Compensation of relector antenna surface distortion using an array feed
NASA Technical Reports Server (NTRS)
Cherrette, A. R.; Acosta, R. J.; Lam, P. T.; Lee, S. W.
1988-01-01
The dimensional stability of the surface of a large reflector antenna is important when high gain or low sidelobe performance is desired. If the surface is distorted due to thermal or structural reasons, antenna performance can be improved through the use of an array feed. The design of the array feed and its relation to the surface distortion are examined. The sensitivity of antenna performance to changing surface parameters for fixed feed array geometries is also studied. This allows determination of the limits of usefulness for feed array compensation.
Conjugate field approaches for active array compensation
NASA Technical Reports Server (NTRS)
Acosta, R. J.
1989-01-01
Two approaches for calculating the compensating feed array complex excitations are namely, the indirect conjugate field matching (ICFM) and the direct conjugate field matching (DCFM) approach. In the ICFM approach the compensating feed array excitations are determined by considering the transmitting mode and the reciprocity principle. The DCF, in contrast calculates the array excitations by integrating directly the induced surface currents on the reflector under a receiving mode. DCFM allows the reflector to be illuminated by an incident plane wave with a tapered amplitude. The level of taper can effectively control the sidelobe level of the compensated antenna pattern. Both approaches are examined briefly.
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.
1988-01-01
The feasibility of electromagnetic compensation for reflector antenna surface distortions is investigated. The performance characteristics of large satellite communication reflector antenna systems degrade as the reflector surface distorts, mainly due to thermal effects from solar radiation. The technique developed can be used to maintain the antenna boresight directivity and sidelobe level independent of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array fed reflector antenna systems can be achieved. MMIC arrays provide independent control of amplitude and phase for each of the many radiating elements in the feed array. By assuming a known surface distortion profile, a simulation study is carried out to examine the antenna performance as a function of feed array size and number of elements. Results indicate that the compensation technique can effectively control boresight directivity and sidelobe level under peak surface distortion in the order of tenth of a wavelength.
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Rodemich, E. R.
1994-01-01
An algorithm for estimating the optimum combining weights for the Ka-band (33.7-GHz) array feed compensation system was developed and analyzed. The input signal is assumed to be broadband radiation of thermal origin, generated by a distant radio source. Currently, seven video converters operating in conjunction with the real-time correlator are used to obtain these weight estimates. The algorithm described here requires only simple operations that can be implemented on a PC-based combining system, greatly reducing the amount of hardware. Therefore, system reliability and portability will be improved.
Microstrip technology and its application to phased array compensation
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.; Daniels, W. D.
1972-01-01
A systematic analysis of mutual coupling compensation using microstrip techniques is presented. A method for behind-the-array coupling of a phased antenna array is investigated as to its feasibility. The matching scheme is tried on a rectangular array of one half lambda 2 dipoles, but it is not limited to this array element or geometry. In the example cited the values of discrete components necessary were so small an L-C network is needed for realization. Such L-C tanks might limit an otherwise broadband array match, however, this is not significant for this dipole array. Other areas investigated were balun feeding and power limits of spiral antenna elements.
NASA Technical Reports Server (NTRS)
Schroeder, Lyle C.; Bailey, M. C.; Mitchell, John L.
1992-01-01
Methods for increasing the electromagnetic (EM) performance of reflectors with rough surfaces were tested and evaluated. First, one quadrant of the 15-meter hoop-column antenna was retrofitted with computer-driven and controlled motors to allow automated adjustment of the reflector surface. The surface errors, measured with metric photogrammetry, were used in a previously verified computer code to calculate control motor adjustments. With this system, a rough antenna surface (rms of approximately 0.180 inch) was corrected in two iterations to approximately the structural surface smoothness limit of 0.060 inch rms. The antenna pattern and gain improved significantly as a result of these surface adjustments. The EM performance was evaluated with a computer program for distorted reflector antennas which had been previously verified with experimental data. Next, the effects of the surface distortions were compensated for in computer simulations by superimposing excitation from an array feed to maximize antenna performance relative to an undistorted reflector. Results showed that a 61-element array could produce EM performance improvements equal to surface adjustments. When both mechanical surface adjustment and feed compensation techniques were applied, the equivalent operating frequency increased from approximately 6 to 18 GHz.
Adaptive Nulling in Hybrid Reflector Antennas
1992-09-01
correction of reflector distortion and vernier beamsteering, MEEE Trans. Antennas Propagat, 36:1351-1358. 4 Cherrette , A.R., et al (1989) Compensation of...Propagat, 36:1351-1358. 4. Cherrette , A.R., et al (1989) Compensation of reflector antenna surface distortion using an array feed,IEEE Trans. Antennas
NASA Technical Reports Server (NTRS)
Vilnrotter, V. A.; Rodemich, E. R.
1990-01-01
A real-time digital signal combining system for use with Ka-band feed arrays is proposed. The combining system attempts to compensate for signal-to-noise ratio (SNR) loss resulting from antenna deformations induced by gravitational and atmospheric effects. The combining weights are obtained directly from the observed samples by using a sliding-window implementation of a vector maximum-likelihood parameter estimator. It is shown that with averaging times of about 0.1 second, combining loss for a seven-element array can be limited to about 0.1 dB in a realistic operational environment. This result suggests that the real-time combining system proposed here is capable of recovering virtually all of the signal power captured by the feed array, even in the presence of severe wind gusts and similar disturbances.
Further evaluation of the constrained least squares electromagnetic compensation method
NASA Technical Reports Server (NTRS)
Smith, William T.
1991-01-01
Technologies exist for construction of antennas with adaptive surfaces that can compensate for many of the larger distortions caused by thermal and gravitational forces. However, as the frequency and size of reflectors increase, the subtle surface errors become significant and degrade the overall electromagnetic performance. Electromagnetic (EM) compensation through an adaptive feed array offers means for mitigation of surface distortion effects. Implementation of EM compensation is investigated with the measured surface errors of the NASA 15 meter hoop/column reflector antenna. Computer simulations are presented for: (1) a hybrid EM compensation technique, and (2) evaluating the performance of a given EM compensation method when implemented with discretized weights.
Yao, Xiayuan; Liang, Bingyuan; Bai, Ming
2017-09-18
In space-borne quasi-optical feed system, frequency selective surface (FSS) should meet both electrical properties and mechanical requirements. In the paper, we design and fabricate three FSSs to achieve these goals. We present a novel FFS with phase compensation structure correcting the beam distortion. The phase compensation structure consists of short-ended circular waveguide array, inspired by the idea of reflect array antenna. The first FSS meets the need of electrical performance, however, which is too weak to pass the mechanical test. The second one overcomes the former problem, but brings the aberration in reflection beam, due to the discontinuity of the reflection phase. The third one with phase compensation structure meets all the demands. The insertion phase of the unit cell compensates 119 and 183 GHz two reflection bands, reconfigures the field distributions on the cross section of beam waist simultaneously. What' more, this FSS extends the functionality of the original FSS. To some extent, the FSS with phase compensation structure shares the ellipsoidal reflector's pressure to adjust the beam.
Correlator data analysis for the array feed compensation system
NASA Technical Reports Server (NTRS)
Iijima, B.; Fort, D.; Vilnrotter, V.
1994-01-01
The real-time array feed compensation system is currently being evaluated at DSS 13. This system recovers signal-to-noise ratio (SNR) loss due to mechanical antenna deformations by using an array of seven Ka-band (33.7-GHz) horns to collect the defocused signal fields. The received signals are downconverted and digitized, in-phase and quadrature samples are generated, and combining weights are applied before the samples are recombined. It is shown that when optimum combining weights are employed, the SNR of the combined signal approaches the sum of the channel SNR's. The optimum combining weights are estimated directly from the signals in each channel by the Real-Time Block 2 (RTB2) correlator; since it was designed for very-long-baseline interferometer (VLBI) applications, it can process broadband signals as well as tones to extract the required weight estimates. The estimation algorithms for the optimum combining weights are described for tones and broadband sources. Data recorded in correlator output files can also be used off-line to estimate combiner performance by estimating the SNR in each channel, which was done for data taken during a Jupiter track at DSS 13.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Smith, W. T.
1990-01-01
Surface errors on parabolic reflector antennas degrade the overall performance of the antenna. Space antenna structures are difficult to build, deploy and control. They must maintain a nearly perfect parabolic shape in a harsh environment and must be lightweight. Electromagnetic compensation for surface errors in large space reflector antennas can be used to supplement mechanical compensation. Electromagnetic compensation for surface errors in large space reflector antennas has been the topic of several research studies. Most of these studies try to correct the focal plane fields of the reflector near the focal point and, hence, compensate for the distortions over the whole radiation pattern. An alternative approach to electromagnetic compensation is presented. The proposed technique uses pattern synthesis to compensate for the surface errors. The pattern synthesis approach uses a localized algorithm in which pattern corrections are directed specifically towards portions of the pattern requiring improvement. The pattern synthesis technique does not require knowledge of the reflector surface. It uses radiation pattern data to perform the compensation.
1988-06-01
James McKelvy and Harold Tinsley *," . CONCEPTUAL DESIGN OF A SPACE STATION DYNAMIC SCALE MODEL ............. 87 Robert Letchworth, Paul E... CONCEPTUAL SYSTEM DESIGN FOR ANTENNA THERMAL AND DYNAMIC DISTORTION COMPENSATION USING A PHASED ARRAY FEED ................... 145 G. R. Sharp, R. J...to achieve somne desired state or trajectory. For conceptual purposes, however, an alternate view is useful in which the measurement reference against
Analysis of the DFP/AFCS Systems for Compensating Gravity Distortions on the 70-Meter Antenna
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Hoppe, Daniel J.; Rochblatt, David
2000-01-01
This paper presents the theoretical computations showing the expected performances for both systems. The basic analysis tool is a Physical Optics reflector analysis code that was ported to a parallel computer for faster execution times. There are several steps involved in computing the RF performance of the various systems. 1 . A model of the RF distortions of the main reflector is required. This model is based upon measured holography maps of the 70-meter antenna obtained at 3 elevation angles. The holography maps are then processed (using an appropriate gravity mechanical model of the dish) to provide surface distortion maps at all elevation angles. 2. From the surface distortion maps, ray optics is used to determine the theoretical shape of the DFP that will exactly phase compensate the distortions. 3. From the theoretical shape and a NASTRAN mechanical model of the plate, the actuator positions that generate a surface that provides the best RMS fit to the theoretical model are selected. Using the actuator positions and the NASTRAN model provides an accurate description of the actual mirror shape. 4. Starting from the mechanical drawings of the feed, a computed RF feed pattern is generated. This pattern is expanded into a set of spherical wave modes so that a complete near field analysis of the reflector system can be obtained. 5. For the array feed, the excitation coefficients that provide the maximum gain are computed using a phase conjugate technique. The basic experimental geometry consisted of a dual shaped 70-meter antenna system; a refocusing ellipse, a DFP and an array feed system. To provide physical insight to the systems performance, focal plane field plots are presented at several elevations. Curves of predicted performance are shown for the DFP system, monopulse tracking system, AFCS and combined DFP/AFCS system. The calculated results show that the combined DFP/AFCS system is capable of recovering the majority of the gain lost due to gravity distortion.
System overview on electromagnetic compensation for reflector antenna surface distortion
NASA Technical Reports Server (NTRS)
Acosta, R. J.; Zaman, A. J.; Terry, J. D.
1993-01-01
The system requirements and hardware implementation for electromagnetic compensation of antenna performance degradations due to thermal effects was investigated. Future commercial space communication antenna systems will utilize the 20/30 GHz frequency spectrum and support very narrow multiple beams (0.3 deg) over wide angle field of view (15-20 beamwidth). On the ground, portable and inexpensive very small aperture terminals (VSAT) for transmitting and receiving video, facsimile and data will be employed. These types of communication system puts a very stringent requirement on spacecraft antenna beam pointing stability (less than .01 deg), high gain (greater than 50 dB) and very lowside lobes (less than -25 dB). Thermal analysis performed on the advanced communication technology satellite (ACTS) has shown that the reflector surfaces, the mechanical supporting structures and metallic surfaces on the spacecraft body will distort due thermal effects from a varying solar flux. The antenna performance characteristics (e.g., pointing stability, gain, side lobe, etc.) will degrade due to thermal distortion in the reflector surface and supporting structures. Specifically, antenna RF radiation analysis has shown that pointing error is the most sensitive antenna performance parameter to thermal distortions. Other antenna parameters like peak gain, cross polarization level (beam isolation), and side lobe level will also degrade with thermal distortions. In order to restore pointing stability and in general antenna performance several compensation methods were proposed. In general these compensation methods can be classified as being either of mechanical or electromagnetic type. This paper will address only the later one. In this approach an adaptive phased array antenna feed is used to compensate for the antenna performance degradation. Extensive work has been devoted to demonstrate the feasibility of adaptive feed compensation on space communication antenna systems. This paper addresses the system requirements for such a system and identify candidate technologies (analog and digital) for possible hardware implementation.
Nonlinear Blind Compensation for Array Signal Processing Application
Ma, Hong; Jin, Jiang; Zhang, Hua
2018-01-01
Recently, nonlinear blind compensation technique has attracted growing attention in array signal processing application. However, due to the nonlinear distortion stemming from array receiver which consists of multi-channel radio frequency (RF) front-ends, it is too difficult to estimate the parameters of array signal accurately. A novel nonlinear blind compensation algorithm aims at the nonlinearity mitigation of array receiver and its spurious-free dynamic range (SFDR) improvement, which will be more precise to estimate the parameters of target signals such as their two-dimensional directions of arrival (2-D DOAs). Herein, the suggested method is designed as follows: the nonlinear model parameters of any channel of RF front-end are extracted to synchronously compensate the nonlinear distortion of the entire receiver. Furthermore, a verification experiment on the array signal from a uniform circular array (UCA) is adopted to testify the validity of our approach. The real-world experimental results show that the SFDR of the receiver is enhanced, leading to a significant improvement of the 2-D DOAs estimation performance for weak target signals. And these results demonstrate that our nonlinear blind compensation algorithm is effective to estimate the parameters of weak array signal in concomitance with strong jammers. PMID:29690571
All-dielectric rod antenna array for terahertz communications
NASA Astrophysics Data System (ADS)
Withayachumnankul, Withawat; Yamada, Ryoumei; Fujita, Masayuki; Nagatsuma, Tadao
2018-05-01
The terahertz band holds a potential for point-to-point short-range wireless communications at sub-terabit speed. To realize this potential, supporting antennas must have a wide bandwidth to sustain high data rate and must have high gain and low dissipation to compensate for the free space path loss that scales quadratically with frequency. Here we propose an all-dielectric rod antenna array with high radiation efficiency, high gain, and wide bandwidth. The proposed array is integral to a low-loss photonic crystal waveguide platform, and intrinsic silicon is the only constituent material for both the antenna and the feed to maintain the simplicity, compactness, and efficiency. Effective medium theory plays a key role in the antenna performance and integrability. An experimental validation with continuous-wave terahertz electronic systems confirms the minimum gain of 20 dBi across 315-390 GHz. A demonstration shows that a pair of such identical rod array antennas can handle bit-error-free transmission at the speed up to 10 Gbit/s. Further development of this antenna will build critical components for future terahertz communication systems.
NASA Astrophysics Data System (ADS)
Calderone, Luigi; Pinola, Licia; Varoli, Vincenzo
1992-04-01
The paper describes an analytical procedure to optimize the feed-forward compensation for any PWM dc/dc converters. The aims of achieving zero dc audiosusceptibility was found to be possible for the buck, buck-boost, Cuk, and SEPIC cells; for the boost converter, however, only nonoptimal compensation is feasible. Rules for the design of PWM controllers and procedures for the evaluation of the hardware-introduced errors are discussed. A PWM controller implementing the optimal feed-forward compensation for buck-boost, Cuk, and SEPIC cells is described and fully experimentally characterized.
and feed forward stabilization) have been implemented. An on-mount gyro system consists of gyroscopes mounted on the radar antenna which sense...antenna motion and send compensating signals back to the antenna servo mechanism. Feed forward stabilization consists of determining antenna angular rates...caused by ships attitude changes, as measured by a stable platform (such as SINS), and feeding compensating signals back to the antenna servo
Optimal Control of a Surge-Mode WEC in Random Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chertok, Allan; Ceberio, Olivier; Staby, Bill
2016-08-30
The objective of this project was to develop one or more real-time feedback and feed-forward (MPC) control algorithms for an Oscillating Surge Wave Converter (OSWC) developed by RME called SurgeWEC™ that leverages recent innovations in wave energy converter (WEC) control theory to maximize power production in random wave environments. The control algorithms synthesized innovations in dynamic programming and nonlinear wave dynamics using anticipatory wave sensors and localized sensor measurements; e.g. position and velocity of the WEC Power Take Off (PTO), with predictive wave forecasting data. The result was an advanced control system that uses feedback or feed-forward data from anmore » array of sensor channels comprised of both localized and deployed sensors fused into a single decision process that optimally compensates for uncertainties in the system dynamics, wave forecasts, and sensor measurement errors.« less
Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda. Felix, A.
2013-01-01
The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays.
Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems.
Niederriter, Robert D; Watson, Alexander M; Zahreddine, Ramzi N; Cogswell, Carol J; Cormack, Robert H; Bright, Victor M; Gopinath, Juliet T
2013-05-10
We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.
Characterization of tapered slot antenna feeds and feed arrays
NASA Technical Reports Server (NTRS)
Kim, Young-Sik; Yngvesson, K. Sigfrid
1990-01-01
A class of feed antennas and feed antenna arrays used in the focal plane of paraboloid reflectors and exhibiting higher than normal levels of cross-polarized radiation in the diagonal planes is addressed. A model which allows prediction of element gain and aperture efficiency of the feed/reflector system is presented. The predictions are in good agreement with experimental results. Tapered slot antenna (TSA) elements are used an example of an element of this type. It is shown that TSA arrays used in multibeam systems with small beam spacings are competitive in terms of aperture efficiency with other, more standard types of arrays incorporating waveguide type elements.
Broussard, Josiane L; Kolka, Cathryn M; Castro, Ana V B; Asare Bediako, Isaac; Paszkiewicz, Rebecca L; Szczepaniak, Edward W; Szczepaniak, Lidia S; Knutson, Kristen L; Kim, Stella P; Bergman, Richard N
2015-11-01
A normal consequence of increased energy intake and insulin resistance is compensatory hyperinsulinaemia through increased insulin secretion and/or reduced insulin clearance. Failure of compensatory mechanisms plays a central role in the pathogenesis of type 2 diabetes mellitus; consequently, it is critical to identify in vivo signal(s) involved in hyperinsulinaemic compensation. We have previously reported that high-fat feeding leads to an increase in nocturnal NEFA concentration. We therefore designed this study to test the hypothesis that elevated nocturnal NEFA are an early signal for hyperinsulinaemic compensation for insulin resistance. Blood sampling was conducted in male dogs to determine 24 h profiles of NEFA at baseline and during high-fat feeding with and without acute nocturnal NEFA suppression using a partial A1 adenosine receptor agonist. High-fat feeding increased nocturnal NEFA and reduced insulin sensitivity, effects countered by an increase in acute insulin response to glucose (AIR(g)). Pharmacological NEFA inhibition after 8 weeks of high-fat feeding lowered NEFA to baseline levels and reduced AIR(g) with no effect on insulin sensitivity. A significant relationship emerged between nocturnal NEFA levels and AIR(g). This relationship indicates that the hyperinsulinaemic compensation induced in response to high-fat feeding was prevented when the nocturnal NEFA pattern was returned to baseline. Elevated nocturnal NEFA are an important signal for hyperinsulinaemic compensation during diet-induced insulin resistance.
NASA Astrophysics Data System (ADS)
Cianciara, Aleksander J.; Anderson, Christopher J.; Chen, Xuelei; Chen, Zhiping; Geng, Jingchao; Li, Jixia; Liu, Chao; Liu, Tao; Lu, Wing; Peterson, Jeffrey B.; Shi, Huli; Steffel, Catherine N.; Stebbins, Albert; Stucky, Thomas; Sun, Shijie; Timbie, Peter T.; Wang, Yougang; Wu, Fengquan; Zhang, Juyong
A wide bandwidth, dual polarized, modified four-square antenna is presented as a feed antenna for radio astronomical measurements. A linear array of these antennas is used as a line-feed for cylindrical reflectors for Tianlai, a radio interferometer designed for 21cm intensity mapping. Simulations of the feed antenna beam patterns and scattering parameters are compared to experimental results at multiple frequencies across the 650-1420MHz range. Simulations of the beam patterns of the combined feed array/reflector are presented as well.
Active room compensation for sound reinforcement using sound field separation techniques.
Heuchel, Franz M; Fernandez-Grande, Efren; Agerkvist, Finn T; Shabalina, Elena
2018-03-01
This work investigates how the sound field created by a sound reinforcement system can be controlled at low frequencies. An indoor control method is proposed which actively absorbs the sound incident on a reflecting boundary using an array of secondary sources. The sound field is separated into incident and reflected components by a microphone array close to the secondary sources, enabling the minimization of reflected components by means of optimal signals for the secondary sources. The method is purely feed-forward and assumes constant room conditions. Three different sound field separation techniques for the modeling of the reflections are investigated based on plane wave decomposition, equivalent sources, and the Spatial Fourier transform. Simulations and an experimental validation are presented, showing that the control method performs similarly well at enhancing low frequency responses with the three sound separation techniques. Resonances in the entire room are reduced, although the microphone array and secondary sources are confined to a small region close to the reflecting wall. Unlike previous control methods based on the creation of a plane wave sound field, the investigated method works in arbitrary room geometries and primary source positions.
A microstrip array feed for MSAT spacecraft reflector antenna
NASA Technical Reports Server (NTRS)
Huang, John
1988-01-01
An L-band circularly polarized microstrip array antenna with relatively wide bandwidth has been developed. The array has seven subarrays which form a single cluster as part of a large overlapping cluster reflector feed array. Each of the seven subarrays consists of four uniquely arranged linearly polarized microstrip elements. A 7.5 percent impedance (VSWR less than 1.5) as well as axial ratio (less than 1 dB) bandwidths have been achieved by employing a relatively thick honeycomb substrate with special impedance matching feed probes.
Reproducible, high performance patch antenna array apparatus and method of fabrication
Strassner, II, Bernd H.
2007-01-23
A reproducible, high-performance patch antenna array apparatus includes a patch antenna array provided on a unitary dielectric substrate, and a feed network provided on the same unitary substrate and proximity coupled to the patch antenna array. The reproducibility is enhanced by using photolithographic patterning and etching to produce both the patch antenna array and the feed network.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.
1992-01-01
Virginia Tech has several articles which support the NASA Langley effort in the area of large aperture radiometric antenna systems. This semi-annual report reports on the following activities: a feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas and the design of array feeds for large reflector antennas.
Configuration study for a 30 GHz monolithic receive array: Technical assessment
NASA Technical Reports Server (NTRS)
Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.
1984-01-01
The current status of monolithic microwave integrated circuits (MMICs) in phased array feeds is discussed from the point of view of cost performance, reliability, and design considerations. Transitions to MMICs, compatible antenna radiating elements and reliability considerations are addressed. Hybrid antennas, feed array antenna technology, and offset reflectors versus phased arrays are examined.
A prototype automatic phase compensation module
NASA Technical Reports Server (NTRS)
Terry, John D.
1992-01-01
The growing demands for high gain and accurate satellite communication systems will necessitate the utilization of large reflector systems. One area of concern of reflector based satellite communication is large scale surface deformations due to thermal effects. These distortions, when present, can degrade the performance of the reflector system appreciable. This performance degradation is manifested by a decrease in peak gain, and increase in sidelobe level, and pointing errors. It is essential to compensate for these distortion effects and to maintain the required system performance in the operating space environment. For this reason the development of a technique to offset the degradation effects is highly desirable. Currently, most research is direct at developing better material for the reflector. These materials have a lower coefficient of linear expansion thereby reducing the surface errors. Alternatively, one can minimize the distortion effects of these large scale errors by adaptive phased array compensation. Adaptive phased array techniques have been studied extensively at NASA and elsewhere. Presented in this paper is a prototype automatic phase compensation module designed and built at NASA Lewis Research Center which is the first stage of development for an adaptive array compensation module.
A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed
NASA Technical Reports Server (NTRS)
Chrysler, Andrew; Furse, Cynthia; Simons, Rainee N.; Miranda, Felix A.
2017-01-01
A Ka-Band (26 gigahertz) 2 by 2 sub-array with square-shaped microstrip patch antenna elements having two truncated corners for circular polarization (CP) is presented. In addition, the layout for a new compact microstrip feed network for the sub-array is also presented. The compact feed network offers a footprint size reduction of near 60 percent over traditional sub-array at 26 gigahertz. Experimental data indicates that a truncation amount a equals 0.741 millimeters for an isolated patch element results in a return loss (S (sub II)) of minus 35 decibels at 26.3 gigahertz. Furthermore, the measured S (sub II) for the proof-of-concept sub-array with the above elements is better than minus 10.0 decibels at 27.7 gigahertz. However, the impedance match and the operating frequency can be fine-tuned to 26 gigahertz by adjusting the feed network dimensions. Lastly, good agreement is observed between the measured and simulated S (sub II) for the subarray for both right hand and left hand CP. The goal of this effort is utilize the above sub-array as a building block for a larger N by N element array, which would serve as a feed for a reflector antenna for satellite communications.
Mutual Coupling and Compensation in FMCW MIMO Radar Systems
NASA Astrophysics Data System (ADS)
Schmid, Christian M.; Feger, Reinhard; Wagner, Christoph; Stelzer, Andreas
2011-09-01
This paper deals with mutual coupling, its effects and the compensation thereof in frequency-modulated continuous-wave (FMCW) multiple-input multiple-output (MIMO) array radar systems. Starting with a signal model we introduce mutual coupling and its primary sources in FMCW MIMO systems. We also give a worst-case boundary of the effects that mutual coupling can have on the side lobe level of an array. A method of dealing with and compensating for these effects is covered in this paper and verified by measurements from a 77-GHz FMCW radar system.
The wavefront compensation of free space optics utilizing micro corner-cube-reflector arrays
NASA Astrophysics Data System (ADS)
You, Shengzui; Yang, Guowei; Li, Changying; Bi, Meihua; Fan, Bing
2018-01-01
The wavefront compensation effect of micro corner-cube-reflector arrays (MCCRAs) in modulating retroreflector (MRR) free-space optical (FSO) link is investigated theoretically and experimentally. Triangular aperture of MCCRAs has been optically characterized and studied in an indoor atmospheric turbulence channel. The use of the MCCRAs instead of a single corner-cube reflector (CCR) as the reflective device is found to improve dramatically the quality of the reflected beam spot. We draw a conclusion that the MCCRAs can in principle yield a powerful wavefront compensation in MRR FSO communication links.
Realizable feed-element patterns and optimum aperture efficiency in multibeam antenna systems
NASA Technical Reports Server (NTRS)
Yngvesson, K. S.; Rahmat-Samii, Y.; Johansson, J. F.; Kim, Y. S.
1988-01-01
The results of an earlier paper by Rahmat-Samii et al. (1981), regarding realizable patterns from feed elements that are part of an array that feeds a reflector antenna, are extended. The earlier paper used a cos exp q theta model for the element radiation pattern, whereas here a parametric study is performed, using a model that assumes a central beam of cos exp q theta shape, with a constant sidelobe level outside the central beam. Realizable q-values are constrained by the maximum directivity based on feed element area. The optimum aperture efficiency (excluding array feed network losses) in an array-reflector system is evaluated as a function of element spacing using this model as well as the model of the earlier paper. Experimental data for tapered slot antenna (TSA) arrays are in agreement with the conclusions based on the model.
Low Sidelobe Scanning Beams for Parabolic Reflectors,
Parabolic antennas, *Sidelobes, *Electronic scanners, Parabolas, Far field, Antenna feeds , Reflectors, Low level, Amplitude, Distortion, Configurations, Secondary, Compensation, Feeding , Symposia, Taper
Orthogonal feeding techniques for tapered slot antennas
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1998-01-01
For array of "brick" configuration there are electrical and mechanical advantages to feed the antenna with a feed on a substrate perpendicular to the antenna substrate. Different techniques have been proposed for exciting patch antennas using such a feed structure.Rncently, an aperture-coupled dielectric resonator antenna using a perpendicular feed substrate has been demonstrated to have very good power coupling efficiency. For a two-dimensional rectangular array with tapered slot antenna elements, a power combining network on perpendicular substrate is generally required to couple power to or from the array. In this paper, we will describe two aperture-coupled techniques for coupling microwave power from a linearly tapered slot antenna (LTSA) to a microstrip feed on a perpendicular substrate. In addition, we will present measured results for return losses and radiation patterns.
Wideband Microstrip Antenna-Feeding Array
NASA Technical Reports Server (NTRS)
Huang, John
1990-01-01
Special impedance-matching probes help reduce feed complexity. Lightweight array of microstrip antenna elements designed to transmit and illuminate reflector antenna with circularly polarized radiation at 1,545 to 1,550 MHz and to receive circularly polarized radiation at 1,646 to 1,660 MHz. Microstrip array is cluster of 7 subarrays containing total of 28 microstrip patches. Produces cicularly polarized beam with suitable edge taper to illuminate reflector antenna. Teardrop-shaped feed probe provides gradual change of field from coaxial transmission line into microstrip substrate. Intended to be part of larger overlapping-cluster array generating multiple contiguous beams.
NASA Astrophysics Data System (ADS)
Zhou, Tong; Zhao, Jian; He, Yong; Jiang, Bo; Su, Yan
2018-05-01
A novel self-adaptive background current compensation circuit applied to infrared focal plane array is proposed in this paper, which can compensate the background current generated in different conditions. Designed double-threshold detection strategy is to estimate and eliminate the background currents, which could significantly reduce the hardware overhead and improve the uniformity among different pixels. In addition, the circuit is well compatible to various categories of infrared thermo-sensitive materials. The testing results of a 4 × 4 experimental chip showed that the proposed circuit achieves high precision, wide application and high intelligence. Tape-out of the 320 × 240 readout circuit, as well as the bonding, encapsulation and imaging verification of uncooled infrared focal plane array, have also been completed.
Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel
2010-10-11
We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.
NASA Astrophysics Data System (ADS)
Lin, Yo-Sheng; Hu, Chun-Hao; Chang, Chi-Ho; Tsao, Ping-Chang
2018-06-01
In this work, we demonstrate novel one-dimensional (1D) and two-dimensional (2D) antenna arrays for both microwave wireless power transfer (MWPT) systems and dual-antenna transceivers. The antenna array can be used as the MWPT receiving antenna of an integrated MWPT and Bluetooth (BLE) communication module (MWPT-BLE module) for smart CNC (computer numerical control) spindle incorporated with the cloud computing system SkyMars. The 2D antenna array has n rows of 1 × m 1D array, and each array is composed of multiple (m) differential feeding antenna elements. Each differential feeding antenna element is a differential feeding structure with a microstrip antenna stripe. The stripe length is shorter than one wavelength to minimise the antenna area and to prevent being excited to a high-order mode. That is, the differential feeding antenna element can suppress the even mode. The mutual coupling between the antenna elements can be suppressed, and the isolation between the receiver and the transmitter can be enhanced. An inclination angle of the main beam aligns with the broadside, and the main beam is further concentrated and shrunk at the elevation direction. Moreover, if more differential feeding antenna elements are used, antenna gain and isolation can be further enhanced. The excellent performance of the proposed antenna arrays indicates that they are suitable for both MWPT systems and dual-antenna transceivers.
Design and fabrication of microstrip antenna arrays
NASA Technical Reports Server (NTRS)
1978-01-01
A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.
Steerable Space Fed Lens Array for Low-Cost Adaptive Ground Station Applications
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Popovic, Zoya; Rondineau, Sebastien; Miranda, Felix A.
2007-01-01
The Space Fed Lens Array (SFLA) is an alternative to a phased array antenna that replaces large numbers of expensive solid-state phase shifters with a single spatial feed network. SFLA can be used for multi-beam application where multiple independent beams can be generated simultaneously with a single antenna aperture. Unlike phased array antennas where feed loss increases with array size, feed loss in a lens array with more than 50 elements is nearly independent of the number of elements, a desirable feature for large apertures. In addition, SFLA has lower cost as compared to a phased array at the expense of total volume and complete beam continuity. For ground station applications, both of these tradeoff parameters are not important and can thus be exploited in order to lower the cost of the ground station. In this paper, we report the development and demonstration of a 952-element beam-steerable SFLA intended for use as a low cost ground station for communicating and tracking of a low Earth orbiting satellite. The dynamic beam steering is achieved through switching to different feed-positions of the SFLA via a beam controller.
An Ultra-Wideband Millimeter-Wave Phased Array
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Miranda, Felix A.; Volakis, John L.
2016-01-01
Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.
A Microfabricated 8-40 GHz Dual-Polarized Reflector Feed
NASA Technical Reports Server (NTRS)
Vanhille, Kenneth; Durham, Tim; Stacy, William; Karasiewicz, David; Caba, Aaron; Trent, Christopher; Lambert, Kevin; Miranda, Felix
2014-01-01
Planar antennas based on tightly coupled dipole arrays (also known as a current sheet antenna or CSA) are amenable for use as electronically scanned phased arrays. They are capable of performance nearing a decade of bandwidth. These antennas have been demonstrated in many implementations at frequencies below 18 GHz. This paper describes the implementation using a relatively new multi-layer microfabrication process resulting in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 GHz. The beamformer includes baluns that feed the dual-polarized differential antenna elements and reactive splitter networks that also cover the full frequency range of operation. This antenna array serves as a reflector feed for a multi-band instrument designed to measure snow water equivalent (SWE) from airborne platforms. The instrument has both radar and radiome try capability at multiple frequencies. Scattering-parameter and time-domain measurements have been used to characterize the array feed. Radiation patterns of the antenna have been measured and are compared to simulation. To the best of the authors' knowledge, this work represents the most integrated multi-octave millimeter-wave antenna feed fabricated to date.
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
Aberration compensation of an ultrasound imaging instrument with a reduced number of channels.
Jiang, Wei; Astheimer, Jeffrey P; Waag, Robert C
2012-10-01
Focusing and imaging qualities of an ultrasound imaging system that uses aberration correction were experimentally investigated as functions of the number of parallel channels. Front-end electronics that consolidate signals from multiple physical elements can be used to lower hardware and computational costs by reducing the number of parallel channels. However, the signals from sparse arrays of synthetic elements yield poorer aberration estimates. In this study, aberration estimates derived from synthetic arrays of varying element sizes are evaluated by comparing compensated receive focuses, compensated transmit focuses, and compensated b-scan images of a point target and a cyst phantom. An array of 80 x 80 physical elements with a pitch of 0.6 x 0.6 mm was used for all of the experiments and the aberration was produced by a phantom selected to mimic propagation through abdominal wall. The results show that aberration correction derived from synthetic arrays with pitches that have a diagonal length smaller than 70% of the correlation length of the aberration yield focuses and images of approximately the same quality. This connection between correlation length of the aberration and synthetic element size provides a guideline for determining the number of parallel channels that are required when designing imaging systems that employ aberration correction.
Novel Phased Array Scanning Employing A Single Feed Without Using Individual Phase Shifters
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2012-01-01
Phased arrays afford many advantages over mechanically steered systems. However, they are also more complex, heavy, and most of all costly. The high cost mainly originates from the complex feeding structure. This paper proposes a novel feeding scheme to eliminate all phase shifters and achieve scanning via one-dimensional motion. Beam scanning is achieved via a series fed array incorporating feeding transmission lines whose wave velocity can be mechanically adjusted. Along with the line design, ideal element impedances to be used in conjunction with the line are derived. Practical designs are shown which achieve scanning to +/-30deg from boresight. Finally, a prototype is fabricated and measured, demonstrating the concept.
Differential Maternal Feeding Practices, Eating Self-Regulation, and Adiposity in Young Twins
Tripicchio, Gina L.; Keller, Kathleen L.; Johnson, Cassandra; Pietrobelli, Angelo; Heo, Moonseong
2014-01-01
OBJECTIVE: Restrictive feeding is associated with childhood obesity; however, this could be due to other factors that drive children to overeat and parents to restrict (eg, child genetics). Using a twin design to better control for confounders, we tested differences in restrictive feeding within families in relation to differences in twins’ self-regulatory eating and weight status. METHODS: Sixty-four same-gender twin pairs (4–7 years old) were studied with their mothers. Child caloric compensation ability (COMPX% index) was assessed by using a laboratory-based protocol. The Child Feeding Questionnaire assessed mothers’ self-reported feeding styles toward each twin. Child BMI (kg/m2) and BMI z score were calculated by using measured weight and height; percent body fat and waist circumference were also assessed. Partial correlations examined within-twin pair differences in Child Feeding Questionnaire subscales in relation to within-twin pair differences in anthropometry and caloric compensation (COMPX%). RESULTS: Differences in maternal restriction were significantly associated with within-pair differences in child COMPX% and BMI z score. Mothers reported more restriction toward the heavier and more poorly compensating twin. Additionally, within-pair differences in parental pressure to eat were associated with significant differences in BMI z score, percent body fat, and waist circumference. Mothers were more pressuring toward the lighter twin. CONCLUSIONS: Mothers vary in their feeding practices, even among same-gender twin pairs, which might influence differences in adiposity. Future research needs to elucidate cause-and-effect and intervention implications regarding parental restriction and pressure-to-eat prompts. PMID:25311601
NASA Astrophysics Data System (ADS)
Muralidhara, .; Vasa, Nilesh J.; Singaperumal, M.
2010-02-01
A micro-electro-discharge machine (Micro EDM) was developed incorporating a piezoactuated direct drive tool feed mechanism for micromachining of Silicon using a copper tool. Tool and workpiece materials are removed during Micro EDM process which demand for a tool wear compensation technique to reach the specified depth of machining on the workpiece. An in-situ axial tool wear and machining depth measurement system is developed to investigate axial wear ratio variations with machining depth. Stepwise micromachining experiments on silicon wafer were performed to investigate the variations in the silicon removal and tool wear depths with increase in tool feed. Based on these experimental data, a tool wear compensation method is proposed to reach the desired depth of micromachining on silicon using copper tool. Micromachining experiments are performed with the proposed tool wear compensation method and a maximum workpiece machining depth variation of 6% was observed.
Array feed synthesis for correction of reflector distortion and Vernier Beamsteering
NASA Technical Reports Server (NTRS)
Blank, S. J.; Imbriale, W. A.
1986-01-01
An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum choice of planar array feed configuration (i.e., number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.
Lachinova, Svetlana L; Vorontsov, Mikhail A
2008-08-01
We analyze the potential efficiency of laser beam projection onto a remote object in atmosphere with incoherent and coherent phase-locked conformal-beam director systems composed of an adaptive array of fiber collimators. Adaptive optics compensation of turbulence-induced phase aberrations in these systems is performed at each fiber collimator. Our analysis is based on a derived expression for the atmospheric-averaged value of the mean square residual phase error as well as direct numerical simulations. Operation of both conformal-beam projection systems is compared for various adaptive system configurations characterized by the number of fiber collimators, the adaptive compensation resolution, and atmospheric turbulence conditions.
SweepSAR: Beam-forming on Receive Using a Reflector-Phased Array Feed Combination for Spaceborne SAR
NASA Technical Reports Server (NTRS)
Freeman, A.; Krieger, G.; Rosen, P.; Younis, M.; Johnson, W. T. K.; Huber, S.; Jordan, R.; Moreira, A.
2012-01-01
In this paper, an alternative approach is described that is suited for longer wavelength SARs in particular, employing a large, deployable reflector antenna and a much simpler phased array feed. To illuminate a wide swath, a substantial fraction of the phased array feed is excited on transmit to sub-illuminate the reflector. Shorter transmit pulses are required than for conventional SAR. On receive, a much smaller portion of the phased array feed is used to collect the return echo, so that a greater portion of the reflector antenna area is used. The locus of the portion of the phased array used on receive is adjusted using an analog beam steering network, to 'sweep' the receive beam(s) across the illuminated swath, tracking the return echo. This is similar in some respects to the whiskbroom approach to optical sensors, hence the name: SweepSAR.SweepSAR has advantages over conventional SAR in that it requires less transmit power, and if the receive beam is narrow enough, it is relatively immune to range ambiguities. Compared to direct radiating arrays with digital beam- forming, it is much simpler to implement, uses currently available technologies, is better suited for longer wavelength systems, and does not require extremely high data rates or onboard processing.
Identification and compensation of friction for a novel two-axis differential micro-feed system
NASA Astrophysics Data System (ADS)
Du, Fuxin; Zhang, Mingyang; Wang, Zhaoguo; Yu, Chen; Feng, Xianying; Li, Peigang
2018-06-01
Non-linear friction in a conventional drive feed system (CDFS) feeding at low speed is one of the main factors that lead to the complexity of the feed drive. The CDFS will inevitably enter or approach a non-linear creeping work area at extremely low speed. A novel two-axis differential micro-feed system (TDMS) is developed in this paper to overcome the accuracy limitation of CDFS. A dynamic model of TDMS is first established. Then, a novel all-component friction parameter identification method (ACFPIM) using a genetic algorithm (GA) to identify the friction parameters of a TDMS is introduced. The friction parameters of the ball screw and linear motion guides are identified independently using the method, assuring the accurate modelling of friction force at all components. A proportional-derivate feed drive position controller with an observer-based friction compensator is implemented to achieve an accurate trajectory tracking performance. Finally, comparative experiments demonstrate the effectiveness of the TDMS in inhibiting the disadvantageous influence of non-linear friction and the validity of the proposed identification method for TDMS.
Probe Array Correction With Strong Target Interactions
2012-08-01
exciting each probe array feed with a unit voltage source and computing the short circuit currents, ii, i = 1 , 2 , . . . , 5, at each probe array feed...that only one probe array element has unit terminal currents. In this case I2 = Îi = IN − Y NV 2 = IN − Y N [ Y is + Y N ]− 1 IN = (I − Y N [ Y is + Y...YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YY) 2 . REPORT TYPE 3. DATES COVERED (From - To) August 2012 Interim 01 May 2011 – 31 May
Mutual coupling, channel model, and BER for curvilinear antenna arrays
NASA Astrophysics Data System (ADS)
Huang, Zhiyong
This dissertation introduces a wireless communications system with an adaptive beam-former and investigates its performance with different antenna arrays. Mutual coupling, real antenna elements and channel models are included to examine the system performance. In a beamforming system, mutual coupling (MC) among the elements can significantly degrade the system performance. However, MC effects can be compensated if an accurate model of mutual coupling is available. A mutual coupling matrix model is utilized to compensate mutual coupling in the beamforming of a uniform circular array (UCA). Its performance is compared with other models in uplink and downlink beamforming scenarios. In addition, the predictions are compared with measurements and verified with results from full-wave simulations. In order to accurately investigate the minimum mean-square-error (MSE) of an adaptive array in MC, two different noise models, the environmental and the receiver noise, are modeled. The minimum MSEs with and without data domain MC compensation are analytically compared. The influence of mutual coupling on the convergence is also examined. In addition, the weight compensation method is proposed to attain the desired array pattern. Adaptive arrays with different geometries are implemented with the minimum MSE algorithm in the wireless communications system to combat interference at the same frequency. The bit-error-rate (BER) of systems with UCA, uniform rectangular array (URA) and UCA with center element are investigated in additive white Gaussian noise plus well-separated signals or random direction signals scenarios. The output SINR of an adaptive array with multiple interferers is analytically examined. The influence of the adaptive algorithm convergence on the BER is investigated. The UCA is then investigated in a narrowband Rician fading channel. The channel model is built and the space correlations are examined. The influence of the number of signal paths, number of the interferers, Doppler spread and convergence are investigated. The tracking mode is introduced to the adaptive array system, and it further improves the BER. The benefit of using faster data rate (wider bandwidth) is discussed. In order to have better performance in a 3D space, the geometries of uniform spherical array (USAs) are presented and different configurations of USAs are discussed. The LMS algorithm based on temporal a priori information is applied to UCAs and USAs to beamform the patterns. Their performances are compared based on simulation results. Based on the analytical and simulation results, it can be concluded that mutual coupling slightly influences the performance of the adaptive array in communication systems. In addition, arrays with curvilinear geometries perform well in AWGN and fading channels.
