of field observations including measurements of the wavefield by a dense seismic array, strain meters, and rotation meters. Coupled with models of wave propagation, wave gradients along with the original wavefield can give estimates of wave attributes that can be used to infer wave propagation directions, apparent velocities, spatial amplitude behavior, and wave type. Compact geodetic arrays with apertures of 0.1 wavelength or less can be deployed to provide wavefield information at a localized spot similar to larger phased arrays with apertures of many wavelengths. Large N, spatially distributed arrays can provide detailed information over an area to detect structure changes. Key to accurate computation of spatial gradients from arrays of seismic instruments is knowledge of relative instrument responses, particularly component sensitivities and gains, along with relative sensor orientations. Array calibration has been successfully performed for the 14-element Pinyon Flat, California, broadband array using long-period teleseisms to achieve relative precisions as small as 0.2% in amplitude and 0.35o in orientation. Calibration has allowed successful comparison of horizontal seismic strains from local and regional seismic events with the Plate Boundary Observatory (PBO) borehole strainmeter located at the facility. Strains from the borehole strainmeter in conjunction with ground velocity from a co-located seismometer are used as a "point" array in estimating wave attributes for the P-SV components of the wavefield. An effort is underway to verify the calibration of PBO strainmeters in southern California and their co-located borehole seismic sensors to create an array of point arrays for use in studies of regional wave propagation and seismic sources.
Calibration and Performance Of The Juno Microwave Radiometer In Jupiter Orbit
NASA Astrophysics Data System (ADS)
Brown, Shannon; Janssen, Mike; Misra, Sid
2017-04-01
The NASA Juno mission was launched from Kennedy Space Center on August 5th, 2011. Juno is a New Frontiers mission to study Jupiter and carries as one of its payloads a six-frequency microwave radiometer to retrieve the water vapor abundance in the Jovian atmosphere, down to at least 100 bars. The Juno Microwave Radiometer (MWR) operates from 600 MHz to 22 GHz and was designed and built at the Jet Propulsion Laboratory. The MWR radiometer system consists of a MMIC-based receiver for each channel that includes a PIN-diode Dicke switch and three noise diodes distributed along the front end for receiver calibration. The receivers and electronics are housed inside the Juno payload vault, which provides radiation shielding for the Juno payloads. The antenna system consists of patch-array antennas at 600 MHz and 1.2 GHz, slotted waveguide antennas at 2.5, 5.5 and 10 GHz and a feed horn at 22 GHz, providing 20-degree beams at the lowest two frequencies and 12-degree beams at the others. Since launch, MWR has operated nearly continually over the five year cruise. During this time, the Juno spacecraft is spinning on the sky providing the MWR with an excellent calibration source. Furthermore, the spacecraft sun angle and distance have varied, offering a wide range of instrument thermal states to further constrain the calibration. An approach was developed to optimally use the pre-launch and post-launch data to find a calibration solution which minimizes the errors with respect to the pre-launch calibration targets, the post-launch cold sky data and the component level loss/reflection measurements. The extended cruise data allow traceability from the pre-launch measurements to the science observations. In addition, a special data set was taken at apojove during the capture orbits to validate the antenna patterns in-flight using Jupiter as a source. An assessment of the radiometer calibration performance during the first science orbits will be presented. Both the absolute and relative performance will be shown. The relative calibration is assessed by evaluating the temporal stability over the pass and the forward looking and aft looking observations of the same point in the atmosphere.
Wideband Low Side Lobe Aperture Coupled Patch Phased Array Antennas
NASA Astrophysics Data System (ADS)
Poduval, Dhruva
Low profile printed antenna arrays with wide bandwidth, high gain, and low Side Lobe Level (SLL) are in great demand for current and future commercial and military communication systems and radar. Aperture coupled patch antennas have been proposed to obtain wide impedance bandwidths in the past. Aperture coupling is preferred particularly for phased arrays because of their advantage of integration to other active devices and circuits, e.g. phase shifters, power amplifiers, low noise amplifiers, mixers etc. However, when designing such arrays, the interplay between array performance characteristics, such as gain, side lobe level, back lobe level, mutual coupling etc. must be understood and optimized under multiple design constraints, e.g. substrate material properties and thicknesses, element to element spacing, and feed lines and their orientation and arrangements with respect to the antenna elements. The focus of this thesis is to investigate, design, and develop an aperture coupled patch array with wide operating bandwidth (30%), high gain (17.5 dBi), low side lobe level (20 dB), and high Forward to Backward (F/B) ratio (21.8 dB). The target frequency range is 2.4 to 3 GHz given its wide application in WLAN, LTE (Long Term Evolution) and other communication systems. Notwithstanding that the design concept can very well be adapted at other frequencies. Specifically, a 16 element, 4 by 4 planar microstrip patch array is designed using HFSS and experimentally developed and tested. Starting from mutual coupling minimization a corporate feeding scheme is designed to achieve the needed performance. To reduce the SLL the corporate feeding network is redesigned to obtain a specific amplitude taper. Studies are conducted to determine the optimum location for a metallic reflector under the feed line to improve the F/B. An experimental prototype of the antenna was built and tested validating and demonstrating the performance levels expected from simulation predictions. Finally, simulated beam scanning in several angles of the array is shown considering specific phases for each antenna element in the array.
NASA Astrophysics Data System (ADS)
Maghrebi, Morteza; Khodadadi, Abbas Ali; Mortazavi, Yadollah; Sane, Ali; Rahimi, Mohsen; Shirazi, Yaser; Tsakadze, Zviad; Mhaisalkar, Subodh
2009-11-01
The mm-long carbon nanotube (CNT) arrays were grown in a floating catalyst reactor, using xylene-ferrocene and a small amount of acetic acid as the feed. The CNT arrays deposited on a quartz substrate at several positions along the reactor were extensively characterized using Raman spectroscopy, scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy, and optical microscopy. Various characterization methods consistently reveal that the acetic acid additive to the feed alleviates deposition of amorphous carbon layer, which gradually thickens CNTs along the reactor. The acetic acid also resulted in a higher growth rate along the so-called growth window, where CNT arrays are deposited on the quartz substrate. High-performance liquid chromatography of extracted byproducts (PAHs) confirmed the presence of some polycyclic aromatic hydrocarbons. The solid weight of PAHs decreased upon addition of ferrocene as the catalyst precursor, as well as of acetic acid to xylene feed. The results suggest that primary light products of xylene pyrolysis can be competitive reactants for both catalytic and subsequent pyrolytic reactions. They may also be more efficient feeds for CNT growth than xylene itself.
Thin conformal antenna array for microwave power conversions
NASA Technical Reports Server (NTRS)
Dickinson, R. M. (Inventor)
1978-01-01
A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.
Automated Camera Array Fine Calibration
NASA Technical Reports Server (NTRS)
Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang
2008-01-01
Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.
NASA Astrophysics Data System (ADS)
Kaufman, Lloyd; Williamson, Samuel J.; Costaribeiro, P.
1988-02-01
Recently developed small arrays of SQUID-based magnetic sensors can, if appropriately placed, locate the position of a confined biomagnetic source without moving the array. The authors present a technique with a relative accuracy of about 2 percent for calibrating such sensors having detection coils with the geometry of a second-order gradiometer. The effects of calibration error and magnetic noise on the accuracy of locating an equivalent current dipole source in the human brain are investigated for 5- and 7-sensor probes and for a pair of 7-sensor probes. With a noise level of 5 percent of peak signal, uncertainties of about 20 percent in source strength and depth for a 5-sensor probe are reduced to 8 percent for a pair of 7-sensor probes, and uncertainties of about 15 mm in lateral position are reduced to 1 mm, for the configuration considered.
NASA Astrophysics Data System (ADS)
Jordan, C. H.; Murray, S.; Trott, C. M.; Wayth, R. B.; Mitchell, D. A.; Rahimi, M.; Pindor, B.; Procopio, P.; Morgan, J.
2017-11-01
We detail new techniques for analysing ionospheric activity, using Epoch of Reionization data sets obtained with the Murchison Widefield Array, calibrated by the `real-time system' (RTS). Using the high spatial- and temporal-resolution information of the ionosphere provided by the RTS calibration solutions over 19 nights of observing, we find four distinct types of ionospheric activity, and have developed a metric to provide an `at a glance' value for data quality under differing ionospheric conditions. For each ionospheric type, we analyse variations of this metric as we reduce the number of pierce points, revealing that a modest number of pierce points is required to identify the intensity of ionospheric activity; it is possible to calibrate in real-time, providing continuous information of the phase screen. We also analyse temporal correlations, determine diffractive scales, examine the relative fractions of time occupied by various types of ionospheric activity and detail a method to reconstruct the total electron content responsible for the ionospheric data we observe. These techniques have been developed to be instrument agnostic, useful for application on LOw Frequency ARray and Square Kilometre Array-Low.
A dual frequency microstrip antenna for Ka band
NASA Technical Reports Server (NTRS)
Lee, R. Q.; Baddour, M. F.
1985-01-01
For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.
Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array
NASA Astrophysics Data System (ADS)
Schröder, Frank G.; Pierre Auger Collaboration
2016-07-01
The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.
Anselmi, Nicola; Salucci, Marco; Rocca, Paolo; Massa, Andrea
2016-01-01
The sensitivity to both calibration errors and mutual coupling effects of the power pattern radiated by a linear array is addressed. Starting from the knowledge of the nominal excitations of the array elements and the maximum uncertainty on their amplitudes, the bounds of the pattern deviations from the ideal one are analytically derived by exploiting the Circular Interval Analysis (CIA). A set of representative numerical results is reported and discussed to assess the effectiveness and the reliability of the proposed approach also in comparison with state-of-the-art methods and full-wave simulations. PMID:27258274
NASA Technical Reports Server (NTRS)
Rock, Stephen M.; LeMaster, Edward A.
2001-01-01
Pseudolites can extend the availability of GPS-type positioning systems to a wide range of applications not possible with satellite-only GPS. One such application is Mars exploration, where the centimeter-level accuracy and high repeatability of CDGPS would make it attractive for rover positioning during autonomous exploration, sample collection, and habitat construction if it were available. Pseudolites distributed on the surface would allow multiple rovers and/or astronauts to share a common navigational reference. This would help enable cooperation for complicated science tasks, reducing the need for instructions from Earth and increasing the likelihood of mission success. Conventional GPS Pseudolite arrays require that the devices be pre-calibrated through a Survey of their locations, typically to sub-centimeter accuracy. This is a problematic task for robots on the surface of another planet. By using the GPS signals that the Pseudolites broadcast, however, it is possible to have the array self-survey its own relative locations, creating a SelfCalibrating Pseudolite Array (SCPA). This requires the use of GPS transceivers instead of standard pseudolites. Surveying can be done either at carrier- or code-phase levels. An overview of SCPA capabilities, system requirements, and self-calibration algorithms is presented in another work. The Aerospace Robotics Laboratory at Statif0id has developed a fully operational prototype SCPA. The array is able to determine the range between any two transceivers with either code- or carrier-phase accuracy, and uses this inter-transceiver ranging to determine the at-ray geometry. This paper presents results from field tests conducted at Stanford University demonstrating the accuracy of inter-transceiver ranging and its viability and utility for array localization, and shows how transceiver motion may be utilized to refine the array estimate by accurately determining carrier-phase integers and line biases. It also summarizes the overall system requirements and architecture, and describes the hardware and software used in the prototype system.
Balancing Mitigation Against Impact: A Case Study From the 2005 Chicxulub Seismic Survey
NASA Astrophysics Data System (ADS)
Barton, P.; Diebold, J.; Gulick, S.
2006-05-01
In early 2005 the R/V Maurice Ewing conducted a large-scale deep seismic reflection-refraction survey offshore Yucatan, Mexico, to investigate the internal structure of the Chicxulub impact crater, centred on the coastline. Shots from a tuned 20 airgun, 6970 cu in array were recorded on a 6 km streamer and 25 ocean bottom seismometers (OBS). The water is exceptionally shallow to large distances offshore, reaching 30 m about 60 km from the land, making it unattractive to the larger marine mammals, although there are small populations of Atlantic and spotted dolphins living in the area, as well as several turtle breeding and feeding grounds on the Yucatan peninsula. In the light of calibrated tests of the Ewing's array (Tolstoy et al., 2004, Geophysical Research Letters 31, L14310), a 180 dB safety radius of 3.5 km around the gun array was adopted. An energetic campaign was organised by environmentalists opposing the work. In addition to the usual precautions of visual and listening watches by independent observers, gradual ramp-ups of the gun arrays, and power-downs or shut-downs for sightings, constraints were also placed to limit the survey to daylight hours and weather conditions not exceeding Beaufort 4. The operations were subject to several on-board inspections by the Mexican environmental authorities, causing logistical difficulties. Although less than 1% of the total working time was lost to shutdowns due to actual observation of dolphins or turtles, approximately 60% of the cruise time was taken up in precautionary inactivity. A diver in the water 3.5 km from the profiling ship reported that the sound in the water was barely noticeable, leading us to examine the actual sound levels recorded by both the 6 km streamer and the OBS hydrophones. The datasets are highly self-consistent, and give the same pattern of decay with distance past about 2 km offset, but with different overall levels: this may be due to geometry or calibration differences under investigation. Both datasets indicate significantly lower levels than reported by Tolstoy et al. (2004). There was no evidence of environmental damage created by this survey. It can be concluded that the mitigation measures were extremely successful, but there is also a concern that the overhead cost of the environmental protection made this one of the most costly academic surveys ever undertaken, and that not all of this protection was necessary. In particular, the predicted 180 dB safety radius appeared to be overly conservative, even though based on calibrated measurements in very similar physical circumstances, and we suggest that these differences were a result of local seismic velocity structure in the water column and/or shallow seabed, which resulted in different partitioning of the energy. These results suggest that real time monitoring of hydrophone array data may provide a method of determining the safety radius dynamically, in response to local conditions.
NASA Astrophysics Data System (ADS)
de Lera Acedo, E.; Bolli, P.; Paonessa, F.; Virone, G.; Colin-Beltran, E.; Razavi-Ghods, N.; Aicardi, I.; Lingua, A.; Maschio, P.; Monari, J.; Naldi, G.; Piras, M.; Pupillo, G.
2018-03-01
In this paper we present the electromagnetic modeling and beam pattern measurements of a 16-elements ultra wideband sparse random test array for the low frequency instrument of the Square Kilometer Array telescope. We discuss the importance of a small array test platform for the development of technologies and techniques towards the final telescope, highlighting the most relevant aspects of its design. We also describe the electromagnetic simulations and modeling work as well as the embedded-element and array pattern measurements using an Unmanned Aerial Vehicle system. The latter are helpful both for the validation of the models and the design as well as for the future instrumental calibration of the telescope thanks to the stable, accurate and strong radio frequency signal transmitted by the UAV. At this stage of the design, these measurements have shown a general agreement between experimental results and numerical data and have revealed the localized effect of un-calibrated cable lengths in the inner side-lobes of the array pattern.
Yin, Xiao-Li; Gu, Hui-Wen; Liu, Xiao-Lu; Zhang, Shan-Hui; Wu, Hai-Long
2018-03-05
Multiway calibration in combination with spectroscopic technique is an attractive tool for online or real-time monitoring of target analyte(s) in complex samples. However, how to choose a suitable multiway calibration method for the resolution of spectroscopic-kinetic data is a troubling problem in practical application. In this work, for the first time, three-way and four-way fluorescence-kinetic data arrays were generated during the real-time monitoring of the hydrolysis of irinotecan (CPT-11) in human plasma by excitation-emission matrix fluorescence. Alternating normalization-weighted error (ANWE) and alternating penalty trilinear decomposition (APTLD) were used as three-way calibration for the decomposition of the three-way kinetic data array, whereas alternating weighted residual constraint quadrilinear decomposition (AWRCQLD) and alternating penalty quadrilinear decomposition (APQLD) were applied as four-way calibration to the four-way kinetic data array. The quantitative results of the two kinds of calibration models were fully compared from the perspective of predicted real-time concentrations, spiked recoveries of initial concentration, and analytical figures of merit. The comparison study demonstrated that both three-way and four-way calibration models could achieve real-time quantitative analysis of the hydrolysis of CPT-11 in human plasma under certain conditions. However, it was also found that both of them possess some critical advantages and shortcomings during the process of dynamic analysis. The conclusions obtained in this paper can provide some helpful guidance for the reasonable selection of multiway calibration models to achieve the real-time quantitative analysis of target analyte(s) in complex dynamic systems. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Woodruff, Robert A.; Hull, Tony; Heap, Sara R.; Danchi, William; Kendrick, Stephen E.; Purves, Lloyd
2017-09-01
We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R 40,000 echelle modes and R 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.
NASA Astrophysics Data System (ADS)
Woodruff, Robert; Robert Woodruff, Goddard Space Flight Center, Kendrick Optical Consulting
2018-01-01
We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R~ 40,000 echelle modes and R~ 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.
Pipeline Processing with an Iterative, Context-Based Detection Model
2016-01-22
25: Teleseismic paths from earthquakes in Myanmar to three North American arrays. The path length to ILAR (the nearest array) is about 8950...kilometers. ................................. 57 Figure 26: Waveforms of Myanmar calibration event (left) and target event (right), recorded at ILAR...one Myanmar event (2007 5/16 8:56:16.0, Mw 6.3; 20.47°N 100.69°E) as a calibration for a second event occurring nearly 4 years later (2011 3/24 13:55
Model of an optical system's influence on sensitivity of microbolometric focal plane array
NASA Astrophysics Data System (ADS)
Gogler, Sławomir; Bieszczad, Grzegorz; Zarzycka, Alicja; Szymańska, Magdalena; Sosnowski, Tomasz
2012-10-01
Thermal imagers and used therein infrared array sensors are subject to calibration procedure and evaluation of their voltage sensitivity on incident radiation during manufacturing process. The calibration procedure is especially important in so-called radiometric cameras, where accurate radiometric quantities, given in physical units, are of concern. Even though non-radiometric cameras are not expected to stand up to such elevated standards, it is still important, that the image faithfully represents temperature variations across the scene. The detectors used in thermal camera are illuminated by infrared radiation transmitted through a specialized optical system. Each optical system used influences irradiation distribution across an sensor array. In the article a model describing irradiation distribution across an array sensor working with an optical system used in the calibration set-up has been proposed. In the said method optical and geometrical considerations of the array set-up have been taken into account. By means of Monte-Carlo simulation, large number of rays has been traced to the sensor plane, what allowed to determine the irradiation distribution across the image plane for different aperture limiting configurations. Simulated results have been confronted with proposed analytical expression. Presented radiometric model allows fast and accurate non-uniformity correction to be carried out.
Development and validation of an LC-UV method for the determination of sulfonamides in animal feeds.
Kumar, P; Companyó, R
2012-05-01
A simple LC-UV method was developed for the determination of residues of eight sulfonamides (sulfachloropyridazine, sulfadiazine, sulfadimidine, sulfadoxine, sulfamethoxypyridazine, sulfaquinoxaline, sulfamethoxazole, and sulfadimethoxine) in six types of animal feed. C18, Oasis HLB, Plexa and Plexa PCX stationary phases were assessed for the clean-up step and the latter was chosen as it showed greater efficiency in the clean-up of interferences. Feed samples spiked with sulfonamides at 2 mg/kg were used to assess the trueness (recovery %) and precision of the method. Mean recovery values ranged from 47% to 66%, intra-day precision (RSD %) from 4% to 15% and inter-day precision (RSD %) from 7% to 18% in pig feed. Recoveries and intra-day precisions were also evaluated in rabbit, hen, cow, chicken and piglet feed matrices. Calibration curves with standards prepared in mobile phase and matrix-matched calibration curves were compared and the matrix effects were ascertained. The limits of detection and quantification in the feeds ranged from 74 to 265 µg/kg and from 265 to 868 µg/kg, respectively. Copyright © 2011 John Wiley & Sons, Ltd.
Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna
NASA Technical Reports Server (NTRS)
Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.
2012-01-01
The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.
Calibration and Performance of the Juno Microwave Radiometer during the First Science Orbits
NASA Astrophysics Data System (ADS)
Brown, S. T.; Misra, S.; Janssen, M. A.; Williamson, R.
2016-12-01
The NASA Juno mission was launched from Kennedy Space Center on August 5, 2011 and reached Jupiter orbit on July 4, 2016. Juno is a New Frontiers mission to study Jupiter and carries as one of its payloads a six-frequency microwave radiometer to retrieve the water vapor abundance in the Jovian atmosphere, down to at least 100 bars. The Juno Microwave Radiometer (MWR) operates from 600 MHz to 22 GHz and was designed and built at the Jet Propulsion Laboratory. The MWR radiometer system consists of a MMIC-based receiver for each channel that includes a PIN-diode Dicke switch and three noise diodes distributed along the front end for receiver calibration. The receivers and electronics are housed inside the Juno payload vault, which provides radiation shielding for the Juno payloads. The antenna system consists of patch-array antennas at 600 MHz and 1.2 GHz, slotted waveguide antennas at 2.5, 5.5 and 10 GHz and a feed horn at 22 GHz, providing 20-degree beams at the lowest two frequencies and 12-degree beams at the others. Since launch, MWR has operated nearly continuously over the five year cruise. During this time, the Juno spacecraft is spinning on the sky providing the MWR with an excellent calibration source. Furthermore, the spacecraft sun angle and distance have varied, offering a wide range of instrument thermal states to further constrain the calibration. An approach was developed to optimally use the pre-launch and post-launch data to find a calibration solution which minimizes the errors with respect to the pre-launch calibration targets, the post-launch sky data and the pre-launch RF component level characterization measurements. The extended cruise data allow traceability from the pre-launch measurements to the science observations. In addition, a special data set was taken at apojove during the capture orbits to validate the antenna patterns in-flight using Jupiter as a source. An assessment of the radiometer calibration performance during the first science orbits will be presented.
NASA Astrophysics Data System (ADS)
Hayashi, Motoki; Tameda, Yuichiro; Tomida, Takayuki; Tsunesada, Yoshiki; Seki, Terutsugu; Saito, Yoshinori
We are developing a unmanned aerial vehicle (UAV), which is called "Opt-copter", carrying a calibrated light source for fluorescence detector (FD) calibration of the Telescope Array (TA) experiment. Opt-copter is equipped with a high accuracy GPS device and a LED light source in the shape of a dodecahedron. A positioning accuracy of the GPS mounted on the UAV is 0.1 m, which meets the requirement for the calibration of the FDs at the distance of 100 m. The light source consists of 12 UV LEDs attached on each side of the dodecahedron, and it is covered with a spherical diffuser to improve the spatial uniformity of the light intensity. We report the status of Opt-copter development and the results of its test at the TA site.
2015-01-01
Food consumption is an important behavior that is regulated by an intricate array of neuropeptides (NPs). Although many feeding-related NPs have been identified in mammals, precise mechanisms are unclear and difficult to study in mammals, as current methods are not highly multiplexed and require extensive a priori knowledge about analytes. New advances in data-independent acquisition (DIA) MS/MS and the open-source quantification software Skyline have opened up the possibility to identify hundreds of compounds and quantify them from a single DIA MS/MS run. An untargeted DIA MSE quantification method using Skyline software for multiplexed, discovery-driven quantification was developed and found to produce linear calibration curves for peptides at physiologically relevant concentrations using a protein digest as internal standard. By using this method, preliminary relative quantification of the crab Cancer borealis neuropeptidome (<2 kDa, 137 peptides from 18 families) was possible in microdialysates from 8 replicate feeding experiments. Of these NPs, 55 were detected with an average mass error below 10 ppm. The time-resolved profiles of relative concentration changes for 6 are shown, and there is great potential for the use of this method in future experiments to aid in correlation of NP changes with behavior. This work presents an unbiased approach to winnowing candidate NPs related to a behavior of interest in a functionally relevant manner, and demonstrates the success of such a UPLC-MSE quantification method using the open source software Skyline. PMID:25552291
Schmerberg, Claire M; Liang, Zhidan; Li, Lingjun
2015-01-21
Food consumption is an important behavior that is regulated by an intricate array of neuropeptides (NPs). Although many feeding-related NPs have been identified in mammals, precise mechanisms are unclear and difficult to study in mammals, as current methods are not highly multiplexed and require extensive a priori knowledge about analytes. New advances in data-independent acquisition (DIA) MS/MS and the open-source quantification software Skyline have opened up the possibility to identify hundreds of compounds and quantify them from a single DIA MS/MS run. An untargeted DIA MS(E) quantification method using Skyline software for multiplexed, discovery-driven quantification was developed and found to produce linear calibration curves for peptides at physiologically relevant concentrations using a protein digest as internal standard. By using this method, preliminary relative quantification of the crab Cancer borealis neuropeptidome (<2 kDa, 137 peptides from 18 families) was possible in microdialysates from 8 replicate feeding experiments. Of these NPs, 55 were detected with an average mass error below 10 ppm. The time-resolved profiles of relative concentration changes for 6 are shown, and there is great potential for the use of this method in future experiments to aid in correlation of NP changes with behavior. This work presents an unbiased approach to winnowing candidate NPs related to a behavior of interest in a functionally relevant manner, and demonstrates the success of such a UPLC-MS(E) quantification method using the open source software Skyline.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.
1991-01-01
Virginia Tech is involved in a number of activities with NASA Langley related to large aperture radiometric antenna systems. These efforts are summarized and the focus of this report is on the feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas; however, some results for all activities are reported.
NASA Astrophysics Data System (ADS)
Pingel, Nickolas; Pisano, D. J.
2018-01-01
Phased Array Feeds (PAFs) represent the next revolution in radio astronomy instrumentation. I will present results from the latest commissioning run from the Focal L-Band Array for the Green Bank telescope (FLAG), which holds the current world record for PAF sensitivity. Since we are able to operate at system temperatures comparable with the traditional GBT single pixel L-Band feed, the increase in the field-of-view provided by the beamforming capabilities of PAFs results in a dramatic (a factor of 5) increase in survey speeds. In particular, FLAG can probe similar neutral hydrogen column density regimes over a 4 sq. deg region in 24.6 minutes as opposed to 4.1 hours in an equivalent single pixel map (excluding observing overhead). In addition to comparisons between data taken with FLAG and the single-pixel L-Band feed, I will also discuss the technical aspects of the observing procedure, data reduction, and the transition path for FLAG from an instrument that is principle-investigator run to one that is general use. These FLAG results provide a very encouraging outlook on how the GBT will continue to compete with current and planned radio telescope facilities.
Mapping Capacitive Coupling Among Pixels in a Sensor Array
NASA Technical Reports Server (NTRS)
Seshadri, Suresh; Cole, David M.; Smith, Roger M.
2010-01-01
An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.
Results of the 1984 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Downing, R. G.; Weiss, R. S.
1984-01-01
The 1984 solar cell calibration balloon flight was successfully completed on July 19, meeting all objectives of the program. Thirty-six modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1986 NASA/JPL Balloon Flight Solar Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1986-01-01
The 1986 solar cell calibration balloon flight was successfully completed on July 15, 1986, meeting all objectives of the program. Thirty modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1982 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Downing, R. G.; Weiss, R. S.
1983-01-01
The 1982 solar cell calibration balloon flight was successfully completed on July 21, meeting all objectives of the program. Twenty-eight modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
A new time calibration method for switched-capacitor-array-based waveform samplers
NASA Astrophysics Data System (ADS)
Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Moses, W.; Choong, W.-S.; Kao, C.-M.
2014-12-01
We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be 2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.
A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers.
Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Moses, W; Choong, W-S; Kao, C-M
2014-12-11
We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.
A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers
Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Moses, W.; Choong, W.-S.; Kao, C.-M.
2014-01-01
We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration. PMID:25506113
Overview of Photovoltaic Calibration and Measurement Standards at GRC
NASA Technical Reports Server (NTRS)
Baraona, Cosmo; Snyder, David; Brinker, David; Bailey, Sheila; Curtis, Henry; Scheiman, David; Jenkins, Phillip
2002-01-01
Photovoltaic (PV) systems (cells and arrays) for spacecraft power have become an international market. This market demands accurate prediction of the solar array power output in space throughout the mission life of the spacecraft. Since the beginning of space flight, space-faring nations have independently developed methods to calibrate solar cells for power output in low Earth orbit (LEO). These methods rely on terrestrial, laboratory, or extraterrestrial light sources to simulate or approximate the air mass zero (AM0) solar intensity and spectrum.
Calibrant-Free Analyte Quantitation via a Variable Velocity Flow Cell.
Beck, Jason G; Skuratovsky, Aleksander; Granger, Michael C; Porter, Marc D
2017-01-17
In this paper, we describe a novel method for analyte quantitation that does not rely on calibrants, internal standards, or calibration curves but, rather, leverages the relationship between disparate and predictable surface-directed analyte flux to an array of sensing addresses and a measured resultant signal. To reduce this concept to practice, we fabricated two flow cells such that the mean linear fluid velocity, U, was varied systematically over an array of electrodes positioned along the flow axis. This resulted in a predictable variation of the address-directed flux of a redox analyte, ferrocenedimethanol (FDM). The resultant limiting currents measured at a series of these electrodes, and accurately described by a convective-diffusive transport model, provided a means to calculate an "unknown" concentration without the use of calibrants, internal standards, or a calibration curve. Furthermore, the experiment and concentration calculation only takes minutes to perform. Deviation in calculated FDM concentrations from true values was minimized to less than 0.5% when empirically derived values of U were employed.
Cryogenic Integration of the 2-14 GHz Eleven Feed in a Wideband Receiver for VLBI2010
NASA Technical Reports Server (NTRS)
Pantaleev, Miroslaw; Jang, Jian; Karadikar, Yogesh; Helldner, Leif; Klein, Benjamin; Haas, Rudiger; Zaman, Ashraf; Zamani, Mojtaba; Kildal, Per-Simon
2010-01-01
The next generation VLBI systems require the design of a wideband receiver covering the 2-14 GHz range, necessitating a wideband feed. Presented here are the 2009 development of a cryogenic 2-14 GHz Eleven feed for reflector radio telescope antennas, including its integration into a cryogenic receiver. The Eleven feed is designed for dual linear polarization and consists of four log-periodic folded dipole arrays. Each pair of arrays is fed by a differential two-wire transmission line connected either to balun or a differential LNA. The present configuration has been measured in many configurations, at various independent labs - corresponding simulations have been done. The results show (across the band) a high polarization efficiency for the feed, with a nearly constant beam width, a reflection coefficient below -10dB, and a constant phase center. Electrical parameters under cryogenic conditions and measured receiver noise temperatures are presented.
NASA Astrophysics Data System (ADS)
Lawrence, Kurt C.; Park, Bosoon; Windham, William R.; Mao, Chengye; Poole, Gavin H.
2003-03-01
A method to calibrate a pushbroom hyperspectral imaging system for "near-field" applications in agricultural and food safety has been demonstrated. The method consists of a modified geometric control point correction applied to a focal plane array to remove smile and keystone distortion from the system. Once a FPA correction was applied, single wavelength and distance calibrations were used to describe all points on the FPA. Finally, a percent reflectance calibration, applied on a pixel-by-pixel basis, was used for accurate measurements for the hyperspectral imaging system. The method was demonstrated with a stationary prism-grating-prism, pushbroom hyperspectral imaging system. For the system described, wavelength and distance calibrations were used to reduce the wavelength errors to <0.5 nm and distance errors to <0.01mm (across the entrance slit width). The pixel-by-pixel percent reflectance calibration, which was performed at all wavelengths with dark current and 99% reflectance calibration-panel measurements, was verified with measurements on a certified gradient Spectralon panel with values ranging from about 14% reflectance to 99% reflectance with errors generally less than 5% at the mid-wavelength measurements. Results from the calibration method, indicate the hyperspectral imaging system has a usable range between 420 nm and 840 nm. Outside this range, errors increase significantly.
Spectral performance of Square Kilometre Array Antennas - II. Calibration performance
NASA Astrophysics Data System (ADS)
Trott, Cathryn M.; de Lera Acedo, Eloy; Wayth, Randall B.; Fagnoni, Nicolas; Sutinjo, Adrian T.; Wakley, Brett; Punzalan, Chris Ivan B.
2017-09-01
We test the bandpass smoothness performance of two prototype Square Kilometre Array (SKA) SKA1-Low log-periodic dipole antennas, SKALA2 and SKALA3 ('SKA Log-periodic Antenna'), and the current dipole from the Murchison Widefield Array (MWA) precursor telescope. Throughout this paper, we refer to the output complex-valued voltage response of an antenna when connected to a low-noise amplifier, as the dipole bandpass. In Paper I, the bandpass spectral response of the log-periodic antenna being developed for the SKA1-Low was estimated using numerical electromagnetic simulations and analysed using low-order polynomial fittings, and it was compared with the HERA antenna against the delay spectrum metric. In this work, realistic simulations of the SKA1-Low instrument, including frequency-dependent primary beam shapes and array configuration, are used with a weighted least-squares polynomial estimator to assess the ability of a given prototype antenna to perform the SKA Epoch of Reionisation (EoR) statistical experiments. This work complements the ideal estimator tolerances computed for the proposed EoR science experiments in Trott & Wayth, with the realized performance of an optimal and standard estimation (calibration) procedure. With a sufficient sky calibration model at higher frequencies, all antennas have bandpasses that are sufficiently smooth to meet the tolerances described in Trott & Wayth to perform the EoR statistical experiments, and these are primarily limited by an adequate sky calibration model and the thermal noise level in the calibration data. At frequencies of the Cosmic Dawn, which is of principal interest to SKA as one of the first next-generation telescopes capable of accessing higher redshifts, the MWA dipole and SKALA3 antenna have adequate performance, while the SKALA2 design will impede the ability to explore this era.
Phased Array Theory and Technology
1981-07-01
Generalized Array Coordinates 2. Linear, Planar and Circular Art -ays 3. Periodic fwo Dimensional ^rras 4. Grating Lobe Lattices 5. 1’llenienl...formal and low profile antennas, antennas for limited sector coverage, and wide- band array feeds. To aid designers, there is an attempt to give ...ol Vol. 2, Elliott gives convenient formulas lor the directivity of Imear dipole arrays, and derives an especially simple form tor arrays
IMRT plan verification with EBT2 and EBT3 films compared to PTW 2D-ARRAY seven29
NASA Astrophysics Data System (ADS)
Hanušová, Tereza; Horáková, Ivana; Koniarová, Irena
2017-11-01
The aim of this study was to compare dosimetry with Gafchromic EBT2 and EBT3 films to the ion chamber array PTW seven29 in terms of their performance in clinical IMRT plan verification. A methodology for film processing and calibration was developed. Calibration curves were obtained in MATLAB and in FilmQA Pro. The best calibration curve was then used to calibrate EBT2 and EBT3 films for IMRT plan verification measurements. Films were placed in several coronal planes into an RW3 slab phantom and irradiated with a clinical IMRT plan for prostate and lymph nodes using 18 MV photon beams. Individual fields were tested and irradiated with gantry at 0°. Results were evaluated using gamma analysis with 3%/3 mm criteria in OmniPro I'mRT version 1.7. The same measurements were performed with the ion chamber array PTW seven29 in RW3 slabs (different depths) and in the OCTAVIUS II phantom (isocenter depth only; both original and nominal gantry angles). Results were evaluated in PTW VeriSoft version 3.1 using the same criteria. Altogether, 45 IMRT planes were tested with film and 25 planes with the PTW 2D-ARRAY seven29. Film measuerements showed different results than ion chamber matrix measurements. With PTW 2D-ARRAY seven29, worse results were obtained when the detector was placed into the OCTAVIUS phantom than into the RW3 slab phantom, and the worst pass rates were seen for rotational measurements. EBT2 films showed inconsistent results and could differ significantly for different planes in one field. EBT3 films seemed to give the best results of all the tested configurations.
A Millimeter-wave Cavity-backed Suspended Substrate Stripline Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1999-01-01
Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency hands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz) 4 x 4 planar array of cavity backed circular aperture antennas with suspended substrate stripline (SSS) corporate feed is presented.
The Effect of Antenna Position Errors on Redundant-Baseline Calibration of HERA
NASA Astrophysics Data System (ADS)
Orosz, Naomi; Dillon, Joshua; Ewall-Wice, Aaron; Parsons, Aaron; HERA Collaboration
2018-01-01
HERA (the Hydrogen Epoch of Reionization Array) is a large, highly-redundant radio interferometer in South Africa currently being built out to 350 14-m dishes. Its mission is to probe large scale structure during and prior to the epoch of reionization using the 21 cm hyperfine transition of neutral hydrogen. The array is designed to be calibrated using redundant baselines of known lengths. However, the dishes can deviate from ideal positions, with errors on the order of a few centimeters. This potentially increases foreground contamination of the 21 cm power spectrum in the cleanest part of Fourier space. The calibration algorithm treats groups of baselines that should be redundant, but are not due to position errors, as if they actually are. Accurate, precise calibration is critical because the foreground signals are 100,000 times stronger than the reionization signal. We explain the origin of this effect and discuss weighting strategies to mitigate it.
Design and simulation of a sensor for heliostat field closed loop control
NASA Astrophysics Data System (ADS)
Collins, Mike; Potter, Daniel; Burton, Alex
2017-06-01
Significant research has been completed in pursuit of capital cost reductions for heliostats [1],[2]. The camera array closed loop control concept has potential to radically alter the way heliostats are controlled and installed by replacing high quality open loop targeting systems with low quality targeting devices that rely on measurement of image position to remove tracking errors during operation. Although the system could be used for any heliostat size, the system significantly benefits small heliostats by reducing actuation costs, enabling large numbers of heliostats to be calibrated simultaneously, and enabling calibration of heliostats that produce low irradiance (similar or less than ambient light images) on Lambertian calibration targets, such as small heliostats that are far from the tower. A simulation method for the camera array has been designed and verified experimentally. The simulation tool demonstrates that closed loop calibration or control is possible using this device.
Prediction of antenna array performance from subarray measurements
NASA Technical Reports Server (NTRS)
Huisjen, M. A.
1978-01-01
Computer runs were used to determine the effect of mechanical distortions on array pattern performance. Subarray gain data, along with feed network insertion loss, and insertion phase data were combined with the analysis of Ruze on random errors to predict gain of a full array.
A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed
NASA Technical Reports Server (NTRS)
Chrysler, Andrew; Furse, Cynthia; Simons, Rainee N.; Miranda, Felix A.
2017-01-01
A Ka-band (26 GHz) 2x2 array consisting of square-shaped microstrip patch antenna elements with two truncated corners for circular polarization (CP) is presented. The array is being developed for satellite communications.
Calibration of High Frequency MEMS Microphones
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.
2007-01-01
Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone.
Proposed Solar Probe telecommunications system concept
NASA Astrophysics Data System (ADS)
Kellogg, K.; Devereaux, A.; Vacchione, J.; Kapoor, V.; Crist, R.
1992-01-01
A proposed telecommunications system concept for NASA's Solar Probe mission is described. Key system requirements include 70 kbps data rate at perihelion and operation at X-band (uplink/downlink) and Ka-band (downlink). A design control table is presented to demonstrate design compliance with telecommunication needs. The Ka-band feed is to be a hexagonal array of 37 active elements, each containing 1/4W HEMT amplifiers. The array is located at the Cassegrain point of a 0.75-m reflector. When compared to the TWTA-based system, the Ka-band active array feed provides advantages of reduced mass, increased dc power efficiency, enhanced reliability, graceful degradation, and reduced volume requirements.
Radiometric calibration of an ultra-compact microbolometer thermal imaging module
NASA Astrophysics Data System (ADS)
Riesland, David W.; Nugent, Paul W.; Laurie, Seth; Shaw, Joseph A.
2017-05-01
As microbolometer focal plane array formats are steadily decreasing, new challenges arise in correcting for thermal drift in the calibration coefficients. As the thermal mass of the cameras decrease the focal plane becomes more sensitive to external thermal inputs. This paper shows results from a temperature compensation algorithm for characterizing and radiometrically calibrating a FLIR Lepton camera.
Results of the 1987 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1987-01-01
The 1987 solar cell calibration balloon flight was successfully completed on August 23, 1987, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 120,000 ft (36.0 km). The cells calibrated can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1988 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1988-01-01
The 1988 solar cell calibration balloon flight was successfully completed on August 7, 1988, meeting all objectives of the program. Forty-eight modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1989 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1989-01-01
The 1989 solar cell calibration balloon flight was successfully completed on August 9, 1989, meeting all objectives of the program. Forty-two modules were carried to an altitude of 118,000 ft (36.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1985 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1986-01-01
The 1985 solar cell calibration balloon flight was successfully completed on July 12, 1985, meeting all objectives of the program. Fifty-seven modules were carried to an altitude of 115,000 ft (35.0 km). The calibrated cells can now be used as reference standards in simulator testing of cells and arrays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, S
2015-06-15
Purpose: To evaluate the ability of statistical process control methods to detect systematic errors when using a two dimensional (2D) detector array for routine electron beam energy verification. Methods: Electron beam energy constancy was measured using an aluminum wedge and a 2D diode array on four linear accelerators. Process control limits were established. Measurements were recorded in control charts and compared with both calculated process control limits and TG-142 recommended specification limits. The data was tested for normality, process capability and process acceptability. Additional measurements were recorded while systematic errors were intentionally introduced. Systematic errors included shifts in the alignmentmore » of the wedge, incorrect orientation of the wedge, and incorrect array calibration. Results: Control limits calculated for each beam were smaller than the recommended specification limits. Process capability and process acceptability ratios were greater than one in all cases. All data was normally distributed. Shifts in the alignment of the wedge were most apparent for low energies. The smallest shift (0.5 mm) was detectable using process control limits in some cases, while the largest shift (2 mm) was detectable using specification limits in only one case. The wedge orientation tested did not affect the measurements as this did not affect the thickness of aluminum over the detectors of interest. Array calibration dependence varied with energy and selected array calibration. 6 MeV was the least sensitive to array calibration selection while 16 MeV was the most sensitive. Conclusion: Statistical process control methods demonstrated that the data distribution was normally distributed, the process was capable of meeting specifications, and that the process was centered within the specification limits. Though not all systematic errors were distinguishable from random errors, process control limits increased the ability to detect systematic errors using routine measurement of electron beam energy constancy.« less
Dinç, Erdal; Ertekin, Zehra Ceren; Büker, Eda
2016-09-01
Two-way and three-way calibration models were applied to ultra high performance liquid chromatography with photodiode array data with coeluted peaks in the same wavelength and time regions for the simultaneous quantitation of ciprofloxacin and ornidazole in tablets. The chromatographic data cube (tensor) was obtained by recording chromatographic spectra of the standard and sample solutions containing ciprofloxacin and ornidazole with sulfadiazine as an internal standard as a function of time and wavelength. Parallel factor analysis and trilinear partial least squares were used as three-way calibrations for the decomposition of the tensor, whereas three-way unfolded partial least squares was applied as a two-way calibration to the unfolded dataset obtained from the data array of ultra high performance liquid chromatography with photodiode array detection. The validity and ability of two-way and three-way analysis methods were tested by analyzing validation samples: synthetic mixture, interday and intraday samples, and standard addition samples. Results obtained from two-way and three-way calibrations were compared to those provided by traditional ultra high performance liquid chromatography. The proposed methods, parallel factor analysis, trilinear partial least squares, unfolded partial least squares, and traditional ultra high performance liquid chromatography were successfully applied to the quantitative estimation of the solid dosage form containing ciprofloxacin and ornidazole. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Calibration Test of an Interplanetary Scintillation Array in Mexico
NASA Astrophysics Data System (ADS)
Carrillo, A.; Gonzalez-Esparza, A.; Andrade, E.; Ananthakrishnan, S.; Praveen-Kumar, A.; Balasubramanian, V.
We report the calibration test of a radiotelecope to carry out interplanetary scintillation (IPS) observations in Mexico. This will be a dedicate (24 hrs) radio array for IPS observations of nearly 1000 well know radio sources in the sky to perform solar wind studies. The IPS array is located in the state of Michoacan at 350 km north-west from Mexico City, (19'48 degrees north and 101'41 degrees west, 2000 meters above the sea level). The radiotelescope operates in 140 MHz with a bandwith of 1.5 MHz. The antenna is a planar array with 64 X 64 full wavelength dipoles along 64 east-west rows of open wire transmission lines, occupying 10,000 square meters (70 x 140 m). We report the final testings of the antenna array, the matrix Butler and receivers. This work is a collaboration between the Universidad Nacional Autonoma de Mexico (UNAM) and the National Centre for Radio Astrophysics (NCRA), India. We expect to initiate the firs IPS observations by the end of this year.