System for throttling and compensation for variable feedstock properties
Meyer, J. W.
1981-05-05
Apparatus is shown for adjusting the feed rate of pulverized feed material into a pressurized container. The apparatus also has utility for compensating for variations in the permeability of the feed material. A rotor that includes sprues with provision for controlling the pressure distribution along the sprues is located within the pressurized container. The rotor hub is connected to a drive means and a material supply means which extend through the wall of the container. A line for controlling pressure along the sprues by gas injection is connected to a chamber between sections of the sprue for controlling gas pressure at that point. The gas pressure control line is connected to a pressurized gas source and a control system external to the rotor. 10 figs.
System for throttling and compensation for variable feedstock properties
Meyer, John W.
1981-01-01
Apparatus is shown for adjusting the feed rate of pulverized feed material into a pressurized container. The apparatus also has utility for compensating for variations in the permeability of the feed material. A rotor that includes sprues with provision for controlling the pressure distribution along the sprues is located within the pressurized container. The rotor hub is connected to a drive means and a material supply means which extend through the wall of the container. A line for controlling pressure along the sprues by gas injection is connected to a chamber between sections of the sprue for controlling gas pressure at that point. The gas pressure control line is connected to a pressurized gas source and a control system external to the rotor.
Array feed synthesis for correction of reflector distortion and Vernier beamsteering
NASA Technical Reports Server (NTRS)
Blank, Stephen J.; Imbriale, William A.
1988-01-01
An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum chioce of planar array feed configuration (i.e., the number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.
Pang, Yong; Yu, Baiying; Vigneron, Daniel B; Zhang, Xiaoliang
2014-02-01
Quadrature coils are often desired in MR applications because they can improve MR sensitivity and also reduce excitation power. In this work, we propose, for the first time, a quadrature array design strategy for parallel transmission at 298 MHz using single-feed circularly polarized (CP) patch antenna technique. Each array element is a nearly square ring microstrip antenna and is fed at a point on the diagonal of the antenna to generate quadrature magnetic fields. Compared with conventional quadrature coils, the single-feed structure is much simple and compact, making the quadrature coil array design practical. Numerical simulations demonstrate that the decoupling between elements is better than -35 dB for all the elements and the RF fields are homogeneous with deep penetration and quadrature behavior in the area of interest. Bloch equation simulation is also performed to simulate the excitation procedure by using an 8-element quadrature planar patch array to demonstrate its feasibility in parallel transmission at the ultrahigh field of 7 Tesla.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Astrophysics Data System (ADS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
1986-01-01
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
Impulse Testing of Corporate-Fed Patch Array Antennas
NASA Technical Reports Server (NTRS)
Chamberlain, Neil F.
2011-01-01
This paper discusses a novel method for detecting faults in antenna arrays. The method, termed Impulse Testing, was developed for corporate-fed patch arrays where the element is fed by a probe and is shorted at its center. Impulse Testing was devised to supplement conventional microwave measurements in order to quickly verify antenna integrity. The technique relies on exciting each antenna element in turn with a fast pulse (or impulse) that propagates through the feed network to the output port of the antenna. The resulting impulse response is characteristic of the path through the feed network. Using an oscilloscope, a simple amplitude measurement can be made to detect faults. A circuit model of the antenna elements and feed network was constructed to assess various fault scenarios and determine fault-detection thresholds. The experimental setup and impulse measurements for two patch array antennas are presented. Advantages and limitations of the technique are discussed along with applications to other antenna array topologies
Gruse, Jeannine; Kanitz, Ellen; Weitzel, Joachim M.; Tuchscherer, Armin; Stefaniak, Tadeusz; Jawor, Paulina; Wolffram, Siegfried; Hammon, Harald M.
2016-01-01
Immaturity of the neonatal immune system is causative for high morbidity in calves and colostrum intake is crucial for acquiring passive immunity. Pathogenesis is promoted by reactive oxygen species accumulating at birth if counter-regulation is inadequate. The flavonol quercetin exerts antioxidative and anti-inflammatory effects that may enhance neonatal health. The aim of this work was to study effects of quercetin feeding on metabolic, antioxidative and inflammatory parameters in neonatal calves to investigate whether quercetin could compensate for insufficient colostrum supply. Twenty-eight newborn calves were assigned to two dietary groups fed colostrum or milk-based formula on day 1 and 2 and milk replacer thereafter. From day 2 onwards, 7 calves per diet group were additionally fed quercetin aglycone (50 mg/(kg body weight × day)). Blood samples were taken repeatedly to measure plasma concentrations of flavonols, glucose, lactate, total protein, albumin, urea, non-esterified fatty acids, triglycerides, cholesterol, insulin, glucagon, cortisol, immunoglobulins, fibrinogen, haptoglobin and serum amyloid A. Trolox equivalent antioxidative capacity, ferric reducing ability of plasma, thiobarbituric acid reactive species and F2-isoprostanes were analyzed to evaluate plasma antioxidative status. Expression of tumor necrosis factor, interleukin-1α, interleukin-1β, serum amyloid A, haptoglobin, fibrinogen, C-reactive protein, catalase, glutathione peroxidase and superoxide dismutase mRNA were measured in liver tissue on day 8. Plasma flavonol concentrations were detectable only after quercetin-feeding without differences between colostrum and formula feeding. Plasma glucose, lactate, total protein, immunoglobulins, triglycerides, cholesterol, trolox equivalent antioxidative capacity and thiobarbituric acid reactive species were higher after colostrum feeding. Body temperature, fecal fluidity and plasma concentrations of cortisol and haptoglobin were higher in formula- than in colostrum-fed groups. Hepatic mRNA expression of tumor necrosis factor was higher after quercetin feeding and expression of C-reactive protein was higher after formula feeding. Data confirm that colostrum improves neonatal health and indicate that quercetin feeding cannot compensate for insufficient colostrum supply. PMID:26752173
Reducing interaction in simultaneous paired stimulation with CI.
Vellinga, Dirk; Bruijn, Saskia; Briaire, Jeroen J; Kalkman, Randy K; Frijns, Johan H M
2017-01-01
In this study simultaneous paired stimulation of electrodes in cochlear implants is investigated by psychophysical experiments in 8 post-lingually deaf subjects (and one extra subject who only participated in part of the experiments). Simultaneous and sequential monopolar stimulation modes are used as references and are compared to channel interaction compensation, partial tripolar stimulation and a novel sequential stimulation strategy named phased array compensation. Psychophysical experiments are performed to investigate both the loudness integration during paired stimulation at the main electrodes as well as the interaction with the electrode contact located halfway between the stimulating pair. The study shows that simultaneous monopolar stimulation has more loudness integration on the main electrodes and more interaction in between the electrodes than sequential stimulation. Channel interaction compensation works to reduce the loudness integration at the main electrodes, but does not reduce the interaction in between the electrodes caused by paired stimulation. Partial tripolar stimulation uses much more current to reach the needed loudness, but shows the same interaction in between the electrodes as sequential monopolar stimulation. In phased array compensation we have used the individual impedance matrix of each subject to calculate the current needed on each electrode to exactly match the stimulation voltage along the array to that of sequential stimulation. The results show that the interaction in between the electrodes is the same as monopolar stimulation. The strategy uses less current than partial tripolar stimulation, but more than monopolar stimulation. In conclusion, the paper shows that paired stimulation is possible if the interaction is compensated.
Frey, Laurent; Masarotto, Lilian; Armand, Marilyn; Charles, Marie-Lyne; Lartigue, Olivier
2015-05-04
Thin film Fabry-Perot filter arrays with high selectivity can be realized with a single patterning step, generating a spatial modulation of the effective refractive index in the optical cavity. In this paper, we investigate the ability of this technology to address two applications in the field of image sensors. First, the spectral tuning may be used to compensate the blue-shift of the filters in oblique incidence, provided the filter array is located in an image plane of an optical system with higher field of view than aperture angle. The technique is analyzed for various types of filters and experimental evidence is shown with copper-dielectric infrared filters. Then, we propose a design of a multispectral filter array with an extended spectral range spanning the visible and near-infrared range, using a single set of materials and realizable on a single substrate.
A Cryogenic SiGe Low-noise Amplifier Optimized for Phased-array Feeds
NASA Astrophysics Data System (ADS)
Groves, Wavley M., III; Morgan, Matthew A.
2017-08-01
The growing number of phased-array feeds (PAF) being built for radio astronomy demonstrates an increasing need for low-noise amplifiers (LNA), which are designed for repeatability, low noise, and ease of manufacture. Specific design features that help to achieve these goals include the use of unpackaged transistors (for cryogenic operation); single-polarity biasing; straight plug-in radio frequency (RF) interfaces to facilitate installation and re-work; and the use of off-the-shelf components. The focal L-band array for the Green Bank Telescope (FLAG) is a cooperative effort by Brigham Young University and the National Radio Astronomy Observatory using warm dipole antennae and cryogenic Silicon Germanium Heterojunction Bipolar Transistor (SiGe HBT) LNAs. These LNAs have an in band gain average of 38 dB and 4.85 Kelvin average noise temperature. Although the FLAG instrument was the driving instrument behind this development, most of the key features of the design and the advantages they offer apply broadly to other array feeds, including independent-beam and phased, and for many antenna types such as horn, dipole, Vivaldi, connected-bowtie, etc. This paper focuses on the unique requirements array feeds have for low-noise amplifiers and how amplifier manufacturing can accommodate these needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluskin, Efim; Trakhtenberg, Emil; Xu, Joseph Z.
A method and apparatus for implementing dynamic compensation of magnetic forces for undulators are provided. An undulator includes a respective set of magnet arrays, each attached to a strongback, and placed on horizontal slides and positioned parallel relative to each other with a predetermined gap. Magnetic forces are compensated by a set of compensation springs placed along the strongback. The compensation springs are conical springs having exponential-force characteristics that substantially match undulator magnetic forces independently of the predetermined gap. The conical springs are positioned along the length of the magnets.
Advanced Precipitation Radar Antenna to Measure Rainfall From Space
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Yahya; Lin, John; Huang, John; Im, Eastwood; Lou, Michael; Lopez, Bernardo; Durden, Stephen
2008-01-01
To support NASA s planned 20-year mission to provide sustained global precipitation measurement (EOS-9 Global Precipitation Measurement (GPM)), a deployable antenna has been explored with an inflatable thin-membrane structure. This design uses a 5.3 5.3-m inflatable parabolic reflector with the electronically scanned, dual-frequency phased array feeds to provide improved rainfall measurements at 2.0-km horizontal resolution over a cross-track scan range of up to 37 , necessary for resolving intense, isolated storm cells and for reducing the beam-filling and spatial sampling errors. The two matched radar beams at the two frequencies (Ku and Ka bands) will allow unambiguous retrieval of the parameters in raindrop size distribution. The antenna is inflatable, using rigidizable booms, deployable chain-link supports with prescribed curvatures, a smooth, thin-membrane reflecting surface, and an offset feed technique to achieve the precision surface tolerance (0.2 mm RMS) for meeting the low-sidelobe requirement. The cylindrical parabolic offset-feed reflector augmented with two linear phased array feeds achieves dual-frequency shared-aperture with wide-angle beam scanning and very low sidelobe level of -30 dB. Very long Ku and Ka band microstrip feed arrays incorporating a combination of parallel and series power divider lines with cosine-over-pedestal distribution also augment the sidelobe level and beam scan. This design reduces antenna mass and launch vehicle stowage volume. The Ku and Ka band feed arrays are needed to achieve the required cross-track beam scanning. To demonstrate the inflatable cylindrical reflector with two linear polarizations (V and H), and two beam directions (0deg and 30deg), each frequency band has four individual microstrip array designs. The Ku-band array has a total of 166x2 elements and the Ka-band has 166x4 elements with both bands having element spacing about 0.65 lambda(sub 0). The cylindrical reflector with offset linear array feeds reduces the complexity from "NxN" transmit/receive (T/R) modules of a conventional planar-phased array to just "N" T/R modules. The antenna uses T/R modules with electronic phase-shifters for beam steering. The offset reflector does not provide poor cross-polarization like a double- curved offset reflector would, and it allows the wide scan angle in one plane required by the mission. Also, the cylindrical reflector with two linear array feeds provides dual-frequency performance with a single, shared aperture. The aperture comprises a reflective surface with a focal length of 1.89 m and is made from aluminized Kapton film. The reflective surface is of uniform thickness in the range of a few thousandths of an inch and is attached to the chain-link support structure via an adjustable suspension system. The film aperture rolls up, together with the chain-link structure, for launch and can be deployed in space by the deployment of the chain-link structure.
Time-delayed directional beam phased array antenna
Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron
2004-10-19
An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.
Optical Communications With A Geiger Mode APD Array
2016-02-09
spurious fires from numerous sources, including crosstalk from other detectors in the same array . Additionally, after a 9 successful detection, the...be combined into arrays with large numbers of detectors , allowing for scaling of dynamic range with relatively little overhead on space and power...overall higher rate of dark counts than a single detector , this is more than compensated for by the extra detectors . A sufficiently large APD array could
Spatio-Temporal Equalizer for a Receiving-Antenna Feed Array
NASA Technical Reports Server (NTRS)
Mukai, Ryan; Lee, Dennis; Vilnrotter, Victor
2010-01-01
A spatio-temporal equalizer has been conceived as an improved means of suppressing multipath effects in the reception of aeronautical telemetry signals, and may be adaptable to radar and aeronautical communication applications as well. This equalizer would be an integral part of a system that would also include a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal antenna that would be nominally aimed at or near the aircraft that would be the source of the signal that one seeks to receive (see Figure 1). This spatio-temporal equalizer would consist mostly of a bank of seven adaptive finite-impulse-response (FIR) filters one for each element in the array - and the outputs of the filters would be summed (see Figure 2). The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank would afford better multipath-suppression performance than is achievable by means of temporal equalization alone. The seven-element feed array would supplant the single feed horn used in a conventional paraboloidal ground telemetry-receiving antenna. The radio-frequency telemetry signals re ceiv ed by the seven elements of the array would be digitized, converted to complex baseband form, and sent to the FIR filter bank, which would adapt itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of multipath of the type found at many flight test ranges.
Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.
1985-01-01
Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.
NASA Technical Reports Server (NTRS)
Schuman, H. K.
1992-01-01
An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.
Wideband Low Side Lobe Aperture Coupled Patch Phased Array Antennas
NASA Astrophysics Data System (ADS)
Poduval, Dhruva
Low profile printed antenna arrays with wide bandwidth, high gain, and low Side Lobe Level (SLL) are in great demand for current and future commercial and military communication systems and radar. Aperture coupled patch antennas have been proposed to obtain wide impedance bandwidths in the past. Aperture coupling is preferred particularly for phased arrays because of their advantage of integration to other active devices and circuits, e.g. phase shifters, power amplifiers, low noise amplifiers, mixers etc. However, when designing such arrays, the interplay between array performance characteristics, such as gain, side lobe level, back lobe level, mutual coupling etc. must be understood and optimized under multiple design constraints, e.g. substrate material properties and thicknesses, element to element spacing, and feed lines and their orientation and arrangements with respect to the antenna elements. The focus of this thesis is to investigate, design, and develop an aperture coupled patch array with wide operating bandwidth (30%), high gain (17.5 dBi), low side lobe level (20 dB), and high Forward to Backward (F/B) ratio (21.8 dB). The target frequency range is 2.4 to 3 GHz given its wide application in WLAN, LTE (Long Term Evolution) and other communication systems. Notwithstanding that the design concept can very well be adapted at other frequencies. Specifically, a 16 element, 4 by 4 planar microstrip patch array is designed using HFSS and experimentally developed and tested. Starting from mutual coupling minimization a corporate feeding scheme is designed to achieve the needed performance. To reduce the SLL the corporate feeding network is redesigned to obtain a specific amplitude taper. Studies are conducted to determine the optimum location for a metallic reflector under the feed line to improve the F/B. An experimental prototype of the antenna was built and tested validating and demonstrating the performance levels expected from simulation predictions. Finally, simulated beam scanning in several angles of the array is shown considering specific phases for each antenna element in the array.
Steckel, S; Stewart, S D
2015-06-01
Ear-feeding larvae, such as corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), can be important insect pests of field corn, Zea mays L., by feeding on kernels. Recently introduced, stacked Bacillus thuringiensis (Bt) traits provide improved protection from ear-feeding larvae. Thus, our objective was to evaluate how injury to kernels in the ear tip might affect yield when this injury was inflicted at the blister and milk stages. In 2010, simulated corn earworm injury reduced total kernel weight (i.e., yield) at both the blister and milk stage. In 2011, injury to ear tips at the milk stage affected total kernel weight. No differences in total kernel weight were found in 2013, regardless of when or how much injury was inflicted. Our data suggested that kernels within the same ear could compensate for injury to ear tips by increasing in size, but this increase was not always statistically significant or sufficient to overcome high levels of kernel injury. For naturally occurring injury observed on multiple corn hybrids during 2011 and 2012, our analyses showed either no or a minimal relationship between number of kernels injured by ear-feeding larvae and the total number of kernels per ear, total kernel weight, or the size of individual kernels. The results indicate that intraear compensation for kernel injury to ear tips can occur under at least some conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
CryoPAF4: a cryogenic phased array feed design
NASA Astrophysics Data System (ADS)
Locke, Lisa; Garcia, Dominic; Halman, Mark; Henke, Doug; Hovey, Gary; Jiang, Nianhua; Knee, Lewis; Lacy, Gordon; Loop, David; Rupen, Michael; Veidt, Bruce; Wierzbicki, Ramunas
2016-07-01
Phased array feed (PAF) receivers used on radio astronomy telescopes offer the promise of increased fields of view while maintaining the superlative performance attained with traditional single pixel feeds (SPFs). However, the much higher noise temperatures of room temperature PAFs compared to cryogenically-cooled SPFs have prevented their general adoption. Here we describe a conceptual design for a cryogenically cooled 2.8 - 5.18 GHz dual linear polarization PAF with estimated receiver temperature of 11 K. The cryogenic PAF receiver will comprise a 140 element Vivaldi antenna array and low-noise amplifiers housed in a 480 mm diameter cylindrical dewar covered with a RF transparent radome. A broadband two-section coaxial feed is integrated within each metal antenna element to withstand the cryogenic environment and to provide a 50 ohm impedance for connection to the rest of the receiver. The planned digital beamformer performs digitization, frequency band selection, beam forming and array covariance matrix calibration. Coupling to a 15 m offset Gregorian dual-reflector telescope, cryoPAF4 can expect to form 18 overlapping beams increasing the field of view by a factor of 8x compared to a single pixel receiver of equal system temperature.
NASA Astrophysics Data System (ADS)
Maghrebi, Morteza; Khodadadi, Abbas Ali; Mortazavi, Yadollah; Sane, Ali; Rahimi, Mohsen; Shirazi, Yaser; Tsakadze, Zviad; Mhaisalkar, Subodh
2009-11-01
The mm-long carbon nanotube (CNT) arrays were grown in a floating catalyst reactor, using xylene-ferrocene and a small amount of acetic acid as the feed. The CNT arrays deposited on a quartz substrate at several positions along the reactor were extensively characterized using Raman spectroscopy, scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy, and optical microscopy. Various characterization methods consistently reveal that the acetic acid additive to the feed alleviates deposition of amorphous carbon layer, which gradually thickens CNTs along the reactor. The acetic acid also resulted in a higher growth rate along the so-called growth window, where CNT arrays are deposited on the quartz substrate. High-performance liquid chromatography of extracted byproducts (PAHs) confirmed the presence of some polycyclic aromatic hydrocarbons. The solid weight of PAHs decreased upon addition of ferrocene as the catalyst precursor, as well as of acetic acid to xylene feed. The results suggest that primary light products of xylene pyrolysis can be competitive reactants for both catalytic and subsequent pyrolytic reactions. They may also be more efficient feeds for CNT growth than xylene itself.
A Study of Ultrasonic Wavefront Distortion Compensation.
1998-08-01
arrays. The array is made of piezoelectric composite consisting of PZT (lead zirconate titanate) ceramic rods in a polymer matrix. The transducer...We have developed the procedures for making the final transducer array package by a series of steps. The arrays utilize PZT piezoelectric ceramic ...the low contrast cyst at coordinates (250,425) in Figure 6a. Seen below the cyst is a region with an altered texture and poorer angular resolution, a
Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei
2016-03-11
This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile's rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm.
Thin conformal antenna array for microwave power conversions
NASA Technical Reports Server (NTRS)
Dickinson, R. M. (Inventor)
1978-01-01
A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.
Robert, Jean-Luc; Erkamp, Ramon; Korukonda, Sanghamithra; Vignon, François; Radulescu, Emil
2015-11-01
In ultrasound imaging, an array of elements is used to image a medium. If part of the array is blocked by an obstacle, or if the array is made from several sub-arrays separated by a gap, grating lobes appear and the image is degraded. The grating lobes are caused by missing spatial frequencies, corresponding to the blocked or non-existing elements. However, in an active imaging system, where elements are used both for transmitting and receiving, the round trip signal is redundant: different pairs of transmit and receive elements carry similar information. It is shown here that, if the gaps are smaller than the active sub-apertures, this redundancy can be used to compensate for the missing signals and recover full resolution. Three algorithms are proposed: one is based on a synthetic aperture method, a second one uses dual-apodization beamforming, and the third one is a radio frequency (RF) data based deconvolution. The algorithms are evaluated on simulated and experimental data sets. An application could be imaging through ribs with a large aperture.
A dual frequency microstrip antenna for Ka band
NASA Technical Reports Server (NTRS)
Lee, R. Q.; Baddour, M. F.
1985-01-01
For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.
Bernardo, Melissa A; Singer, Michael S
2017-08-15
Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health. © 2017. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Liu, Ling
The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.
Advances in selective activation of muscles for non-invasive motor neuroprostheses.
Koutsou, Aikaterini D; Moreno, Juan C; Del Ama, Antonio J; Rocon, Eduardo; Pons, José L
2016-06-13
Non-invasive neuroprosthetic (NP) technologies for movement compensation and rehabilitation remain with challenges for their clinical application. Two of those major challenges are selective activation of muscles and fatigue management. This review discusses how electrode arrays improve the efficiency and selectivity of functional electrical stimulation (FES) applied via transcutaneous electrodes. In this paper we review the principles and achievements during the last decade on techniques for artificial motor unit recruitment to improve the selective activation of muscles. We review the key factors affecting the outcome of muscle force production via multi-pad transcutaneous electrical stimulation and discuss how stimulation parameters can be set to optimize external activation of body segments. A detailed review of existing electrode array systems proposed by different research teams is also provided. Furthermore, a review of the targeted applications of existing electrode arrays for control of upper and lower limb NPs is provided. Eventually, last section demonstrates the potential of electrode arrays to overcome the major challenges of NPs for compensation and rehabilitation of patient-specific impairments.
Faraday rotation measurement method and apparatus
NASA Technical Reports Server (NTRS)
Brockman, M. H. (Inventor)
1981-01-01
A method and device for measuring Faraday rotation of a received RF signal is described. A simultaneous orthogonal polarization receiver compensates for a 3 db loss due to splitting of a received signal into left circular and right circular polarization channels. The compensation is achieved by RF and modulation arraying utilizing a specific receiver array which also detects and measures Faraday rotation in the presence or absence of spin stabilization effects on a linear polarization vector. Either up-link or down-link measurement of Faraday rotation is possible. Specifically, the Faraday measurement apparatus utilized in conjunction with the specific receiver array provides a means for comparing the phase of a reference signal in the receiver array to the phase of a tracking loop signal related to the incoming signal, and comparing the phase of the reference signal to the phase of the tracking signal shifted in phase by 90 degrees. The averaged and unaveraged signals, are compared, the phase changes between the two signals being related to Faraday rotation.
Compensated individually addressable array technology for human breast imaging
Lewis, D. Kent
2003-01-01
A method of forming broad bandwidth acoustic or microwave beams which encompass array design, array excitation, source signal preprocessing, and received signal postprocessing. This technique uses several different methods to achieve improvement over conventional array systems. These methods are: 1) individually addressable array elements; 2) digital-to-analog converters for the source signals; 3) inverse filtering from source precompensation; and 4) spectral extrapolation to expand the bandwidth of the received signals. The components of the system will be used as follows: 1) The individually addressable array allows scanning around and over an object, such as a human breast, without any moving parts. The elements of the array are broad bandwidth elements and efficient radiators, as well as detectors. 2) Digital-to-analog converters as the source signal generators allow virtually any radiated field to be created in the half-space in front of the array. 3) Preprocessing allows for corrections in the system, most notably in the response of the individual elements and in the ability to increase contrast and resolution of signal propagating through the medium under investigation. 4) Postprocessing allows the received broad bandwidth signals to be expanded in a process similar to analytic continuation. Used together, the system allows for compensation to create beams of any desired shape, control the wave fields generated to correct for medium differences, and improve contract and resolution in and through the medium.
Evolutionary medicine: bottle feeding, birth spacing, and autism.
Gallup, Gordon G; Hobbs, Dawn R
2011-09-01
To compensate for the high metabolic costs of lactation, the likelihood of re-impregnation shortly after childbirth is normally reduced due to hormonal changes triggered by breast feeding during the postpartum period. Nowadays, however, bottle feeding as a substitute for breast feeding precludes such changes and leads to early postpartum reinstatement of fertility. We suggest that recent data showing the risk of autism goes up dramatically as the time between pregnancies goes down [1] may be a byproduct of bottle feeding. The decision to bottle feed your last child may unwittingly put your next child at risk of being autistic. Copyright © 2011 Elsevier Ltd. All rights reserved.
Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna
NASA Technical Reports Server (NTRS)
Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.
2012-01-01
The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.
Simulation of electrowetting lens and prism arrays for wavefront compensation.
Gopinath, Juliet T; Bright, Victor M; Cogswell, Carol C; Niederriter, Robert D; Watson, Alexander; Zahreddine, Ramzi; Cormack, Robert H
2012-09-20
A novel application of electrowetting devices has been simulated: wavefront correction using an array of electrowetting lenses and prisms. Five waves of distortion can be corrected with Strehl ratios of 0.9 or higher, utilizing piston, tip-tilt, and curvature corrections from arrays of 19 elements and fill factors as low as 40%. Effective control of piston can be achieved by placing the liquid lens array at the focus of two microlens arrays. Seven waves of piston delay can be generated with variation in focal length between 1.5 and 500 mm.
Zhou, Xinpeng; Wei, Guohua; Wu, Siliang; Wang, Dawei
2016-01-01
This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile’s rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm. PMID:26978372
High brightness photonic lantern kW-class amplifier
NASA Astrophysics Data System (ADS)
Montoya, Juan; Hwang, Chris; Aleshire, Chris; Reed, Patricia; Martz, Dale; Riley, Mike; Trainor, Michael; Belley, Catherine; Shaw, Scot; Fan, T. Y.; Ripin, Dan
2018-02-01
Pump-limited kW-class operation in a multimode fiber amplifier using adaptive mode control was achieved. A photonic lantern front end was used to inject an arbitrary superposition of modes on the input to a kW-class fiber amplifier to achieve a nearly diffraction-limited output. We report on the adaptive spatial mode control architecture which allows for compensating transverse-mode disturbances at high power. We also describe the advantages of adaptive spatial mode control for optical phased array systems. In particular, we show that the additional degrees of freedom allow for broader steering and improved atmospheric turbulence compensation relative to piston-only optical phased arrays.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.
1991-01-01
Virginia Tech is involved in a number of activities with NASA Langley related to large aperture radiometric antenna systems. These efforts are summarized and the focus of this report is on the feasibility study of a synthesis procedure for array feeds to improve radiation performance of large distorted reflector antennas; however, some results for all activities are reported.
NASA Astrophysics Data System (ADS)
Pingel, Nickolas; Pisano, D. J.
2018-01-01
Phased Array Feeds (PAFs) represent the next revolution in radio astronomy instrumentation. I will present results from the latest commissioning run from the Focal L-Band Array for the Green Bank telescope (FLAG), which holds the current world record for PAF sensitivity. Since we are able to operate at system temperatures comparable with the traditional GBT single pixel L-Band feed, the increase in the field-of-view provided by the beamforming capabilities of PAFs results in a dramatic (a factor of 5) increase in survey speeds. In particular, FLAG can probe similar neutral hydrogen column density regimes over a 4 sq. deg region in 24.6 minutes as opposed to 4.1 hours in an equivalent single pixel map (excluding observing overhead). In addition to comparisons between data taken with FLAG and the single-pixel L-Band feed, I will also discuss the technical aspects of the observing procedure, data reduction, and the transition path for FLAG from an instrument that is principle-investigator run to one that is general use. These FLAG results provide a very encouraging outlook on how the GBT will continue to compete with current and planned radio telescope facilities.
Polarimetry With Phased Array Antennas: Theoretical Framework and Definitions
NASA Astrophysics Data System (ADS)
Warnick, Karl F.; Ivashina, Marianna V.; Wijnholds, Stefan J.; Maaskant, Rob
2012-01-01
For phased array receivers, the accuracy with which the polarization state of a received signal can be measured depends on the antenna configuration, array calibration process, and beamforming algorithms. A signal and noise model for a dual-polarized array is developed and related to standard polarimetric antenna figures of merit, and the ideal polarimetrically calibrated, maximum-sensitivity beamforming solution for a dual-polarized phased array feed is derived. A practical polarimetric beamformer solution that does not require exact knowledge of the array polarimetric response is shown to be equivalent to the optimal solution in the sense that when the practical beamformers are calibrated, the optimal solution is obtained. To provide a rough initial polarimetric calibration for the practical beamformer solution, an approximate single-source polarimetric calibration method is developed. The modeled instrumental polarization error for a dipole phased array feed with the practical beamformer solution and single-source polarimetric calibration was -10 dB or lower over the array field of view for elements with alignments perturbed by random rotations with 5 degree standard deviation.
NASA Astrophysics Data System (ADS)
Shapoori, Kiyanoosh; Sadler, Jeffrey; Wydra, Adrian; Malyarenko, Eugene; Sinclair, Anthony; Maev, Roman G.
2013-03-01
A new adaptive beamforming method for accurately focusing ultrasound behind highly scattering layers of human skull and its application to 3D transcranial imaging via small-aperture planar phased arrays are reported. Due to its undulating, inhomogeneous, porous, and highly attenuative structure, human skull bone severely distorts ultrasonic beams produced by conventional focusing methods in both imaging and therapeutic applications. Strong acoustical mismatch between the skull and brain tissues, in addition to the skull's undulating topology across the active area of a planar ultrasonic probe, could cause multiple reflections and unpredictable refraction during beamforming and imaging processes. Such effects could significantly deflect the probe's beam from the intended focal point. Presented here is a theoretical basis and simulation results of an adaptive beamforming method that compensates for the latter effects in transmission mode, accompanied by experimental verification. The probe is a custom-designed 2 MHz, 256-element matrix array with 0.45 mm element size and 0.1mm kerf. Through its small footprint, it is possible to accurately measure the profile of the skull segment in contact with the probe and feed the results into our ray tracing program. The latter calculates the new time delay patterns adapted to the geometrical and acoustical properties of the skull phantom segment in contact with the probe. The time delay patterns correct for the refraction at the skull-brain boundary and bring the distorted beam back to its intended focus. The algorithms were implemented on the ultrasound open-platform ULA-OP (developed at the University of Florence).
Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System.
Xie, Ruihong; Zhang, Tao; Li, Jiaquan; Dai, Ming
2017-05-09
This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight) motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration) control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square) error is 1.253 mrad when tracking 10° 0.2 Hz signal.
Cryogenic Integration of the 2-14 GHz Eleven Feed in a Wideband Receiver for VLBI2010
NASA Technical Reports Server (NTRS)
Pantaleev, Miroslaw; Jang, Jian; Karadikar, Yogesh; Helldner, Leif; Klein, Benjamin; Haas, Rudiger; Zaman, Ashraf; Zamani, Mojtaba; Kildal, Per-Simon
2010-01-01
The next generation VLBI systems require the design of a wideband receiver covering the 2-14 GHz range, necessitating a wideband feed. Presented here are the 2009 development of a cryogenic 2-14 GHz Eleven feed for reflector radio telescope antennas, including its integration into a cryogenic receiver. The Eleven feed is designed for dual linear polarization and consists of four log-periodic folded dipole arrays. Each pair of arrays is fed by a differential two-wire transmission line connected either to balun or a differential LNA. The present configuration has been measured in many configurations, at various independent labs - corresponding simulations have been done. The results show (across the band) a high polarization efficiency for the feed, with a nearly constant beam width, a reflection coefficient below -10dB, and a constant phase center. Electrical parameters under cryogenic conditions and measured receiver noise temperatures are presented.
Acceleration and torque feedback for robotic control - Experimental results
NASA Technical Reports Server (NTRS)
Mclnroy, John E.; Saridis, George N.
1990-01-01
Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.
Robust label-free biosensing using microdisk laser arrays with on-chip references.
Wondimu, S F; Hippler, M; Hussal, C; Hofmann, A; Krämmer, S; Lahann, J; Kalt, H; Freude, W; Koos, C
2018-02-05
Whispering-gallery mode (WGM) microdisk lasers show great potential for highly sensitive label-free detection in large-scale sensor arrays. However, when used in practical applications under normal ambient conditions, these devices suffer from temperature fluctuations and photobleaching. Here we demonstrate that these challenges can be overcome by a novel referencing scheme that allows for simultaneous compensation of temperature drift and photobleaching. The technique relies on reference structures protected by locally dispensed passivation materials, and can be scaled to extended arrays of hundreds of devices. We prove the viability of the concept in a series of experiments, demonstrating robust and sensitive label-free detection over a wide range of constant or continuously varying temperatures. To the best of our knowledge, these measurements represent the first demonstration of biosensing in active WGM devices with simultaneous compensation of both photobleaching and temperature drift.
Phased Array Theory and Technology
1981-07-01
Generalized Array Coordinates 2. Linear, Planar and Circular Art -ays 3. Periodic fwo Dimensional ^rras 4. Grating Lobe Lattices 5. 1’llenienl...formal and low profile antennas, antennas for limited sector coverage, and wide- band array feeds. To aid designers, there is an attempt to give ...ol Vol. 2, Elliott gives convenient formulas lor the directivity of Imear dipole arrays, and derives an especially simple form tor arrays
Designing of a small wearable conformal phased array antenna for wireless communications
NASA Astrophysics Data System (ADS)
Roy, Sayan
In this thesis, a unique design of a self-adapting conformal phased-array antenna system for wireless communications is presented. The antenna system is comprised of one microstrip antenna array and a sensor circuit. A 1x4 printed microstrip patch antenna array was designed on a flexible substrate with a resonant frequency of 2.47 GHz. However, the performance of the antenna starts to degrade as the curvature of the surface of the substrate changes. To recover the performance of the system, a flexible sensor circuitry was designed. This sensor circuitry uses analog phase shifters, a flexible resistor and operational-amplifier circuitry to compensate the phase of each array element of the antenna. The proposed analytical method for phase compensation has been first verified by designing an RF test platform consisting of a microstrip antenna array, commercially available analog phase shifters, analog voltage attenuators, 4-port power dividers and amplifiers. The platform can be operated through a LabVIEW GUI interface using a 12-bit digital-to-analog converter. This test board was used to design and calibrate the sensor circuitry by observing the behavior of the antenna array system on surfaces with different curvatures. In particular, this phased array antenna system was designed to be used on the surface of a spacesuit or any other flexible prototype. This work was supported in part by the Defense Miroelectronics Activity (DMEA), NASA ND EPSCoR and DARPA/MTO.
A Millimeter-wave Cavity-backed Suspended Substrate Stripline Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1999-01-01
Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency hands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz) 4 x 4 planar array of cavity backed circular aperture antennas with suspended substrate stripline (SSS) corporate feed is presented.
Prediction of antenna array performance from subarray measurements
NASA Technical Reports Server (NTRS)
Huisjen, M. A.
1978-01-01
Computer runs were used to determine the effect of mechanical distortions on array pattern performance. Subarray gain data, along with feed network insertion loss, and insertion phase data were combined with the analysis of Ruze on random errors to predict gain of a full array.
A Ka-Band (26 GHz) Circularly Polarized 2x2 Microstrip Patch Sub-Array with Compact Feed
NASA Technical Reports Server (NTRS)
Chrysler, Andrew; Furse, Cynthia; Simons, Rainee N.; Miranda, Felix A.
2017-01-01
A Ka-band (26 GHz) 2x2 array consisting of square-shaped microstrip patch antenna elements with two truncated corners for circular polarization (CP) is presented. The array is being developed for satellite communications.
Proposed Solar Probe telecommunications system concept
NASA Astrophysics Data System (ADS)
Kellogg, K.; Devereaux, A.; Vacchione, J.; Kapoor, V.; Crist, R.
1992-01-01
A proposed telecommunications system concept for NASA's Solar Probe mission is described. Key system requirements include 70 kbps data rate at perihelion and operation at X-band (uplink/downlink) and Ka-band (downlink). A design control table is presented to demonstrate design compliance with telecommunication needs. The Ka-band feed is to be a hexagonal array of 37 active elements, each containing 1/4W HEMT amplifiers. The array is located at the Cassegrain point of a 0.75-m reflector. When compared to the TWTA-based system, the Ka-band active array feed provides advantages of reduced mass, increased dc power efficiency, enhanced reliability, graceful degradation, and reduced volume requirements.
Concept of an interlaced phased array for beam switching
NASA Astrophysics Data System (ADS)
Reddy, C. A.; Janardhanan, K. V.; Mukundan, K. K.; Shenoy, K. S. V.
1990-04-01
A novel concept is described for feeding and phasing a large linear array of N antenna elements using only three or five feed points and phase shifters and still achieving beam switching. The idea consists of drastically reducing the number of input points by interlacing a small number of serially fed subarrays which are suitably phased. This so-called interlaced phased array (IPA) concept was tested using an array of 15 four-element Yagi antennas with a spacing equal to 0.8 wavelengths and found feasible. Some of the distinct advantages of the IPA in comparison with a conventional system of beam switching are reduced power loss, reduced phasing errors, reduced cost, increased reliability resulting from greatly reduced number of phase shifters, and better symmetry of off-zenith beams.
Radar wideband digital beamforming based on time delay and phase compensation
NASA Astrophysics Data System (ADS)
Fu, Wei; Jiang, Defu
2018-07-01
In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.
Suspended Patch Antenna Array With Electromagnetically Coupled Inverted Microstrip Feed
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2000-01-01
The paper demonstrates a four-element suspended patch antenna array, with a parasitic patch layer and an electromagnetically coupled inverted microstrip feed, for linear polarization at K-Band frequencies. This antenna has the following advantages over conventional microstrip antennas: First, the inverted microstrip has lower attenuation than conventional microstrip; hence, conductor loss associated with the antenna corporate feed is lower resulting in higher gain and efficiency. Second, conventional proximity coupled patch antennas require a substrate for the feed and a superstrate for the patch. However, the inverted microstrip fed patch antenna makes use of a single substrate, and hence, is lightweight and low cost. Third, electromagnetic coupling results in wider bandwidth. Details regarding the design and fabrication will be presented as well as measured results including return loss, radiation patterns and cross-polarization levels.
System and method for correcting attitude estimation
NASA Technical Reports Server (NTRS)
Josselson, Robert H. (Inventor)
2010-01-01
A system includes an angular rate sensor disposed in a vehicle for providing angular rates of the vehicle, and an instrument disposed in the vehicle for providing line-of-sight control with respect to a line-of-sight reference. The instrument includes an integrator which is configured to integrate the angular rates of the vehicle to form non-compensated attitudes. Also included is a compensator coupled across the integrator, in a feed-forward loop, for receiving the angular rates of the vehicle and outputting compensated angular rates of the vehicle. A summer combines the non-compensated attitudes and the compensated angular rates of the to vehicle to form estimated vehicle attitudes for controlling the instrument with respect to the line-of-sight reference. The compensator is configured to provide error compensation to the instrument free-of any feedback loop that uses an error signal. The compensator may include a transfer function providing a fixed gain to the received angular rates of the vehicle. The compensator may, alternatively, include a is transfer function providing a variable gain as a function of frequency to operate on the received angular rates of the vehicle.
NASA Technical Reports Server (NTRS)
Yueh, Simon; Wilson, William J.; Njoku, Eni; Dinardo, Steve; Hunter, Don; Rahmat-Samii, Yahya; Kona, Keerti S.; Manteghi, Majid
2006-01-01
The development of a compact, lightweight, dual-frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx.1 GHz) passive and active sensing systems. The design features will also enable applications to airborne soil moisture and salinity remote sensing sensors operating on small aircrafts. This paper describes the design of stacked patch elements and 16-element array configuration. The results from the return loss, antenna pattern measurements and sky tests are also described.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Wilson, William J.; Njoku, Eni; Hunter, Don; Dinardo, Steve; Kona, Keerti S.; Manteghi, Majid; Gies, Dennis; Rahmat-Samii, Yahya
2004-01-01
The development of a compact, lightweight, dual frequency antenna feed for future soil moisture and sea surface salinity (SSS) missions is described. The design is based on the microstrip stacked-patch array (MSPA) to be used to feed a large lightweight deployable rotating mesh antenna for spaceborne L-band (approx. 1 GHz) passive and active sensing systems. The design features will also enable applications to airborne sensors operating on small aircrafts. This paper describes the design of stacked patch elements, 16-element array configuration and power-divider beam forming network The test results from the fabrication of stacked patches and power divider were also described.
Slotted Polyimide-Aerogel-Filled-Waveguide Arrays
NASA Technical Reports Server (NTRS)
Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.
2013-01-01
This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.
A Millimeter-Wave Cavity-Backed Suspended Substrate Stripline Antenna
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
1999-01-01
Future generation satellite communication systems in near-Earth orbit will operate at frequencies in the higher mm-wave frequency bands. These satellite systems require low-profile, high gain, light weight and low cost antennas for communications to and from Earth as well as for inter-satellite links (ISL). At higher mm-wave frequencies, the conductor loss of conventional microstrip line is high and consequently the feed network loss of patch antenna arrays is also high. The high loss lowers the array efficiency, and in addition lowers the G/T ratio in a receiving array. Recently a radial line slot antenna array has been demonstrated to have high gain and efficiency at 60 GHz. In this paper, the design, fabrication and characterization of a V-Band (50-75 GHz), cavity backed, circular aperture antenna with suspended substrate stripline (SSS) feed is presented.
Quantifying Lygus lineolaris stylet probing behavior and its damage to cotton leaf terminals
USDA-ARS?s Scientific Manuscript database
Lygus lineolaris is a serious pest inducing feeding damage on an array of crops; on cotton, lygus bugs feed on both leaves and squares. When lygus bugs feed on cotton leaves, younger leaves at cotton axials and terminals are preferred; resulting damage may compromise plant growth. Because L. lineola...
Coherent Optical Adaptive Techniques (COAT)
1975-01-01
8217 neceeemry and Identity by block number) Laser Phased Array Adaptive Optics Atmospheric-Turbulence and Thermal Blooming Compensation 20...characteristics of an experimental, visible wavelength, eighteen-element, self-adaptive optical phased array. Measurements on a well-characterized...V LOCAL PHASING ■ LOOP OPTICAL DETECTOR’ LOCAL LOCK / ROOF TOP "^/PROPAGATION’ ^ GLINT ■lm FOCAL LENGTH LENS DETECTOR DMWI rh
Space Fed Subarray Synthesis Using Displaced Feed Location
NASA Astrophysics Data System (ADS)
Mailloux, Robert J.