Concept of an interlaced phased array for beam switching
NASA Astrophysics Data System (ADS)
Reddy, C. A.; Janardhanan, K. V.; Mukundan, K. K.; Shenoy, K. S. V.
1990-04-01
A novel concept is described for feeding and phasing a large linear array of N antenna elements using only three or five feed points and phase shifters and still achieving beam switching. The idea consists of drastically reducing the number of input points by interlacing a small number of serially fed subarrays which are suitably phased. This so-called interlaced phased array (IPA) concept was tested using an array of 15 four-element Yagi antennas with a spacing equal to 0.8 wavelengths and found feasible. Some of the distinct advantages of the IPA in comparison with a conventional system of beam switching are reduced power loss, reduced phasing errors, reduced cost, increased reliability resulting from greatly reduced number of phase shifters, and better symmetry of off-zenith beams.
Results of the 1983 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Downing, R. G.; Weiss, R. S.
1984-01-01
The 1983 solar cell calibration balloon flight was successfully completed and met all objectives of the program. Thirty-four modules were carried to an altitude of 36.0 kilometers. The calibrated cells can now be used as reference standards in simulator testing of cells and arrays. Cell calibration data are tabulated as well as the repeatability of standard solar cell BFS-17A (35 flights over a 21-year period).
Configuration Considerations for Low Frequency Arrays
NASA Astrophysics Data System (ADS)
Lonsdale, C. J.
2005-12-01
The advance of digital signal processing capabilities has spurred a new effort to exploit the lowest radio frequencies observable from the ground, from ˜10 MHz to a few hundred MHz. Multiple scientifically and technically complementary instruments are planned, including the Mileura Widefield Array (MWA) in the 80-300 MHz range, and the Long Wavelength Array (LWA) in the 20-80 MHz range. The latter instrument will target relatively high angular resolution, and baselines up to a few hundred km. An important practical question for the design of such an array is how to distribute the collecting area on the ground. The answer to this question profoundly affects both cost and performance. In this contribution, the factors which determine the anticipated performance of any such array are examined, paying particular attention to the viability and accuracy of array calibration. It is argued that due to the severity of ionospheric effects in particular, it will be difficult or impossible to achieve routine, high dynamic range imaging with a geographically large low frequency array, unless a large number of physically separate array stations is built. This conclusion is general, is based on the need for adequate sampling of ionospheric irregularities, and is independent of the calibration algorithms and techniques that might be employed. It is further argued that array configuration figures of merit that are traditionally used for higher frequency arrays are inappropriate, and a different set of criteria are proposed.
Self-calibrating pseudolite arrays: Theory and experiment
NASA Astrophysics Data System (ADS)
Lemaster, Edward Alan
Tasks envisioned for future-generation Mars rovers---sample collection, area survey, resource mining, habitat construction, etc.---will require greatly enhanced navigational capabilities over those possessed by the 1997 Mars Sojourner rover. Many of these tasks will involve cooperative efforts by multiple rovers and other agents, necessitating both high accuracy and the ability to share navigation information among different users. On Earth, satellite-based carrier-phase differential GPS provides a means of delivering centimeter-level, drift-free positioning to multiple users in contact with a reference base station. It would be highly desirable to have a similar navigational capability for use in Mars exploration. This research has originated a new local-area navigation system---a Self-Calibrating Pseudolite Array (SCPA)---that can provide centimeter-level localization to multiple rovers by utilizing GPS-based pseudolite transceivers deployed in a ground-based array. Such a system of localized beacons can replace or augment a system based on orbiting satellite transmitters. Previous pseudolite arrays have relied upon a priori information to survey the locations of the pseudolites, which must be accurately known to enable navigation within the array. In contrast, an SCPA does not rely upon other measurement sources to determine these pseudolite locations. This independence is a key requirement for autonomous deployment on Mars, and is accomplished through the use of GPS transceivers containing both transmit and receive components and through algorithms that utilize limited motion of a transceiver-bearing rover to determine the locations of the stationary transceivers. This dissertation describes the theory and operation of GPS transceivers, and how they can be used for navigation within a Self-Calibrating Pseudolite Array. It presents new algorithms that can be used to self-survey such arrays robustly using no a priori information, even under adverse conditions such as high-multipath environments. It then describes the experimental SCPA prototype developed at Stanford University and used in conjunction with the K9 Mars rover operated by NASA Ames Research Center. Using this experimental system, it provides experimental validation of both successful positioning using GPS transceivers and full calibration of an SCPA following deployment in an unknown configuration.
Melfsen, Andreas; Hartung, Eberhard; Haeussermann, Angelika
2013-02-01
The robustness of in-line raw milk analysis with near-infrared spectroscopy (NIRS) was tested with respect to the prediction of the raw milk contents fat, protein and lactose. Near-infrared (NIR) spectra of raw milk (n = 3119) were acquired on three different farms during the milking process of 354 milkings over a period of six months. Calibration models were calculated for: a random data set of each farm (fully random internal calibration); first two thirds of the visits per farm (internal calibration); whole datasets of two of the three farms (external calibration), and combinations of external and internal datasets. Validation was done either on the remaining data set per farm (internal validation) or on data of the remaining farms (external validation). Excellent calibration results were obtained when fully randomised internal calibration sets were used for milk analysis. In this case, RPD values of around ten, five and three for the prediction of fat, protein and lactose content, respectively, were achieved. Farm internal calibrations achieved much poorer prediction results especially for the prediction of protein and lactose with RPD values of around two and one respectively. The prediction accuracy improved when validation was done on spectra of an external farm, mainly due to the higher sample variation in external calibration sets in terms of feeding diets and individual cow effects. The results showed that further improvements were achieved when additional farm information was added to the calibration set. One of the main requirements towards a robust calibration model is the ability to predict milk constituents in unknown future milk samples. The robustness and quality of prediction increases with increasing variation of, e.g., feeding and cow individual milk composition in the calibration model.
GaLactic and Extragalactic All-Sky MWA-eXtended (GLEAM-X) survey: Pilot observations
NASA Astrophysics Data System (ADS)
Hurley-Walker, N.; Seymour, N.; Staveley-Smith, L.; Johnston-Hollitt, M.; Kapinska, A.; McKinley, B.
2017-01-01
This proposal is a pilot study for the extension of the highly successful GaLactic and Extragalactic MWA (GLEAM) survey (Wayth et al. 2015). The aim is to test out new observing strategies and data reduction techniques suitable for exploiting the longer baselines of the extended phase 2 MWA array. Deeper and wide surveys at higher resolution will enable a legion of science capabilities pertaining to galaxy evolution, clusters and the cosmic web, whilst maintaining the advantages over LOFAR including larger field-of-view, wider frequency coverage and better sensitivity to extended emission. We will continue the successful drift scan mode observing to test the feasibility of a large-area survey in 2017-B and onward. We will also target a single deep area with a bright calibrator source to establish the utility of focussed deep observations. In both cases, we will be exploring calibrating and imaging strategies across 72-231 MHz with the new long baselines. The published extragalactic sky catalogue (Hurley-Walker et al. 2017) improves the prospects for good ionospheric calibration in this new regime, as well as trivialising flux calibration. The new Alternative Data Release of the TIFR GMRT Sky Survey (TGSS-ADR1; Intema et al. 2016), which has 30" resolution and covers the proposed observing area, allows us to test whether our calibration and imaging strategy correctly recovers the true structure of (high surface-brightness) resolved sources. GLEAM-X will have lower noise, higher surface brightness sensitivity, and have considerably wider bandwidth than TGSS. These properties will enable a wide range of science, such as: Detecting and characterising cluster relics and haloes beyond z=0.45; Accurately determining radio source counts at multiple frequencies; Measuring the low-v luminosity function to z 0.5; Performing Galactic plane science such as HII region detection and cosmic tomography; Determining the typical ionospheric diffractive scale at the MRO, feeding into SKA_Low calibration strategies. In addition the proposal is designed to be commensally used for transients science, and will also create a more accurate, higher-resolution foreground model for the EoR2 field, allowing better foreground subtraction and therefore increased sensitivity to the EoR signal.
Polar-interferometry: what can be learnt from the IOTA/IONIC experiment
NASA Astrophysics Data System (ADS)
Le Bouquin, Jean-Baptiste; Rousselet-Perraut, Karine; Berger, Jean-Philippe; Herwats, Emilie; Benisty, Myriam; Absil, Olivier; Defrere, Denis; Monnier, John; Traub, Wesley
2008-07-01
We report the first near-IR polar-interferometric observations, performed at the IOTA array using its integrated optics combiner IONIC. Fringes have been obtained on calibration stars and resolved late-type giants. Optical modeling of the array and dedicated laboratory measures allowed us to confirm the good accuracy obtained on the calibrated polarized visibilities and closure phases. However, no evidences for polarimetric features at high angular resolution have been detected. The simulations and the results presented here open several perspectives for polar-interferometry, especially in the context of fibered, single-mode combiners.
NASA Astrophysics Data System (ADS)
Meng, L.; Zhang, A.; Yagi, Y.
2015-12-01
The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9,000 people is the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process is well imaged by the teleseismic MUSIC back-projections (BP). Here, we perform independent back-projections of high-frequency recordings (0.5-2 Hz) from the Australian seismic network (AU), the North America network (NA) and the European seismic network (EU), located in complementary orientations. Our results of all three arrays show unilateral linear rupture path to the east of the hypocenter. But the propagating directions and the inferred rupture speeds differ significantly among different arrays. To understand the spatial uncertainties of the BP analysis, we image four moderate-size (M5~6) aftershocks based on the timing correction derived from the alignment of the initial P-wave of the mainshock. We find that the apparent source locations inferred from BP are systematically biased along the source-array orientation, which can be explained by the uncertainty of the 3D velocity structure deviated from the 1D reference model (e.g. IASP91). We introduced a slowness error term in travel time as a first-order calibration that successfully mitigates the source location discrepancies of different arrays. The calibrated BP results of three arrays are mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s along the down-dip edge of the locked Himalaya thrust zone over ~ 150 km, in agreement with a narrow slip distribution inferred from finite source inversions.
Polarized Power Spectra from HERA-19 Commissioning Data: Effect of Calibration Techniques
NASA Astrophysics Data System (ADS)
Chichura, Paul; Igarashi, Amy; Fox Fortino, Austin; Kohn, Saul; Aguirre, James; HERA Collaboration
2018-01-01
Studying the Epoch of Reionization (EOR) is crucial for cosmologists as it not only provides information about the first generation of stars and galaxies, but it may also help answer any number of fundamental astrophysical questions. The Hydrogen Epoch of Reionization Array (HERA) is doing this by examining emission from the 21cm hyperfine transition of neutral hydrogen, which has been identified as a promising probe of reionization. Currently, HERA is still in its commissioning phase; 37 of the planned 350 dishes have been constructed and analysis has begun for data received from the first 19 dishes built. With the creation of fully polarized power spectra, we investigate how different data calibration techniques affect the power spectra and whether or not ordering these techniques in different ways affects the results. These calibration techniques include using both non-imaging redundant measurements within the array to calibrate, as well as more traditional approaches based on imaging and calibrating to a model of sky. We explore the degree to which the different calibration schemes affect leakage of foreground emission to regions of Fourier space where EoR the power spectrum is expected to be measurable.
NASA Astrophysics Data System (ADS)
Kireeva, Maria; Sazonov, Alexey; Rets, Ekaterina; Ezerova, Natalia; Frolova, Natalia; Samsonov, Timofey
2017-04-01
Detection of the rivers' feeding type is a complex and multifactor task. Such partitioning should be based, on the one hand, on the genesis of the feeding water, on the other hand, on its physical path. At the same time it should consider relationship of the feeding type with corresponding phase of the water regime. Due to the above difficulties and complexity of the approach, there are many different variants of separation of flow hydrograph for feeding types. The most common method is extraction of so called basic component which in one way or another reflects groundwater feeding of the river. In this case, the selection most often is based on the principle of local minima or graphic separation of this component. However, in this case neither origin of the water nor corresponding phase of water regime is considered. In this paper, the authors offer a method of complex automated analysis of genetic components of the river's feeding together with the separation of specific phases of the water regime. The objects of the study are medium and large rivers of European Russia having a pronounced spring flood, formed due to melt water, and summer-autumn and winter low water which is periodically interrupted by rain or thaw flooding. The method is based on genetic separation of hydrograph proposed in 1960s years by B. I. Kudelin. This technique is considered for large rivers having hydraulic connection with groundwater horizons during flood. For better detection of floods genesis the analysis involves reanalysis data on temperature and precipitation. Separation is based on the following fundamental graphic-analytical principles: • Ground feeding during the passage of flood peak tends to zero • Beginning of the flood is determined as the exceeding of critical value of low water discharge • Flood periods are determined on the basis of exceeding the critical low-water discharge; they relate to thaw in case of above-zero temperatures • During thaw and rain floods, ground feeding is determined using interpolation of values before and after the flood • Floods during the rise and fall of high water are determined using depletion curves plotting • Groundwater component of runoff is divided into dynamic and static parts. The algorithm of subdivision described was formalized in the form of a program code in Fortran, with the connection of additional modules of R-Studio. The use of two languages allows, on the one hand, to speed up the processing of a large array of daily water discharges, on the other hand, to facilitate visualization and interpretation of results. The algorithm includes the selection of 15 calibration parameters describing the characteristics of each watershed. Verification and calibration of the program was carried out for 20 rivers of European Russia. According to calculations, there is a significant increase in the groundwater flow component in the most part of watershed and an increase in the role of flooding as the phase of the water regime as a whole. This research was supported by Russian Foundation for Basic Research (contract No. 16-35-60080).
Suspended Patch Antenna Array With Electromagnetically Coupled Inverted Microstrip Feed
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2000-01-01
The paper demonstrates a four-element suspended patch antenna array, with a parasitic patch layer and an electromagnetically coupled inverted microstrip feed, for linear polarization at K-Band frequencies. This antenna has the following advantages over conventional microstrip antennas: First, the inverted microstrip has lower attenuation than conventional microstrip; hence, conductor loss associated with the antenna corporate feed is lower resulting in higher gain and efficiency. Second, conventional proximity coupled patch antennas require a substrate for the feed and a superstrate for the patch. However, the inverted microstrip fed patch antenna makes use of a single substrate, and hence, is lightweight and low cost. Third, electromagnetic coupling results in wider bandwidth. Details regarding the design and fabrication will be presented as well as measured results including return loss, radiation patterns and cross-polarization levels.
NASA Technical Reports Server (NTRS)
Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid
2006-01-01
The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya
2004-01-01
The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.
Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2004 and 2005 Tests)
NASA Technical Reports Server (NTRS)
Arrington, E. Allen; Pastor, Christine M.; Gonsalez, Jose C.; Curry, Monroe R., III
2010-01-01
A full aero-thermal calibration of the NASA Glenn Icing Research Tunnel was completed in 2004 following the replacement of the inlet guide vanes upstream of the tunnel drive system and improvement to the facility total temperature instrumentation. This calibration test provided data used to fully document the aero-thermal flow quality in the IRT test section and to construct calibration curves for the operation of the IRT. The 2004 test was also the first to use the 2-D RTD array, an improved total temperature calibration measurement platform.
A new time calibration method for switched-capacitor-array-based waveform samplers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H.; Chen, C. -T.; Eclov, N.
2014-08-24
Here we have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibrationmore » is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. Ultimately, the new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.« less
NASA Astrophysics Data System (ADS)
Lv, Hongkui; He, Huihai; Sheng, Xiangdong; Liu, Jia; Chen, Songzhan; Liu, Ye; Hou, Chao; Zhao, Jing; Zhang, Zhongquan; Wu, Sha; Wang, Yaping; Lhaaso Collaboration
2018-07-01
In the Large High Altitude Air Shower Observatory (LHAASO), one square kilometer array (KM2A), with 5242 electromagnetic particle detectors (EDs) and 1171 muon detectors (MDs), is designed to study ultra-high energy gamma-ray astronomy and cosmic ray physics. The remoteness and numerous detectors extremely demand a robust and automatic calibration procedure. In this paper, a self-calibration method which relies on the measurement of charged particles within the extensive air showers is proposed. The method is fully validated by Monte Carlo simulation and successfully applied in a KM2A prototype array experiment. Experimental results show that the self-calibration method can be used to determine the detector time offset constants at the sub-nanosecond level and the number density of particles collected by each ED with an accuracy of a few percents, which are adequate to meet the physical requirements of LHAASO experiment. This software calibration also offers an ideal method to realtime monitor the detector performances for next generation ground-based EAS experiments covering an area above square kilometers scale.
A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1999-01-01
Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.
Quantifying Lygus lineolaris stylet probing behavior and its damage to cotton leaf terminals
USDA-ARS?s Scientific Manuscript database
Lygus lineolaris is a serious pest inducing feeding damage on an array of crops; on cotton, lygus bugs feed on both leaves and squares. When lygus bugs feed on cotton leaves, younger leaves at cotton axials and terminals are preferred; resulting damage may compromise plant growth. Because L. lineola...
Space Fed Subarray Synthesis Using Displaced Feed Location
NASA Astrophysics Data System (ADS)
Mailloux, Robert J.
2002-01-01
Wideband space-fed subarray systems are often proposed for large airborne or spaceborne scanning array applications. These systems allow the introduction of time delay devices at the subarray input terminals while using phase shifters in the array face. This can sometimes reduce the number of time delayed controls by an order of magnitude or more. The implementation of this technology has been slowed because the feed network, usually a Rotman Lens or Butler Matrix, is bulky, heavy and often has significant RF loss. In addition, the large lens aperture is necessarily filled with phase shifters, and so it introduces further loss, weight, and perhaps unacceptable phase shifter control power. These systems are currently viewed with increased interest because combination of low loss, low power MEMS phase shifters in the main aperture and solid state T/R modules in the feed might lead to large scanning arrays with much higher efficiency then previously realizable. Unfortunately, the conventional system design imposes an extremely large dynamic range requirement when used in the transmit mode, and requires very high output power from the T/R modules. This paper presents one possible solution to this problem using a modified feed geometry.
NASA Astrophysics Data System (ADS)
Filgueira, Ramón; Rosland, Rune; Grant, Jon
2011-11-01
Growth of Mytilus edulis was simulated using individual based models following both Scope For Growth (SFG) and Dynamic Energy Budget (DEB) approaches. These models were parameterized using independent studies and calibrated for each dataset by adjusting the half-saturation coefficient of the food ingestion function term, XK, a common parameter in both approaches related to feeding behavior. Auto-calibration was carried out using an optimization tool, which provides an objective way of tuning the model. Both approaches yielded similar performance, suggesting that although the basis for constructing the models is different, both can successfully reproduce M. edulis growth. The good performance of both models in different environments achieved by adjusting a single parameter, XK, highlights the potential of these models for (1) producing prospective analysis of mussel growth and (2) investigating mussel feeding response in different ecosystems. Finally, we emphasize that the convergence of two different modeling approaches via calibration of XK, indicates the importance of the feeding behavior and local trophic conditions for bivalve growth performance. Consequently, further investigations should be conducted to explore the relationship of XK to environmental variables and/or to the sophistication of the functional response to food availability with the final objective of creating a general model that can be applied to different ecosystems without the need for calibration.
Stripline feed for a microstrip array of patch elements with teardrop shaped probes
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1990-01-01
A circularly polarized microstrip array antenna utilizing a honeycomb substrate made of dielectric material to support on one side the microstrip patch elements in an array, and on the other side a stripline circuit for feeding the patch elements in subarray groups of four with angular orientation and phase for producing circularly polarized radiation, preferably at a 0.degree., 90.degree., 180.degree. and 270.degree. relationship. The probe used for coupling each feed point in the stripline circuit to a microstrip patch element is teardrop shaped in order to introduce capacitance between the coupling probe and the metal sheet of the stripline circuit that serves as an antenna ground plane. The capacitance thus introduced tunes out inductance of the probe. The shape of the teardrop probe is not critical. The probe capacitance required is controlled by the maximum diameter for the teardrop shaped probe, which can be empirically determined for the operating frequency. An aluminum baffle around each subarray blocks out surface waves between subarrays.
Phased array-fed antenna configuration study: Technology assessment
NASA Technical Reports Server (NTRS)
Croswell, W. F.; Ball, D. E.; Taylor, R. C.
1983-01-01
Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.
Expanding Coherent Array Processing to Larger Apertures Using Empirical Matched Field Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringdal, F; Harris, D B; Kvaerna, T
2009-07-23
We have adapted matched field processing, a method developed in underwater acoustics to detect and locate targets, to classify transient seismic signals arising from mining explosions. Matched field processing, as we apply it, is an empirical technique, using observations of historic events to calibrate the amplitude and phase structure of wavefields incident upon an array aperture for particular repeating sources. The objective of this project is to determine how broadly applicable the method is and to understand the phenomena that control its performance. We obtained our original results in distinguishing events from ten mines in the Khibiny and Olenegorsk miningmore » districts of the Kola Peninsula, for which we had exceptional ground truth information. In a cross-validation test, some 98.2% of 549 explosions were correctly classified by originating mine using just the Pn observations (2.5-12.5 Hz) on the ARCES array at ranges from 350-410 kilometers. These results were achieved despite the fact that the mines are as closely spaced as 3 kilometers. Such classification performance is significantly better than predicted by the Rayleigh limit. Scattering phenomena account for the increased resolution, as we make clear in an analysis of the information carrying capacity of Pn under two alternative propagation scenarios: free-space propagation and propagation with realistic (actually measured) spatial covariance structure. The increase in information capacity over a wide band is captured by the matched field calibrations and used to separate explosions from very closely-spaced sources. In part, the improvement occurs because the calibrations enable coherent processing at frequencies above those normally considered coherent. We are investigating whether similar results can be expected in different regions, with apertures of increasing scale and for diffuse seismicity. We verified similar performance with the closely-spaced Zapolyarni mines, though discovered that it may be necessary to divide event populations from a single mine into identifiable subpopulations. For this purpose, we perform cluster analysis using matched field statistics calculated on pairs of individual events as a distance metric. In our initial work, calibrations were derived from ensembles of events ranging in number to more than 100. We are considering the performance now of matched field calibrations derived with many fewer events (even, as mentioned, individual events). Since these are high-variance estimates, we are testing the use of cross-channel, multitaper, spectral estimation methods to reduce the variance of calibrations and detection statistics derived from single-event observations. To test the applicability of the technique in a different tectonic region, we have obtained four years of continuous data from 4 Kazakh arrays and are extracting large numbers of event segments. Our initial results using 132 mining explosions recorded by the Makanchi array are similar to those obtained in the European Arctic. Matched field processing clearly separates the explosions from three closely-spaced mines located approximately 400 kilometers from the array, again using waveforms in a band (6-10 Hz) normally considered incoherent for this array. Having reproduced ARCES-type performance with another small aperture array, we have two additional objectives for matched field processing. We will attempt to extend matched field processing to larger apertures: a 200 km aperture (the KNET) and, if data permit, to an aperture comprised of several Kazakh arrays. We also will investigate the potential of developing matched field processing to roughly locate and classify natural seismicity, which is more diffuse than the concentrated sources of mining explosions that we have investigated to date.« less
Rapid Analysis, Self-Calibrating Array for Air Monitoring
NASA Technical Reports Server (NTRS)
Homer, Margie L.; Shevade, Abhijit V.; Lara, Liana; Huerta, Ramon; Vergara, Alexander; Muezzinoglua, Mehmet K.
2012-01-01
Human space missions have critical needs for monitoring and control for life support systems. These systems have monitoring needs that include feedback for closed loop processes and quality control for environmental factors. Sensors and monitoring technologies assure that the air environment and water supply for the astronaut crew habitat fall within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the more distant the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. The lifetime of the calibration, for some analytes, was as long as 24 months. We are working on a sensor array and new algorithms that will include sensor response time in the analysis. The preliminary array analysis for two analytes shows that the analysis time, of an event, can be dropped from 45 minutes to less than10 minutes and array training time can be cut substantially. We will describe the lifetime testing of an array and show lifetime data on individual sensors. This progress will lead to more rapid identification of analytes, and faster training time of the array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less
NASA Astrophysics Data System (ADS)
Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi
2017-07-01
Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.
Weeren, R. J. van; Williams, W. L.; Hardcastle, M. J.; ...
2016-03-07
LOFAR, the Low-Frequency Array, is a powerful new radio telescope operating between 10 and 240 MHz. LOFAR allows detailed sensitive high-resolution studies of the low-frequency radio sky. At the same time LOFAR also provides excellent short baseline coverage to map di use extended emission. However, producing high-quality deep images is challenging due to the presence of direction dependent calibration errors, caused by imperfect knowledge of the station beam shapes and the ionosphere. Furthermore, the large data volume and presence of station clock errors present additional di culties. In this paper we present a new calibration scheme, which we name facetmore » calibration, to obtain deep high-resolution LOFAR High Band Antenna images using the Dutch part of the array. This scheme solves and corrects the direction dependent errors in a number of facets that cover the observed eld of view. Facet calibration provides close to thermal noise limited images for a typical 8 hr observing run at ~5'' resolution, meeting the speci cations of the LOFAR Tier-1 northern survey.« less
A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout.
Shao, Yiping; Yao, Rutao; Ma, Tianyu
2008-12-01
The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detection condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In addition, the new method can be generally applied to calibrating other types of detectors that use the similar dual-ended readout to acquire the radiation interaction position.
A novel method to calibrate DOI function of a PET detector with a dual-ended-scintillator readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao Yiping; Yao Rutao; Ma Tianyu
The detection of depth-of-interaction (DOI) is a critical detector capability to improve the PET spatial resolution uniformity across the field-of-view and will significantly enhance, in particular, small bore system performance for brain, breast, and small animal imaging. One promising technique of DOI detection is to use dual-ended-scintillator readout that uses two photon sensors to detect scintillation light from both ends of a scintillator array and estimate DOI based on the ratio of signals (similar to Anger logic). This approach needs a careful DOI function calibration to establish accurate relationship between DOI and signal ratios, and to recalibrate if the detectionmore » condition is shifted due to the drift of sensor gain, bias variations, or degraded optical coupling, etc. However, the current calibration method that uses coincident events to locate interaction positions inside a single scintillator crystal has severe drawbacks, such as complicated setup, long and repetitive measurements, and being prone to errors from various possible misalignments among the source and detector components. This method is also not practically suitable to calibrate multiple DOI functions of a crystal array. To solve these problems, a new method has been developed that requires only a uniform flood source to irradiate a crystal array without the need to locate the interaction positions, and calculates DOI functions based solely on the uniform probability distribution of interactions over DOI positions without knowledge or assumption of detector responses. Simulation and experiment have been studied to validate the new method, and the results show that the new method, with a simple setup and one single measurement, can provide consistent and accurate DOI functions for the entire array of multiple scintillator crystals. This will enable an accurate, simple, and practical DOI function calibration for the PET detectors based on the design of dual-ended-scintillator readout. In addition, the new method can be generally applied to calibrating other types of detectors that use the similar dual-ended readout to acquire the radiation interaction position.« less
Multiple Source DF (Direction Finding) Signal Processing: An Experimental System,
The MUltiple SIgnal Characterization ( MUSIC ) algorithm is an implementation of the Signal Subspace Approach to provide parameter estimates of...the signal subspace (obtained from the received data) and the array manifold (obtained via array calibration). The MUSIC algorithm has been
Calibration of the Multi-Spectral Solar Telescope Array multilayer mirrors and XUV filters
NASA Technical Reports Server (NTRS)
Allen, Maxwell J.; Willis, Thomas D.; Kankelborg, Charles C.; O'Neal, Ray H.; Martinez-Galarce, Dennis S.; Deforest, Craig E.; Jackson, Lisa; Lindblom, Joakim; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.
1993-01-01
The Multi-Spectral Solar Telescope Array (MSSTA), a rocket-borne solar observatory, was successfully flown in May, 1991, obtaining solar images in eight XUV and FUV bands with 12 compact multilayer telescopes. Extensive measurements have recently been carried out on the multilayer telescopes and thin film filters at the Stanford Synchrotron Radiation Laboratory. These measurements are the first high spectral resolution calibrations of the MSSTA instruments. Previous measurements and/or calculations of telescope throughputs have been confirmed with greater accuracy. Results are presented on Mo/Si multilayer bandpass changes with time and experimental potassium bromide and tellurium filters.
Pozhitkov, Alex E; Noble, Peter A; Bryk, Jarosław; Tautz, Diethard
2014-01-01
Although microarrays are analysis tools in biomedical research, they are known to yield noisy output that usually requires experimental confirmation. To tackle this problem, many studies have developed rules for optimizing probe design and devised complex statistical tools to analyze the output. However, less emphasis has been placed on systematically identifying the noise component as part of the experimental procedure. One source of noise is the variance in probe binding, which can be assessed by replicating array probes. The second source is poor probe performance, which can be assessed by calibrating the array based on a dilution series of target molecules. Using model experiments for copy number variation and gene expression measurements, we investigate here a revised design for microarray experiments that addresses both of these sources of variance. Two custom arrays were used to evaluate the revised design: one based on 25 mer probes from an Affymetrix design and the other based on 60 mer probes from an Agilent design. To assess experimental variance in probe binding, all probes were replicated ten times. To assess probe performance, the probes were calibrated using a dilution series of target molecules and the signal response was fitted to an adsorption model. We found that significant variance of the signal could be controlled by averaging across probes and removing probes that are nonresponsive or poorly responsive in the calibration experiment. Taking this into account, one can obtain a more reliable signal with the added option of obtaining absolute rather than relative measurements. The assessment of technical variance within the experiments, combined with the calibration of probes allows to remove poorly responding probes and yields more reliable signals for the remaining ones. Once an array is properly calibrated, absolute quantification of signals becomes straight forward, alleviating the need for normalization and reference hybridizations.
Integrating Residential Photovoltaics With Power Lines
NASA Technical Reports Server (NTRS)
Borden, C. S.
1985-01-01
Report finds rooftop solar-cell arrays feed excess power to electric-utility grid for fee are potentially attractive large-scale application of photovoltaic technology. Presents assessment of breakeven costs of these arrays under variety of technological and economic assumptions.
2018-01-01
Although the signal space separation (SSS) method can successfully suppress interference/artifacts overlapped onto magnetoencephalography (MEG) signals, the method is considered inapplicable to data from nonhelmet-type sensor arrays, such as the flat sensor arrays typically used in magnetocardiographic (MCG) applications. This paper shows that the SSS method is still effective for data measured from a (nonhelmet-type) array of sensors arranged on a flat plane. By using computer simulations, it is shown that the optimum location of the origin can be determined by assessing the dependence of signal and noise gains of the SSS extractor on the origin location. The optimum values of the parameters LC and LD, which, respectively, indicate the truncation values of the multipole-order ℓ of the internal and external subspaces, are also determined by evaluating dependences of the signal, noise, and interference gains (i.e., the shield factor) on these parameters. The shield factor exceeds 104 for interferences originating from fairly distant sources. However, the shield factor drops to approximately 100 when calibration errors of 0.1% exist and to 30 when calibration errors of 1% exist. The shielding capability can be significantly improved using vector sensors, which measure the x, y, and z components of the magnetic field. With 1% calibration errors, a vector sensor array still maintains a shield factor of approximately 500. It is found that the SSS application to data from flat sensor arrays causes a distortion in the signal magnetic field, but it is shown that the distortion can be corrected by using an SSS-modified sensor lead field in the voxel space analysis. PMID:29854364
The Detection of an Extremely Bright Fast Radio Burst in a Phased Array Feed Survey
NASA Astrophysics Data System (ADS)
Bannister, K. W.; Shannon, R. M.; Macquart, J.-P.; Flynn, C.; Edwards, P. G.; O'Neill, M.; Osłowski, S.; Bailes, M.; Zackay, B.; Clarke, N.; D'Addario, L. R.; Dodson, R.; Hall, P. J.; Jameson, A.; Jones, D.; Navarro, R.; Trinh, J. T.; Allison, J.; Anderson, C. S.; Bell, M.; Chippendale, A. P.; Collier, J. D.; Heald, G.; Heywood, I.; Hotan, A. W.; Lee-Waddell, K.; Madrid, J. P.; Marvil, J.; McConnell, D.; Popping, A.; Voronkov, M. A.; Whiting, M. T.; Allen, G. R.; Bock, D. C.-J.; Brodrick, D. P.; Cooray, F.; DeBoer, D. R.; Diamond, P. J.; Ekers, R.; Gough, R. G.; Hampson, G. A.; Harvey-Smith, L.; Hay, S. G.; Hayman, D. B.; Jackson, C. A.; Johnston, S.; Koribalski, B. S.; McClure-Griffiths, N. M.; Mirtschin, P.; Ng, A.; Norris, R. P.; Pearce, S. E.; Phillips, C. J.; Roxby, D. N.; Troup, E. R.; Westmeier, T.
2017-05-01
We report the detection of an ultra-bright fast radio burst (FRB) from a modest, 3.4-day pilot survey with the Australian Square Kilometre Array Pathfinder. The survey was conducted in a wide-field fly’s-eye configuration using the phased-array-feed technology deployed on the array to instantaneously observe an effective area of 160 deg2, and achieve an exposure totaling 13200 deg2 hr . We constrain the position of FRB 170107 to a region 8\\prime × 8\\prime in size (90% containment) and its fluence to be 58 ± 6 Jy ms. The spectrum of the burst shows a sharp cutoff above 1400 MHz, which could be due to either scintillation or an intrinsic feature of the burst. This confirms the existence of an ultra-bright (> 20 Jy ms) population of FRBs.
Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)
NASA Technical Reports Server (NTRS)
Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher; Lambert, Kevin M.; Miranda, Felix A.
2015-01-01
Measurement of land surface snow remains a significant challenge in the remote sensing arena. Developing the tools needed to remotely measure Snow Water Equivalent (SWE) is an important priority. The Wideband Instrument for Snow Measurements (WISM) is being developed to address this need. WISM is an airborne instrument comprised of a dual-frequency (X- and Ku-bands) Synthetic Aperture Radar (SAR) and dual-frequency (K- and Ka-bands) radiometer. A unique feature of this instrument is that all measurement bands share a common antenna aperture consisting of an array feed reflector that covers the entire bandwidth. This paper covers the design and fabrication of the wideband array feed which is based on tightly coupled dipole arrays. Implementation using a relatively new multi-layer microfabrication process results in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 gigahertz.
Smith, Lori L; Francis, Kyle A; Johnson, Joseph T; Gaskill, Cynthia L
2017-11-01
Pre-column derivatization with 9-fluorenylmethyl chloroformate (FMOC-Cl) was determined to be effective for quantitation of fumonisins B 1 and B 2 in feed. Liquid-solid extraction, clean-up using immunoaffinity solid phase extraction chromatography, and FMOC-derivatization preceded analysis by reverse phase HPLC with fluorescence. Instrument response was unchanged in the presence of matrix, indicating no need to use matrix-matched calibrants. Furthermore, high method recoveries indicated calibrants do not need to undergo clean-up to account for analyte loss. Established method features include linear instrument response from 0.04-2.5µg/mL and stable derivatized calibrants over 7days. Fortified cornmeal method recoveries from 0.1-30.0μg/g were determined for FB 1 (75.1%-109%) and FB 2 (96.0%-115.2%). Inter-assay precision ranged from 1.0%-16.7%. Method accuracy was further confirmed using certified reference material. Inter-laboratory comparison with naturally-contaminated field corn demonstrated equivalent results with conventional derivatization. These results indicate FMOC derivatization is a suitable alternative for fumonisins B 1 and B 2 quantitation in corn-based feeds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimization, evaluation and calibration of a cross-strip DOI detector
NASA Astrophysics Data System (ADS)
Schmidt, F. P.; Kolb, A.; Pichler, B. J.
2018-02-01
This study depicts the evaluation of a SiPM detector with depth of interaction (DOI) capability via a dual-sided readout that is suitable for high-resolution positron emission tomography and magnetic resonance (PET/MR) imaging. Two different 12 × 12 pixelated LSO scintillator arrays with a crystal pitch of 1.60 mm are examined. One array is 20 mm-long with a crystal separation by the specular reflector Vikuiti enhanced specular reflector (ESR), and the other one is 18 mm-long and separated by the diffuse reflector Lumirror E60 (E60). An improvement in energy resolution from 22.6% to 15.5% for the scintillator array with the E60 reflector is achieved by taking a nonlinear light collection correction into account. The results are FWHM energy resolutions of 14.0% and 15.5%, average FWHM DOI resolutions of 2.96 mm and 1.83 mm, and FWHM coincidence resolving times of 1.09 ns and 1.48 ns for the scintillator array with the ESR and that with the E60 reflector, respectively. The measured DOI signal ratios need to be assigned to an interaction depth inside the scintillator crystal. A linear and a nonlinear method, using the intrinsic scintillator radiation from lutetium, are implemented for an easy to apply calibration and are compared to the conventional method, which exploits a setup with an externally collimated radiation beam. The deviation between the DOI functions of the linear or nonlinear method and the conventional method is determined. The resulting average of differences in DOI positions is 0.67 mm and 0.45 mm for the nonlinear calibration method for the scintillator array with the ESR and with the E60 reflector, respectively; Whereas the linear calibration method results in 0.51 mm and 0.32 mm for the scintillator array with the ESR and the E60 reflector, respectively; and is, due to its simplicity, also applicable in assembled detector systems.
Optimization, evaluation and calibration of a cross-strip DOI detector.
Schmidt, F P; Kolb, A; Pichler, B J
2018-02-20
This study depicts the evaluation of a SiPM detector with depth of interaction (DOI) capability via a dual-sided readout that is suitable for high-resolution positron emission tomography and magnetic resonance (PET/MR) imaging. Two different 12 × 12 pixelated LSO scintillator arrays with a crystal pitch of 1.60 mm are examined. One array is 20 mm-long with a crystal separation by the specular reflector Vikuiti enhanced specular reflector (ESR), and the other one is 18 mm-long and separated by the diffuse reflector Lumirror E60 (E60). An improvement in energy resolution from 22.6% to 15.5% for the scintillator array with the E60 reflector is achieved by taking a nonlinear light collection correction into account. The results are FWHM energy resolutions of 14.0% and 15.5%, average FWHM DOI resolutions of 2.96 mm and 1.83 mm, and FWHM coincidence resolving times of 1.09 ns and 1.48 ns for the scintillator array with the ESR and that with the E60 reflector, respectively. The measured DOI signal ratios need to be assigned to an interaction depth inside the scintillator crystal. A linear and a nonlinear method, using the intrinsic scintillator radiation from lutetium, are implemented for an easy to apply calibration and are compared to the conventional method, which exploits a setup with an externally collimated radiation beam. The deviation between the DOI functions of the linear or nonlinear method and the conventional method is determined. The resulting average of differences in DOI positions is 0.67 mm and 0.45 mm for the nonlinear calibration method for the scintillator array with the ESR and with the E60 reflector, respectively; Whereas the linear calibration method results in 0.51 mm and 0.32 mm for the scintillator array with the ESR and the E60 reflector, respectively; and is, due to its simplicity, also applicable in assembled detector systems.
Automated response matching for organic scintillation detector arrays
NASA Astrophysics Data System (ADS)
Aspinall, M. D.; Joyce, M. J.; Cave, F. D.; Plenteda, R.; Tomanin, A.
2017-07-01
This paper identifies a digitizer technology with unique features that facilitates feedback control for the realization of a software-based technique for automatically calibrating detector responses. Three such auto-calibration techniques have been developed and are described along with an explanation of the main configuration settings and potential pitfalls. Automating this process increases repeatability, simplifies user operation, enables remote and periodic system calibration where consistency across detectors' responses are critical.
Results of the 1978 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Sidwell, L. B.
1979-01-01
The 1978 scheduled solar cell calibration balloon flight was successfully completed. Thirty six modules were carried to an altitude of above 36 kilometers. Recovery of telemetry and flight packages was without incident. These calibrated standard cells are used as reference standards in simulator testing of cells and arrays with similar spectral response characteristics. The factors affecting the spectral transmission of the atmosphere at various altitudes are summarized.
Calibrating a tensor magnetic gradiometer using spin data
Bracken, Robert E.; Smith, David V.; Brown, Philip J.
2005-01-01
Scalar magnetic data are often acquired to discern characteristics of geologic source materials and buried objects. It is evident that a great deal can be done with scalar data, but there are significant advantages to direct measurement of the magnetic gradient tensor in applications with nearby sources, such as unexploded ordnance (UXO). To explore these advantages, we adapted a prototype tensor magnetic gradiometer system (TMGS) and successfully implemented a data-reduction procedure. One of several critical reduction issues is the precise determination of a large group of calibration coefficients for the sensors and sensor array. To resolve these coefficients, we devised a spin calibration method, after similar methods of calibrating space-based magnetometers (Snare, 2001). The spin calibration procedure consists of three parts: (1) collecting data by slowly revolving the sensor array in the Earth?s magnetic field, (2) deriving a comprehensive set of coefficients from the spin data, and (3) applying the coefficients to the survey data. To show that the TMGS functions as a tensor gradiometer, we conducted an experimental survey that verified that the reduction procedure was effective (Bracken and Brown, in press). Therefore, because it was an integral part of the reduction, it can be concluded that the spin calibration was correctly formulated with acceptably small errors.
Adaptive array antenna for satellite cellular and direct broadcast communications
NASA Technical Reports Server (NTRS)
Horton, Charles R.; Abend, Kenneth
1993-01-01
Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.
Fish-Eye Observing with Phased Array Radio Telescopes
NASA Astrophysics Data System (ADS)
Wijnholds, S. J.
The radio astronomical community is currently developing and building several new radio telescopes based on phased array technology. These telescopes provide a large field-of-view, that may in principle span a full hemisphere. This makes calibration and imaging very challenging tasks due to the complex source structures and direction dependent radio wave propagation effects. In this thesis, calibration and imaging methods are developed based on least squares estimation of instrument and source parameters. Monte Carlo simulations and actual observations with several prototype show that this model based approach provides statistically and computationally efficient solutions. The error analysis provides a rigorous mathematical framework to assess the imaging performance of current and future radio telescopes in terms of the effective noise, which is the combined effect of propagated calibration errors, noise in the data and source confusion.
Radiometrically accurate scene-based nonuniformity correction for array sensors.
Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott
2003-10-01
A novel radiometrically accurate scene-based nonuniformity correction (NUC) algorithm is described. The technique combines absolute calibration with a recently reported algebraic scene-based NUC algorithm. The technique is based on the following principle: First, detectors that are along the perimeter of the focal-plane array are absolutely calibrated; then the calibration is transported to the remaining uncalibrated interior detectors through the application of the algebraic scene-based algorithm, which utilizes pairs of image frames exhibiting arbitrary global motion. The key advantage of this technique is that it can obtain radiometric accuracy during NUC without disrupting camera operation. Accurate estimates of the bias nonuniformity can be achieved with relatively few frames, which can be fewer than ten frame pairs. Advantages of this technique are discussed, and a thorough performance analysis is presented with use of simulated and real infrared imagery.
NASA Astrophysics Data System (ADS)
LI, B.; Ghosh, A.
2016-12-01
The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response and hazard assessment after destructive large earthquakes. Existing multiple global seismic arrays, when properly calibrated and used in combinations, provide a high resolution image of rupture of large earthquakes and spatiotemporal distribution of aftershocks.
Inband radar cross section of phased arrays with parallel feeds
NASA Astrophysics Data System (ADS)
Flokas, Vassilios
1994-06-01
Approximate formulas for the inband radar cross section of arrays with parallel feeds are presented. To obtain the formulas, multiple reflections are neglected, and devices of the same type are assumed to have identical electrical performance. The approximate results were compared to the results obtained using a scattering matrix formulation. Both methods were in agreement in predicting RCS lobe positions, levels, and behavior with scanning. The advantages of the approximate method are its computational efficiency and its flexibility in handling an arbitrary number of coupler levels.