2002-01-01
Wideband space-fed subarray systems are often proposed for large airborne or spaceborne scanning array applications. These systems allow the introduction of time delay devices at the subarray input terminals while using phase shifters in the array face. This can sometimes reduce the number of time delayed controls by an order of magnitude or more. The implementation of this technology has been slowed because the feed network, usually a Rotman Lens or Butler Matrix, is bulky, heavy and often has significant RF loss. In addition, the large lens aperture is necessarily filled with phase shifters, and so it introduces further loss, weight, and perhaps unacceptable phase shifter control power. These systems are currently viewed with increased interest because combination of low loss, low power MEMS phase shifters in the main aperture and solid state T/R modules in the feed might lead to large scanning arrays with much higher efficiency then previously realizable. Unfortunately, the conventional system design imposes an extremely large dynamic range requirement when used in the transmit mode, and requires very high output power from the T/R modules. This paper presents one possible solution to this problem using a modified feed geometry.
Sen. Brown, Sherrod [D-OH
2009-10-20
Senate - 10/20/2009 Read twice and referred to the Committee on Health, Education, Labor, and Pensions. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Rep. Driehaus, Steve [D-OH-1
2009-11-03
House - 01/04/2010 Referred to the Subcommittee on Immigration, Citizenship, Refugees, Border Security, and International Law. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Stripline feed for a microstrip array of patch elements with teardrop shaped probes
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1990-01-01
A circularly polarized microstrip array antenna utilizing a honeycomb substrate made of dielectric material to support on one side the microstrip patch elements in an array, and on the other side a stripline circuit for feeding the patch elements in subarray groups of four with angular orientation and phase for producing circularly polarized radiation, preferably at a 0.degree., 90.degree., 180.degree. and 270.degree. relationship. The probe used for coupling each feed point in the stripline circuit to a microstrip patch element is teardrop shaped in order to introduce capacitance between the coupling probe and the metal sheet of the stripline circuit that serves as an antenna ground plane. The capacitance thus introduced tunes out inductance of the probe. The shape of the teardrop probe is not critical. The probe capacitance required is controlled by the maximum diameter for the teardrop shaped probe, which can be empirically determined for the operating frequency. An aluminum baffle around each subarray blocks out surface waves between subarrays.
Calibration Errors in Interferometric Radio Polarimetry
NASA Astrophysics Data System (ADS)
Hales, Christopher A.
2017-08-01
Residual calibration errors are difficult to predict in interferometric radio polarimetry because they depend on the observational calibration strategy employed, encompassing the Stokes vector of the calibrator and parallactic angle coverage. This work presents analytic derivations and simulations that enable examination of residual on-axis instrumental leakage and position-angle errors for a suite of calibration strategies. The focus is on arrays comprising alt-azimuth antennas with common feeds over which parallactic angle is approximately uniform. The results indicate that calibration schemes requiring parallactic angle coverage in the linear feed basis (e.g., the Atacama Large Millimeter/submillimeter Array) need only observe over 30°, beyond which no significant improvements in calibration accuracy are obtained. In the circular feed basis (e.g., the Very Large Array above 1 GHz), 30° is also appropriate when the Stokes vector of the leakage calibrator is known a priori, but this rises to 90° when the Stokes vector is unknown. These findings illustrate and quantify concepts that were previously obscure rules of thumb.
Phased array-fed antenna configuration study: Technology assessment
NASA Technical Reports Server (NTRS)
Croswell, W. F.; Ball, D. E.; Taylor, R. C.
1983-01-01
Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.
A Novel Crosstalk Suppression Method of the 2-D Networked Resistive Sensor Array
Wu, Jianfeng; Wang, Lei; Li, Jianqing; Song, Aiguo
2014-01-01
The 2-D resistive sensor array in the row–column fashion suffered from the crosstalk problem for parasitic parallel paths. Firstly, we proposed an Improved Isolated Drive Feedback Circuit with Compensation (IIDFCC) based on the voltage feedback method to suppress the crosstalk. In this method, a compensated resistor was specially used to reduce the crosstalk caused by the column multiplexer resistors and the adjacent row elements. Then, a mathematical equivalent resistance expression of the element being tested (EBT) of this circuit was analytically derived and verified by the circuit simulations. The simulation results show that the measurement method can greatly reduce the influence on the EBT caused by parasitic parallel paths for the multiplexers' channel resistor and the adjacent elements. PMID:25046011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadmack, M. R.; Kowalczyk, J. M. D.; Lienert, B. R.
2013-06-15
An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with themore » results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.« less
NASA Astrophysics Data System (ADS)
Zhou, Yiheng; Kou, Baoquan; Liu, Peng; Zhang, He; Xing, Feng; Yang, Xiaobao
2018-05-01
Magnetic levitation positioning system (MLPS) is considered to be the state of the art in inspection and manufacturing systems in vacuum. In this paper, a magnetic gravity compensator with annular magnet array (AMA-MGC) for MLPS is proposed. Benefiting from the double-layer annular Halbach magnet array on the stator, the proposed AMA-MGC possesses the advantages of symmetrical force, high force density and small force fluctuation. Firstly, the basic structure and operation principle of the AMA-MGC are introduced. Secondly, the basic characteristics of the AMA-MGC such as magnetic field distribution, levitation force, parasitic force and parasitic torque are analyzed by the three-dimensional finite element analysis (3-D FEA). Thirdly, the influence of structural parameters on force density and force fluctuation is investigated, which is conductive to the design and optimization of the AMA-MGC. Finally, a prototype of the AMA-MGC is constructed, and the experiment shows good agreement with the 3-D FEA results.
A new antenna concept for satellite communications
NASA Technical Reports Server (NTRS)
Skahill, G.; Ciccolella, D.
1982-01-01
A novel antenna configuration of two reflecting surfaces and a phased array is examined for application to satellite communications and shown to be superior in every respect to earlier designs for service to the continental United States from synchronous orbit. The vignetting that afflicts other two reflector optical systems is eliminated by use of a reflecting field element. The remaining aberrations, predominantly coma, are isolated in the time delay distribution at the surface of the array and can be compensated by ordinary array techniques. The optics exhibits infinite bandwidth and the frequency range is limited only by the design of the array.
Improving material removal determinacy based on the compensation of tool influence function
NASA Astrophysics Data System (ADS)
Zhong, Bo; Chen, Xian-hua; Deng, Wen-hui; Zhao, Shi-jie; Zheng, Nan
2018-03-01
In the process of computer-controlled optical surfacing (CCOS), the key of correcting the surface error of optical components is to ensure the consistency between the simulated tool influence function and the actual tool influence function (TIF). The existing removal model usually adopts the fixed-point TIF to remove the material with the planning path and velocity, and it considers that the polishing process is linear and time invariant. However, in the actual polishing process, the TIF is a function related to the feed speed. In this paper, the relationship between the actual TIF and the feed speed (i.e. the compensation relationship between static removal and dynamic removal) is determined by experimental method. Then, the existing removal model is modified based on the compensation relationship, to improve the conformity between simulated and actual processing. Finally, the surface error modification correction test are carried out. The results show that the fitting degree of the simulated surface and the experimental surface is better than 88%, and the surface correction accuracy can be better than 1/10 λ (Λ=632.8nm).
Integrating Residential Photovoltaics With Power Lines
NASA Technical Reports Server (NTRS)
Borden, C. S.
1985-01-01
Report finds rooftop solar-cell arrays feed excess power to electric-utility grid for fee are potentially attractive large-scale application of photovoltaic technology. Presents assessment of breakeven costs of these arrays under variety of technological and economic assumptions.
The Detection of an Extremely Bright Fast Radio Burst in a Phased Array Feed Survey
NASA Astrophysics Data System (ADS)
Bannister, K. W.; Shannon, R. M.; Macquart, J.-P.; Flynn, C.; Edwards, P. G.; O'Neill, M.; Osłowski, S.; Bailes, M.; Zackay, B.; Clarke, N.; D'Addario, L. R.; Dodson, R.; Hall, P. J.; Jameson, A.; Jones, D.; Navarro, R.; Trinh, J. T.; Allison, J.; Anderson, C. S.; Bell, M.; Chippendale, A. P.; Collier, J. D.; Heald, G.; Heywood, I.; Hotan, A. W.; Lee-Waddell, K.; Madrid, J. P.; Marvil, J.; McConnell, D.; Popping, A.; Voronkov, M. A.; Whiting, M. T.; Allen, G. R.; Bock, D. C.-J.; Brodrick, D. P.; Cooray, F.; DeBoer, D. R.; Diamond, P. J.; Ekers, R.; Gough, R. G.; Hampson, G. A.; Harvey-Smith, L.; Hay, S. G.; Hayman, D. B.; Jackson, C. A.; Johnston, S.; Koribalski, B. S.; McClure-Griffiths, N. M.; Mirtschin, P.; Ng, A.; Norris, R. P.; Pearce, S. E.; Phillips, C. J.; Roxby, D. N.; Troup, E. R.; Westmeier, T.
2017-05-01
We report the detection of an ultra-bright fast radio burst (FRB) from a modest, 3.4-day pilot survey with the Australian Square Kilometre Array Pathfinder. The survey was conducted in a wide-field fly’s-eye configuration using the phased-array-feed technology deployed on the array to instantaneously observe an effective area of 160 deg2, and achieve an exposure totaling 13200 deg2 hr . We constrain the position of FRB 170107 to a region 8\\prime × 8\\prime in size (90% containment) and its fluence to be 58 ± 6 Jy ms. The spectrum of the burst shows a sharp cutoff above 1400 MHz, which could be due to either scintillation or an intrinsic feature of the burst. This confirms the existence of an ultra-bright (> 20 Jy ms) population of FRBs.
Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)
NASA Technical Reports Server (NTRS)
Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher; Lambert, Kevin M.; Miranda, Felix A.
2015-01-01
Measurement of land surface snow remains a significant challenge in the remote sensing arena. Developing the tools needed to remotely measure Snow Water Equivalent (SWE) is an important priority. The Wideband Instrument for Snow Measurements (WISM) is being developed to address this need. WISM is an airborne instrument comprised of a dual-frequency (X- and Ku-bands) Synthetic Aperture Radar (SAR) and dual-frequency (K- and Ka-bands) radiometer. A unique feature of this instrument is that all measurement bands share a common antenna aperture consisting of an array feed reflector that covers the entire bandwidth. This paper covers the design and fabrication of the wideband array feed which is based on tightly coupled dipole arrays. Implementation using a relatively new multi-layer microfabrication process results in a small, 6x6 element, dual-linear polarized array with beamformer that operates from 8 to 40 gigahertz.
Inband radar cross section of phased arrays with parallel feeds
NASA Astrophysics Data System (ADS)
Flokas, Vassilios
1994-06-01
Approximate formulas for the inband radar cross section of arrays with parallel feeds are presented. To obtain the formulas, multiple reflections are neglected, and devices of the same type are assumed to have identical electrical performance. The approximate results were compared to the results obtained using a scattering matrix formulation. Both methods were in agreement in predicting RCS lobe positions, levels, and behavior with scanning. The advantages of the approximate method are its computational efficiency and its flexibility in handling an arbitrary number of coupler levels.
NASA Astrophysics Data System (ADS)
Chen, Yuan-Liu; Cai, Yindi; Shimizu, Yuki; Ito, So; Gao, Wei; Ju, Bing-Feng
2016-02-01
This paper presents a measurement and compensation method of surface inclination for ductile cutting of silicon microstructures by using a diamond tool with a force sensor based on a four-axis ultra-precision lathe. The X- and Y-directional inclinations of a single crystal silicon workpiece with respect to the X- and Y-motion axes of the lathe slides were measured respectively by employing the diamond tool as a touch-trigger probe, in which the tool-workpiece contact is sensitively detected by monitoring the force sensor output. Based on the measurement results, fabrication of silicon microstructures can be thus carried out directly along the tilted silicon workpiece by compensating the cutting motion axis to be parallel to the silicon surface without time-consuming pre-adjustment of the surface inclination or turning of a flat surface. A diamond tool with a negative rake angle was used in the experiment for superior ductile cutting performance. The measurement precision by using the diamond tool as a touch-trigger probe was investigated. Experiments of surface inclination measurement and ultra-precision ductile cutting of a micro-pillar array and a micro-pyramid array with inclination compensation were carried out respectively to demonstrate the feasibility of the proposed method.
Theory of a Traveling Wave Feed for a Planar Slot Array Antenna
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2012-01-01
Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an additional degree of freedom in the design, resonant coupling slots simplify the design process. The amplitude of the wave going to the load is set at unity. The S11 parameter, r of the coupling slot closest to the load, is assigned an arbitrary value. A larger value of r will reduce the power dissipated in the load while increasing the reflection coefficient at the input port. It is now possible to obtain the excitation of the radiating waveguide closest to the load and the coefficients of the wave incident and reflected at the input port of this coupling slot. The next coupling slot parameter, r , is chosen to realize the excitation of that radiating waveguide. One continues this process moving towards the source, until all the coupling slot parameters r and hence the S11 parameter of the 4-port coupler, r, are known for each coupling slot. The goal is to produce the desired array aperture distribution in the feed direction. From an interpolation of the computed moment method data for the slot parameters, all the coupling slot tilt angles and lengths are obtained. From the excitations of the radiating waveguides computed from the coupling values, radiating slot parameters may be obtained so as to attain the desired total normalized slot admittances. This process yields the radiating slot parameters, offsets, and lengths. The design is repeated by choosing different values of r for the last coupling slot until the percentage of power dissipated in the load and the input reflection coefficient values are satisfactory. Numerical results computed for the radiation pattern, the tilt angles and lengths of coupling slots, and excitation phases of the radiating waveguides, are presented for an array with uniform amplitude excitation. The design process has been validated using computer simulations. This design procedure is valid for non-uniform amplitude excitations as well.
Realizable feed-element patterns for multibeam reflector antenna analysis
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.; Cramer, P., Jr.; Woo, K.; Lee, S. W.
1981-01-01
The radiation pattern of a feed element is approximately described by a simple function (cos theta) to the q power. For a given element spacing of the feed array, simple formulas for estimating the practical value of q when the element is an open-ended rectangular waveguide, an open-ended circular waveguide, a pyramidal horn, or a cigar antenna are given.
Avdievich, Nikolai I.; Pan, Jullie W.; Hetherington, Hoby P.
2013-01-01
Transceiver surface coil arrays improve transmit performance (B1/√kW) and B1 homogeneity for head imaging up to 9.4 T. To further improve reception performance and parallel imaging the number of array elements has to be increased with correspondent decrease of their size. With a large number of small interacting antennas decoupling is one of the most challenging aspects in the design and construction of transceiver arrays. Previously described decoupling techniques using geometric overlap, inductive or capacitive decoupling have focused on eliminating only the reactance of the mutual impedance, which can limit the obtainable decoupling to −10 dB due to residual mutual resistance. A novel resonant inductive decoupling (RID) method, which allows compensation for both reactive and resistive components of the mutual impedance between the adjacent surface coils, has been developed and experimentally verified. This method provides an easy way to adjust the decoupling remotely by changing the resonance frequency of the RID circuit through adjustment of a variable capacitor. As an example a single row (1×16) 7T transceiver head array of n=16 small overlapped surface coils using RID decoupling between adjacent coils was built. In combination with overlapped coils the RID technique achieved better than −24 dB of decoupling for all adjacent coils. PMID:23775840
NASA Astrophysics Data System (ADS)
Gerwe, David R.; Lee, David J.; Barchers, Jeffrey D.
2000-10-01
A post-processing methodology for reconstructing undersampled image sequences with randomly varying blur is described which can provide image enhancement beyond the sampling resolution of the sensor. This method is demonstrated on simulated imagery and on adaptive optics compensated imagery taken by the Starfire Optical Range 3.5 meter telescope that has been artificially undersampled. Also shown are the results of multiframe blind deconvolution of some of the highest quality optical imagery of low earth orbit satellites collected with a ground based telescope to date. The algorithm used is a generalization of multiframe blind deconvolution techniques which includes a representation of spatial sampling by the focal plane array elements in the forward stochastic model of the imaging system. This generalization enables the random shifts and shape of the adaptive compensated PSF to be used to partially eliminate the aliasing effects associated with sub- Nyquist sampling of the image by the focal plane array. The method could be used to reduce resolution loss which occurs when imaging in wide FOV modes.
NASA Astrophysics Data System (ADS)
Gerwe, David R.; Lee, David J.; Barchers, Jeffrey D.
2002-09-01
We describe a postprocessing methodology for reconstructing undersampled image sequences with randomly varying blur that can provide image enhancement beyond the sampling resolution of the sensor. This method is demonstrated on simulated imagery and on adaptive-optics-(AO)-compensated imagery taken by the Starfire Optical Range 3.5-m telescope that has been artificially undersampled. Also shown are the results of multiframe blind deconvolution of some of the highest quality optical imagery of low earth orbit satellites collected with a ground-based telescope to date. The algorithm used is a generalization of multiframe blind deconvolution techniques that include a representation of spatial sampling by the focal plane array elements based on a forward stochastic model. This generalization enables the random shifts and shape of the AO- compensated point spread function (PSF) to be used to partially eliminate the aliasing effects associated with sub-Nyquist sampling of the image by the focal plane array. The method could be used to reduce resolution loss that occurs when imaging in wide- field-of-view (FOV) modes.
NASA Astrophysics Data System (ADS)
Cho, Min Ji; Shin, Uisub; Lee, Hee Chul
2017-05-01
This paper proposes a read-in integrated circuit (RIIC) for infrared scene projectors, which compensates for the voltage drops in ground lines in order to improve the uniformity of the emitter current. A current output digital-to-analog converter is utilized to convert digital scene data into scene data currents. The unit cells in the array receive the scene data current and convert it into data voltage, which simultaneously self-adjusts to account for the voltage drop in the ground line in order to generate the desired emitter current independently of variations in the ground voltage. A 32 × 32 RIIC unit cell array was designed and fabricated using a 0.18-μm CMOS process. The experimental results demonstrate that the proposed RIIC can output a maximum emitter current of 150 μA and compensate for a voltage drop in the ground line of up to 500 mV under a 3.3-V supply. The uniformity of the emitter current is significantly improved compared to that of a conventional RIIC.
Phased Arrays 1985 Symposium - Proceedings
1985-08-01
have served the logic industry well, and appropriate versions can do the same for micruwdve drid millimeter * wave technology, An aspect of phased...continuing revolutions of the logic industry and the microwave monolithic integrated circuit community are bringing relevant technology closer to the array...monolithic phased array antennas, and discuss their relative advantages and disadvantages . Considerations such as bandwidth, maxianiru scan range, feed
NASA Technical Reports Server (NTRS)
Zawadzki, Mark; Rengarajan, Sembiam; Hodges, Richard E.
2005-01-01
While the design of waveguide slot arrays in not new, this particular design effort shows that very good results can be achieved on a first attempt using established slot array design techniques and commercial software for the waveguide power divider network. The presentation will discuss this design process in detail.
van Tilborg, Merijn; van der Pers, Jan N C; Roessingh, Peter; Sabelis, Maurice W
2003-08-01
A novel type of locomotion compensator was designed and tested for its use in orientation behavior experiments with a predatory mite. In this apparatus, displacements of the test animal in the two-dimensional plane are recorded using video equipment and a servosphere that keeps the animal in focus. The x and y displacements are registered using two rotation encoders and are compensated using a pair of servo-motors, in such a way that the animal is always positioned on top of the sphere, yet moves freely. Well-fed and starved predators were tested for their responses to (1) still air, (2) a stimulus-free air flow, (3) an air flow with odors from uninfested Lima bean leaves, and (4) an air flow with odors from Lima bean leaves infested by plant-feeding mites, the prey of the predatory mites. Anemotactic responses of adult Phytoseiulus persimilis females were feeding state dependent. Well-fed predators moved downwind under Treatments 1-3 but moved neither up- nor downwind in the presence of odors from infested plants (Treatment 4). Starved predators moved upwind under all treatments. These results are in agreement with those of earlier studies in a wind tunnel, and therefore, the new type of locomotion compensator (LC-100) offers an excellent method for studying the orientation behavior of micro-arthropods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinke, Rainer B.; Goodzeit, Carl L.; Ball, Millicent J.
This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive methodmore » that involves use of iron shielding.« less
Microstrip antenna developments at JPL
NASA Technical Reports Server (NTRS)
Huang, John
1991-01-01
The in-house development of microstrip antennas, initiated in 1981, when a spaceborne lightweight and low-profile planar array was needed for a satellite communication system, is described. The work described covers the prediction of finite-ground-plane effects by the geometric theory of diffraction, higher-order-mode circularly polarized circular patch antennas, circularly polarized microstrip arrays with linearly polarized elements, an impedance-matching teardrop-shaped probe feed, a dual-polarized microstrip array with high isolation and low cross-polarization, a planar microstrip Yagi array, a microstrip reflectarray, a Ka-band MMIC array, and a series-fed linear arrays.
Slotline fed microstrip antenna array modules
NASA Technical Reports Server (NTRS)
Lo, Y. T.; Oberhart, M. L.; Brenneman, J. S.; Aoyagi, P.; Moore, J.; Lee, R. Q. H.
1988-01-01
A feed network comprised of a combination of coplanar waveguide and slot transmission line is described for use in an array module of four microstrip elements. Examples of the module incorporating such networks are presented as well as experimentally obtained impedance and radiation characteristics.
A Tikhonov Regularization Scheme for Focus Rotations with Focused Ultrasound Phased Arrays
Hughes, Alec; Hynynen, Kullervo
2016-01-01
Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually-driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations. PMID:27913323
Gallium arsenide quantum well-based far infrared array radiometric imager
NASA Technical Reports Server (NTRS)
Forrest, Kathrine A.; Jhabvala, Murzy D.
1991-01-01
We have built an array-based camera (FIRARI) for thermal imaging (lambda = 8 to 12 microns). FIRARI uses a square format 128 by 128 element array of aluminum gallium arsenide quantum well detectors that are indium bump bonded to a high capacity silicon multiplexer. The quantum well detectors offer good responsivity along with high response and noise uniformity, resulting in excellent thermal images without compensation for variation in pixel response. A noise equivalent temperature difference of 0.02 K at a scene temperature of 290 K was achieved with the array operating at 60 K. FIRARI demonstrated that AlGaAS quantum well detector technology can provide large format arrays with performance superior to mercury cadmium telluride at far less cost.
A Tikhonov Regularization Scheme for Focus Rotations With Focused Ultrasound-Phased Arrays.
Hughes, Alec; Hynynen, Kullervo
2016-12-01
Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound-phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations.
Array signal recovery algorithm for a single-RF-channel DBF array
NASA Astrophysics Data System (ADS)
Zhang, Duo; Wu, Wen; Fang, Da Gang
2016-12-01
An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.
NASA Astrophysics Data System (ADS)
DeBoer, David R.; Welch, William J.; Dreher, John; Tarter, Jill; Blitz, Leo; Davis, Michael; Fleming, Matt; Bock, Douglas; Bower, Geoffrey; Lugten, John; Girmay-Keleta, G.; D'Addario, Larry R.; Harp, Gerry R.; Ackermann, Rob; Weinreb, Sander; Engargiola, Greg; Thornton, Doug; Wadefalk, Niklas
2004-10-01
The Allen Telescope Array, originally called the One Hectare Telescope (1hT) [1] will be a large array radio telescope whose novel characteristics will be a wide field of view (3.5 deg-GHz HPBW), continuous frequency coverage of 0.5 - 11 GHz, four dual-linear polarization output bands of 100 MHz each, four beams in each band, two 100 MHz spectral correlators for two of the bands, and hardware for RFI mitigation built in. Its scientific motivation is for deep SETI searches and, at the same time, a variety of other radio astronomy projects, including transient (e.g. pulsar) studies, HI mapping of the Milky Way and nearby galaxies, Zeeman studies of the galactic magnetic field in a number of transitions, mapping of long chain molecules in molecular clouds, mapping of the decrement in the cosmic background radiation toward galaxy clusters, and observation of HI absorption toward quasars at redshifts up to z=2. The array is planned for 350 6.1-meter dishes giving a physical collecting area of about 10,000 square meters. The large number of components reduces the price with economies of scale. The front end receiver is a single cryogenically cooled MIMIC Low Noise Amplifier covering the whole band. The feed is a wide-band log periodic feed of novel design, and the reflector system is an offset Gregorian for minimum sidelobes and spillover. All preliminary and critical design reviews have been completed. Three complete antennas with feeds and receivers are under test, and an array of 33 antennas is under construction at the Hat Creek Radio Observatory for the end of 2004. The present plan is to have a total of about 200 antennas completed by the summer of 2006 and the balance of the array finished before the end of the decade.
A Low Loss Microstrip Antenna for Radiometric Applications
NASA Technical Reports Server (NTRS)
Wahid, Parveen
2000-01-01
The design and analysis of a series-fed, low-loss, inverted microstrip array antenna, operating at 1.413 GHz is presented. The antenna is composed of two subarrays. Each subarray consists of an equal number of microstrip patches all connected together with microstrip lines. In the first design microstrip array for linear polarization is presented which incorporated a series feeding technique. The next design, which is capable of dual linear polarization (V-polarization and H-polarization), utilizes a corporate feed network for the V-pol and series feed arrangement for the H-pol. The first element of each subarray for H-pol is coaxially fed with a 180 deg phase difference. This approach ensures a symmetric radiation pattern on broadside in H-pol. For the V-pol two feeds are in the same phase on the two subarrays ensuring a broadside beam in V-pol. The designs presented here are simulated using the IE3D code that utilizes the method of moments. Measured results are compared with simulated results and show good agreement.
Post-prandial metabolic alkalosis in the seawater-acclimated trout: the alkaline tide comes in.
Bucking, Carol; Fitzpatrick, John L; Nadella, Sunita R; Wood, Chris M
2009-07-01
The consequences of feeding and digestion on acid-base balance and regulation in a marine teleost (seawater-acclimated steelhead trout; Oncorhynchus mykiss) were investigated by tracking changes in blood pH and [HCO3-], as well as alterations in net acid or base excretion to the water following feeding. Additionally the role of the intestine in the regulation of acid-base balance during feeding was investigated with an in vitro gut sac technique. Feeding did not affect plasma glucose or urea concentrations, however, total plasma ammonia rose during feeding, peaking between 3 and 24 h following the ingestion of a meal, three-fold above resting control values (approximately 300 micromol ml(-1)). This increase in plasma ammonia was accompanied by an increase in net ammonia flux to the water (approximately twofold higher in fed fish versus unfed fish). The arterial blood also became alkaline with increases in pH and plasma [HCO3-] between 3 and 12 h following feeding, representing the first measurement of an alkaline tide in a marine teleost. There was no evidence of respiratory compensation for the measured metabolic alkalosis, as Pa CO2 remained unchanged throughout the post-feeding period. However, in contrast to an earlier study on freshwater-acclimated trout, fed fish did not exhibit a compensating increase in net base excretion, but rather took in additional base from the external seawater, amounting to approximately 8490 micromol kg(-1) over 48 h. In vitro experiments suggest that at least a portion of the alkaline tide was eliminated through increased HCO3- secretion coupled to Cl- absorption in the intestinal tract. This did not occur in the intestine of freshwater-acclimated trout. The marked effects of the external salinity (seawater versus freshwater) on different post-feeding patterns of acid-base balance are discussed.
Design of an 8-40 GHz Antenna for the Wideband Instrument for Snow Measurements (WISM)
NASA Technical Reports Server (NTRS)
Durham, Timothy E.; Vanhille, Kenneth J.; Trent, Christopher R.; Lambert, Kevin M.; Miranda, Felix A.
2015-01-01
This poster describes the implementation of a 6x6 element, dual linear polarized array with beamformer that operates from about 8-40 GHz. It is implemented using a relatively new multi-layer microfabrication process. The beamformer includes baluns that feed dual-polarized differential antenna elements and reactive splitters that cover the full frequency range of operation. This fixed beam array (FBA) serves as the feed for a multi-band instrument designed to measure snow water equivalent (SWE) from an airborne platform known as the Wideband Instrument for Snow Measurements (WISM).
Cellular automata in photonic cavity arrays.
Li, Jing; Liew, T C H
2016-10-31
We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.
NASA Astrophysics Data System (ADS)
Maghrabi, Mahmoud M. T.; Kumar, Shiva; Bakr, Mohamed H.
2018-02-01
This work introduces a powerful digital nonlinear feed-forward equalizer (NFFE), exploiting multilayer artificial neural network (ANN). It mitigates impairments of optical communication systems arising due to the nonlinearity introduced by direct photo-detection. In a direct detection system, the detection process is nonlinear due to the fact that the photo-current is proportional to the absolute square of the electric field intensity. The proposed equalizer provides the most efficient computational cost with high equalization performance. Its performance is comparable to the benchmark compensation performance achieved by maximum-likelihood sequence estimator. The equalizer trains an ANN to act as a nonlinear filter whose impulse response removes the intersymbol interference (ISI) distortions of the optical channel. Owing to the proposed extensive training of the equalizer, it achieves the ultimate performance limit of any feed-forward equalizer (FFE). The performance and efficiency of the equalizer is investigated by applying it to various practical short-reach fiber optic communication system scenarios. These scenarios are extracted from practical metro/media access networks and data center applications. The obtained results show that the ANN-NFFE compensates for the received BER degradation and significantly increases the tolerance to the chromatic dispersion distortion.
Kychakoff, George [Maple Valley, WA; Afromowitz, Martin A [Mercer Island, WA; Hogle, Richard E [Olympia, WA
2008-10-14
A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-01-01
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection. PMID:29023385
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-10-12
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.
Method for determining how to operate and control wind turbine arrays in utility systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javid, S.H.; Hauth, R.L.; Younkins, T.D.
1984-01-01
A method for determining how utility wind turbine arrays should be controlled and operated on the load frequency control time-scale is presented. Initial considerations for setting wind turbine control requirements are followed by a description of open loop operation and of closed loop and feed forward wind turbine array control concepts. The impact of variations in array output on meeting minimum criteria are developed. The method for determining the required control functions is then presented and results are tabulated. (LEW)
Aquatic wood -- an insect perspective
Peter S. Cranston; Brendan McKie
2006-01-01
Immersed wood provides refugia and substrate for a diverse array of macroinvertebrates, and food for a more restricted genuinely xylophagous fauna. Worldwide, xylophages are found across aquatic insect orders, including Coleoptera, Diptera, Trichoptera and Plecoptera. Xylophages often are specialised, feeding on the wood surface or mining deep within. Many feed...
Renal plasticity in response to feeding in the Burmese python, Python molurus bivittatus.
Esbaugh, A J; Secor, S M; Grosell, M
2015-10-01
Burmese pythons are sit-and-wait predators that are well adapted to go long periods without food, yet subsequently consume and digest single meals that can exceed their body weight. These large feeding events result in a dramatic alkaline tide that is compensated by a hypoventilatory response that normalizes plasma pH; however, little is known regarding how plasma HCO3(-) is lowered in the days post-feeding. The current study demonstrated that Burmese pythons contain the cellular machinery for renal acid-base compensation and actively remodel the kidney to limit HCO3(-) reabsorption in the post-feeding period. After being fed a 25% body weight meal plasma total CO2 was elevated by 1.5-fold after 1 day, but returned to control concentrations by 4 days post-feeding (d pf). Gene expression analysis was used to verify the presence of carbonic anhydrase (CA) II, IV and XIII, Na(+) H(+) exchanger 3 (NHE3), the Na(+) HCO3(-) co-transporter (NBC) and V-type ATPase. CA IV expression was significantly down-regulated at 3 dpf versus fasted controls. This was supported by activity analysis that showed a significant decrease in the amount of GPI-linked CA activity in isolated kidney membranes at 3 dpf versus fasted controls. In addition, V-type ATPase activity was significantly up-regulated at 3 dpf; no change in gene expression was observed. Both CA II and NHE3 expression was up-regulated at 3 dpf, which may be related to post-prandial ion balance. These results suggest that Burmese pythons actively remodel their kidney after feeding, which would in part benefit renal HCO3(-) clearance. Copyright © 2015 Elsevier Inc. All rights reserved.
Alignment-enhancing feed-through conductors for stackable silicon-on-sapphire wafers
NASA Technical Reports Server (NTRS)
Anthony, Thomas R. (Inventor)
1983-01-01
Alignment-enhancing electrically conductive feed-through paths are provided for the high-speed low-loss transfer of electrical signals between integrated circuits of a plurality of silicon-on-sapphire bodies arrayed in a stack. The alignment-enhancing feed-throughs are made by a process involving the drilling of holes through the body, double-sided sputtering, electroplating, and the filling of the holes with solder by capillary action. The alignment-enhancing feed-throughs are activated by forming a stack of wafers and remelting the solder whereupon the wafers, and the feed-through paths, are pulled into alignment by surface tension forces.
Microstrip Antenna for Remote Sensing of Soil Moisture and Sea Surface Salinity
NASA Technical Reports Server (NTRS)
Ramhat-Samii, Yahya; Kona, Keerti; Manteghi, Majid; Dinardo, Steven; Hunter, Don; Njoku, Eni; Wilson, Wiliam; Yueh, Simon
2009-01-01
This compact, lightweight, dual-frequency antenna feed developed for future soil moisture and sea surface salinity (SSS) missions can benefit future soil and ocean studies by lowering mass, volume, and cost of the antenna system. It also allows for airborne soil moisture and salinity remote sensors operating on small aircraft. While microstrip antenna technology has been developed for radio communications, it has yet to be applied to combined radar and radiometer for Earth remote sensing. The antenna feed provides a key instrument element enabling high-resolution radiometric observations with large, deployable antennas. The design is based on the microstrip stacked-patch array (MSPA) used to feed a large, lightweight, deployable, rotating mesh antenna for spaceborne L-band (approximately equal to 1 GHz) passive and active sensing systems. The array consists of stacked patches to provide dual-frequency capability and suitable radiation patterns. The stacked-patch microstrip element was designed to cover the required L-band center frequencies at 1.26 GHz (lower patch) and 1.413 GHz (upper patch), with dual-linear polarization capabilities. The dimension of patches produces the required frequencies. To achieve excellent polarization isolation and control of antenna sidelobes for the MSPA, the orientation of each stacked-patch element within the array is optimized to reduce the cross-polarization. A specialized feed-distribution network was designed to achieve the required excitation amplitude and phase for each stacked-patch element.
Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)
NASA Technical Reports Server (NTRS)
Headrick, R. D.; Rowe, J. N.
1996-01-01
This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.
NASA Astrophysics Data System (ADS)
Morabito, David D.; D'Addario, Larry; Finley, Susan
2016-02-01
Phased arrays of reflector antennas can be used to obtain effective area and gain that are much larger than is practical with a single antenna. This technique is routinely used by NASA for receiving weak signals from deep space. Phase alignment of the signals can be disrupted by turbulence in the troposphere, which causes fluctuations in the differences of signal delays among the antennas. At the Deep Space Network stations, site test interferometers (STIs) are being used for long-term monitoring of these delay fluctuations using signals from geostationary satellites. In this paper, we compare the STI measurements with the phase variations seen by a nearby two-element array of 34 m diameter antennas tracking 8.4 GHz and 32 GHz signals from the Cassini spacecraft in orbit around Saturn. It is shown that the statistics of the STI delay fluctuations, after appropriate scaling for differences in antenna separation and elevation angle and conversion to phase at the spacecraft frequencies, provide reliable estimates of the phase fluctuations seen by the large antennas on the deep space signal. Techniques for adaptive compensation of the phase fluctuations are available when receiving a sufficiently strong signal, but compensation is often impractical or impossible when using the array for transmitting. These results help to validate the use of long-term STI data for assessing the feasibility of large transmitting arrays at various sites.
NASA Astrophysics Data System (ADS)
Jule, Leta; Dejene, Francis; Roro, Kittessa
2016-12-01
In the present work, we investigated theoretically and experimentally the interaction of radiation field phenomena interacting with arrays of nanowire/nanorod core-shell embedded in active host matrices. The optical properties of composites are explored including the case when the absorption of propagating wave by dissipative component is completely compensated by amplification in active (lasing) medium. On the basis of more elaborated modeling approach and extended effective medium theory, the effective polarizability and the refractive index of electromagnetic mode dispersion of the core-shell nanowire arrays are derived. ZnS(shell)-coated by sulphidation process on ZnO(shell) nanorod arrays grown on (100) silicon substrate by chemical bath deposition (CBD) has been used for theoretical comparison. Compared with the bare ZnO nanorods, ZnS-coated core/shell nanorods exhibit a strongly reduced ultraviolet (UV) emission and a dramatically enhanced deep level (DL) emission. Obviously, the UV and DL emission peaks are attributed to the emissions of ZnO nanorods within ZnO/ZnS core/shell nanorods. The reduction of UV emission after ZnS coating seems to agree with the charge separation mechanism of type-II band alignment that holes transfer from the core to shell, which would quench the UV emission to a certain extent. Our theoretical calculations and numerical simulation demonstrate that the use of active host (amplifying) medium to compensate absorption at metallic inclusions. Moreover the core-shell nanorod/nanowire arrays create the opportunity for broad band absorption and light harvesting applications.
Marvel, Miranda; Spicer, Olivia Smith; Wong, Ten-Tsao; Zmora, Nilli; Zohar, Yonathan
2018-04-04
Gonadotropin-releasing hormone (GnRH) is known as a pivotal upstream regulator of reproduction in vertebrates. However, reproduction is not compromised in the hypophysiotropic Gnrh3 knockout line in zebrafish (gnrh3-/-). In order to determine if Gnrh2, the only other Gnrh isoform in zebrafish brains, is compensating for the loss of Gnrh3, we generated a double Gnrh knockout zebrafish line. Surprisingly, the loss of both Gnrh isoforms resulted in no major impact on reproduction, indicating that a compensatory response, outside of the Gnrh system, was evoked. A plethora of factors acting along the reproductive hypothalamus-pituitary axis were evaluated as possible compensators based on neuroanatomical and differential gene expression studies. In addition, we also examined the involvement of feeding factors in the brain as potential compensators for Gnrh2, which has known anorexigenic effects. We found that the double knockout fish exhibited upregulation of several genes in the brain, specifically gonadotropin-inhibitory hormone (gnih), secretogranin 2 (scg2), tachykinin 3a (tac3a), and pituitary adenylate cyclase-activating peptide 1 (pacap1), and downregulation of agouti-related peptide 1 (agrp1), indicating the compensation occurs outside of Gnrh cells and therefore is a non-cell autonomous response to the loss of Gnrh. While the differential expression of gnih and agrp1 in the double knockout line was confined to the periventricular nucleus and hypothalamus, respectively, the upregulation of scg2 corresponded with a broader neuronal redistribution in the lateral hypothalamus and hindbrain. In conclusion, our results demonstrate the existence of a redundant reproductive regulatory system that comes into play when Gnrh2 and Gnrh3 are lost.
Compensation of orbit distortion due to quadrupole motion using feed-forward control at KEK ATF
NASA Astrophysics Data System (ADS)
Bett, D. R.; Charrondière, C.; Patecki, M.; Pfingstner, J.; Schulte, D.; Tomás, R.; Jeremie, A.; Kubo, K.; Kuroda, S.; Naito, T.; Okugi, T.; Tauchi, T.; Terunuma, N.; Burrows, P. N.; Christian, G. B.; Perry, C.
2018-07-01
The high luminosity requirement for a future linear collider sets a demanding limit on the beam quality at the Interaction Point (IP). One potential source of luminosity loss is the motion of the ground itself. The resulting misalignments of the quadrupole magnets cause distortions to the beam orbit and hence an increase in the beam emittance. This paper describes a technique for compensating this orbit distortion by using seismometers to monitor the misalignment of the quadrupole magnets in real-time. The first demonstration of the technique was achieved at the Accelerator Test Facility (ATF) at KEK in Japan. The feed-forward system consisted of a seismometer-based quadrupole motion monitoring system, an FPGA-based feed-forward processor and a stripline kicker plus associated electronics. Through the application of a kick calculated from the position of a single quadruple, the system was able to remove about 80% of the component of the beam jitter that was correlated to the motion of the quadrupole. As a significant fraction of the orbit jitter in the ATF final focus is due to sources other than quadrupole misalignment, this amounted to an approximately 15% reduction in the absolute beam jitter.
Metabolic temperature compensation and coevolution of locomotory performance in pteropod molluscs.
Seibel, Brad A; Dymowska, Agnieszka; Rosenthal, Joshua
2007-12-01
Gymnosomatous pteropods are highly specialized planktonic predators that feed exclusively on their thecosomatous relatives. Feeding behavior and the morphology of gymnosome feeding structures are diverse and have evolved in concert with the size, shape, and consistency of the thecosome shell. Here, we show that the metabolic capacity and locomotory behaviors of gymnosomes are similarly diverse and vary with those of their prey. Both gymnosomes and thecosomes range from gelatinous sit-and-wait forms to active predators with high-performance locomotory muscles. We find more than 10-fold variation in size-adjusted and temperature-adjusted metabolic rates within both the Gymnosomata and Thecosomata and a strong correlation between the metabolic rates of predators and of prey. Furthermore, these characteristics are strongly influenced by environmental parameters and predator and prey converge upon similar physiological capacities under similar selection. For example, compensation of locomotory capacity in cold waters leads to elevated metabolic rates in polar species. This highly coevolved system is discussed in terms of a predator-prey "arms race" and the impending loss of both predator and prey as elevated atmospheric carbon dioxide levels threaten to dissolve prey shells via oceanic acidification.
The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth
Kotrschal, Alexander; Corral‐Lopez, Alberto; Szidat, Sönke; Kolm, Niclas
2015-01-01
One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large‐ and small‐brained individuals. Instead, we found that large‐brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system. PMID:26420573
Large area pulsed solar simulator
NASA Technical Reports Server (NTRS)
Kruer, Mark A. (Inventor)
1999-01-01
An advanced solar simulator illuminates the surface a very large solar array, such as one twenty feet by twenty feet in area, from a distance of about twenty-six feet with an essentially uniform intensity field of pulsed light of an intensity of one AMO, enabling the solar array to be efficiently tested with light that emulates the sun. Light modifiers sculpt a portion of the light generated by an electrically powered high power Xenon lamp and together with direct light from the lamp provide uniform intensity illumination throughout the solar array, compensating for the square law and cosine law reduction in direct light intensity, particularly at the corner locations of the array. At any location within the array the sum of the direct light and reflected light is essentially constant.
BRDF-dependent accuracy of array-projection-based 3D sensors.
Heist, Stefan; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther
2017-03-10
In order to perform high-speed three-dimensional (3D) shape measurements with structured light systems, high-speed projectors are required. One possibility is an array projector, which allows pattern projection at several tens of kilohertz by switching on and off the LEDs of various slide projectors. The different projection centers require a separate analysis, as the intensity received by the cameras depends on the projection direction and the object's bidirectional reflectance distribution function (BRDF). In this contribution, we investigate the BRDF-dependent errors of array-projection-based 3D sensors and propose an error compensation process.
Baseline Receiver Concept for a Next Generation Very Large Array
NASA Astrophysics Data System (ADS)
Srikanth, Sivasankaran; Wes Grammer, Silver Sturgis, Rob Selina
2018-01-01
The Next Generation Very Large Array (ngVLA) is envisioned to be an interferometric array with 10 times the effective collecting area and spatial resolution as the current VLA, operating over a frequency range of 1.2-116 GHz. Achieving these goals will require 214 antennas of nominal 18m diameter, on baselines of 300km. Maximizing sensitivity for each receiver band, while also minimizing the overall operating cost are the primary design goals. Therefore, receivers and feeds will be cryogenically cooled, with multiple bands integrated into a common cryostat to the greatest extent possible. Using feed designs that yield broad bandwidths and high aperture efficiencies are key to meeting these goals.The proposed receiver configuration will be implemented as six independent bands, each with its own feed. The upper five bands will be integrated into a single compact cryostat, while the lowest-frequency band occupies a second cryostat of similar volume and mass. The lowest-band feed is cooled to 80K, while all other feeds are cooled to 20K.For optimum performance at the higher frequencies, waveguide-bandwidth (~1.66:1) receivers are proposed to cover 12.6 – 50.5 GHz and 70 – 116 GHz in four separate bands, integrated into a single cryostat. Excellent LNA noise performance is readily achievable, and using waveguide throughout the signal chain reduces losses and their associated noise contributions, without adding undue size or weight. An axially-corrugated conical feed horn with wide flare angle (~50degree half-angle), based on a design by G. Cortes and L. Baker, is being considered for these receivers.For continuous coverage between 1.2 – 12.6 GHz, waveguide or even octave-bandwidth receivers are not cost-effective, given the > 10:1 frequency range. For these bands, wideband (3.25:1) receivers mated to a Caltech-designed quad-ridge feed horn (QRFH) are proposed. These feeds are highly compact, and cryogenically cooled to reduce losses ahead of the LNAs. Aperture efficiency and LNA noise temperature may be somewhat less than optimum: however, there would be significant cost savings by effectively halving the number of receivers and cryostats required per antenna.