Theory of a Traveling Wave Feed for a Planar Slot Array Antenna
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2012-01-01
Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an additional degree of freedom in the design, resonant coupling slots simplify the design process. The amplitude of the wave going to the load is set at unity. The S11 parameter, r of the coupling slot closest to the load, is assigned an arbitrary value. A larger value of r will reduce the power dissipated in the load while increasing the reflection coefficient at the input port. It is now possible to obtain the excitation of the radiating waveguide closest to the load and the coefficients of the wave incident and reflected at the input port of this coupling slot. The next coupling slot parameter, r , is chosen to realize the excitation of that radiating waveguide. One continues this process moving towards the source, until all the coupling slot parameters r and hence the S11 parameter of the 4-port coupler, r, are known for each coupling slot. The goal is to produce the desired array aperture distribution in the feed direction. From an interpolation of the computed moment method data for the slot parameters, all the coupling slot tilt angles and lengths are obtained. From the excitations of the radiating waveguides computed from the coupling values, radiating slot parameters may be obtained so as to attain the desired total normalized slot admittances. This process yields the radiating slot parameters, offsets, and lengths. The design is repeated by choosing different values of r for the last coupling slot until the percentage of power dissipated in the load and the input reflection coefficient values are satisfactory. Numerical results computed for the radiation pattern, the tilt angles and lengths of coupling slots, and excitation phases of the radiating waveguides, are presented for an array with uniform amplitude excitation. The design process has been validated using computer simulations. This design procedure is valid for non-uniform amplitude excitations as well.
NASA Astrophysics Data System (ADS)
Chatterjee, Abhijit; Verma, Anurag
2016-05-01
The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.
A First Order Wavefront Estimation Algorithm for P1640 Calibrator
NASA Technical Reports Server (NTRS)
Zhaia, C.; Vasisht, G.; Shao, M.; Lockhart, T.; Cady, E.; Oppenheimer, B.; Burruss, R.; Roberts, J.; Beichman, C.; Brenner, D.;
2012-01-01
P1640 calibrator is a wavefront sensor working with the P1640 coronagraph and the Palomar 3000 actuator adaptive optics system (P3K) at the Palomar 200 inch Hale telescope. It measures the wavefront by interfering post-coronagraph light with a reference beam formed by low-pass filtering the blocked light from the coronagraph focal plane mask. The P1640 instrument has a similar architecture to the Gemini Planet Imager (GPI) and its performance is currently limited by the quasi-static speckles due to non-common path wavefront errors, which comes from the non-common path for the light to arrive at the AO wavefront sensor and the coronagraph mask. By measuring the wavefront after the coronagraph mask, the non-common path wavefront error can be estimated and corrected by feeding back the error signal to the deformable mirror (DM) of the P3K AO system. Here, we present a first order wavefront estimation algorithm and an instrument calibration scheme used in experiments done recently at Palomar observatory. We calibrate the P1640 calibrator by measuring its responses to poking DM actuators with a sparse checkerboard pattern at different amplitudes. The calibration yields a complex normalization factor for wavefront estimation and establishes the registration of the DM actuators at the pupil camera of the P1640 calibrator, necessary for wavefront correction. Improvement of imaging quality after feeding back the wavefront correction to the AO system demonstrated the efficacy of the algorithm.
CIRiS: Compact Infrared Radiometer in Space
NASA Astrophysics Data System (ADS)
Osterman, D. P.; Collins, S.; Ferguson, J.; Good, W.; Kampe, T.; Rohrschneider, R.; Warden, R.
2016-09-01
The Compact Infrared Radiometer in Space (CIRiS) is a thermal infrared radiometric imaging instrument under development by Ball Aerospace for a Low Earth Orbit mission on a CubeSat spacecraft. Funded by the NASA Earth Science Technology Office's In-Space Validation of Earth Science Technology (InVEST) program, the mission objective is technology demonstration for improved on-orbit radiometric calibration. The CIRiS calibration approach uses a scene select mirror to direct three calibration views to the focal plane array and to transfer the resulting calibrated response to earth images. The views to deep space and two blackbody sources, including one at a selectable temperature, provide multiple options for calibration optimization. Two new technologies, carbon nanotube blackbody sources and microbolometer focal plane arrays with reduced pixel sizes, enable improved radiometric performance within the constrained 6U CubeSat volume. The CIRiS instrument's modular design facilitates subsystem modifications as required by future mission requirements. CubeSat constellations of CIRiS and derivative instruments offer an affordable approach to achieving revisit times as short as one day for diverse applications including water resource and drought management, cloud, aerosol, and dust studies, and land use and vegetation monitoring. Launch is planned for 2018.
Phase Calibration of Microphones by Measurement in the Free-field
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Bartram, Scott M.; Humphreys, William M.; Zuckewar, Allan J.
2006-01-01
Over the past several years, significant effort has been expended at NASA Langley developing new Micro-Electro-Mechanical System (MEMS)-based microphone directional array instrumentation for high-frequency aeroacoustic measurements in wind tunnels. This new type of array construction solves two challenges which have limited the widespread use of large channel-count arrays, namely by providing a lower cost-per-channel and a simpler method for mounting microphones in wind tunnels and in field-deployable arrays. The current generation of array instrumentation is capable of extracting accurate noise source location and directivity on a variety of airframe components using sophisticated data reduction algorithms [1-2]. Commercially-available MEMS microphones are condenser-type devices and have some desirable characteristics when compared with conventional condenser-type microphones. The most important advantages of MEMS microphones are their size, price, and power consumption. However, the commercially-available units suffer from certain important shortcomings. Based on experiments with array prototypes, it was found that both the bandwidth and the sound pressure limit of the microphones should be increased significantly to improve the performance and flexibility of the microphone array [3]. It was also desired to modify the packaging to eliminate unwanted Helmholtz resonance s exhibited by the commercial devices. Thus, new requirements were defined as follows: Frequency response: 100 Hz to 100 KHz (+/-3dB) Upper sound pressure limit: Design 1: 130 dB SPL (THD less than 5%) Design 2: 150-160 dB SPL (THD less than 5%) Packaging: 3.73 x 6.13 x 1.3 mm can with laser-etched lid. In collaboration with Novusonic Acoustic Innovation, NASA modified a Knowles SiSonic MEMS design to meet these new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size [4]. Hence a substitution based, free-field method was developed to calibrate these microphones at frequencies up to 80 kHz. The technique relied on the use of a random, ultrasonic broadband centrifugal sound source located in a small anechoic chamber. The free-field sensitivity (voltage per unit sound pressure) was obtained using the procedure outlined in reference 4. Phase calibrations of the MEMS microphones were derived from cross spectral phase comparisons between the reference and test substitution microphones and an adjacent and invariant grazing-incidence 1/8-inch standard microphone. The free-field calibration procedure along with representative sensitivity and phase responses for the new high-frequency MEMS microphones are presented here.
Status and performance of the AS array of the Tibet AS sub. gamma. experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amenomori, M.; Bai, Z.W.; Cao, Z.
1991-04-05
The Tibet AS{gamma} experiment, which has started since January, 1990, is located at an altitude of 4,300m at Yangbaging in Tibet, China (90.5{degree} E, 301{degree} N). The air-shower array is composed of 49 scintillation counters for fast timing (FT), each counter having an area of 0.5 m{sup 2}, in a grid pattern with a spacing of 15 m and 16 density detectors. The density detectors surrounding the FT detectors are planned to select the showers of which core are inside the FT array. For the constant and continuous opeation, the system for laser calibration, the ADC,TDC module calibration and themore » power check system were installed. A Rb clock is used for the phase analysis of {gamma}-rays.« less
Realizable feed-element patterns for multibeam reflector antenna analysis
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Cramer, P., Jr.; Woo, K.; Lee, S. W.
1981-01-01
The radiation pattern of a feed element is approximately described by a simple function (cos theta) to the q power. For a given element spacing of the feed array, simple formulas for estimating the practical value of q when the element is an open-ended rectangular waveguide, an open-ended circular waveguide, a pyramidal horn, or a cigar antenna are given.
Flexible Microsensor Array for the Monitoring and Control of Plant Growth System
NASA Technical Reports Server (NTRS)
Kim, Chang-Soo; Porterfield, D. Marshall; Nagle, H. Troy; Brown, Christopher S.
2004-01-01
Testing for plant experiments in space has begun to explore active nutrient delivery concepts in which water and nutrients are replenished on a continuous basis for long-term growth. The goal of this study is to develop a novel microsensor array to provide information on the dissolved oxygen environment in the plant root zone for the optimum control of hydroponics and solid substrate plant cultivation systems in the space environment. Miniaturized polarographic dissolved oxygen sensors have been designed and fabricated on a flexible Kapton (trademark) (polyimide) substrate. Two capabilities of the new microsensor array were explored. First, measurements of dissolved oxygen in the plant root zone in hydroponics and solid substrate culture systems were made. The microsensor array was fabricated on a flexible substrate, and then cut out into a mesh type to make a suspended array that could be placed either in a hydroponics system or in a solid substrate cultivation system to measure the oxygen environments. Second, the in situ self-diagnostic and self-calibration capability (two-point for oxygen) was adopted by dynamically controlling the microenvironment in close proximity to the microsensors. With a built-in generating electrode that surrounds the microsensor, two kinds of microenvironments (oxygen-saturated and oxygen-depleted phases) could be established by water electrolysis depending on the polarity of the generating electrode. The unique features of the new microsensor array (small size, multiple sensors, flexibility and self-diagnosis) can have exceptional benefits for the study and optimization of plant cultivation systems in both terrestrial and microgravity environments. The in situ self-diagnostic and self-calibration features of the microsensor array will also enable continuous verification of the operability during entire plant growth cycles. This concept of automated control of a novel chemical monitoring system will minimize crew time required for maintenance, as well as reduce volume, mass, and power consumption by eliminating bulky diagnosis systems including calibrant (fluid and gas) reservoir and flow system hardware.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Zayyad, T.; et al.
2013-10-02
Joint contributions of the Pierre Auger and Telescope Array Collaborations to the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, July 2013: cross-calibration of the fluorescence telescopes, large scale anisotropies and mass composition.
Free LittleDog!: Towards Completely Untethered Operation of the LittleDog Quadruped
2007-08-01
helpful Intel Open Source Computer Vision ( OpenCV ) library [4] wherever possible rather than reimplementing many of the standard algorithms, however...correspondences between image points and world points, and feeding these to a camera calibration function, such as that provided by OpenCV , allows one to solve... OpenCV calibration function to that used for intrinsic calibration solves for Tboard→camerai . The position of the camera 37 Figure 5.3: Snapshot of
On-sky performance evaluation and calibration of a polarization-sensitive focal plane array
NASA Astrophysics Data System (ADS)
Vorobiev, Dmitry; Ninkov, Zoran; Brock, Neal; West, Ray
2016-07-01
The advent of pixelated micropolarizer arrays (MPAs) has facilitated the development of polarization-sensitive focal plane arrays (FPAs) based on charge-coupled devices (CCDs) and active pixel sensors (APSs), which are otherwise only able to measure the intensity of light. Polarization sensors based on MPAs are extremely compact, light-weight, mechanically robust devices with no moving parts, capable of measuring the degree and angle of polarization of light in a single snapshot. Furthermore, micropolarizer arrays based on wire grid polarizers (so called micro-grid polarizers) offer extremely broadband performance, across the optical and infrared regimes. These devices have potential for a wide array of commercial and research applications, where measurements of polarization can provide critical information, but where conventional polarimeters could be practically implemented. To date, the most successful commercial applications of these devices are 4D Technology's PhaseCam laser interferometers and PolarCam imaging polarimeters. Recently, MPA-based polarimeters have been identified as a potential solution for space-based telescopes, where the small size, snapshot capability and low power consumption (offered by these devices) are extremely desirable. In this work, we investigated the performance of MPA-based polarimeters designed for astronomical polarimetry using the Rochester Institute of Technology Polarization Imaging Camera (RITPIC). We deployed RITPIC on the 0.9 meter SMARTS telescope at the Cerro Tololo Inter-American Observatory and observed a variety of astronomical objects (calibration stars, variable stars, reflection nebulae and planetary nebulae). We use our observations to develop calibration procedures that are unique to these devices and provide an estimate for polarimetric precision that is achievable.
Demonstration of KHILS two-color IR projection capability
NASA Astrophysics Data System (ADS)
Jones, Lawrence E.; Coker, Jason S.; Garbo, Dennis L.; Olson, Eric M.; Murrer, Robert Lee, Jr.; Bergin, Thomas P.; Goldsmith, George C., II; Crow, Dennis R.; Guertin, Andrew W.; Dougherty, Michael; Marler, Thomas M.; Timms, Virgil G.
1998-07-01
For more than a decade, there has been considerable discussion about using different IR bands for the detection of low contrast military targets. Theory predicts that a target can have little to no contrast against the background in one IR band while having a discernible signature in another IR band. A significant amount of effort has been invested towards establishing hardware that is capable of simultaneously imaging in two IR bands to take advantage of this phenomenon. Focal plane arrays (FPA) are starting to materialize with this simultaneous two-color imaging capability. The Kinetic Kill Vehicle Hardware-in-the-loop Simulator (KHILS) team of the Air Force Research Laboratory and the Guided Weapons Evaluation Facility (GWEF), both at Eglin AFB, FL, have spent the last 10 years developing the ability to project dynamic IR scenes to imaging IR seekers. Through the Wideband Infrared Scene Projector (WISP) program, the capability to project two simultaneous IR scenes to a dual color seeker has been established at KHILS. WISP utilizes resistor arrays to produce the IR energy. Resistor arrays are not ideal blackbodies. The projection of two IR colors with resistor arrays, therefore, requires two optically coupled arrays. This paper documents the first demonstration of two-color simultaneous projection at KHILS. Agema cameras were used for the measurements. The Agema's HgCdTe detector has responsivity from 4 to 14 microns. A blackbody and two IR filters (MWIR equals 4.2 t 7.4 microns, LWIR equals 7.7 to 13 microns) were used to calibrate the Agema in two bands. Each filter was placed in front of the blackbody one at a time, and the temperature of the blackbody was stepped up in incremental amounts. The output counts from the Agema were recorded at each temperature. This calibration process established the radiance to Agema output count curves for the two bands. The WISP optical system utilizes a dichroic beam combiner to optically couple the two resistor arrays. The transmission path of the beam combiner provided the LWIR (6.75 to 12 microns), while the reflective path produced the MWIR (3 to 6.5 microns). Each resistor array was individually projected into the Agema through the beam combiner at incremental output levels. Once again the Agema's output counts were recorded at each resistor array output level. These projections established the resistor array output to Agema count curves for the MWIR and LWIR resistor arrays. Using the radiance to Agema counts curves, the MWIR and LWIR resistor array output to radiance curves were established. With the calibration curves established, a two-color movie was projected and compared to the generated movie radiance values. By taking care to correctly account for the spectral qualities of the Agema camera, the calibration filters, and the diachroic beam combiner, the projections matched the theoretical calculations. In the near future, a Lockheed- Martin Multiple Quantum Well camera with true two-color IR capability will be tested.
Embedded calibration system for the DIII-D Langmuir probe analog fiber optic links
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, J. G.; Rajpal, R.; Mandaliya, H.
2012-10-15
This paper describes a generally applicable technique for simultaneously measuring offset and gain of 64 analog fiber optic data links used for the DIII-D fixed Langmuir probes by embedding a reference voltage waveform in the optical transmitted signal before every tokamak shot. The calibrated data channels allow calibration of the power supply control fiber optic links as well. The array of fiber optic links and the embedded calibration system described here makes possible the use of superior modern data acquisition electronics in the control room.
Circuit model of the ITER-like antenna for JET and simulation of its control algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durodié, Frédéric, E-mail: frederic.durodie@rma.ac.be; Křivská, Alena; Dumortier, Pierre
2015-12-10
The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. Atmore » the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and simulate the effectiveness of a feedback control algorithm for the 2nd stage matching and demonstrates the simultaneous matching and control of the 4 RDLs: 11 feedback loops control 21 actuators (8 capacitors, 4 phase shifters and 4 stubs for the 2nd stage matching, 4 main phase shifters controlling of the toroidal phasing and the electronically controlled phase between RF sources feeding top and bottom parts of the array and determines the poloidal phasing of the array which is solved explicitly at each time step) on (simulated) ELMy plasmas.« less
Droplet sizing instrumentation used for icing research: Operation, calibration, and accuracy
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1989-01-01
The accuracy of the Forward Scattering Spectrometer Probe (FSSP) is determined using laboratory tests, wind tunnel comparisons, and computer simulations. Operation in an icing environment is discussed and a new calibration device for the FSSP (the rotating pinhole) is demonstrated to be a valuable tool. Operation of the Optical Array Probe is also presented along with a calibration device (the rotating reticle) which is suitable for performing detailed analysis of that instrument.
Phased Arrays 1985 Symposium - Proceedings
1985-08-01
have served the logic industry well, and appropriate versions can do the same for micruwdve drid millimeter * wave technology, An aspect of phased...continuing revolutions of the logic industry and the microwave monolithic integrated circuit community are bringing relevant technology closer to the array...monolithic phased array antennas, and discuss their relative advantages and disadvantages . Considerations such as bandwidth, maxianiru scan range, feed
NASA Technical Reports Server (NTRS)
Zawadzki, Mark; Rengarajan, Sembiam; Hodges, Richard E.
2005-01-01
While the design of waveguide slot arrays in not new, this particular design effort shows that very good results can be achieved on a first attempt using established slot array design techniques and commercial software for the waveguide power divider network. The presentation will discuss this design process in detail.
Meteorological Sensor Array (MSA)-Phase I. Volume 3 (Pre-Field Campaign Sensor Calibration)
2015-07-01
turbulence impact of the WSMR solar array. 4) Designing , developing, testing , and evaluating integrated Data Acquisition System (DAS) hardware and...ARL-TR-7362 ● JULY 2015 US Army Research Laboratory Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by
Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration
2007-09-01
March 17, 2005. The seismic signals from both master and detected events are followed by infrasound arrivals. Note the long duration of the...correlation coefficient traces with a significant array -gain. A detected event that is co-located with the master event will record the same time-difference...estimating the detection threshold reduction for a range of highly repeating seismic sources using arrays of different configurations and at different
Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit
NASA Technical Reports Server (NTRS)
Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.
2013-01-01
This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.
Microstrip antenna developments at JPL
NASA Technical Reports Server (NTRS)
Huang, John
1991-01-01
The in-house development of microstrip antennas, initiated in 1981, when a spaceborne lightweight and low-profile planar array was needed for a satellite communication system, is described. The work described covers the prediction of finite-ground-plane effects by the geometric theory of diffraction, higher-order-mode circularly polarized circular patch antennas, circularly polarized microstrip arrays with linearly polarized elements, an impedance-matching teardrop-shaped probe feed, a dual-polarized microstrip array with high isolation and low cross-polarization, a planar microstrip Yagi array, a microstrip reflectarray, a Ka-band MMIC array, and a series-fed linear arrays.
Slotline fed microstrip antenna array modules
NASA Technical Reports Server (NTRS)
Lo, Y. T.; Oberhart, M. L.; Brenneman, J. S.; Aoyagi, P.; Moore, J.; Lee, R. Q. H.
1988-01-01
A feed network comprised of a combination of coplanar waveguide and slot transmission line is described for use in an array module of four microstrip elements. Examples of the module incorporating such networks are presented as well as experimentally obtained impedance and radiation characteristics.
Weak-signal Phase Calibration Strategies for Large DSN Arrays
NASA Technical Reports Server (NTRS)
Jones, Dayton L.
2005-01-01
The NASA Deep Space Network (DSN) is studying arrays of large numbers of small, mass-produced radio antennas as a cost-effective way to increase downlink sensitivity and data rates for future missions. An important issue for the operation of large arrays is the accuracy with which signals from hundreds of small antennas can be combined. This is particularly true at Ka band (32 GHz) where atmospheric phase variations can be large and rapidly changing. A number of algorithms exist to correct the phases of signals from individual antennas in the case where a spacecraft signal provides a useful signal-to-noise ratio (SNR) on time scales shorter than the atmospheric coherence time. However, for very weak spacecraft signals it will be necessary to rely on background natural radio sources to maintain array phasing. Very weak signals could result from a spacecraft emergency or by design, such as direct-to-Earth data transmissions from distant planetary atmospheric or surface probes using only low gain antennas. This paper considers the parameter space where external real-time phase calibration will be necessary, and what this requires in terms of array configuration and signal processing. The inherent limitations of this technique are also discussed.
A depth-of-interaction PET detector using mutual gain-equalized silicon photomultiplier
DOE Office of Scientific and Technical Information (OSTI.GOV)
W. Xi, A.G, Weisenberger, H. Dong, Brian Kross, S. Lee, J. McKisson, Carl Zorn
We developed a prototype high resolution, high efficiency depth-encoding detector for PET applications based on dual-ended readout of LYSO array with two silicon photomultipliers (SiPMs). Flood images, energy resolution, and depth-of-interaction (DOI) resolution were measured for a LYSO array - 0.7 mm in crystal pitch and 10 mm in thickness - with four unpolished parallel sides. Flood images were obtained such that individual crystal element in the array is resolved. The energy resolution of the entire array was measured to be 33%, while individual crystal pixel elements utilizing the signal from both sides ranged from 23.3% to 27%. By applyingmore » a mutual-gain equalization method, a DOI resolution of 2 mm for the crystal array was obtained in the experiments while simulations indicate {approx}1 mm DOI resolution could possibly be achieved. The experimental DOI resolution can be further improved by obtaining revised detector supporting electronics with better energy resolutions. This study provides a detailed detector calibration and DOI response characterization of the dual-ended readout SiPM-based PET detectors, which will be important in the design and calibration of a PET scanner in the future.« less
Microstrip technology and its application to phased array compensation
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.; Daniels, W. D.
1972-01-01
A systematic analysis of mutual coupling compensation using microstrip techniques is presented. A method for behind-the-array coupling of a phased antenna array is investigated as to its feasibility. The matching scheme is tried on a rectangular array of one half lambda 2 dipoles, but it is not limited to this array element or geometry. In the example cited the values of discrete components necessary were so small an L-C network is needed for realization. Such L-C tanks might limit an otherwise broadband array match, however, this is not significant for this dipole array. Other areas investigated were balun feeding and power limits of spiral antenna elements.
NASA Technical Reports Server (NTRS)
Baskaran, Subbiah; Ramachandran, Narayanan; Noever, David
1998-01-01
The use of probabilistic (PNN) and multilayer feed forward (MLFNN) neural networks are investigated for calibration of multi-hole pressure probes and the prediction of associated flow angularity patterns in test flow fields. Both types of networks are studied in detail for their calibration and prediction characteristics. The current formalism can be applied to any multi-hole probe, however the test results for the most commonly used five-hole Cone and Prism probe types alone are reported in this article.
2016-09-01
to the characteristics and extract the non-ideality. These capabilities and calibration results will assist in the characterization of advanced...superconductor-ionic quantum memory and computation devices. iv CONTENTS EXECUTIVE SUMMARY...Josephson effect makes these measurements useful for characterization and calibration of superconducting quantum memory and computational devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, V.V.; Takacs, P.; Anderson, E.H.
A modulation transfer function (MTF) calibration method based on binary pseudorandom (BPR) gratings and arrays has been proven to be an effective MTF calibration method for interferometric microscopes and a scatterometer. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 in. phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending andmore » filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to the BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
NASA Astrophysics Data System (ADS)
Chen, Yuan-Ho
2017-05-01
In this work, we propose a counting-weighted calibration method for field-programmable-gate-array (FPGA)-based time-to-digital converter (TDC) to provide non-linearity calibration for use in positron emission tomography (PET) scanners. To deal with the non-linearity in FPGA, we developed a counting-weighted delay line (CWD) to count the delay time of the delay cells in the TDC in order to reduce the differential non-linearity (DNL) values based on code density counts. The performance of the proposed CWD-TDC with regard to linearity far exceeds that of TDC with a traditional tapped delay line (TDL) architecture, without the need for nonlinearity calibration. When implemented in a Xilinx Vertix-5 FPGA device, the proposed CWD-TDC achieved time resolution of 60 ps with integral non-linearity (INL) and DNL of [-0.54, 0.24] and [-0.66, 0.65] least-significant-bit (LSB), respectively. This is a clear indication of the suitability of the proposed FPGA-based CWD-TDC for use in PET scanners.
NASA Astrophysics Data System (ADS)
DeBoer, David R.; Welch, William J.; Dreher, John; Tarter, Jill; Blitz, Leo; Davis, Michael; Fleming, Matt; Bock, Douglas; Bower, Geoffrey; Lugten, John; Girmay-Keleta, G.; D'Addario, Larry R.; Harp, Gerry R.; Ackermann, Rob; Weinreb, Sander; Engargiola, Greg; Thornton, Doug; Wadefalk, Niklas
2004-10-01
The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade.
A Low Loss Microstrip Antenna for Radiometric Applications
NASA Technical Reports Server (NTRS)
Wahid, Parveen
2000-01-01
The design and analysis of a series-fed, low-loss, inverted microstrip array antenna, operating at 1.413 GHz is presented. The antenna is composed of two subarrays. Each subarray consists of an equal number of microstrip patches all connected together with microstrip lines. In the first design microstrip array for linear polarization is presented which incorporated a series feeding technique. The next design, which is capable of dual linear polarization (V-polarization and H-polarization), utilizes a corporate feed network for the V-pol and series feed arrangement for the H-pol. The first element of each subarray for H-pol is coaxially fed with a 180 deg phase difference. This approach ensures a symmetric radiation pattern on broadside in H-pol. For the V-pol two feeds are in the same phase on the two subarrays ensuring a broadside beam in V-pol. The designs presented here are simulated using the IE3D code that utilizes the method of moments. Measured results are compared with simulated results and show good agreement.
Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)
NASA Technical Reports Server (NTRS)
Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.
2015-01-01
This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Rodemich, E. R.
1994-01-01
An algorithm for estimating the optimum combining weights for the Ka-band (33.7-GHz) array feed compensation system was developed and analyzed. The input signal is assumed to be broadband radiation of thermal origin, generated by a distant radio source. Currently, seven video converters operating in conjunction with the real-time correlator are used to obtain these weight estimates. The algorithm described here requires only simple operations that can be implemented on a PC-based combining system, greatly reducing the amount of hardware. Therefore, system reliability and portability will be improved.
Results of the 1994 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1994-01-01
The 1994 solar cell calibration balloon flight was completed on August 6, 1994. All objectives of the flight program were met. Thirty-seven modules were carried to an altitude of 119,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to the 6 participants and can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1991 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1991-01-01
The 1991 solar cell calibration balloon flight was completed on August 1, 1991. All objectives of the flight program were met. Thirty-nine modules were carried to an altitude of 119,000 ft. (36.3 km). Data telemetered from the modules were corrected to 28 C and to 1 AU. The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1992 NASA/JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1992-01-01
The 1992 solar cell calibration balloon flight was completed on August 1, 1992. All objectives of the flight program were met. Forty-one modules were carried to an altitude of 119,000 ft (36.3 km). Data telemetered from the modules was corrected to 28 C and 1 AU. The calibrated cells have been returned to 39 participants and can now be used as reference standards in simulator testing of cells and arrays.
Results of the 1993 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1993-01-01
The 1993 solar cell calibration balloon flight was completed on July 29, 1993. All objectives of the flight program were met. Forty modules were carried to an altitude of 120,000 ft (36.6 km). Data telemetered from the modules was corrected to 28 C and to 1 AU. The calibrated cells have been returned to 8 participants and can now be used as reference standards in simulator testing of cells and arrays.
NASA Astrophysics Data System (ADS)
Liu, Hai-Zheng; Shi, Ze-Lin; Feng, Bin; Hui, Bin; Zhao, Yao-Hong
2016-03-01
Integrating microgrid polarimeters on focal plane array (FPA) of an infrared detector causes non-uniformity of polarization response. In order to reduce the effect of polarization non-uniformity, this paper constructs an experimental setup for capturing raw flat-field images and proposes a procedure for acquiring non-uniform calibration (NUC) matrix and calibrating raw polarization images. The proposed procedure takes the incident radiation as a polarization vector and offers a calibration matrix for each pixel. Both our matrix calibration and two-point calibration are applied to our mid-wavelength infrared (MWIR) polarization imaging system with integrated microgrid polarimeters. Compared with two point calibration, our matrix calibration reduces non-uniformity by 30 40% under condition of flat-field data test with polarization. The ourdoor scene observation experiment indicates that our calibration can effectively reduce polarization non-uniformity and improve the image quality of our MWIR polarization imaging system.
NASA Astrophysics Data System (ADS)
Repetti, Audrey; Birdi, Jasleen; Dabbech, Arwa; Wiaux, Yves
2017-10-01
Radio interferometric imaging aims to estimate an unknown sky intensity image from degraded observations, acquired through an antenna array. In the theoretical case of a perfectly calibrated array, it has been shown that solving the corresponding imaging problem by iterative algorithms based on convex optimization and compressive sensing theory can be competitive with classical algorithms such as clean. However, in practice, antenna-based gains are unknown and have to be calibrated. Future radio telescopes, such as the Square Kilometre Array, aim at improving imaging resolution and sensitivity by orders of magnitude. At this precision level, the direction-dependency of the gains must be accounted for, and radio interferometric imaging can be understood as a blind deconvolution problem. In this context, the underlying minimization problem is non-convex, and adapted techniques have to be designed. In this work, leveraging recent developments in non-convex optimization, we propose the first joint calibration and imaging method in radio interferometry, with proven convergence guarantees. Our approach, based on a block-coordinate forward-backward algorithm, jointly accounts for visibilities and suitable priors on both the image and the direction-dependent effects (DDEs). As demonstrated in recent works, sparsity remains the prior of choice for the image, while DDEs are modelled as smooth functions of the sky, I.e. spatially band-limited. Finally, we show through simulations the efficiency of our method, for the reconstruction of both images of point sources and complex extended sources. matlab code is available on GitHub.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsh, T. Y.; Perez Galvan, A.; Burkey, M.
This article presents an approach to calibrate the energy response of double-sided silicon strip detectors (DSSDs) for low-energy nuclear-science experiments by utilizing cosmic-ray muons. For the 1-mm-thick detectors used with the Beta-decay Paul Trap, the minimum-ionizing peak from these muons provides a stable and time-independent in situ calibration point at around 300 keV, which supplements the calibration data obtained above 3 MeV from sources. The muon-data calibration is achieved by comparing experimental spectra with detailed Monte Carlo simulations performed using GEANT4 and CRY codes. This additional information constrains the calibration at lower energies, resulting in improvements in quality and accuracy.
NASA Astrophysics Data System (ADS)
Hirsh, T. Y.; Pérez Gálvan, A.; Burkey, M. T.; Aprahamian, A.; Buchinger, F.; Caldwell, S.; Clark, J. A.; Gallant, A. T.; Heckmaier, E.; Levand, A. F.; Marley, S. T.; Morgan, G. E.; Nystrom, A.; Orford, R.; Savard, G.; Scielzo, N. D.; Segel, R.; Sharma, K. S.; Siegl, K.; Wang, B. S.
2018-04-01
This article presents an approach to calibrate the energy response of double-sided silicon strip detectors (DSSDs) for low-energy nuclear-science experiments by utilizing cosmic-ray muons. For the 1-mm-thick detectors used with the Beta-decay Paul Trap, the minimum-ionizing peak from these muons provides a stable and time-independent in situ calibration point at around 300 keV, which supplements the calibration data obtained above 3 MeV from α sources. The muon-data calibration is achieved by comparing experimental spectra with detailed Monte Carlo simulations performed using GEANT4 and CRY codes. This additional information constrains the calibration at lower energies, resulting in improvements in quality and accuracy.
NASA Tech Briefs, September 2007
NASA Technical Reports Server (NTRS)
2007-01-01
Topics covered include; Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites; Coating Thermoelectric Devices To Suppress Sublimation; Ultrahigh-Temperature Ceramics; Improved C/SiC Ceramic Composites Made Using PIP; Coating Carbon Fibers With Platinum; Two-Band, Low-Loss Microwave Window; MCM Polarimetric Radiometers for Planar Arrays; Aperture-Coupled Thin-Membrane L-Band Antenna; WGM-Based Photonic Local Oscillators and Modulators; Focal-Plane Arrays of Quantum-Dot Infrared Photodetectors; Laser Range and Bearing Finder With No Moving Parts; Microrectenna: A Terahertz Antenna and Rectifier on a Chip; Miniature L-Band Radar Transceiver; Robotic Vision-Based Localization in an Urban Environment; Programs for Testing an SSME-Monitoring System; Cathodoluminescent Source of Intense White Light; Displaying and Analyzing Antenna Radiation Patterns; Payload Operations Support Team Tools; Space-Shuttle Emulator Software; Soft Real-Time PID Control on a VME Computer; Analyzing Radio-Frequency Coverage for the ISS; Nanorod-Based Fast-Response Pressure-Sensitive Paints; Capacitors Would Help Protect Against Hypervelocity Impacts; Diaphragm Pump With Resonant Piezoelectric Drive; Improved Quick-Release Pin Mechanism; Designing Rolling-Element Bearings; Reverse-Tangent Injection in a Centrifugal Compressor; Inertial Measurements for Aero-assisted Navigation (IMAN); Analysis of Complex Valve and Feed Systems; Improved Path Planning Onboard the Mars Exploration Rovers; Robust, Flexible Motion Control for the Mars Explorer Rovers; Solar Sail Spaceflight Simulation; Fluorine-Based DRIE of Fused Silica; Mechanical Alloying for Making Thermoelectric Compounds; Process for High-Rate Fabrication of Alumina Nanotemplates; Electroform/Plasma-Spray Laminates for X-Ray Optics; An Automated Flying-Insect Detection System; Calligraphic Poling of Ferroelectric Material; Blackbody Cavity for Calibrations at 200 to 273 K; KML Super Overlay to WMS Translator; High-Performance Tiled WMS and KML Web Server; Modeling of Radiative Transfer in Protostellar Disks; Composite Pulse Tube; Photometric Calibration of Consumer Video Cameras; Criterion for Identifying Vortices in High- Pressure Flows; Amplified Thermionic Cooling Using Arrays of Nanowires; Delamination-Indicating Thermal Barrier Coatings; Preventing Raman Lasing in High-Q WGM Resonators; Procedures for Tuning a Multiresonator Photonic Filter; Robust Mapping of Incoherent Fiber-Optic Bundles; Extended-Range Ultrarefractive 1D Photonic Crystal Prisms; Rapid Analysis of Mass Distribution of Radiation Shielding; Modeling Magnetic Properties in EZTB; Deep Space Network Antenna Logic Controller; Modeling Carbon and Hydrocarbon Molecular Structures in EZTB; BigView Image Viewing on Tiled Displays; and Imaging Sensor Flight and Test Equipment Software.
The UCD/FLWO extensive air shower array at Mt. Hopkins Arizona
NASA Astrophysics Data System (ADS)
Gillanders, G. H.; Fegan, D. J.; McKeown, P. K.; Weekes, T. C.
The design and operation of an extensive air shower (EAS) array being installed around the 10-m optical Cerenkov reflector at F.L. Whipple Observatory on Mt. Hopkins for high-energy gamma-ray astronomy are described. The advantages of an EAS array colocated with a Cerenkov facility at a mountain location are reviewed; the arrangement of the 13 1-sq m scintillation detectors in the array is indicated; the signal-processing and data-acquisition procedures are explained; and preliminary calibration data indicating an effective energy threshold of 60 TeV are presented.
Method for determining how to operate and control wind turbine arrays in utility systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javid, S.H.; Hauth, R.L.; Younkins, T.D.
1984-01-01
A method for determining how utility wind turbine arrays should be controlled and operated on the load frequency control time-scale is presented. Initial considerations for setting wind turbine control requirements are followed by a description of open loop operation and of closed loop and feed forward wind turbine array control concepts. The impact of variations in array output on meeting minimum criteria are developed. The method for determining the required control functions is then presented and results are tabulated. (LEW)
Aquatic wood -- an insect perspective
Peter S. Cranston; Brendan McKie
2006-01-01
Immersed wood provides refugia and substrate for a diverse array of macroinvertebrates, and food for a more restricted genuinely xylophagous fauna. Worldwide, xylophages are found across aquatic insect orders, including Coleoptera, Diptera, Trichoptera and Plecoptera. Xylophages often are specialised, feeding on the wood surface or mining deep within. Many feed...
Precision Calibration for HERA and 21 cm Cosmology
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.
2018-05-01
Here I discuss progress in both the theory and practice of data analysis for the Hydrogen Epoch of Reionization Array (HERA), focusing on techniques to calibrate the instrumental response and preserve the spectral smoothness that is essential to separating the cosmological 21 cm signal from foregrounds that are five orders of magnitude brighter. I explain how mis-calibration can create ruinous spectral structure and how we take advantage of HERA's highly-redundant configuration for calibration. This proceeding draws from a talk I gave on October 3, 2017. Slides for it and all my talks are available at joshdillon.net.
Alignment-enhancing feed-through conductors for stackable silicon-on-sapphire wafers
NASA Technical Reports Server (NTRS)
Anthony, Thomas R. (Inventor)
1983-01-01
Alignment-enhancing electrically conductive feed-through paths are provided for the high-speed low-loss transfer of electrical signals between integrated circuits of a plurality of silicon-on-sapphire bodies arrayed in a stack. The alignment-enhancing feed-throughs are made by a process involving the drilling of holes through the body, double-sided sputtering, electroplating, and the filling of the holes with solder by capillary action. The alignment-enhancing feed-throughs are activated by forming a stack of wafers and remelting the solder whereupon the wafers, and the feed-through paths, are pulled into alignment by surface tension forces.
Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity
NASA Technical Reports Server (NTRS)
Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon
2009-01-01
This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.
2011-03-14
A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's datamore » processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
2005-07-09
This final report summarizes the progress during the Phase I SBIR project entitled Embedded Electro - Optic Sensor Network for the On-Site Calibration...network based on an electro - optic field-detection technique (the Electro - optic Sensor Network, or ESN) for the performance evaluation of phased
2012-08-07
sealed quartz ampoule under a mercury overpressure in a conventional clam-shell furnace . The reduction in the dislocation density has been studied as...46 2.6.4 Etch Pit Characterization . . . . . . . . . . . . . . . . . . . . . . . . 46 5 3 Furnace Setup and Calibration...Setup . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.2 Furnace Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4 In Situ
System concepts for transmit arrays of parabolic antennas for deep space uplinks
NASA Technical Reports Server (NTRS)
Hurd, William J.
2005-01-01
Phased arrays of parabolic antennas are a potentially lower-cost way to provide uplink transmission to distant spacecraft, compared to the 34-m and 70-m antennas now used by the NASA Deep Space Network. A large transmit array could provide very high EIRP when needed for spacecraft emergencies, such as the equivalent of 1 MW radiated from a 70-m antenna. Cost-effectiveness is realized by dividing the array into smaller arrays to provide routine support to many spacecraft simultaneously. The antennas might be as small as 12-m in diameter, with as many as 100 antennas covering an area of 0.5 km to 1 km in extent. Such arrays present significant technical challenges in phase alignment, which must be maintained at close to 1 mm. The concept requires a very stable system with accurately known antenna phase center locations. The system is first calibrated by transmitting from all antennas, and observing the signals at a target located in the far fields of the individual antennas. The antennas are then pointed to the operational targets, with the signal phases and time delays set to reinforce in the target directions. This requires accurate knowledge of the target directions and calculation of the required phases. The system must be phase-stable for all directions and over the time between calibrations, which is desired to be at least one day. In this paper, a system concept is presented, the major error sources are identified, a rough error budget is established, and key elements of the system are discussed. A calibration method is recommended which uses satellites as radar targets. The performance goal is to achieve a combining loss of less than 0.2 dB in good weather, and of less than 1 dB in all but extremely bad weather.
Baseline Receiver Concept for a Next Generation Very Large Array
NASA Astrophysics Data System (ADS)
Srikanth, Sivasankaran; Wes Grammer, Silver Sturgis, Rob Selina
2018-01-01
The Next Generation Very Large Array (ngVLA) is envisioned to be an interferometric array with 10 times the effective collecting area and spatial resolution as the current VLA, operating over a frequency range of 1.2-116 GHz. Achieving these goals will require 214 antennas of nominal 18m diameter, on baselines of 300km. Maximizing sensitivity for each receiver band, while also minimizing the overall operating cost are the primary design goals. Therefore, receivers and feeds will be cryogenically cooled, with multiple bands integrated into a common cryostat to the greatest extent possible. Using feed designs that yield broad bandwidths and high aperture efficiencies are key to meeting these goals.The proposed receiver configuration will be implemented as six independent bands, each with its own feed. The upper five bands will be integrated into a single compact cryostat, while the lowest-frequency band occupies a second cryostat of similar volume and mass. The lowest-band feed is cooled to 80K, while all other feeds are cooled to 20K.For optimum performance at the higher frequencies, waveguide-bandwidth (~1.66:1) receivers are proposed to cover 12.6 – 50.5 GHz and 70 – 116 GHz in four separate bands, integrated into a single cryostat. Excellent LNA noise performance is readily achievable, and using waveguide throughout the signal chain reduces losses and their associated noise contributions, without adding undue size or weight. An axially-corrugated conical feed horn with wide flare angle (~50degree half-angle), based on a design by G. Cortes and L. Baker, is being considered for these receivers.For continuous coverage between 1.2 – 12.6 GHz, waveguide or even octave-bandwidth receivers are not cost-effective, given the > 10:1 frequency range. For these bands, wideband (3.25:1) receivers mated to a Caltech-designed quad-ridge feed horn (QRFH) are proposed. These feeds are highly compact, and cryogenically cooled to reduce losses ahead of the LNAs. Aperture efficiency and LNA noise temperature may be somewhat less than optimum: however, there would be significant cost savings by effectively halving the number of receivers and cryostats required per antenna.
Compact Radar Transceiver with Included Calibration
NASA Technical Reports Server (NTRS)
McLinden, Matthew; Rincon, Rafael
2013-01-01
The Digital Beamforming Synthetic Aperture Radar (DBSAR) is an eight-channel phased array radar system that employs solid-state radar transceivers, a microstrip patch antenna, and a reconfigurable waveform generator and processor unit. The original DBSAR transceiver design utilizes connectorized electronic components that tend to be physically large and heavy. To achieve increased functionality in a smaller volume, PCB (printed circuit board) transceivers were designed to replace the large connectorized transceivers. One of the most challenging problems designing the transceivers in a PCB format was achieving proper performance in the calibration path. For a radar loop-back calibration path, a portion of the transmit signal is coupled out of the antenna feed and fed back into the receiver. This is achieved using passive components for stability and repeatability. Some signal also leaks through the receive path. As these two signal paths are correlated via an unpredictable phase, the leakage through the receive path during transmit must be 30 dB below the calibration path. For DBSAR s design, this requirement called for a 100-dB isolation in the receiver path during transmit. A total of 16 solid-state L-band transceivers on a PCB format were designed. The transceivers include frequency conversion stages, T/R switching, and a calibration path capable of measuring the transmit power-receiver gain product during transmit for pulse-by-pulse calibration or matched filtering. In particular, this calibration path achieves 100-dB isolation between the transmitted signal and the low-noise amplifier through the use of a switching network and a section of physical walls achieving attenuation of radiated leakage. The transceivers were designed in microstrip PCBs with lumped elements and individually packaged components for compactness. Each transceiver was designed on a single PCB with a custom enclosure providing interior walls and compartments to isolate transceiver subsystems from radiated interference. The enclosure also acts as a heat sink for the voltage regulators and power amplifiers inside the system. The PCB transceiver design produces transmit pulses of 2 W with an arbitrary duty cycle. Each transceiver is fed by an external 120-MHz signal transmit and two 1,140-MHz local oscillator signals. The received signal is amplified and down-converted to 120 MHz and is fed to the data processor. The transceiver dimensions are approximately 3.5 11.5 0.6 in. (9 29 1.5 cm). The PCB transceiver design reduces the volume and weight of the DBSAR instrument while maintaining the functionality found in the original design. Both volume and weight are critical for airborne and flight remote sensing instrumentation.
Hydrogen Epoch of Reinozation Array (HERA) Calibrated FFT Correlator Simulation
NASA Astrophysics Data System (ADS)
Salazar, Jeffrey David; Parsons, Aaron
2018-01-01
The Hydrogen Epoch of Reionization Array (HERA) project is an astronomical radio interferometer array with a redundant baseline configuration. Interferometer arrays are being used widely in radio astronomy because they have a variety of advantages over single antenna systems. For example, they produce images (visibilities) closely matching that of a large antenna (such as the Arecibo observatory), while both the hardware and maintenance costs are significantly lower. However, this method has some complications; one being the computational cost of correlating data from all of the antennas. A correlator is an electronic device that cross-correlates the data between the individual antennas; these are what radio astronomers call visibilities. HERA, being in its early stages, utilizes a traditional correlator system. The correlator cost scales as N2, where N is the number of antennas in the array. The purpose of a redundant baseline configuration array setup is for the use of a more efficient Fast Fourier Transform (FFT) correlator. FFT correlators scale as Nlog2N. The data acquired from this sort of setup, however, inherits geometric delay and uncalibrated antenna gains. This particular project simulates the process of calibrating signals from astronomical sources. Each signal “received” by an antenna in the simulation is given random antenna gain and geometric delay. The “linsolve” Python module was used to solve for the unknown variables in the simulation (complex gains and delays), which then gave a value for the true visibilities. This first version of the simulation only mimics a one dimensional redundant telescope array detecting a small amount of sources located in the volume above the antenna plane. Future versions, using GPUs, will handle a two dimensional redundant array of telescopes detecting a large amount of sources in the volume above the array.
A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array
Lee, Dongjin; Ondrake, Janet; Cui, Tianhong
2011-01-01
We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 μm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip. PMID:22163696
1979-12-01
AD-AOBS 567 ITT GILFILLAN VAN NUYS CA F/6 17/9 CONF4UTATING FEED ASSEMBLY. 1W DEC 79 R WOL.FSON F19628-79-C-OOSS UNCLASSIFIED RADC -TR79303 NI. 1i.ll...INTRODUCTION 9 2 COMMUTATING FEED ASSEMBLY REQUIREMENTS 10 . 3 TECHNICAL PROBLEMS 11 1: 3.1 System Design 12 3.1.1 Radius of Circular Array 12 3.1.2 Design...Support Structure 16 3.3 Annular Rotary Coupler 16 3.4 Stripline Feed Network 17 w V.3.4.1 Range of Coupling Values vs. Percent Power into Load 17 3.4.2
Opportunistic Visitors: Long-Term Behavioural Response of Bull Sharks to Food Provisioning in Fiji
Brunnschweiler, Juerg M.; Barnett, Adam
2013-01-01
Shark-based tourism that uses bait to reliably attract certain species to specific sites so that divers can view them is a growing industry globally, but remains a controversial issue. We evaluate multi-year (2004–2011) underwater visual (n = 48 individuals) and acoustic tracking data (n = 82 transmitters; array of up to 16 receivers) of bull sharks Carcharhinus leucas from a long-term shark feeding site at the Shark Reef Marine Reserve and reefs along the Beqa Channel on the southern coast of Viti Levu, Fiji. Individual C. leucas showed varying degrees of site fidelity. Determined from acoustic tagging, the majority of C. leucas had site fidelity indexes >0.5 for the marine reserve (including the feeding site) and neighbouring reefs. However, during the time of the day (09:00–12:00) when feeding takes place, sharks mainly had site fidelity indexes <0.5 for the feeding site, regardless of feeding or non-feeding days. Site fidelity indexes determined by direct diver observation of sharks at the feeding site were lower compared to such values determined by acoustic tagging. The overall pattern for C. leucas is that, if present in the area, they are attracted to the feeding site regardless of whether feeding or non-feeding days, but they remain for longer periods of time (consecutive hours) on feeding days. The overall diel patterns in movement are for C. leucas to use the area around the feeding site in the morning before spreading out over Shark Reef throughout the day and dispersing over the entire array at night. Both focal observation and acoustic monitoring show that C. leucas intermittently leave the area for a few consecutive days throughout the year, and for longer time periods (weeks to months) at the end of the calendar year before returning to the feeding site. PMID:23516496
Opportunistic visitors: long-term behavioural response of bull sharks to food provisioning in Fiji.
Brunnschweiler, Juerg M; Barnett, Adam
2013-01-01
Shark-based tourism that uses bait to reliably attract certain species to specific sites so that divers can view them is a growing industry globally, but remains a controversial issue. We evaluate multi-year (2004-2011) underwater visual (n = 48 individuals) and acoustic tracking data (n = 82 transmitters; array of up to 16 receivers) of bull sharks Carcharhinus leucas from a long-term shark feeding site at the Shark Reef Marine Reserve and reefs along the Beqa Channel on the southern coast of Viti Levu, Fiji. Individual C. leucas showed varying degrees of site fidelity. Determined from acoustic tagging, the majority of C. leucas had site fidelity indexes >0.5 for the marine reserve (including the feeding site) and neighbouring reefs. However, during the time of the day (09:00-12:00) when feeding takes place, sharks mainly had site fidelity indexes <0.5 for the feeding site, regardless of feeding or non-feeding days. Site fidelity indexes determined by direct diver observation of sharks at the feeding site were lower compared to such values determined by acoustic tagging. The overall pattern for C. leucas is that, if present in the area, they are attracted to the feeding site regardless of whether feeding or non-feeding days, but they remain for longer periods of time (consecutive hours) on feeding days. The overall diel patterns in movement are for C. leucas to use the area around the feeding site in the morning before spreading out over Shark Reef throughout the day and dispersing over the entire array at night. Both focal observation and acoustic monitoring show that C. leucas intermittently leave the area for a few consecutive days throughout the year, and for longer time periods (weeks to months) at the end of the calendar year before returning to the feeding site.
NASA Technical Reports Server (NTRS)
Schroeder, Lyle C.; Bailey, M. C.; Mitchell, John L.
1992-01-01
Methods for increasing the electromagnetic (EM) performance of reflectors with rough surfaces were tested and evaluated. First, one quadrant of the 15-meter hoop-column antenna was retrofitted with computer-driven and controlled motors to allow automated adjustment of the reflector surface. The surface errors, measured with metric photogrammetry, were used in a previously verified computer code to calculate control motor adjustments. With this system, a rough antenna surface (rms of approximately 0.180 inch) was corrected in two iterations to approximately the structural surface smoothness limit of 0.060 inch rms. The antenna pattern and gain improved significantly as a result of these surface adjustments. The EM performance was evaluated with a computer program for distorted reflector antennas which had been previously verified with experimental data. Next, the effects of the surface distortions were compensated for in computer simulations by superimposing excitation from an array feed to maximize antenna performance relative to an undistorted reflector. Results showed that a 61-element array could produce EM performance improvements equal to surface adjustments. When both mechanical surface adjustment and feed compensation techniques were applied, the equivalent operating frequency increased from approximately 6 to 18 GHz.
Accuracy and Resolution Analysis of a Direct Resistive Sensor Array to FPGA Interface
Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A.; Castellanos-Ramos, Julián; Hidalgo-López, José A.
2016-01-01
Resistive sensor arrays are formed by a large number of individual sensors which are distributed in different ways. This paper proposes a direct connection between an FPGA and a resistive array distributed in M rows and N columns, without the need of analog-to-digital converters to obtain resistance values in the sensor and where the conditioning circuit is reduced to the use of a capacitor in each of the columns of the matrix. The circuit allows parallel measurements of the N resistors which form each of the rows of the array, eliminating the resistive crosstalk which is typical of these circuits. This is achieved by an addressing technique which does not require external elements to the FPGA. Although the typical resistive crosstalk between resistors which are measured simultaneously is eliminated, other elements that have an impact on the measurement of discharge times appear in the proposed architecture and, therefore, affect the uncertainty in resistance value measurements; these elements need to be studied. Finally, the performance of different calibration techniques is assessed experimentally on a discrete resistor array, obtaining for a new model of calibration, a maximum relative error of 0.066% in a range of resistor values which correspond to a tactile sensor. PMID:26840321
Accuracy and Resolution Analysis of a Direct Resistive Sensor Array to FPGA Interface.
Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A; Castellanos-Ramos, Julián; Hidalgo-López, José A
2016-02-01
Resistive sensor arrays are formed by a large number of individual sensors which are distributed in different ways. This paper proposes a direct connection between an FPGA and a resistive array distributed in M rows and N columns, without the need of analog-to-digital converters to obtain resistance values in the sensor and where the conditioning circuit is reduced to the use of a capacitor in each of the columns of the matrix. The circuit allows parallel measurements of the N resistors which form each of the rows of the array, eliminating the resistive crosstalk which is typical of these circuits. This is achieved by an addressing technique which does not require external elements to the FPGA. Although the typical resistive crosstalk between resistors which are measured simultaneously is eliminated, other elements that have an impact on the measurement of discharge times appear in the proposed architecture and, therefore, affect the uncertainty in resistance value measurements; these elements need to be studied. Finally, the performance of different calibration techniques is assessed experimentally on a discrete resistor array, obtaining for a new model of calibration, a maximum relative error of 0.066% in a range of resistor values which correspond to a tactile sensor.
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
NASA Astrophysics Data System (ADS)
Bhatnagar, S.; Cornwell, T. J.
2017-11-01
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth-Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measured a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.
The Pointing Self-calibration Algorithm for Aperture Synthesis Radio Telescopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatnagar, S.; Cornwell, T. J., E-mail: sbhatnag@nrao.edu
This paper is concerned with algorithms for calibration of direction-dependent effects (DDE) in aperture synthesis radio telescopes (ASRT). After correction of direction-independent effects (DIE) using self-calibration, imaging performance can be limited by the imprecise knowledge of the forward gain of the elements in the array. In general, the forward gain pattern is directionally dependent and varies with time due to a number of reasons. Some factors, such as rotation of the primary beam with Parallactic Angle for Azimuth–Elevation mount antennas are known a priori. Some, such as antenna pointing errors and structural deformation/projection effects for aperture-array elements cannot be measuredmore » a priori. Thus, in addition to algorithms to correct for DD effects known a priori, algorithms to solve for DD gains are required for high dynamic range imaging. Here, we discuss a mathematical framework for antenna-based DDE calibration algorithms and show that this framework leads to computationally efficient optimal algorithms that scale well in a parallel computing environment. As an example of an antenna-based DD calibration algorithm, we demonstrate the Pointing SelfCal (PSC) algorithm to solve for the antenna pointing errors. Our analysis show that the sensitivity of modern ASRT is sufficient to solve for antenna pointing errors and other DD effects. We also discuss the use of the PSC algorithm in real-time calibration systems and extensions for antenna Shape SelfCal algorithm for real-time tracking and corrections for pointing offsets and changes in antenna shape.« less
Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons
NASA Astrophysics Data System (ADS)
Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun
2016-03-01
We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.
NASA Technical Reports Server (NTRS)
Eskins, Jonathan
1988-01-01
The problem of determining the forces and moments acting on a wind tunnel model suspended in a Magnetic Suspension and Balance System is addressed. Two calibration methods were investigated for three types of model cores, i.e., Alnico, Samarium-Cobalt, and a superconducting solenoid. Both methods involve calibrating the currents in the electromagnetic array against known forces and moments. The first is a static calibration method using calibration weights and a system of pulleys. The other method, dynamic calibration, involves oscillating the model and using its inertia to provide calibration forces and moments. Static calibration data, found to produce the most reliable results, is presented for three degrees of freedom at 0, 15, and -10 deg angle of attack. Theoretical calculations are hampered by the inability to represent iron-cored electromagnets. Dynamic calibrations, despite being quicker and easier to perform, are not as accurate as static calibrations. Data for dynamic calibrations at 0 and 15 deg is compared with the relevant static data acquired. Distortion of oscillation traces is cited as a major source of error in dynamic calibrations.
USGS aerial resolution targets.
Salamonowicz, P.H.
1982-01-01
It is necessary to measure the achievable resolution of any airborne sensor that is to be used for metric purposes. Laboratory calibration facilities may be inadequate or inappropriate for determining the resolution of non-photographic sensors such as optical-mechanical scanners, television imaging tubes, and linear arrays. However, large target arrays imaged in the field can be used in testing such systems. The USGS has constructed an array of resolution targets in order to permit field testing of a variety of airborne sensing systems. The target array permits any interested organization with an airborne sensing system to accurately determine the operational resolution of its system. -from Author
USDA-ARS?s Scientific Manuscript database
During construction of the whole body counter (WBC) at the Children’s Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of 40K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Car...
The drift chamber array at the external target facility in HIRFL-CSR
NASA Astrophysics Data System (ADS)
Sun, Y. Z.; Sun, Z. Y.; Wang, S. T.; Duan, L. M.; Sun, Y.; Yan, D.; Tang, S. W.; Yang, H. R.; Lu, C. G.; Ma, P.; Yu, Y. H.; Zhang, X. H.; Yue, K.; Fang, F.; Su, H.
2018-06-01
A drift chamber array at the External Target Facility in HIRFL-CSR has been constructed for three-dimensional particle tracking in high-energy radioactive ion beam experiments. The design, readout, track reconstruction program and calibration procedures for the detector are described. The drift chamber array was tested in a 311 AMeV 40Ar beam experiment. The detector performance based on the measurements of the beam test is presented. A spatial resolution of 230 μm is achieved.
Streamlined calibrations of the ATLAS precision muon chambers for initial LHC running
NASA Astrophysics Data System (ADS)
Amram, N.; Ball, R.; Benhammou, Y.; Ben Moshe, M.; Dai, T.; Diehl, E. B.; Dubbert, J.; Etzion, E.; Ferretti, C.; Gregory, J.; Haider, S.; Hindes, J.; Levin, D. S.; Manilow, E.; Thun, R.; Wilson, A.; Weaverdyck, C.; Wu, Y.; Yang, H.; Zhou, B.; Zimmermann, S.
2012-04-01
The ATLAS Muon Spectrometer is designed to measure the momentum of muons with a resolution of dp/p=3% at 100 GeV and 10% at 1 TeV. For this task, the spectrometer employs 355,000 Monitored Drift Tubes (MDTs) arrayed in 1200 chambers. Calibration (RT) functions convert drift time measurements into tube-centered impact parameters for track segment reconstruction. RT functions depend on MDT environmental parameters and so must be appropriately calibrated for local chamber conditions. We report on the creation and application of a gas monitor system based calibration program for muon track reconstruction in the LHC startup phase.
Method for making alignment-enhancing feed-through conductors for stackable silicon-on-sapphire
NASA Technical Reports Server (NTRS)
Anthony, Thomas R. (Inventor)
1985-01-01
Alignment-enhancing electrically conductive feed-through paths are provided for the high-speed low-loss transfer of electrical signals between integrated circuits of a plurality of silicon-on-sapphire bodies arrayed in a stack. The alignment-enhancing feed-throughs are made by a process of this invention involving the drilling of holes through the body, double-sided sputtering, electroplating, and the filling of the holes with solder by capillary action. The alignment-enhancing feed-throughs are activated by forming a stack of wafers and remelting the solder whereupon the wafers, and the feed-through paths, are pulled into alignment by surface tension forces.
Effects of invertebrates in lotic ecosystem processes
J.B. Wallace; J.J. Jr. Hutchens
2000-01-01
Freshwater invertebrates perform many roles in ecosystem processes (Palmer et al., 1997) and these roles are frequently associated with a diverse array of feeding habits which have been organized into functional feeding groups (FFGs). Wallace and Webster (1996) reviewed many roles ofFFGs in stream ecosystems. Streams differ markedly from most ecosystems in that the...
De Leersnyder, Fien; Peeters, Elisabeth; Djalabi, Hasna; Vanhoorne, Valérie; Van Snick, Bernd; Hong, Ke; Hammond, Stephen; Liu, Angela Yang; Ziemons, Eric; Vervaet, Chris; De Beer, Thomas
2018-03-20
A calibration model for in-line API quantification based on near infrared (NIR) spectra collection during tableting in the tablet press feed frame was developed and validated. First, the measurement set-up was optimised and the effect of filling degree of the feed frame on the NIR spectra was investigated. Secondly, a predictive API quantification model was developed and validated by calculating the accuracy profile based on the analysis results of validation experiments. Furthermore, based on the data of the accuracy profile, the measurement uncertainty was determined. Finally, the robustness of the API quantification model was evaluated. An NIR probe (SentroPAT FO) was implemented into the feed frame of a rotary tablet press (Modul™ P) to monitor physical mixtures of a model API (sodium saccharine) and excipients with two different API target concentrations: 5 and 20% (w/w). Cutting notches into the paddle wheel fingers did avoid disturbances of the NIR signal caused by the rotating paddle wheel fingers and hence allowed better and more complete feed frame monitoring. The effect of the design of the notched paddle wheel fingers was also investigated and elucidated that straight paddle wheel fingers did cause less variation in NIR signal compared to curved paddle wheel fingers. The filling degree of the feed frame was reflected in the raw NIR spectra. Several different calibration models for the prediction of the API content were developed, based on the use of single spectra or averaged spectra, and using partial least squares (PLS) regression or ratio models. These predictive models were then evaluated and validated by processing physical mixtures with different API concentrations not used in the calibration models (validation set). The β-expectation tolerance intervals were calculated for each model and for each of the validated API concentration levels (β was set at 95%). PLS models showed the best predictive performance. For each examined saccharine concentration range (i.e., between 4.5 and 6.5% and between 15 and 25%), at least 95% of future measurements will not deviate more than 15% from the true value. Copyright © 2018 Elsevier B.V. All rights reserved.
An ANSERLIN array for mobile satellite applications
NASA Technical Reports Server (NTRS)
Colomb, F. Y.; Kunkee, D. B.; Mayes, P. E.; Smith, D. W.; Jamnejad, V.
1990-01-01
Design, analysis, construction, and test of linear arrays of ANSERLIN (annular sector, radiating line) elements are reported and discussed. Due to feeding simplicity and easy construction as well as good CP performance, a planar array composed of a number of such linear arrays each producing a shaped beam tilted in elevation, is a good candidate as a vehicle-mounted mechanically steered antenna for mobile satellite applications. A single level construction technique was developed that makes this type of array very cost competitive with other low-profile arrays. An asymmetric 19.5 inch long four-element array was fabricated and tested with reasonable performance. A smaller five-element symmetric array (16 inch long) was also designed and tested capable of operating in either sense of circular polarization. Efforts were made to successfully reduce this effect.
Results of the 1974 through 1977 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Sidwell, L. B.
1978-01-01
From 1974 through 1977, seven solar cell calibration flights and two R&D flights with a spectroradiometer as a payload were attempted. There were two R&D flights, and one calibration flight that failed. Each calibration flight balloon was designed to carry its payload to an altitude of 36.6 km (120 kft). The R&D flight balloons were designed for a payload altitude of 47.5 km (150 kft). At the end of the flight period, the upper (solar cell calibration system) and lower (consolidated instrument package (DIP) payloads were separated from the balloon and descend via parachutes. The calibrated solar cells recovered in this manner were used as primary intensity reference standards during solar simulator testing of solar cells and solar arrays with similar spectral response characteristics. This method of calibration has become the most widely accepted technique for developing space standard solar cells.
Study of Radio sources and interferences detected by MEXART
NASA Astrophysics Data System (ADS)
Villanueva Hernandez, P.; Gonzalez Esparza, J. A.; Carrillo, A.; Andrade, E.; Jeyacumar, S.; Kurtz, S.
2007-05-01
The Mexican Array Radio Telescope (MEXART) is a radio telescope that will perform studies of solar wind disturbances using the Interplanetary Scintillation (IPS) technique. The radiotelescope is its final calibration stage, and in this work we report two testings: the interference signals detected around the operation frequency, and the transit of the main radio sources detected by individual lines of 64 dipoles. These radio sources are: Sun, Casiopea, Crab nebula, Cygnus and Virgo. These testings allow us to know the response of the array elements in order to calibrate them. The final operation of the MEXART requires that the signal detected and transmitted by each East-West line of 64 dipoles arrives at the butler matrix (control room) with the same phase and amplitude.
Piezo-thermal Probe Array for High Throughput Applications
Gaitas, Angelo; French, Paddy
2012-01-01
Microcantilevers are used in a number of applications including atomic-force microscopy (AFM). In this work, deflection-sensing elements along with heating elements are integrated onto micromachined cantilever arrays to increase sensitivity, and reduce complexity and cost. An array of probes with 5–10 nm gold ultrathin film sensors on silicon substrates for high throughput scanning probe microscopy is developed. The deflection sensitivity is 0.2 ppm/nm. Plots of the change in resistance of the sensing element with displacement are used to calibrate the probes and determine probe contact with the substrate. Topographical scans demonstrate high throughput and nanometer resolution. The heating elements are calibrated and the thermal coefficient of resistance (TCR) is 655 ppm/K. The melting temperature of a material is measured by locally heating the material with the heating element of the cantilever while monitoring the bending with the deflection sensing element. The melting point value measured with this method is in close agreement with the reported value in literature. PMID:23641125
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yashchuk, Valeriy V; Anderson, Erik H.; Barber, Samuel K.
2010-07-26
A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010]. Here we report on a significant expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument'smore » data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Results of the 1981 NASA/JPL balloon flight solar cell calibration program
NASA Technical Reports Server (NTRS)
Seaman, C. H.; Weiss, R. S.
1982-01-01
The calibration of the direct conversion of solar energy through use of solar cells at high altitudes by balloon flight is reported. Twenty seven modules were carried to an altitude of 35.4 kilometers. Silicon cells are stable for long periods of time and can be used as standards. It is demonstrated that the cell mounting cavity may be either black or white with equal validity in setting solar simulators. The calibrated cells can be used as reference standards in simulator testing of cells and arrays.
Assembly, characterization, and operation of large-scale TES detector arrays for ACTPol
NASA Astrophysics Data System (ADS)
Pappas, Christine Goodwin
2016-01-01
The Polarization-sensitive Receiver for the Atacama Cosmology Telescope (ACTPol) is designed to measure the Cosmic Microwave Background (CMB) temperature and polarization anisotropies on small angular scales. Measurements of the CMB temperature and polarization anisotropies have produced arguably the most important cosmological data to date, establishing the LambdaCDM model and providing the best constraints on most of its parameters. To detect the very small fluctuations in the CMB signal across the sky, ACTPol uses feedhorn-coupled Transition-Edge Sensor (TES) detectors. A TES is a superconducting thin film operated in the transition region between the superconducting and normal states, where it functions as a highly sensitive resistive thermometer. In this thesis, aspects of the assembly, characterization, and in-field operation of the ACTPol TES detector arrays are discussed. First, a novel microfabrication process for producing high-density superconducting aluminum/polyimide flexible circuitry (flex) designed to connect large-scale detector arrays to the first stage of readout is presented. The flex is used in parts of the third ACTPol array and is currently being produced for use in the AdvACT detector arrays, which will begin to replace the ACTPol arrays in 2016. Next, we describe methods and results for the in-lab and on-telescope characterization of the detectors in the third ACTPol array. Finally, we describe the ACTPol TES R(T,I) transition shapes and how they affect the detector calibration and operation. Methods for measuring the exact detector calibration and re-biasing functions, taking into account the R(T,I) transition shape, are presented.
NASA Astrophysics Data System (ADS)
Tsuji, Masatoshi
A compact feed circuit with a λ/4 transmission line matrix circuit for use in array antennas to control beams in three directions, including boresight, is presented. The feed circuit antenna is composed of five switches and λ/4 transmission lines, and the feeding matrix circuit yields phase differences of ±90° and 0°. The feed circuit can obtain a reliable output signal, as there is only a small degree of deviation of output signal with variations in the line width. The feed circuit is simulated, fabricated, and evaluated for ISM band, and the measured characteristics agree well with the results of the simulation. The size of feed circuit is 45 (H) × 48 (W) × 3 (T) mm.
Absolute radiometric calibration of advanced remote sensing systems
NASA Technical Reports Server (NTRS)
Slater, P. N.
1982-01-01
The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.
Reception of Multiple Telemetry Signals via One Dish Antenna
NASA Technical Reports Server (NTRS)
Mukai, Ryan; Vilnrotter, Victor
2010-01-01
A microwave aeronautical-telemetry receiver system includes an antenna comprising a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal dish reflector that is nominally aimed at a single aircraft or at multiple aircraft flying in formation. Through digital processing of the signals received by the seven feed horns, the system implements a method of enhanced cancellation of interference, such that it becomes possible to receive telemetry signals in the same frequency channel simultaneously from either or both of two aircraft at slightly different angular positions within the field of view of the antenna, even in the presence of multipath propagation. The present system is an advanced version of the system described in Spatio- Temporal Equalizer for a Receiving-Antenna Feed Array NPO-43077, NASA Tech Briefs, Vol. 34, No. 2 (February 2010), page 32. To recapitulate: The radio-frequency telemetry signals received by the seven elements of the array are digitized, converted to complex baseband form, and sent to a spatio-temporal equalizer that consists mostly of a bank of seven adaptive finite-impulse-response (FIR) filters (one for each element in the array) plus a unit that sums the outputs of the filters. The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank affords better multipath suppression performance than is achievable by means of temporal equalization alone. The FIR filter bank adapts itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of frequency-selective multipath propagation like that commonly found at flight-test ranges. The combination of the array and the filter bank makes it possible to constructively add multipath incoming signals to the corresponding directly arriving signals, thereby enabling reductions in telemetry bit-error rates.
Implementation Status of a Ultra-Wideband Receiver Package for the next-generation Very Large Array
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Velazco, Jose; Soriano, Melissa; Hoppe, Daniel; Russell, Damon; D'Addario, Larry; Long, Ezra; Bowen, James; Samoska, Lorene; Janzen, Andrew
2017-01-01
The next-generation Very Large Array (ngVLA) is a concept for a radio astronomical interferometric array operating in the frequency range 1.2 GHz to 116 GHz and designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage above the current Very Large Array (VLA). As notional design goals, it would have a continuous frequency coverage of 1.2 GHz to 48 GHz and be 10 times more sensitive than the VLA (and 25 times more sensitive than a 34 m diameter antenna of the Deep Space Network [DSN]). One of the key goals for the ngVLA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range, which can be contrasted to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs, and the objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feed horn, low-noise amplifier (LNA), and down-converters to analog intermediate frequencies. Key features of this design are a quad-ridge feed horn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30 K at the low end of the band. We will report on the status of this receiver package development including the feed design and LNA implementation. We will present simulation studies of the feed horn including the insertion of dielectric components for improved illumination efficiencies across the band of interest. In addition, we will show experimental results of low-noise 35nm InP HEMT amplifier testing performed across the 8-50 GHz frequency range.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Proceedings of the 1989 Antenna Applications Symposium. Volume 1
1990-03-01
of this antenna is the absence of spillover sidelobes where energy from the feed spills past the edge of the reflector to give a 112 relatively high ... High Gain Receive Cylindrical, Array 381 Antenna WIth Ful Azimuth Coverage," J. C. Herper, A. M. bucceri ’&nd J. J. Stangel 22. "Conformal Ac-tive...Phased Array Demonstration," Jerome D. Hanfling 23 " High Precision Frequency Locking technique for Active 441 Microstrip Antenna Arrays,’ Gabriel
2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.
2014-01-01
This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).
Self-calibrated humidity sensor in CMOS without post-processing.
Nizhnik, Oleg; Higuchi, Kohei; Maenaka, Kazusuke
2012-01-01
A 1.1 μW power dissipation, voltage-output humidity sensor with 10% relative humidity accuracy was developed in the LFoundry 0.15 μm CMOS technology without post-processing. The sensor consists of a woven lateral array of electrodes implemented in CMOS top metal, a humidity-sensitive layer of Intervia Photodielectric 8023D-10, a CMOS capacitance to voltage converter, and the self-calibration circuitry.
Improved Calibration Shows Images True Colors
NASA Technical Reports Server (NTRS)
2015-01-01
Innovative Imaging and Research, located at Stennis Space Center, used a single SBIR contract with the center to build a large-scale integrating sphere, capable of calibrating a whole array of cameras simultaneously, at a fraction of the usual cost for such a device. Through the use of LEDs, the company also made the sphere far more efficient than existing products and able to mimic sunlight.
Synthesis of a large communications aperture using small antennas
NASA Technical Reports Server (NTRS)
Resch, George M.; Cwik, T. W.; Jamnejad, V.; Logan, R. T.; Miller, R. B.; Rogstad, Dave H.
1994-01-01
In this report we compare the cost of an array of small antennas to that of a single large antenna assuming both the array and single large antenna have equal performance and availability. The single large antenna is taken to be one of the 70-m antennas of the Deep Space Network. The cost of the array is estimated as a function of the array element diameter for three different values of system noise temperature corresponding to three different packaging schemes for the first amplifier. Array elements are taken to be fully steerable paraboloids and their cost estimates were obtained from commercial vendors. Array loss mechanisms and calibration problems are discussed. For array elements in the range 3 - 35 m there is no minimum in the cost versus diameter curve for the three system temperatures that were studied.
Breadboard linear array scan imager using LSI solid-state technology
NASA Technical Reports Server (NTRS)
Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.
1976-01-01
The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.
Overview of the 2009 and 2011 Sayarim Infrasound Calibration Experiments
NASA Astrophysics Data System (ADS)
Fee, D.; Waxler, R.; Drob, D.; Gitterman, Y.; Given, J.
2012-04-01
The establishment of the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) has stimulated infrasound research and development. However, as the network comes closer to completion there exists a lack of large, well-constrained sources to test the network and its capabilities. Also, significant uncertainties exist in long-range acoustic propagation due to a dynamic, difficult to characterize atmosphere, particularly the thermosphere. In 2009 and 2011 three large scale infrasound calibration experiments were performed in Europe, the Middle East, Africa, and Asia. The goal of the calibration experiments were to test the IMS infrasound network and validate atmospheric and propagation models with large, well-constrained infrasound sources. This presentation provides an overview of the calibration experiments, including deployment, atmospheric conditions during the experiments, explosion characterization, infrasonic signal detection and identification, and a discussion of the results and implications. Each calibration experiment consisted of singular surface detonation of explosives with nominal weights of 82, 10.24, and 102.08 tons on 26 August 2009, 24 January 2011, and 26 January 2011, respectively. These explosions were designed and conducted by the Geophysical Institute of Israel at Sayarim Military Range, Israel and produced significant infrasound detected by numerous permanent and temporary infrasound arrays in the region. The 2009 experiment was performed in the summer to take advantage of the westerly stratospheric winds. Infrasonic arrivals were detected by both IMS and temporary arrays deployed to the north and west of the source, including clear stratospheric arrivals and thermospheric arrivals with low celerities. The 2011 experiment was performed during the winter, when strong easterly stratospheric winds dominated in addition to a strong tropospheric jet (the jet stream). These wind jets allowed detection out to 6500 km, in addition to multiple tropospheric, stratospheric, and thermospheric arrivals at arrays deployed to the east. These experiments represented a considerable, successful collaboration between the CTBTO and numerous other groups and will provide a rich ground-truth dataset for detailed infrasound studies in the future.
Design of system calibration for effective imaging
NASA Astrophysics Data System (ADS)
Varaprasad Babu, G.; Rao, K. M. M.
2006-12-01
A CCD based characterization setup comprising of a light source, CCD linear array, Electronics for signal conditioning/ amplification, PC interface has been developed to generate images at varying densities and at multiple view angles. This arrangement is used to simulate and evaluate images by Super Resolution technique with multiple overlaps and yaw rotated images at different view angles. This setup also generates images at different densities to analyze the response of the detector port wise separately. The light intensity produced by the source needs to be calibrated for proper imaging by the high sensitive CCD detector over the FOV. One approach is to design a complex integrating sphere arrangement which costs higher for such applications. Another approach is to provide a suitable intensity feed back correction wherein the current through the lamp is controlled in a closed loop arrangement. This method is generally used in the applications where the light source is a point source. The third method is to control the time of exposure inversely to the lamp variations where lamp intensity is not possible to control. In this method, light intensity during the start of each line is sampled and the correction factor is applied for the full line. The fourth method is to provide correction through Look Up Table where the response of all the detectors are normalized through the digital transfer function. The fifth method is to have a light line arrangement where the light through multiple fiber optic cables are derived from a single source and arranged them in line. This is generally applicable and economical for low width cases. In our applications, a new method wherein an inverse multi density filter is designed which provides an effective calibration for the full swath even at low light intensities. The light intensity along the length is measured, an inverse density is computed, a correction filter is generated and implemented in the CCD based Characterization setup. This paper describes certain novel techniques of design and implementation of system calibration for effective Imaging to produce better quality data product especially while handling high resolution data.
New coplanar waveguide feed network for 2 x 2 linearly tapered slot antenna subarray
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Perl, Thomas D.; Lee, Richard Q.
1992-01-01
A novel feed method is presently demonstrated for a 2 x 2 linearly tapered slot antenna (LTSA) on the basis of a coplanar-waveguide (CPW)-to-slotline transition and a coax-to-CPW in-phase, four-way power divider. The LTSA subarray exhibits excellent radiation patterns and return-loss characteristics at 18 GHz, and has symmetric beamwidth; its compactness renders it applicable as either a feed for a reflector antenna or as a building-block for large arrays.
NASA Astrophysics Data System (ADS)
Parsons, Aaron Robert
Low-frequency interferometry provides us with the possibility of directly observing, via red-shifted 21cm emission, the ionization of the primordial intergalactic medium by radiation from the first stars and black holes. Building such interferometers presents daunting technical challenges related to the cross-correlation, calibration, and analysis of data from large antenna arrays with wide fields-of-view in an observing band below 200 MHz. Addressing cross-correlation data processing, I present a general-purpose correlator architecture that uses standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array chips. These chips are programmed using open-source signal processing libraries developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, and facilitates upgrading to new generations of processing technology. This correlator architecture is supporting the incremental build-out of the Precision Array for Probing the Epoch of Reionization. Targeting calibration concerns, I present a filtering technique that can be applied to individual baselines of wide-bandwidth, wide-field interferometric data to geometrically select regions on the celestial sphere that contain primary calibration sources. The technique relies on the Fourier transformation of wide-band frequency spectra from a given baseline to obtain one-dimensional "delay images", and then the transformation of a time-series of delay images to obtain two-dimensional "delay/delayrate images." These filters are augmented by a one-dimensional, complex CLEAN algorithm has been developed to compensate for data-excision effects related to the removal of radio frequency interference. This approach allows CLEANed, source-isolated data to be used to isolate bandpass and primary beam gain functions. These techniques are applied to PAPER data as a demonstration of their value in calibrating a new generation of low-frequency radio interferometers with wide relative bandwidths and large fields-of-view. Finally, I describe PAPER's overall architecture and summarize two PAPER deployments: a 4-antenna array in of Western Australia and an 8-antenna array in Green Bank, WV. After reporting on system characterization and data analysis techniques, I present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 steradians at 154 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. I calculate angular power spectra (Cℓ) in a cold patch and determine them to be dominated by point sources. Although the sample variance of foregrounds dominates errors in these power spectra, I measure a thermal noise level of 310 mK at ℓ = 100 for a 1.46-MHz band centered at 164.5 MHz. This sensitivity level is approximately three orders of magnitude in temperature above the expected level of 21cm fluctuations associated with reionization.
The Australian SKA Pathfinder: project update and initial operations
NASA Astrophysics Data System (ADS)
Schinckel, Antony E. T.; Bock, Douglas C.-J.
2016-08-01
The Australian Square Kilometre Array Pathfinder (ASKAP) will be the fastest dedicated cm-wave survey telescope, and will consist of 36 12-meter 3-axis antennas, each with a large chequerboard phased array feed (PAF) receiver operating between 0.7 and 1.8 GHz, and digital beamforming prior to correlation. The large raw data rates involved ( 100 Tb/sec), and the need to do pipeline processing, has led to the antenna incorporating a third axis to fix the parallactic angle with respect to the entire optical system (blockages and phased array feed). It also results in innovative technical solutions to the data transport and processing issues. ASKAP is located at the Murchison Radio-astronomy Observatory (MRO), a new observatory developed for the Square Kilometre Array (SKA), 315 kilometres north-east of Geraldton, Western Australia. The MRO also hosts the SKA low frequency pathfinder instrument, the Murchison Widefield Array and will host the initial low frequency instrument of the SKA, SKA1-Low. Commissioning of ASKAP using six antennas equipped with first-generation PAFs is now complete and installation of second-generation PAFs and digital systems is underway. In this paper we review technical progress and commissioning to date, and refer the reader to relevant technical and scientific publications.
Advances in the RXTE Proportional Counter Array Calibration: Nearing the Statistical Limit
NASA Technical Reports Server (NTRS)
Shaposhnikov, Nikolai; Jahoda, Keith; Markwardt, Craig; Swank, Jean; Strohmayer, Tod
2012-01-01
During its 16 years of service Rossi X-ray Timing Explorer (RXTE) mission has provided an extensive archive of data, which will serve as a primary source of high cadence observation of variable X-ray sources for fast timing studies. It is, therefore, very important to have the most reliable calibration of RXTE instruments. The Proportional Counter Array (PCA) is the primary instrument on-board RXTE which provides data in 2-50 keY with higher than millisecond time resolution in up to 256 energy channels. In 2009 RXTE team revised the response residual minimization method used to derive the parameters of the PCA physical model. The procedure is now based on the residual minimization between the model spectrum for Crab nebula emission and a calibration data set consisting of a number of spectra from the Crab and the on-board Am241 calibration source, uniformly covering a whole RXTE span. The new method led to a much more effective model convergence and allowed for better understanding of the behavior of the PCA energy-to-channel relationship. It greatly improved the response matrix performance. We describe the new version of the RXTE/PCA response generator PCARMF vll.7 along with the corresponding energy-to-channel conversion table (version e05v04) and their difference from the previous releases of PCA calibration. The new PCA response adequately represents the spectrum of the calibration sources and successfully predicts the energy of the narrow iron emission line in Cas-A throughout the RXTE mission.
A Consistency Evaluation and Calibration Method for Piezoelectric Transmitters.
Zhang, Kai; Tan, Baohai; Liu, Xianping
2017-04-28
Array transducer and transducer combination technologies are evolving rapidly. While adapting transmitter combination technologies, the parameter consistencies between each transmitter are extremely important because they can determine a combined effort directly. This study presents a consistency evaluation and calibration method for piezoelectric transmitters by using impedance analyzers. Firstly, electronic parameters of transmitters that can be measured by impedance analyzers are introduced. A variety of transmitter acoustic energies that are caused by these parameter differences are then analyzed and certified and, thereafter, transmitter consistency is evaluated. Lastly, based on the evaluations, consistency can be calibrated by changing the corresponding excitation voltage. Acoustic experiments show that this method accurately evaluates and calibrates transducer consistencies, and is easy to realize.
NASA Technical Reports Server (NTRS)
Moore, Alvah S., Jr.; Mauldin, L. ED, III; Stump, Charles W.; Reagan, John A.; Fabert, Milton G.
1989-01-01
The calibration of the Halogen Occultation Experiment (HALOE) sun sensor is described. This system consists of two energy-balancing silicon detectors which provide coarse azimuth and elevation control signals and a silicon photodiode array which provides top and bottom solar edge data for fine elevation control. All three detectors were calibrated on a mountaintop near Tucson, Ariz., using the Langley plot technique. The conventional Langley plot technique was modified to allow calibration of the two coarse detectors, which operate wideband. A brief description of the test setup is given. The HALOE instrument is a gas correlation radiometer that is now being developed for the Upper Atmospheric Research Satellite.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.; Dunn, D.
1992-01-01
The topics covered include the following: (1) performance analysis of the Gregorian tri-reflector; (2) design and performance of the type 6 reflector antenna; (3) a new spherical main reflector system design; (4) optimization of reflector configurations using physical optics; (5) radiometric array design; and (7) beam efficiency studies.
Near Infrared Spectrometry of Clinically Significant Fatty Acids Using Multicomponent Regression
NASA Astrophysics Data System (ADS)
Kalinin, A. V.; Krasheninnikov, V. N.; Sviridov, A. P.; Titov, V. N.
2016-11-01
We have developed methods for determining the content of clinically important fatty acids (FAs), primarily saturated palmitic acid, monounsaturated oleic acid, and the sum of polyenoic fatty acids (eicosapentaenoic + docosahexaenoic), in oily media (food products and supplements, fish oils) using different types of near infrared (NIR) spectrometers: Fourier-transform, linear photodiode array, and Raman. Based on a calibration method (regression) by means of projections to latent structures, using standard samples of oil and fat mixtures, we have confirmed the feasibility of reliable and selective quantitative analysis of the above-indicated fatty acids. As a result of comparing the calibration models for Fourier-transform spectrometers in different parts of the NIR range (based on different overtones and combinations of fatty acid absorption), we have provided a basis for selection of the spectral range for a portable linear InGaAs-photodiode array spectrometer. In testing the calibrations of a linear InGaAs-photodiode array spectrometer which is a prototype for a portable instrument, for palmitic and oleic acids and also the sum of the polyenoic fatty acids we have achieved a multiple correlation coefficient of 0.89, 0.85, and 0.96 and a standard error of 0.53%, 1.43%, and 0.39% respectively. We have confirmed the feasibility of using Raman spectra to determine the content of the above-indicated fatty acids in media where water is present.
Calibration Test Set for a Phase-Comparison Digital Tracker
NASA Technical Reports Server (NTRS)
Boas, Amy; Li, Samuel; McMaster, Robert
2007-01-01
An apparatus that generates four signals at a frequency of 7.1 GHz having precisely controlled relative phases and equal amplitudes has been designed and built. This apparatus is intended mainly for use in computer-controlled automated calibration and testing of a phase-comparison digital tracker (PCDT) that measures the relative phases of replicas of the same X-band signal received by four antenna elements in an array. (The relative direction of incidence of the signal on the array is then computed from the relative phases.) The present apparatus can also be used to generate precisely phased signals for steering a beam transmitted from a phased antenna array. The apparatus (see figure) includes a 7.1-GHz signal generator, the output of which is fed to a four-way splitter. Each of the four splitter outputs is attenuated by 10 dB and fed as input to a vector modulator, wherein DC bias voltages are used to control the in-phase (I) and quadrature (Q) signal components. The bias voltages are generated by digital-to-analog- converter circuits on a control board that receives its digital control input from a computer running a LabVIEW program. The outputs of the vector modulators are further attenuated by 10 dB, then presented at high-grade radio-frequency connectors. The attenuation reduces the effects of changing mismatch and reflections. The apparatus was calibrated in a process in which the bias voltages were first stepped through all possible IQ settings. Then in a reverse interpolation performed by use of MATLAB software, a lookup table containing 3,600 IQ settings, representing equal amplitude and phase increments of 0.1 , was created for each vector modulator. During operation of the apparatus, these lookup tables are used in calibrating the PCDT.
Shaffer, H Bradley; McCartney-Melstad, Evan; Near, Thomas J; Mount, Genevieve G; Spinks, Phillip Q
2017-10-01
Accurate time-calibrated phylogenies are the centerpiece of many macroevolutionary studies, and the relationship between the size and scale of molecular data sets and the density and accuracy of fossil calibrations is a key element of time tree studies. Here, we develop a target capture array specifically for living turtles, compare its efficiency to an ultraconserved element (UCE) dataset, and present a time-calibrated molecular phylogeny based on 539 nuclear loci sequenced from 26 species representing the breadth of living turtle diversity plus outgroups. Our gene array, based on three fully sequenced turtle genomes, is 2.4 times more variable across turtles than a recently published UCE data set for an identical subset of 13 species, confirming that taxon-specific arrays return more informative data per sequencing effort than UCEs. We used our genomic data to estimate the ages of living turtle clades including a mid-late Triassic origin for crown turtles and a mid-Carboniferous split of turtles from their sister group, Archosauria. By specifically excluding several of the earliest potential crown turtle fossils and limiting the age of fossil calibration points to the unambiguous crown lineage Caribemys oxfordiensis from the Late Jurassic (Oxfordian, 163.5-157.3Ma) we corroborate a relatively ancient age for living turtles. We also provide novel age estimates for five of the ten testudine families containing more than a single species, as well as several intrafamilial clades. Most of the diversity of crown turtles appears to date to the Paleogene, well after the Cretaceous-Paleogene mass extinction 66mya. Copyright © 2017 Elsevier Inc. All rights reserved.
Haughey, Aisling; Coalter, George; Mugabe, Koki
2011-09-01
The study aimed to assess the suitability of linear array metal oxide semiconductor field effect transistor detectors (MOSFETs) as in vivo dosimeters to measure rectal dose in high dose rate brachytherapy treatments. The MOSFET arrays were calibrated with an Ir192 source and phantom measurements were performed to check agreement with the treatment planning system. The angular dependence, linearity and constancy of the detectors were evaluated. For in vivo measurements two sites were investigated, transperineal needle implants for prostate cancer and Fletcher suites for cervical cancer. The MOSFETs were inserted into the patients' rectum in theatre inside a modified flatus tube. The patients were then CT scanned for treatment planning. Measured rectal doses during treatment were compared with point dose measurements predicted by the TPS. The MOSFETs were found to require individual calibration factors. The calibration was found to drift by approximately 1% ±0.8 per 500 mV accumulated and varies with distance from source due to energy dependence. In vivo results for prostate patients found only 33% of measured doses agreed with the TPS within ±10%. For cervix cases 42% of measured doses agreed with the TPS within ±10%, however of those not agreeing variations of up to 70% were observed. One of the most limiting factors in this study was found to be the inability to prevent the MOSFET moving internally between the time of CT and treatment. Due to the many uncertainties associated with MOSFETs including calibration drift, angular dependence and the inability to know their exact position at the time of treatment, we consider them to be unsuitable for in vivo dosimetry in rectum for HDR brachytherapy.