2008-12-01
manufacturing variability and thermal effects can be easi- ly compensated for electronically during operation by adjusting PZT amplitudes and phases... thermal and optical processes in the PEM bar and PZT array. An interface between COMSOL and the Trilinos solvers running in parallel on the cluster was...contaminants of low vapor pressure and/or low intrinsic fluorescence. Thermal luminescence (TL) is a technology aimed at solving the standoff
Remy, E; Issanchou, S; Chabanet, C; Boggio, V; Nicklaus, S
2015-06-01
Between the ages of 3 and 5 years, children may become less responsive to internal cues of satiation and more responsive to external cues, which may induce overeating and lead to weight gain. This study aimed to compare eating in the absence of hunger (EAH) and caloric compensation in 3- to 6-year-old children, and to relate the measurements with children's adiposity, age, sex and maternal feeding practices. According to a within-subject three sequential condition design, food intake in children (n=236) was measured at lunch during three sessions, once a week. The same meal (565 kcal) was offered at each session. The first session (control) was only composed of the meal. Thirty minutes before the second meal, children were offered an energy preload (137 kcal; caloric compensation condition). Ten minutes after the third meal, children were exposed to a post-meal snack (430 kcal; EAH condition). Individual caloric compensation score (COMPX) and EAH score were calculated. Maternal characteristics were measured by questionnaire. Child anthropometrics were measured by a medical doctor. On average, children compensated 52±4% of the energy preload and ate 24±1% of the energy provided by their meal in the absence of hunger. COMPX and EAH score were not correlated and did not vary with children's adiposity or age. EAH score was higher in boys (P=0.006). Maternal use of food as reward was associated with higher EAH score (P=0.01) but greater COMPX (P=0.005). As early as the age of 3 years children did not fully compensate the energy brought by a snack and ate in the absence of hunger. Parents should be advised to avoid these situations where overeating may occur and to limit the use of food as reward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, E.L.
A novel method for performing real-time acquisition and processing Landsat/EROS data covers all aspects including radiometric and geometric corrections of multispectral scanner or return-beam vidicon inputs, image enhancement, statistical analysis, feature extraction, and classification. Radiometric transformations include bias/gain adjustment, noise suppression, calibration, scan angle compensation, and illumination compensation, including topography and atmospheric effects. Correction or compensation for geometric distortion includes sensor-related distortions, such as centering, skew, size, scan nonlinearity, radial symmetry, and tangential symmetry. Also included are object image-related distortions such as aspect angle (altitude), scale distortion (altitude), terrain relief, and earth curvature. Ephemeral corrections are also applied to compensatemore » for satellite forward movement, earth rotation, altitude variations, satellite vibration, and mirror scan velocity. Image enhancement includes high-pass, low-pass, and Laplacian mask filtering and data restoration for intermittent losses. Resource classification is provided by statistical analysis including histograms, correlational analysis, matrix manipulations, and determination of spectral responses. Feature extraction includes spatial frequency analysis, which is used in parallel discriminant functions in each array processor for rapid determination. The technique uses integrated parallel array processors that decimate the tasks concurrently under supervision of a control processor. The operator-machine interface is optimized for programming ease and graphics image windowing.« less
A Conductometric Indium Oxide Semiconducting Nanoparticle Enzymatic Biosensor Array
Lee, Dongjin; Ondrake, Janet; Cui, Tianhong
2011-01-01
We report a conductometric nanoparticle biosensor array to address the significant variation of electrical property in nanomaterial biosensors due to the random network nature of nanoparticle thin-film. Indium oxide and silica nanoparticles (SNP) are assembled selectively on the multi-site channel area of the resistors using layer-by-layer self-assembly. To demonstrate enzymatic biosensing capability, glucose oxidase is immobilized on the SNP layer for glucose detection. The packaged sensor chip onto a ceramic pin grid array is tested using syringe pump driven feed and multi-channel I–V measurement system. It is successfully demonstrated that glucose is detected in many different sensing sites within a chip, leading to concentration dependent currents. The sensitivity has been found to be dependent on the channel length of the resistor, 4–12 nA/mM for channel lengths of 5–20 μm, while the apparent Michaelis-Menten constant is 20 mM. By using sensor array, analytical data could be obtained with a single step of sample solution feeding. This work sheds light on the applicability of the developed nanoparticle microsensor array to multi-analyte sensors, novel bioassay platforms, and sensing components in a lab-on-a-chip. PMID:22163696
1979-12-01
AD-AOBS 567 ITT GILFILLAN VAN NUYS CA F/6 17/9 CONF4UTATING FEED ASSEMBLY. 1W DEC 79 R WOL.FSON F19628-79-C-OOSS UNCLASSIFIED RADC -TR79303 NI. 1i.ll...INTRODUCTION 9 2 COMMUTATING FEED ASSEMBLY REQUIREMENTS 10 . 3 TECHNICAL PROBLEMS 11 1: 3.1 System Design 12 3.1.1 Radius of Circular Array 12 3.1.2 Design...Support Structure 16 3.3 Annular Rotary Coupler 16 3.4 Stripline Feed Network 17 w V.3.4.1 Range of Coupling Values vs. Percent Power into Load 17 3.4.2
Opportunistic Visitors: Long-Term Behavioural Response of Bull Sharks to Food Provisioning in Fiji
Brunnschweiler, Juerg M.; Barnett, Adam
2013-01-01
Shark-based tourism that uses bait to reliably attract certain species to specific sites so that divers can view them is a growing industry globally, but remains a controversial issue. We evaluate multi-year (2004–2011) underwater visual (n = 48 individuals) and acoustic tracking data (n = 82 transmitters; array of up to 16 receivers) of bull sharks Carcharhinus leucas from a long-term shark feeding site at the Shark Reef Marine Reserve and reefs along the Beqa Channel on the southern coast of Viti Levu, Fiji. Individual C. leucas showed varying degrees of site fidelity. Determined from acoustic tagging, the majority of C. leucas had site fidelity indexes >0.5 for the marine reserve (including the feeding site) and neighbouring reefs. However, during the time of the day (09:00–12:00) when feeding takes place, sharks mainly had site fidelity indexes <0.5 for the feeding site, regardless of feeding or non-feeding days. Site fidelity indexes determined by direct diver observation of sharks at the feeding site were lower compared to such values determined by acoustic tagging. The overall pattern for C. leucas is that, if present in the area, they are attracted to the feeding site regardless of whether feeding or non-feeding days, but they remain for longer periods of time (consecutive hours) on feeding days. The overall diel patterns in movement are for C. leucas to use the area around the feeding site in the morning before spreading out over Shark Reef throughout the day and dispersing over the entire array at night. Both focal observation and acoustic monitoring show that C. leucas intermittently leave the area for a few consecutive days throughout the year, and for longer time periods (weeks to months) at the end of the calendar year before returning to the feeding site. PMID:23516496
Opportunistic visitors: long-term behavioural response of bull sharks to food provisioning in Fiji.
Brunnschweiler, Juerg M; Barnett, Adam
2013-01-01
Shark-based tourism that uses bait to reliably attract certain species to specific sites so that divers can view them is a growing industry globally, but remains a controversial issue. We evaluate multi-year (2004-2011) underwater visual (n = 48 individuals) and acoustic tracking data (n = 82 transmitters; array of up to 16 receivers) of bull sharks Carcharhinus leucas from a long-term shark feeding site at the Shark Reef Marine Reserve and reefs along the Beqa Channel on the southern coast of Viti Levu, Fiji. Individual C. leucas showed varying degrees of site fidelity. Determined from acoustic tagging, the majority of C. leucas had site fidelity indexes >0.5 for the marine reserve (including the feeding site) and neighbouring reefs. However, during the time of the day (09:00-12:00) when feeding takes place, sharks mainly had site fidelity indexes <0.5 for the feeding site, regardless of feeding or non-feeding days. Site fidelity indexes determined by direct diver observation of sharks at the feeding site were lower compared to such values determined by acoustic tagging. The overall pattern for C. leucas is that, if present in the area, they are attracted to the feeding site regardless of whether feeding or non-feeding days, but they remain for longer periods of time (consecutive hours) on feeding days. The overall diel patterns in movement are for C. leucas to use the area around the feeding site in the morning before spreading out over Shark Reef throughout the day and dispersing over the entire array at night. Both focal observation and acoustic monitoring show that C. leucas intermittently leave the area for a few consecutive days throughout the year, and for longer time periods (weeks to months) at the end of the calendar year before returning to the feeding site.
Compact Feeding Network for Array Radiations of Spoof Surface Plasmon Polaritons
NASA Astrophysics Data System (ADS)
Xu, Jun Jun; Yin, Jia Yuan; Zhang, Hao Chi; Cui, Tie Jun
2016-03-01
We propose a splitter feeding network for array radiations of spoof surface plasmon polaritons (SPPs), which are guided by ultrathin corrugated metallic strips. Based on the coupled mode theory, SPP fields along a single waveguide in a certain frequency range can be readily coupled into two adjacent branch waveguides with the same propagation constants. We propose to load U-shaped particles anti-symmetrically at the ends of such two branch waveguides, showing a high integration degree of the feeding network. By controlling linear phase modulations produced by the U-shaped particle chain, we demonstrate theoretically and experimentally that the SPP fields based on bound modes can be efficiently radiated to far fields in broadside direction. The proposed method shows that the symmetry of electromagnetic field modes can be exploited to the SPP transmission network, providing potential solutions to compact power dividers and combiners for microwave and optical devices and systems.
Noise-cancellation-based nonuniformity correction algorithm for infrared focal-plane arrays.
Godoy, Sebastián E; Pezoa, Jorge E; Torres, Sergio N
2008-10-10
The spatial fixed-pattern noise (FPN) inherently generated in infrared (IR) imaging systems compromises severely the quality of the acquired imagery, even making such images inappropriate for some applications. The FPN refers to the inability of the photodetectors in the focal-plane array to render a uniform output image when a uniform-intensity scene is being imaged. We present a noise-cancellation-based algorithm that compensates for the additive component of the FPN. The proposed method relies on the assumption that a source of noise correlated to the additive FPN is available to the IR camera. An important feature of the algorithm is that all the calculations are reduced to a simple equation, which allows for the bias compensation of the raw imagery. The algorithm performance is tested using real IR image sequences and is compared to some classical methodologies. (c) 2008 Optical Society of America
de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente
2008-12-16
Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.
NASA Technical Reports Server (NTRS)
Radcliffe, Eliott (Inventor); Naguib, Ahmed (Inventor); Humphreys, Jr., William M. (Inventor)
2014-01-01
A feedback-controlled microphone includes a microphone body and a membrane operatively connected to the body. The membrane is configured to be initially deflected by acoustic pressure such that the initial deflection is characterized by a frequency response. The microphone also includes a sensor configured to detect the frequency response of the initial deflection and generate an output voltage indicative thereof. The microphone additionally includes a compensator in electric communication with the sensor and configured to establish a regulated voltage in response to the output voltage. Furthermore, the microphone includes an actuator in electric communication with the compensator, wherein the actuator is configured to secondarily deflect the membrane in opposition to the initial deflection such that the frequency response is adjusted. An acoustic beam forming microphone array including a plurality of the above feedback-controlled microphones is also disclosed.
NASA Astrophysics Data System (ADS)
Shadmand, Mohammad Bagher
Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in transmission loss if not controlled appropriately. Inductive loads which operate with lagging power factor consume VARs, thus load compensation techniques by capacitor bank employment locally supply VARs needed by the load. Capacitors are highly unreliable components due to their failure modes and aging inherent. Approximately 60% of power electronic devices failure such as voltage-source inverter based static synchronous compensator (STATCOM) is due to the use of aluminum electrolytic DC capacitors. Therefore, a capacitor-less VAR compensation is desired. This dissertation also investigates a STATCOM capacitor-less reactive power compensation that uses only inductors combined with predictive controlled matrix converter.
Towards on-chip time-resolved thermal mapping with micro-/nanosensor arrays
2012-01-01
In recent years, thin-film thermocouple (TFTC) array emerged as a versatile candidate in micro-/nanoscale local temperature sensing for its high resolution, passive working mode, and easy fabrication. However, some key issues need to be taken into consideration before real instrumentation and industrial applications of TFTC array. In this work, we will demonstrate that TFTC array can be highly scalable from micrometers to nanometers and that there are potential applications of TFTC array in integrated circuits, including time-resolvable two-dimensional thermal mapping and tracing the heat source of a device. Some potential problems and relevant solutions from a view of industrial applications will be discussed in terms of material selection, multiplexer reading, pattern designing, and cold-junction compensation. We show that the TFTC array is a powerful tool for research fields such as chip thermal management, lab-on-a-chip, and other novel electrical, optical, or thermal devices. PMID:22931306
Method for making alignment-enhancing feed-through conductors for stackable silicon-on-sapphire
NASA Technical Reports Server (NTRS)
Anthony, Thomas R. (Inventor)
1985-01-01
Alignment-enhancing electrically conductive feed-through paths are provided for the high-speed low-loss transfer of electrical signals between integrated circuits of a plurality of silicon-on-sapphire bodies arrayed in a stack. The alignment-enhancing feed-throughs are made by a process of this invention involving the drilling of holes through the body, double-sided sputtering, electroplating, and the filling of the holes with solder by capillary action. The alignment-enhancing feed-throughs are activated by forming a stack of wafers and remelting the solder whereupon the wafers, and the feed-through paths, are pulled into alignment by surface tension forces.
Effects of invertebrates in lotic ecosystem processes
J.B. Wallace; J.J. Jr. Hutchens
2000-01-01
Freshwater invertebrates perform many roles in ecosystem processes (Palmer et al., 1997) and these roles are frequently associated with a diverse array of feeding habits which have been organized into functional feeding groups (FFGs). Wallace and Webster (1996) reviewed many roles ofFFGs in stream ecosystems. Streams differ markedly from most ecosystems in that the...
An ANSERLIN array for mobile satellite applications
NASA Technical Reports Server (NTRS)
Colomb, F. Y.; Kunkee, D. B.; Mayes, P. E.; Smith, D. W.; Jamnejad, V.
1990-01-01
Design, analysis, construction, and test of linear arrays of ANSERLIN (annular sector, radiating line) elements are reported and discussed. Due to feeding simplicity and easy construction as well as good CP performance, a planar array composed of a number of such linear arrays each producing a shaped beam tilted in elevation, is a good candidate as a vehicle-mounted mechanically steered antenna for mobile satellite applications. A single level construction technique was developed that makes this type of array very cost competitive with other low-profile arrays. An asymmetric 19.5 inch long four-element array was fabricated and tested with reasonable performance. A smaller five-element symmetric array (16 inch long) was also designed and tested capable of operating in either sense of circular polarization. Efforts were made to successfully reduce this effect.
Sound-field reproduction systems using fixed-directivity loudspeakers.
Poletti, M; Fazi, F M; Nelson, P A
2010-06-01
Sound reproduction systems using open arrays of loudspeakers in rooms suffer from degradations due to room reflections. These reflections can be reduced using pre-compensation of the loudspeaker signals, but this requires calibration of the array in the room, and is processor-intensive. This paper examines 3D sound reproduction systems using spherical arrays of fixed-directivity loudspeakers which reduce the sound field radiated outside the array. A generalized form of the simple source formulation and a mode-matching solution are derived for the required loudspeaker weights. The exterior field is derived and expressions for the exterior power and direct to reverberant ratio are derived. The theoretical results and simulations confirm that minimum interference occurs for loudspeakers which have hyper-cardioid polar responses.
Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G.
2017-01-01
In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators. PMID:29099790
Hoshiba, Kotaro; Washizaki, Kai; Wakabayashi, Mizuho; Ishiki, Takahiro; Kumon, Makoto; Bando, Yoshiaki; Gabriel, Daniel; Nakadai, Kazuhiro; Okuno, Hiroshi G
2017-11-03
In search and rescue activities, unmanned aerial vehicles (UAV) should exploit sound information to compensate for poor visual information. This paper describes the design and implementation of a UAV-embedded microphone array system for sound source localization in outdoor environments. Four critical development problems included water-resistance of the microphone array, efficiency in assembling, reliability of wireless communication, and sufficiency of visualization tools for operators. To solve these problems, we developed a spherical microphone array system (SMAS) consisting of a microphone array, a stable wireless network communication system, and intuitive visualization tools. The performance of SMAS was evaluated with simulated data and a demonstration in the field. Results confirmed that the SMAS provides highly accurate localization, water resistance, prompt assembly, stable wireless communication, and intuitive information for observers and operators.
Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang
2015-12-22
Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10(-19)/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a "virtual" clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10(-20) at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology.
Chen, Xing; Lu, Jinlong; Cui, Yifan; Zhang, Jian; Lu, Xing; Tian, Xusheng; Ci, Cheng; Liu, Bo; Wu, Hong; Tang, Tingsong; Shi, Kebin; Zhang, Zhigang
2015-01-01
Precision time synchronization between two remote sites is desired in many applications such as global positioning satellite systems, long-baseline interferometry, coherent radar detection and fundamental physics constant measurements. The recently developed frequency dissemination technologies based on optical fiber link have improved the transfer instability to the level of 10−19/day at remote location. Therefore it is possible to keep clock oscillation at remote locations continuously corrected, or to reproduce a “virtual” clock on the remote location. However the initial alignment and the correction of 1 pps timing signal from time to time are still required, besides the highly stabilized clock frequency transfer between distant locations. Here we demonstrate a time synchronization based on an ultra-stable frequency transfer system via 120-km commercial fiber link by transferring an optical frequency comb. Both the phase noise compensation in frequency dissemination and temporal basis alignment in time synchronization were implemented by a feed-forward digital compensation (FFDC) technique. The fractional frequency instability was measured to be 6.18 × 10−20 at 2000 s. The timing deviation of time synchronization was measured to be 0.6 ps in 1500 s. This technique also can be applied in multi-node fiber network topology. PMID:26691731
NASA Astrophysics Data System (ADS)
Chak, Yew-Chung; Varatharajoo, Renuganth; Razoumny, Yury
2017-04-01
This paper investigates the combined attitude and sun-tracking control problem in the presence of external disturbances and internal disturbances, caused by flexible appendages. A new method based on Pythagorean trigonometric identity is proposed to drive the solar arrays. Using the control input and attitude output, a disturbance observer is developed to estimate the lumped disturbances consisting of the external and internal disturbances, and then compensated by the disturbance observer-based controller via a feed-forward control. The stability analysis demonstrates that the desired attitude trajectories are followed even in the presence of external disturbance and internal flexible modes. The main features of the proposed control scheme are that it can be designed separately and incorporated into the baseline controller to form the observer-based control system, and the combined attitude and sun-tracking control is achieved without the conventional attitude actuators. The attitude and sun-tracking performance using the proposed strategy is evaluated and validated through numerical simulations. The proposed control solution can serve as a fail-safe measure in case of failure of the conventional attitude actuator, which triggered by automatic reconfiguration of the attitude control components.
Reflector surface distortion analysis techniques (thermal distortion analysis of antennas in space)
NASA Technical Reports Server (NTRS)
Sharp, R.; Liao, M.; Giriunas, J.; Heighway, J.; Lagin, A.; Steinbach, R.
1989-01-01
A group of large computer programs are used to predict the farfield antenna pattern of reflector antennas in the thermal environment of space. Thermal Radiation Analysis Systems (TRASYS) is a thermal radiation analyzer that interfaces with Systems Improved Numerical Differencing Analyzer (SINDA), a finite difference thermal analysis program. The programs linked together for this analysis can now be used to predict antenna performance in the constantly changing space environment. They can be used for very complex spacecraft and antenna geometries. Performance degradation caused by methods of antenna reflector construction and materials selection are also taken into consideration. However, the principal advantage of using this program linkage is to account for distortions caused by the thermal environment of space and the hygroscopic effects of the dry-out of graphite/epoxy materials after the antenna is placed into orbit. The results of this type of analysis could ultimately be used to predict antenna reflector shape versus orbital position. A phased array antenna distortion compensation system could then use this data to make RF phase front corrections. That is, the phase front could be adjusted to account for the distortions in the antenna feed and reflector geometry for a particular orbital position.
47 CFR 68.316 - Hearing aid compatibility: Technical requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the Telecommunications Industry Association: Electronic Industries Association Recommended Standard RS... electronic amplifying device, intended to increase the loudness of sound and worn to compensate for impaired... telephones, e.g., proprietary or digital telephones, an appropriate feed circuit and termination shall be...
47 CFR 68.316 - Hearing aid compatibility: Technical requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the Telecommunications Industry Association: Electronic Industries Association Recommended Standard RS... electronic amplifying device, intended to increase the loudness of sound and worn to compensate for impaired... telephones, e.g., proprietary or digital telephones, an appropriate feed circuit and termination shall be...
NASA Astrophysics Data System (ADS)
Tsuji, Masatoshi
A compact feed circuit with a λ/4 transmission line matrix circuit for use in array antennas to control beams in three directions, including boresight, is presented. The feed circuit antenna is composed of five switches and λ/4 transmission lines, and the feeding matrix circuit yields phase differences of ±90° and 0°. The feed circuit can obtain a reliable output signal, as there is only a small degree of deviation of output signal with variations in the line width. The feed circuit is simulated, fabricated, and evaluated for ISM band, and the measured characteristics agree well with the results of the simulation. The size of feed circuit is 45 (H) × 48 (W) × 3 (T) mm.
Reception of Multiple Telemetry Signals via One Dish Antenna
NASA Technical Reports Server (NTRS)
Mukai, Ryan; Vilnrotter, Victor
2010-01-01
A microwave aeronautical-telemetry receiver system includes an antenna comprising a seven-element planar array of receiving feed horns centered at the focal point of a paraboloidal dish reflector that is nominally aimed at a single aircraft or at multiple aircraft flying in formation. Through digital processing of the signals received by the seven feed horns, the system implements a method of enhanced cancellation of interference, such that it becomes possible to receive telemetry signals in the same frequency channel simultaneously from either or both of two aircraft at slightly different angular positions within the field of view of the antenna, even in the presence of multipath propagation. The present system is an advanced version of the system described in Spatio- Temporal Equalizer for a Receiving-Antenna Feed Array NPO-43077, NASA Tech Briefs, Vol. 34, No. 2 (February 2010), page 32. To recapitulate: The radio-frequency telemetry signals received by the seven elements of the array are digitized, converted to complex baseband form, and sent to a spatio-temporal equalizer that consists mostly of a bank of seven adaptive finite-impulse-response (FIR) filters (one for each element in the array) plus a unit that sums the outputs of the filters. The combination of the spatial diversity of the feedhorn array and the temporal diversity of the filter bank affords better multipath suppression performance than is achievable by means of temporal equalization alone. The FIR filter bank adapts itself in real time to enable reception of telemetry at a low bit error rate, even in the presence of frequency-selective multipath propagation like that commonly found at flight-test ranges. The combination of the array and the filter bank makes it possible to constructively add multipath incoming signals to the corresponding directly arriving signals, thereby enabling reductions in telemetry bit-error rates.
Implementation Status of a Ultra-Wideband Receiver Package for the next-generation Very Large Array
NASA Astrophysics Data System (ADS)
Lazio, T. Joseph W.; Velazco, Jose; Soriano, Melissa; Hoppe, Daniel; Russell, Damon; D'Addario, Larry; Long, Ezra; Bowen, James; Samoska, Lorene; Janzen, Andrew
2017-01-01
The next-generation Very Large Array (ngVLA) is a concept for a radio astronomical interferometric array operating in the frequency range 1.2 GHz to 116 GHz and designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage above the current Very Large Array (VLA). As notional design goals, it would have a continuous frequency coverage of 1.2 GHz to 48 GHz and be 10 times more sensitive than the VLA (and 25 times more sensitive than a 34 m diameter antenna of the Deep Space Network [DSN]). One of the key goals for the ngVLA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range, which can be contrasted to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs, and the objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feed horn, low-noise amplifier (LNA), and down-converters to analog intermediate frequencies. Key features of this design are a quad-ridge feed horn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30 K at the low end of the band. We will report on the status of this receiver package development including the feed design and LNA implementation. We will present simulation studies of the feed horn including the insertion of dielectric components for improved illumination efficiencies across the band of interest. In addition, we will show experimental results of low-noise 35nm InP HEMT amplifier testing performed across the 8-50 GHz frequency range.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Proceedings of the 1989 Antenna Applications Symposium. Volume 1
1990-03-01
of this antenna is the absence of spillover sidelobes where energy from the feed spills past the edge of the reflector to give a 112 relatively high ... High Gain Receive Cylindrical, Array 381 Antenna WIth Ful Azimuth Coverage," J. C. Herper, A. M. bucceri ’&nd J. J. Stangel 22. "Conformal Ac-tive...Phased Array Demonstration," Jerome D. Hanfling 23 " High Precision Frequency Locking technique for Active 441 Microstrip Antenna Arrays,’ Gabriel
2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.
2014-01-01
This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).
Extended short wavelength infrared HgCdTe detectors on silicon substrates
NASA Astrophysics Data System (ADS)
Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.
2016-09-01
We report high-quality n-type extended short wavelength infrared (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch detector array.
The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout.
Bucking, Carol; Wood, Chris M
2008-08-01
We investigated the potential acid-base and nitrogenous waste excretion challenges created by voluntary feeding in freshwater rainbow trout, with particular focus on the possible occurrence of an alkaline tide (a metabolic alkalosis created by gastric HCl secretion during digestion). Plasma metabolites (glucose, urea and ammonia) were measured at various time points before and after voluntary feeding to satiation (approximately 5% body mass meal of dry commercial pellets), as was the net flux of ammonia and titratable alkalinity to the water from unfed and fed fish. Arterial blood, sampled by indwelling catheter, was examined for post-prandial effects on pH, plasma bicarbonate and plasma CO2 tension. There was no significant change in plasma glucose or urea concentrations following feeding, whereas plasma ammonia transiently increased, peaking at threefold above resting values at 12 h after the meal and remaining elevated for 24 h. The increased plasma ammonia was correlated with an increase in net ammonia excretion to the water, with fed fish significantly elevating their net ammonia excretion two- to threefold between 12 and 48 h post feeding. These parameters did not change in unfed control fish. Fed fish likewise increased the net titratable base flux to the water by approximately threefold, which resulted in a transition from a small net acid flux seen in unfed fish to a large net base flux in fed fish. Over 48 h, this resulted in a net excretion of 13 867 micromol kg(-1) more base to the external water than in unfed fish. The arterial blood exhibited a corresponding rise in pH (between 6 and 12 h) and plasma bicarbonate (between 3 and 12 h) following feeding; however, no respiratory compensation was observed, as PaCO2 remained constant. Overall, there was evidence of numerous challenges created by feeding in a freshwater teleost fish, including the occurrence of an alkaline tide, and its compensation by excretion of base to the external water. The possible influence of feeding ecology and environmental salinity on these challenges, as well as discrepancies in the literature, are discussed.
CEMERLL: The Propagation of an Atmosphere-Compensated Laser Beam to the Apollo 15 Lunar Array
NASA Technical Reports Server (NTRS)
Fugate, R. Q.; Leatherman, P. R.; Wilson, K. E.
1997-01-01
Adaptive optics techniques can be used to realize a robust low bit-error-rate link by mitigating the atmosphere-induced signal fades in optical communications links between ground-based transmitters and deep-space probes.
New coplanar waveguide feed network for 2 x 2 linearly tapered slot antenna subarray
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Perl, Thomas D.; Lee, Richard Q.
1992-01-01
A novel feed method is presently demonstrated for a 2 x 2 linearly tapered slot antenna (LTSA) on the basis of a coplanar-waveguide (CPW)-to-slotline transition and a coax-to-CPW in-phase, four-way power divider. The LTSA subarray exhibits excellent radiation patterns and return-loss characteristics at 18 GHz, and has symmetric beamwidth; its compactness renders it applicable as either a feed for a reflector antenna or as a building-block for large arrays.
Doppler Compensation for Airborne Non-Side-Looking Phased-Array Radar
2015-09-01
Box 1500 Edinburgh South Australia 5111 Australia Telephone: 1300 333 362 Fax: (08) 7389 6567 © Commonwealth of Australia 2013 AR-016...Security and ISR Division Dr Yunhan Dong received his Bachelor and Master degrees in 1980s in China and PhD in 1995 at UNSW, Australia , all in...waveform length, 0λ 0.25 m Bandwidth of LFM 5 MHz Sampling rate 10 MHz Number of array elements, N 25 Number of pulses in a CPI, M 31 Antenna
Food palatability, rheology, and meal patterning.
Mattes, Richard D
2008-01-01
Overweight and obesity are largely of dietary origin and reflect food choice. Food palatability, eating patterns, and food form are important determinants of choice and energy balance. A review of the literature provides a characterization of the roles of these determinants of feeding. Food palatability is the strongest predictor of intake where availability is not limiting. Whether the rewarding properties of palatable items lead to nonhomeostatic feeding and weight gain warrants further study. Positive energy balance is attributed to greater energy intake within eating events but also to a greater extent, increased eating frequency. Although the size and frequency of eating events may compensate for each other, interventions aimed at limiting the latter may be especially productive. One of the most marked dietary trends is an increase of energy derived from beverages. The weak dietary compensation that energy-yielding beverages elicit leads to positive energy balance. This, too, is a promising target for moderating energy intake. A better understanding of dietary factors promoting positive energy balance should reveal strategies for weight management.
The Australian SKA Pathfinder: project update and initial operations
NASA Astrophysics Data System (ADS)
Schinckel, Antony E. T.; Bock, Douglas C.-J.
2016-08-01
The Australian Square Kilometre Array Pathfinder (ASKAP) will be the fastest dedicated cm-wave survey telescope, and will consist of 36 12-meter 3-axis antennas, each with a large chequerboard phased array feed (PAF) receiver operating between 0.7 and 1.8 GHz, and digital beamforming prior to correlation. The large raw data rates involved ( 100 Tb/sec), and the need to do pipeline processing, has led to the antenna incorporating a third axis to fix the parallactic angle with respect to the entire optical system (blockages and phased array feed). It also results in innovative technical solutions to the data transport and processing issues. ASKAP is located at the Murchison Radio-astronomy Observatory (MRO), a new observatory developed for the Square Kilometre Array (SKA), 315 kilometres north-east of Geraldton, Western Australia. The MRO also hosts the SKA low frequency pathfinder instrument, the Murchison Widefield Array and will host the initial low frequency instrument of the SKA, SKA1-Low. Commissioning of ASKAP using six antennas equipped with first-generation PAFs is now complete and installation of second-generation PAFs and digital systems is underway. In this paper we review technical progress and commissioning to date, and refer the reader to relevant technical and scientific publications.
Laser Beam Steering/shaping for Free Space Optical Communication
NASA Technical Reports Server (NTRS)
Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Pouch, John; Miranda, Felix; McManamon, Paul F.
2004-01-01
The 2-D Optical Phased Array (OPA) antenna based on a Liquid Crystal On Silicon (LCoS) device can be considered for use in free space optical communication as an active beam controlling device. Several examples of the functionality of the device include: beam steering in the horizontal and elevation direction; high resolution wavefront compensation in a large telescope; and beam shaping with the computer generated kinoform. Various issues related to the diffraction efficiency, steering range, steering accuracy as well as the magnitude of wavefront compensation are discussed.
Method for enhancing signals transmitted over optical fibers
Ogle, James W.; Lyons, Peter B.
1983-01-01
A method for spectral equalization of high frequency spectrally broadband signals transmitted through an optical fiber. The broadband signal input is first dispersed by a grating. Narrow spectral components are collected into an array of equalizing fibers. The fibers serve as optical delay lines compensating for material dispersion of each spectral component during transmission. The relative lengths of the individual equalizing fibers are selected to compensate for such prior dispersion. The output of the equalizing fibers couple the spectrally equalized light onto a suitable detector for subsequent electronic processing of the enhanced broadband signal.
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.; Shen, B.; Dunn, D.
1992-01-01
The topics covered include the following: (1) performance analysis of the Gregorian tri-reflector; (2) design and performance of the type 6 reflector antenna; (3) a new spherical main reflector system design; (4) optimization of reflector configurations using physical optics; (5) radiometric array design; and (7) beam efficiency studies.
Jin, Huaiping; Chen, Xiangguang; Yang, Jianwen; Wu, Lei; Wang, Li
2014-11-01
The lack of accurate process models and reliable online sensors for substrate measurements poses significant challenges for controlling substrate feeding accurately, automatically and optimally in fed-batch fermentation industries. It is still a common practice to regulate the feeding rate based upon manual operations. To address this issue, a hybrid intelligent control method is proposed to enable automatic substrate feeding. The resulting control system consists of three modules: a presetting module for providing initial set-points; a predictive module for estimating substrate concentration online based on a new time interval-varying soft sensing algorithm; and a feedback compensator using expert rules. The effectiveness of the proposed approach is demonstrated through its successful applications to the industrial fed-batch chlortetracycline fermentation process. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Modelling and Simulation of Single-Phase Series Active Compensator for Power Quality Improvement
NASA Astrophysics Data System (ADS)
Verma, Arun Kumar; Mathuria, Kirti; Singh, Bhim; Bhuvaneshwari, G.
2017-10-01
A single-phase active series compensator is proposed in this work to reduce harmonic currents at the ac mains and to regulate the dc link voltage of a diode bridge rectifier (DBR) that acts as the front end converter for a voltage source inverter feeding an ac motor. This ac motor drive is used in any of the domestic, commercial or industrial appliances. Under fluctuating ac mains voltages, the dc link voltage of the DBR depicts wide variations and hence the ac motor is used at reduced rating as compared to its name-plate rating. The active series compensator proposed here provides dual functions of improving the power quality at the ac mains and regulating the dc link voltage thus averting the need for derating of the ac motor.
Molecular Mechanisms Regulating Temperature Compensation of the Circadian Clock.
Narasimamurthy, Rajesh; Virshup, David M
2017-01-01
An approximately 24-h biological timekeeping mechanism called the circadian clock is present in virtually all light-sensitive organisms from cyanobacteria to humans. The clock system regulates our sleep-wake cycle, feeding-fasting, hormonal secretion, body temperature, and many other physiological functions. Signals from the master circadian oscillator entrain peripheral clocks using a variety of neural and hormonal signals. Even centrally controlled internal temperature fluctuations can entrain the peripheral circadian clocks. But, unlike other chemical reactions, the output of the clock system remains nearly constant with fluctuations in ambient temperature, a phenomenon known as temperature compensation. In this brief review, we focus on recent advances in our understanding of the posttranslational modifications, especially a phosphoswitch mechanism controlling the stability of PER2 and its implications for the regulation of temperature compensation.
1980-06-01
6 dB Stripline Couplers 29 3-4 Properties of Teflon -Fiberglass 30 5-1 Power Consumption for Various Motor Windings 47 5-2 Summary of Flanged 50-Ohm... spacing of 0.62A at the design frequency of 1.3 GHz. The diameter of such an array is nominally 180 inches. The chosen number of array elements is one-half...4 14 that required for a full-sized antenna with the same inter-element spacing . Azimuth patterns were computed for several circular array designs
Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras
Wolf, Alejandro; Pezoa, Jorge E.; Figueroa, Miguel
2016-01-01
Images rendered by uncooled microbolometer-based infrared (IR) cameras are severely degraded by the spatial non-uniformity (NU) noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS) estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘C, when the array’s temperature varies by approximately 15 ∘C. PMID:27447637
Passive magnetic bearing system
Post, Richard F.
2014-09-02
An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.
NASA Astrophysics Data System (ADS)
Jeong-hun, Yang; Chung, Kyoung-Jae; An, YoungHwa; Jung, Bong Ki; Jo, Jong Gab; Hwang, Y. S.
2012-10-01
A dual sensor probe array is designed and constructed for internal magnetic field measurement at Versatile Experiment Spherical Torus (VEST) at the Seoul National University. Simultaneous use of Hall sensors and chip inductors allows cross-calibration among the measurements and compensation for each other's weaknesses while their small sizes are expected to cause only mild plasma perturbations. Calibration of the dual sensor probe array, using a Helmholtz coil, shows good sensitivity for the magnetic field measurement of the VEST. Prior to Ohmic start-up, the magnetic field structure inside the vacuum chamber is measured by using the calibrated probe array. The dual sensor probe array is expected to be useful in analyzing the temporal magnetic field structure change during the magnetic reconnection and in reconstruction of the current profile during the discharge of the VEST device.
Two anaerobic granular activated carbon (GAC) expanded-bed bioreactors were tested as pretreatment units for the decontamination of hazardous leachates containing volatile and semivolatile synthetic organic chemicals (SOCs). The different characteristics of the two leachate feed...
NASA Astrophysics Data System (ADS)
Yan, Liang; Zhang, Lu; Zhu, Bo; Zhang, Jingying; Jiao, Zongxia
2017-10-01
Permanent magnet spherical actuator (PMSA) is a multi-variable featured and inter-axis coupled nonlinear system, which unavoidably compromises its motion control implementation. Uncertainties such as external load and friction torque of ball bearing and manufacturing errors also influence motion performance significantly. Therefore, the objective of this paper is to propose a controller based on a single neural adaptive (SNA) algorithm and a neural network (NN) identifier optimized with a particle swarm optimization (PSO) algorithm to improve the motion stability of PMSA with three-dimensional magnet arrays. The dynamic model and computed torque model are formulated for the spherical actuator, and a dynamic decoupling control algorithm is developed. By utilizing the global-optimization property of the PSO algorithm, the NN identifier is trained to avoid locally optimal solution and achieve high-precision compensations to uncertainties. The employment of the SNA controller helps to reduce the effect of compensation errors and convert the system to a stable one, even if there is difference between the compensations and uncertainties due to external disturbances. A simulation model is established, and experiments are conducted on the research prototype to validate the proposed control algorithm. The amplitude of the parameter perturbation is set to 5%, 10%, and 15%, respectively. The strong robustness of the proposed hybrid algorithm is validated by the abundant simulation data. It shows that the proposed algorithm can effectively compensate the influence of uncertainties and eliminate the effect of inter-axis couplings of the spherical actuator.
A high-precision miniaturized rotating coil transducer for magnetic measurements
Arpaia, P.; Buzio, M.; De Oliveira, R.; ...
2018-02-08
A miniaturized Printed Circuit Board (PCB) sensing coil, jointly developed by CERN and Fermilab for measuring the field of small-gap (less than 10 mm) accelerator magnets, is illustrated. A sensing coil array, with a scheme for compensating the main field when measuring the harmonic error components, hosted on a synthetic sapphire-based transducer, is presented. Key innovating features are (i) very-small size, both for the sensing coil array (thickness of 1.380 mm) and for the transducer (overall diameter of 7.350 mm), (ii) metrological performance, namely accuracy (more than five times better than state of the art), and 1-sigma repeatability (ten timesmore » better on harmonics with amplitude less than 100 ppm), and (iii) manufacturing technology of both the coil array (13 double layers aligned within 10 μm), and the sapphire support (concentricity, the most important uncertainty source for rotating coils, 3 μm of uncertainty, namely one order of magnitude better than fiberglass support). After stating the measurement problem, the design of the transducer and a case study of a two-layer PCB sensor array are also illustrated. Then, the prototyping and quality control of both the sensor and the transducer are discussed. Furthermore, the calibration and the results obtained with a prototype setup at Fermilab are presented. Finally, in the appendix, the theory of the rotating coil, the sensor geometry, and the harmonic compensation are briefly reviewed for the reader easiness.« less
A high-precision miniaturized rotating coil transducer for magnetic measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arpaia, P.; Buzio, M.; De Oliveira, R.
A miniaturized Printed Circuit Board (PCB) sensing coil, jointly developed by CERN and Fermilab for measuring the field of small-gap (less than 10 mm) accelerator magnets, is illustrated. A sensing coil array, with a scheme for compensating the main field when measuring the harmonic error components, hosted on a synthetic sapphire-based transducer, is presented. Key innovating features are (i) very-small size, both for the sensing coil array (thickness of 1.380 mm) and for the transducer (overall diameter of 7.350 mm), (ii) metrological performance, namely accuracy (more than five times better than state of the art), and 1-sigma repeatability (ten timesmore » better on harmonics with amplitude less than 100 ppm), and (iii) manufacturing technology of both the coil array (13 double layers aligned within 10 μm), and the sapphire support (concentricity, the most important uncertainty source for rotating coils, 3 μm of uncertainty, namely one order of magnitude better than fiberglass support). After stating the measurement problem, the design of the transducer and a case study of a two-layer PCB sensor array are also illustrated. Then, the prototyping and quality control of both the sensor and the transducer are discussed. Furthermore, the calibration and the results obtained with a prototype setup at Fermilab are presented. Finally, in the appendix, the theory of the rotating coil, the sensor geometry, and the harmonic compensation are briefly reviewed for the reader easiness.« less
Design of 4x1 microstrip patch antenna array for 5.8 GHz ISM band applications
NASA Astrophysics Data System (ADS)
Valjibhai, Gohil Jayesh; Bhatia, Deepak
2013-01-01
This paper describes the new design of four element antenna array using corporate feed technique. The proposed antenna array is developed on the Rogers 5880 dielectric material. The antenna array works on 5.8 GHz ISM band. The industrial, scientific and medical (ISM) radio bands are radio bands (portions of the radio spectrum) reserved internationally for the use of radio frequency (RF) energy for industrial, scientific and medical purposes other than communications. The array antennas have VSWR < 1.6 from 5.725 - 5.875 GHz. The simulated return loss characteristic of the antenna array is - 39.3 dB at 5.8 GHz. The gain of the antenna array is 12.3 dB achieved. The directivity of the broadside radiation pattern is 12.7 dBi at the 5.8 GHz operating frequency. The antenna array is simulated using High frequency structure simulation software.
Multipass rotary shear comminution process to produce corn stover particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooley, James H; Lanning, David N
A process of comminution of corn stover having a grain direction to produce a mixture of corn stover, by feeding the corn stover in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of corn stover travel.
Parallel and series FED microstrip array with high efficiency and low cross polarization
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1995-01-01
A microstrip array antenna for vertically polarized fan beam (approximately 2 deg x 50 deg) for C-band SAR applications with a physical area of 1.7 m by 0.17 m comprises two rows of patch elements and employs a parallel feed to left- and right-half sections of the rows. Each section is divided into two segments that are fed in parallel with the elements in each segment fed in series through matched transmission lines for high efficiency. The inboard section has half the number of patch elements of the outboard section, and the outboard sections, which have tapered distribution with identical transmission line sections, terminated with half wavelength long open-circuit stubs so that the remaining energy is reflected and radiated in phase. The elements of the two inboard segments of the two left- and right-half sections are provided with tapered transmission lines from element to element for uniform power distribution over the central third of the entire array antenna. The two rows of array elements are excited at opposite patch feed locations with opposite (180 deg difference) phases for reduced cross-polarization.
Dielectric Covered Planar Antennas
NASA Technical Reports Server (NTRS)
Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)
2014-01-01
An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.
The study of microstrip antenna arrays and related problems
NASA Technical Reports Server (NTRS)
Lo, Y. T.
1984-01-01
The physical layout of the array elements and the proximity of the microstrip feed network makes the input impedance and radiation pattern values dependent upon the effects of mutual coupling, feedline discontinuities and feed point location. The extent of these dependences was assessed and a number of single patch and module structures were constructed and measured at an operating frequency of approximately 4.0 GHz. The empirical results were compared with the ones which were theoretically predicted by the cavity model of thin microstrip antennas. Each element was modelled as an independent radiating patch and each microstrip feedline as an independent, quasi-TEM transmission line. The effects of the feedline discontinuities are approximated by lumped L-C circuit models.