1980-06-01
6 dB Stripline Couplers 29 3-4 Properties of Teflon -Fiberglass 30 5-1 Power Consumption for Various Motor Windings 47 5-2 Summary of Flanged 50-Ohm... spacing of 0.62A at the design frequency of 1.3 GHz. The diameter of such an array is nominally 180 inches. The chosen number of array elements is one-half...4 14 that required for a full-sized antenna with the same inter-element spacing . Azimuth patterns were computed for several circular array designs
Space shuttle cavity assessment test program
NASA Technical Reports Server (NTRS)
Scheps, P. B.
1976-01-01
In order to obtain basic radiation properties of the radiator/payload bay door cavity, three tests were conducted on a full-size structural simulator of the cavity. There were three tests conducted: (1) CATA used for determination of exchange factors, absorbed solar flux, and door covering influences, (2) quartz lamp array calibrated to provide IR flux distribution on CATA, and (3) retest with radiometer array for background flux measurement.
A Summary of The 2000-2001 NASA Glenn Lear Jet AM0 Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Scheiman, David; Brinker, David; Snyder, David; Baraona, Cosmo; Jenkins, Phillip; Rieke, William J.; Blankenship, Kurt S.; Tom, Ellen M.
2002-01-01
Calibration of solar cells for space is extremely important for satellite power system design. Accurate prediction of solar cell performance is critical to solar array sizing, often required to be within 1%. The NASA Glenn Research Center solar cell calibration airplane facility has been in operation since 1963 with 531 flights to date. The calibration includes real data to Air Mass (AM) 0.2 and uses the Langley plot method plus an ozone correction factor to extrapolate to AM0. Comparison of the AM0 calibration data indicates that there is good correlation with Balloon and Shuttle flown solar cells. This paper will present a history of the airplane calibration procedure, flying considerations, and a brief summary of the previous flying season with some measurement results. This past flying season had a record 35 flights. It will also discuss efforts to more clearly define the ozone correction factor.
The calibration of an HF radar used for ionospheric research
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
1984-02-01
The HF radar on Bribie Island, Australia, uses crossed-fan beams produced by crossed linear transmitter and receiver arrays of 10 elements each to simulate a pencil beam. The beam points vertically when all the array elements are in phase, and is steerable by up to 20 deg off vertical at the central one of the three operating frequencies. Phase and gain changes within the transmitters and receivers are compensated for by an automatic system of adjustment. The 10 transmitting antennas are, as nearly as possible, physically identical as are the 10 receiving antennas. Antenna calibration using high flying aircraft or satellites is not possible. A method is described for using the ionospheric reflections to measure the polar diagram and also to correct for errors in the direction of pointing.
NASA Astrophysics Data System (ADS)
Sokolowski, M.; Colegate, T.; Sutinjo, A. T.; Ung, D.; Wayth, R.; Hurley-Walker, N.; Lenc, E.; Pindor, B.; Morgan, J.; Kaplan, D. L.; Bell, M. E.; Callingham, J. R.; Dwarakanath, K. S.; For, Bi-Qing; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wu, C.; Zheng, Q.
2017-11-01
The Murchison Widefield Array (MWA), located in Western Australia, is one of the low-frequency precursors of the international Square Kilometre Array (SKA) project. In addition to pursuing its own ambitious science programme, it is also a testbed for wide range of future SKA activities ranging from hardware, software to data analysis. The key science programmes for the MWA and SKA require very high dynamic ranges, which challenges calibration and imaging systems. Correct calibration of the instrument and accurate measurements of source flux densities and polarisations require precise characterisation of the telescope's primary beam. Recent results from the MWA GaLactic Extragalactic All-sky Murchison Widefield Array (GLEAM) survey show that the previously implemented Average Embedded Element (AEE) model still leaves residual polarisations errors of up to 10-20% in Stokes Q. We present a new simulation-based Full Embedded Element (FEE) model which is the most rigorous realisation yet of the MWA's primary beam model. It enables efficient calculation of the MWA beam response in arbitrary directions without necessity of spatial interpolation. In the new model, every dipole in the MWA tile (4 × 4 bow-tie dipoles) is simulated separately, taking into account all mutual coupling, ground screen, and soil effects, and therefore accounts for the different properties of the individual dipoles within a tile. We have applied the FEE beam model to GLEAM observations at 200-231 MHz and used false Stokes parameter leakage as a metric to compare the models. We have determined that the FEE model reduced the magnitude and declination-dependent behaviour of false polarisation in Stokes Q and V while retaining low levels of false polarisation in Stokes U.
Spectral Analysis of the Primary Flight Focal Plane Arrays for the Thermal Infrared Sensor
NASA Technical Reports Server (NTRS)
Montanaro, Matthew; Reuter, Dennis C.; Markham, Brian L.; Thome, Kurtis J.; Lunsford, Allen W.; Jhabvala, Murzy D.; Rohrbach, Scott O.; Gerace, Aaron D.
2011-01-01
Thermal Infrared Sensor (TIRS) is a (1) New longwave infrared (10 - 12 micron) sensor for the Landsat Data Continuity Mission, (2) 185 km ground swath; 100 meter pixel size on ground, (3) Pushbroom sensor configuration. Issue of Calibration are: (1) Single detector -- only one calibration, (2) Multiple detectors - unique calibration for each detector -- leads to pixel-to-pixel artifacts. Objectives are: (1) Predict extent of residual striping when viewing a uniform blackbody target through various atmospheres, (2) Determine how different spectral shapes affect the derived surface temperature in a realistic synthetic scene.
Model Calibration Efforts for the International Space Station's Solar Array Mast
NASA Technical Reports Server (NTRS)
Elliott, Kenny B.; Horta, Lucas G.; Templeton, Justin D.; Knight, Norman F., Jr.
2012-01-01
The International Space Station (ISS) relies on sixteen solar-voltaic blankets to provide electrical power to the station. Each pair of blankets is supported by a deployable boom called the Folding Articulated Square Truss Mast (FAST Mast). At certain ISS attitudes, the solar arrays can be positioned in such a way that shadowing of either one or three longerons causes an unexpected asymmetric thermal loading that if unchecked can exceed the operational stability limits of the mast. Work in this paper documents part of an independent NASA Engineering and Safety Center effort to assess the existing operational limits. Because of the complexity of the system, the problem is being worked using a building-block progression from components (longerons), to units (single or multiple bays), to assembly (full mast). The paper presents results from efforts to calibrate the longeron components. The work includes experimental testing of two types of longerons (straight and tapered), development of Finite Element (FE) models, development of parameter uncertainty models, and the establishment of a calibration and validation process to demonstrate adequacy of the models. Models in the context of this paper refer to both FE model and probabilistic parameter models. Results from model calibration of the straight longerons show that the model is capable of predicting the mean load, axial strain, and bending strain. For validation, parameter values obtained from calibration of straight longerons are used to validate experimental results for the tapered longerons.
Design and laboratory calibration of the compact pushbroom hyperspectral imaging system
NASA Astrophysics Data System (ADS)
Zhou, Jiankang; Ji, Yiqun; Chen, Yuheng; Chen, Xinhua; Shen, Weimin
2009-11-01
The designed hyperspectral imaging system is composed of three main parts, that is, optical subsystem, electronic subsystem and capturing subsystem. And a three-dimensional "image cube" can be obtained through push-broom. The fore-optics is commercial-off-the-shelf with high speed and three continuous zoom ratios. Since the dispersive imaging part is based on Offner relay configuration with an aberration-corrected convex grating, high power of light collection and variable view field are obtained. The holographic recording parameters of the convex grating are optimized, and the aberration of the Offner configuration dispersive system is balanced. The electronic system adopts module design, which can minimize size, mass, and power consumption. Frame transfer area-array CCD is chosen as the image sensor and the spectral line can be binned to achieve better SNR and sensitivity without any deterioration in spatial resolution. The capturing system based on the computer can set the capturing parameters, calibrate the spectrometer, process and display spectral imaging data. Laboratory calibrations are prerequisite for using precise spectral data. The spatial and spectral calibration minimize smile and keystone distortion caused by optical system, assembly and so on and fix positions of spatial and spectral line on the frame area-array CCD. Gases excitation lamp is used in smile calibration and the keystone calculation is carried out by different viewing field point source created by a series of narrow slit. The laboratory and field imaging results show that this pushbroom hyperspectral imaging system can acquire high quality spectral images.
Calibration of radio-astronomical data on the cloud. LOFAR, the pathway to SKA
NASA Astrophysics Data System (ADS)
Sabater, J.; Sánchez-Expósito, S.; Garrido, J.; Ruiz, J. E.; Best, P. N.; Verdes-Montenegro, L.
2015-05-01
The radio interferometer LOFAR (LOw Frequency ARray) is fully operational now. This Square Kilometre Array (SKA) pathfinder allows the observation of the sky at frequencies between 10 and 240 MHz, a relatively unexplored region of the spectrum. LOFAR is a software defined telescope: the data is mainly processed using specialized software running in common computing facilities. That means that the capabilities of the telescope are virtually defined by software and mainly limited by the available computing power. However, the quantity of data produced can quickly reach huge volumes (several Petabytes per day). After the correlation and pre-processing of the data in a dedicated cluster, the final dataset is handled to the user (typically several Terabytes). The calibration of these data requires a powerful computing facility in which the specific state of the art software under heavy continuous development can be easily installed and updated. That makes this case a perfect candidate for a cloud infrastructure which adds the advantages of an on demand, flexible solution. We present our approach to the calibration of LOFAR data using Ibercloud, the cloud infrastructure provided by Ibergrid. With the calibration work-flow adapted to the cloud, we can explore calibration strategies for the SKA and show how private or commercial cloud infrastructures (Ibercloud, Amazon EC2, Google Compute Engine, etc.) can help to solve the problems with big datasets that will be prevalent in the future of astronomy.
Modeling Photo-multiplier Gain and Regenerating Pulse Height Data for Application Development
NASA Astrophysics Data System (ADS)
Aspinall, Michael D.; Jones, Ashley R.
2018-01-01
Systems that adopt organic scintillation detector arrays often require a calibration process prior to the intended measurement campaign to correct for significant performance variances between detectors within the array. These differences exist because of low tolerances associated with photo-multiplier tube technology and environmental influences. Differences in detector response can be corrected for by adjusting the supplied photo-multiplier tube voltage to control its gain and the effect that this has on the pulse height spectra from a gamma-only calibration source with a defined photo-peak. Automated methods that analyze these spectra and adjust the photo-multiplier tube bias accordingly are emerging for hardware that integrate acquisition electronics and high voltage control. However, development of such algorithms require access to the hardware, multiple detectors and calibration source for prolonged periods, all with associated constraints and risks. In this work, we report on a software function and related models developed to rescale and regenerate pulse height data acquired from a single scintillation detector. Such a function could be used to generate significant and varied pulse height data that can be used to integration-test algorithms that are capable of automatically response matching multiple detectors using pulse height spectra analysis. Furthermore, a function of this sort removes the dependence on multiple detectors, digital analyzers and calibration source. Results show a good match between the real and regenerated pulse height data. The function has also been used successfully to develop auto-calibration algorithms.
Improving MWA/HERA Calibration Using Extended Radio Source Models
NASA Astrophysics Data System (ADS)
Cunningham, Devin; Tasker, Nicholas; University of Washington EoR Imaging Team
2018-01-01
The formation of the first stars and galaxies in the universe is among the greatest mysteries in astrophysics. Using special purpose radio interferometers, it is possible to detect the faint 21 cm radio line emitted by neutral hydrogen in order to characterize the Epoch of Reionization (EoR) and the formation of the first stars and galaxies. We create better models of extended radio sources by reducing component number of deconvolved Murchison Widefield Array (MWA) data by up to 90%, while preserving real structure and flux information. This real structure is confirmed by comparisons to observations of the same extended radio sources from the TIFR GMRT Sky Survey (TGSS) and NRAO VLA Sky Survey (NVSS), which detect at a similar frequency range as the MWA. These sophisticated data reduction techniques not only offer improvements to the calibration of the MWA, but also hold applications for the future sky-based calibration of the Hydrogen Epoch of Reionization Array (HERA). This has the potential to reduce noise in the power spectra from these instruments, and consequently provide a deeper view into the window of EoR.
Design of 4x1 microstrip patch antenna array for 5.8 GHz ISM band applications
NASA Astrophysics Data System (ADS)
Valjibhai, Gohil Jayesh; Bhatia, Deepak
2013-01-01
This paper describes the new design of four element antenna array using corporate feed technique. The proposed antenna array is developed on the Rogers 5880 dielectric material. The antenna array works on 5.8 GHz ISM band. The industrial, scientific and medical (ISM) radio bands are radio bands (portions of the radio spectrum) reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than communications. The array antennas have VSWR < 1.6 from 5.725 - 5.875 GHz. The simulated return loss characteristic of the antenna array is - 39.3 dB at 5.8 GHz. The gain of the antenna array is 12.3 dB achieved. The directivity of the broadside radiation pattern is 12.7 dBi at the 5.8 GHz operating frequency. The antenna array is simulated using High frequency structure simulation software.
Multipass rotary shear comminution process to produce corn stover particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James H; Lanning, David N
A process of comminution of corn stover having a grain direction to produce a mixture of corn stover, by feeding the corn stover in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of corn stover travel.
Parallel and series FED microstrip array with high efficiency and low cross polarization
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1995-01-01
A microstrip array antenna for vertically polarized fan beam (approximately 2 deg x 50 deg) for C-band SAR applications with a physical area of 1.7 m by 0.17 m comprises two rows of patch elements and employs a parallel feed to left- and right-half sections of the rows. Each section is divided into two segments that are fed in parallel with the elements in each segment fed in series through matched transmission lines for high efficiency. The inboard section has half the number of patch elements of the outboard section, and the outboard sections, which have tapered distribution with identical transmission line sections, terminated with half wavelength long open-circuit stubs so that the remaining energy is reflected and radiated in phase. The elements of the two inboard segments of the two left- and right-half sections are provided with tapered transmission lines from element to element for uniform power distribution over the central third of the entire array antenna. The two rows of array elements are excited at opposite patch feed locations with opposite (180 deg difference) phases for reduced cross-polarization.
Dielectric Covered Planar Antennas
NASA Technical Reports Server (NTRS)
Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)
2014-01-01
An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.
The study of microstrip antenna arrays and related problems
NASA Technical Reports Server (NTRS)
Lo, Y. T.
1984-01-01
The physical layout of the array elements and the proximity of the microstrip feed network makes the input impedance and radiation pattern values dependent upon the effects of mutual coupling, feedline discontinuities and feed point location. The extent of these dependences was assessed and a number of single patch and module structures were constructed and measured at an operating frequency of approximately 4.0 GHz. The empirical results were compared with the ones which were theoretically predicted by the cavity model of thin microstrip antennas. Each element was modelled as an independent radiating patch and each microstrip feedline as an independent, quasi-TEM transmission line. The effects of the feedline discontinuities are approximated by lumped L-C circuit models.
Micro-feeding and dosing of powders via a small-scale powder pump.
Besenhard, M O; Fathollahi, S; Siegmann, E; Slama, E; Faulhammer, E; Khinast, J G
2017-03-15
Robust and accurate powder micro-feeding (<100mg/s) and micro-dosing (<5 mg) are major challenges, especially with regard to regulatory limitations applicable to pharmaceutical development and production. Since known micro-feeders that yield feed rates below 5mg/s use gravimetric feeding principles, feed rates depend primarily on powder properties. In contrast, volumetric powder feeders do not require regular calibration because their feed rates are primarily determined by the feeder's characteristic volume replacement. In this paper, we present a volumetric micro-feeder based on a cylinder piston system (i.e., a powder pump), which allows accurate micro-feeding and feed rates of a few grams per hours even for very fine powders. Our experimental studies addressed the influence of cylinder geometries, the initial conditions of bulk powder, and the piston speeds. Additional computational studies via Discrete Element Method simulations offered a better understanding of the feeding process, its possible limitations and ways to overcome them. The powder pump is a simple yet valuable tool for accurate powder feeding at feed rates of several orders of magnitude. Copyright © 2016 Elsevier B.V. All rights reserved.
Borehole Volumetric Strainmeter Calibration From a Nearby Seismic Broadband Array at Etna Volcano
NASA Astrophysics Data System (ADS)
Currenti, G.; Zuccarello, L.; Bonaccorso, A.; Sicali, A.
2017-10-01
Strainmeter and broadband seismic signals have been analyzed jointly with the aim of calibrating a borehole strainmeter at Etna volcano by using a seismo-geodetic technique. Our results reveal a good coherence between the dynamic strains estimated from seismometer data and strains recorded by a dilatometer in a low-frequency range [0.03-0.06 Hz] at the arrival of teleseismic waves. This significant coherence enabled estimating the calibration coefficient and making a comparison with calibration results derived from other methods. In particular, we verified that the proposed approach provides a calibration coefficient that matches the results obtained from the comparison of the recorded strain both with theoretical strain tides and with normal-mode synthetic straingrams. The approach presented here has the advantage of exploiting recorded seismic data, avoiding the use of computed strain from theoretical models.
REDUNDANT ARRAY CONFIGURATIONS FOR 21 cm COSMOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dillon, Joshua S.; Parsons, Aaron R., E-mail: jsdillon@berkeley.edu
Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed followingmore » these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.« less
Redundant Array Configurations for 21 cm Cosmology
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.; Parsons, Aaron R.
2016-08-01
Realizing the potential of 21 cm tomography to statistically probe the intergalactic medium before and during the Epoch of Reionization requires large telescopes and precise control of systematics. Next-generation telescopes are now being designed and built to meet these challenges, drawing lessons from first-generation experiments that showed the benefits of densely packed, highly redundant arrays—in which the same mode on the sky is sampled by many antenna pairs—for achieving high sensitivity, precise calibration, and robust foreground mitigation. In this work, we focus on the Hydrogen Epoch of Reionization Array (HERA) as an interferometer with a dense, redundant core designed following these lessons to be optimized for 21 cm cosmology. We show how modestly supplementing or modifying a compact design like HERA’s can still deliver high sensitivity while enhancing strategies for calibration and foreground mitigation. In particular, we compare the imaging capability of several array configurations, both instantaneously (to address instrumental and ionospheric effects) and with rotation synthesis (for foreground removal). We also examine the effects that configuration has on calibratability using instantaneous redundancy. We find that improved imaging with sub-aperture sampling via “off-grid” antennas and increased angular resolution via far-flung “outrigger” antennas is possible with a redundantly calibratable array configuration.
Krieg, J; Koenzen, E; Seifried, N; Steingass, H; Schenkel, H; Rodehutscord, M
2018-03-01
Ruminal in situ incubations are widely used to assess the nutritional value of feedstuffs for ruminants. In in situ methods, feed samples are ruminally incubated in indigestible bags over a predefined timespan and the disappearance of nutrients from the bags is recorded. To describe the degradation of specific nutrients, information on the concentration of feed samples and undegraded feed after in situ incubation ('bag residues') is needed. For cereal and pea grains, CP and starch (ST) analyses are of interest. The numerous analyses of residues following ruminal incubation contribute greatly to the substantial investments in labour and money, and faster methods would be beneficial. Therefore, calibrations were developed to estimate CP and ST concentrations in grains and bag residues following in situ incubations by using their near-infrared spectra recorded from 680 to 2500 nm. The samples comprised rye, triticale, barley, wheat, and maize grains (20 genotypes each), and 15 durum wheat and 13 pea grains. In addition, residues after ruminal incubation were included (at least from four samples per species for various incubation times). To establish CP and ST calibrations, 620 and 610 samples (grains and bag residues after incubation, respectively) were chemically analysed for their CP and ST concentration. Calibrations using wavelengths from 1250 to 2450 nm and the first derivative of the spectra produced the best results (R 2 Validation=0.99 for CP and ST; standard error of prediction=0.47 and 2.10% DM for CP and ST, respectively). Hence, CP and ST concentration in cereal grains and peas and their bag residues could be predicted with high precision by NIRS for use in in situ studies. No differences were found between the effective ruminal degradation calculated from NIRS estimations and those calculated from chemical analyses (P>0.70). Calibrations were also calculated to predict ruminal degradation kinetics of cereal grains from the spectra of ground grains. Estimation of the effective ruminal degradation of CP and ST from the near-infrared spectra of cereal grains showed promising results (R 2>0.90), but the database needs to be extended to obtain more stable calibrations for routine use.
Cryogenic radiometers and intensity-stabilized lasers for Eos radiometric calibrations
NASA Technical Reports Server (NTRS)
Foukal, P.; Hoyt, C.; Jauniskis, L.
1991-01-01
Liquid helium-cooled electrical substitution radiometers (ESRs) provide irradiance standards with demonstrated absolute accuracy at the 0.01 percent level, spectrally flat response between the UV and IR, and sensitivity down to 0.1 nW/sq cm. We describe an automated system developed for NASA - Goddard Space Flight Center, consisting of a cryogenic ESR illuminated by servocontrolled laser beams. This system is designed to provide calibration of single-element and array detectors over the spectral range between 257nm in the UV to 10.6 microns in the IR. We also describe a cryogenic ESR optimized for black body calibrations that has been installed at NIST, and another that is under construction for calibrations of the CERES scanners planned for Eos.
A Consistency Evaluation and Calibration Method for Piezoelectric Transmitters
Zhang, Kai; Tan, Baohai; Liu, Xianping
2017-01-01
Array transducer and transducer combination technologies are evolving rapidly. While adapting transmitter combination technologies, the parameter consistencies between each transmitter are extremely important because they can determine a combined effort directly. This study presents a consistency evaluation and calibration method for piezoelectric transmitters by using impedance analyzers. Firstly, electronic parameters of transmitters that can be measured by impedance analyzers are introduced. A variety of transmitter acoustic energies that are caused by these parameter differences are then analyzed and certified and, thereafter, transmitter consistency is evaluated. Lastly, based on the evaluations, consistency can be calibrated by changing the corresponding excitation voltage. Acoustic experiments show that this method accurately evaluates and calibrates transducer consistencies, and is easy to realize. PMID:28452947
Adaptive Injection-locking Oscillator Array for RF Spectrum Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Daniel
2011-04-19
A highly parallel radio frequency receiver using an array of injection-locking oscillators for on-chip, rapid estimation of signal amplitudes and frequencies is considered. The oscillators are tuned to different natural frequencies, and variable gain amplifiers are used to provide negative feedback to adapt the locking band-width with the input signal to yield a combined measure of input signal amplitude and frequency detuning. To further this effort, an array of 16 two-stage differential ring oscillators and 16 Gilbert-cell mixers is designed for 40-400 MHz operation. The injection-locking oscillator array is assembled on a custom printed-circuit board. Control and calibration is achievedmore » by on-board microcontroller.« less
Integrated feeds for electronically reconfigurable apertures
NASA Astrophysics Data System (ADS)
Nicholls, Jeffrey Grant
With the increasing ubiquity of wireless technology, the need for lower-profile, electronically reconfigurable, highly-directive beam-steering antennas is increasing. This thesis proposes a new electronic beam-steering antenna architecture which combines the full-space beam-steering properties of reflectarrays and transmitarrays with the low-profile feeding characteristics of leaky-wave antennas. Two designs are developed: an integrated feed reflectarray and an integrated feed transmitarray, both of which integrate a leaky-wave feed directly next to the reconfigurable aperture itself. The integrated feed transmitarray proved to be the better architecture due to its simpler design and better performance. A 6-by-6 element array was fabricated and experimentally verified, and full-space (both azimuth and elevation) beam-steering was demonstrated at angles up to 45 degrees off broadside. In addition to the reduction in profile, the integrated feed design enables robust fixed control of the amplitude distribution across the aperture, a characteristic not as easily attained in typical reflectarrays/transmitarrays.
Cooper, W James; Parsons, Kevin; McIntyre, Alyssa; Kern, Brittany; McGee-Moore, Alana; Albertson, R Craig
2010-03-08
How particular changes in functional morphology can repeatedly promote ecological diversification is an active area of evolutionary investigation. The African rift-lake cichlids offer a calibrated time series of the most dramatic adaptive radiations of vertebrate trophic morphology yet described, and the replicate nature of these events provides a unique opportunity to test whether common changes in functional morphology have repeatedly facilitated their ecological success. Specimens from 87 genera of cichlid fishes endemic to Lakes Tanganyka, Malawi and Victoria were dissected in order to examine the functional morphology of cichlid feeding. We quantified shape using geometric morphometrics and compared patterns of morphological diversity using a series of analytical tests. The primary axes of divergence were conserved among all three radiations, and the most prevalent changes involved the size of the preorbital region of the skull. Even the fishes from the youngest of these lakes (Victoria), which exhibit the lowest amount of skull shape disparity, have undergone extensive preorbital evolution relative to other craniofacial traits. Such changes have large effects on feeding biomechanics, and can promote expansion into a wide array of niches along a bentho-pelagic ecomorphological axis. Here we show that specific changes in trophic anatomy have evolved repeatedly in the African rift lakes, and our results suggest that simple morphological alterations that have large ecological consequences are likely to constitute critical components of adaptive radiations in functional morphology. Such shifts may precede more complex shape changes as lineages diversify into unoccupied niches. The data presented here, combined with observations of other fish lineages, suggest that the preorbital region represents an evolutionary module that can respond quickly to natural selection when fishes colonize new lakes. Characterizing the changes in cichlid trophic morphology that have contributed to their extraordinary adaptive radiations has broad evolutionary implications, and such studies are necessary for directing future investigations into the proximate mechanisms that have shaped these spectacular phenomena.
Terrestrial photovoltaic measurements, 2
NASA Technical Reports Server (NTRS)
1976-01-01
The following major topics are discussed; (1) Terrestrial solar irradiance; (2) Solar simulation and reference cell calibration; and (3) Cell and array measurement procedures. Numerous related subtopics are also discussed within each major topic area.
Brito, Rita S; Pinheiro, Helena M; Ferreira, Filipa; Matos, José S; Pinheiro, Alexandre; Lourenço, Nídia D
2016-03-01
Online monitoring programs based on spectroscopy have a high application potential for the detection of hazardous wastewater discharges in sewer systems. Wastewater hydraulics poses a challenge for in situ spectroscopy, especially when the system includes storm water connections leading to rapid changes in water depth, velocity, and in the water quality matrix. Thus, there is a need to optimize and fix the location of in situ instruments, limiting their availability for calibration. In this context, the development of calibration models on bench spectrophotometers to estimate wastewater quality parameters from spectra acquired with in situ instruments could be very useful. However, spectra contain information not only from the samples, but also from the spectrophotometer generally invalidating this approach. The use of calibration transfer methods is a promising solution to this problem. In this study, calibration models were developed using interval partial least squares (iPLS), for the estimation of total suspended solids (TSS) and chemical oxygen demand (COD) in sewage from Ultraviolet-visible spectra acquired in a bench scanning spectrophotometer. The feasibility of calibration transfer to a submersible, diode array equipment, to be subsequently operated in situ, was assessed using three procedures: slope and bias correction (SBC); single wavelength standardization (SWS) on mean spectra; and local centering (LC). The results showed that SBC was the most adequate for the available data, adding insignificant error to the base model estimates. Single wavelength standardization was a close second best, potentially more robust, and independent of the base iPLS model. Local centering was shown to be inadequate for the samples and instruments used. © The Author(s) 2016.
A fast calibration method for 3-D tracking of ultrasound images using a spatial localizer.
Pagoulatos, N; Haynor, D R; Kim, Y
2001-09-01
We have developed a fast calibration method for computing the position and orientation of 2-D ultrasound (US) images in 3-D space where a position sensor is mounted on the US probe. This calibration is required in the fields of 3-D ultrasound and registration of ultrasound with other imaging modalities. Most of the existing calibration methods require a complex and tedious experimental procedure. Our method is simple and it is based on a custom-built phantom. Thirty N-fiducials (markers in the shape of the letter "N") embedded in the phantom provide the basis for our calibration procedure. We calibrated a 3.5-MHz sector phased-array probe with a magnetic position sensor, and we studied the accuracy and precision of our method. A typical calibration procedure requires approximately 2 min. We conclude that we can achieve accurate and precise calibration using a single US image, provided that a large number (approximately ten) of N-fiducials are captured within the US image, enabling a representative sampling of the imaging plane.
The Hydrogen Epoch of Reionization Array Dish. I. Beam Pattern Measurements and Science Implications
NASA Astrophysics Data System (ADS)
Neben, Abraham R.; Bradley, Richard F.; Hewitt, Jacqueline N.; DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Cheng, Carina; Ewall-Wice, Aaron; Patra, Nipanjana; Thyagarajan, Nithyanandan; Bowman, Judd; Dickenson, Roger; Dillon, Joshua S.; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Jacobs, Daniel C.; Kohn, Saul A.; Klima, Patricia J.; Moodley, Kavilan; Saliwanchik, Benjamin R. B.; Schaffner, Patrick; Shelton, John; Taylor, H. A.; Taylor, Rusty; Tegmark, Max; Wirt, Butch; Zheng, Haoxuan
2016-08-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (I.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m2 in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ˜ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.
THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron
2016-08-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish withmore » simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m{sup 2} in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.« less
SMI adaptive antenna arrays for weak interfering signals
NASA Technical Reports Server (NTRS)
Gupta, I. J.
1987-01-01
The performance of adaptive antenna arrays is studied when a sample matrix inversion (SMI) algorithm is used to control array weights. It is shown that conventional SMI adaptive antennas, like other adaptive antennas, are unable to suppress weak interfering signals (below thermal noise) encountered in broadcasting satellite communication systems. To overcome this problem, the SMI algorithm is modified. In the modified algorithm, the covariance matrix is modified such that the effect of thermal noise on the weights of the adaptive array is reduced. Thus, the weights are dictated by relatively weak coherent signals. It is shown that the modified algorithm provides the desired interference protection. The use of defocused feeds as auxiliary elements of an SMI adaptive array is also discussed.
Integrated sensor with frame memory and programmable resolution for light adaptive imaging
NASA Technical Reports Server (NTRS)
Zhou, Zhimin (Inventor); Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)
2004-01-01
An image sensor operable to vary the output spatial resolution according to a received light level while maintaining a desired signal-to-noise ratio. Signals from neighboring pixels in a pixel patch with an adjustable size are added to increase both the image brightness and signal-to-noise ratio. One embodiment comprises a sensor array for receiving input signals, a frame memory array for temporarily storing a full frame, and an array of self-calibration column integrators for uniform column-parallel signal summation. The column integrators are capable of substantially canceling fixed pattern noise.
Controller for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument
NASA Technical Reports Server (NTRS)
Zomberg, Brian G.; Chren, William A., Jr.
1994-01-01
A prototype controller for the ESTAR (electronically scanned thinned array radiometer) instrument has been designed and tested. It manages the operation of the digital data subsystem (DDS) and its communication with the Small Explorer data system (SEDS). Among the data processing tasks that it coordinates are FEM data acquisition, noise removal, phase alignment and correlation. Its control functions include instrument calibration and testing of two critical subsystems, the output data formatter and Walsh function generator. It is implemented in a Xilinx XC3064PC84-100 field programmable gate array (FPGA) and has a maximum clocking frequency of 10 MHz.
NASA Technical Reports Server (NTRS)
Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Wilson, Donna V.; Xenophontos, Christos
2012-01-01
IRS2 is a Wiener-optimal approach to using all of the reference information that Teledyne's HAWAII-2RG detector arrays provide. Using a new readout pattern, IRS2 regularly interleaves reference pixels with the normal pixels during readout. This differs from conventional clocking, in which the reference pixels are read out infrequently, and only in a few rows and columns around the outside edges of the detector array. During calibration, the data are processed in Fourier space, which is <;:lose to the noise's eigenspace. Using IRS2, we have reduced the read noise of the James Webb Space Telescope Near Infrared Spectrograph by 15% compared to conventional readout. We are attempting to achieve further gains by calibrating out recently recognized non-stationary noise that appears at the frame rate.
NASA Technical Reports Server (NTRS)
Loane, J. T.; Bowhill, S. A.; Mayes, P. E.
1982-01-01
The effects of atmospheric turbulence and the basis for the coherent scatter radar techniques are discussed. The reasons are given for upgrading the Radar system to a larger steerable array. Phase array theory pertinent to the system design is reviewed, along with approximations for maximum directive gain and blind angles due to mutual coupling. The methods and construction techniques employed in the UHF model study are explained. The antenna range is described, with a block diagram for the mode of operation used.
Sahoo, Ranjit Kumar; Warren, Andrew D; Collins, Steve C; Kodandaramaiah, Ullasa
2017-08-02
Skippers (Family: Hesperiidae) are a large group of butterflies with ca. 4000 species under 567 genera. The lack of a time-calibrated higher-level phylogeny of the group has precluded understanding of its evolutionary past. We here use a 10-gene dataset to reconstruct the most comprehensive time-calibrated phylogeny of the group, and explore factors that affected the diversification of these butterflies. Ancestral state reconstructions show that the early hesperiid lineages utilized dicots as larval hostplants. The ability to feed on monocots evolved once at the K-Pg boundary (ca. 65 million years ago (Mya)), and allowed monocot-feeders to diversify much faster on average than dicot-feeders. The increased diversification rate of the monocot-feeding clade is specifically attributed to rate shifts in two of its descendant lineages. The first rate shift, a four-fold increase compared to background rates, happened ca. 50 Mya, soon after the Paleocene-Eocene thermal maximum, in a lineage of the subfamily Hesperiinae that mostly fed on forest monocots. The second rate shift happened ca. 40 Mya in a grass-feeding lineage of Hesperiinae when open-habitat grasslands appeared in the Neotropics owing to gradual cooling of the atmospheric temperature. The evolution of monocot feeding strongly influenced diversification of skippers. We hypothesize that although monocot feeding was an intrinsic trait that allowed exploration of novel niches, the lack of extensive availability of monocots comprised an extrinsic limitation for niche exploration. The shifts in diversification rate coincided with paleoclimatic events during which grasses and forest monocots were diversified.
Quasi-optical antenna-mixer-array design for terahertz frequencies
NASA Technical Reports Server (NTRS)
Guo, Yong; Potter, Kent A.; Rutledge, David B.
1992-01-01
A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.
Characteristics and Use of a Parametric End-Fired Array for Acoustics in Air
2007-03-01
as a sonar application for underwater use. The vast majority of the research for parametric arrays was devoted to underwater applications until the...and also for the calibration of hydrophones and receivers for wide band sonar . All of the researchers mentioned above mainly focused their efforts on...features, which include very high directivity at low frequencies without unwanted side lobes. They are generally used as a wide band sonar system
Yi, Yong-Yan; Li, De-Rong; Zhang, Yun-Wei; Yang, Fu-Yu
2009-07-01
The invasion extent and harmfulness of fungi can be determined by chitin, ergosterol and mycotoxins. It is important to monitor chitin, ergosterol and mycotoxins changes to prevent contamination of forage and feed products, and effectively control the sustainable development of the mildew. Predication of these chemical materials was often completed by laboratory analysis, which was time-consuming and cumbersome and could not reflect the results in time in the past. Near infrared reflectance spectroscopy (NIRS) is a rapid, convenient, highly efficient, nondestructive and low-cost analytical technique, which has been widely used in various fields such as food field and feed field for quantitative and qualitative analysis. It has a great potentiality of application in quality analysis. In this paper, the principle and the characteristic of NIRS and its applications in food, forage, feed and other agriculture products quality analysis were introduced. Its applications in fungal biomass (chitin, ergosterol) and mycotoxins were mainly reviewed. NIRS was used to quantify chitin, ergosterol and mycotoxins. Calibration equations and validation equations for these materials were developed. It is also expected that NIRS will play a more and more important role in the field of fungi with the establishment of calibration equation and improvement of model database.
Precision Calibration for Realizing the Promise of 21 cm Cosmology with HERA
NASA Astrophysics Data System (ADS)
Dillon, Joshua S.; Hydrogen Epoch of Reionization Array (HERA) Team
2018-01-01
In this talk I will discuss progress in both the theory and practice of data analysis for the Hydrogen Epoch of Reionization Array (HERA), focusing on techniques to calibrate the instrumental response and preserve the spectral smoothness that is essential to separating the cosmological 21 cm signal from foregrounds that are five orders of magnitude brighter. I will discuss how we take advantage of HERA's highly-redundant configuration to calibrate both relative antenna gains and perhaps also the overall spectral response and show some early results. I will discuss the effect of real-world deviations from redundancy and how they too might be overcome.
A computer program for calculating relative-transmissivity input arrays to aid model calibration
Weiss, Emanuel
1982-01-01
A program is documented that calculates a transmissivity distribution for input to a digital ground-water flow model. Factors that are taken into account in the calculation are: aquifer thickness, ground-water viscosity and its dependence on temperature and dissolved solids, and permeability and its dependence on overburden pressure. Other factors affecting ground-water flow are indicated. With small changes in the program code, leakance also could be calculated. The purpose of these calculations is to provide a physical basis for efficient calibration, and to extend rational transmissivity trends into areas where model calibration is insensitive to transmissivity values.
Synthetic aperture imaging in ultrasound calibration
NASA Astrophysics Data System (ADS)
Ameri, Golafsoun; Baxter, John S. H.; McLeod, A. Jonathan; Jayaranthe, Uditha L.; Chen, Elvis C. S.; Peters, Terry M.
2014-03-01
Ultrasound calibration allows for ultrasound images to be incorporated into a variety of interventional applica tions. Traditional Z- bar calibration procedures rely on wired phantoms with an a priori known geometry. The line fiducials produce small, localized echoes which are then segmented from an array of ultrasound images from different tracked probe positions. In conventional B-mode ultrasound, the wires at greater depths appear blurred and are difficult to segment accurately, limiting the accuracy of ultrasound calibration. This paper presents a novel ultrasound calibration procedure that takes advantage of synthetic aperture imaging to reconstruct high resolution ultrasound images at arbitrary depths. In these images, line fiducials are much more readily and accu rately segmented, leading to decreased calibration error. The proposed calibration technique is compared to one based on B-mode ultrasound. The fiducial localization error was improved from 0.21mm in conventional B-mode images to 0.15mm in synthetic aperture images corresponding to an improvement of 29%. This resulted in an overall reduction of calibration error from a target registration error of 2.00mm to 1.78mm, an improvement of 11%. Synthetic aperture images display greatly improved segmentation capabilities due to their improved resolution and interpretability resulting in improved calibration.
Continuous Odour Measurement with Chemosensor Systems
NASA Astrophysics Data System (ADS)
Boeker, Peter; Haas, T.; Diekmann, B.; Lammer, P. Schulze
2009-05-01
The continuous odour measurement is a challenging task for chemosensor systems. Firstly, a long term and stable measurement mode must be guaranteed in order to preserve the validity of the time consuming and expensive olfactometric calibration data. Secondly, a method is needed to deal with the incoming sensor data. The continuous online detection of signal patterns, the correlated gas emission and the assigned odour data is essential for the continuous odour measurement. Thirdly, a severe danger of over-fitting in the process of the odour calibration is present, because of the high measurement uncertainty of the olfactometry. In this contribution we present a technical solution for continuous measurements comprising of a hybrid QMB-sensor array and electrochemical cells. A set of software tools enables the efficient data processing and calibration and computes the calibration parameters. The internal software of the measurement systems microcontroller processes the calibration parameters online for the output of the desired odour information.
Method for Accurately Calibrating a Spectrometer Using Broadband Light
NASA Technical Reports Server (NTRS)
Simmons, Stephen; Youngquist, Robert
2011-01-01
A novel method has been developed for performing very fine calibration of a spectrometer. This process is particularly useful for modern miniature charge-coupled device (CCD) spectrometers where a typical factory wavelength calibration has been performed and a finer, more accurate calibration is desired. Typically, the factory calibration is done with a spectral line source that generates light at known wavelengths, allowing specific pixels in the CCD array to be assigned wavelength values. This method is good to about 1 nm across the spectrometer s wavelength range. This new method appears to be accurate to about 0.1 nm, a factor of ten improvement. White light is passed through an unbalanced Michelson interferometer, producing an optical signal with significant spectral variation. A simple theory can be developed to describe this spectral pattern, so by comparing the actual spectrometer output against this predicted pattern, errors in the wavelength assignment made by the spectrometer can be determined.
NASA Technical Reports Server (NTRS)
Mach, D. M.; Koshak, W. J.
2007-01-01
A matrix calibration procedure has been developed that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. The calibration method can be generalized to any reasonable combination of electric field measurements and aircraft. A calibration matrix is determined for each aircraft that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or deemphasized [e.g., due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate the calibration technique, data are presented from several aircraft programs (ER-2, DC-8, Altus, and Citation).
The study of microstrip antenna arrays and related problems
NASA Technical Reports Server (NTRS)
Lo, Y. T.
1986-01-01
In February, an initial computer program to be used in analyzing the four-element array module was completed. This program performs the analysis of modules composed of four rectangular patches which are corporately fed by a microstrip line network terminated in four identical load impedances. Currently, a rigorous full-wave analysis of various types of microstrip line feed structures and patches is being performed. These tests include the microstrip line feed between layers of different electrical parameters. A method of moments was implemented for the case of a single dielectric layer and microstrip line fed rectangular patches in which the primary source is assumed to be a magnetic current ribbon across the line some distance from the patch. Measured values are compared with those computed by the program.
Astrometric Calibration and Performance of the Dark Energy Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernstein, G. M.; Armstrong, R.; Plazas, A. A.
2017-05-30
We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520~Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry ofmore » $>10^7$ stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the RMS variation in aperture magnitudes of bright stars on cloudless nights down to 2--3 mmag, with <1 mmag of correlated photometric errors for stars separated by $$\\ge20$$". On cloudless nights, any departures of the exposure zeropoints from a secant airmass law exceeding >1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6" and 8" diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2-degree field drifts over months by up to $$\\pm7$$ mmag, in a nearly-wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.« less
The Very Large Array Data Processing Pipeline
NASA Astrophysics Data System (ADS)
Kent, Brian R.; Masters, Joseph S.; Chandler, Claire J.; Davis, Lindsey E.; Kern, Jeffrey S.; Ott, Juergen; Schinzel, Frank K.; Medlin, Drew; Muders, Dirk; Williams, Stewart; Geers, Vincent C.; Momjian, Emmanuel; Butler, Bryan J.; Nakazato, Takeshi; Sugimoto, Kanako
2018-01-01
We present the VLA Pipeline, software that is part of the larger pipeline processing framework used for the Karl G. Jansky Very Large Array (VLA), and Atacama Large Millimeter/sub-millimeter Array (ALMA) for both interferometric and single dish observations.Through a collection of base code jointly used by the VLA and ALMA, the pipeline builds a hierarchy of classes to execute individual atomic pipeline tasks within the Common Astronomy Software Applications (CASA) package. Each pipeline task contains heuristics designed by the team to actively decide the best processing path and execution parameters for calibration and imaging. The pipeline code is developed and written in Python and uses a "context" structure for tracking the heuristic decisions and processing results. The pipeline "weblog" acts as the user interface in verifying the quality assurance of each calibration and imaging stage. The majority of VLA scheduling blocks above 1 GHz are now processed with the standard continuum recipe of the pipeline and offer a calibrated measurement set as a basic data product to observatory users. In addition, the pipeline is used for processing data from the VLA Sky Survey (VLASS), a seven year community-driven endeavor started in September 2017 to survey the entire sky down to a declination of -40 degrees at S-band (2-4 GHz). This 5500 hour next-generation large radio survey will explore the time and spectral domains, relying on pipeline processing to generate calibrated measurement sets, polarimetry, and imaging data products that are available to the astronomical community with no proprietary period. Here we present an overview of the pipeline design philosophy, heuristics, and calibration and imaging results produced by the pipeline. Future development will include the testing of spectral line recipes, low signal-to-noise heuristics, and serving as a testing platform for science ready data products.The pipeline is developed as part of the CASA software package by an international consortium of scientists and software developers based at the National Radio Astronomical Observatory (NRAO), the European Southern Observatory (ESO), and the National Astronomical Observatory of Japan (NAOJ).