Scene-based nonuniformity correction technique for infrared focal-plane arrays.
Liu, Yong-Jin; Zhu, Hong; Zhao, Yi-Gong
2009-04-20
A scene-based nonuniformity correction algorithm is presented to compensate for the gain and bias nonuniformity in infrared focal-plane array sensors, which can be separated into three parts. First, an interframe-prediction method is used to estimate the true scene, since nonuniformity correction is a typical blind-estimation problem and both scene values and detector parameters are unavailable. Second, the estimated scene, along with its corresponding observed data obtained by detectors, is employed to update the gain and the bias by means of a line-fitting technique. Finally, with these nonuniformity parameters, the compensated output of each detector is obtained by computing a very simple formula. The advantages of the proposed algorithm lie in its low computational complexity and storage requirements and ability to capture temporal drifts in the nonuniformity parameters. The performance of every module is demonstrated with simulated and real infrared image sequences. Experimental results indicate that the proposed algorithm exhibits a superior correction effect.
A fourth gradient to overcome slice dependent phase effects of voxel-sized coils in planar arrays.
Bosshard, John C; Eigenbrodt, Edwin P; McDougall, Mary P; Wright, Steven M
2010-01-01
The signals from an array of densely spaced long and narrow receive coils for MRI are complicated when the voxel size is of comparable dimension to the coil size. The RF coil causes a phase gradient across each voxel, which is dependent on the distance from the coil, resulting in a slice dependent shift of k-space. A fourth gradient coil has been implemented and used with the system's gradient set to create a gradient field which varies with slice. The gradients are pulsed together to impart a slice dependent phase gradient to compensate for the slice dependent phase due to the RF coils. However the non-linearity in the fourth gradient which creates the desired slice dependency also results in a through-slice phase ramp, which disturbs normal slice refocusing and leads to additional signal cancelation and reduced field of view. This paper discusses the benefits and limitations of using a fourth gradient coil to compensate for the phase due to RF coils.
Yuan, Tiezhu; Wang, Hongqiang; Cheng, Yongqiang; Qin, Yuliang
2017-01-01
Radar imaging based on electromagnetic vortex can achieve azimuth resolution without relative motion. The present paper investigates this imaging technique with the use of a single receiving antenna through theoretical analysis and experimental results. Compared with the use of multiple receiving antennas, the echoes from a single receiver cannot be used directly for image reconstruction using Fourier method. The reason is revealed by using the point spread function. An additional phase is compensated for each mode before imaging process based on the array parameters and the elevation of the targets. A proof-of-concept imaging system based on a circular phased array is created, and imaging experiments of corner-reflector targets are performed in an anechoic chamber. The azimuthal image is reconstructed by the use of Fourier transform and spectral estimation methods. The azimuth resolution of the two methods is analyzed and compared through experimental data. The experimental results verify the principle of azimuth resolution and the proposed phase compensation method. PMID:28335487
Kessler, Terrance J [Mendon, NY; Bunkenburg, Joachim [Victor, NY; Huang, Hu [Pittsford, NY
2007-02-13
A plurality of gratings (G1, G2) are arranged together with a wavefront sensor, actuators, and feedback system to align the gratings in such a manner, that they operate like a single, large, monolithic grating. Sub-wavelength-scale movements in the mechanical mounting, due to environmental influences, are monitored by an interferometer (28), and compensated by precision actuators (16, 18, 20) that maintain the coherently additive mode. The actuators define the grating plane, and are positioned in response to the wavefronts from the gratings and a reference flat, thus producing the interferogram that contains the alignment information. Movement of the actuators is also in response to a diffraction-limited spot on the CCD (36) to which light diffracted from the gratings is focused. The actuator geometry is implemented to take advantage of the compensating nature of the degrees of freedom between gratings, reducing the number of necessary control variables.
Method and system for enabling real-time speckle processing using hardware platforms
NASA Technical Reports Server (NTRS)
Ortiz, Fernando E. (Inventor); Kelmelis, Eric (Inventor); Durbano, James P. (Inventor); Curt, Peterson F. (Inventor)
2012-01-01
An accelerator for the speckle atmospheric compensation algorithm may enable real-time speckle processing of video feeds that may enable the speckle algorithm to be applied in numerous real-time applications. The accelerator may be implemented in various forms, including hardware, software, and/or machine-readable media.
Development of a Magnetic Nanoparticle Susceptibility Magnitude Imaging Array
Ficko, Bradley W.; Nadar, Priyanka M.; Hoopes, P. Jack; Diamond, Solomon G.
2014-01-01
There are several emerging diagnostic and therapeutic applications of magnetic nanoparticles (mNPs) in medicine. This study examines the potential for developing an mNP imager that meets these emerging clinical needs with a low cost imaging solution that uses arrays of digitally controlled drive coils in a multiple-frequency, continuous-wave operating mode and compensated fluxgate magnetometers. The design approach is described and a mathematical model is developed to support measurement and imaging. A prototype is used to demonstrate active compensation of up to 185 times the primary applied magnetic field, depth sensitivity up to 2.5 cm (p < 0.01), and linearity over 5 dilutions (R2 > 0.98, p <0.001). System frequency responses show distinguishable readouts for iron oxide mNPs with single magnetic domain core diameters of 10 nm and 40 nm, and multi-domain mNPs with a hydrodynamic diameter of 100 nm. Tomographic images show a contrast-to-noise ratio of 23 for 0.5 ml of 12.5 mg Fe/ml mNPs at 1 cm depth. A demonstration involving the injection of mNPs into pork sausage shows the potential for use in biological systems. These results indicate that the proposed mNP imaging approach can potentially be extended to a larger array system with higher-resolution. PMID:24504184
Integrated feeds for electronically reconfigurable apertures
NASA Astrophysics Data System (ADS)
Nicholls, Jeffrey Grant
With the increasing ubiquity of wireless technology, the need for lower-profile, electronically reconfigurable, highly-directive beam-steering antennas is increasing. This thesis proposes a new electronic beam-steering antenna architecture which combines the full-space beam-steering properties of reflectarrays and transmitarrays with the low-profile feeding characteristics of leaky-wave antennas. Two designs are developed: an integrated feed reflectarray and an integrated feed transmitarray, both of which integrate a leaky-wave feed directly next to the reconfigurable aperture itself. The integrated feed transmitarray proved to be the better architecture due to its simpler design and better performance. A 6-by-6 element array was fabricated and experimentally verified, and full-space (both azimuth and elevation) beam-steering was demonstrated at angles up to 45 degrees off broadside. In addition to the reduction in profile, the integrated feed design enables robust fixed control of the amplitude distribution across the aperture, a characteristic not as easily attained in typical reflectarrays/transmitarrays.
Shape calibration of a conformal ultrasound therapy array.
McGough, R J; Cindric, D; Samulski, T V
2001-03-01
A conformal ultrasound phased array prototype with 96 elements was recently calibrated for electronic steering and focusing in a water tank. The procedure for calibrating the shape of this 2D therapy array consists of two steps. First, a least squares triangulation algorithm determines the element coordinates from a 21 x 21 grid of time delays. The triangulation algorithm also requires temperature measurements to compensate for variations in the speed of sound. Second, a Rayleigh-Sommerfeld formulation of the acoustic radiation integral is aligned to a second grid of measured pressure amplitudes in a least squares sense. This shape calibration procedure, which is applicable to a wide variety of ultrasound phased arrays, was tested on a square array panel consisting of 7- x 7-mm elements operating at 617 kHz. The simulated fields generated by an array of 96 equivalent elements are consistent with the measured data, even in the fine structure away from the primary focus and sidelobes. These two calibration steps are sufficient for the simulation model to predict successfully the pressure field generated by this conformal ultrasound phased array prototype.
Waveform synthesis for imaging and ranging applications
Doerry, Armin W.; Dudley, Peter A.; Dubert, Dale F.; Tise, Bertice L.
2004-12-07
Frequency dependent corrections are provided for quadrature imbalance and Local Oscillator (LO) feed-through. An operational procedure filters imbalance and LO feed-through effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver; unwanted energies, such as LO feed-through and/or imbalance energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of LO feed-through and imbalance can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.
Waveform Synthesizer For Imaging And Ranging Applications
Dubbert, Dale F.; Dudley, Peter A.; Doerry, Armin W.; Tise, Bertice L.
2004-12-28
Frequency dependent corrections are provided for Local Oscillator (LO) feed-through. An operational procedure filters LO feed-through effects without prior calibration or equalization. Waveform generation can be adjusted/corrected in a synthetic aperture radar system (SAR), where a rolling phase shift is applied to the SAR's QDWS signal where it is demodulated in a receiver, unwanted energies, such as LO feed-through energy, are separated from a desired signal in Doppler; the separated energy is filtered from the receiver leaving the desired signal; and the separated energy in the receiver is measured to determine the degree of imbalance that is represented by it. Calibration methods can also be implemented into synthesis. The degree of LO feed-through can be used to determine calibration values that can then be provided as compensation for frequency dependent errors in components, such as the QDWS and SSB mixer, affecting quadrature signal quality.
Three-dimensional near-field MIMO array imaging using range migration techniques.
Zhuge, Xiaodong; Yarovoy, Alexander G
2012-06-01
This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.
The Hydrogen Epoch of Reionization Array Dish. I. Beam Pattern Measurements and Science Implications
NASA Astrophysics Data System (ADS)
Neben, Abraham R.; Bradley, Richard F.; Hewitt, Jacqueline N.; DeBoer, David R.; Parsons, Aaron R.; Aguirre, James E.; Ali, Zaki S.; Cheng, Carina; Ewall-Wice, Aaron; Patra, Nipanjana; Thyagarajan, Nithyanandan; Bowman, Judd; Dickenson, Roger; Dillon, Joshua S.; Doolittle, Phillip; Egan, Dennis; Hedrick, Mike; Jacobs, Daniel C.; Kohn, Saul A.; Klima, Patricia J.; Moodley, Kavilan; Saliwanchik, Benjamin R. B.; Schaffner, Patrick; Shelton, John; Taylor, H. A.; Taylor, Rusty; Tegmark, Max; Wirt, Butch; Zheng, Haoxuan
2016-08-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish with simulations and measurements. In this paper, we focus on the angular response (I.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m2 in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ˜ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.
THE HYDROGEN EPOCH OF REIONIZATION ARRAY DISH. I. BEAM PATTERN MEASUREMENTS AND SCIENCE IMPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neben, Abraham R.; Hewitt, Jacqueline N.; Ewall-Wice, Aaron
2016-08-01
The Hydrogen Epoch of Reionization Array (HERA) is a radio interferometer aiming to detect the power spectrum of 21 cm fluctuations from neutral hydrogen from the epoch of reionization (EOR). Drawing on lessons from the Murchison Widefield Array and the Precision Array for Probing the EOR, HERA is a hexagonal array of large (14 m diameter) dishes with suspended dipole feeds. The dish not only determines overall sensitivity, but also affects the observed frequency structure of foregrounds in the interferometer. This is the first of a series of four papers characterizing the frequency and angular response of the dish withmore » simulations and measurements. In this paper, we focus on the angular response (i.e., power pattern), which sets the relative weighting between sky regions of high and low delay and thus apparent source frequency structure. We measure the angular response at 137 MHz using the ORBCOMM beam mapping system of Neben et al. We measure a collecting area of 93 m{sup 2} in the optimal dish/feed configuration, implying that HERA-320 should detect the EOR power spectrum at z ∼ 9 with a signal-to-noise ratio of 12.7 using a foreground avoidance approach with a single season of observations and 74.3 using a foreground subtraction approach. Finally, we study the impact of these beam measurements on the distribution of foregrounds in Fourier space.« less
Method for enhancing signals transmitted over optical fibers
Ogle, J.W.; Lyons, P.B.
1981-02-11
A method for spectral equalization of high frequency spectrally broadband signals transmitted through an optical fiber is disclosed. The broadband signal input is first dispersed by a grating. Narrow spectral components are collected into an array of equalizing fibers. The fibers serve as optical delay lines compensating for material dispersion of each spectral component during transmission. The relative lengths of the individual equalizing fibers are selected to compensate for such prior dispersion. The output of the equalizing fibers couple the spectrally equalized light onto a suitable detector for subsequent electronic processing of the enhanced broadband signal.
SMI adaptive antenna arrays for weak interfering signals
NASA Technical Reports Server (NTRS)
Gupta, I. J.
1987-01-01
The performance of adaptive antenna arrays is studied when a sample matrix inversion (SMI) algorithm is used to control array weights. It is shown that conventional SMI adaptive antennas, like other adaptive antennas, are unable to suppress weak interfering signals (below thermal noise) encountered in broadcasting satellite communication systems. To overcome this problem, the SMI algorithm is modified. In the modified algorithm, the covariance matrix is modified such that the effect of thermal noise on the weights of the adaptive array is reduced. Thus, the weights are dictated by relatively weak coherent signals. It is shown that the modified algorithm provides the desired interference protection. The use of defocused feeds as auxiliary elements of an SMI adaptive array is also discussed.
Detection and imaging of moving objects with SAR by a joint space-time-frequency processing
NASA Astrophysics Data System (ADS)
Barbarossa, Sergio; Farina, Alfonso
This paper proposes a joint spacetime-frequency processing scheme for the detection and imaging of moving targets by Synthetic Aperture Radars (SAR). The method is based on the availability of an array antenna. The signals received by the array elements are combined, in a spacetime processor, to cancel the clutter. Then, they are analyzed in the time-frequency domain, by computing their Wigner-Ville Distribution (WVD), in order to estimate the instantaneous frequency, to be used for the successive phase compensation, necessary to produce a high resolution image.
Laser diode bars based on strain-compensated AlGaPAs/GaAs heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marmalyuk, Aleksandr A; Ladugin, M A; Yarotskaya, I V
2012-01-31
Traditional (in the AlGaAs/GaAs system) and phosphorus-compensated (in the AlGaAs/AlGaPAs/GaAs system) laser heterostructures emitting at a wavelength of 850 nm are grown by MOVPE and studied. Laser diode bars are fabricated and their output characteristics are studied. The method used to grow heterolayers allowed us to control (minimise) mechanical stresses in the AlGaPAs/GaAs laser heterostructure, which made it possible to keep its curvature at the level of the initial curvature of the substrate. It is shown that the use of a compensated AlGaPAs/GaAs heterostructure improves the linear distribution of emitting elements in the near field of laser diode arrays andmore » allows the power - current characteristic to retain its slope at high pump currents owing to a uniform contact of all emitting elements with the heat sink. The radius of curvature of the grown compensated heterostructures turns out to be smaller than that of traditional heterostructures.« less
NASA Technical Reports Server (NTRS)
Loane, J. T.; Bowhill, S. A.; Mayes, P. E.
1982-01-01
The effects of atmospheric turbulence and the basis for the coherent scatter radar techniques are discussed. The reasons are given for upgrading the Radar system to a larger steerable array. Phase array theory pertinent to the system design is reviewed, along with approximations for maximum directive gain and blind angles due to mutual coupling. The methods and construction techniques employed in the UHF model study are explained. The antenna range is described, with a block diagram for the mode of operation used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, W; Hollebeek, R; Teo, B
2014-06-15
Purpose: Quality Assurance (QA) measurements of proton therapy fields must accurately measure steep longitudinal dose gradients as well as characterize the dose distribution laterally. Currently, available devices for two-dimensional field measurements perturb the dose distribution such that routine QA measurements performed at multiple depths require multiple field deliveries and are time consuming. Methods: A design procedure for a two-dimensional detector array is introduced whereby the proton energy loss and scatter are adjusted so that the downstream dose distribution is maintained to be equivalent to that which would occur in uniform water. Starting with the design for an existing, functional two-dimensionalmore » segmented ion chamber prototype, a compensating material is introduced downstream of the detector to simultaneously equate the energy loss and lateral scatter in the detector assembly to the values in water. An analytic formalism and procedure is demonstrated to calculate the properties of the compensating material in the general case of multiple layers of arbitrary material. The resulting design is validated with Monte Carlo simulations. Results: With respect to the specific prototype design considered, the results indicate that a graphite compensating layer of the proper dimensions can yield proton beam range perturbation less than 0.1mm and beam sigma perturbation less than 2% across the energy range of therapeutic proton beams. Conclusion: We have shown that, for a 2D gas-filled detector array, a graphite-compensating layer can balance the energy loss and multiple Coulomb scattering relative to uniform water. We have demonstrated an analytic formalism and procedure to determine a compensating material in the general case of multiple layers of arbitrary material. This work was supported by the US Army Medical Research and Materiel Command under Contract Agreement No. DAMD17-W81XWH-04-2-0022. Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the US Army.« less
Quasi-optical antenna-mixer-array design for terahertz frequencies
NASA Technical Reports Server (NTRS)
Guo, Yong; Potter, Kent A.; Rutledge, David B.
1992-01-01
A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.
Transceiver-Phased Arrays for Human Brain Studies at 7 T
2013-01-01
The paper describes technological advances in high-field (7 T) transceiver-phased arrays developed for magnetic resonance imaging of the human brain. The first part of this work describes an 8-element inductively decoupled split elliptical transceiver-phased array with selectable geometry, which provides an easy and efficient way of compensating for changes in mutual inductive coupling associated with difference in loading due to variability in head shape and size. The second part of the work describes a double-row 16-element (2 × 8) transceiver array to extend the homogeneous transmit B1 profile in the longitudinal direction. Multiplexing eight transmit channels between the two rows of the array provides homogeneous excitation over the entire volume. The final section describes design and construction of a double-tuned 31P/1H 16-element (8 at each frequency) array. The array improves transmission efficiency and B1 homogeneity at 1H frequency in comparison with 31P/1H quadrature transverse electromagnetic volume coil. For 31P studies, the array also improves transmission efficiency (38%), signal-to-noise ratio (SNR) for central brain locations (20%) and provides substantially greater SNR (up to 400%) for peripheral locations. PMID:23516332
The effect of brain size evolution on feeding propensity, digestive efficiency, and juvenile growth.
Kotrschal, Alexander; Corral-Lopez, Alberto; Szidat, Sönke; Kolm, Niclas
2015-11-01
One key hypothesis in the study of brain size evolution is the expensive tissue hypothesis; the idea that increased investment into the brain should be compensated by decreased investment into other costly organs, for instance the gut. Although the hypothesis is supported by both comparative and experimental evidence, little is known about the potential changes in energetic requirements or digestive traits following such evolutionary shifts in brain and gut size. Organisms may meet the greater metabolic requirements of larger brains despite smaller guts via increased food intake or better digestion. But increased investment in the brain may also hamper somatic growth. To test these hypotheses we here used guppy (Poecilia reticulata) brain size selection lines with a pronounced negative association between brain and gut size and investigated feeding propensity, digestive efficiency (DE), and juvenile growth rate. We did not find any difference in feeding propensity or DE between large- and small-brained individuals. Instead, we found that large-brained females had slower growth during the first 10 weeks after birth. Our study provides experimental support that investment into larger brains at the expense of gut tissue carries costs that are not necessarily compensated by a more efficient digestive system. © 2015 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Band-aids for Buchnera and B vitamins for all.
Russell, Jacob A; Oliver, Kerry M; Hansen, Allison K
2017-04-01
Evolution lacks foresight, and hence, key adaptations may produce major challenges over the long run. The natural world is rife with examples of long-term 'side effects' associated with quick-fix tinkering, including blind spots in vertebrate eyes. An important question is how nature compensates for imperfections once evolution has set a course. The symbioses associated with sap-feeding insects present a fascinating opportunity to address this issue. On one hand, the substantial diversity and biomass of sap-feeding insects are largely due to ancient acquisitions of nutrient-provisioning bacterial symbionts. Yet, the insularity and small population sizes enforced by intracellular life and strict maternal transfer inevitably result in the degradation of symbiont genomes and, often, the beneficial services that symbionts provide. Stabilization through lateral transfer of bacterial genes into the host nucleus (often from exogenous sources) or replacement of the long-standing symbiont with a new partner are potential solutions to this evolutionary dilemma (Bennett & Moran ). A third solution is adoption of a cosymbiont that compensates for specific losses in the original resident. Ancient 'co-obligate' symbiont pairs in mealybugs, leafhoppers, cicadas and spittlebugs show colocalization, codiversification, metabolite exchange and generally nonredundant nutrient biosynthesis (Bennett & Moran ). But in this issue, Meseguer et al. () report on a different flavour of cosymbiosis among conifer-feeding Cinara aphids. © 2017 John Wiley & Sons Ltd.
Gu, Luiqi
2017-01-01
Abstract Many animals with genetic sex determination harbor heteromorphic sex chromosomes, where the heterogametic sex has half the gene dose of the homogametic sex. This imbalance, if reflected in the abundance of transcripts or proteins, has the potential to deleteriously disrupt interactions between X-linked and autosomal loci in the heterogametic sex. Classical theory predicts that molecular mechanisms will evolve to provide dosage compensation that recovers expression levels comparable to ancestral expression prior to sex chromosome divergence. Such dosage compensating mechanisms may also, secondarily, result in balanced sex-linked gene expression between males and females. However, numerous recent studies addressing sex chromosome dosage compensation (SCDC) in a diversity of animals have yielded a surprising array of patterns concerning dosage compensation in the heterogametic sex, as well as dosage balance between sexes. These results substantially contradict longstanding theory, catalyzing both novel perspectives and new approaches in dosage compensation research. In this review, we summarize the theory, analytical approaches, and recent results concerning evolutionary patterns of SCDC in animals. We also discuss methodological challenges and discrepancies encountered in this research, which often underlie conflicting results. Finally, we discuss what outstanding questions and opportunities exist for future research on SCDC. PMID:28961969
Simulation of ultrasonic focus aberration and correction through human tissue.
Tabei, Makoto; Mast, T Douglas; Waag, Robert C
2003-02-01
Ultrasonic focusing in two dimensions has been investigated by calculating the propagation of ultrasonic pulses through cross-sectional models of human abdominal wall and breast. Propagation calculations used a full-wave k-space method that accounts for spatial variations in density, sound speed, and frequency-dependent absorption and includes perfectly matched layer absorbing boundary conditions. To obtain a distorted receive wavefront, propagation from a point source through the tissue path was computed. Receive focusing used an angular spectrum method. Transmit focusing was accomplished by propagating a pressure wavefront from a virtual array through the tissue path. As well as uncompensated focusing, focusing that employed time-shift compensation and time-shift compensation after backpropagation was investigated in both transmit and receive and time reversal was investigated for transmit focusing in addition. The results indicate, consistent with measurements, that breast causes greater focus degradation than abdominal wall. The investigated compensation methods corrected the receive focus better than the transmit focus. Time-shift compensation after backpropagation improved the focus from that obtained using time-shift compensation alone but the improvement was less in transmit focusing than in receive focusing. Transmit focusing by time reversal resulted in lower sidelobes but larger mainlobes than the other investigated transmit focus compensation methods.
Lacefield, James C; Pilkington, Wayne C; Waag, Robert C
2004-12-01
The effects of aberration, time-shift compensation, and spatial compounding on the discrimination of positive-contrast lesions in ultrasound b-scan images are investigated using a two-dimensional (2-D) array system and tissue-mimicking phantoms. Images were acquired within an 8.8 x 12-mm2 field of view centered on one of four statistically similar 4-mm diameter spherical lesions. Each lesion was imaged in four planes offset by successive 45 degree rotations about the central scan line. Images of the lesions were acquired using conventional geometric focusing through a water path, geometric focusing through a 35-mm thick distributed aberration phantom, and time-shift compensated transmit and receive focusing through the aberration phantom. The views of each lesion were averaged to form sets of water path, aberrated, and time-shift compensated 4:1 compound images and 16:1 compound images. The contrast ratio and detectability index of each image were computed to assess lesion differentiation. In the presence of aberration representative of breast or abdominal wall tissue, time-shift compensation provided statistically significant improvements of contrast ratio but did not consistently affect the detectability index, and spatial compounding significantly increased the detectability index but did not alter the contrast ratio. Time-shift compensation and spatial compounding thus provide complementary benefits to lesion detection.
Moran, E T; Etches, R J
1983-06-01
Wrolstad Small White toms were implanted with 10 mg of estradiol 17 beta monopalmitate (EMP) at 8 weeks of age. Common corn-soybean meal feeds were given through to 12 weeks, then one-half the birds from control and EMP groups received either an adequate (16% protein, 3166 kcal ME/kg) or high energy-low protein (HE-LP, 12%, 3373 kcal) feed to 14 weeks. No differences in weight gain and feed conversion occurred between EMP and control treatments at 12 weeks but at 14 weeks when the HE-LP diet had been fed the implanted birds performed better than controls. The HE-LP feed led to body weights and feed efficiencies below that of toms given adequate diet. In all cases, EMP elicited male secondary sex characteristics rather than feminization. Processing losses were increased with EMP and when the HE-LP feed had been given. Both treatments also improved finish assessment and were additive to the extent that a substantial increase in grade occurred. Effects on carcass composition, yield of commercial cuts, and cooking loss were small. Implantation, reduced meat yield percentage of breast and thigh. The increase in grade advantage from combining EMP with a feed that forced fat deposition more than compensated for the adverse effects.
NASA Astrophysics Data System (ADS)
Roshi, D. Anish; Shillue, W.; Simon, B.; Warnick, K. F.; Jeffs, B.; Pisano, D. J.; Prestage, R.; White, S.; Fisher, J. R.; Morgan, M.; Black, R.; Burnett, M.; Diao, J.; Ruzindana, M.; van Tonder, V.; Hawkins, L.; Marganian, P.; Chamberlin, T.; Ray, J.; Pingel, N. M.; Rajwade, K.; Lorimer, D. R.; Rane, A.; Castro, J.; Groves, W.; Jensen, L.; Nelson, J. D.; Boyd, T.; Beasley, A. J.
2018-05-01
A new 1.4 GHz, 19-element, dual-polarization, cryogenic phased-array feed (PAF) radio astronomy receiver has been developed for the Robert C. Byrd Green Bank Telescope (GBT) as part of the Focal L-band Array for the GBT (FLAG) project. Commissioning observations of calibrator radio sources show that this receiver has the lowest reported beam-formed system temperature (T sys) normalized by aperture efficiency (η) of any phased-array receiver to date. The measured T sys/η is 25.4 ± 2.5 K near 1350 MHz for the boresight beam, which is comparable to the performance of the current 1.4 GHz cryogenic single-feed receiver on the GBT. The degradation in T sys/η at ∼4‧ (required for Nyquist sampling) and ∼8‧ offsets from the boresight is, respectively, ∼1% and ∼20% of the boresight value. The survey speed of the PAF with seven formed beams is larger by a factor between 2.1 and 7 compared to a single-beam system, depending on the observing application. The measured performance, both in frequency and offset from the boresight, qualitatively agrees with predictions from a rigorous electromagnetic model of the PAF. The astronomical utility of the receiver is demonstrated by observations of the pulsar B0329+54 and an extended H II region, the Rosette Nebula. The enhanced survey speed with the new PAF receiver will enable the GBT to carry out exciting new science, such as more efficient observations of diffuse, extended neutral hydrogen emission from galactic inflows and searches for fast radio bursts.
The study of microstrip antenna arrays and related problems
NASA Technical Reports Server (NTRS)
Lo, Y. T.
1986-01-01
In February, an initial computer program to be used in analyzing the four-element array module was completed. This program performs the analysis of modules composed of four rectangular patches which are corporately fed by a microstrip line network terminated in four identical load impedances. Currently, a rigorous full-wave analysis of various types of microstrip line feed structures and patches is being performed. These tests include the microstrip line feed between layers of different electrical parameters. A method of moments was implemented for the case of a single dielectric layer and microstrip line fed rectangular patches in which the primary source is assumed to be a magnetic current ribbon across the line some distance from the patch. Measured values are compared with those computed by the program.
Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1994-01-01
This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuators and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.
Shape Control of Plates with Piezo Actuators and Collocated Position/Rate Sensors
NASA Technical Reports Server (NTRS)
Balakrishnan, A. V.
1994-01-01
This paper treats the control problem of shaping the surface deformation of a circular plate using embedded piezo-electric actuator and collocated rate sensors. An explicit Linear Quadratic Gaussian (LQG) optimizer stability augmentation compensator is derived as well as the optimal feed-forward control. Corresponding performance evaluation formulas are also derived.
Jiang, Ping; Chiba, Ryosuke; Takakusaki, Kaoru; Ota, Jun
2016-01-01
The development of a physiologically plausible computational model of a neural controller that can realize a human-like biped stance is important for a large number of potential applications, such as assisting device development and designing robotic control systems. In this paper, we develop a computational model of a neural controller that can maintain a musculoskeletal model in a standing position, while incorporating a 120-ms neurological time delay. Unlike previous studies that have used an inverted pendulum model, a musculoskeletal model with seven joints and 70 muscular-tendon actuators is adopted to represent the human anatomy. Our proposed neural controller is composed of both feed-forward and feedback controls. The feed-forward control corresponds to the constant activation input necessary for the musculoskeletal model to maintain a standing posture. This compensates for gravity and regulates stiffness. The developed neural controller model can replicate two salient features of the human biped stance: (1) physiologically plausible muscle activations for quiet standing; and (2) selection of a low active stiffness for low energy consumption. PMID:27655271
Linear array transducer for high-power airborne ultrasound using flextensional structure
NASA Astrophysics Data System (ADS)
Yamamoto, Jun; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro
2015-07-01
To change the direction of ultrasonic irradiation without moving a transducer, a high-power airborne ultrasonic transducer for a one-dimensional phased array system was designed and tested. A flextensional element transducer with higher-mode bending vibration was fabricated to obtain a high vibration amplitude over a wide aperture, where a phase-compensating stepped structure was employed. The width of the main lobe at half maximum and the sidelobe level were measured to be 14.3 deg and 0.78, respectively. The maximal sound pressure of 132 dB (0 dB re. 0.02 mPa) was obtained under the applied voltage of 4.0 V. The beam steering characteristics of a phased array using eight elements were compared with the simple theory.
Imaging spectrometer wide field catadioptric design
Chrisp,; Michael, P [Danville, CA
2008-08-19
A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.
Whole-machine calibration approach for phased array radar with self-test
NASA Astrophysics Data System (ADS)
Shen, Kai; Yao, Zhi-Cheng; Zhang, Jin-Chang; Yang, Jian
2017-06-01
The performance of the missile-borne phased array radar is greatly influenced by the inter-channel amplitude and phase inconsistencies. In order to ensure its performance, the amplitude and the phase characteristics of radar should be calibrated. Commonly used methods mainly focus on antenna calibration, such as FFT, REV, etc. However, the radar channel also contains T / R components, channels, ADC and messenger. In order to achieve on-based phased array radar amplitude information for rapid machine calibration and compensation, we adopt a high-precision plane scanning test platform for phase amplitude test. A calibration approach for the whole channel system based on the radar frequency source test is proposed. Finally, the advantages and the application prospect of this approach are analysed.
Compensation of PVT Variations in ToF Imagers with In-Pixel TDC
Vornicu, Ion; Carmona-Galán, Ricardo; Rodríguez-Vázquez, Ángel
2017-01-01
The design of a direct time-of-flight complementary metal-oxide-semiconductor (CMOS) image sensor (dToF-CIS) based on a single-photon avalanche-diode (SPAD) array with an in-pixel time-to-digital converter (TDC) must contemplate system-level aspects that affect its overall performance. This paper provides a detailed analysis of the impact of process parameters, voltage supply, and temperature (PVT) variations on the time bin of the TDC array. Moreover, the design and characterization of a global compensation loop is presented. It is based on a phase locked loop (PLL) that is integrated on-chip. The main building block of the PLL is a voltage-controlled ring-oscillator (VCRO) that is identical to the ones employed for the in-pixel TDCs. The reference voltage that drives the master VCRO is distributed to the voltage control inputs of the slave VCROs such that their multiphase outputs become invariant to PVT changes. These outputs act as time interpolators for the TDCs. Therefore the compensation scheme prevents the time bin of the TDCs from drifting over time due to the aforementioned factors. Moreover, the same scheme is used to program different time resolutions of the direct time-of-flight (ToF) imager aimed at 3D ranging or depth map imaging. Experimental results that validate the analysis are provided as well. The compensation loop proves to be remarkably effective. The spreading of the TDCs time bin is lowered from: (i) 20% down to 2.4% while the temperature ranges from 0 °C to 100 °C; (ii) 27% down to 0.27%, when the voltage supply changes within ±10% of the nominal value; (iii) 5.2 ps to 2 ps standard deviation over 30 sample chips, due to process parameters’ variation. PMID:28486405
Compensation of PVT Variations in ToF Imagers with In-Pixel TDC.
Vornicu, Ion; Carmona-Galán, Ricardo; Rodríguez-Vázquez, Ángel
2017-05-09
The design of a direct time-of-flight complementary metal-oxide-semiconductor (CMOS) image sensor (dToF-CIS) based on a single-photon avalanche-diode (SPAD) array with an in-pixel time-to-digital converter (TDC) must contemplate system-level aspects that affect its overall performance. This paper provides a detailed analysis of the impact of process parameters, voltage supply, and temperature (PVT) variations on the time bin of the TDC array. Moreover, the design and characterization of a global compensation loop is presented. It is based on a phase locked loop (PLL) that is integrated on-chip. The main building block of the PLL is a voltage-controlled ring-oscillator (VCRO) that is identical to the ones employed for the in-pixel TDCs. The reference voltage that drives the master VCRO is distributed to the voltage control inputs of the slave VCROs such that their multiphase outputs become invariant to PVT changes. These outputs act as time interpolators for the TDCs. Therefore the compensation scheme prevents the time bin of the TDCs from drifting over time due to the aforementioned factors. Moreover, the same scheme is used to program different time resolutions of the direct time-of-flight (ToF) imager aimed at 3D ranging or depth map imaging. Experimental results that validate the analysis are provided as well. The compensation loop proves to be remarkably effective. The spreading of the TDCs time bin is lowered from: (i) 20% down to 2.4% while the temperature ranges from 0 °C to 100 °C; (ii) 27% down to 0.27%, when the voltage supply changes within ±10% of the nominal value; (iii) 5.2 ps to 2 ps standard deviation over 30 sample chips, due to process parameters' variation.
USDA-ARS?s Scientific Manuscript database
Background: In a previously reported genome-wide association study based on a high-density bovine SNP genotyping array, 8 SNP were nominally associated (P=0.003) with average daily gain (ADG) and 3 of these were also associated (P=0.002) with average daily feed intake (ADFI) in a population of c...
Networked Rectenna Array for Smart Material Actuators
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Golembiewski, Walter T.; Song, Kyo D.
2000-01-01
The concept of microwave-driven smart material actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. Networked rectenna patch array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The PAD circuit is imbedded into a single embodiment of rectenna and actuator array. The thin-film microcircuit embodiment of PAD circuit adds insignificant amount of rigidity to membrane flexibility. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time. The features of preliminary design are 16-channel computer control of actuators by a PCI board and the compensator for a power failure or leakage of one or more rectennas.
High-resolution imaging using a wideband MIMO radar system with two distributed arrays.
Wang, Dang-wei; Ma, Xiao-yan; Chen, A-Lei; Su, Yi
2010-05-01
Imaging a fast maneuvering target has been an active research area in past decades. Usually, an array antenna with multiple elements is implemented to avoid the motion compensations involved in the inverse synthetic aperture radar (ISAR) imaging. Nevertheless, there is a price dilemma due to the high level of hardware complexity compared to complex algorithm implemented in the ISAR imaging system with only one antenna. In this paper, a wideband multiple-input multiple-output (MIMO) radar system with two distributed arrays is proposed to reduce the hardware complexity of the system. Furthermore, the system model, the equivalent array production method and the imaging procedure are presented. As compared with the classical real aperture radar (RAR) imaging system, there is a very important contribution in our method that the lower hardware complexity can be involved in the imaging system since many additive virtual array elements can be obtained. Numerical simulations are provided for testing our system and imaging method.
Smith, Kevin B; Abrantes, Antonio A M; Larraza, Andres
2003-06-01
The shallow water acoustic communication channel is characterized by strong signal degradation caused by multipath propagation and high spatial and temporal variability of the channel conditions. At the receiver, multipath propagation causes intersymbol interference and is considered the most important of the channel distortions. This paper examines the application of time-reversal acoustic (TRA) arrays, i.e., phase-conjugated arrays (PCAs), that generate a spatio-temporal focus of acoustic energy at the receiver location, eliminating distortions introduced by channel propagation. This technique is self-adaptive and automatically compensates for environmental effects and array imperfections without the need to explicitly characterize the environment. An attempt is made to characterize the influences of a PCA design on its focusing properties with particular attention given to applications in noncoherent underwater acoustic communication systems. Due to the PCA spatial diversity focusing properties, PC arrays may have an important role in an acoustic local area network. Each array is able to simultaneously transmit different messages that will focus only at the destination receiver node.
Eneli, Ihuoma U.; Tylka, Tracy L.; Hummel, Jessica; Watowicz, Rosanna P.; Perez, Susana A.; Kaciroti, Niko; Lumeng, Julie C.
2015-01-01
In 2011, the Institute of Medicine Early Childhood Prevention Policies Report identified feeding dynamics as an important focus area for childhood obesity prevention and treatment. Feeding dynamics include two central components: (1) caregiver feeding practices (i.e., determining how, when, where, and what they feed their children) and (2) child eating behaviors (i.e., determining how much and what to eat from what food caregivers have provided). Although there has been great interest in overweight and obesity prevention and treatment in young children, they have not focused comprehensively on feeding dynamics. Interventions on feeding dynamics that reduce caregivers’ excessive controlling and restrictive feeding practices and encourage the development of children’s self-regulation of energy intake may hold promise for tackling childhood obesity especially in the young child but currently lack an evidence base. This manuscript describes the rationale and design for a randomized controlled trial designed to compare a group of mothers and their 3-to 5-year old children who received an intervention focused primarily on feeding dynamics called the Feeding Dynamic Intervention (FDI) with a Wait-list Control Group (WLC). The primary aim of the study will be to investigate the efficacy of the FDI for decreasing Eating in the Absence of Hunger (EAH) and improving energy compensation (COMPX). The secondary aim will be to examine the effect of the FDI in comparison to the WLC on maternal self-reported feeding practices and child satiety responsiveness. PMID:25616192
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Takamizawa, K.; Werntz, P.; Lapean, J.; Barts, R.
1991-01-01
The following subject areas are covered: General Reflector Antenna Systems Program version 7(GRASP7); Multiple Reflector Analysis Program for Cylindrical Antennas (MRAPCA); Tri-Reflector 2D Synthesis Code (TRTDS); a geometrical optics and a physical optics synthesis techniques; beam scanning reflector, the type 2 and 6 reflectors, spherical reflector, and multiple reflector imaging systems; and radiometric array design.
Phased array-fed antenna configuration study
NASA Technical Reports Server (NTRS)
Crosswell, W. F.; Ball, D. E.; Taylor, R. C.
1983-01-01
The scope of this contract entails a configuration study for a phased array fed transmit antenna operating in the frequency band of 17.7 to 20.2 GHz. This initial contract provides a basis for understanding the design limitations and advantages of advanced phased array and cluster feeds (both utilizing intergral MMIC modules) illuminating folded reflector optics (both near field and focused types). Design parametric analyses are performed utilizing as constraints the objective secondary performance requirements of the Advanced Communications Technology Satellite (Table 1.0). The output of the study provides design information which serves as a data base for future active phased array fed antenna studies such as detailed designs required to support the development of a ground tested breadboard. In general, this study is significant because it provides the antenna community with an understanding of the basic principles which govern near field phased scanned feed effects on secondary reflector system performance. Although several articles have been written on analysis procedures and results for these systems, the authors of this report have observed phenomenon of near field antenna systems not previously documented. Because the physical justification for the exhibited performance is provided herein, the findings of this study add a new dimension to the available knowledge of the subject matter.
MEMS-Based Solid Propellant Rocket Array Thruster
NASA Astrophysics Data System (ADS)
Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi
The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.
Pang, Jing; Li, Fengzhe; Feng, Xu; Yang, Hua; Han, Le; Fan, Yixuan; Nie, Haitao; Wang, Zhen; Wang, Feng; Zhang, Yanli
2018-03-01
Energy balance is an important feature for spermatozoa production in the testis. The 5'-AMP-activated protein kinase (AMPK) is a sensor of cell energy, has been implicated as a mediator between gonadal function and energy balance. Herein, we intended to determine the physiological effects of AMPK on testicular development in feed energy restricted and compensated pre-pubertal rams. Lambs had restricted feeding for 2 months and then provided compensatory feeding for another 3 months. Feed levels were 100%(control), 15% and 30% of energy restriction (ER) diets, respectively. The results showed that lambs fed the 30% ER diet had significantly lower testicular weight (P < .05) and spermatids number in the seminiferous tubules, but there were no differences between control and 15% ER groups. Meanwhile, 15% ER and 30% ER diets induced testis autophagy and apoptosis through activating AMPK-ULK1(ULK1, Unc-51 like autophagy activating kinase) signal pathway with characterization of increased Beclin-1 and Light chain 3-Ⅱ/Light chain 3-Ⅰ (LC3-II/LC3-I) ratio, up-regulated the ratio of pro-apoptotic Bcl-2-associated X protein (BAX) and anti-apoptotic B-cell lymphoma 2 (Bcl-2), as well as activated AMPK, phosphorylated AMPK(p-AMPK) and ULK1. Furthermore, a compensation of these parameters occurred when the lambs were re-fed with normal energy requirement after restriction. Taken together, dietary energy levels influence testicular development through autophagy and apoptosis interplay mediated by AMPK-ULK1 signal pathway, which also indicates the important role of the actions of AMPK in the testis homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.
Byerly, Mardi S; Fox, Edward A
2006-06-12
Neurotrophin-4 (NT-4) deficient mice exhibit substantial loss of intestinal vagal afferent innervation and short-term deficits in feeding behavior, suggesting reduced satiation. However, they do not show long-term changes in feeding or body weight because of compensatory behaviors. The present study examined whether high-fat hyperphagia induction would overcome compensation and reveal long-term effects associated with the reduced vagal sensory innervation of NT-4 mutants. First, modifications of a feeding schedule previously developed in rats were examined in wild-type mice to identify the regimen most effective at producing hyperphagia. The most successful schedule, which was run for 26 days, included access to a 43%-fat diet and pelleted chow every other day and access to only powdered chow on the alternate days. On high-fat access days mice consumed 25% more calories than mice with continuous daily access to the same high-fat diet and pelleted chow. This feeding regimen also induced hyperphagia in NT-4 deficient mice and their wild-type controls: on high-fat exposure days mutants consumed 35% more calories relative to continuous-access mutants, and wild types ate 25% more than continuous-access wild types. Moreover, on high-fat access days the alternating NT-4 mutants significantly increased caloric intake by 9% compared to alternating wild types. Thus, high-fat hyperphagia appeared to override compensation, permitting short-term changes in meal consumption by mutants that accrued into long-term changes in total daily food intake. This raises the possibility that intestinal vagal sensory innervation contributes to long-term, as well as to short-term regulation of food intake.
Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches
Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Bennett, Nichelle; ...
2014-12-10
A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and post-shot analysis of the experimental results are supported by 3D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface ofmore » the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.« less
NASA Astrophysics Data System (ADS)
Doerner, S.; Kuzmin, A.; Wuensch, S.; Charaev, I.; Boes, F.; Zwick, T.; Siegel, M.
2017-07-01
We demonstrate a 16-pixel array of microwave-current driven superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, which reduces the required number of bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements, we also demonstrate the operation of a 16-pixel array with a temporal, spatial, and photon-number resolution.
NASA Astrophysics Data System (ADS)
Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Narbudowicz, Adam
2017-01-01
A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than -16 dB and mutual coupling of less than -28 dB are achieved at 5.15 GHz WLAN band.
Airborne electronically steerable phased array
NASA Technical Reports Server (NTRS)
1972-01-01
The results are presented of the second stage of a program for the design and development of a phased array capable of simultaneous and separate transmission and reception of radio frequency signals at S-band frequencies. The design goals of this stage were the development of three major areas of interest required for the final prototype model. These areas are the construction and testing of the low-weight, full-scale 128-element array of antenna elements, the development of the RF manifold feed system, and the construction and testing of a working module containing diplexer and transmit and receive circuits.
Computer designed compensation filters for use in radiation therapy. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, R. Jr.
1982-12-01
A computer program was written in the MUMPS language to design filters for use in cancer radiotherapy. The filter corrects for patient surface irregularities and allows homogeneous dose distribution with depth in the patient. The program does not correct for variations in the density of the patient. The program uses data available from the software in Computerized Medical Systems Inc.'s Radiation Treatment Planning package. External contours of General Electric CAT scans are made using the RTP software. The program uses the data from these external contours in designing the compensation filters. The program is written to process from 3 tomore » 31, 1cm thick, CAT scan slices. The output from the program can be in one of two different forms. The first option will drive the probe of a CMS Water Phantom in three dimensions as if it were the bit of a routing machine. Thus a routing machine constructed to run from the same output that drives the Water Phantom probe would produce a three dimensional filter mold. The second option is a listing of thicknesses for an array of aluminum blocks to filter the radiation. The size of the filter array is 10 in. by 10 in. The Printronix printer provides an array of blocks 1/2 in. by 1/2 in. with the thickness in millimeters printed inside each block.« less
Vapor sensing using polymer/carbon black composites in the percolative conduction regime.
Sisk, Brian C; Lewis, Nathan S
2006-08-29
To investigate the behavior of chemiresistive vapor sensors operating below or around the percolation threshold, chemiresistors have been formed from composites of insulating organic polymers and low mass fractions of conductive carbon black (CB, 1-12% w/w). Such sensors produced extremely large relative differential resistance changes above certain threshold vapor concentrations. At high analyte partial pressures, these sensors exhibited better signal/noise characteristics and were typically less mutually correlated in their vapor response properties than composites formed using higher mass fractions of CB in the same set of polymer sorption layers. The responses of the low-mass-fraction CB sensors were, however, less repeatable, and their nonlinear response as a function of analyte concentration required more complicated calibration schemes to identify and quantify analyte vapors to compensate for drift of a sensor array and to compensate for variability in response between sensor arrays. Because of their much larger response signals, the low-mass-fraction CB sensors might be especially well suited for use with low-precision analog-to-digital signal readout electronics. These sensors serve well as a complement to composites formed from higher mass fractions of CB and have yielded insight into the tradeoffs of signal-to-noise improvements vs complexity of signal processing algorithms necessitated by the use of nonlinearly responding detectors in array-based sensing schemes.
Wideband Array for C, X, and Ku-Band Applications with 5.3:1 Bandwidth
NASA Technical Reports Server (NTRS)
Novak, Markus H.; Volakis, John L.; Miranda, Felix A.
2015-01-01
Planar arrays that exploit strong intentional coupling between elements have allowed for very wide bandwidths in low-profile configurations. However, such designs also require complex impedance matching networks that must also be very compact. For many space applications, typically occurring at C-, X-, Ku-, and most recently at Ka-band, such designs require specialized and expensive fabrication techniques. To address this issue, a novel ultra-wideband array is presented, using a simplified feed network to reduce fabrication cost. The array operates from 3.5-18.5 GHz with VSWR less than 2.4 at broadside, and is of very low profile, having a total height of lambda/10 at the lowest frequency of operation. Validation is provided using a 64-element prototype array, fabricated using common Printed Circuit Board (PCB) technology. The low size, weight, and cost of this array make it attractive for space-borne applications.
NASA Technical Reports Server (NTRS)
Delleur, Ann M.; Kerslake, Thomas W.; Levy, Robert K.
2004-01-01
The U.S. solar array strings on the International Space Station are connected to a sequential shunt unit (SSU). The job of the SSU is to shunt, or short, the excess current from the solar array, such that just enough current is provided downstream to maintain the 160-V bus voltage while meeting the power load demand and recharging the batteries. Should an SSU fail on-orbit, it would be removed and replaced with the on-orbit spare during an astronaut space walk or extravehicular activity (EVA) (see the photograph). However, removing an SSU during an orbit Sun period with input solar array power connectors fully energized could result in substantial hardware damage and/or safety risk to the EVA astronaut. The open-circuit voltage of cold solar-array strings can exceed 320 V, and warm solar-array strings could feed a short circuit with a total current level exceeding 240 A.
NGS2: a focal plane array upgrade for the GeMS multiple tip-tilt wavefront sensor
NASA Astrophysics Data System (ADS)
Rigaut, François; Price, Ian; d'Orgeville, Céline; Bennet, Francis; Herrald, Nick; Paulin, Nicolas; Uhlendorf, Kristina; Garrel, Vincent; Sivo, Gaetano; Montes, Vanessa; Trujillo, Chad
2016-07-01
NGS2 is an upgrade for the multi-natural guide star tip-tilt & plate scale wavefront sensor for GeMS (Gemini Multi-Conjugate Adaptive Optics system). It uses a single Nüvü HNü-512 Electron-Multiplied CCD array that spans the entire GeMS wavefront sensor focal plane. Multiple small regions-of-interest are used to enable frame rates up to 800Hz. This set up will improve the optical throughput with respect to the current wavefront sensor, as well as streamline acquisition and allow for distortion compensation.
The concentration principle applied to spaceborne solar arrays. AGORA mission: Studies synthesis
NASA Astrophysics Data System (ADS)
Laget, R.
1986-01-01
Studies that led to selection of the distributed 25 kW SARA LOUVRE concept for the solar cell generator to be flown on the AGORA asteroid mission, and the major characteristics of such a spaceborne solar array are summarized. In the SARA LOUVRE concept, a parabolic cross section reflector concentrates incident light over the rear face of the identical, preceding reflector dish. The whole set of reflectors is pivotally commanded, thus compensating the effects of depointing. Geometric concentration factor is 10. End of life power level at 2.5 AU is 4.5 kW.
Software Compensates Electronic-Nose Readings for Humidity
NASA Technical Reports Server (NTRS)
Zhou, Hanying
2007-01-01
A computer program corrects for the effects of humidity on the readouts of an array of chemical sensors (an "electronic nose"). To enable the use of this program, the array must incorporate an independent humidity sensor in addition to sensors designed to detect analytes other than water vapor. The basic principle of the program was described in "Compensating for Effects of Humidity on Electronic Noses" (NPO-30615), NASA Tech Briefs, Vol. 28, No. 6 (June 2004), page 63. To recapitulate: The output of the humidity sensor is used to generate values that are subtracted from the outputs of the other sensors to correct for contributions of humidity to those readings. Hence, in principle, what remains after corrections are the contributions of the analytes only. The outputs of the non-humidity sensors are then deconvolved to obtain the concentrations of the analytes. In addition, the humidity reading is retained as an analyte reading in its own right. This subtraction of the humidity background increases the ability of the software to identify such events as spills in which contaminants may be present in small concentrations and accompanied by large changes in humidity.
Trumble, S J; Barboza, P S; Castellini, M A
2003-08-01
We hypothesized that increased feeding frequency in captive harbor seals would increase nutrient loads and thus reduce retention time and the digestive efficiency of natural prey. We measured daily feed intake and excretion during 6 feeding trials and fed herring (49% lipid), pollock (22% lipid) or an equal mix of each diet over 24 months. Animals were accustomed to feeding at either high or low frequency. Body mass and intake did not vary with season. Although mean retention times were similar between diets and feeding frequencies, solute and particulate digesta markers separated at high feeding frequency. Consistent dry matter digestibility resulted in greater gut fill from pollock than from herring. Digestible energy intakes from pollock were approximately 25% greater than from either herring or the mixed diet. Lipid digestibility of herring declined from 90% to 50% when lipid intake exceeded 60 g kg(-0.75) day(-1). Our hypothesis of a trade-off between intake and digestion was not supported for protein but was supported for lipid. Results of this study imply that a flexible digestive system for harbor seals can compensate for ingesting prey of lower energy density by increasing gut fill and enhancing protein and lipid assimilation, to sustain digestible energy intake.
Sensor Drift Compensation Algorithm based on PDF Distance Minimization
NASA Astrophysics Data System (ADS)
Kim, Namyong; Byun, Hyung-Gi; Persaud, Krishna C.; Huh, Jeung-Soo
2009-05-01
In this paper, a new unsupervised classification algorithm is introduced for the compensation of sensor drift effects of the odor sensing system using a conducting polymer sensor array. The proposed method continues updating adaptive Radial Basis Function Network (RBFN) weights in the testing phase based on minimizing Euclidian Distance between two Probability Density Functions (PDFs) of a set of training phase output data and another set of testing phase output data. The output in the testing phase using the fixed weights of the RBFN are significantly dispersed and shifted from each target value due mostly to sensor drift effect. In the experimental results, the output data by the proposed methods are observed to be concentrated closer again to their own target values significantly. This indicates that the proposed method can be effectively applied to improved odor sensing system equipped with the capability of sensor drift effect compensation
Current status of the IOTA interferometer
NASA Astrophysics Data System (ADS)
Carleton, Nathaniel P.; Traub, Wesley A.; Lacasse, Marc G.; Nisenson, Peter; Pearlman, Michael R.; Reasenberg, Robert D.; Xu, Xinqi; Coldwell, Charles M.; Panasyuk, Alexander; Benson, James A.; Papaliolios, Costas; Predmore, Read; Schloerb, F. P.; Dyck, H. M.; Gibson, David M.
1994-06-01
The first two telescopes of the Infrared-Optical Telescope Array (IOTA) project are now in place and yielding data at the Smithsonian Institution's F. L. Whipple Observatory on Mt. Hopkins, near Tucson, Arizona. The IOTA collectors are 45 cm in diameter, and may be moved to various stations in an L-shaped configuration with a maximum baseline of 38 m. A third collector will be added as soon as funding permits. Each light-collector assembly consists of a siderostat feeding a stationary afocal Cassegrain telescope that produces a 10-X reduced parallel beam, which is in turn directed vertically downward by a piezo-driven active mirror that stabilizes the ultimate image position. The reduced beams enter an evacuated envelope and proceed to the corner of the array, where they are turned back along one arm for path compensation. The delay line, in one beam, consists of two parts: one dihedral reflector positioned in a slew-and-clamp mode to give the major part of the desired delay; and a second dihedral mounted on an air-bearing carriage to provide the variable delay that is needed. After delay, the beams exit from the vacuum and are directed by dichroic mirrors into the infrared beam-combination and detection system. The visible light passes on to another area, to the image-tracker detectors and the visible-light combination and detection system. The beams are combined in pupil-plane mode on beam splitters. The combined IR beams are conveyed to two cooled single-element InSb detectors. The combined visible-light beams are focussed by lenslet arrays onto multimode optical fibers that lead to the slit of a specially-designed prism spectrometer. For the visible mode, the delay line is run at several wavelengths on one side of the zero- path point, so that several cycles of interference occur across the spectrum. First results were obtained with the IR system, giving visibilities for several K and M stars, using 2.2 micrometers radiation on a N-S baseline of 21.2 m. From these measurements we obtained preliminary estimates of effective stellar diameters in the K band.
NASA Technical Reports Server (NTRS)
Walton, W. T.; Wilheit, T. T.
1981-01-01
Definition studies and baseline design are summarized for the proposed, and now discontinued, LAMMR. The instrument is an offset parabolic reflector with Cassegrain feeds. The three-meter aperture reflector, to be constructed using graphite-epoxy technology, rotates continuously at 0.833 rps. The scan drive subsystem includes momentum compensation for the rotating mass which includes the reflector, the support arm and Cassegrain subreflector, feed horns and radiometer. Two total power radiometers are recommended for each frequency, one each for horizontal and vertical polarizations. The selection plan, definition study specifications, LAMMR performance specifications, and predicted accuracies and resolutions after processing are shown.
Water electrolysis system - H2 and O2 generation. [for spacecraft atmosphere revitalization
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Lee, M. K.; Davenport, R. J.; Quattrone, P. D.
1978-01-01
An oxygen generation system design based on the static feed water electrolysis concept is described. The system is designed to generate 4.20 kg/d of oxygen to satisfy the metabolic needs of a three-person crew, to compensate for spacecraft leakage, and to provide the oxygen required by the electrochemical depolarized CO2 concentrator. The system has a fixed hardware weight of 75 kg, occupies a volume of 0.11 cu m, and requires only 1.1 kw of electrical power. The static feed electrolysis concept is discussed, and experimental data on the high-performance electrode are presented.
Fuel cell with electrolyte feed system
Feigenbaum, Haim
1984-01-01
A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.
NASA Astrophysics Data System (ADS)
Fu, Y.; Brezina, C.; Desch, K.; Poikela, T.; Llopart, X.; Campbell, M.; Massimiliano, D.; Gromov, V.; Kluit, R.; van Beauzekom, M.; Zappon, F.; Zivkovic, V.
2014-01-01
Timepix3 is a newly developed pixel readout chip which is expected to be operated in a wide range of gaseous and silicon detectors. It is made of 256 × 256 pixels organized in a square pixel-array with 55 μm pitch. Oscillators running at 640 MHz are distributed across the pixel-array and allow for a highly accurate measurement of the arrival time of a hit. This paper concentrates on a low-jitter phase locked loop (PLL) that is located in the chip periphery. This PLL provides a control voltage which regulates the actual frequency of the individual oscillators, allowing for compensation of process, voltage, and temperature variations.
Microlens frames for laser diode arrays
Skidmore, J.A.; Freitas, B.L.
1999-07-13
Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.
Microlens frames for laser diode arrays
Skidmore, Jay A.; Freitas, Barry L.
1999-01-01
Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter.
Radial microstrip slotline feed network for circular mobile communications array
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Kelly, Eron S.; Lee, Richard Q.; Taub, Susan R.
1994-01-01
In mobile and satellite communications there is a need for low cost and low profile antennas which have a toroidal pattern. Antennas that have been developed for mobile communications include a L-Band electronically steered stripline phased array, a Ka-Band mechanically steered elliptical reflector antenna and a Ka-Band printed dipole. In addition, a L-Band mechanically steered microstrip array, a L-Band microstrip phased array tracking antenna for mounting on a car roof and an X-Band radial line slotted waveguide antenna have been demonstrated. In the above electronically scanned printed arrays, the individual element radiates normally to the plane of the array and hence require a phase shifter to scan the beam towards the horizon. Scanning in the azimuth is by mechanical or electronic steering. An alternate approach is to mount microstrip patch radiators on the surface of a cone to achieve the required elevation angle. The array then scans in the azimuth by beam switching.
Study of SPM tolerances of electronically compensated DML based systems.
Papagiannakis, I; Klonidis, D; Birbas, Alexios N; Kikidis, J; Tomkos, I
2009-05-25
This paper experimentally investigates the effectiveness of electronic dispersion compensation (EDC) for signals limited by self phase modulation (SPM) and various dispersion levels. The sources considered are low-cost conventional directly modulated lasers (DMLs), fabricated for operation at 2.5 Gb/s but modulated at 10 Gb/s. Performance improvement is achieved by means of electronic feed-forward and decision-feedback equalization (FFE/DFE) at the receiver end. Experimental studies consider both transient and adiabatic chirp dominated DMLs sources. The improvement is evaluated in terms of required optical signal-to-noise ratio (ROSNR) for bit-error-rate (BER) values of 10(-3) versus launch power over uncompensated links of standard single mode fiber (SSMF).
Gao, Changwei; Liu, Xiaoming; Chen, Hai
2017-08-22
This paper focus on the power fluctuations of the virtual synchronous generator(VSG) during the transition process. An improved virtual synchronous generator(IVSG) control strategy based on feed-forward compensation is proposed. Adjustable parameter of the compensation section can be modified to achieve the goal of reducing the order of the system. It can effectively suppress the power fluctuations of the VSG in transient process. To verify the effectiveness of the proposed control strategy for distributed energy resources inverter, the simulation model is set up in MATLAB/SIMULINK platform and physical experiment platform is established. Simulation and experiment results demonstrate the effectiveness of the proposed IVSG control strategy.
Shielded microstrip array for 7T human MR imaging.
Wu, Bing; Wang, Chunsheng; Kelley, Douglas A C; Xu, Duan; Vigneron, Daniel B; Nelson, Sarah J; Zhang, Xiaoliang
2010-01-01
The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or "cable resonance" behavior.
Shielded Microstrip Array for 7T Human MR Imaging
Wu, Bing; Wang, Chunsheng; Kelley, Douglas A. C.; Xu, Duan; Vigneron, Daniel B.; Nelson, Sarah J.
2010-01-01
The high-frequency transceiver array based on the microstrip transmission line design is a promising technique for ultrahigh field magnetic resonance imaging (MRI) signal excitation and reception. However, with the increase of radio-frequency (RF) channels, the size of the ground plane in each microstrip coil element is usually not sufficient to provide a perfect ground. Consequently, the transceiver array may suffer from cable resonance, lower Q-factors, and imaging quality degradations. In this paper, we present an approach to improving the performance of microstrip transceiver arrays by introducing RF shielding outside the microstrip array and the feeding coaxial cables. This improvement reduced interactions among cables, increased resonance stability, and Q-factors, and thus improved imaging quality. An experimental method was also introduced and utilized for quantitative measurement and evaluation of RF coil resonance stability or “cable resonance” behavior. PMID:19822470
250 kA compact linear transformer driver for wire array z-pinch loads
NASA Astrophysics Data System (ADS)
Bott, S. C.; Haas, D. M.; Madden, R. E.; Ueda, U.; Eshaq, Y.; Collins, G., IV; Gunasekera, K.; Mariscal, D.; Peebles, J.; Beg, F. N.; Mazarakis, M.; Struve, K.; Sharpe, R.
2011-05-01
We present the application of a short rise (˜150ns) 250 kA linear transformer driver (LTD) to wire array z-pinch loads for the first time. The generator is a modification of a previous driver in which a new conical power feed provides a low inductance coupling to wire loads. Performance of the new design using both short circuit and plasma loads is presented and discussed. The final design delivers ˜200kA to a wire array load which is in good agreement with SCREAMER calculations using a simplified representative circuit. Example results demonstrate successful experiments using cylindrical, conical, and inverse wire arrays as well as previously published work on x-pinch loads.
High-Isolation Low Cross-Polarization Phased-Array Antenna for MPAR Application
NASA Astrophysics Data System (ADS)
Saeidi-Manesh, Hadi; Karimkashi, Shaya; Zhang, Guifu; Doviak, Richard J.
2017-12-01
The design and analysis of 12 × 12-element planar array of a dual-polarized aperture-coupled microstrip patch antenna operating in the frequency band of 2.7 GHz to 3.0 GHz for multifunction applications are presented. High-isolation between horizontal and vertical polarization ports and low cross-polarization are achieved through an aperture-coupled feed. The reflection coefficient and the isolation of horizontal and vertical ports at different scan angles are examined. The array antenna is fabricated and its radiation patterns are measured in the far-field and near-field chambers. The embedded element pattern of designed element is measured in the near-field chamber and is used for calculating the array scanning radiation pattern.
Method and system for gathering a library of response patterns for sensor arrays
Zaromb, Solomon
1992-01-01
A method of gathering a library of response patterns for one or more sensor arrays used in the detection and identification of chemical components in a fluid includes the steps of feeding samples of fluid with time-spaced separation of known components to the sensor arrays arranged in parallel or series configurations. Modifying elements such as heating filaments of differing materials operated at differing temperatures are included in the configurations to duplicate operational modes designed into the portable detection systems with which the calibrated sensor arrays are to be used. The response patterns from the known components are collected into a library held in the memory of a microprocessor for comparison with the response patterns of unknown components.
NASA Technical Reports Server (NTRS)
Nessel, James A.; Acosta, Robert J.
2010-01-01
Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.
Planar microstrip YAGI antenna array
NASA Technical Reports Server (NTRS)
Huang, John (Inventor)
1993-01-01
A directional microstrip antenna includes a driven patch surrounded by an isolated reflector and one or more coplanar directors, all separated from a ground plane on the order of 0.1 wavelength or less to provide end fire beam directivity without requiring power dividers or phase shifters. The antenna may be driven at a feed point a distance from the center of the driven patch in accordance with conventional microstrip antenna design practices for H-plane coupled or horizontally polarized signals. The feed point for E-plane coupled or vertically polarized signals is at a greater distance from the center than the first distance. This feed point is also used for one of the feed signals for circularly polarized signals. The phase shift between signals applied to feed points for circularly polarized signals must be greater than the conventionally required 90 degrees and depends upon the antenna configuration.
Compensating for missing plot observations inforest inventory estimation
Ronald E. McRoberts
2003-01-01
The Enhanced Forest Inventory and Analysis program of the U.S. Forest Service has established a nationwide array of permanent field plots, each representing approximately 2400 ha. Each plot has been assigned to one of five interpenetrating, nonoverlapping panels, with one panel selected for measurement on a rotating basis each year. As with most large surveys,...
Radiometric calibration of an ultra-compact microbolometer thermal imaging module
NASA Astrophysics Data System (ADS)
Riesland, David W.; Nugent, Paul W.; Laurie, Seth; Shaw, Joseph A.
2017-05-01
As microbolometer focal plane array formats are steadily decreasing, new challenges arise in correcting for thermal drift in the calibration coefficients. As the thermal mass of the cameras decrease the focal plane becomes more sensitive to external thermal inputs. This paper shows results from a temperature compensation algorithm for characterizing and radiometrically calibrating a FLIR Lepton camera.
Coherent Beam Combining of Fiber Amplifiers via LOCSET (Postprint)
2012-07-10
load on final optics , and atmospheric turbulence compensation [20]. More importantly, tiled array systems are being investigated for extension to...compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies. Despite...including: compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies
Torres, Sergio N; Pezoa, Jorge E; Hayat, Majeed M
2003-10-10
What is to our knowledge a new scene-based algorithm for nonuniformity correction in infrared focal-plane array sensors has been developed. The technique is based on the inverse covariance form of the Kalman filter (KF), which has been reported previously and used in estimating the gain and bias of each detector in the array from scene data. The gain and the bias of each detector in the focal-plane array are assumed constant within a given sequence of frames, corresponding to a certain time and operational conditions, but they are allowed to randomly drift from one sequence to another following a discrete-time Gauss-Markov process. The inverse covariance form filter estimates the gain and the bias of each detector in the focal-plane array and optimally updates them as they drift in time. The estimation is performed with considerably higher computational efficiency than the equivalent KF. The ability of the algorithm in compensating for fixed-pattern noise in infrared imagery and in reducing the computational complexity is demonstrated by use of both simulated and real data.
Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI
NASA Astrophysics Data System (ADS)
Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.
2017-06-01
Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.
VizieR Online Data Catalog: UV counterparts in HI clouds using ALFA surveys (Donovan+, 2015)
NASA Astrophysics Data System (ADS)
Donovan Meyer, J.; Peek, J. E. G.; Putman, M.; Grcevich, J.
2017-10-01
GALFA-HI is a survey of Galactic HI conducted with the ALFA seven-beam feed array on the 305 m Arecibo antenna. The survey has both high spatial (FWHM~4') and velocity (0.18 km/s) resolution over 13000 (7520 in DR1) degrees2 of sky between -650 and 650 km/s. Details of the observations and data reduction can be found in Peek et al. (2011ApJS..194...20P). The ALFALFA HI-line survey, now 40% complete, also uses the Arecibo Observatory and its seven-beam feed array to detect potential dwarf galaxies in the vicinity of the Milky Way. The survey, which covers over 7000 (2800 in α.40) deg2 of sky out to 18000 km/s, has the sensitivity to detect 105 Mȯ clouds with 20 km/s linewidths at a distance of 1 Mpc. (2 data files).
Dual frequency, dual polarized, multi-layered microstrip slot and dipole array antenna
NASA Technical Reports Server (NTRS)
Tulintseff, Ann N. (Inventor)
1995-01-01
An antenna array system is disclosed which uses subarrays of slots and subarrays of dipoles on separate planes. The slots and dipoles respectively are interleaved, which is to say there is minimal overlap between them. Each subarray includes a microstrip transmission line and a plurality of elements extending perpendicular thereto. The dipoles form the transmission elements and the slots form the receive elements. The plane in which the slots are formed also forms a ground plane for the dipoles--hence the feed to the dipole is on the opposite side of this ground plane as the feed to the slots. HPAs are located adjacent the dipoles on one side of the substrate and LNAs are located adjacent the slots on the other side of the substrate. The dipoles and slots are tuned by setting different offsets between each element and the microstrip transmission line.
Recursive algorithms for bias and gain nonuniformity correction in infrared videos.
Pipa, Daniel R; da Silva, Eduardo A B; Pagliari, Carla L; Diniz, Paulo S R
2012-12-01
Infrared focal-plane array (IRFPA) detectors suffer from fixed-pattern noise (FPN) that degrades image quality, which is also known as spatial nonuniformity. FPN is still a serious problem, despite recent advances in IRFPA technology. This paper proposes new scene-based correction algorithms for continuous compensation of bias and gain nonuniformity in FPA sensors. The proposed schemes use recursive least-square and affine projection techniques that jointly compensate for both the bias and gain of each image pixel, presenting rapid convergence and robustness to noise. The synthetic and real IRFPA videos experimentally show that the proposed solutions are competitive with the state-of-the-art in FPN reduction, by presenting recovered images with higher fidelity.
Temperature compensated photovoltaic array
Mosher, D.M.
1997-11-18
A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.
Song, Junho; Lucht, Benjamin; Hynynen, Kullervo
2012-07-01
With a change in phased-array configuration from one dimension to two, the electrical impedance of the array elements is substantially increased because of their decreased width (w)-to-thickness (t) ratio. The most common way to compensate for this impedance increase is to employ electrical matching circuits at a high cost of fabrication complexity and effort. In this paper, we introduce a multilayer lateral-mode coupling method for phased-array construction. The direct comparison showed that the electrical impedance of a single-layer transducer driven in thickness mode is 1/(n²(1/(w/t))²) times that of an n-layer lateral mode transducer. A large reduction of the electrical impedance showed the impact and benefit of the lateral-mode coupling method. A one-dimensional linear 32-element 770-kHz imaging array and a 42-element 1.45-MHz high-intensity focused ultrasound (HIFU) phased array were fabricated. The averaged electrical impedances of each element were measured to be 58 Ω at the maximum phase angle of -1.2° for the imaging array and 105 Ω at 0° for the HIFU array. The imaging array had a center frequency of 770 kHz with an averaged -6-dB bandwidth of approximately 52%. For the HIFU array, the averaged maximum surface acoustic intensity was measured to be 32.8 W/cm² before failure.
High Performance Circularly Polarized Microstrip Antenna
NASA Technical Reports Server (NTRS)
Bondyopadhyay, Probir K. (Inventor)
1997-01-01
A microstrip antenna for radiating circularly polarized electromagnetic waves comprising a cluster array of at least four microstrip radiator elements, each of which is provided with dual orthogonal coplanar feeds in phase quadrature relation achieved by connection to an asymmetric T-junction power divider impedance notched at resonance. The dual fed circularly polarized reference element is positioned with its axis at a 45 deg angle with respect to the unit cell axis. The other three dual fed elements in the unit cell are positioned and fed with a coplanar feed structure with sequential rotation and phasing to enhance the axial ratio and impedance matching performance over a wide bandwidth. The centers of the radiator elements are disposed at the corners of a square with each side of a length d in the range of 0.7 to 0.9 times the free space wavelength of the antenna radiation and the radiator elements reside in a square unit cell area of sides equal to 2d and thereby permit the array to be used as a phased array antenna for electronic scanning and is realizable in a high temperature superconducting thin film material for high efficiency.
NASA Astrophysics Data System (ADS)
Paul, Dilip K.; Razdan, Rajender; Goldman, Alfred M.
1996-10-01
Feasibility of photonics in beam forming and steering of large phased-array antennas onboard communications satellite/avionics systems is addressed in this paper. Specifically, a proof-of-concept demonstration of phased- array antenna feed network using fiber optic true time-delay (TTD) elements is reported for SATCOM phased-array antennas operating at C-band. Results of the photonic hardware design and performance analysis, including the measured radiation patterns of the antenna array fed by the photonic BFN, are presented. An excellent agreement between the analysis and measured data has been observed. In addition to being light- weight and compact, several unique characteristics such as rf carrier frequency agility and continuous steerability of the radiated beam achieved by the fiber optic TTD architecture are clear evidences of its superiority over other competing photonic architectures.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal
2015-01-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879
Development of theoretical models of integrated millimeter wave antennas
NASA Technical Reports Server (NTRS)
Yngvesson, K. Sigfrid; Schaubert, Daniel H.
1991-01-01
Extensive radiation patterns for Linear Tapered Slot Antenna (LTSA) Single Elements are presented. The directivity of LTSA elements is predicted correctly by taking the cross polarized pattern into account. A moment method program predicts radiation patterns for air LTSAs with excellent agreement with experimental data. A moment method program was also developed for the task LTSA Array Modeling. Computations performed with this program are in excellent agreement with published results for dipole and monopole arrays, and with waveguide simulator experiments, for more complicated structures. Empirical modeling of LTSA arrays demonstrated that the maximum theoretical element gain can be obtained. Formulations were also developed for calculating the aperture efficiency of LTSA arrays used in reflector systems. It was shown that LTSA arrays used in multibeam systems have a considerable advantage in terms of higher packing density, compared with waveguide feeds. Conversion loss of 10 dB was demonstrated at 35 GHz.
Design of bent waveguide semiconductor lasers using nonlinear equivalent chirp
NASA Astrophysics Data System (ADS)
Li, Lianyan; Shi, Yuechun; Zhang, Yunshan; Chen, Xiangfei
2018-01-01
Reconstruction equivalent chirp (REC) technique is widely used in the design and fabrication of semiconductor laser arrays and tunable lasers with low cost and high wavelength accuracy. Bent waveguide is a promising method to suppress the zeroth order resonance, which is an intrinsic problem in REC technique. However, it may introduce basic grating chirp and deteriorate the single longitudinal mode (SLM) property of the laser. A nonlinear equivalent chirp pattern is proposed in this paper to compensate the grating chirp and improve the SLM property. It will benefit the realization of low-cost Distributed feedback (DFB) semiconductor laser arrays with accurate lasing wavelength.
Kessler, Sébastien; Vlimant, Michèle; Guerin, Patrick M
2015-03-01
Floral nectar is the main source of carbohydrates for many insects including mosquitoes. Nonetheless, the physiological mechanisms underlying feeding on carbohydrates by the Afrotropical malaria mosquito Anopheles gambiae remain poorly understood. Here, we tested whether sugar sensitivity and sugar feeding preferences correlate with longevity in A. gambiae. We also tested whether feeding females on different sugar diets influences their biting behaviours. Electrophysiological recordings show that sugar neurones on the labella of females are most sensitive to sucrose, mixtures of glucose and fructose, and to melezitose; other sugars tested, including glucose and fructose presented alone, only weakly activate these taste neurones. Mosquitoes survive longest on sucrose, the most preferred sugar. Whereas feeding on a mixture of glucose and fructose is preferred over fructose or glucose alone, fructose supports higher longevity than either glucose or the mixture of the two hexoses. Females that had previously fed on glucose show a stronger biting response than those fed on sucrose, perhaps in an effort to compensate for their lower energetic state. These findings contribute to our understanding of the physiological basis of sugar feeding in A. gambiae and indicate how the sugar diet can affect laboratory-reared A. gambiae biting behaviours.
2014-08-01
AFRL-RQ-WP-TR-2014-0212 University of South Carolina Department of Electrical Engineering Columbia, SC 29208 Structures Technology Branch...S2603-04-C01. Cleared for Public Release - Case Number: . Nicholas Bishop and M. Ali are with the Department of Electrical Engineering, University of...Lower substrate Upper substrate Foam core Coax Feed tube LPDA traces Coax inner conductor Feed tube Copper plate Input 88ABW-2014-3668, 8
Feeding ecology of sandhill cranes during spring migration in Nebraska
Reinecke, K.J.; Krapu, G.L.
1986-01-01
We studied the food habits of midcontinent sandhill cranes (Grus canadensis) during spring 1978 and 1979 at their primary staging area along the Platte River and compared population food and foraging habitat requirements with availability. Crane diets varied among the 3 principal foraging habitats, but not between sexes, ages, or years. Cranes feeding in cornfields ate >99% corn (total dry wt); those feeding in native grasslands and alfalfa fields consumed 79-99% invertebrates. The composite diet of cranes was 97% corn and 3% invertebrates, including 2% earthworms, 0.5% snails, and 0.5% insects. Presumably, corn provided energy, whereas invertebrates from grasslands and alfalfa fields provided supplemental nutrients to compensate for protein and calcium deficiencies in corn. The mean density of waste corn decreased (P 50%. Management by burning, haying, and grazing is compatible with crane use of grasslands, and reduced-till farming could benefit cranes by increasing invertebrate populations.
SWIFT BAT Loop Heat Pipe Thermal System Characteristics and Ground/Flight Operation Procedure
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2003-01-01
The SWIFT Burst Alert Telescope (BAT) Detector Array has a total power dissipation of 208 W. To meet the stringent temperature gradient and thermal stability requirements in the normal operational mode, and heater power budget in both the normal operational and safehold modes, the Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate (DAP), and two loop heat pipes (LHPs) transport heat fiom the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array XA1 ASIC temperatures. The radiator has the AZ-Tek AZW-LA-II low-alpha white paint as the thermal coating and is located on the anti-sun side of the spacecraft. This paper presents the characteristics, ground operation and flight operation procedures of the LHP thermal system.
Molecular Occupancy of Nanodot Arrays.
Cai, Haogang; Wolfenson, Haguy; Depoil, David; Dustin, Michael L; Sheetz, Michael P; Wind, Shalom J
2016-04-26
Single-molecule nanodot arrays, in which a biomolecule of choice (protein, nucleic acid, etc.) is bound to a metallic nanoparticle on a solid substrate, are becoming an increasingly important tool in the study of biomolecular and cellular interactions. We have developed an on-chip measurement protocol to monitor and control the molecular occupancy of nanodots. Arrays of widely spaced nanodots and nanodot clusters were fabricated on glass surfaces by nanolithography and functionalized with fluorescently labeled proteins. The molecular occupancy was determined by monitoring individual fluorophore bleaching events, while accounting for fluorescence quenching effects. We found that the occupancy can be interpreted as a packing problem, and depends on nanodot size and binding ligand concentration, where the latter is easily adjusted to compensate the flexibility of dimension control in nanofabrication. The results are scalable with nanodot cluster size, extending to large area close packed arrays. As an example, the nanoarray platform was used to probe the geometric requirement of T-cell activation at the single-molecule level.
Adaptive array antenna for satellite cellular and direct broadcast communications
NASA Technical Reports Server (NTRS)
Horton, Charles R.; Abend, Kenneth
1993-01-01
Adaptive phased-array antennas provide cost-effective implementation of large, light weight apertures with high directivity and precise beamshape control. Adaptive self-calibration allows for relaxation of all mechanical tolerances across the aperture and electrical component tolerances, providing high performance with a low-cost, lightweight array, even in the presence of large physical distortions. Beam-shape is programmable and adaptable to changes in technical and operational requirements. Adaptive digital beam-forming eliminates uplink contention by allowing a single electronically steerable antenna to service a large number of receivers with beams which adaptively focus on one source while eliminating interference from others. A large, adaptively calibrated and fully programmable aperture can also provide precise beam shape control for power-efficient direct broadcast from space. Advanced adaptive digital beamforming technologies are described for: (1) electronic compensation of aperture distortion, (2) multiple receiver adaptive space-time processing, and (3) downlink beam-shape control. Cost considerations for space-based array applications are also discussed.
Coherent beam combining of collimated fiber array based on target-in-the-loop technique
NASA Astrophysics Data System (ADS)
Li, Xinyang; Geng, Chao; Zhang, Xiaojun; Rao, Changhui
2011-11-01
Coherent beam combining (CBC) of fiber array is a promising way to generate high power and high quality laser beams. Target-in-the-loop (TIL) technique might be an effective way to ensure atmosphere propagation compensation without wavefront sensors. In this paper, we present very recent research work about CBC of collimated fiber array using TIL technique at the Key Lab on Adaptive Optics (KLAO), CAS. A novel Adaptive Fiber Optics Collimator (AFOC) composed of phase-locking module and tip/tilt control module was developed. CBC experimental setup of three-element fiber array was established. Feedback control is realized using stochastic parallel gradient descent (SPGD) algorithm. The CBC based on TIL with piston and tip/tilt correction simultaneously is demonstrated. And the beam pointing to locate or sweep position of combined spot on target was achieved through TIL technique too. The goal of our work is achieve multi-element CBC for long-distance transmission in atmosphere.
Cryogenic Design of the Setup for MARE-1 in Milan
NASA Astrophysics Data System (ADS)
Schaeffer, D.; Arnaboldi, C.; Ceruti, G.; Ferri, E.; Kilbourne, C.; Kraft-Bermuth, S.; Margesin, B.; McCammon, D.; Monfardini, A.; Nucciotti, A.; Pessina, G.; Previtali, E.; Sisti, M.
2008-05-01
A large worldwide collaboration is growing around the project of Micro-calorimeter Arrays for a Rhenium Experiment (MARE) for a direct calorimetric measurement of the neutrino mass. To validate the use of cryogenic detectors by checking the presence of unexpected systematic errors, two first experiments are planned using the available techniques composed of arrays of 300 detectors to measure 1010 events in a reasonable time of 3 years (step MARE-1) to reach a sensitivity on the neutrino mass of ˜2 eV/c2. Our experiment in Milan is based on compensated doped silicon implanted thermistor arrays made in NASA/GSFC and on AgReO4 crystals. We present here the design of the cryogenic system that integrates all the requirements for such experiment (electronics for high impedances, low parasitic capacitances, low micro-phonic noise).
Mauky, Eric; Weinrich, Sören; Jacobi, Hans-Fabian; Nägele, Hans-Joachim; Liebetrau, Jan; Nelles, Michael
2017-08-01
For future energy supply systems with high proportions from renewable energy sources, biogas plants are a promising option to supply demand-driven electricity to compensate the divergence between energy demand and energy supply by uncontrolled sources like wind and solar. Apart expanding gas storage capacity a demand-oriented feeding with the aim of flexible gas production can be an effective alternative. The presented study demonstrated a high degree of intraday flexibility (up to 50% compared to the average) and a potential for an electricity shutdown of up to 3 days (decreasing gas production by more than 60%) by flexible feeding in full-scale. Furthermore, the long-term process stability was not affected negatively due to the flexible feeding. The flexible feeding resulted in a variable rate of gas production and a dynamic progression of individual acids and the respective pH-value. In consequence, a demand-driven biogas production may enable significant savings in terms of the required gas storage volume (up to 65%) and permit far greater plant flexibility compared to constant gas production. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Adaptive control of servo system based on LuGre model
NASA Astrophysics Data System (ADS)
Jin, Wang; Niancong, Liu; Jianlong, Chen; Weitao, Geng
2018-03-01
This paper established a mechanical model of feed system based on LuGre model. In order to solve the influence of nonlinear factors on the system running stability, a nonlinear single observer is designed to estimate the parameter z in the LuGre model and an adaptive friction compensation controller is designed. Simulink simulation results show that the control method can effectively suppress the adverse effects of friction and external disturbances. The simulation show that the adaptive parameter kz is between 0.11-0.13, and the value of gamma1 is between 1.9-2.1. Position tracking error reaches level 10-3 and is stabilized near 0 values within 0.3 seconds, the compensation method has better tracking accuracy and robustness.
White, R G; Lawler, J P
2002-11-01
Digestion and metabolism of woody and leafy browse requires detoxification of plant secondary compounds that can incur an energy cost. Browse, however, inhibits methane (CH(4)) production and therefore could offset some costs of detoxification. We measured an index of heat increment of feeding (HIFi) and CH(4) production in muskoxen (Ovibos moschatus) given a single test meal (at 10 g/kg BM(0.75)) composed of hay mixed with one of three browse species (Willow: Salix alaxensis, S. pulchra; Birch: Betula nana). Detoxification cost was estimated as HIFi of browse diet-HIFi of hay diet and CH(4) compensation as CH(4) production of hay diet-CH(4) production of browse diet. CH(4) compensation was noted in 47% of 15 trials in which a detoxification cost was evident; six trials were with woody browse and one with leafy browse. Separate controls were responsible for the difference in CH(4) compensation for leafy browse vs. woody browse. Detoxification costs for twigs and leaves of B. nana were underestimated because of their low digestibility. In only one of six treatments was CH(4) compensation documented for B. nana. We conclude that energy saved by CH(4) suppression was small (<6%) compared with detoxification costs.
Large-Aperture Membrane Active Phased-Array Antennas
NASA Technical Reports Server (NTRS)
Karasik, Boris; McGrath, William; Leduc, Henry
2009-01-01
Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for this article, an 8 16 passive array (not including T/R modules) and a 2 4 active array (including T/R modules) had been demonstrated, and it was planned to fabricate and test larger arrays.
Adaptive spatial combining for passive time-reversed communications.
Gomes, João; Silva, António; Jesus, Sérgio
2008-08-01
Passive time reversal has aroused considerable interest in underwater communications as a computationally inexpensive means of mitigating the intersymbol interference introduced by the channel using a receiver array. In this paper the basic technique is extended by adaptively weighting sensor contributions to partially compensate for degraded focusing due to mismatch between the assumed and actual medium impulse responses. Two algorithms are proposed, one of which restores constructive interference between sensors, and the other one minimizes the output residual as in widely used equalization schemes. These are compared with plain time reversal and variants that employ postequalization and channel tracking. They are shown to improve the residual error and temporal stability of basic time reversal with very little added complexity. Results are presented for data collected in a passive time-reversal experiment that was conducted during the MREA'04 sea trial. In that experiment a single acoustic projector generated a 24-PSK (phase-shift keyed) stream at 200400 baud, modulated at 3.6 kHz, and received at a range of about 2 km on a sparse vertical array with eight hydrophones. The data were found to exhibit significant Doppler scaling, and a resampling-based preprocessing method is also proposed here to compensate for that scaling.
Yang, Qianru; Domesle, Kelly J.
2018-01-01
Abstract Loop-mediated isothermal amplification (LAMP) has become a powerful alternative to polymerase chain reaction (PCR) for pathogen detection in clinical specimens and food matrices. Nontyphoidal Salmonella is a zoonotic pathogen of significant food and feed safety concern worldwide. The first study employing LAMP for the rapid detection of Salmonella was reported in 2005, 5 years after the invention of the LAMP technology in Japan. This review provides an overview of international efforts in the past decade on the development and application of Salmonella LAMP assays in a wide array of food and feed matrices. Recent progress in assay design, platform development, commercial application, and method validation is reviewed. Future perspectives toward more practical and wider applications of Salmonella LAMP assays in food and feed testing are discussed. PMID:29902082
Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men.
Brøns, Charlotte; Jensen, Christine B; Storgaard, Heidi; Hiscock, Natalie J; White, Andrew; Appel, Julie S; Jacobsen, Stine; Nilsson, Emma; Larsen, Claus M; Astrup, Arne; Quistorff, Bjørn; Vaag, Allan
2009-05-15
A high-fat, high-calorie diet is associated with obesity and type 2 diabetes. However, the relative contribution of metabolic defects to the development of hyperglycaemia and type 2 diabetes is controversial. Accumulation of excess fat in muscle and adipose tissue in insulin resistance and type 2 diabetes may be linked with defective mitochondrial oxidative phosphorylation. The aim of the current study was to investigate acute effects of short-term fat overfeeding on glucose and insulin metabolism in young men. We studied the effects of 5 days' high-fat (60% energy) overfeeding (+50%) versus a control diet on hepatic and peripheral insulin action by a hyperinsulinaemic euglycaemic clamp, muscle mitochondrial function by (31)P magnetic resonance spectroscopy, and gene expression by qrt-PCR and microarray in 26 young men. Hepatic glucose production and fasting glucose levels increased significantly in response to overfeeding. However, peripheral insulin action, muscle mitochondrial function, and general and specific oxidative phosphorylation gene expression were unaffected by high-fat feeding. Insulin secretion increased appropriately to compensate for hepatic, and not for peripheral, insulin resistance. High-fat feeding increased fasting levels of plasma adiponectin, leptin and gastric inhibitory peptide (GIP). High-fat overfeeding increases fasting glucose levels due to increased hepatic glucose production. The increased insulin secretion may compensate for hepatic insulin resistance possibly mediated by elevated GIP secretion. Increased insulin secretion precedes the development of peripheral insulin resistance, mitochondrial dysfunction and obesity in response to overfeeding, suggesting a role for insulin per se as well GIP, in the development of peripheral insulin resistance and obesity.