Check Calibration of the NASA Glenn 10- by 10-Foot Supersonic Wind Tunnel (2014 Test Entry)
NASA Technical Reports Server (NTRS)
Johnson, Aaron; Pastor-Barsi, Christine; Arrington, E. Allen
2016-01-01
A check calibration of the 10- by 10-Foot Supersonic Wind Tunnel (SWT) was conducted in May/June 2014 using an array of five supersonic wedge probes to verify the 1999 Calibration. This check calibration was necessary following a control systems upgrade and an integrated systems test (IST). This check calibration was required to verify the tunnel flow quality was unchanged by the control systems upgrade prior to the next test customer beginning their test entry. The previous check calibration of the tunnel occurred in 2007, prior to the Mars Science Laboratory test program. Secondary objectives of this test entry included the validation of the new Cobra data acquisition system (DAS) against the current Escort DAS and the creation of statistical process control (SPC) charts through the collection of series of repeated test points at certain predetermined tunnel parameters. The SPC charts secondary objective was not completed due to schedule constraints. It is hoped that this effort will be readdressed and completed in the near future.
General characteristics of preliminary data processing in the Copernicus experiment
NASA Technical Reports Server (NTRS)
Ziolkovski, K.; Kossatski, K.
1975-01-01
Data from the 'Copernicus' experiment is processed in four stages: setting up of basic arrays, data calibration, graphical display of results, and assignment of results to navigation parameters. Each stage is briefly discussed.
Calibration of a Fusion Experiment to Investigate the Nuclear Caloric Curve
NASA Astrophysics Data System (ADS)
Keeler, Ashleigh
2017-09-01
In order to investigate the nuclear equation of state (EoS), the relation between two thermodynamic quantities can be examined. The correlation between the temperature and excitation energy of a nucleus, also known as the caloric curve, has been previously observed in peripheral heavy-ion collisions to exhibit a dependence on the neutron-proton asymmetry. To further investigate this result, fusion reactions (78Kr + 12C and 86Kr + 12C) were measured; the beam energy was varied in the range 15-35 MeV/u in order to vary the excitation energy. The light charged particles (LCPs) evaporated from the compound nucleus were measured in the Si-CsI(TI)/PD detector array FAUST (Forward Array Using Silicon Technology). The LCPs carry information about the temperature. The calibration of FAUST will be described in this presentation. The silicon detectors have resistive surfaces in perpendicular directions to allow position measurement of the LCP's to better than 200 um. The resistive nature requires a position-dependent correction to the energy calibration to take full advantage of the energy resolution. The momentum is calculated from the energy of these particles, and their position on the detectors. A parameterized formula based on the Bethe-Bloch equation was used to straighten the particle identification (PID) lines measured with the dE-E technique. The energy calibration of the CsI detectors is based on the silicon detector energy calibration and the PID. A precision slotted mask enables the relative positions of the detectors to be determined. DOE Grant: DE-FG02-93ER40773 and REU Grant: PHY - 1659847.
Development of infrared scene projectors for testing fire-fighter cameras
NASA Astrophysics Data System (ADS)
Neira, Jorge E.; Rice, Joseph P.; Amon, Francine K.
2008-04-01
We have developed two types of infrared scene projectors for hardware-in-the-loop testing of thermal imaging cameras such as those used by fire-fighters. In one, direct projection, images are projected directly into the camera. In the other, indirect projection, images are projected onto a diffuse screen, which is then viewed by the camera. Both projectors use a digital micromirror array as the spatial light modulator, in the form of a Micromirror Array Projection System (MAPS) engine having resolution of 800 x 600 with mirrors on a 17 micrometer pitch, aluminum-coated mirrors, and a ZnSe protective window. Fire-fighter cameras are often based upon uncooled microbolometer arrays and typically have resolutions of 320 x 240 or lower. For direct projection, we use an argon-arc source, which provides spectral radiance equivalent to a 10,000 Kelvin blackbody over the 7 micrometer to 14 micrometer wavelength range, to illuminate the micromirror array. For indirect projection, an expanded 4 watt CO II laser beam at a wavelength of 10.6 micrometers illuminates the micromirror array and the scene formed by the first-order diffracted light from the array is projected onto a diffuse aluminum screen. In both projectors, a well-calibrated reference camera is used to provide non-uniformity correction and brightness calibration of the projected scenes, and the fire-fighter cameras alternately view the same scenes. In this paper, we compare the two methods for this application and report on our quantitative results. Indirect projection has an advantage of being able to more easily fill the wide field of view of the fire-fighter cameras, which typically is about 50 degrees. Direct projection more efficiently utilizes the available light, which will become important in emerging multispectral and hyperspectral applications.
USDA-ARS?s Scientific Manuscript database
Background: In a previously reported genome-wide association study based on a high-density bovine SNP genotyping array, 8 SNP were nominally associated (P=0.003) with average daily gain (ADG) and 3 of these were also associated (P=0.002) with average daily feed intake (ADFI) in a population of c...
Sound-field reproduction systems using fixed-directivity loudspeakers.
Poletti, M; Fazi, F M; Nelson, P A
2010-06-01
Sound reproduction systems using open arrays of loudspeakers in rooms suffer from degradations due to room reflections. These reflections can be reduced using pre-compensation of the loudspeaker signals, but this requires calibration of the array in the room, and is processor-intensive. This paper examines 3D sound reproduction systems using spherical arrays of fixed-directivity loudspeakers which reduce the sound field radiated outside the array. A generalized form of the simple source formulation and a mode-matching solution are derived for the required loudspeaker weights. The exterior field is derived and expressions for the exterior power and direct to reverberant ratio are derived. The theoretical results and simulations confirm that minimum interference occurs for loudspeakers which have hyper-cardioid polar responses.
NASA Astrophysics Data System (ADS)
Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.
2017-08-01
We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.
Experimental Demonstration of In-Place Calibration for Time Domain Microwave Imaging System
NASA Astrophysics Data System (ADS)
Kwon, S.; Son, S.; Lee, K.
2018-04-01
In this study, the experimental demonstration of in-place calibration was conducted using the developed time domain measurement system. Experiments were conducted using three calibration methods—in-place calibration and two existing calibrations, that is, array rotation and differential calibration. The in-place calibration uses dual receivers located at an equal distance from the transmitter. The received signals at the dual receivers contain similar unwanted signals, that is, the directly received signal and antenna coupling. In contrast to the simulations, the antennas are not perfectly matched and there might be unexpected environmental errors. Thus, we experimented with the developed experimental system to demonstrate the proposed method. The possible problems with low signal-to-noise ratio and clock jitter, which may exist in time domain systems, were rectified by averaging repeatedly measured signals. The tumor was successfully detected using the three calibration methods according to the experimental results. The cross correlation was calculated using the reconstructed image of the ideal differential calibration for a quantitative comparison between the existing rotation calibration and the proposed in-place calibration. The mean value of cross correlation between the in-place calibration and ideal differential calibration was 0.80, and the mean value of cross correlation of the rotation calibration was 0.55. Furthermore, the results of simulation were compared with the experimental results to verify the in-place calibration method. A quantitative analysis was also performed, and the experimental results show a tendency similar to the simulation.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.
1991-01-01
The following subject areas are covered: General Reflector Antenna Systems Program version 7(GRASP7); Multiple Reflector Analysis Program for Cylindrical Antennas (MRAPCA); Tri-Reflector 2D Synthesis Code (TRTDS); a geometrical optics and a physical optics synthesis techniques; beam scanning reflector, the type 2 and 6 reflectors, spherical reflector, and multiple reflector imaging systems; and radiometric array design.
Phased array-fed antenna configuration study
NASA Technical Reports Server (NTRS)
Crosswell, W. F.; Ball, D. E.; Taylor, R. C.
1983-01-01
The scope of this contract entails a configuration study for a phased array fed transmit antenna operating in the frequency band of 17.7 to 20.2 GHz. This initial contract provides a basis for understanding the design limitations and advantages of advanced phased array and cluster feeds (both utilizing intergral MMIC modules) illuminating folded reflector optics (both near field and focused types). Design parametric analyses are performed utilizing as constraints the objective secondary performance requirements of the Advanced Communications Technology Satellite (Table 1.0). The output of the study provides design information which serves as a data base for future active phased array fed antenna studies such as detailed designs required to support the development of a ground tested breadboard. In general, this study is significant because it provides the antenna community with an understanding of the basic principles which govern near field phased scanned feed effects on secondary reflector system performance. Although several articles have been written on analysis procedures and results for these systems, the authors of this report have observed phenomenon of near field antenna systems not previously documented. Because the physical justification for the exhibited performance is provided herein, the findings of this study add a new dimension to the available knowledge of the subject matter.
NASA Astrophysics Data System (ADS)
Tian, Jialin; Smith, William L.; Gazarik, Michael J.
2008-10-01
The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is applied to data collected during an atmospheric measurement experiment with the GIFTS, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The PC vectors of the calibrated radiance spectra are defined from the AERI observations and regression matrices relating the initial GIFTS radiance PC scores to the AERI radiance PC scores are calculated using the least squares inverse method. A new set of accurately calibrated GIFTS radiances are produced using the first four PC scores in the regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period.
2016-03-04
summary of the linear algebra involved. As we have seen, the RSC process begins with the interferometric phase measurement β, which due to wrapping will...mentary Divisors) in Section 2 and the following defi- nition of the matrix determinant. This definition is given in many linear algebra texts (see...principle solve for a particular solution of this system by arbitrarily setting two object phases (whose spatial frequencies are not co- linear ) and one
Method and apparatus for calibrating a display using an array of cameras
NASA Technical Reports Server (NTRS)
Johnson, Michael J. (Inventor); Chen, Chung-Jen (Inventor); Chandrasekhar, Rajesh (Inventor)
2001-01-01
The present invention overcomes many of the disadvantages of the prior art by providing a display that can be calibrated and re-calibrated with a minimal amount of manual intervention. To accomplish this, the present invention provides one or more cameras to capture an image that is projected on a display screen. In one embodiment, the one or more cameras are placed on the same side of the screen as the projectors. In another embodiment, an array of cameras is provided on either or both sides of the screen for capturing a number of adjacent and/or overlapping capture images of the screen. In either of these embodiments, the resulting capture images are processed to identify any non-desirable characteristics including any visible artifacts such as seams, bands, rings, etc. Once the non-desirable characteristics are identified, an appropriate transformation function is determined. The transformation function is used to pre-warp the input video signal to the display such that the non-desirable characteristics are reduced or eliminated from the display. The transformation function preferably compensates for spatial non-uniformity, color non-uniformity, luminance non-uniformity, and/or other visible artifacts.
Self-adaptive calibration for staring infrared sensors
NASA Astrophysics Data System (ADS)
Kendall, William B.; Stocker, Alan D.
1993-10-01
This paper presents a new, self-adaptive technique for the correlation of non-uniformities (fixed-pattern noise) in high-density infrared focal-plane detector arrays. We have developed a new approach to non-uniformity correction in which we use multiple image frames of the scene itself, and take advantage of the aim-point wander caused by jitter, residual tracking errors, or deliberately induced motion. Such wander causes each detector in the array to view multiple scene elements, and each scene element to be viewed by multiple detectors. It is therefore possible to formulate (and solve) a set of simultaneous equations from which correction parameters can be computed for the detectors. We have tested our approach with actual images collected by the ARPA-sponsored MUSIC infrared sensor. For these tests we employed a 60-frame (0.75-second) sequence of terrain images for which an out-of-date calibration was deliberately used. The sensor was aimed at a point on the ground via an operator-assisted tracking system having a maximum aim point wander on the order of ten pixels. With these data, we were able to improve the calibration accuracy by a factor of approximately 100.
Study of a 3×3 module array of the ECAL0 calorimeter with an electron beam at the ELSA
NASA Astrophysics Data System (ADS)
Dziewiecki, M.; Anfimov, N.; Anosov, V.; Barth, J.; Chalyshev, V.; Chirikov-Zorin, I.; Elsner, D.; Frolov, V.; Frommberger, F.; Guskov, A.; Klein, F.; Krumshteyn, Z.; Kurjata, R.; Marzec, J.; Nagaytsev, A.; Olchevski, A.; Orlov, I.; Rybnikov, A.; Rychter, A.; Selyunin, A.; Zaremba, K.; Ziembicki, M.
2015-02-01
ECAL0 is a new electromagnetic calorimeter designed for studying generalized parton distributions at the COMPASS II experiment at CERN. It will be located next to the target and will cover larger photon angles (up to 30 degrees). It is a modular high-granularity Shashlyk device with total number of individual channels of approx. 1700 and readout based on wavelength shifting fibers and micropixel avalanche photodiodes. Characterization of the calorimeter includes tests of particular sub-components, tests of complete modules and module arrays, as well as a pilot run of a fully-functional, quarter-size prototype in the COMPASS experiment. The main goals of the tests on low-intensity electron beam at the ELSA accelerator in Bonn were: to provide energy calibration using electrons, to measure angular response of the calorimeter and to perform an energy scan to cross-check previously collected data. A dedicated measurement setup was prepared for the tests, including a 3x3 array of the ECAL0 modules, a scintillating-fibre hodoscope and a remotely-controlled motorized movable platform. The measurements were performed using three electron energies: 3.2 GeV, 1.6 GeV and 0.8 GeV. They include a calibration of the whole detector array with a straight beam and multiple angular scans.
Self-Calibration in the Ska: Dealing with Inherently Strong Instrumental Polarization
NASA Astrophysics Data System (ADS)
Hamaker, Johan
The polarization properties of a phased-array SKA will depart radically from those we are familiar with. The E- and H-plane beams of a linear or planar dipole are very different and the primary beam formed by arrays of such dipoles is strongly polarized. The customary quasi-scalar description is inadequate: Polarization must be accounted for in a fundamental way. Once this is done, we must investigate whether or not a phased-array SKA will in principle be capable of achievements comparable to those of conventional synthesis arrays. Selfcal is crucial to these achievements. In this paper I address the vital question of its viability in the presence of arbitrary instrumental polarization. I introduce an interferometer description based on 2x2 matrices. I then propose a matrix-based self-calibration method that is entirely analogous to the scalar one. I show that the standard selfcal assumptions suppress spatial scattering in matrix selfcal like they do in scalar selfcal: Thus the basic condition for obtaining images with a high dynamic range is satisfied. However, matrix selfcal alone cannot guarantee the polarimetric fidelity of the image: It introduces an unknown polrotation of the Stokes (Q,U,V) brightness vector and an unknown polconversion between unpolarized and polarized brightness. Methods similar to those currently applied in quasi-scalar polarimetry must be applied to reduce these poldistorsions to an acceptable level.
NASA Astrophysics Data System (ADS)
Kurien, Binoy G.; Tarokh, Vahid; Rachlin, Yaron; Shah, Vinay N.; Ashcom, Jonathan B.
2016-10-01
We provide new results enabling robust interferometric image reconstruction in the presence of unknown aperture piston variation via the technique of redundant spacing calibration (RSC). The RSC technique uses redundant measurements of the same interferometric baseline with different pairs of apertures to reveal the piston variation among these pairs. In both optical and radio interferometry, the presence of phase-wrapping ambiguities in the measurements is a fundamental issue that needs to be addressed for reliable image reconstruction. In this paper, we show that these ambiguities affect recently developed RSC phasor-based reconstruction approaches operating on the complex visibilities, as well as traditional phase-based approaches operating on their logarithm. We also derive new sufficient conditions for an interferometric array to be immune to these ambiguities in the sense that their effect can be rendered benign in image reconstruction. This property, which we call wrap-invariance, has implications for the reliability of imaging via classical three-baseline phase closures as well as generalized closures. We show that wrap-invariance is conferred upon arrays whose interferometric graph satisfies a certain cycle-free condition. For cases in which this condition is not satisfied, a simple algorithm is provided for identifying those graph cycles which prevent its satisfaction. We apply this algorithm to diagnose and correct a member of a pattern family popular in the literature.
Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches
Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Bennett, Nichelle; ...
2014-12-10
A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and post-shot analysis of the experimental results are supported by 3D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface ofmore » the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.« less
THE MURCHISON WIDEFIELD ARRAY 21 cm POWER SPECTRUM ANALYSIS METHODOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Daniel C.; Beardsley, A. P.; Bowman, Judd D.
2016-07-10
We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple independent data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction, and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed,more » accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds.« less
Polarized-pixel performance model for DoFP polarimeter
NASA Astrophysics Data System (ADS)
Feng, Bin; Shi, Zelin; Liu, Haizheng; Liu, Li; Zhao, Yaohong; Zhang, Junchao
2018-06-01
A division of a focal plane (DoFP) polarimeter is manufactured by placing a micropolarizer array directly onto the focal plane array (FPA) of a detector. Each element of the DoFP polarimeter is a polarized pixel. This paper proposes a performance model for a polarized pixel. The proposed model characterizes the optical and electronic performance of a polarized pixel by three parameters. They are respectively major polarization responsivity, minor polarization responsivity and polarization orientation. Each parameter corresponds to an intuitive physical feature of a polarized pixel. This paper further extends this model to calibrate polarization images from a DoFP (division of focal plane) polarimeter. This calibration work is evaluated quantitatively by a developed DoFP polarimeter under varying illumination intensity and angle of linear polarization. The experiment proves that our model reduces nonuniformity to 6.79% of uncalibrated DoLP (degree of linear polarization) images, and significantly improves the visual effect of DoLP images.
NASA Technical Reports Server (NTRS)
Galanter, S. A.
1975-01-01
A space shuttle high temperature reusable surface insulation (HRSI) tile array with a single missing or lost tile was exposed to a hot gas simulated reentry environment to investigate the heating conditions in and around the vicinity of the missing HRSI tile. Heat flux and pressure data for the lost tile condition were obtained by the use of a water cooled lost tile calibration model. The maximum aluminum substrate temperature obtained during the simulated reentry was 128 C (263 F). The lost tile calibration data indicated a maximum heat flux in the lost tile cavity region of 63 percent of the upstream reference value. This test was conducted at the Ames Research Center in the 20 MW semielliptical thermal protection system (TPS) pilot plasma arc test facility.
Prototype development of a Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR)
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Tanner, Alan; Wilson, William; Dinardo, Steve; Lambrigsten, Bjorn
2005-01-01
Weather prediction and hurricane tracking would greatly benefit of a continuous imaging capability of a hemisphere at millimeter wave frequencies. We are developing a synthetic thinned aperture radiometer (STAR) prototype operating from 50 to 56 GHz as a ground-based testbed to demonstrate the technologies needed to do full earth disk atmospheric temperature soundings from Geostationary orbit with very high spatial resolution. The prototype consists of a Y-array of 24 MMIC receivers that are compact units implemented with low noise InP MMIC LNAs, second harmonic I-Q mixers, low power IF amplifiers and include internal digital bias control with serial line communication to enable low cost testing and system integration. Furthermore, this prototype STAR includes independent LO and noise calibration signal phase switching circuitry for each arm of the Y-array to verify the operation and calibration of the system.
An Expedient but Fascinating Geophysical Chimera: The Pinyon Flat Seismic Strain Point Array
NASA Astrophysics Data System (ADS)
Langston, C. A.
2016-12-01
The combination of a borehole Gladwin Tensor Strain Meter (GTSM) and a co-located three component broadband seismometer (BB) can theoretically be used to determine the propagation attributes of P-SV waves in vertically inhomogeneous media such as horizontal phase velocity and azimuth of propagation through application of wave gradiometry. A major requirement for this to be successful is to have well-calibrated strain and seismic sensors to be able to rely on using absolute wave amplitude from both systems. A "point" seismic array is constructed using the PBO GTSM station B084 and co-located BB seismic stations from an open array experiment deployed by UCSD as well as PFO station at the Pinyon Flat facility. Site amplitude statics for all three ground motion components are found for the 14-element (13 PY stations + PFO), small aperture seismic array using data from 47 teleseisms recorded from 2014 until present. Precision of amplitude measurement at each site is better than 0.2% for vertical components, 0.5% for EW components, and 1% for NS components. Relative amplitudes among sites of the array are often better than 1% attesting to the high quality of the instrumentation and installation. The wavefield and related horizontal strains are computed for the location of B084 using a second order Taylor's expansion of observed waveforms from moderate ( M4) regional events. The computed seismic array areal, differential, and shear strains show excellent correlation in both phase and amplitude with those recorded by B084 when using the calibration matrix previously determined using teleseismic strains from the entire ANZA seismic network. Use of the GTSM-BB "point" array significantly extends the bandwidth of gradiometry calculations over the small-aperture seismic array by nearly two orders of magnitude from 0.5 Hz to 0.01 Hz. In principle, a seismic strain point array could be constructed from every PBO GTSM with a co-located seismometer to help serve earthquake early warning for large regional events on North America's west coast.
NuSTAR on-ground calibration: II. Effective area
NASA Astrophysics Data System (ADS)
Brejnholt, Nicolai F.; Christensen, Finn E.; Westergaard, Niels J.; Hailey, Charles J.; Koglin, Jason E.; Craig, William W.
2012-09-01
The Nuclear Spectroscopic Telescope ARray (NuSTAR) was launched in June 2012 carrying the first focusing hard X-ray (5-80keV) optics to orbit. The multilayer coating was carried out at the Technical University of Denmark (DTU Space). In this article we introduce the NuSTAR multilayer reference database and its implementation in the NuSTAR optic response model. The database and its implementation is validated using on-ground effective area calibration data and used to estimate in-orbit performance.
Toward Active Control of Noise from Hot Supersonic Jets
2012-05-14
was developed that would allow for easy data sharing among the research teams. This format includes the acoustic data along with all calibration ...SUPERSONIC | QUARTERLY RPT. 3 ■ 1 i; ’XZ. "• Tff . w w i — r i (a) Far-Field Array Calibration (b) MHz Rate PIV Camera Setup Figure... Plenoptic camera is a similar setup to determine 3-D motion of the flow using a thick light sheet. 2.3 Update on CFD Progress In the previous interim
NASA Astrophysics Data System (ADS)
Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.
2017-07-01
We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.
NASA Astrophysics Data System (ADS)
Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Narbudowicz, Adam
2017-01-01
A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than -16 dB and mutual coupling of less than -28 dB are achieved at 5.15 GHz WLAN band.
Airborne electronically steerable phased array
NASA Technical Reports Server (NTRS)
1972-01-01
The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.
Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Volakis, John L.; Miranda, Felix A.
2015-01-01
Planar arrays that exploit strong intentional coupling between elements have allowed for very wide bandwidths in low-profile configurations. However, such designs also require complex impedance matching networks that must also be very compact. For many space applications, typically occurring at C-, X-, Ku-, and most recently at Ka-band, such designs require specialized and expensive fabrication techniques. To address this issue, a novel ultra-wideband array is presented, using a simplified feed network to reduce fabrication cost. The array operates from 3.5-18.5 GHz with VSWR less than 2.4 at broadside, and is of very low profile, having a total height of lambda/10 at the lowest frequency of operation. Validation is provided using a 64-element prototype array, fabricated using common Printed Circuit Board (PCB) technology. The low size, weight, and cost of this array make it attractive for space-borne applications.
NASA Technical Reports Server (NTRS)
Delleur, Ann M.; Kerslake, Thomas W.; Levy, Robert K.
2004-01-01
The U.S. solar array strings on the International Space Station are connected to a sequential shunt unit (SSU). The job of the SSU is to shunt, or short, the excess current from the solar array, such that just enough current is provided downstream to maintain the 160-V bus voltage while meeting the power load demand and recharging the batteries. Should an SSU fail on-orbit, it would be removed and replaced with the on-orbit spare during an astronaut space walk or extravehicular activity (EVA) (see the photograph). However, removing an SSU during an orbit Sun period with input solar array power connectors fully energized could result in substantial hardware damage and/or safety risk to the EVA astronaut. The open-circuit voltage of cold solar-array strings can exceed 320 V, and warm solar-array strings could feed a short circuit with a total current level exceeding 240 A.
Wanted: A Positive Control for Anomalous Subdiffusion
Saxton, Michael J.
2012-01-01
Anomalous subdiffusion in cells and model systems is an active area of research. The main questions are whether diffusion is anomalous or normal, and if it is anomalous, its mechanism. The subject is controversial, especially the hypothesis that crowding causes anomalous subdiffusion. Anomalous subdiffusion measurements would be strengthened by an experimental standard, particularly one able to cross-calibrate the different types of measurements. Criteria for a calibration standard are proposed. First, diffusion must be anomalous over the length and timescales of the different measurements. The length-scale is fundamental; the time scale can be adjusted through the viscosity of the medium. Second, the standard must be theoretically well understood, with a known anomalous subdiffusion exponent, ideally readily tunable. Third, the standard must be simple, reproducible, and independently characterizable (by, for example, electron microscopy for nanostructures). Candidate experimental standards are evaluated, including obstructed lipid bilayers; aqueous systems obstructed by nanopillars; a continuum percolation system in which a prescribed fraction of randomly chosen obstacles in a regular array is ablated; single-file diffusion in pores; transient anomalous subdiffusion due to binding of particles in arrays such as transcription factors in randomized DNA arrays; and computer-generated physical trajectories. PMID:23260043
Satellite Calibration With LED Detectors at Mud Lake
NASA Technical Reports Server (NTRS)
Hiller, Jonathan D.
2005-01-01
Earth-monitoring instruments in orbit must be routinely calibrated in order to accurately analyze the data obtained. By comparing radiometric measurements taken on the ground in conjunction with a satellite overpass, calibration curves are derived for an orbiting instrument. A permanent, automated facility is planned for Mud Lake, Nevada (a large, homogeneous, dry lakebed) for this purpose. Because some orbiting instruments have low resolution (250 meters per pixel), inexpensive radiometers using LEDs as sensors are being developed to array widely over the lakebed. LEDs are ideal because they are inexpensive, reliable, and sense over a narrow bandwidth. By obtaining and averaging widespread data, errors are reduced and long-term surface changes can be more accurately observed.
Results of the 1996 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Weiss, R. S.
1996-01-01
The 1996 solar cell calibration balloon flight campaign was completed with the first flight on June 30, 1996 and a second flight on August 8, 1996. All objectives of the flight program were met. Sixty-four modules were carried to an altitude of 120,000 ft (36.6 km). Full 1-5 curves were measured on 22 of these modules, and output at a fixed load was measured on 42 modules. This data was corrected to 28 C and to 1 AU (1.496 x 10(exp 8) km). The calibrated cells have been returned to the participants and can now be used as reference standards in simulator testing of cells and arrays.
Addendum to proceedings of the 1978 Synthetic Aperture Radar Technology Conference
NASA Technical Reports Server (NTRS)
1978-01-01
Various research projects on synthetic aperture radar are reported, including SAR calibration techniques. Slot arrays, sidelobe suppression, and wide swaths on satellite-borne radar were examined. The SAR applied to remote sensing was also considered.
A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.
Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi
2016-08-30
This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.
Antennas for the array-based Deep Space Network: current status and future designs
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Gama, Eric
2005-01-01
Development of very large arrays1,2 of small antennas has been proposed as a way to increase the downlink capability of the NASA Deep Space Network DSN) by two or three orders of magnitude thereby enabling greatly increased science data from currently configured missions or enabling new mission concepts. The current concept is for an array of 400 x 12-m antennas at each of three longitudes. The DSN array will utilize radio astronomy sources for phase calibration and will have wide bandwidth correlation processing for this purpose. NASA has undertaken a technology program to prove the performance and cost of a very large DSN array. Central to that program is a 3-element interferometer to be completed in 2005. This paper describes current status of the low cost 6-meter breadboard antenna to be used as part of the interferometer and the RF design of the 12-meter antenna.
From MAD to SAD: The Italian experience for the low-frequency aperture array of SKA1-LOW
NASA Astrophysics Data System (ADS)
Bolli, P.; Pupillo, G.; Virone, G.; Farooqui, M. Z.; Lingua, A.; Mattana, A.; Monari, J.; Murgia, M.; Naldi, G.; Paonessa, F.; Perini, F.; Pluchino, S.; Rusticelli, S.; Schiaffino, M.; Schillirò, F.; Tartarini, G.; Tibaldi, A.
2016-03-01
This paper describes two small aperture array demonstrators called Medicina and Sardinia Array Demonstrators (MAD and SAD, respectively). The objectives of these instruments are to acquire experience and test new technologies for a possible application to the low-frequency aperture array of the low-frequency telescope of the Square Kilometer Array phase 1 (SKA1-LOW). The MAD experience was concluded in 2014, and it turned out to be an important test bench for implementing calibration techniques based on an artificial source mounted in an aerial vehicle. SAD is based on 128 dual-polarized Vivaldi antennas and is 1 order of magnitude larger than MAD. The architecture and the station size of SAD, which is along the construction phase, are more similar to those under evaluation for SKA1-LOW, and therefore, SAD is expected to provide useful hints for SKA1-LOW.
Liquid hydrogen and liquid oxygen feedline passive recirculation analysis
NASA Astrophysics Data System (ADS)
Holt, Kimberly Ann; Cleary, Nicole L.; Nichols, Andrew J.; Perry, Gretchen L. E.
The primary goal of the National Launch System (NLS) program was to design an operationally efficient, highly reliable vehicle with minimal recurring launch costs. To achieve this goal, trade studies of key main propulsion subsystems were performed to specify vehicle design requirements. These requirements include the use of passive recirculation to thermally condition the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant feed systems and Space Transportation Main Engine (STME) fuel pumps. Rockwell International (RI) proposed a joint independent research and development (JIRAD) program with Marshall Space Flight Center (MSFC) to study the LH2 feed system passive recirculation concept. The testing was started in July 1992 and completed in November 1992. Vertical and sloped feedline designs were used. An engine simulator was attached at the bottom of the feedline. This simulator had strip heaters that were set to equal the corresponding heat input from different engines. A computer program is currently being used to analyze the passive recirculation concept in the LH2 vertical feedline tests. Four tests, where the heater setting is the independent variable, were chosen. While the JIRAD with RI was underway, General Dynamics Space Systems (GDSS) proposed a JIRAD with MSFC to explore passive recirculation in the LO2 feed system. Liquid nitrogen (LN2) is being used instead of LO2 for safety and economic concerns. To date, three sets of calibration tests have been completed on the sloped LN2 test article. The environmental heat was calculated from the calibration tests in which the strip heaters were turned off. During the LH2 testing, the environmental heat was assumed to be constant. Therefore, the total heat was equal to the environmental heat flux plus the heater input. However, the first two sets of LN2 calibration tests have shown that the environmental heat flux varies with heater input. A Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA/FLUINT) model is currently being built to determine if this variation in environmental heat is due to a change in the wall temperature.
2016-05-18
course of this paper, we will first iden- tify this ambiguity from a mathematical perspective, relate it to a particular physical structure (i.e. the...invariance to a physical condition on aperture place- ment is more intuitive when considering the raw phase mea- surements as opposed to their closures. For...to wrapping of the phase measure- ments. We have hence arrived at a a physical definition of a wrap-invariant pattern. We now apply Algorithm 1 to the
2015-11-30
matrix determinant. This definition is given in many linear algebra texts (see e.g. Bretscher (2001)). Definition 3.1 : Suppose we have an n-by-n...Processing, 2, 767 Blanchard P., Greenaway A., Anderton R., Appleby R., 1996, J. Opt. Soc. Am. A, 13, 1593 Bretscher O., 2001, Linear Algebra with...frequencies are not co- linear ) and one piston phase. This particular solution will then differ from the true solution by a phase ramp in the Fourier
Cantwell, Caoimhe A; Byrne, Laurann A; Connolly, Cathal D; Hynes, Michael J; McArdle, Patrick; Murphy, Richard A
2017-08-01
The aim of the present work was to establish a reliable analytical method to determine the degree of complexation in commercial metal proteinates used as feed additives in the solid state. Two complementary techniques were developed. Firstly, a quantitative attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic method investigated modifications in vibrational absorption bands of the ligand on complex formation. Secondly, a powder X-ray diffraction (PXRD) method to quantify the amount of crystalline material in the proteinate product was developed. These methods were developed in tandem and cross-validated with each other. Multivariate analysis (MVA) was used to develop validated calibration and prediction models. The FTIR and PXRD calibrations showed excellent linearity (R 2 > 0.99). The diagnostic model parameters showed that the FTIR and PXRD methods were robust with a root mean square error of calibration RMSEC ≤3.39% and a root mean square error of prediction RMSEP ≤7.17% respectively. Comparative statistics show excellent agreement between the MVA packages assessed and between the FTIR and PXRD methods. The methods can be used to determine the degree of complexation in complexes of both protein hydrolysates and pure amino acids.
Radial microstrip slotline feed network for circular mobile communications array
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Kelly, Eron S.; Lee, Richard Q.; Taub, Susan R.
1994-01-01
In mobile and satellite communications there is a need for low cost and low profile antennas which have a toroidal pattern. Antennas that have been developed for mobile communications include a L-Band electronically steered stripline phased array, a Ka-Band mechanically steered elliptical reflector antenna and a Ka-Band printed dipole. In addition, a L-Band mechanically steered microstrip array, a L-Band microstrip phased array tracking antenna for mounting on a car roof and an X-Band radial line slotted waveguide antenna have been demonstrated. In the above electronically scanned printed arrays, the individual element radiates normally to the plane of the array and hence require a phase shifter to scan the beam towards the horizon. Scanning in the azimuth is by mechanical or electronic steering. An alternate approach is to mount microstrip patch radiators on the surface of a cone to achieve the required elevation angle. The array then scans in the azimuth by beam switching.
The self-calibration method for multiple systems at the CHARA Array
NASA Astrophysics Data System (ADS)
O'Brien, David
The self-calibration method, a new interferometric technique at the CHARA Array, has been used to derive orbits for several spectroscopic binaries. This method uses the wide component of a hierarchical triple system to calibrate visibility measurements of the triple's close binary system. At certain baselines and separations, the calibrator in one of these systems can be observed quasi-simultaneously with the target. Depending on the orientation of the CHARA observation baseline relative to the orientation of the wide orbit of the triple system, separated fringe packets may be observed. A sophisticated observing scheme must be put in place to ensure the existence of separated fringe packets on nights of observation. Prior to the onset of this project, the reduction of separated fringe packet data had never included the goal of deriving visibilities for both fringe packets, so new data reduction software has been written. Visibilities obtained with separated fringe packet data for the target close binary are run through both Monte Carlo simulations and grid search programs in order to determine the best-fit orbital elements of the close binary. Several targets have been observed in this fashion, and orbits have been derived for seven targets, including three new orbits. Derivation of the orbit of the close pair in a triple system allows for the calculation of the mutual inclination, which is the angle between the planes of the wide and close orbit. Knowledge of this quantity may give insight into the formation processes that create multiple star systems. INDEX WORDS: Long-baseline interferometry, Self calibration, Separated fringe packets, Triple systems, Close binaries, Multiple systems, Orbital parameters, Near-infrared interferometry
ISO Key Project: Exploring the full range of QUASAR/AGN properties
NASA Technical Reports Server (NTRS)
Wilkes, B.
1998-01-01
The PIA (PHOT Interactive Analysis) software was upgraded as new releases were made available by VILSPA. We have continued to analyze our data but, given the large number of still outstanding problems with the calibration and analysis (listed below), we remain unable to move forward on our scientific program. We have concentrated on observations with long (256 sec) exposure times to avoid the most extreme detector responsivity drift problems which occur with a change in observed flux level, ie. as one begins to observe a new target. There remain a significant number of problems with analyzing these data including: (1) the default calibration source (FCS) observations early in the mission were too short and affected by strong detector responsivity drifts; (2) the calibration of the FCS sources is not yet well-understood, particularly for chopped observations (which includes most of ours); (3) the detector responsivity drift is not well-understood and models are only now becoming available for fitting chopped data; (4) charged particle hits on the detector cause transient responsivity drifts which need to be corrected; (5) the "flat-field" calibration of the long-wavelength (array) detectors: C1OO, C200 leaves significant residual structure and so needs to be improved;(6) the vignetting correction, which affects detected flux levels in the array detectors, is not yet available; (7) the intra-filter calibrations are not yet available; and (8) the background above 60 microns has a significant gradient which results in spurious positive and negative "detections" in chopped observations. ISO Observation planning, conferences and talks, ground based observing and other grant related activities are also briefly discussed.
First Demonstration of ECHO: an External Calibrator for Hydrogen Observatories
NASA Astrophysics Data System (ADS)
Jacobs, Daniel C.; Burba, Jacob; Bowman, Judd D.; Neben, Abraham R.; Stinnett, Benjamin; Turner, Lauren; Johnson, Kali; Busch, Michael; Allison, Jay; Leatham, Marc; Serrano Rodriguez, Victoria; Denney, Mason; Nelson, David
2017-03-01
Multiple instruments are pursuing constraints on dark energy, observing reionization and opening a window on the dark ages through the detection and characterization of the 21 cm hydrogen line for redshifts ranging from ˜1 to 25. These instruments, including CHIME in the sub-meter and HERA in the meter bands, are wide-field arrays with multiple-degree beams, typically operating in transit mode. Accurate knowledge of their primary beams is critical for separation of bright foregrounds from the desired cosmological signals, but difficult to achieve through astronomical observations alone. Previous beam calibration work at low frequencies has focused on model verification and does not address the need of 21 cm experiments for routine beam mapping, to the horizon, of the as-built array. We describe the design and methodology of a drone-mounted calibrator, the External Calibrator for Hydrogen Observatories (ECHO), that aims to address this need. We report on a first set of trials to calibrate low-frequency dipoles at 137 MHz and compare ECHO measurements to an established beam-mapping system based on transmissions from the Orbcomm satellite constellation. We create beam maps of two dipoles at a 9° resolution and find sample noise ranging from 1% at the zenith to 100% in the far sidelobes. Assuming this sample noise represents the error in the measurement, the higher end of this range is not yet consistent with the desired requirement but is an improvement on Orbcomm. The overall performance of ECHO suggests that the desired precision and angular coverage is achievable in practice with modest improvements. We identify the main sources of systematic error and uncertainty in our measurements and describe the steps needed to overcome them.
Calibration and analysis of genome-based models for microbial ecology.
Louca, Stilianos; Doebeli, Michael
2015-10-16
Microbial ecosystem modeling is complicated by the large number of unknown parameters and the lack of appropriate calibration tools. Here we present a novel computational framework for modeling microbial ecosystems, which combines genome-based model construction with statistical analysis and calibration to experimental data. Using this framework, we examined the dynamics of a community of Escherichia coli strains that emerged in laboratory evolution experiments, during which an ancestral strain diversified into two coexisting ecotypes. We constructed a microbial community model comprising the ancestral and the evolved strains, which we calibrated using separate monoculture experiments. Simulations reproduced the successional dynamics in the evolution experiments, and pathway activation patterns observed in microarray transcript profiles. Our approach yielded detailed insights into the metabolic processes that drove bacterial diversification, involving acetate cross-feeding and competition for organic carbon and oxygen. Our framework provides a missing link towards a data-driven mechanistic microbial ecology.
Shielded microstrip array for 7T human MR imaging.
Wu, Bing; Wang, Chunsheng; Kelley, Douglas A C; Xu, Duan; Vigneron, Daniel B; Nelson, Sarah J; Zhang, Xiaoliang
2010-01-01
The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or "cable resonance" behavior.
Shielded Microstrip Array for 7T Human MR Imaging
Wu, Bing; Wang, Chunsheng; Kelley, Douglas A. C.; Xu, Duan; Vigneron, Daniel B.; Nelson, Sarah J.
2010-01-01
The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or “cable resonance” behavior. PMID:19822470
250 kA compact linear transformer driver for wire array z-pinch loads
NASA Astrophysics Data System (ADS)
Bott, S. C.; Haas, D. M.; Madden, R. E.; Ueda, U.; Eshaq, Y.; Collins, G., IV; Gunasekera, K.; Mariscal, D.; Peebles, J.; Beg, F. N.; Mazarakis, M.; Struve, K.; Sharpe, R.
2011-05-01
We present the application of a short rise (˜150ns) 250 kA linear transformer driver (LTD) to wire array z-pinch loads for the first time. The generator is a modification of a previous driver in which a new conical power feed provides a low inductance coupling to wire loads. Performance of the new design using both short circuit and plasma loads is presented and discussed. The final design delivers ˜200kA to a wire array load which is in good agreement with SCREAMER calculations using a simplified representative circuit. Example results demonstrate successful experiments using cylindrical, conical, and inverse wire arrays as well as previously published work on x-pinch loads.
High-Isolation Low Cross-Polarization Phased-Array Antenna for MPAR Application
NASA Astrophysics Data System (ADS)
Saeidi-Manesh, Hadi; Karimkashi, Shaya; Zhang, Guifu; Doviak, Richard J.
2017-12-01
The design and analysis of 12 × 12-element planar array of a dual-polarized aperture-coupled microstrip patch antenna operating in the frequency band of 2.7 GHz to 3.0 GHz for multifunction applications are presented. High-isolation between horizontal and vertical polarization ports and low cross-polarization are achieved through an aperture-coupled feed. The reflection coefficient and the isolation of horizontal and vertical ports at different scan angles are examined. The array antenna is fabricated and its radiation patterns are measured in the far-field and near-field chambers. The embedded element pattern of designed element is measured in the near-field chamber and is used for calculating the array scanning radiation pattern.
Experimental Results of Site Calibration and Sensitivity Measurements in OTR for UWB Systems
NASA Astrophysics Data System (ADS)
Viswanadham, Chandana; Rao, P. Mallikrajuna
2017-06-01
System calibration and parameter accuracy measurement of electronic support measures (ESM) systems is a major activity, carried out by electronic warfare (EW) engineers. These activities are very critical and needs good understanding in the field of microwaves, antennas, wave propagation, digital and communication domains. EW systems are broad band, built with state-of-the art electronic hardware, installed on different varieties of military platforms to guard country's security from time to time. EW systems operate in wide frequency ranges, typically in the order of thousands of MHz, hence these are ultra wide band (UWB) systems. Few calibration activities are carried within the system and in the test sites, to meet the accuracies of final specifications. After calibration, parameters are measured for their accuracies either in feed mode by injecting the RF signals into the front end or in radiation mode by transmitting the RF signals on to system antenna. To carry out these activities in radiation mode, a calibrated open test range (OTR) is necessary in the frequency band of interest. Thus site calibration of OTR is necessary to be carried out before taking up system calibration and parameter measurements. This paper presents the experimental results of OTR site calibration and sensitivity measurements of UWB systems in radiation mode.
NASA Astrophysics Data System (ADS)
Dinç, Erdal; Ertekin, Zehra Ceren; Büker, Eda
2017-09-01
In this study, excitation-emission matrix datasets, which have strong overlapping bands, were processed by using four different chemometric calibration algorithms consisting of parallel factor analysis, Tucker3, three-way partial least squares and unfolded partial least squares for the simultaneous quantitative estimation of valsartan and amlodipine besylate in tablets. In analyses, preliminary separation step was not used before the application of parallel factor analysis Tucker3, three-way partial least squares and unfolded partial least squares approaches for the analysis of the related drug substances in samples. Three-way excitation-emission matrix data array was obtained by concatenating excitation-emission matrices of the calibration set, validation set, and commercial tablet samples. The excitation-emission matrix data array was used to get parallel factor analysis, Tucker3, three-way partial least squares and unfolded partial least squares calibrations and to predict the amounts of valsartan and amlodipine besylate in samples. For all the methods, calibration and prediction of valsartan and amlodipine besylate were performed in the working concentration ranges of 0.25-4.50 μg/mL. The validity and the performance of all the proposed methods were checked by using the validation parameters. From the analysis results, it was concluded that the described two-way and three-way algorithmic methods were very useful for the simultaneous quantitative resolution and routine analysis of the related drug substances in marketed samples.
SIRTF Focal Plane Survey: A Pre-flight Error Analysis
NASA Technical Reports Server (NTRS)
Bayard, David S.; Brugarolas, Paul B.; Boussalis, Dhemetrios; Kang, Bryan H.
2003-01-01
This report contains a pre-flight error analysis of the calibration accuracies expected from implementing the currently planned SIRTF focal plane survey strategy. The main purpose of this study is to verify that the planned strategy will meet focal plane survey calibration requirements (as put forth in the SIRTF IOC-SV Mission Plan [4]), and to quantify the actual accuracies expected. The error analysis was performed by running the Instrument Pointing Frame (IPF) Kalman filter on a complete set of simulated IOC-SV survey data, and studying the resulting propagated covariances. The main conclusion of this study is that the all focal plane calibration requirements can be met with the currently planned survey strategy. The associated margins range from 3 to 95 percent, and tend to be smallest for frames having a 0.14" requirement, and largest for frames having a more generous 0.28" (or larger) requirement. The smallest margin of 3 percent is associated with the IRAC 3.6 and 5.8 micron array centers (frames 068 and 069), and the largest margin of 95 percent is associated with the MIPS 160 micron array center (frame 087). For pointing purposes, the most critical calibrations are for the IRS Peakup sweet spots and short wavelength slit centers (frames 019, 023, 052, 028, 034). Results show that these frames are meeting their 0.14" requirements with an expected accuracy of approximately 0.1", which corresponds to a 28 percent margin.
Iodine Hall Thruster Propellant Feed System for a CubeSat
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.
2014-01-01
There has been significant work recently in the development of iodine-fed Hall thrusters for in-space propulsion applications.1 The use of iodine as a propellant provides many advantages over present xenon-gas-fed Hall thruster systems. Iodine is a solid at ambient temperature (no pressurization required) and has no special handling requirements, making it safe for secondary flight opportunities. It has exceptionally high ?I sp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing system level advantages over mid-term high power electric propulsion options. Iodine provides thrust and efficiency that are comparable to xenonfed Hall thrusters while operating in the same discharge current and voltage regime, making it possible to leverage the development of flight-qualified xenon Hall thruster power processing units for the iodine application. Work at MSFC is presently aimed at designing, integrating, and demonstrating a flight-like iodine feed system suitable for the Hall thruster application. This effort represents a significant advancement in state-of-the-art. Though Iodine thrusters have demonstrated high performance with mission enabling potential, a flight-like feed system has never been demonstrated and iodine compatible components do not yet exist. Presented in this paper is the end-to-end integrated feed system demonstration. The system includes a propellant tank with active feedback-control heating, fill and drain interfaces, latching and proportional flow control valves (PFCV), flow resistors, and flight-like CubeSat power and control electronics. Hardware is integrated into a CubeSat-sized structure, calibrated and tested under vacuum conditions, and operated under under hot-fire conditions using a Busek BHT-200 thruster designed for iodine. Performance of the system is evaluated thorugh accurate measurement of thrust and a calibrated of mass flow rate measurement, which is a function of reservoir temperature/pressure, the flow resistors, and the setting of the PFCV. The calibration is performed using independent flow control monitoring techniques, providing an in situ measure of the flowrate as a function of controllable parameters. The reservoir temperature controls the iodine sublimation rate, providing propellant to ths thruster by pressurizing the propellant feed system to approx.1-2 psi. Control of the temperature and the PFCV are used to maintain reservoir pressure and keep the thruster discharge current constant.
Fais, Ana Paula; Franco, Rodolfo Scarpino Barboza; da Silva, Agnaldo Fernando Baldo; de Freitas, Osvaldo; Paschoal, Jonas Augusto Rizzato
2017-04-01
This paper describes the method development for sulfadimethoxine (SDM) and ormetoprim (OMP) quantitation in fish feed and fish fillet employing LC-MS/MS. In order to assess the reliability of the analytical method, valuation was undertaken as recommended by guidelines proposed by the Brazilian Ministry of Agriculture. The calibration curve for the quantification of both drugs in feed showed adequate linearity (r > 0.99), precision (CV < 12%) and trueness ranging from 97% to 100%. The method for the determination of SDM and OMP residues in fish fillet involved a simple sample preparation procedure that had adequate linearity (r > 0.99), precision (CV < 16%) and trueness around 100%, with CCα < 100.2 ng g - 1 and CCβ < 100.4 ng g - 1 . With a goal of avoiding the risk of drug leaching from feed into the aquatic environment during fish medication via the oral route, different procedures for drug incorporation into feed were evaluated. Coating feed pellets with ethyl cellulose polymer containing the drug showed promising results. In this case, medicated feed released drugs to water at a level below 6% when the medicated feed stayed in the water for up to 15 min.
Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Brooks, Thomas F.; Hunter, William W., Jr.; Meadows, Kristine R.
1998-01-01
An overview of the development of two microphone directional arrays for aeroacoustic testing is presented. These arrays were specifically developed to measure airframe noise in the NASA Langley Quiet Flow Facility. A large aperture directional array using 35 flush-mounted microphones was constructed to obtain high resolution noise localization maps around airframe models. This array possesses a maximum diagonal aperture size of 34 inches. A unique logarithmic spiral layout design was chosen for the targeted frequency range of 2-30 kHz. Complementing the large array is a small aperture directional array, constructed to obtain spectra and directivity information from regions on the model. This array, possessing 33 microphones with a maximum diagonal aperture size of 7.76 inches, is easily moved about the model in elevation and azimuth. Custom microphone shading algorithms have been developed to provide a frequency- and position-invariant sensing area from 10-40 kHz with an overall targeted frequency range for the array of 5-60 kHz. Both arrays are employed in acoustic measurements of a 6 percent of full scale airframe model consisting of a main element NACA 632-215 wing section with a 30 percent chord half-span flap. Representative data obtained from these measurements is presented, along with details of the array calibration and data post-processing procedures.
The Next Generation of the Montage Image Mopsaic Engine
NASA Astrophysics Data System (ADS)
Berriman, G. Bruce; Good, John; Rusholme, Ben; Robitaille, Thomas
2016-01-01
We have released a major upgrade of the Montage image mosaic engine (http://montage.ipac.caltech.edu) , as part of a program to develop the next generation of the engine in response to the rapid changes in the data processing landscape in Astronomy, which is generating ever larger data sets in ever more complex formats . The new release (version 4) contains modules dedicated to creating and managing mosaics of data stored as multi-dimensional arrays ("data cubes"). The new release inherits the architectural benefits of portability and scalability of the original design. The code is publicly available on Git Hub and the Montage web page. The release includes a command line tool that supports visualization of large images, and the beta-release of a Python interface to the visualization tool. We will provide examples on how to use these these features. We are generating a mosaic of the Galactic Arecibo L-band Feed Array HI (GALFA-HI) Survey maps of neutral hydrogen in and around our Milky Way Galaxy, to assess the performance at scale and to develop tools and methodologies that will enable scientists inexpert in cloud processing to exploit could platforms for data processing and product generation at scale. Future releases include support for an R-tree based mechanism for fast discovery of and access to large data sets and on-demand access to calibrated SDSS DR9 data that exploits it; support for the Hierarchical Equal Area isoLatitude Pixelization (HEALPix) scheme, now standard for projects investigating cosmic background radiation (Gorski et al 2005); support fort the Tessellated Octahedral Adaptive Subdivision Transform (TOAST), the sky partitioning sky used by the WorldWide Telescope (WWT); and a public applications programming interface (API) in C that can be called from other languages, especially Python.
Mitrowska, Kamila; Vincent, Ursula; von Holst, Christoph
2012-04-13
The manuscript presents the development of a new reverse phase high performance liquid chromatography (RP-HPLC) photo diode array detection method allowing the separation and quantification of 15 carotenoids (adonirubin, adonixanthin, astaxanthin, astaxanthin dimethyl disuccinate, asteroidenone, beta-apo-8'-carotenal, beta-apo-8'-carotenoic acid ethyl ester, beta-carotene, canthaxanthin, capsanthin, citranaxanthin, echinenone, lutein, lycopene, and zeaxanthin), 10 of which are feed additives authorised within the European Union. The developed method allows for the reliable determination of the total carotenoid content in one run using the corresponding E-isomer as calibration standard while taking into account the E/Z-isomers composition. This is a key criterion for the application of the method, since for most of the analytes included in this study analytical standards are only available for the E-isomers. This goal was achieved by applying the isosbestic concept, in order to identify specific wavelengths, at which the absorption coefficients are identical for all stereoisomers concerned. The second target referred to the optimisation of the LC conditions. By means of an experimental design, an optimised RP-HPLC method was developed allowing for a sufficient chromatographic separation of all carotenoids. The selected method uses a Suplex pKb-100 HPLC column and applying a gradient with a mixture of acetonitrile, tert-butyl-methyl ether and water as mobile phases. The limits of detection and limits of quantification ranged from 0.06 mg L(-1) to 0.14 mg L(-1) and from 0.20 mg L(-1) to 0.48 mg L(-1), respectively. Copyright © 2012 Elsevier B.V. All rights reserved.
Model independent approach to the single photoelectron calibration of photomultiplier tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saldanha, R.; Grandi, L.; Guardincerri, Y.
2017-08-01
The accurate calibration of photomultiplier tubes is critical in a wide variety of applications in which it is necessary to know the absolute number of detected photons or precisely determine the resolution of the signal. Conventional calibration methods rely on fitting the photomultiplier response to a low intensity light source with analytical approximations to the single photoelectron distribution, often leading to biased estimates due to the inability to accurately model the full distribution, especially at low charge values. In this paper we present a simple statistical method to extract the relevant single photoelectron calibration parameters without making any assumptions aboutmore » the underlying single photoelectron distribution. We illustrate the use of this method through the calibration of a Hamamatsu R11410 photomultiplier tube and study the accuracy and precision of the method using Monte Carlo simulations. The method is found to have significantly reduced bias compared to conventional methods and works under a wide range of light intensities, making it suitable for simultaneously calibrating large arrays of photomultiplier tubes.« less
The Majorana Demonstrator calibration system
Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.; ...
2017-08-08
The Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a 1-ton 76Ge-based search. The ultra low-background conditions require regular calibrations to verify proper function of the detectors. Radioactive line sources can be deployed around the cryostats containing the detectors for regular energy calibrations. When measuring in low-background mode, these line sources have to be stored outside the shielding so they do not contribute to the background. The deployment and the retraction of the source aremore » designed to be controlled by the data acquisition system and do not require any direct human interaction. In this study, we detail the design requirements and implementation of the calibration apparatus, which provides the event rates needed to define the pulse-shape cuts and energy calibration used in the final analysis as well as data that can be compared to simulations.« less
The MAJORANA DEMONSTRATOR calibration system
NASA Astrophysics Data System (ADS)
Abgrall, N.; Arnquist, I. J.; Avignone, F. T., III; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Bradley, A. W.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Fu, Z.; Gehman, V. M.; Gilliss, T.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; MacMullin, J.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Orrell, J. L.; O'Shaughnessy, C.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.
2017-11-01
The MAJORANA Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The MAJORANA DEMONSTRATOR is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a 1-ton 76Ge-based search. The ultra low-background conditions require regular calibrations to verify proper function of the detectors. Radioactive line sources can be deployed around the cryostats containing the detectors for regular energy calibrations. When measuring in low-background mode, these line sources have to be stored outside the shielding so they do not contribute to the background. The deployment and the retraction of the source are designed to be controlled by the data acquisition system and do not require any direct human interaction. In this paper, we detail the design requirements and implementation of the calibration apparatus, which provides the event rates needed to define the pulse-shape cuts and energy calibration used in the final analysis as well as data that can be compared to simulations.
The Majorana Demonstrator calibration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abgrall, N.; Arnquist, I. J.; Avignone, III, F. T.
The Majorana Collaboration is searching for the neutrinoless double-beta decay of the nucleus 76Ge. The Majorana Demonstrator is an array of germanium detectors deployed with the aim of implementing background reduction techniques suitable for a 1-ton 76Ge-based search. The ultra low-background conditions require regular calibrations to verify proper function of the detectors. Radioactive line sources can be deployed around the cryostats containing the detectors for regular energy calibrations. When measuring in low-background mode, these line sources have to be stored outside the shielding so they do not contribute to the background. The deployment and the retraction of the source aremore » designed to be controlled by the data acquisition system and do not require any direct human interaction. In this study, we detail the design requirements and implementation of the calibration apparatus, which provides the event rates needed to define the pulse-shape cuts and energy calibration used in the final analysis as well as data that can be compared to simulations.« less
General Matrix Inversion for the Calibration of Electric Field Sensor Arrays on Aircraft Platforms
NASA Technical Reports Server (NTRS)
Mach, D. M.; Koshak, W. J.
2006-01-01
We have developed a matrix calibration procedure that uniquely relates the electric fields measured at the aircraft with the external vector electric field and net aircraft charge. Our calibration method is being used with all of our aircraft/electric field sensing combinations and can be generalized to any reasonable combination of electric field measurements and aircraft. We determine a calibration matrix that represents the individual instrument responses to the external electric field. The aircraft geometry and configuration of field mills (FMs) uniquely define the matrix. The matrix can then be inverted to determine the external electric field and net aircraft charge from the FM outputs. A distinct advantage of the method is that if one or more FMs need to be eliminated or de-emphasized (for example, due to a malfunction), it is a simple matter to reinvert the matrix without the malfunctioning FMs. To demonstrate our calibration technique, we present data from several of our aircraft programs (ER-2, DC-8, Altus, Citation).
Planar microstrip YAGI antenna array
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1993-01-01
A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.
ALMA High Frequency Techniques
NASA Astrophysics Data System (ADS)
Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team
2015-12-01
The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.
Geometry-based across wafer process control in a dual damascene scenario
NASA Astrophysics Data System (ADS)
Krause, Gerd; Hofmann, Detlef; Habets, Boris; Buhl, Stefan; Gutsch, Manuela; Lopez-Gomez, Alberto; Thrun, Xaver
2018-03-01
Dual damascene is an established patterning process for back-end-of-line to generate copper interconnects and lines. One of the critical output parameters is the electrical resistance of the metal lines. In our 200 mm line, this is currently being controlled by a feed-forward control from the etch process to the final step in the CMP process. In this paper, we investigate the impact of alternative feed-forward control using a calibrated physical model that estimates the impact on electrical resistance of the metal lines* . This is done by simulation on a large set of wafers. Three different approaches are evaluated, one of which uses different feed-forward settings for different radial zones in the CMP process.
An experimental SMI adaptive antenna array for weak interfering signals
NASA Technical Reports Server (NTRS)
Dilsavor, R. L.; Gupta, I. J.
1989-01-01
A modified sample matrix inversion (SMI) algorithm designed to increase the suppression of weak interference is implemented on an existing experimental array system. The algorithm itself is fully described as are a number of issues concerning its implementation and evaluation, such as sample scaling, snapshot formation, weight normalization, power calculation, and system calibration. Several experiments show that the steady state performance (i.e., many snapshots are used to calculate the array weights) of the experimental system compares favorably with its theoretical performance. It is demonstrated that standard SMI does not yield adequate suppression of weak interference. Modified SMI is then used to experimentally increase this suppression by as much as 13dB.
A portable infrasound generator.
Park, Joseph; Robertson, James
2009-04-01
The rotary subwoofer is a novel low frequency transducer capable of efficiently generating infrasound from a compact source. A field-deployable version of this device may find application as a calibration source for infrasound arrays of the International Monitoring System (IMS) [(2001). The Global Verification Regime and the International Monitoring System (CTBTO Preparatory Commission Vienna International Centre, Vienna, Austria)]. A prototype tested at the IMS infrasound array I59US demonstrated the ability to insonify all elements of the array from a standoff distance of 3.8 km. Signal-to-noise ratios of continuous wave signals ranged from 5 to 15 dB, indicating the utility of this source to transmit controllable infrasound signals over distances of 5 km.
IF digitization receiver of wideband digital array radar test-bed
NASA Astrophysics Data System (ADS)
Li, Weixing; Zhang, Yue; Lin, Jianzhi; Chen, Zengping
2014-10-01
In this paper, an X-band, 8-element wideband digital array radar (DAR) test-bed is presented, which makes use of a novel digital backend coupled with highly-integrated, multi-channel intermediate frequency (IF) digital receiver. Radar returns are received by the broadband antenna and then down-converted to the IF of 0.6GHz-3.0GHz. Four band-pass filters are applied in the front-end to divide the IF returns into four frequency bands with the instantaneous bandwidth of 500MHz. Every four array elements utilize a digital receiver, which is focused in this paper. The digital receivers are designed in a compact and flexible manner to meet the demands of DAR system. Each receiver consists of a fourchannel ADC, a high-performance FPGA, four DDR3 chips and two optical transceivers. With the sampling rate of up to 1.2GHz each channel, the ADC is capable of directly sampling the IF returns of four array elements at 10bits. In addition to serving as FIFO and controller, the onboard FPGA is also utilized for the implementation of various real-time algorithms such as DDC and channel calibration. Data is converted to bit stream and transferred through two low overhead, high data rate and multi-channel optical transceivers. Key technologies such as channel calibration and wideband DOA are studied with the measured data which is obtained in the experiments to illustrate the functionality of the system.
NASA Astrophysics Data System (ADS)
Régis, J.-M.; Jolie, J.; Mach, H.; Simpson, G. S.; Blazhev, A.; Pascovici, G.; Pfeiffer, M.; Rudigier, M.; Saed-Samii, N.; Warr, N.; Blanc, A.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Ur, C. A.; Urban, W.; Bruce, A. M.; Drouet, F.; Fraile, L. M.; Ilieva, S.; Korten, W.; Kröll, T.; Lalkovski, S.; Mărginean, S.; Paziy, V.; Podolyák, Zs.; Regan, P. H.; Stezowski, O.; Vancraeyenest, A.
2015-05-01
A novel method for direct electronic "fast-timing" lifetime measurements of nuclear excited states via γ-γ coincidences using an array equipped with N very fast high-resolution LaBr3(Ce) scintillator detectors is presented. The generalized centroid difference method provides two independent "start" and "stop" time spectra obtained without any correction by a superposition of the N(N - 1)/2 calibrated γ-γ time difference spectra of the N detector fast-timing system. The two fast-timing array time spectra correspond to a forward and reverse gating of a specific γ-γ cascade and the centroid difference as the time shift between the centroids of the two time spectra provides a picosecond-sensitive mirror-symmetric observable of the set-up. The energydependent mean prompt response difference between the start and stop events is calibrated and used as a single correction for lifetime determination. These combined fast-timing array mean γ-γ zero-time responses can be determined for 40 keV < Eγ < 1.4 MeV with a precision better than 10 ps using a 152Eu γ-ray source. The new method is described with examples of (n,γ) and (n,f,γ) experiments performed at the intense cold-neutron beam facility PF1B of the Institut Laue-Langevin in Grenoble, France, using 16 LaBr3(Ce) detectors within the EXILL&FATIMA campaign in 2013. The results are discussed with respect to possible systematic errors induced by background contributions.
Patient-Specific QA of Spot-Scanning Proton Beams using Radiochromic Film.
Chan, Maria F; Chen, Chin-Cheng; Shi, Chengyu; Li, Jingdong; Tang, Xiaoli; Li, Xiang; Mah, Dennis
2017-05-01
Radiochromic film for spot-scanning QA provides high spatial resolution and efficiency gains from one-shot irradiation for multiple depths. However, calibration can be a tedious procedure which may limit widespread use. Moreover, since there may be an energy dependence, which manifests as a depth dependence, this may require additional measurements for each patient. We present a one-scan protocol to simplify the procedure. A calibration using an EBT3 film, exposed by a 6-level step-wedge plan on a Proteus ® PLUS proton system (IBA, Belgium), was performed at depths of 18, 20, 24cm using Plastic Water ® (CIRS, Norfolk, VA). The calibration doses ranged from 65-250 cGy(RBE) (relative biological effectiveness) for proton energies of 170-200 MeV. A clinical prostate+nodes plan was used for validation. The planar doses at selected depths were measured with EBT3 films and analyzed using One-scan protocol (one-scan digitization of QA film and at least one film exposed to a known dose). The gamma passing rates, dose-difference maps, and profiles of 2D planar doses measured with EBT3 film and IBA MatriXX-PT, versus the RayStation TPS calculations were analyzed and compared. The EBT3 film measurement results matched well with the TPS calculation data with an average passing rate of ~95% for 2%/2mm and slightly lower passing rates were obtained from an ion chamber array detector. We were able to demonstrate that the use of a proton step-wedge provided clinically acceptable results and minimized variations between film-scanner orientation, inter-scan, and scanning conditions. Furthermore, for relative dosimetry (calibration is not done at the time of experiment) it could be derived from no more than two films exposed to known doses (one could be zero) for rescaling the master calibration curve at each depth. The sensitivity of the calibration to depth variations has been explored. One-scan protocol results appear to be comparable to that of the ion chamber array detector. The use of a proton step-wedge for calibration of EBT3 film potentially increases efficiency in patient-specific QA of proton beams.
In-situ Calibration Methods for Phased Array High Frequency Radars
NASA Astrophysics Data System (ADS)
Flament, P. J.; Flament, M.; Chavanne, C.; Flores-vidal, X.; Rodriguez, I.; Marié, L.; Hilmer, T.
2016-12-01
HF radars measure currents through the Doppler-shift of electromagnetic waves Bragg-scattered by surface gravity waves. While modern clocks and digital synthesizers yield range errors negligible compared to the bandwidth-limited range resolution, azimuth calibration issues arise for beam-forming phased arrays. Sources of errors in the phases of the received waves can be internal to the radar system (phase errors of filters, cable lengths, antenna tuning) and geophysical (standing waves, propagation and refraction anomalies). They result in azimuthal biases (which can be range-dependent) and beam-forming side-lobes (which induce Doppler ambiguities). We analyze the experimental calibrations of 17 deployments of WERA HF radars, performed between 2003 and 2012 in Hawaii, the Adriatic, France, Mexico and the Philippines. Several strategies were attempted: (i) passive reception of continuous multi-frequency transmitters on GPS-tracked boats, cars, and drones; (ii) bi-static calibrations of radars in mutual view; (iii) active echoes from vessels of opportunity of unknown positions or tracked through AIS; (iv) interference of unknown remote transmitters with the chirped local oscillator. We found that: (a) for antennas deployed on the sea shore, a single-azimuth calibration is sufficient to correct phases within a typical beam-forming azimuth range; (b) after applying this azimuth-independent correction, residual pointing errors are 1-2 deg. rms; (c) for antennas deployed on irregular cliffs or hills, back from shore, systematic biases appear for some azimuths at large incidence angles, suggesting that some of the ground-wave electromagnetic energy propagates in a terrain-following mode between the sea shore and the antennas; (d) for some sites, fluctuations of 10-25 deg. in radio phase at 20-40 deg. azimuthal period, not significantly correlated among antennas, are omnipresent in calibrations along a constant-range circle, suggesting standing waves or multiple paths in the presence of reflecting structures (buildings, fences), or possibly fractal nature of the wavefronts; (e) amplitudes lack stability in time and azimuth to be usable as a-priori calibrations, confirming the accepted method of re-normalizing amplitudes by the signal of nearby cells prior to beam-forming.
VizieR Online Data Catalog: UV counterparts in HI clouds using ALFA surveys (Donovan+, 2015)
NASA Astrophysics Data System (ADS)
Donovan Meyer, J.; Peek, J. E. G.; Putman, M.; Grcevich, J.
2017-10-01
GALFA-HI is a survey of Galactic HI conducted with the ALFA seven-beam feed array on the 305 m Arecibo antenna. The survey has both high spatial (FWHM~4') and velocity (0.18 km/s) resolution over 13000 (7520 in DR1) degrees2 of sky between -650 and 650 km/s. Details of the observations and data reduction can be found in Peek et al. (2011ApJS..194...20P). The ALFALFA HI-line survey, now 40% complete, also uses the Arecibo Observatory and its seven-beam feed array to detect potential dwarf galaxies in the vicinity of the Milky Way. The survey, which covers over 7000 (2800 in α.40) deg2 of sky out to 18000 km/s, has the sensitivity to detect 105 Mȯ clouds with 20 km/s linewidths at a distance of 1 Mpc. (2 data files).
Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna
NASA Technical Reports Server (NTRS)
Tulintseff, Ann N. (Inventor)
1995-01-01
An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.
NASA Astrophysics Data System (ADS)
Scott, M. L.; Gagarin, N.; Mekemson, J. R.; Chintakunta, S. R.
2011-06-01
Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research and development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.
The impact of modelling errors on interferometer calibration for 21 cm power spectra
NASA Astrophysics Data System (ADS)
Ewall-Wice, Aaron; Dillon, Joshua S.; Liu, Adrian; Hewitt, Jacqueline
2017-09-01
We study the impact of sky-based calibration errors from source mismodelling on 21 cm power spectrum measurements with an interferometer and propose a method for suppressing their effects. While emission from faint sources that are not accounted for in calibration catalogues is believed to be spectrally smooth, deviations of true visibilities from model visibilities are not, due to the inherent chromaticity of the interferometer's sky response (the 'wedge'). Thus, unmodelled foregrounds, below the confusion limit of many instruments, introduce frequency structure into gain solutions on the same line-of-sight scales on which we hope to observe the cosmological signal. We derive analytic expressions describing these errors using linearized approximations of the calibration equations and estimate the impact of this bias on measurements of the 21 cm power spectrum during the epoch of reionization. Given our current precision in primary beam and foreground modelling, this noise will significantly impact the sensitivity of existing experiments that rely on sky-based calibration. Our formalism describes the scaling of calibration with array and sky-model parameters and can be used to guide future instrument design and calibration strategy. We find that sky-based calibration that downweights long baselines can eliminate contamination in most of the region outside of the wedge with only a modest increase in instrumental noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, M. L.; Gagarin, N.; Mekemson, J. R.
Until recently, civil engineering material calibration data could only be obtained from material sample cores or via time consuming, stationary calibration measurements in a limited number of locations. Calibration data are used to determine material propagation velocities of electromagnetic waves in test materials for use in layer thickness measurements and subsurface imaging. Limitations these calibration methods impose have been a significant impediment to broader use of nondestructive evaluation methods such as ground-penetrating radar (GPR). In 2006, a new rapid, continuous calibration approach was designed using simulation software to address these measurement limitations during a Federal Highway Administration (FHWA) research andmore » development effort. This continuous calibration method combines a digitally-synthesized step-frequency (SF)-GPR array and a data collection protocol sequence for the common midpoint (CMP) method. Modeling and laboratory test results for various data collection protocols and materials are presented in this paper. The continuous-CMP concept was finally implemented for FHWA in a prototype demonstration system called the Advanced Pavement Evaluation (APE) system in 2009. Data from the continuous-CMP protocol is processed using a semblance/coherency analysis to determine material propagation velocities. Continuously calibrated pavement thicknesses measured with the APE system in 2009 are presented. This method is efficient, accurate, and cost-effective.« less
HYDICE postflight data processing
NASA Astrophysics Data System (ADS)
Aldrich, William S.; Kappus, Mary E.; Resmini, Ronald G.; Mitchell, Peter A.
1996-06-01
The hyperspectral digital imagery collection experiment (HYDICE) sensor records instrument counts for scene data, in-flight spectral and radiometric calibration sequences, and dark current levels onto an AMPEX DCRsi data tape. Following flight, the HYDICE ground data processing subsystem (GDPS) transforms selected scene data from digital numbers (DN) to calibrated radiance levels at the sensor aperture. This processing includes: dark current correction, spectral and radiometric calibration, conversion to radiance, and replacement of bad detector elements. A description of the algorithms for post-flight data processing is presented. A brief analysis of the original radiometric calibration procedure is given, along with a description of the development of the modified procedure currently used. Example data collected during the 1995 flight season, but uncorrected and processed, are shown to demonstrate the removal of apparent sensor artifacts (e.g., non-uniformities in detector response over the array) as a result of this transformation.
Aspects of the optical system relevant for the KM3NeT timing calibration
NASA Astrophysics Data System (ADS)
Kieft, Gerard
2016-04-01
KM3NeT is a future research infrastructure in the Mediterranean Sea housing the large Cherenkov telescope arrays of optical modules for neutrino detection. The detector control and data transmission system is based on fibre optical technology. For timing calibration of the detector signals the optical system is used to send and fan-out an onshore clock signal, derived from a GPS receiver, to all optical modules in the deep sea. The optical modules use this clock signal to time stamp the light pulses detected by the photomultipliers inside the modules. The delay time between the GPS clock on shore and the clock in each optical module is measured with sub-nanosecond precision using a White Rabbit based timing calibration system. The aspects of the optical system relevant for the timing calibration and the quantification of their effect will be presented.
NASA Astrophysics Data System (ADS)
Jentschel, M.; Blanc, A.; de France, G.; Köster, U.; Leoni, S.; Mutti, P.; Simpson, G.; Soldner, T.; Ur, C.; Urban, W.; Ahmed, S.; Astier, A.; Augey, L.; Back, T.; Baczyk, P.; Bajoga, A.; Balabanski, D.; Belgya, T.; Benzoni, G.; Bernards, C.; Biswas, D. C.; Bocchi, G.; Bottoni, S.; Britton, R.; Bruyneel, B.; Burnett, J.; Cakirli, R. B.; Carroll, R.; Catford, W.; Cederwall, B.; Celikovic, I.; Cieplicka-Oryńczak, N.; Clement, E.; Cooper, N.; Crespi, F.; Csatlos, M.; Curien, D.; Czerwiński, M.; Danu, L. S.; Davies, A.; Didierjean, F.; Drouet, F.; Duchêne, G.; Ducoin, C.; Eberhardt, K.; Erturk, S.; Fraile, L. M.; Gottardo, A.; Grente, L.; Grocutt, L.; Guerrero, C.; Guinet, D.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Ilieva, S.; Ivanova, D.; John, B. V.; John, R.; Jolie, J.; Kisyov, S.; Krticka, M.; Konstantinopoulos, T.; Korgul, A.; Krasznahorkay, A.; Kröll, T.; Kurpeta, J.; Kuti, I.; Lalkovski, S.; Larijani, C.; Leguillon, R.; Lica, R.; Litaize, O.; Lozeva, R.; Magron, C.; Mancuso, C.; Ruiz Martinez, E.; Massarczyk, R.; Mazzocchi, C.; Melon, B.; Mengoni, D.; Michelagnoli, C.; Million, B.; Mokry, C.; Mukhopadhyay, S.; Mulholland, K.; Nannini, A.; Napoli, D. R.; Olaizola, B.; Orlandi, R.; Patel, Z.; Paziy, V.; Petrache, C.; Pfeiffer, M.; Pietralla, N.; Podolyak, Z.; Ramdhane, M.; Redon, N.; Regan, P.; Regis, J. M.; Regnier, D.; Oliver, R. J.; Rudigier, M.; Runke, J.; Rzaca-Urban, T.; Saed-Samii, N.; Salsac, M. D.; Scheck, M.; Schwengner, R.; Sengele, L.; Singh, P.; Smith, J.; Stezowski, O.; Szpak, B.; Thomas, T.; Thürauf, M.; Timar, J.; Tom, A.; Tomandl, I.; Tornyi, T.; Townsley, C.; Tuerler, A.; Valenta, S.; Vancraeyenest, A.; Vandone, V.; Vanhoy, J.; Vedia, V.; Warr, N.; Werner, V.; Wilmsen, D.; Wilson, E.; Zerrouki, T.; Zielinska, M.
2017-11-01
In the EXILL campaign a highly efficient array of high purity germanium (HPGe) detectors was operated at the cold neutron beam facility PF1B of the Institut Laue-Langevin (ILL) to carry out nuclear structure studies, via measurements of γ-rays following neutron-induced capture and fission reactions. The setup consisted of a collimation system producing a pencil beam with a thermal capture equivalent flux of about 108 n s-1cm-2 at the target position and negligible neutron halo. The target was surrounded by an array of eight to ten anti-Compton shielded EXOGAM Clover detectors, four to six anti-Compton shielded large coaxial GASP detectors and two standard Clover detectors. For a part of the campaign the array was combined with 16 LaBr3:(Ce) detectors from the FATIMA collaboration. The detectors were arranged in an array of rhombicuboctahedron geometry, providing the possibility to carry out very precise angular correlation and directional-polarization correlation measurements. The triggerless acquisition system allowed a signal collection rate of up to 6 × 105 Hz. The data allowed to set multi-fold coincidences to obtain decay schemes and in combination with the FATIMA array of LaBr3:(Ce) detectors to analyze half-lives of excited levels in the pico- to microsecond range. Precise energy and efficiency calibrations of EXILL were performed using standard calibration sources of 133Ba, 60Co and 152Eu as well as data from the reactions 27Al(n,γ)28Al and 35Cl(n,γ)36Cl in the energy range from 30 keV up to 10 MeV.
Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habte, A.; Sengupta, M.; Reda, I.
2014-11-01
Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.
2010-01-01
the northern flank of Georges Bank from east to west. As a result, annual stock estimates may be highly aliased in both time and space. One of the...transmitted signals from the source array for transmission loss and source level calibrations. Two calibrated acoustic targets made of air- filled rubber...region to the north is comprised of over 70106 individuals. Concurrent localized imaging of fish aggregations at OAWRS- directed locations was
Automated Reduction and Calibration of SCUBA Archive Data Using ORAC-DR
NASA Astrophysics Data System (ADS)
Jenness, T.; Stevens, J. A.; Archibald, E. N.; Economou, F.; Jessop, N.; Robson, E. I.; Tilanus, R. P. J.; Holland, W. S.
The Submillimetre Common User Bolometer Array (SCUBA) instrument has been operating on the James Clerk Maxwell Telescope (JCMT) since 1997. The data archive is now sufficiently large that it can be used for investigating instrumental properties and the variability of astronomical sources. This paper describes the automated calibration and reduction scheme used to process the archive data with particular emphasis on the pointing observations. This is made possible by using the ORAC-DR data reduction pipeline, a flexible and extensible data reduction pipeline that is used on UKIRT and the JCMT.
SuperDARN elevation angle calibration using HAARP-induced backscatter
NASA Astrophysics Data System (ADS)
Shepherd, S. G.; Thomas, E. G.; Palinski, T. J.; Bristow, W.
2017-12-01
SuperDARN radars rely on refraction in the ionosphere to make Doppler measurements of backscatter from ionospheric irregularities or the ground/sea, often to ranges of 4000 km or more. Elevation angle measurements of backscattered signals can be important for proper geolocation, mode identification and Doppler velocity corrections to the data. SuperDARN radars are equipped with a secondary array to make elevation angle measurements, however, calibration is often difficult. One method of calibration is presented here, whereby backscatter from HAARP-induced irregularities, at a known location, is used to independently determine the elevation angle of signals. Comparisons are made for several radars with HAARP in their field-of-view in addition to the results obtained fromray-tracing in a model ionosphere.
The Calibration Units of the KM3NeT neutrino telescope
NASA Astrophysics Data System (ADS)
Baret, B.; Keller, P.; Clark, M. Lindsey
2016-04-01
KM3NeT is a network of deep-sea neutrino telescopes to be deployed in the Mediterranean Sea that will perform neutrino astronomy and oscillation studies. It consists of three-dimensional arrays of thousands of optical modules that detect the Cherenkov light induced by charged particles resulting from the interaction of a neutrino with the surrounding medium. The performance of the neutrino telescope relies on the precise timing and positioning calibration of the detector elements. Other environmental conditions which may affect light and sound transmission, such as water temperature and salinity, must also be continuously monitored. This contribution describes the technical design of the first Calibration Unit, to be deployed on the French site as part of KM3NeT Phase 1.
Photovoltaic Engineering Testbed Designed for Calibrating Photovoltaic Devices in Space
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2002-01-01
Accurate prediction of the performance of solar arrays in space requires that the cells be tested in comparison with a space-flown standard. Recognizing that improvements in future solar cell technology will require an ever-increasing fidelity of standards, the Photovoltaics and Space Environment Branch at the NASA Glenn Research Center, in collaboration with the Ohio Aerospace Institute, designed a prototype facility to allow routine calibration, measurement, and qualification of solar cells on the International Space Station, and then the return of the cells to Earth for laboratory use. For solar cell testing, the Photovoltaic Engineering Testbed (PET) site provides a true air-mass-zero (AM0) solar spectrum. This allows solar cells to be accurately calibrated using the full spectrum of the Sun.
Results of the 1999 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.
2000-01-01
The 1999 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 14, 1999, and July 6, 1999. All objectives of the flight program were met. Fifty-seven modules were carried to an altitude of approximately equal to 120,000 ft (36.6 km). Full I-V curves were measured on five of these modules, and output at a fixed load was measured on forty-three modules (forty-five cells), with some modules repeated on the second flight. This data was corrected to 28 C and to 1 AU (1.496 x 10 (exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.
Yashchuk, V. V.; Fischer, P. J.; Chan, E. R.; ...
2015-12-09
We present a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) one-dimensional sequences and two-dimensional arrays as an effective method for spectral characterization in the spatial frequency domain of a broad variety of metrology instrumentation, including interferometric microscopes, scatterometers, phase shifting Fizeau interferometers, scanning and transmission electron microscopes, and at this time, x-ray microscopes. The inherent power spectral density of BPR gratings and arrays, which has a deterministic white-noise-like character, allows a direct determination of the MTF with a uniform sensitivity over the entire spatial frequency range and field of view of an instrument. We demonstrate themore » MTF calibration and resolution characterization over the full field of a transmission soft x-ray microscope using a BPR multilayer (ML) test sample with 2.8 nm fundamental layer thickness. We show that beyond providing a direct measurement of the microscope's MTF, tests with the BPRML sample can be used to fine tune the instrument's focal distance. Finally, our results confirm the universality of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.« less
Medjoubi, Kadda; Thompson, Andrew; Bérar, Jean-François; Clemens, Jean-Claude; Delpierre, Pierre; Da Silva, Paulo; Dinkespiler, Bernard; Fourme, Roger; Gourhant, Patrick; Guimaraes, Beatriz; Hustache, Stéphanie; Idir, Mourad; Itié, Jean-Paul; Legrand, Pierre; Menneglier, Claude; Mercere, Pascal; Picca, Frederic; Samama, Jean-Pierre
2012-05-01
The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.
Shehata, A B; Rizk, M S; Rend, E A
2016-10-01
Caffeine reference material certified for purity is produced worldwide, but no research work on the details of the certification process has been published in the literature. In this paper, we report the scientific details of the preparation and certification of pure caffeine reference materials. Caffeine was prepared by extraction from roasted and ground coffee by dichloromethane after heating in deionized water mixed with magnesium oxide. The extract was purified, dried, and bottled in dark glass vials. Stratified random selection was applied to select a number of vials for homogeneity and stability studies, which revealed that the prepared reference material is homogeneous and sufficiently stable. Quantification of caffeine purity % was carried out using a calibrated UV/visible spectrophotometer and a calibrated high-performance liquid chromatography with diode-array detection method. The results obtained from both methods were combined to drive the certified value and its associated uncertainty. The certified value of the reference material purity was found to be 99.86% and its associated uncertainty was ±0.65%, which makes the candidate reference material a very useful calibrant in food and drug chemical analysis. Copyright © 2016. Published by Elsevier B.V.
Ground Calibration of the Astro-H (Hitomi) Soft X-Ray Spectrometer
NASA Technical Reports Server (NTRS)
Eckart, M. E.; Adams, J. S.; Boyce, K. R.; Brown, G. V.; Chiao, Meng P.; Fujimoto, R. J.; Haas, D.; Den Herder, J. W.; Ishisaki, Y.; Kelley, R. L.;
2016-01-01
The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0.3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.
High Performance Circularly Polarized Microstrip Antenna
NASA Technical Reports Server (NTRS)
Bondyopadhyay, Probir K. (Inventor)
1997-01-01
A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.
Correlator data analysis for the array feed compensation system
NASA Technical Reports Server (NTRS)
Iijima, B.; Fort, D.; Vilnrotter, V.
1994-01-01
The real-time array feed compensation system is currently being evaluated at DSS 13. This system recovers signal-to-noise ratio (SNR) loss due to mechanical antenna deformations by using an array of seven Ka-band (33.7-GHz) horns to collect the defocused signal fields. The received signals are downconverted and digitized, in-phase and quadrature samples are generated, and combining weights are applied before the samples are recombined. It is shown that when optimum combining weights are employed, the SNR of the combined signal approaches the sum of the channel SNR's. The optimum combining weights are estimated directly from the signals in each channel by the Real-Time Block 2 (RTB2) correlator; since it was designed for very-long-baseline interferometer (VLBI) applications, it can process broadband signals as well as tones to extract the required weight estimates. The estimation algorithms for the optimum combining weights are described for tones and broadband sources. Data recorded in correlator output files can also be used off-line to estimate combiner performance by estimating the SNR in each channel, which was done for data taken during a Jupiter track at DSS 13.
NASA Astrophysics Data System (ADS)
Paul, Dilip K.; Razdan, Rajender; Goldman, Alfred M.
1996-10-01
Feasibility of photonics in beam forming and steering of large phased-array antennas onboard communications satellite/avionics systems is addressed in this paper. Specifically, a proof-of-concept demonstration of phased- array antenna feed network using fiber optic true time-delay (TTD) elements is reported for SATCOM phased-array antennas operating at C-band. Results of the photonic hardware design and performance analysis, including the measured radiation patterns of the antenna array fed by the photonic BFN, are presented. An excellent agreement between the analysis and measured data has been observed. In addition to being light- weight and compact, several unique characteristics such as rf carrier frequency agility and continuous steerability of the radiated beam achieved by the fiber optic TTD architecture are clear evidences of its superiority over other competing photonic architectures.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal
2015-01-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879
Development of theoretical models of integrated millimeter wave antennas
NASA Technical Reports Server (NTRS)
Yngvesson, K. Sigfrid; Schaubert, Daniel H.
1991-01-01
Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Straten, W., E-mail: vanstraten.willem@gmail.com
2013-01-15
A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two timesmore » smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.« less
2014-08-01
AFRL-RQ-WP-TR-2014-0212 University of South Carolina Department of Electrical Engineering Columbia, SC 29208 Structures Technology Branch...S2603-04-C01. Cleared for Public Release - Case Number: . Nicholas Bishop and M. Ali are with the Department of Electrical Engineering, University of...Lower substrate Upper substrate Foam core Coax Feed tube LPDA traces Coax inner conductor Feed tube Copper plate Input 88ABW-2014-3668, 8
NASA Astrophysics Data System (ADS)
Bullock, Eric
Since its discovery in 1964, the Cosmic Microwave Background (CMB) has led to widespread acceptance of the Big Bang cosmological paradigm as an explanation for the evolution of the Universe. However, this paradigm does not explain the origin of the initial conditions, leading to such issues as the "horizon problem" and "flatness problem." In the early 1980's, the inflationary paradigm was introduced as a possible source for the initial conditions. This theory postulates that the Universe underwent a period of exponential expansion within a tiny fraction of a second after the beginning. Such an expansion is predicted to inject a stochastic background of gravitational waves that could imprint a detectable B-mode (curl-like) signal in the polarization of the CMB. It is this signal that the family of telescopes used by the B ICEP1, BICEP2, and Keck Array collaborations were designed to detect. These telescopes are small aperture, on-axis, refracting telescopes. We have used the data from these telescopes, particularly BICEP2 and the Keck Array, to place the tightest constraints, as of March 2016, on the tensor-to-scalar ratio of the CMB of r 0.05 < 0.07. In this dissertation, we provide an overview of the Keck Array telescopes and analysis of the data. We also investigate, as the main focus of this dissertation, a device we call the Dielectric Sheet Calibrator (DSC) that is used to measure the polarization angles of our detectors as projected on the sky. With these measurements, we gain the potential to separate the polarization rotation effects of parity-violating physics, such as cosmic birefringence, from a systematic uncertainty on our detectors' polarization angles. Current calibration techniques for polarization sensitive CMB detectors claim an accuracy of +/-0.5°, which sets a limit for determining the usefulness of the DSC. Through a series of consistency tests on a single Keck Array receiver, we demonstrate a statistical uncertainty on the DSC measurements of +/-0.03° and estimate a systematic uncertainty of +/-0.2°. which meets the minimum goal. We also conclude that there is no conflict between the DSC-derived polarization angles of this single receiver and the rotation derived from that receiver's CMB data under the hypothesis of no cosmic birefringence.
Characterization of large-area pressure sensitive robot skin
NASA Astrophysics Data System (ADS)
Saadatzi, Mohammad Nasser; Baptist, Joshua R.; Wijayasinghe, Indika B.; Popa, Dan O.
2017-05-01
Sensorized robot skin has considerable promise to enhance robots' tactile perception of surrounding environments. For physical human-robot interaction (pHRI) or autonomous manipulation, a high spatial sensor density is required, typically driven by the skin location on the robot. In our previous study, a 4x4 flexible array of strain sensors were printed and packaged onto Kapton sheets and silicone encapsulants. In this paper, we are extending the surface area of the patch to larger arrays with up to 128 tactel elements. To address scalability, sensitivity, and calibration challenges, a novel electronic module, free of the traditional signal conditioning circuitry was created. The electronic design relies on a software-based calibration scheme using high-resolution analog-to-digital converters with internal programmable gain amplifiers. In this paper, we first show the efficacy of the proposed method with a 4x4 skin array using controlled pressure tests, and then perform procedures to evaluate each sensor's characteristics such as dynamic force-to-strain property, repeatability, and signal-to-noise-ratio. In order to handle larger sensor surfaces, an automated force-controlled test cycle was carried out. Results demonstrate that our approach leads to reliable and efficient methods for extracting tactile models for use in future interaction with collaborative robots.