Capuchins, space, time and memory: an experimental test of what-where-when memory in wild monkeys
2016-01-01
There is considerable controversy about the existence, extent and adaptive value of integrated multimodal memory in non-human animals. Building on prior results showing that wild capuchin monkeys in Argentina appear to recall both the location and amount of food at patches they had previously visited, I tested whether they also track and use elapsed time as a basis for decisions about which feeding patches to visit. I presented them with an experimental array of eight feeding sites, at each of which food rewards increased with increasing elapsed time since the previous visit, similar to the pattern of ripe fruit accumulation in natural feeding trees. Over the course of 68 days, comprising two distinct renewal rate treatments, one group repeatedly visited sites in the feeding array, generating 212 valid choices between sites. Comparison of observations against simulated movements and multinomial statistical models shows that the monkeys' choices were most consistent with dynamic memory for elapsed time specific to each of the eight sites. Thus, it appears that capuchin monkeys possess and use integrated memories of prior food patch use, including where the patch is relative to their current location, how productive the patch is and how long it has been since they last visited the patch. Natural selection to use such integrated memories in foraging tasks may provide an ecologically relevant basis for the evolution of complex intelligence in primates. PMID:27708145
Gamma-insensitive optical sensor
Kruger, Hans W.
1994-01-01
An ultra-violet/visible/infra-red gamma-insensitive gas avalanche focal plane array comprising a planar photocathode and a planar anode pad array separated by a gas-filled gap and across which is applied an electric potential. Electrons ejected from the photocathode are accelerated sufficiently between collisions with the gas molecules to ionize them, forming an electron avalanche. The gap acts like a proportional counter. The array of anode pad are mounted on the front of an anode plate and are connected to matching contact pads on the back of the anode via feed through wires. Connection of the anode to signal processing electronics is made from the contact pads using standard indium bump techniques, for example.
Reimers, Marcel; Lang, Walter; Dumstorff, Gerrit
2017-09-30
The purpose of our study is to investigate the heat distribution and the occurring temperatures during grinding. Therefore, we did both experimental and numerical investigations. In the first part, we present the integration of an infrared thermopile array in a steel workpiece. Experiments are done by acquiring data from the thermopile array during grinding of a groove in a workpiece made of steel. In the second part, we present numerical investigations in the grinding process to further understand the thermal characteristic during grinding. Finally, we conclude our work. Increasing the feed speed leads to two things: higher heat flux densities in the workpiece and higher temperature gradients in the material.
Ka-Band Digital Beamforming and SweepSAR Demonstration for Ice and Solid Earth Topography
NASA Technical Reports Server (NTRS)
Sadowy, Gregory; Ghaemi, Hirad; Heavy, Brandon; Perkovic, Dragana; Quddus, Momin; Zawadzki, Mark; Moller, Delwyn
2010-01-01
GLISTIN is an instrument concept for a single-pass interferometric SAR operating at 35.6 GHz. To achieve large swath widths using practical levels of transmitter power, a digitally-beamformed planar waveguide array is used. This paper describes results from a ground-based demonstration of a 16-receiver prototype. Furthermore, SweepSAR is emerging as promising technique for achieving very wide swaths for surface change detection. NASA and DLR are studying this approach for the DESDynI and Tandem-L missions. SweepSAR employs a reflector with a digitally-beamformed array feed. We will describe development of an airborne demonstration of SweepSAR using the GLISTIN receiver array and a reflector.
Reimers, Marcel; Lang, Walter; Dumstorff, Gerrit
2017-01-01
The purpose of our study is to investigate the heat distribution and the occurring temperatures during grinding. Therefore, we did both experimental and numerical investigations. In the first part, we present the integration of an infrared thermopile array in a steel workpiece. Experiments are done by acquiring data from the thermopile array during grinding of a groove in a workpiece made of steel. In the second part, we present numerical investigations in the grinding process to further understand the thermal characteristic during grinding. Finally, we conclude our work. Increasing the feed speed leads to two things: higher heat flux densities in the workpiece and higher temperature gradients in the material. PMID:28973978
Kim, Jung Eun; Phuntsho, Sherub; Ali, Syed Muztuza; Choi, Joon Young; Shon, Ho Kyong
2018-01-01
This study evaluates various options for full-scale modular configuration of forward osmosis (FO) process for osmotic dilution of seawater using wastewater for simultaneous desalination and water reuse through FO-reverse osmosis (RO) hybrid system. Empirical relationship obtained from one FO membrane element operation was used to simulate the operational performances of different FO module configurations. The main limiting criteria for module operation is to always maintain the feed pressure higher than the draw pressure throughout the housing module for safe operation without affecting membrane integrity. Experimental studies under the conditions tested in this study show that a single membrane housing cannot accommodate more than four elements as the draw pressure exceeds the feed pressure. This then indicates that a single stage housing with eight elements is not likely to be practical for safe FO operation. Hence, six different FO modular configurations were proposed and simulated. A two-stage FO configuration with multiple housings (in parallel) in the second stage using same or larger spacer thickness reduces draw pressure build-up as the draw flow rates are reduced to half in the second stage thereby allowing more than four elements in the second stage housing. The loss of feed pressure (pressure drop) and osmotic driving force in the second stage are compensated by operating under the pressure assisted osmosis (PAO) mode, which helps enhance permeate flux and maintains positive pressure differences between the feed and draw chamber. The PAO energy penalty is compensated by enhanced permeate throughput, reduced membrane area, and plant footprint. The contribution of FO/PAO to total energy consumption was not significant compared to post RO desalination (90%) indicating that the proposed two-stage FO modular configuration is one way of making the FO full-scale operation practical for FO-RO hybrid system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of an acute fast on energy compensation and feeding behaviour in lean men and women.
Johnstone, A M; Faber, P; Gibney, E R; Elia, M; Horgan, G; Golden, B E; Stubbs, R J
2002-12-01
Humans appear to defend against energy deficit to a greater extent than energy surplus. Severe dietary energy restriction resulting in 5-30% weight loss often leads to hyperphagia and weight regain in lean subjects. However, the period of time over which fasting is often endured in Western society are far shorter, approximately 1-2 days. This study examined how a 36 h fast effected the subsequent day's energy and nutrient intake in a group of 24 healthy, lean men and women. Subjects underwent two 2 day treatments, termed 'fast' and 'maintenance'. During the 'fast' treatment, subjects were fed a maintenance diet on the day prior to the fast (day -1) to prevent overeating. They then consumed non-energy drinks only, from 20:00 h on day -1 to 08:00 h on day 2 (ad libitum feeding day), thus fasting for 36 h. On the 'maintenance' protocol, subjects received a maintenance diet throughout day 1. Throughout day 2 they had ad libitum access to a range of familiar foods, which were the same for both treatments. Body weight, blood glucose and respiratory quotient were used as compliance checks. Hunger was monitored on day's -1, 1 and 2 for the fast treatment only. On day 2, average energy intake was 10.2 vs 12.2 MJ/day (s.e.d. 1.0) on the post-maintenance and post-fast periods, respectively (P=0.049). Subjects altered feeding behaviour, in response to the fast, only at breakfast time, selecting a higher-fat meal (P<0.005). Compared to day -1, motivation to eat was elevated during the fast (P<0.05). This continued until breakfast was consumed during the re-feeding period (day 2), when values then returned to baseline. These data suggest that a 36 h fast, which generated a negative energy balance of approximately 12 MJ, did not induce a powerful, unconditioned stimulus to compensate on the subsequent day.
Temperature compensated photovoltaic array
Mosher, Dan Michael
1997-11-18
A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.
Automatic measurement of target crossing speed
NASA Astrophysics Data System (ADS)
Wardell, Mark; Lougheed, James H.
1992-11-01
The motion of ground vehicle targets after a ballistic round is launched can be a major source of inaccuracy for small (handheld) anti-armour weapon systems. A method of automatically measuring the crossing component to compensate the fire control solution has been devised and tested against various targets in a range of environments. A photodetector array aligned with the sight's horizontal reticle obtains scene features, which are digitized and processed to separate target from sight motion. Relative motion of the target against the background is briefly monitored to deduce angular crossing rate and a compensating lead angle is introduced into the aim point. Research to gather quantitative data and optimize algorithm performance is described, and some results from field testing are presented.
NASA Astrophysics Data System (ADS)
Diodato, A.; Cafarelli, A.; Schiappacasse, A.; Tognarelli, S.; Ciuti, G.; Menciassi, A.
2018-02-01
High intensity focused ultrasound (HIFU) is an emerging therapeutic solution that enables non-invasive treatment of several pathologies, mainly in oncology. On the other hand, accurate targeting of moving abdominal organs (e.g. liver, kidney, pancreas) is still an open challenge. This paper proposes a novel method to compensate the physiological respiratory motion of organs during HIFU procedures, by exploiting a robotic platform for ultrasound-guided HIFU surgery provided with a therapeutic annular phased array transducer. The proposed method enables us to keep the same contact point between the transducer and the patient’s skin during the whole procedure, thus minimizing the modification of the acoustic window during the breathing phases. The motion of the target point is compensated through the rotation of the transducer around a virtual pivot point, while the focal depth is continuously adjusted thanks to the axial electronically steering capabilities of the HIFU transducer. The feasibility of the angular motion compensation strategy has been demonstrated in a simulated respiratory-induced organ motion environment. Based on the experimental results, the proposed method appears to be significantly accurate (i.e. the maximum compensation error is always under 1 mm), thus paving the way for the potential use of this technique for in vivo treatment of moving organs, and therefore enabling a wide use of HIFU in clinics.
Array servo scanning micro EDM of 3D micro cavities
NASA Astrophysics Data System (ADS)
Tong, Hao; Li, Yong; Yi, Futing
2011-05-01
Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.
Self-Adaptive System based on Field Programmable Gate Array for Extreme Temperature Electronics
NASA Technical Reports Server (NTRS)
Keymeulen, Didier; Zebulum, Ricardo; Rajeshuni, Ramesham; Stoica, Adrian; Katkoori, Srinivas; Graves, Sharon; Novak, Frank; Antill, Charles
2006-01-01
In this work, we report the implementation of a self-adaptive system using a field programmable gate array (FPGA) and data converters. The self-adaptive system can autonomously recover the lost functionality of a reconfigurable analog array (RAA) integrated circuit (IC) [3]. Both the RAA IC and the self-adaptive system are operating in extreme temperatures (from 120 C down to -180 C). The RAA IC consists of reconfigurable analog blocks interconnected by several switches and programmable by bias voltages. It implements filters/amplifiers with bandwidth up to 20 MHz. The self-adaptive system controls the RAA IC and is realized on Commercial-Off-The-Shelf (COTS) parts. It implements a basic compensation algorithm that corrects a RAA IC in less than a few milliseconds. Experimental results for the cold temperature environment (down to -180 C) demonstrate the feasibility of this approach.
NASA Astrophysics Data System (ADS)
Tao, R.; Ma, Y.; Si, L.; Dong, X.; Zhou, P.; Liu, Z.
2011-11-01
We present a theoretical and experimental study of a target-in-the-loop (TIL) high-power adaptive phase-locked fiber laser array. The system configuration of the TIL adaptive phase-locked fiber laser array is introduced, and the fundamental theory for TIL based on the single-dithering technique is deduced for the first time. Two 10-W-level high-power fiber amplifiers are set up and adaptive phase locking of the two fiber amplifiers is accomplished successfully by implementing a single-dithering algorithm on a signal processor. The experimental results demonstrate that the optical phase noise for each beam channel can be effectively compensated by the TIL adaptive optics system under high-power applications and the fringe contrast on a remotely located extended target is advanced from 12% to 74% for the two 10-W-level fiber amplifiers.
Structurally Integrated Antenna Concepts for HALE UAVs
NASA Technical Reports Server (NTRS)
Cravey, Robin L.; Vedeler, Erik; Goins, Larry; Young, W. Robert; Lawrence, Roland W.
2006-01-01
This technical memorandum describes work done in support of the Multifunctional Structures and Materials Team under the Vehicle Systems Program's ITAS (Integrated Tailored Aero Structures) Project during FY 2005. The Electromagnetics and Sensors Branch (ESB) developed three ultra lightweight antenna concepts compatible with HALE UAVs (High Altitude Long Endurance Unmanned Aerial Vehicles). ESB also developed antenna elements that minimize the interaction between elements and the vehicle to minimize the impact of wing flexure on the EM (electromagnetic) performance of the integrated array. In addition, computer models were developed to perform phase correction for antenna arrays whose elements are moving relative to each other due to wing deformations expected in HALE vehicle concepts. Development of lightweight, conformal or structurally integrated antenna elements and compensating for the impact of a lightweight, flexible structure on a large antenna array are important steps in the realization of HALE UAVs for microwave applications such as passive remote sensing and communications.
Orżanowski, Tomasz
2016-01-01
This paper presents an infrared focal plane array (IRFPA) response nonuniformity correction (NUC) algorithm which is easy to implement by hardware. The proposed NUC algorithm is based on the linear correction scheme with the useful method of pixel offset correction coefficients update. The new approach to IRFPA response nonuniformity correction consists in the use of pixel response change determined at the actual operating conditions in relation to the reference ones by means of shutter to compensate a pixel offset temporal drift. Moreover, it permits to remove any optics shading effect in the output image as well. To show efficiency of the proposed NUC algorithm some test results for microbolometer IRFPA are presented.
Nanophotonic projection system.
Aflatouni, Firooz; Abiri, Behrooz; Rekhi, Angad; Hajimiri, Ali
2015-08-10
Low-power integrated projection technology can play a key role in development of low-cost mobile devices with built-in high-resolution projectors. Low-cost 3D imaging and holography systems are also among applications of such a technology. In this paper, an integrated projection system based on a two-dimensional optical phased array with fast beam steering capability is reported. Forward biased p-i-n phase modulators with 200MHz bandwidth are used per each array element for rapid phase control. An optimization algorithm is implemented to compensate for the phase dependent attenuation of the p-i-n modulators. Using rapid vector scanning technique, images were formed and recorded within a single snapshot of the IR camera.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balzovsky, E. V.; Buyanov, Yu. I.; Koshelev, V. I., E-mail: koshelev@lhfe.hcei.tsc.ru
To measure simultaneously two orthogonal components of the electromagnetic field of nano- and subnano-second duration, an antenna array has been developed. The antenna elements of the array are the crossed dipoles of dimension 5 × 5 cm. The arms of the dipoles are connected to the active four-pole devices to compensate the frequency response variations of a short dipole in the frequency band ranging from 0.4 to 4 GHz. The dipoles have superimposed phase centers allowing measuring the polarization structure of the field in different directions. The developed antenna array is the linear one containing four elements. The pattern maximummore » position is controlled by means of the switched ultrawideband true time delay lines. Discrete steering in seven directions in the range from −40° to +40° has been realized. The error at setting the pattern maximum position is less than 4°. The isolation of the polarization exceeds 29 dB in the direction orthogonal to the array axis and in the whole steering range it exceeds 23 dB. Measurement results of the polarization structure of radiated and scattered pulses with different polarization are presented as well.« less
NASA Astrophysics Data System (ADS)
Yi, Peiyun; Deng, Yujun; Shu, Yunyi; Peng, Linfa
2018-08-01
Roll-to-roll (R2R) hot embossing is regarded as a cost-effective replication technology to fabricate microstructures on polymer films. However, the characteristics of continuous and fast forming for the R2R hot embossing process limits material flow during the filling stage and results in significant springback during the demolding stage. To resolve this issue, this study proposed a novel R2R powder hot embossing process, which combines the merits of the continuous fabrication of R2R hot embossing and near-net-shape forming of powder sintering and also decreases the whole cycle of the fabrication from films to microstructures. First, the relation between the molten layer thickness and processing parameters was discussed and an analytical model was established to predict the feed of the polymeric powder during R2R powder hot embossing. Then, with the use of a micro-pyramid array mold, the impact of the process parameters including mold temperature, feeding speed and applied force on the geometrical dimension of the patterned microstructures was discussed. Last, based on the response surface analysis, a process window, in terms of the mold temperature of 132 °C –145 °C, feeding speed of 0.1–1.4 m min‑1 and applied force of 15–50 kgf was determined for the continuous fabrication of completely-filled micropyramid arrays with the R2R powder hot embossing process. This research demonstrated the feasibility and superiority of the proposed R2R powder hot embossing process in continuously fabricating micropatterned structures on polymeric films.
NASA Astrophysics Data System (ADS)
Norcahyo, Rachmadi; Soepangkat, Bobby O. P.
2017-06-01
A research was conducted for the optimization of the end milling process of ASSAB XW-42 tool steel with multiple performance characteristics based on the orthogonal array with Taguchi-grey relational analysis method. Liquid nitrogen was applied as a coolant. The experimental studies were conducted under varying the liquid nitrogen cooling flow rates (FL), and the end milling process variables, i.e., cutting speed (Vc), feeding speed (Vf), and axial depth of cut (Aa). The optimized multiple performance characteristics were surface roughness (SR), flank wear (VB), and material removal rate (MRR). An orthogonal array, signal-to-noise (S/N) ratio, grey relational analysis, grey relational grade, and analysis of variance were employed to study the multiple performance characteristics. Experimental results showed that flow rate gave the highest contribution for reducing the total variation of the multiple responses, followed by cutting speed, feeding speed, and axial depth of cut. The minimum surface roughness, flank wear, and maximum material removal rate could be obtained by using the values of flow rate, cutting speed, feeding speed, and axial depth of cut of 0.5 l/minute, 109.9 m/minute, 440 mm/minute, and 0.9 mm, respectively.
ERIC Educational Resources Information Center
Zumel, P.; Fernandez, C.; Sanz, M.; Lazaro, A.; Barrado, A.
2011-01-01
In this paper, a short introductory course to introduce field-programmable gate array (FPGA)-based digital control of dc/dc switching power converters is presented. Digital control based on specific hardware has been at the leading edge of low-medium power dc/dc switching converters in recent years. Besides industry's interest in this topic, from…
Infrared zone-scanning system.
Belousov, Aleksandr; Popov, Gennady
2006-03-20
Challenges encountered in designing an infrared viewing optical system that uses a small linear detector array based on a zone-scanning approach are discussed. Scanning is performed by a rotating refractive polygon prism with tilted facets, which, along with high-speed line scanning, makes the scanning gear as simple as possible. A method of calculation of a practical optical system to compensate for aberrations during prism rotation is described.
Morphological adaptation influences the evolution of a mating signal.
Ballentine, Barbara
2006-09-01
Theory predicts that forces of natural selection can reduce the intensity of sexually selected traits. In this study, I investigate how morphological adaptation to feeding ecology influences a mating signal. In birds, changes in feeding ecology can cause rapid divergence in bill morphology. Because bills are also important for song production, feeding ecology may influence song divergence. During song, birds can rapidly change vocal tract resonance using bill movement, yet are constrained in rate and magnitude of bill movements resulting in a trade-off between trill rate and frequency bandwidth. Male swamp sparrows vary in their ability to produce rapid, broad-band trills and females prefer more physically demanding songs. Populations of swamp sparrows adapted to the feeding ecology of tidal marshes have larger bills than inland populations. Larger bills should increase the constraints of producing rapid, broad-band trills allowing for a test of how changes in feeding ecology affect a feature of song used in mate choice. I found significant differences in acoustic features of song consistent with the hypothesis that coastal males are less able to meet the physical demands of song production because of the constraints of having larger bills. As possible compensation for decreases in song performance, coastal populations exhibit an increase in song complexity. These changes support the current model of how motor constraints influence song production and suggest a mechanism by which feeding ecology can influence signal evolution.
Control Issues for Microelectromechanical Systems
2006-04-01
par- ticular, electrostatic drives suffer from electromechani- cal instabilities such as lateral pull -in, side pull -in, and lateral instability...standard robust feed- back methods can compensate for lateral pull -in and signifi- cantly extend the range of travel of the mechanical shuttle. MEMS...DAAD19-02-1-0366 and NSF GOALI BES 0201773. REFERENCES [1] J. Bryzek, E. Abbott, A. Flannery, D. Cagle, and J. Maitan, “Control issues for MEMS,” in
Replicated divergence in cichlid radiations mirrors a major vertebrate innovation.
McGee, Matthew D; Faircloth, Brant C; Borstein, Samuel R; Zheng, Jimmy; Darrin Hulsey, C; Wainwright, Peter C; Alfaro, Michael E
2016-01-13
Decoupling of the upper jaw bones--jaw kinesis--is a distinctive feature of the ray-finned fishes, but it is not clear how the innovation is related to the extraordinary diversity of feeding behaviours and feeding ecology in this group. We address this issue in a lineage of ray-finned fishes that is well known for its ecological and functional diversity--African rift lake cichlids. We sequenced ultraconserved elements to generate a phylogenomic tree of the Lake Tanganyika and Lake Malawi cichlid radiations. We filmed a diverse array of over 50 cichlid species capturing live prey and quantified the extent of jaw kinesis in the premaxillary and maxillary bones. Our combination of phylogenomic and kinematic data reveals a strong association between biting modes of feeding and reduced jaw kinesis, suggesting that the contrasting demands of biting and suction feeding have strongly influenced cranial evolution in both cichlid radiations. © 2016 The Author(s).
Synthesis procedure for linear time-varying feedback systems with large parameter ignorance
NASA Technical Reports Server (NTRS)
Mcdonald, T. E., Jr.
1972-01-01
The development of synthesis procedures for linear time-varying feedback systems is considered. It is assumed that the plant can be described by linear differential equations with time-varying coefficients; however, ignorance is associated with the plant in that only the range of the time-variations are known instead of exact functional relationships. As a result of this plant ignorance the use of time-varying compensation is ineffective so that only time-invariant compensation is employed. In addition, there is a noise source at the plant output which feeds noise through the feedback elements to the plant input. Because of this noise source the gain of the feedback elements must be as small as possible. No attempt is made to develop a stability criterion for time-varying systems in this work.
Optical coherence transfer over 50-km spooled fiber with frequency instability of 2×10-17 at 1 s
NASA Astrophysics Data System (ADS)
Ma, Chao-Qun; Li-Fei, Wu; Jiang, Yan-Yi; Yu, Hong-Fu; Bi, Zhi-Yi; Ma, Long-Sheng
2015-08-01
We demonstrate coherent transfer of an ultra-stable optical frequency at 192.8 THz over 50-km spooled fiber. Random phase noise induced by environmental disturbance through fiber is detected and suppressed by feeding a correctional signal into an acousto-optic modulator. After being compensated, the fiber-induced frequency instability is 2×10-17 at 1-s averaging time and reaches 8×10-20 after 16 h. The noise floor of the compensation system could be as low as 2×10-18 at 1-s averaging time. Project supported by the National Natural Science Foundation of China (Grant Nos. 11127405, 11334002, and 11374102) and the National Basic Research Program of China (Grant No. 2012CB821302).
Mather, Martha E.; Finn, John T.; Pautzke, Sarah M.; Fox, Dewayne A.; Savoy, Tom; Brundage, Harold M.; Deegan, Linda A.; Muth, Robert M.
2010-01-01
Almost three-quarters of the 46 young adult and sub-adult striped bass Morone saxatilis that were acoustically tagged in Plum Island Estuary, Massachusetts, U.S.A., in the summer of 2006 were detected in one or more southern coastal arrays during their autumn migration. On the basis of the trajectories along which these M. saxatilis moved from feeding to overwintering areas, three migratory groups emerged. After leaving Plum Island Estuary, about half of the fish were detected only in a mid-latitude array, Long Island Sound. The other half of the tagged fish were detected during autumn and winter in a more southern array, the Delaware Estuary. This latter group of fish may have used two routes. Some travelled to the Delaware Estuary through Long Island Sound while other fish may have taken a second, more direct, coastal route that did not include Long Island Sound. Consequently, a seemingly homogeneous group of fish tagged at the same time in the same non-natal feeding location exhibited a diversity of southward movement patterns that could affect population-level processes. These three groups that differed in overwintering location and migration route could be movement contingents with migratory connectivity.
Interleaved array antenna technology development
NASA Technical Reports Server (NTRS)
1985-01-01
This is the third phase of a program to establish an antenna concept for shuttle and free flying spacecraft earth resources experiments using Synthetic Aperture Radar. The feasibility of a plated graphite epoxy waveguide for a space antenna was evaluated. A quantity of flat panels and waveguides were developed, procured, and tested for electrical and mechanical properties. In addition, processes for the assembly of a unique waveguide array were investigated. Finally, trades between various configurations that would allow elevation (range) electronic scanning and that would minimize feed complexity for various RF bandwidths were made.
DET/MPS - The GSFC Energy Balance Programs
NASA Technical Reports Server (NTRS)
Jagielski, J. M.
1994-01-01
Direct Energy Transfer (DET) and MultiMission Spacecraft Modular Power System (MPS) computer programs perform mathematical modeling and simulation to aid in design and analysis of DET and MPS spacecraft power system performance in order to determine energy balance of subsystem. DET spacecraft power system feeds output of solar photovoltaic array and nickel cadmium batteries directly to spacecraft bus. MPS system, Standard Power Regulator Unit (SPRU) utilized to operate array at array's peak power point. DET and MPS perform minute-by-minute simulation of performance of power system. Results of simulation focus mainly on output of solar array and characteristics of batteries. Both packages limited in terms of orbital mechanics, they have sufficient capability to calculate data on eclipses and performance of arrays for circular or near-circular orbits. DET and MPS written in FORTRAN-77 with some VAX FORTRAN-type extensions. Both available in three versions: GSC-13374, for DEC VAX-series computers running VMS. GSC-13443, for UNIX-based computers. GSC-13444, for Apple Macintosh computers.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...
2015-07-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less
Vortex arrays and ciliary tangles underlie the feeding-swimming tradeoff in starfish larvae
NASA Astrophysics Data System (ADS)
Gilpin, William; Prakash, Vivek N.; Prakash, Manu
2016-11-01
Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey. These bands are strongly conserved across taxa spanning four major superphyla, and they are responsible for the unusual morphologies of many invertebrates. However, few studies have investigated their underlying hydrodynamics. Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly-evolving vortices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary "tangles" analogous to topological defects that break-up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modeling demonstrate that these vortices create a physical tradeoff between feeding and swimming in heterogenous environments, which manifests as distinct flow patterns or "eigenstrokes" representing each behavior-potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hydrodynamic function generalizes to other invertebrates, and illustrates the potential effects of active boundary conditions in other biological and synthetic systems.
Comparison of subjective sleep and fatigue in breast- and bottle-feeding mothers.
Tobback, Els; Behaeghel, Katoesjka; Hanoulle, Ignace; Delesie, Liesbeth; Loccufier, Anne; Van Holsbeeck, Ann; Vogelaers, Dirk; Mariman, An
2017-04-01
Artificial milk supplementation remains a popular practice in spite of the well documented and indisputable advantages of breast feeding for both mother and child. However, the association between maternal sleep, fatigue and feeding method is understudied and remains unclear. The aim of this study is to investigate whether perceived sleep and fatigue differ between breast- and bottle feeding post partum women. In addition, the relationship between subjective sleep characteristics and fatigue is examined. Post partum women (four to 16 weeks) filled out a socio-demographic questionnaire, the Pittsburgh Sleep Quality Index (PSQI) and the Checklist Individual Strength (CIS). Sixty-one within the past week exclusively breast- and 44 exclusively bottle-feeding mothers were included. The first group showed better subjective sleep quality, but lower habitual sleep efficiency as measured by the PSQI. Global PSQI, as well as subjective fatigue and global CIS, did not differ between the two groups. Significant positive correlations were found between global CIS and the number of night feeds and global PSQI. However, only global PSQI significantly predicted global CIS in relation to the number of night feeds. Within a general pattern of deteriorated sleep quality, breast-feeding women showed better subjective sleep quality, but lower habitual sleep efficiency, between four and fourteen weeks after childbirth. However, the PSQI component scores compensated for each other, resulting in absence of any difference in global PSQI sleep quality between the two groups. Global PSQI significantly predicted global CIS, resulting in an absence of any difference in post partum fatigue according to feeding method. Midwives and nurses should, together with the parents, continue to focus on exploring ways to improve maternal sleep quality and to reduce postnatal fatigue. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary
2016-01-01
A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.
Thermal Vacuum/Balance Test Results of Swift BAT with Loop Heat Pipe Thermal System
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2004-01-01
The Swift Burst Alert Telescope (BAT) Detector Array is thermally well coupled to eight constant conductance heat pipes (CCHPs) embedded in the Detector Array Plate PAP), and two loop heat pipes (LHPs) transport heat from the CCHPs to a radiator. The CCHPs have ammonia as the working fluid and the LHPs have propylene as the working fluid. Precision heater controllers, which have adjustable set points in flight, are used to control the LHP compensation chamber and Detector Array xA1 ASIC temperatures. The radiator has AZ-Tek's AZW-LA-II low solar absorptance white paint as the thermal coating, and is located on the anti-sun side of the spacecraft. A thermal balance (T/B) test on the BAT was successfully completed. It validated that the thermal design satisfies the temperature requirements of the BAT in the flight thermal environments. Instrument level and observatory level thermal vacuum (TN) cycling tests of the BAT Detector Array by using the LHP thermal system were successfully completed. This paper presents the results of the T/B test and T N cycling tests.
A CMOS ASIC Design for SiPM Arrays
Dey, Samrat; Banks, Lushon; Chen, Shaw-Pin; Xu, Wenbin; Lewellen, Thomas K.; Miyaoka, Robert S.; Rudell, Jacques C.
2012-01-01
Our lab has previously reported on novel board-level readout electronics for an 8×8 silicon photomultiplier (SiPM) array featuring row/column summation technique to reduce the hardware requirements for signal processing. We are taking the next step by implementing a monolithic CMOS chip which is based on the row-column architecture. In addition, this paper explores the option of using diagonal summation as well as calibration to compensate for temperature and process variations. Further description of a timing pickoff signal which aligns all of the positioning (spatial channels) pulses in the array is described. The ASIC design is targeted to be scalable with the detector size and flexible to accommodate detectors from different vendors. This paper focuses on circuit implementation issues associated with the design of the ASIC to interface our Phase II MiCES FPGA board with a SiPM array. Moreover, a discussion is provided for strategies to eventually integrate all the analog and mixed-signal electronics with the SiPM, on either a single-silicon substrate or multi-chip module (MCM). PMID:24825923
Two-dimensional imaging via a narrowband MIMO radar system with two perpendicular linear arrays.
Wang, Dang-wei; Ma, Xiao-yan; Su, Yi
2010-05-01
This paper presents a system model and method for the 2-D imaging application via a narrowband multiple-input multiple-output (MIMO) radar system with two perpendicular linear arrays. Furthermore, the imaging formulation for our method is developed through a Fourier integral processing, and the parameters of antenna array including the cross-range resolution, required size, and sampling interval are also examined. Different from the spatial sequential procedure sampling the scattered echoes during multiple snapshot illuminations in inverse synthetic aperture radar (ISAR) imaging, the proposed method utilizes a spatial parallel procedure to sample the scattered echoes during a single snapshot illumination. Consequently, the complex motion compensation in ISAR imaging can be avoided. Moreover, in our array configuration, multiple narrowband spectrum-shared waveforms coded with orthogonal polyphase sequences are employed. The mainlobes of the compressed echoes from the different filter band could be located in the same range bin, and thus, the range alignment in classical ISAR imaging is not necessary. Numerical simulations based on synthetic data are provided for testing our proposed method.
Multiparallel Three-Dimensional Optical Microscopy
NASA Technical Reports Server (NTRS)
Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel
2010-01-01
Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.
Design of a photovoltaic system for a southwest all-electric residence
NASA Astrophysics Data System (ADS)
Mehalick, E. M.; Obrien, G.; Tully, G. F.; Johnson, J.; Parker, J.
1980-04-01
The grid connected residential photovoltaic system for the Southwest is designed to meet both space conditioning requirements and all conventional electrical load requirements for an all-electric residence. The system is comprised of two major subsystems, the solar array and the power conditioning subsystem (PCS). An 8 kW peak photovoltaic array been designed for the house. The 93 square meters solar array uses a shingle solar cell module in a highly redundant series/parallel matrix. The photovoltaic generated power is supplied to a 10kVA power conversion subsystem which is controlled to track the solar array maximum power operating point and feed the 240 Vac output power directly to the house loads or back to the utility when excess power is generated. The photovoltaic power is isolated from the utility by a 15 kVA transformer. The house design and subsystem specifications are given in detail.
Vibration control for the ARGOS laser launch path
NASA Astrophysics Data System (ADS)
Peter, Diethard; Gässler, Wolfgang; Borelli, Jose; Barl, Lothar; Rabien, S.
2012-07-01
Present and future adaptive optics systems aim for the correction of the atmospheric turbulence over a large field of view combined with large sky coverage. To achieve this goal the telescope is equipped with multiple laser beacons. Still, to measure tip-tilt aberrations a natural guide star is used. For some fields such a tilt-star is not available and a correction on the laser beacons alone is applied. For this method to work well the laser beacons must not be affected by telescope vibrations on their up-link path. For the ARGOS system the jitter of the beacons is specified to be below 0.05. To achieve this goal a vibration compensation system is necessary to mitigate the mechanical disturbances. The ARGOS vibration compensation system is an accelerometer based feed forward system. The accelerometer measurements are fed into a real time controller. To achieve high performance the controller of the system is model based. The output is applied to a fast steering mirror. This paper presents the concept of the ARGOS vibration compensation, the hardware, and laboratory results.
Novel Implementations of Wideband Tightly Coupled Dipole Arrays for Wide-Angle Scanning
NASA Astrophysics Data System (ADS)
Yetisir, Ersin
Ultra-wideband (UWB) antennas and arrays are essential for high data rate communications and for addressing spectrum congestion. Tightly coupled dipole arrays (TCDAs) are of particular interest due to their low-profile, bandwidth and scanning range. But existing UWB (>3:1 bandwidth) arrays still suffer from limited scanning, particularly at angles beyond 45° from broadside. Almost all previous wideband TCDAs have employed dielectric layers above the antenna aperture to improve scanning while maintaining impedance bandwidth. But even so, these UWB arrays have been limited to no more than 60° away from broadside. In this work, we propose to replace the dielectric superstrate with frequency selective surfaces (FSS). In effect, the FSS is used to create an effective dielectric layer placed over the antenna array. FSS also enables anisotropic responses and more design freedom than conventional isotropic dielectric substrates. Another important aspect of the FSS is its ease of fabrication and low weight, both critical for mobile platforms (e.g. unmanned air vehicles), especially at lower microwave frequencies. Specifically, it can be fabricated using standard printed circuit technology and integrated on a single board with active radiating elements and feed lines. In addition to the FSS superstrate, a modified version of the stripline-based folded Marchand balun is presented. As usual the balun serves to match the 50Ω coaxial cable to the high input impedance ( 200Ω) at the terminals of array elements. Doing so, earlier Wilkinson power dividers, which degrade efficiency during E-plane scanning, are eliminated. To verify the proposed array concept, 12x12 TCDA prototype was fabricated using the modified balun and the new FSS superstrate layer. The design and experimental data showed an impedance bandwidth of 6.1:1 with VSWR<3.2. The latter VSWR was achieved even when scanning down to +/-60° in the H-plane, +/-70° in the D-plane and +/-75° in the E-plane. All array components, including the FSS, radiating dipoles and the feed lines are placed on the same PCB, vertically oriented over the array ground plane, resulting in a low-cost and light-weight structure. The effects of finite aperture sizes in presence of FSS or dielectric superstrates are also considered. Specifically, we compare the performance of finite TCDAs with FSS or dielectric loading. The performance metric is beam pointing accuracy for moderate array sizes ( 30dBi gain) with various edge element terminations. It is shown that even terminating two unit cells at the array edges can provide effective suppression of edge-born waves and achieve excellent beam accuracy. This is the case when both the FSS elements and radiating dipoles are resistively loaded in the unit-cells along the aperture edges.
Generalized algebraic scene-based nonuniformity correction algorithm.
Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott
2005-02-01
A generalization of a recently developed algebraic scene-based nonuniformity correction algorithm for focal plane array (FPA) sensors is presented. The new technique uses pairs of image frames exhibiting arbitrary one- or two-dimensional translational motion to compute compensator quantities that are then used to remove nonuniformity in the bias of the FPA response. Unlike its predecessor, the generalization does not require the use of either a blackbody calibration target or a shutter. The algorithm has a low computational overhead, lending itself to real-time hardware implementation. The high-quality correction ability of this technique is demonstrated through application to real IR data from both cooled and uncooled infrared FPAs. A theoretical and experimental error analysis is performed to study the accuracy of the bias compensator estimates in the presence of two main sources of error.
NASA Astrophysics Data System (ADS)
Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Gruner, S. M.
2018-01-01
We studied the properties of chromium compensated GaAs when coupled to charge integrating ASICs as a function of detector temperature, applied bias and X-ray tube energy. The material is a photoresistor and can be biased to collect either electrons or holes by the pixel circuitry. Both are studied here. Previous studies have shown substantial hole trapping. This trapping and other sensor properties give rise to several non-ideal effects which include an extended point spread function, variations in the effective pixel size, and rate dependent offset shifts. The magnitude of these effects varies with temperature and bias, mandating good temperature uniformity in the sensor and very good temperature stabilization, as well as a carefully selected bias voltage.
Clinical impact of leak compensation during non-invasive ventilation.
Storre, Jan Hendrik; Bohm, Philipp; Dreher, Michael; Windisch, Wolfram
2009-10-01
This study aimed to assess the impact of leak compensation capabilities during pressure- and volume-limited non-invasive positive-pressure ventilation (NPPV) in COPD patients. Fourteen patients with stable hypercapnic COPD who were receiving long-term NPPV were included in the study. For both modes of NPPV, a full face mask and an artificial leak in the ventilatory circuit were used at three different settings, and applied during daytime NPPV, either without leakage (setting I), with leakage during inspiration only (setting II), and with leakage during inspiration and expiration (setting III). Ventilation pattern was pneumotachy-graphically recorded. NPPV was feasible with negligible leak volumes, indicating optimal mask fitting during the daytime (setting I). In the presence of leakage (settings II and III), the attempt to compensate for leak was only evident during pressure-limited NPPV, since inspiratory volumes delivered by the ventilator increased from 726+/-129 (setting I) to 1104+/-164 (setting II), and to 1257+/-166 (setting III) ml during pressure-limited NPPV, respectively (all p<0.001); however, they remained stable during volume-limited NPPV. Leak compensation resulted in a decrease in leakage-induced dyspnea. However, 83%/87% (setting II/III) of the additionally-delivered inspiratory volume during pressure-limited NPPV was also lost via leakage. Expiratory volume was higher in setting II compared to setting III (both p<0.001), indicating the presence of significant expiratory leakage. The attempt at leak compensation largely feeds the leakage itself and only results in a marginal increase of tidal volume. However, pressure-limited--but not volume-limited--NPPV results in a clinically-important leak compensation in vivo. www.uniklinik-freiburg.de/zks/live/uklregister/Oeffentlich.html Identifier: UKF001272.
Results of the Compensated Earth-Moon-Earth Retroreflector Laser Link (CEMERLL) Experiment
NASA Technical Reports Server (NTRS)
Wilson, K. E.; Leatherman, P. R.; Cleis, R.; Spinhirne, J.; Fugate, R. Q.
1997-01-01
Adaptive optics techniques can be used to realize a robust low bit-error-rate link by mitigating the atmosphere-induced signal fades in optical communications links between ground-based transmitters and deep-space probes. Phase I of the Compensated Earth-Moon-Earth Retroreflector Laser Link (CEMERLL) experiment demonstrated the first propagation of an atmosphere-compensated laser beam to the lunar retroreflectors. A 1.06-micron Nd:YAG laser beam was propagated through the full aperture of the 1.5-m telescope at the Starfire Optical Range (SOR), Kirtland Air Force Base, New Mexico, to the Apollo 15 retroreflector array at Hadley Rille. Laser guide-star adaptive optics were used to compensate turbulence-induced aberrations across the transmitter's 1.5-m aperture. A 3.5-m telescope, also located at the SOR, was used as a receiver for detecting the return signals. JPL-supplied Chebyshev polynomials of the retroreflector locations were used to develop tracking algorithms for the telescopes. At times we observed in excess of 100 photons returned from a single pulse when the outgoing beam from the 1.5-m telescope was corrected by the adaptive optics system. No returns were detected when the outgoing beam was uncompensated. The experiment was conducted from March through September 1994, during the first or last quarter of the Moon.
Analysis and design of a high power laser adaptive phased array transmitter
NASA Technical Reports Server (NTRS)
Mevers, G. E.; Soohoo, J. F.; Winocur, J.; Massie, N. A.; Southwell, W. H.; Brandewie, R. A.; Hayes, C. L.
1977-01-01
The feasibility of delivering substantial quantities of optical power to a satellite in low earth orbit from a ground based high energy laser (HEL) coupled to an adaptive antenna was investigated. Diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming were examined. To evaluate possible HEL sources, atmospheric investigations were performed for the CO2, (C-12)(O-18)2 isotope, CO and DF wavelengths using output antenna locations of both sea level and mountain top. Results indicate that both excellent atmospheric and adaption efficiency can be obtained for mountain top operation with a micron isotope laser operating at 9.1 um, or a CO laser operating single line (P10) at about 5.0 (C-12)(O-18)2um, which was a close second in the evaluation. Four adaptive power transmitter system concepts were generated and evaluated, based on overall system efficiency, reliability, size and weight, advanced technology requirements and potential cost. A multiple source phased array was selected for detailed conceptual design. The system uses a unique adaption technique of phase locking independent laser oscillators which allows it to be both relatively inexpensive and most reliable with a predicted overall power transfer efficiency of 53%.
Using a focal-plane array to estimate antenna pointing errors
NASA Technical Reports Server (NTRS)
Zohar, S.; Vilnrotter, V. A.
1991-01-01
The use of extra collecting horns in the focal plane of an antenna as a means of determining the Direction of Arrival (DOA) of the signal impinging on it, provided it is within the antenna beam, is considered. Our analysis yields a relatively simple algorithm to extract the DOA from the horns' outputs. An algorithm which, in effect, measures the thermal noise of the horns' signals and determines its effect on the uncertainty of the extracted DOA parameters is developed. Both algorithms were implemented in software and tested in simulated data. Based on these tests, it is concluded that this is a viable approach to the DOA determination. Though the results obtained are of general applicability, the particular motivation for the present work is their application to the pointing of a mechanically deformed antenna. It is anticipated that the pointing algorithm developed for a deformed antenna could be obtained as a small perturbation of the algorithm developed for an undeformed antenna. In this context, it should be pointed out that, with a deformed antenna, the array of horns and its associated circuitry constitute the main part of the deformation-compensation system. In this case, the pointing system proposed may be viewed as an additional task carried out by the deformation-compensation hardware.