Implosion Source Development and Diego Garcia Reflections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harben, P E; Boro, C
2001-06-01
Calibration of hydroacoustic stations for nuclear explosion monitoring is important for increasing monitoring capability and confidence from newly installed stations and from existing stations. Past work at Ascension Island has shown that ship-towed airguns can be effectively used for local calibrations such as sensor location, amplitude and phase response, and T-phase coupling in the case of T-phase stations. At regional and ocean-basin distances from a station, the calibration focus is on acoustic travel time, transmission loss, bathymetric shadowing, diffraction, and reflection as recorded at a particular station. Such station calibrations will lead to an overall network calibration that seeks tomore » maximize detection, location, and discrimination capability of events with acoustic signatures. Active-source calibration of hydroacoustic stations at regional and ocean-basin scales has not been attempted to date, but we have made significant headway addressing how such calibrations could be accomplished. We have developed an imploding sphere source that can be used instead of explosives on research and commercial vessels without restriction. The imploding sphere has been modeled using the Lawrence Livermore National Laboratory hydrodynamic code CALE and shown to agree with field data. The need for boosted energy in the monitoring band (2-100 Hz) has led us to develop a 5-sphere implosion device that was tested in the Pacific Ocean earlier this year. Boosting the energy in the monitoring band can be accomplished by a combination of increasing the implosion volume (i.e. the 5-sphere device) and imploding at shallower depths. Although active source calibrations will be necessary at particular locations and for particular objectives, the newly installed Diego Garcia station in the Indian Ocean has shown that earthquakes can be used to help understand regional blockages and the locations responsible for observed hydroacoustic reflections. We have analyzed several events with a back-azimuth from Diego Garcia between 100 and 140 degrees. The Diego Garcia records show a pronounced reflection that correlates in travel time and back-azimuth (calculated using the waveform cross-correlation of the tri-partite array elements to determine lag time across the array) with a reflector at the Saya de Malha Bank, on the Seychelles-Mauritius Plateau. We also show that to accurately predict blockage and reflection regions, it is essential to have detailed bathymetry in relatively small but critical areas.« less
The Telecommunications and Data Acquisition Report
NASA Technical Reports Server (NTRS)
Posner, E. C. (Editor)
1987-01-01
Developments in programs managed by the Jet Propulsion Laboratory's Office of Telecommunications and Data Acquisition are discussed. Topics discussed include sorption compression/mechanical expanded hybrid refrigeration, calculated 70-meter antenna performance for offset L-band, systolic arrays and stack decoding, and calibrations of Deep Space Network antennas.
Inconspicuous echolocation in hoary bats (Lasiurus cinereus)
Aaron J. Corcoran; Theodore J. Weller
2018-01-01
Echolocation allows bats to occupy diverse nocturnal niches. Bats almost always use echolocation, even when other sensory stimuli are available to guide navigation. Here, using arrays of calibrated infrared cameras and ultrasonic microphones, we demonstrate that hoary bats (Lasiurus cinereus) use previously unknown echolocation behaviours that...
In-flight calibration of the Hitomi Soft X-ray Spectrometer. (2) Point spread function
NASA Astrophysics Data System (ADS)
Maeda, Yoshitomo; Sato, Toshiki; Hayashi, Takayuki; Iizuka, Ryo; Angelini, Lorella; Asai, Ryota; Furuzawa, Akihiro; Kelley, Richard; Koyama, Shu; Kurashima, Sho; Ishida, Manabu; Mori, Hideyuki; Nakaniwa, Nozomi; Okajima, Takashi; Serlemitsos, Peter J.; Tsujimoto, Masahiro; Yaqoob, Tahir
2018-03-01
We present results of inflight calibration of the point spread function of the Soft X-ray Telescope that focuses X-rays onto the pixel array of the Soft X-ray Spectrometer system. We make a full array image of a point-like source by extracting a pulsed component of the Crab nebula emission. Within the limited statistics afforded by an exposure time of only 6.9 ks and limited knowledge of the systematic uncertainties, we find that the raytracing model of 1 {^'.} 2 half-power-diameter is consistent with an image of the observed event distributions across pixels. The ratio between the Crab pulsar image and the raytracing shows scatter from pixel to pixel that is 40% or less in all except one pixel. The pixel-to-pixel ratio has a spread of 20%, on average, for the 15 edge pixels, with an averaged statistical error of 17% (1 σ). In the central 16 pixels, the corresponding ratio is 15% with an error of 6%.
NASA Technical Reports Server (NTRS)
Spinhirne, James M; Scott, V. Stan; Lancaster, Redgie S.; Manizade, Kathrine; Palm, Steven P.
2000-01-01
The Infrared Spectral Imaging Radiometer experiment was flown on a space shuttle mission as a shuttle hitchhiker experiment in August of 1997. The goals of the experiment were to test uncooled array detectors for infrared spectral imaging from space and to apply for the first time retrieval from space of brightness temperatures of cloud, land and sea along with direct laser measurements of cloud top height. The instrument operates in 3 narrow and one broad spectral band, all between 7 and 13 microns in either stare or time-delay and integration mode. The nominal spatial resolution was 1/4 kilometer. Using onboard calibrations along with periodic views of deep space, radiometric calibration of imagery was carried out and performance analyzed. The noise equivalent temperature difference and absolute accuracy reported here varied with operating mode, spectral band and scene temperature but were within requirements. This paper provides a description of the instrument, its operating modes, the method of brightness temperature retrieval, the method of spectral registration and results from the flight.
Broadband calibration of the R/V Marcus G. Langseth four-string seismic sources
NASA Astrophysics Data System (ADS)
Tolstoy, M.; Diebold, J.; Doermann, L.; Nooner, S.; Webb, S. C.; Bohnenstiehl, D. R.; Crone, T. J.; Holmes, R. C.
2009-08-01
The R/V Marcus G. Langseth is the first 3-D seismic vessel operated by the U.S. academic community. With up to a four-string, 36-element source and four 6-km-long solid state hydrophone arrays, this vessel promises significant new insights into Earth science processes. The potential impact of anthropogenic sound sources on marine life is an important topic to the marine seismic community. To ensure that operations fully comply with existing and future marine mammal permitting requirements, a calibration experiment was conducted in the Gulf of Mexico in 2007-2008. Results are presented from deep (˜1.6 km) and shallow (˜50 m) water sites, obtained using the full 36-element (6600 cubic inches) seismic source. This array configuration will require the largest safety radii, and the deep and shallow sites provide two contrasting operational environments. Results show that safety radii and the offset between root-mean-square and sound exposure level measurements were highly dependent on water depth.
SETIBURST: A Robotic, Commensal, Realtime Multi-science Backend for the Arecibo Telescope
NASA Astrophysics Data System (ADS)
Chennamangalam, Jayanth; MacMahon, David; Cobb, Jeff; Karastergiou, Aris; Siemion, Andrew P. V.; Rajwade, Kaustubh; Armour, Wes; Gajjar, Vishal; Lorimer, Duncan R.; McLaughlin, Maura A.; Werthimer, Dan; Williams, Christopher
2017-02-01
Radio astronomy has traditionally depended on observatories allocating time to observers for exclusive use of their telescopes. The disadvantage of this scheme is that the data thus collected is rarely used for other astronomy applications, and in many cases, is unsuitable. For example, properly calibrated pulsar search data can, with some reduction, be used for spectral line surveys. A backend that supports plugging in multiple applications to a telescope to perform commensal data analysis will vastly increase the science throughput of the facility. In this paper, we present “SETIBURST,” a robotic, commensal, realtime multi-science backend for the 305 m Arecibo Telescope. The system uses the 1.4 GHz, seven-beam Arecibo L-band Feed Array (ALFA) receiver whenever it is operated. SETIBURST currently supports two applications: SERENDIP VI, a SETI spectrometer that is conducting a search for signs of technological life, and ALFABURST, a fast transient search system that is conducting a survey of fast radio bursts (FRBs). Based on the FRB event rate and the expected usage of ALFA, we expect 0-5 FRB detections over the coming year. SETIBURST also provides the option of plugging in more applications. We outline the motivation for our instrumentation scheme and the scientific motivation of the two surveys, along with their descriptions and related discussions.
JWST Near-Infrared Detectors: Latest Test Results
NASA Technical Reports Server (NTRS)
Smith, Erin C.; Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Chiao, Meng; Clemons, Brian L.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.;
2009-01-01
The James Webb Space Telescope, an infrared-optimized space telescope being developed by NASA for launch in 2013, will utilize cutting-edge detector technology in its investigation of fundamental questions in astrophysics. JWST's near infrared spectrograph, NIRSpec utilizes two 2048 x 2048 HdCdTe arrays with Sidecar ASIC readout electronics developed by Teledyne to provide spectral coverage from 0.6 microns to 5 microns. We present recent test and calibration results for the NIRSpec flight arrays as well as data processing routines for noise reduction and cosmic ray rejection.
A new array for the study of ultra high energy gamma-ray sources
NASA Technical Reports Server (NTRS)
Brooke, G.; Lambert, A.; Ogden, P. A.; Patel, M.; Ferrett, J. C.; Reid, R. J. O.; Watson, A. A.; West, A. A.
1985-01-01
The design and operation of a 32 x 1 10 to the 15th power sq m array of scintillation detectors for the detection of 10 to the 15th power eV cosmic rays is described with an expected angular resolution of 1 deg, thus improving the present signal/background ratio for gamma ray sources. Data are recorded on a hybrid CAMAC, an in-house system which uses a laser and Pockel-Cell arrangement to routinely calibrate the timing stability of the detectors.
[Breast-feeding, bottle-feeding, sucking habits and malocclusion in Brazilian preschool children].
Leite-Cavalcanti, Alessandro; Medeiros-Bezerra, Priscila K; Moura, Cristiano
2007-01-01
This study was aimed at verifying the prevalence of nutritive (breast-feeding and bottle-feeding) and non-nutritive sucking habits and the presence of malocclusion in Brazilian preschool children. The study was a cross-sectional oral health survey of 342 children (196 boys and 146 girls) between the ages of 3 and 5 in Campina Grande, Brazil. The data was collected by interviews with the children's mothers or minders and by clinical examinations carried out by a calibrated examiner (kappa = 0,86). Descriptive statistics using the EPI-INFO Program (version 3.3) and Chi-square test at 0.05 probability level were produced. Sucking habit prevalence was very high in all groups, ranging from 70 % to 77,4 %. Malocclusion was present in 87 %, dummy use in 84,8 % and finger-sucking in 7,2 %. About 84,2 % of the children had a history of bottle-feeding and 79,9 % showed some evidence of malocclusion at the time of dental examination. There were significant differences for the following variables: sucking habits and malocclusion; breast-feeding time and sucking habits; breast-feeding time and malocclusion; type of feeding and sucking habits; and type of feeding and malocclusion. Dummy-sucking incidence was higher than that of finger-sucking in Brazilian children. Sucking habit incidence was higher in bottle-fed children than in breast-fed children. The relationship between incidence of habits and malocclusion was statistically significant.
Multi-parameter fibre Bragg grating sensor-array for thermal vacuum cycling test
NASA Astrophysics Data System (ADS)
Cheng, L.; Ahlers, B.; Toet, P.; Casarosa, G.; Appolloni, M.
2017-11-01
Fibre Bragg Grating (FBG) sensor systems based on optical fibres are gaining interest in space applications. Studies on Structural Health Monitoring (SHM) of the reusable launchers using FBG sensors have been carried out in the Future European Space Transportation Investigations Programme (FESTIP). Increasing investment in the development on FBG sensor applications is foreseen for the Future Launchers Preparatory Programme (FLPP). TNO has performed different SHM measurements with FBGs including on the VEGA interstage [1, 2] in 2006. Within the current project, a multi-parameter FBG sensor array demonstrator system for temperature and strain measurements is designed, fabricated and tested under ambient as well as Thermal Vacuum (TV) conditions in a TV chamber of the European Space Agency (ESA), ESTEC site. The aim is the development of a multi-parameters measuring system based on FBG technology for space applications. During the TV tests of a Space Craft (S/C) or its subsystems, thermal measurements, as well as strain measurements are needed by the engineers in order to verify their prediction and to validate their models. Because of the dimensions of the test specimen and the accuracy requested to the measurement, a large number of observation/measuring points are needed. Conventional sensor systems require a complex routing of the cables connecting the sensors to their acquisition unit. This will add extra weight to the construction under test. FBG sensors are potentially light-weight and can easily be multiplexed in an array configuration. The different tasks comply of a demonstrator system design; its component selection, procurement, manufacturing and finally its assembly. The temperature FBG sensor is calibrated in a dedicated laboratory setup down to liquid nitrogen (LN2) temperature at TNO. A temperature-wavelength calibration curve is generated. After a test programme definition a setup in thermal vacuum is realised at ESA premises including a mechanical strain transducer to generate strain via a dedicated feed through in the chamber. Thermocouples are used to log the temperature for comparison to the temperature FBG sensor. Extreme temperature ranges from -150°C and +70°C at a pressure down to 10-4 Pa (10-6 mbar) are covered as well as testing under ambient conditions. In total five thermal cycles during a week test are performed. The FBG temperature sensor test results performed in the ESA/ESTEC TV chamber reveal high reproducibility (within 1 °C) within the test temperature range without any evidence of hysteresis. Differences are detected to the previous calibration curve. Investigation is performed to find the cause of the discrepancy. Differences between the test set-ups are identified. Equipment of the TNO test is checked and excluded to be the cause. Additional experiments are performed. The discrepancy is most likely caused by a 'thermal shock' due to rapid cooling down to LN2 temperature, which results in a wavelength shift. Test data of the FBG strain sensor is analysed. The read-out of the FBG strain sensor varies with the temperature during the test. This can be caused by temperature induced changes in the mechanical setup (fastening of the mechanical parts) or impact of temperature to the mechanical strain transfer to the FBG. Improvements are identified and recommendations given for future activities.
Compound Radar Approach for Breast Imaging.
Byrne, Dallan; Sarafianou, Mantalena; Craddock, Ian J
2017-01-01
Multistatic radar apertures record scattering at a number of receivers when the target is illuminated by a single transmitter, providing more scattering information than its monostatic counterpart per transmission angle. This paper considers the well-known problem of detecting tumor targets within breast phantoms using multistatic radar. To accurately image potentially cancerous targets size within the breast, a significant number of multistatic channels are required in order to adequately calibrate-out unwanted skin reflections, increase the immunity to clutter, and increase the dynamic range of a breast radar imaging system. However, increasing the density of antennas within a physical array is inevitably limited by the geometry of the antenna elements designed to operate with biological tissues at microwave frequencies. A novel compound imaging approach is presented to overcome these physical constraints and improve the imaging capabilities of a multistatic radar imaging modality for breast scanning applications. The number of transmit-receive (TX-RX) paths available for imaging are increased by performing a number of breast scans with varying array positions. A skin calibration method is presented to reduce the influence of skin reflections from each channel. Calibrated signals are applied to receive a beamforming method, compounding the data from each scan to produce a microwave radar breast profile. The proposed imaging method is evaluated with experimental data obtained from constructed phantoms of varying complexity, skin contour asymmetries, and challenging tumor positions and sizes. For each imaging scenario outlined in this study, the proposed compound imaging technique improves skin calibration, clearly detects small targets, and substantially reduces the level of undesirable clutter within the profile.
Development of detailed design concepts for the EarthCARE multi-spectral imager
NASA Astrophysics Data System (ADS)
Lobb, Dan; Escadero, Isabel; Chang, Mark; Gode, Sophie
2017-11-01
The EarthCARE mission is dedicated to the study of clouds by observations from a satellite in low Earth orbit. The payload will include major radar and LIDAR instruments, supported by a multi-spectral imager (MSI) and a broadband radiometer. The paper describes development of detailed design concepts for the MSI, and analysis of critical performance parameters. The MSI will form Earth images at 500m ground sample distance (GSD) over a swath width of 150km, from a nominal platform altitude of around 400km. The task of the MSI is to provide spatial context for the single-point measurements made by the radar and LIDAR systems; it will image Earth in 7 spectral bands: one visible, one near-IR, two short-wave IR and three thermal IR. The MSI instrument will be formed in two parts: a visible-NIR-SWIR (VNS) system, radiometrically calibrated using a sunilluminated diffuser, and a thermal IR (TIR) system calibrated using cold space and an internal black-body. The VNS system will perform push-broom imaging, using linear array detectors (silicon and InGaAs) and 4 separate lenses. The TIR system will use a microbolometer array detector in a time delay and integration (TDI) mode. Critical issues discussed for the VNS system include detector selection and detailed optical design trade-offs. The latter are related to the desirability of dichroics to achieve a common aperture, which influences the calibration hardware and lens design. The TIR system's most significant problems relate to control of random noise and bias errors, requiring optimisation of detector operation and calibration procedures.
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Humphreys, William M.
2006-01-01
Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. The full rank equations are solved with a new robust iterative method. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.
Development of Radar Control system for Multi-mode Active Phased Array Radar for atmospheric probing
NASA Astrophysics Data System (ADS)
Yasodha, Polisetti; Jayaraman, Achuthan; Thriveni, A.
2016-07-01
Modern multi-mode active phased array radars require highly efficient radar control system for hassle free real time radar operation. The requirement comes due to the distributed architecture of the active phased array radar, where each antenna element in the array is connected to a dedicated Transmit-Receive (TR) module. Controlling the TR modules, which are generally few hundreds in number, and functioning them in synchronisation, is a huge task during real time radar operation and should be handled with utmost care. Indian MST Radar, located at NARL, Gadanki, which is established during early 90's, as an outcome of the middle atmospheric program, is a remote sensing instrument for probing the atmosphere. This radar has a semi-active array, consisting of 1024 antenna elements, with limited beam steering, possible only along the principle planes. To overcome the limitations and difficulties, the radar is being augmented into fully active phased array, to accomplish beam agility and multi-mode operations. Each antenna element is excited with a dedicated 1 kW TR module, located in the field and enables to position the radar beam within 20° conical volume. A multi-channel receiver makes the radar to operate in various modes like Doppler Beam Swinging (DBS), Spaced Antenna (SA), Frequency Domain Interferometry (FDI) etc. Present work describes the real-time radar control (RC) system for the above described active phased array radar. The radar control system consists of a Spartan 6 FPGA based Timing and Control Signal Generator (TCSG), and a computer containing the software for controlling all the subsystems of the radar during real-time radar operation and also for calibrating the radar. The main function of the TCSG is to generate the control and timing waveforms required for various subsystems of the radar. Important components of the RC system software are (i) TR module configuring software which does programming, controlling and health parameter monitoring of the TR modules, (ii) radar operation software which facilitates experimental parameter setting and operating the radar in different modes, (iii) beam steering software which computes the amplitude co-efficients and phases required for each TR module, for forming the beams selected for radar operation with the desired shape and (iv) Calibration software for calibrating the radar by measuring the differential insertion phase and amplitudes in all 1024 Transmit and Receive paths and correcting them. The TR module configuring software is a major task as it needs to control 1024 TR modules, which are located in the field about 150 m away from the RC system in the control room. Each TR module has a processor identified with a dedicated IP address, along with memory to store the instructions and parameters required for radar operation. A communication link is designed using Gigabit Ethernet (GbE) switches to realise 1 to 1024 way switching network. RC system computer communicates with the each processor using its IP address and establishes connection, via 1 to 1024 port GbE switching network. The experimental parameters data are pre-loaded parallely into all the TR modules along with the phase shifter data required for beam steering using this network. A reference timing pulse is sent to all the TR modules simultaneously, which indicates the start of radar operation. RC system also monitors the status parameters from the TR modules indicating their health during radar operation at regular intervals, via GbE switching network. Beam steering software generates the phase shift required for each TR module for the beams selected for operation. Radar operational software calls the phase shift data required for beam steering and adds it to the calibration phase obtained through calibration software and loads the resultant phase data into TR modules. Timed command/data transfer to/from subsystems and synchronisation of subsystems is essential for proper real-time operation of the active phased array radar and the RC system ensures that the commands/experimental parameter data are properly transferred to all subsystems especially to TR modules. In case of failure of any TR module, it is indicated to the user for further rectification. Realisation of the RC system is at an advanced stage. More details will be presented in the conference.
Large-Aperture Membrane Active Phased-Array Antennas
NASA Technical Reports Server (NTRS)
Karasik, Boris; McGrath, William; Leduc, Henry
2009-01-01
Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for this article, an 8 16 passive array (not including T/R modules) and a 2 4 active array (including T/R modules) had been demonstrated, and it was planned to fabricate and test larger arrays.
Urinary Sugars--A Biomarker of Total Sugars Intake.
Tasevska, Natasha
2015-07-15
Measurement error in self-reported sugars intake may explain the lack of consistency in the epidemiologic evidence on the association between sugars and disease risk. This review describes the development and applications of a biomarker of sugars intake, informs its future use and recommends directions for future research. Recently, 24 h urinary sucrose and fructose were suggested as a predictive biomarker for total sugars intake, based on findings from three highly controlled feeding studies conducted in the United Kingdom. From this work, a calibration equation for the biomarker that provides an unbiased measure of sugars intake was generated that has since been used in two US-based studies with free-living individuals to assess measurement error in dietary self-reports and to develop regression calibration equations that could be used in future diet-disease analyses. Further applications of the biomarker include its use as a surrogate measure of intake in diet-disease association studies. Although this biomarker has great potential and exhibits favorable characteristics, available data come from a few controlled studies with limited sample sizes conducted in the UK. Larger feeding studies conducted in different populations are needed to further explore biomarker characteristics and stability of its biases, compare its performance, and generate a unique, or population-specific biomarker calibration equations to be applied in future studies. A validated sugars biomarker is critical for informed interpretation of sugars-disease association studies.
Urinary Sugars—A Biomarker of Total Sugars Intake
Tasevska, Natasha
2015-01-01
Measurement error in self-reported sugars intake may explain the lack of consistency in the epidemiologic evidence on the association between sugars and disease risk. This review describes the development and applications of a biomarker of sugars intake, informs its future use and recommends directions for future research. Recently, 24 h urinary sucrose and fructose were suggested as a predictive biomarker for total sugars intake, based on findings from three highly controlled feeding studies conducted in the United Kingdom. From this work, a calibration equation for the biomarker that provides an unbiased measure of sugars intake was generated that has since been used in two US-based studies with free-living individuals to assess measurement error in dietary self-reports and to develop regression calibration equations that could be used in future diet-disease analyses. Further applications of the biomarker include its use as a surrogate measure of intake in diet-disease association studies. Although this biomarker has great potential and exhibits favorable characteristics, available data come from a few controlled studies with limited sample sizes conducted in the UK. Larger feeding studies conducted in different populations are needed to further explore biomarker characteristics and stability of its biases, compare its performance, and generate a unique, or population-specific biomarker calibration equations to be applied in future studies. A validated sugars biomarker is critical for informed interpretation of sugars-disease association studies. PMID:26184307
Yang, Qianru; Domesle, Kelly J.
2018-01-01
Abstract Loop-mediated isothermal amplification (LAMP) has become a powerful alternative to polymerase chain reaction (PCR) for pathogen detection in clinical specimens and food matrices. Nontyphoidal Salmonella is a zoonotic pathogen of significant food and feed safety concern worldwide. The first study employing LAMP for the rapid detection of Salmonella was reported in 2005, 5 years after the invention of the LAMP technology in Japan. This review provides an overview of international efforts in the past decade on the development and application of Salmonella LAMP assays in a wide array of food and feed matrices. Recent progress in assay design, platform development, commercial application, and method validation is reviewed. Future perspectives toward more practical and wider applications of Salmonella LAMP assays in food and feed testing are discussed. PMID:29902082
Luan, Enxiao; Zheng, Zhaozhu; Li, Xinyu; Gu, Hongxi; Liu, Shaoqin
2016-04-15
We present a facile fabrication of layer-by-layer (LbL) microarrays of quantum dots (QDs) and acetylcholinesterase enzyme (AChE). The resulting arrays had several unique properties, such as low cost, high integration and excellent flexibility and time-saving. The presence of organophosphorous pesticides (OPs) can inhibit the AChE activity and thus changes the fluorescent intensity of QDs/AChE microscopic dot arrays. Therefore, the QDs/AChE microscopic dot arrays were used for the sensitive visual detection of OPs. Linear calibration for parathion and paraoxon was obtained in the range of 5-100 μg L(-1) under the optimized conditions with the limit of detection (LOD) of 10 μg L(-1). The arrays have been successfully used for detection of OPs in fruits and water real samples. The new array was validated by comparison with conventional high performance liquid chromatography-mass spectrometry (HPLC-MS). Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaïor, R.; Al Samarai, I.; Berat, C.; Blanco Otano, M.; David, J.; Deligny, O.; Lebbolo, H.; Lecoz, S.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Mariş, I. C.; Montanet, F.; Repain, P.; Salamida, F.; Settimo, M.; Stassi, P.; Stutz, A.
2018-04-01
We present the GIGAS (Gigahertz Identification of Giant Air Shower) microwave radio sensor arrays of the EASIER project (Extensive Air Shower Identification with Electron Radiometers), deployed at the site of the Pierre Auger cosmic ray observatory. The aim of these novel arrays is to probe the intensity of the molecular bremsstrahlung radiation expected from the development of the extensive air showers produced by the interaction of ultra high energy cosmic rays in the atmosphere. In the designed setup, the sensors are embedded within the surface detector array of the Pierre Auger observatory allowing us to use the particle signals at ground level to trigger the radio system. A series of seven, then 61 sensors have been deployed in the C-band, followed by a new series of 14 higher sensitivity ones in the C-band and the L-band. The design, the operation, the calibration and the sensitivity to extensive air showers of these arrays are described in this paper.
Digital Beamforming Scatterometer
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul
2009-01-01
This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate feeds for vertical and horizontal polarization. System upgrades to dual polarization are currently under way. The DBSAR processor is a reconfigurable data acquisition and processor system capable of real-time, high-speed data processing. DBSAR uses an FPGA-based architecture to implement digitally down-conversion, in-phase and quadrature (I/Q) demodulation, and subsequent radar specific algorithms. The core of the processor board consists of an analog-to-digital (AID) section, three Altera Stratix field programmable gate arrays (FPGAs), an ARM microcontroller, several memory devices, and an Ethernet interface. The processor also interfaces with a navigation board consisting of a GPS and a MEMS gyro. The processor has been configured to operate in scatterometer, Synthetic Aperture Radar (SAR), and altimeter modes. All the modes are based on digital beamforming which is a digital process that generates the far-field beam patterns at various scan angles from voltages sampled in the antenna array. This technique allows steering the received beam and controlling its beam-width and side-lobe. Several beamforming techniques can be implemented each characterized by unique strengths and weaknesses, and each applicable to different measurement scenarios. In Scatterometer mode, the radar is capable to.generate a wide beam or scan a narrow beam on transmit, and to steer the received beam on processing while controlling its beamwidth and side-lobe level. Table I lists some important radar characteristics
PAPER: The Precision Array To Probe The Epoch Of Reionization
NASA Astrophysics Data System (ADS)
Backer, Donald C.; Parsons, A.; Bradley, R.; Parashare, C.; Gugliucci, N.; Mastrantonio, E.; Herne, D.; Lynch, M.; Wright, M.; Werhimer, D.; Carilli, C.; Datta, A.; Aguirre, J.
2007-12-01
The Precision Array to Probe the Epoch of Reionization (PAPER) is an experiment that is being designed to detect the faint HI signal from the epoch of reionization. Our instrumentation goals include: the design and building of dipole elements that are optimized for operation from 120-190 MHz with a clean beam response; amplifiers and receivers with good impedance match and overall flat gain response over a large bandpass; and an FPGA correlator capable of producing full Stokes products for the array. The array is being built and evaluated in stages at the Green Bank Observatory in West Virginia with deployment of the full instrument in Western Australia. We present results from an eight-station deployment in Green Bank and four-station deployment in Western Australia, including phase and amplitude calibration, RFI mitigation and removal, full sky maps, and wide-field snapshot imaging. We have discovered new ways to improve our system's stability and sensitivity from these early experiments, and are applying these concepts to a 16-element array in Green Bank in early 2008 and a 32-element array in Western Australia later in 2008.
Performance of a scintillation detector array operated with LHAASO-KM2A electronics
NASA Astrophysics Data System (ADS)
Wang, Zhen; Guo, Yiqing; Cai, Hui; Chang, Jinfan; Chen, Tianlu; Danzengluobu; Feng, Youliang; Gao, Qi; Gou, Quanbu; Guo, Yingying; Hou, Chao; Hu, Hongbo; Labaciren; Liu, Cheng; Li, Haijin; Liu, Jia; Liu, Maoyuan; Qiao, Bingqiang; Qian, Xiangli; Sheng, Xiangdong; Tian, Zhen; Wang, Qun; Xue, Liang; Yao, Yuhua; Zhang, Shaoru; Zhang, Xueyao; Zhang, Yi
2018-04-01
A scintillation detector array composed of 115 detectors and covering an area of about 20000 m2 was installed at the end of 2016 at the Yangbajing international cosmic ray observatory and has been taking data since then. The array is equipped with electronics from Large High Altitude Air Shower Observatory Square Kilometer Complex Array (LHAASO-KM2A) and, in turn, currently serves as the largest debugging and testing platform for the LHAASO-KM2A. Furthermore, the array was used to study the performance of a wide field-of-view air Cherenkov telescope by providing accurate information on the shower core, direction and energy, etc. This work is mainly dealing with the scintillation detector array. The experimental setup and the offline calibration are described in detail. Then, a thorough comparison between the data and Monte Carlo (MC) simulations is presented and a good agreement is obtained. With the even-odd method, the resolutions of the shower direction and core are measured. Finally, successful observations of the expected Moon's and Sun's shadows of cosmic rays (CRs) verify the measured angular resolution.
NASA Astrophysics Data System (ADS)
Supanitsky, A. D.; Etchegoyen, A.; Melo, D.; Sanchez, F.
2015-08-01
At present there are still several open questions about the origin of the ultra high energy cosmic rays. However, great progress in this area has been made in recent years due to the data collected by the present generation of ground based detectors like the Pierre Auger Observatory and Telescope Array. In particular, it is believed that the study of the composition of the cosmic rays as a function of energy can play a fundamental role for the understanding of the origin of the cosmic rays. The observatories belonging to this generation are composed of arrays of surface detectors and fluorescence telescopes. The duty cycle of the fluorescence telescopes is ∼10% in contrast with the ∼100% of the surface detectors. Therefore, the energy calibration of the events observed by the surface detectors is performed by using a calibration curve obtained from a set of high quality events observed in coincidence by both types of detectors. The advantage of this method is that the reconstructed energy of the events observed by the surface detectors becomes almost independent of simulations of the showers because just a small part of the reconstructed energy (the missing energy), obtained from the fluorescence telescopes, comes from simulations. However, the calibration curve obtained in this way depends on the composition of the cosmic rays, which can introduce biases in composition analyses when parameters with a strong dependence on primary energy are considered. In this work we develop an analytical method to study these effects. We consider AMIGA (Auger Muons and Infill for the Ground Array), the low energy extension of the Pierre Auger Observatory corresponding to the surface detectors, to illustrate the use of the method. In particular, we study the biases introduced by an energy calibration dependent on composition on the determination of the mean value of the number of muons, at a given distance to the showers axis, which is one of the parameters most sensitive to primary mass and has an almost linear dependence with primary energy.
Bengtsson, Henrik; Jönsson, Göran; Vallon-Christersson, Johan
2004-11-12
Non-linearities in observed log-ratios of gene expressions, also known as intensity dependent log-ratios, can often be accounted for by global biases in the two channels being compared. Any step in a microarray process may introduce such offsets and in this article we study the biases introduced by the microarray scanner and the image analysis software. By scanning the same spotted oligonucleotide microarray at different photomultiplier tube (PMT) gains, we have identified a channel-specific bias present in two-channel microarray data. For the scanners analyzed it was in the range of 15-25 (out of 65,535). The observed bias was very stable between subsequent scans of the same array although the PMT gain was greatly adjusted. This indicates that the bias does not originate from a step preceding the scanner detector parts. The bias varies slightly between arrays. When comparing estimates based on data from the same array, but from different scanners, we have found that different scanners introduce different amounts of bias. So do various image analysis methods. We propose a scanning protocol and a constrained affine model that allows us to identify and estimate the bias in each channel. Backward transformation removes the bias and brings the channels to the same scale. The result is that systematic effects such as intensity dependent log-ratios are removed, but also that signal densities become much more similar. The average scan, which has a larger dynamical range and greater signal-to-noise ratio than individual scans, can then be obtained. The study shows that microarray scanners may introduce a significant bias in each channel. Such biases have to be calibrated for, otherwise systematic effects such as intensity dependent log-ratios will be observed. The proposed scanning protocol and calibration method is simple to use and is useful for evaluating scanner biases or for obtaining calibrated measurements with extended dynamical range and better precision. The cross-platform R package aroma, which implements all described methods, is available for free from http://www.maths.lth.se/bioinformatics/.
Capuchins, space, time and memory: an experimental test of what-where-when memory in wild monkeys
2016-01-01
There is considerable controversy about the existence, extent and adaptive value of integrated multimodal memory in non-human animals. Building on prior results showing that wild capuchin monkeys in Argentina appear to recall both the location and amount of food at patches they had previously visited, I tested whether they also track and use elapsed time as a basis for decisions about which feeding patches to visit. I presented them with an experimental array of eight feeding sites, at each of which food rewards increased with increasing elapsed time since the previous visit, similar to the pattern of ripe fruit accumulation in natural feeding trees. Over the course of 68 days, comprising two distinct renewal rate treatments, one group repeatedly visited sites in the feeding array, generating 212 valid choices between sites. Comparison of observations against simulated movements and multinomial statistical models shows that the monkeys' choices were most consistent with dynamic memory for elapsed time specific to each of the eight sites. Thus, it appears that capuchin monkeys possess and use integrated memories of prior food patch use, including where the patch is relative to their current location, how productive the patch is and how long it has been since they last visited the patch. Natural selection to use such integrated memories in foraging tasks may provide an ecologically relevant basis for the evolution of complex intelligence in primates. PMID:27708145
A wideband analog correlator system for AMiBA
NASA Astrophysics Data System (ADS)
Li, Chao-Te; Kubo, Derek; Han, Chih-Chiang; Chen, Chung-Cheng; Chen, Ming-Tang; Lien, Chun-Hsien; Wang, Huei; Wei, Ray-Ming; Yang, Chia-Hsiang; Chiueh, Tzi-Dar; Peterson, Jeffrey; Kesteven, Michael; Wilson, Warwick
2004-10-01
A wideband correlator system with a bandwidth of 16 GHz or more is required for Array for Microwave Background Anisotropy (AMiBA) to achieve the sensitivity of 10μK in one hour of observation. Double-balanced diode mixers were used as multipliers in 4-lag correlator modules. Several wideband modules were developed for IF signal distribution between receivers and correlators. Correlator outputs were amplified, and digitized by voltage-to-frequency converters. Data acquisition circuits were designed using field programmable gate arrays (FPGA). Subsequent data transfer and control software were based on the configuration for Australia Telescope Compact Array. Transform matrix method will be adopted during calibration to take into account the phase and amplitude variations of analog devices across the passband.
Langley Aerospace Research Summer Scholars (LARSS) Scholars Pres
2013-08-07
250 students participated in the Langley Aerospace Research Summer Scholars (LARSS) Presentations focused on 3D modeling of STARBUKS calibration components in the National Transonic Facility, hypersonic aerodynamic inflatable decelerator, and optimization of a microphone-based array for flight testing. Reid Center LaRC Hampton, VA
Gamma-insensitive optical sensor
Kruger, Hans W.
1994-01-01
An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.
Reimers, Marcel; Lang, Walter; Dumstorff, Gerrit
2017-09-30
The purpose of our study is to investigate the heat distribution and the occurring temperatures during grinding. Therefore, we did both experimental and numerical investigations. In the first part, we present the integration of an infrared thermopile array in a steel workpiece. Experiments are done by acquiring data from the thermopile array during grinding of a groove in a workpiece made of steel. In the second part, we present numerical investigations in the grinding process to further understand the thermal characteristic during grinding. Finally, we conclude our work. Increasing the feed speed leads to two things: higher heat flux densities in the workpiece and higher temperature gradients in the material.
Ka-Band Digital Beamforming and SweepSAR Demonstration for Ice and Solid Earth Topography
NASA Technical Reports Server (NTRS)
Sadowy, Gregory; Ghaemi, Hirad; Heavy, Brandon; Perkovic, Dragana; Quddus, Momin; Zawadzki, Mark; Moller, Delwyn
2010-01-01
GLISTIN is an instrument concept for a single-pass interferometric SAR operating at 35.6 GHz. To achieve large swath widths using practical levels of transmitter power, a digitally-beamformed planar waveguide array is used. This paper describes results from a ground-based demonstration of a 16-receiver prototype. Furthermore, SweepSAR is emerging as promising technique for achieving very wide swaths for surface change detection. NASA and DLR are studying this approach for the DESDynI and Tandem-L missions. SweepSAR employs a reflector with a digitally-beamformed array feed. We will describe development of an airborne demonstration of SweepSAR using the GLISTIN receiver array and a reflector.
Reimers, Marcel; Lang, Walter; Dumstorff, Gerrit
2017-01-01
The purpose of our study is to investigate the heat distribution and the occurring temperatures during grinding. Therefore, we did both experimental and numerical investigations. In the first part, we present the integration of an infrared thermopile array in a steel workpiece. Experiments are done by acquiring data from the thermopile array during grinding of a groove in a workpiece made of steel. In the second part, we present numerical investigations in the grinding process to further understand the thermal characteristic during grinding. Finally, we conclude our work. Increasing the feed speed leads to two things: higher heat flux densities in the workpiece and higher temperature gradients in the material. PMID:28973978
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: Amperometric Solid Electrolyte Oxygen Microsensors with Easy Batch Fabrication; Two-Axis Direct Fluid Shear Stress Sensor for Aerodynamic Applications; Target Assembly to Check Boresight Alignment of Active Sensors; Virtual Sensor Test Instrumentation; Evaluation of the Reflection Coefficient of Microstrip Elements for Reflectarray Antennas; Miniaturized Ka-Band Dual-Channel Radar; Continuous-Integration Laser Energy Lidar Monitor; Miniaturized Airborne Imaging Central Server System; Radiation-Tolerant, SpaceWire-Compatible Switching Fabric; Small Microprocessor for ASIC or FPGA Implementation; Source-Coupled, N-Channel, JFET-Based Digital Logic Gate Structure Using Resistive Level Shifters; High-Voltage-Input Level Translator Using Standard CMOS; Monitoring Digital Closed-Loop Feedback Systems; MASCOT - MATLAB Stability and Control Toolbox; MIRO Continuum Calibration for Asteroid Mode; GOATS Image Projection Component; Coded Modulation in C and MATLAB; Low-Dead-Volume Inlet for Vacuum Chamber; Thermal Control Method for High-Current Wire Bundles by Injecting a Thermally Conductive Filler; Method for Selective Cleaning of Mold Release from Composite Honeycomb Surfaces; Infrared-Bolometer Arrays with Reflective Backshorts; Commercialization of LARC (trade mark) -SI Polyimide Technology; Novel Low-Density Ablators Containing Hyperbranched Poly(azomethine)s; Carbon Nanotubes on Titanium Substrates for Stray Light Suppression; Monolithic, High-Speed Fiber-Optic Switching Array for Lidar; Grid-Tied Photovoltaic Power System; Spectroelectrochemical Instrument Measures TOC; A Miniaturized Video System for Monitoring Drosophila Behavior; Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids; Creep Measurement Video Extensometer; Radius of Curvature Measurement of Large Optics Using Interferometry and Laser Tracker n-B-pi-p Superlattice Infrared Detector; Safe Onboard Guidance and Control Under Probabilistic Uncertainty; General Tool for Evaluating High-Contrast Coronagraphic Telescope Performance Error Budgets; Hidden Statistics of Schroedinger Equation; Optimal Padding for the Two-Dimensional Fast Fourier Transform; Spatial Query for Planetary Data; Higher Order Mode Coupling in Feed Waveguide of a Planar Slot Array Antenna; Evolutionary Computational Methods for Identifying Emergent Behavior in Autonomous Systems; Sampling Theorem in Terms of the Bandwidth and Sampling Interval; Meteoroid/Orbital Debris Shield Engineering Development Practice and Procedure; Self-Balancing, Optical-Center-Pivot, Fast-Steering Mirror; Wireless Orbiter Hang-Angle Inclinometer System; and Internal Electrostatic Discharge Monitor - IESDM.
Interferometric Imaging Directly with Closure Phases and Closure Amplitudes
NASA Astrophysics Data System (ADS)
Chael, Andrew A.; Johnson, Michael D.; Bouman, Katherine L.; Blackburn, Lindy L.; Akiyama, Kazunori; Narayan, Ramesh
2018-04-01
Interferometric imaging now achieves angular resolutions as fine as ∼10 μas, probing scales that are inaccessible to single telescopes. Traditional synthesis imaging methods require calibrated visibilities; however, interferometric calibration is challenging, especially at high frequencies. Nevertheless, most studies present only a single image of their data after a process of “self-calibration,” an iterative procedure where the initial image and calibration assumptions can significantly influence the final image. We present a method for efficient interferometric imaging directly using only closure amplitudes and closure phases, which are immune to station-based calibration errors. Closure-only imaging provides results that are as noncommittal as possible and allows for reconstructing an image independently from separate amplitude and phase self-calibration. While closure-only imaging eliminates some image information (e.g., the total image flux density and the image centroid), this information can be recovered through a small number of additional constraints. We demonstrate that closure-only imaging can produce high-fidelity results, even for sparse arrays such as the Event Horizon Telescope, and that the resulting images are independent of the level of systematic amplitude error. We apply closure imaging to VLBA and ALMA data and show that it is capable of matching or exceeding the performance of traditional self-calibration and CLEAN for these data sets.
Aero-Thermal Calibration of the NASA Glenn Icing Research Tunnel (2012 Test)
NASA Technical Reports Server (NTRS)
Pastor-Barsi, Christine M.; Arrington, E. Allen; VanZante, Judith Foss
2012-01-01
A major modification of the refrigeration plant and heat exchanger at the NASA Glenn Icing Research Tunnel (IRT) occurred in autumn of 2011. It is standard practice at NASA Glenn to perform a full aero-thermal calibration of the test section of a wind tunnel facility upon completion of major modifications. This paper will discuss the tools and techniques used to complete an aero-thermal calibration of the IRT and the results that were acquired. The goal of this test entry was to complete a flow quality survey and aero-thermal calibration measurements in the test section of the IRT. Test hardware that was used includes the 2D Resistive Temperature Detector (RTD) array, 9-ft pressure survey rake, hot wire survey rake, and the quick check survey rake. This test hardware provides a map of the velocity, Mach number, total and static pressure, total temperature, flow angle and turbulence intensity. The data acquired were then reduced to examine pressure, temperature, velocity, flow angle, and turbulence intensity. Reduced data has been evaluated to assess how the facility meets flow quality goals. No icing conditions were tested as part of the aero-thermal calibration. However, the effects of the spray bar air injections on the flow quality and aero-thermal calibration measurements were examined as part of this calibration.
The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite
NASA Astrophysics Data System (ADS)
Wang, Jianrong; Wang, Renxiang; Hu, Xin; Su, Zhongbo
2017-02-01
The on-orbit calibration of geometric parameters is a key step in improving the location accuracy of satellite images without using Ground Control Points (GCPs). Most methods of on-orbit calibration are based on the self-calibration using additional parameters. When using additional parameters, different number of additional parameters may lead to different results. The triangulation bundle adjustment is another way to calibrate the geometric parameters of camera, which can describe the changes in each geometric parameter. When triangulation bundle adjustment method is applied to calibrate geometric parameters, a prerequisite is that the strip model can avoid systematic deformation caused by the rate of attitude changes. Concerning the stereo camera, the influence of the intersection angle should be considered during calibration. The Equivalent Frame Photo (EFP) bundle adjustment based on the Line-Matrix CCD (LMCCD) image can solve the systematic distortion of the strip model, and obtain high accuracy location without using GCPs. In this paper, the triangulation bundle adjustment is used to calibrate the geometric parameters of TH-1 satellite cameras based on LMCCD image. During the bundle adjustment, the three-line array cameras are reconstructed by adopting the principle of inverse triangulation. Finally, the geometric accuracy is validated before and after on-orbit calibration using 5 testing fields. After on-orbit calibration, the 3D geometric accuracy is improved to 11.8 m from 170 m. The results show that the location accuracy of TH-1 without using GCPs is significantly improved using the on-orbit calibration of the geometric parameters.