Heekin, Andrew M; Guerrero, Felix D; Bendele, Kylie G; Saldivar, Leo; Scoles, Glen A; Dowd, Scot E; Gondro, Cedric; Nene, Vishvanath; Djikeng, Appolinaire; Brayton, Kelly A
2013-09-01
As it feeds upon cattle, Rhipicephalus (Boophilus) microplus is capable of transmitting a number of pathogenic organisms, including the apicomplexan hemoparasite Babesia bovis, a causative agent of bovine babesiosis. The R. microplus female gut transcriptome was studied for two cohorts: adult females feeding on a bovine host infected with B. bovis and adult females feeding on an uninfected bovine. RNA was purified and used to generate a subtracted cDNA library from B. bovis-infected female gut, and 4,077 expressed sequence tags (ESTs) were sequenced. Gene expression was also measured by a microarray designed from the publicly available R. microplus gene index: BmiGI Version 2. We compared gene expression in the tick gut from females feeding upon an uninfected bovine to gene expression in tick gut from females feeding upon a splenectomized bovine infected with B. bovis. Thirty-three ESTs represented on the microarray were expressed at a higher level in female gut samples from the ticks feeding upon a B. bovis-infected calf compared to expression levels in female gut samples from ticks feeding on an uninfected calf. Forty-three transcripts were expressed at a lower level in the ticks feeding upon B. bovis-infected female guts compared with expression in female gut samples from ticks feeding on the uninfected calf. These array data were used as initial characterization of gene expression associated with the infection of R. microplus by B. bovis.
Tutorial: Performance and reliability in redundant disk arrays
NASA Technical Reports Server (NTRS)
Gibson, Garth A.
1993-01-01
A disk array is a collection of physically small magnetic disks that is packaged as a single unit but operates in parallel. Disk arrays capitalize on the availability of small-diameter disks from a price-competitive market to provide the cost, volume, and capacity of current disk systems but many times their performance. Unfortunately, relative to current disk systems, the larger number of components in disk arrays leads to higher rates of failure. To tolerate failures, redundant disk arrays devote a fraction of their capacity to an encoding of their information. This redundant information enables the contents of a failed disk to be recovered from the contents of non-failed disks. The simplest and least expensive encoding for this redundancy, known as N+1 parity is highlighted. In addition to compensating for the higher failure rates of disk arrays, redundancy allows highly reliable secondary storage systems to be built much more cost-effectively than is now achieved in conventional duplicated disks. Disk arrays that combine redundancy with the parallelism of many small-diameter disks are often called Redundant Arrays of Inexpensive Disks (RAID). This combination promises improvements to both the performance and the reliability of secondary storage. For example, IBM's premier disk product, the IBM 3390, is compared to a redundant disk array constructed of 84 IBM 0661 3 1/2-inch disks. The redundant disk array has comparable or superior values for each of the metrics given and appears likely to cost less. In the first section of this tutorial, I explain how disk arrays exploit the emergence of high performance, small magnetic disks to provide cost-effective disk parallelism that combats the access and transfer gap problems. The flexibility of disk-array configurations benefits manufacturer and consumer alike. In contrast, I describe in this tutorial's second half how parallelism, achieved through increasing numbers of components, causes overall failure rates to rise. Redundant disk arrays overcome this threat to data reliability by ensuring that data remains available during and after component failures.
NASA Astrophysics Data System (ADS)
Amory, V.; Lhémery, A.
2008-02-01
Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.
Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km.
Weyrauch, Thomas; Vorontsov, Mikhail; Mangano, Joseph; Ovchinnikov, Vladimir; Bricker, David; Polnau, Ernst; Rostov, Andrey
2016-02-15
We demonstrate coherent beam combining and adaptive mitigation of atmospheric turbulence effects over 7 km under strong scintillation conditions using a coherent fiber array laser transmitter operating in a target-in-the-loop setting. The transmitter system is composed of a densely packed array of 21 fiber collimators with integrated capabilities for piston, tip, and tilt control of the outgoing beams wavefront phases. A small cat's-eye retro reflector was used for evaluation of beam combining and turbulence compensation performance at the target plane, and to provide the feedback signal for control of piston and tip/tilt phases of the transmitted beams using the stochastic parallel gradient descent maximization of the power-in-the-bucket metric.
Lee, Eun-Gu; Mun, Sil-Gu; Lee, Sang Soo; Lee, Jyung Chan; Lee, Jong Hyun
2015-01-12
We report a cost-effective transmitter optical sub-assembly using a monolithic four-wavelength vertical-cavity surface-emitting laser (VCSEL) array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport using the data rate of common public radio interface option 6. The wavelength spacing is achieved using selectively etched cavity control layers and fine current adjustment. The differences in operating current and output power for maintaining the wavelength spacing of four VCSELs are <1.4 mA and <1 dB, respectively. Stable operation performance without mode hopping is observed, and error-free transmission under direct modulation is demonstrated over a 20-km single-mode fiber without any dispersion-compensation techniques.
Design aspects of a solar array drive for spot, with a high platform stability objective
NASA Technical Reports Server (NTRS)
Cabillic, J.; Fournier, J. P.; Anstett, P.; Souliac, M.; Thomin, G.
1981-01-01
A solar array drive mechanism (MEGS) for the SPOT platform, which is a prototype of a multimission platform, is described. High-resolution cameras and other optical instruments are carried by the platform, requiring excellent platform stability in order to obtain high-quality pictures. Therefore, a severe requirement for the MEGS is the low level of disturbing torques it may generate considering the 0.6 times 10 to the minus 3 power deg/sec stability required. The mechanical design aspects aiming at reducing the mean friction torque, and therefore its fluctuations, are described as well as the method of compensation of the motor imperfections. It was concluded, however, that this is not sufficient to reach the stability requirement.
El Badawe, Mohamed; Almoneef, Thamer S; Ramahi, Omar M
2016-01-13
We present a true metasurface antenna based on electrically-small resonators. The resonators are placed on a flat surface and connected to one feed point using corporate feed. Unlike conventional array antennas where the distance between adjacent antennas is half wavelength to reduce mutual coupling between adjacent antennas, here the distance between the radiating elements is electrically very small to affect good impedance matching of each resonator to its feed. A metasurface antenna measuring 1.2λ × 1.2λ and designed to operate at 3 GHz achieved a gain of 12 dBi. A prototype was fabricated and tested showing good agreement between numerical simulations and experimental results. Through numerical simulation, we show that the metasurface antenna has the ability to provide beam steering by phasing all the resonators appropriately.
Data analysis protocol for using resistivity array as an early-warning wastewater pond leak detector
USDA-ARS?s Scientific Manuscript database
Typically, holding ponds are used to control runoff from concentrated animal feeding operations. The integrity of these holding ponds has come under increased scrutiny since subsurface leakage has the potential to affect soil and groundwater quality. Traditionally, ponds are monitored by installin...
Increasing feed efficiency and reducing methane emissions using genomics: An international approach
USDA-ARS?s Scientific Manuscript database
Genomic technology (including SNP arrays and next-generation sequencing) is a powerful driver for the genetic improvement of livestock. Phenotype recording can now, to an extent, be partitioned from selection, and even limited to several thousand animals. Rapid development of new technologies and pr...
Avdievich, Nikolai I; Giapitzakis, Ioannis-Angelos; Pfrommer, Andreas; Henning, Anke
2018-02-01
To improve the decoupling of a transceiver human head phased array at ultra-high fields (UHF, ≥ 7T) and to optimize its transmit (Tx) and receive (Rx) performance, a single-row eight-element (1 × 8) tight-fit transceiver overlapped loop array was developed and constructed. Overlapping the loops increases the RF field penetration depth but can compromise decoupling by generating substantial mutual resistance. Based on analytical modeling, we optimized the loop geometry and relative positioning to simultaneously minimize the resistive and inductive coupling and constructed a 9.4T eight-loop transceiver head phased array decoupled entirely by overlapping loops. We demonstrated that both the magnetic and electric coupling between adjacent loops is compensated at the same time by overlapping and nearly perfect decoupling (below -30 dB) can be obtained without additional decoupling strategies. Tx-efficiency and SNR of the overlapped array outperformed that of a common UHF gapped array of similar dimensions. Parallel Rx-performance was also not compromised due to overlapping the loops. As a proof of concept we developed and constructed a 9.4T (400 MHz) overlapped transceiver head array based on results of the analytical modeling. We demonstrated that at UHF overlapping loops not only provides excellent decoupling but also improves both Tx- and Rx-performance. Magn Reson Med 79:1200-1211, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna
NASA Technical Reports Server (NTRS)
duToit, Cornelis
2014-01-01
A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each pair of elements: three apertures coupling to the patch elements were placed along the two symmetry lines of the antenna element pair. Two apertures were used in tandem to excite two of the stacked patch elements for one polarization; the other was used to excite one element from one side and the other element from the other side, opposite in phase, taking care of the remaining polarization. The apertures narrow down to a small gap where they are excited by a crossing microstrip line to prevent any asymmetrical excitation of the two sides of the aperture gap, minimizing port-to-port coupling. Using patches that are non-planar leads to higher mechanical rigidity and smaller patch sizes to fit into the available space. Aperture coupling minimizes direct metal-to-metal connections. Using an aperture coupling feed mechanism results in a feed network for two antenna elements with a total of three feed points, plus one simple in-phase combiner to reduce it to two ports. It greatly reduces the complexity of the alternative, but more conventional, way of feeding a pair of two dual-polarized elements with high port isolation.
Antenna Characterization for the Wideband Instrument for Snow Measurements
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.
2015-01-01
Experimental characterization of the antenna for the Wideband Instrument for Snow Measurements (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.
Antenna Characterization for the Wideband Instrument for Snow Measurements (WISM)
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Miranda, Felix A.; Romanofsky, Robert R.; Durham, Timothy E.; Vanhille, Kenneth J.
2015-01-01
Experimental characterization of the antenna for the Wideband Instrument for Snow Measurement (WISM) under development for the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), is discussed. A current sheet antenna, consisting of a small, 6x6 element, dual-linear polarized array with integrated beamformer, feeds an offset parabolic reflector, enabling WISM operation over an 8 to 40 GHz frequency band. An overview of the test program implemented for both the feed and the reflector antenna is given along with select results for specific frequencies utilized by the radar and radiometric sensors of the WISM.
Multi-element array signal reconstruction with adaptive least-squares algorithms
NASA Technical Reports Server (NTRS)
Kumar, R.
1992-01-01
Two versions of the adaptive least-squares algorithm are presented for combining signals from multiple feeds placed in the focal plane of a mechanical antenna whose reflector surface is distorted due to various deformations. Coherent signal combining techniques based on the adaptive least-squares algorithm are examined for nearly optimally and adaptively combining the outputs of the feeds. The performance of the two versions is evaluated by simulations. It is demonstrated for the example considered that both of the adaptive least-squares algorithms are capable of offsetting most of the loss in the antenna gain incurred due to reflector surface deformations.
Design of automatic leveling and centering system of theodolite
NASA Astrophysics Data System (ADS)
Liu, Chun-tong; He, Zhen-Xin; Huang, Xian-xiang; Zhan, Ying
2012-09-01
To realize the theodolite automation and improve the azimuth Angle measurement instrument, the theodolite automatic leveling and centering system with the function of leveling error compensation is designed, which includes the system solution, key components selection, the mechanical structure of leveling and centering, and system software solution. The redesigned leveling feet are driven by the DC servo motor; and the electronic control center device is installed. Using high precision of tilt sensors as horizontal skew detection sensors ensures the effectiveness of the leveling error compensation. Aiming round mark center is located using digital image processing through surface array CCD; and leveling measurement precision can reach the pixel level, which makes the theodolite accurate centering possible. Finally, experiments are conducted using the automatic leveling and centering system of the theodolite. The results show the leveling and centering system can realize automatic operation with high centering accuracy of 0.04mm.The measurement precision of the orientation angle after leveling error compensation is improved, compared with that of in the traditional method. Automatic leveling and centering system of theodolite can satisfy the requirements of the measuring precision and its automation.
Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds
Jarquin, Robin; Hanning, Irene; Ahn, Soohyoun; Ricke, Steven C.
2009-01-01
Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR) assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered. PMID:22346699
Grinding Method and Error Analysis of Eccentric Shaft Parts
NASA Astrophysics Data System (ADS)
Wang, Zhiming; Han, Qiushi; Li, Qiguang; Peng, Baoying; Li, Weihua
2017-12-01
RV reducer and various mechanical transmission parts are widely used in eccentric shaft parts, The demand of precision grinding technology for eccentric shaft parts now, In this paper, the model of X-C linkage relation of eccentric shaft grinding is studied; By inversion method, the contour curve of the wheel envelope is deduced, and the distance from the center of eccentric circle is constant. The simulation software of eccentric shaft grinding is developed, the correctness of the model is proved, the influence of the X-axis feed error, the C-axis feed error and the wheel radius error on the grinding process is analyzed, and the corresponding error calculation model is proposed. The simulation analysis is carried out to provide the basis for the contour error compensation.
Green, W.L.
1980-12-01
An improved continuous-path-positioning servo-control system is provided for reducing the effects of friction arising at very low cutting speeds in the drive trains of numerically controlled cutting machines, and the like. The improvement comprises a feed forward network for altering the gain of the servo-control loop at low positioning velocities to prevent stick-slip movement of the cutting tool holder being positioned by the control system. The feed forward network shunts conventional lag-compensators in the control loop, or loops, so that the error signal used for positioning varies linearly when the value is small, but being limited for larger values. Thus, at higher positioning speeds there is little effect of the added component upon the control being achieved.
Lerch-Henning, S; Nicolson, S W
2015-12-01
The paradox of secondary metabolites, toxic defence compounds produced by plants, in nectar and fruits is well known. Deterrence of feeding by nectarivorous and frugivorous birds is better understood than the effect of these chemicals on the digestive performance of birds. Digestive parameters such as transit time and sugar assimilation are important in assessing nutrient utilization and deterrence may be related to post-ingestive effects involving these parameters. Nectar and many fruits contain mainly sugars and water, and avian consumers compensate for low sugar content in their diet by increasing food intake: this may also increase their intake of secondary metabolites. We investigated how the alkaloid nicotine, naturally present in nectar of Nicotiana species, influences compensatory feeding and digestive performance of nectar-feeding birds. High nicotine concentration negatively affected compensatory feeding and apparent assimilation efficiency of white-bellied sunbirds Cinnyris talatala and Cape white-eyes Zosterops virens; but nicotine slowed gut transit time only in the latter species. In contrast, food intake and digestive performance of dark-capped bulbuls Pycnonotus tricolor was unaffected by nicotine up to a concentration of 50μM. Bulbuls are primarily frugivorous; hence, they are more exposed to secondary metabolites than sunbirds and possibly white-eyes. Because their diet is richer in toxins, frugivorous birds may have evolved more efficient detoxification strategies than those of specialist nectar-feeding birds. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Steigerwald, R. L.; Ferraro, A.; Turnbull, F. G.
1983-04-01
Power conditioning systems that interface with photovoltaic arrays are presently investigated for the cases of 5-30 kW residential systems interfacing with a 240-V single-phase utility connection, and 30-200 kW intermediate systems interfacing with a 480-V three-phase utility connection. Both systems require an isolation transformer between the array and the utility interface. A tradeoff study is conducted for numerous transistor and thyristor circuits and configurations, with weighting criteria that include full- and part-load efficiency, size, weight, reliability, ease of control, injected harmonics, reactive power requirements, and parts cost. On the basis of study results, a 10-kW high frequency transistor inverter feeding a high frequency isolation transformer with a sinusoidally shaped current wave was selected.
Dolfi, D; Joffre, P; Antoine, J; Huignard, J P; Philippet, D; Granger, P
1996-09-10
The experimental demonstration and the far-field pattern characterization of an optically controlled phased-array antenna are described. It operates between 2.5 and 3.5 GHz and is made of 16 radiating elements. The optical control uses a two-dimensional architecture based on free-space propagation and on polarization switching by N spatial light modulators of p × p pixels. It provides 2(N-1) time-delay values and an analog control of the 0 to 2π phase for each of the p × p signals feeding the antenna (N = 5, p = 4).
Microstrip Patch Antenna And Method
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor)
2001-01-01
Method and apparatus are provided for a microstrip feeder structure for supplying properly phased signals to each radiator element in a microstrip antenna array that may be utilized for radiating circularly polarized electromagnetic waves. In one disclosed embodiment. the microstrip feeder structure includes a plurality of microstrip sections many or all of which preferably have an electrical length substantially equal to one-quarter wavelength at the antenna operating frequency. The feeder structure provides a low loss feed structure that may be duplicated multiple times through a set of rotations and translations to provide a radiating array of the desired size.
RF Technologies for Advancing Space Communication Infrastructure
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.
2006-01-01
This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.
Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity.
Anthony; Fabricius
2000-09-20
Suspended particulate matter (SPM) strongly alters the trophic environment of photosymbiotic aquatic organisms. At high particles loads, phototrophic energy gains can be diminished due to light absorption by suspended particles, and stress from particle abrasion or deposition on tissues. However, energy gains are enhanced if organisms are able to use SPM as a food source. For photosymbiotic benthic suspension feeders, increases in SPM concentrations may require both phototrophic and heterotrophic acclimation to sustain a positive energy balance. This study provides an experimental analysis of the effects of contrasting light and SPM regimes on the energy budget (scope for growth) of two zooxanthellate corals (Goniastrea retiformis and Porites cylindrica). Using a factorial design in a flow-through tank system, corals were exposed for 2 months to shaded and unshaded conditions (equivalent to 3-4 m depth at 4 and 16 mg dry weight SPM l(-1), respectively) and a range of controlled SPM loads with a natural organic content ( approximately 3% w/w). In G. retiformis, rates of particle ingestion were a linear function of SPM concentration within a broad range (1-30 mg dry weight l(-1)). After 2 months of shading, photosynthetic acclimation was significant in G. retiformis, but did not compensate for the reduced light level, as daily respiration exceeded daily photosynthesis. However, in response to the prolonged shading, G. retiformis more than doubled its rate of particle feeding. At high SPM treatments (16 mg dw l(-1)), sediment feeding by this species compensated fully for the 35-47% lower phototrophy in the shaded treatment. Due to both photo- and heterotrophic plasticity, G. retiformis gained tissue and skeletal mass at all experimental levels of light and SPM. In contrast, rates of particle intake by P. cylindrica contributed <10% to the energy budget in shaded and <3% in unshaded conditions. Feeding rates of P. cylindrica were half-saturated at approximately 3 mg dry weight l(-1), and four- to eight-fold lower than those of G. retiformis. Skeletal growth was sustained, but tissue mass and lipid contents declined in shaded and high-SPM treatments, and carbon loss due to shading by SPM was not compensated for by particle feeding. Thus, due to a lack of photo- and heterotrophic plasticity, periods of high turbidity resulted in energy deficiency in P. cylindrica, and high turbidity conditions appeared physiologically unsustainable for this species. This study is the first to show heterotrophic plasticity in a symbiotic coral, and to show that such plasticity can offset stress from high particle loads. It demonstrates that changes in the trophic mode of some coral species are a mechanism for sustaining a positive energy balance in turbid environments, thereby broadening their physiological niche.
Widmann, Philipp; Reverter, Antonio; Weikard, Rosemarie; Suhre, Karsten; Hammon, Harald M.; Albrecht, Elke; Kuehn, Christa
2015-01-01
Feed efficiency is a paramount factor for livestock economy. Previous studies had indicated a substantial heritability of several feed efficiency traits. In our study, we investigated the genetic background of residual feed intake, a commonly used parameter of feed efficiency, in a cattle resource population generated from crossing dairy and beef cattle. Starting from a whole genome association analysis, we subsequently performed combined phenotype-metabolome-genome analysis taking a systems biology approach by inferring gene networks based on partial correlation and information theory approaches. Our data about biological processes enriched with genes from the feed efficiency network suggest that genetic variation in feed efficiency is driven by genetic modulation of basic processes relevant to general cellular functions. When looking at the predicted upstream regulators from the feed efficiency network, the Tumor Protein P53 (TP53) and Transforming Growth Factor beta 1 (TGFB1) genes stood out regarding significance of overlap and number of target molecules in the data set. These results further support the hypothesis that TP53 is a major upstream regulator for genetic variation of feed efficiency. Furthermore, our data revealed a significant effect of both, the Non-SMC Condensin I Complex, Subunit G (NCAPG) I442M (rs109570900) and the Growth /differentiation factor 8 (GDF8) Q204X (rs110344317) loci, on residual feed intake and feed conversion. For both loci, the growth promoting allele at the onset of puberty was associated with a negative, but favorable effect on residual feed intake. The elevated energy demand for increased growth triggered by the NCAPG 442M allele is obviously not fully compensated for by an increased efficiency in converting feed into body tissue. As a consequence, the individuals carrying the NCAPG 442M allele had an additional demand for energy uptake that is reflected by the association of the allele with increased daily energy intake as observed in our study. PMID:25875852
Effects of moment of hatch and feed access on chicken development.
Lamot, D M; van de Linde, I B; Molenaar, R; van der Pol, C W; Wijtten, P J A; Kemp, B; van den Brand, H
2014-10-01
The current study evaluated effects of hatch moment and immediate feed and water access within a 24-h hatch window on chicken growth and development. Five hundred four male chickens obtained from a 49-wk-old Ross 308 breeder flock were assigned to 72 cages based on hatching moment (early, midterm, or late; selected during periods of 475 to 481, 483 to 487, and 489 to 493 h after onset of incubation). At the end of each hatching period, chickens were moved to the grow-out facility and one-half of the chickens received feed and water ad libitum immediately. Remaining chickens received feed and water from 504 h after onset of incubation (d 0). Body weight gain and feed intake for each cage were recorded at d 0, 1, 4, 7, 11, and 18. Chickens were sampled at d 4 and 18 for organ and carcass development. Early hatchers had lower BW at placement compared with midterm and late hatchers but compensated for this afterward, resulting in a higher BW at d 4 (112.8, 107.1, and 103.3 g, respectively). From d 0 to 18, early hatchers tended to have higher BW gain than both other groups. Relative breast meat yield at d 18, expressed as percentage of carcass weight, was higher for early (30.4%) than midterm (28.5%) and late hatchers (27.8%). Up to d 7, direct feed access resulted in higher BW gain (6.1%) and feed intake (4.2%) compared with delayed feed access. No effect of moment of feed access on feed efficiency or organ weights was found. Direct feed access resulted in a higher weight:length ratio of the jejunum (12.5%) and ileum (7.5%) at d 4 compared with delayed feed access. These results suggest that early hatchers have a different developmental and growth pattern than midterm or late hatchers within a 24-h hatch window. A mild delay in feed access after hatch affects growth and development during the first week after hatch. ©2014 Poultry Science Association Inc.
Scholl, Dorothy C; Embers, Monica E; Caskey, John R; Kaushal, Deepak; Mather, Thomas N; Buck, Wayne R; Morici, Lisa A; Philipp, Mario T
2016-07-08
The prolonged feeding process of ixodid ticks, in combination with bacterial transmission, should lead to a robust inflammatory response at the blood-feeding site. Yet, factors present in tick saliva may down-regulate such responses, which may be beneficial to spirochete transmission. The primary goal of this study was to test the hypothesis that tick saliva, in the context of Borrelia burgdorferi, can have widespread effects on the production of immune mediators in skin. A cross-section of tick feeding on skin was examined histologically. Human THP-1 cells stimulated with B. burgdorferi and grown in the presence or absence of tick saliva were examined by human DNA microarray, cytokine bead array, sandwich ELISA, and qRT-PCR. Similar experiments were also conducted using dermal fibroblasts. Tick feeding on skin showed dermal infiltration of histiocytes and granulocytes at the bite location. Changes in monocytic transcript levels during co-culture with B. burgdorferi and saliva indicated that tick saliva had a suppressive effect on the expression of certain pro-inflammatory mediators, such as IL-8 (CXCL8) and TLR2, but had a stimulatory effect on specific molecules such as the Interleukin 10 receptor, alpha subunit (IL-10RA), a known mediator of the immunosuppressive signal of IL-10. Stimulated cell culture supernatants were analyzed via antigen-capture ELISA and cytokine bead array for inflammatory mediator production. Treatment of monocytes with saliva significantly reduced the expression of several key mediators including IL-6, IL-8 and TNF-alpha. Tick saliva had an opposite effect on dermal fibroblasts. Rather than inhibiting, saliva enhanced production of pro-inflammatory mediators, including IL-8 and IL-6 from these sentinel skin cells. The effects of ixodid tick saliva on resident skin cells is cell type-dependent. The response to both tick and pathogen at the site of feeding favors pathogen transmission, but may not be wholly suppressed by tick saliva.
Cosmic non-TEM radiation and synthetic feed array sensor system in ASIC mixed signal technology
NASA Astrophysics Data System (ADS)
Centureli, F.; Scotti, G.; Tommasino, P.; Trifiletti, A.; Romano, F.; Cimmino, R.; Saitto, A.
2014-08-01
The paper deals with the opportunity to introduce "Not strictly TEM waves" Synthetic detection Method (NTSM), consisting in a Three Axis Digital Beam Processing (3ADBP), to enhance the performances of radio telescope and sensor systems. Current Radio Telescopes generally use the classic 3D "TEM waves" approximation Detection Method, which consists in a linear tomography process (Single or Dual axis beam forming processing) neglecting the small z component. The Synthetic FEED ARRAY three axis Sensor SYSTEM is an innovative technique using a synthetic detection of the generic "NOT strictly TEM Waves radiation coming from the Cosmo, which processes longitudinal component of Angular Momentum too. Than the simultaneous extraction from radiation of both the linear and quadratic information component, may reduce the complexity to reconstruct the Early Universe in the different requested scales. This next order approximation detection of the observed cosmologic processes, may improve the efficacy of the statistical numerical model used to elaborate the same information acquired. The present work focuses on detection of such waves at carrier frequencies in the bands ranging from LF to MMW. The work shows in further detail the new generation of on line programmable and reconfigurable Mixed Signal ASIC technology that made possible the innovative Synthetic Sensor. Furthermore the paper shows the ability of such technique to increase the Radio Telescope Array Antenna performances.
SWARM: A 32 GHz Correlator and VLBI Beamformer for the Submillimeter Array
NASA Astrophysics Data System (ADS)
Primiani, Rurik A.; Young, Kenneth H.; Young, André; Patel, Nimesh; Wilson, Robert W.; Vertatschitsch, Laura; Chitwood, Billie B.; Srinivasan, Ranjani; MacMahon, David; Weintroub, Jonathan
2016-03-01
A 32GHz bandwidth VLBI capable correlator and phased array has been designed and deployeda at the Smithsonian Astrophysical Observatory’s Submillimeter Array (SMA). The SMA Wideband Astronomical ROACH2 Machine (SWARM) integrates two instruments: a correlator with 140kHz spectral resolution across its full 32GHz band, used for connected interferometric observations, and a phased array summer used when the SMA participates as a station in the Event Horizon Telescope (EHT) very long baseline interferometry (VLBI) array. For each SWARM quadrant, Reconfigurable Open Architecture Computing Hardware (ROACH2) units shared under open-source from the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER) are equipped with a pair of ultra-fast analog-to-digital converters (ADCs), a field programmable gate array (FPGA) processor, and eight 10 Gigabit Ethernet (GbE) ports. A VLBI data recorder interface designated the SWARM digital back end, or SDBE, is implemented with a ninth ROACH2 per quadrant, feeding four Mark6 VLBI recorders with an aggregate recording rate of 64 Gbps. This paper describes the design and implementation of SWARM, as well as its deployment at SMA with reference to verification and science data.
Ackerman, Paul J.; van de Lagemaat, Jao; Smalyukh, Ivan I.
2015-01-01
Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains that exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields. PMID:25607778
Design and application of a small size SAFT imaging system for concrete structure
NASA Astrophysics Data System (ADS)
Shao, Zhixue; Shi, Lihua; Shao, Zhe; Cai, Jian
2011-07-01
A method of ultrasonic imaging detection is presented for quick non-destructive testing (NDT) of concrete structures using synthesized aperture focusing technology (SAFT). A low cost ultrasonic sensor array consisting of 12 market available low frequency ultrasonic transducers is designed and manufactured. A channel compensation method is proposed to improve the consistency of different transducers. The controlling devices for array scan as well as the virtual instrument for SAFT imaging are designed. In the coarse scan mode with the scan step of 50 mm, the system can quickly give an image display of a cross section of 600 mm (L) × 300 mm (D) by one measurement. In the refined scan model, the system can reduce the scan step and give an image display of the same cross section by moving the sensor array several times. Experiments on staircase specimen, concrete slab with embedded target, and building floor with underground pipe line all verify the efficiency of the proposed method.
Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing
NASA Astrophysics Data System (ADS)
Phillips, Nigel; Ferris, Mark; Scheidegger, Noemy
2015-09-01
The development of the Bi-Axial Solar Array Drive Mechanism (BSADM) presented in this paper is a demonstration of SSTL’s innovation and pragmatic approach to spacecraft systems engineering and rapid development duration. The BSADM (Fig. 1) is designed to orient a solar array wing towards the sun, using its first rotation axis to track the sun, and its second rotation axis to compensate for the satellite orbit and attitude changes needed for a successful payload operation. The BSADM design approach - based on the use of heritage components where possible and focusing resource on key design requirements - led to the rapid design, manufacture and test of the new mechanism with a qualification model (flight representative proof mechanism), followed by the manufacture and test of a number of flight model BSADMs, all completed and delivered within 18 months to service the need of current and future SSTL missions. A job not only well done, but done efficiently - the SSTL way.
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: WRATS Integrated Data Acquisition System; Breadboard Signal Processor for Arraying DSN Antennas; Digital Receiver Phase Meter; Split-Block Waveguide Polarization Twist for 220 to 325 GHz; Nano-Multiplication-Region Avalanche Photodiodes and Arrays; Tailored Asymmetry for Enhanced Coupling to WGM Resonators; Disabling CNT Electronic Devices by Use of Electron Beams; Conical Bearingless Motor/Generators; Integrated Force Method for Indeterminate Structures; Carbon-Nanotube-Based Electrodes for Biomedical Applications; Compact Directional Microwave Antenna for Localized Heating; Using Hyperspectral Imagery to Identify Turfgrass Stresses; Shaping Diffraction-Grating Grooves to Optimize Efficiency; Low-Light-Shift Cesium Fountain without Mechanical Shutters; Magnetic Compensation for Second-Order Doppler Shift in LITS; Nanostructures Exploit Hybrid-Polariton Resonances; Microfluidics, Chromatography, and Atomic-Force Microscopy; Model of Image Artifacts from Dust Particles; Pattern-Recognition System for Approaching a Known Target; Orchestrator Telemetry Processing Pipeline; Scheme for Quantum Computing Immune to Decoherence; Spin-Stabilized Microsatellites with Solar Concentrators; Phase Calibration of Antenna Arrays Aimed at Spacecraft; Ring Bus Architecture for a Solid-State Recorder; and Image Compression Algorithm Altered to Improve Stereo Ranging.
Spatial acoustic radiation of respiratory sounds for sleep evaluation.
Shabtai, Noam R; Zigel, Yaniv
2017-09-01
Body posture has an effect on sleeping quality and breathing disorders and therefore it is important to be recognized for the completion of the sleep evaluation process. Since humans have a directional acoustic radiation pattern, it is hypothesized that microphone arrays can be used to recognize different body postures, which is highly practical for sleep evaluation applications that already measure respiratory sounds using distant microphones. Furthermore, body posture may have an effect on distant microphone measurement; hence, the measurement can be compensated if the body posture is correctly recognized. A spherical harmonics decomposition approach to the spatial acoustic radiation is presented, assuming an array of eight microphones in a medium-sized audiology booth. The spatial sampling and reconstruction of the radiation pattern is discussed, and a final setup for the microphone array is recommended. A case study is shown using recorded segments of snoring and breathing sounds of three human subjects in three body postures in a silent but not anechoic audiology booth.
Correlation processing for correction of phase distortions in subaperture imaging.
Tavh, B; Karaman, M
1999-01-01
Ultrasonic subaperture imaging combines synthetic aperture and phased array approaches and permits low-cost systems with improved image quality. In subaperture processing, a large array is synthesized using echo signals collected from a number of receive subapertures by multiple firings of a phased transmit subaperture. Tissue inhomogeneities and displacements in subaperture imaging may cause significant phase distortions on received echo signals. Correlation processing on reference echo signals can be used for correction of the phase distortions, for which the accuracy and robustness are critically limited by the signal correlation. In this study, we explore correlation processing techniques for adaptive subaperture imaging with phase correction for motion and tissue inhomogeneities. The proposed techniques use new subaperture data acquisition schemes to produce reference signal sets with improved signal correlation. The experimental test results were obtained using raw radio frequency (RF) data acquired from two different phantoms with 3.5 MHz, 128-element transducer array. The results show that phase distortions can effectively be compensated by the proposed techniques in real-time adaptive subaperture imaging.
LDQ10: a compact ultra low-power radiation-hard 4 × 10 Gb/s driver array
Zeng, Z.; Zhang, T.; Wang, G.; ...
2017-02-28
Here, a High-speed and low-power VCSEL driver is an important component of the Versatile Link for the high-luminosity LHC (HL-LHC) experiments. A compact low-power radiation-hard 4 × 10 Gb/s VCSEL driver array (LDQ10) has been developed in 65 nm CMOS technology. Each channel in LDQ10 can provide a modulation current up to 8 mA and bias current up to 12 mA. Edge pre-emphasis is employed to compensate for the bandwidth limitations due to parasitic and the turn-on delay of VCSEL devices. LDQ10 occupies a chip area of 1900 μm × 1700 μm and consumes 130 mW power for typical currentmore » settings. The modulation amplitude degrades less than 5% after 300 Mrad total ionizing dose. LDQ10 can be directly wire-bonded to the VCSEL array and it is a suitable candidate for the Versatile Link.« less
Sound source localization on an axial fan at different operating points
NASA Astrophysics Data System (ADS)
Zenger, Florian J.; Herold, Gert; Becker, Stefan; Sarradj, Ennes
2016-08-01
A generic fan with unskewed fan blades is investigated using a microphone array method. The relative motion of the fan with respect to the stationary microphone array is compensated by interpolating the microphone data to a virtual rotating array with the same rotational speed as the fan. Hence, beamforming algorithms with deconvolution, in this case CLEAN-SC, could be applied. Sound maps and integrated spectra of sub-components are evaluated for five operating points. At selected frequency bands, the presented method yields sound maps featuring a clear circular source pattern corresponding to the nine fan blades. Depending on the adjusted operating point, sound sources are located on the leading or trailing edges of the fan blades. Integrated spectra show that in most cases leading edge noise is dominant for the low-frequency part and trailing edge noise for the high-frequency part. The shift from leading to trailing edge noise is strongly dependent on the operating point and frequency range considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewellen, J. W.; Noonan, J.; Accelerator Systems Division
2005-01-01
Conventional {pi}-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and usually requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient onmore » the cathode and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. We have proposed a method for performing emittance compensation using a cathode-region focusing scheme. This technique allows the focusing strength to be adjusted somewhat independently of the on-axis field strength. Beam dynamics calculations indicate performance should be comparable to presently in-use emittance compensation schemes, with a simpler configuration and fewer possibilities for emittance degradation due to the focusing optics. There are several potential difficulties with this approach, including cathode material selection, cathode heating, and peak fields in the gun. We hope to begin experimenting with a cathode of this type in the near future, and several possibilities exist for reducing the peak gradients to more acceptable levels.« less
Demonstration of the Marine Towed Array on Bahia Salinas del Sur Vieques, Puerto Rico
2009-02-01
much of the island, particularly in areas close to the shore, has sandy soils . The two islands protecting the mouth of the Bahia and the chain of...investigations, artificial reef projects, soil /water sampling and marine surveys. He is fully bilingual (speaks, reads & writes) English and Spanish...1,000,000 per occurrence General Aggregate - $2,000,000 Workmen’s Compensation and Employer’s Liability Insurance for Employees (including USL
Reevaluation of the DHA requirement for the premature infant.
Lapillonne, Alexandre; Jensen, Craig L
2009-01-01
The long-chain polyunsaturated fatty acid (LC-PUFA) intake in preterm infants is crucial for normal central nervous system development and has the potential for long-lasting effects that extend beyond the period of dietary insufficiency. While much attention has focused on improving their nutritional intake, many premature infants do not receive an adequate DHA supply. We demonstrate that enterally fed premature infants exhibit daily DHA deficit of 20mg/kg.d, representing 44% of the DHA that should have been accumulated. Furthermore, the DHA content of human milk and current preterm formulas cannot compensate for an early DHA deficit which may occur during the first month of life. We recommend breast-feeding, which supplies preformed LC-PUFA, as the preferred method of feeding for preterm infants. However, to fulfill the specific DHA requirement of these infants, we recommend increasing the DHA content of human milk either by providing the mothers with a DHA supplement or by adding DHA directly to the milk. Increasing the DHA content above 1% total fatty acids appears to be safe and may enhance neurological development particularly that of infants with a birth weight below 1250 g. We estimate that human milk and preterm formula should contain approximately 1.5% of fatty acid as DHA to prevent the appearance of a DHA deficit and to compensate for the early DHA deficit.
Management of unilateral true vocal cord paralysis in children.
Setlur, Jennifer; Hartnick, Christopher J
2012-12-01
Historically, information gained from the treatment of unilateral true vocal cord paralysis (UVCP) in adults was the same used to treat children. Today, there is a growing body of literature aimed specifically at the treatment of this condition in children. It is an area of growing interest as UVCP can significantly impact a child's quality of life. Children with UVCP may present with stridor, dysphonia, aspiration, feeding difficulties, or a combination of these symptoms. Diagnosis relies on laryngoscopy, but other adjuncts such as ultrasound and laryngeal electromyography may also be helpful in making the diagnosis and forming a treatment plan. In many instances, there is effective compensation by the contralateral vocal fold, making surgical intervention unnecessary. Children who cannot compensate for a unilateral defect may suffer from significant dysphonia that can affect their quality of life because their ability to be understood may be diminished. In these patients, treatment in the form of medialization or reinnervation of the affected recurrent laryngeal nerve may be warranted. UVCP is a well recognized problem in pediatric patients with disordered voice and feeding problems. Some patients will spontaneously recover their laryngeal function. For those who do not, a variety of reliable techniques are available for rehabilitative treatment. Improved diagnostics and a growing understanding of prognosis can help guide therapy decisions along with the goals and desires of the patient and his or her family.
A 16 element quasi-optical FET oscillator power combining array with external injection locking
NASA Astrophysics Data System (ADS)
Birkeland, Joel; Itoh, Tatsuo
1992-03-01
The authors present analysis, design and experimental results of a 16 element planar oscillator array for quasi-optical power combining. Each element in the array consists of a single FET oscillator with an input port for injection of the locking signal, and an output port which is connected to a patch radiator. The array is synchronized using a 16-way power dividing network which distributes the locking signal to the oscillating elements. The array is constructed using a two-sided microstrip configuration, with the oscillators and feed network on one side of a ground plane, and the patch radiators on the opposite side. An effective radiated power (ERP) of 28.2 W CW with an isotropic conversion gain of 9.9 dB was measured at 6 GHz. For an injected power of 10.3 dBm, a locking range of 453 MHz at a center frequency of 6.015 GHz was obtained; a bandwidth of 7.5 percent. Because of the simple nature of the individual oscillator elements, this approach is well suited to MMIC implementation.
A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Zhiyao; Sun, Kexu; Wang, Guanhua
This article presents a compact low-power 4 x 10 Gb/s quad-driver module for Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays in a 65 nm CMOS technology. The side-by-side drivers can be directly wire bonded to the VCSEL diode array, supporting up to 4 channels. To increase the bandwidth of the driver, an internal feed-forward path is added for pole-zero cancellation, without increasing the power consumption. An edge-configurable pre-emphasis technique is proposed to achieve high bandwidth and minimize the asymmetry of the fall and rise times of the driver output current. Measurement results demonstrate a RMS jitter of 0.68 ps for 10 Gb/smore » operation. Tests demonstrate negligible crosstalk between channels. Under irradiation, the modulation amplitude degrades less than 5% up to 300 Mrad ionizing dose. Finally, the area of the quaddriver array is 500 μm by 1000 μm and the total power consumption for the entire driver array chip is 130 mW for the typical current setting.« less
High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST
NASA Astrophysics Data System (ADS)
Baryshev, Andrey
2018-01-01
Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.
A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology
Zeng, Zhiyao; Sun, Kexu; Wang, Guanhua; ...
2017-05-08
This article presents a compact low-power 4 x 10 Gb/s quad-driver module for Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays in a 65 nm CMOS technology. The side-by-side drivers can be directly wire bonded to the VCSEL diode array, supporting up to 4 channels. To increase the bandwidth of the driver, an internal feed-forward path is added for pole-zero cancellation, without increasing the power consumption. An edge-configurable pre-emphasis technique is proposed to achieve high bandwidth and minimize the asymmetry of the fall and rise times of the driver output current. Measurement results demonstrate a RMS jitter of 0.68 ps for 10 Gb/smore » operation. Tests demonstrate negligible crosstalk between channels. Under irradiation, the modulation amplitude degrades less than 5% up to 300 Mrad ionizing dose. Finally, the area of the quaddriver array is 500 μm by 1000 μm and the total power consumption for the entire driver array chip is 130 mW for the typical current setting.« less
Low Average Sidelobe Slot Array Antennas for Radiometer Applications
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam; Zawardzki, Mark S.; Hodges, Richard E.
2012-01-01
In radiometer applications, it is required to design antennas that meet low average sidelobe levels and low average return loss over a specified frequency bandwidth. It is a challenge to meet such specifications over a frequency range when one uses resonant elements such as waveguide feed slots. In addition to their inherent narrow frequency band performance, the problem is exacerbated due to modeling errors and manufacturing tolerances. There was a need to develop a design methodology to solve the problem. An iterative design procedure was developed by starting with an array architecture, lattice spacing, aperture distribution, waveguide dimensions, etc. The array was designed using Elliott s technique with appropriate values of the total slot conductance in each radiating waveguide, and the total resistance in each feed waveguide. Subsequently, the array performance was analyzed by the full wave method of moments solution to the pertinent integral equations. Monte Carlo simulations were also carried out to account for amplitude and phase errors introduced for the aperture distribution due to modeling errors as well as manufacturing tolerances. If the design margins for the average sidelobe level and the average return loss were not adequate, array architecture, lattice spacing, aperture distribution, and waveguide dimensions were varied in subsequent iterations. Once the design margins were found to be adequate, the iteration was stopped and a good design was achieved. A symmetric array architecture was found to meet the design specification with adequate margin. The specifications were near 40 dB for angular regions beyond 30 degrees from broadside. Separable Taylor distribution with nbar=4 and 35 dB sidelobe specification was chosen for each principal plane. A non-separable distribution obtained by the genetic algorithm was found to have similar characteristics. The element spacing was obtained to provide the required beamwidth and close to a null in the E-plane end-fire direction. Because of the alternating slot offsets, grating lobes called butterfly lobes are produced in non-principal planes close to the H-plane. An attempt to reduce the influence of such grating lobes resulted in a symmetric design.
Swainson's hawk predation on dragonflies in Argentina
D. Craig Rudolph; Charles D. Fisher
1993-01-01
Swainsonâs Hawks (Buteo swainsoni) have a diverse diet consisting of mammals, birds, reptiles, amphibians, and a wide array of invertebrates (Bent 1937, Dunkle 1977, Schmutz et al. 1980, Bednatz 1988, Steenhof and Kochert 1985). A number of observations document extensive feeding on invertebrates, including crayfish (White 1966), crickets (White 1966...
New transitions and feeding of the Jπ=(8+) isomer in 186Re
NASA Astrophysics Data System (ADS)
Matters, D. A.; Fotiades, N.; Carroll, J. J.; Chiara, C. J.; McClory, J. W.; Kawano, T.; Nelson, R. O.; Devlin, M.
2015-11-01
The spallation neutron source at the Los Alamos Neutron Science Center Weapons Neutron Research facility was used to populate excited states in 186Re via (n ,2 n γ ) reactions on an enriched 187Re target. Gamma rays were detected with the GErmanium Array for Neutron Induced Excitations spectrometer, a Compton-suppressed array of 18 HPGe detectors. Incident neutron energies were determined by the time-of-flight technique and used to obtain γ -ray excitation functions for the purpose of identifying γ rays by reaction channel. Analysis of the singles γ -ray spectrum gated on the neutron energy range 10 ≤En≤25 MeV resulted in five transitions and one level added to the 186Re level scheme. The additions include the placement of three γ rays at 266.7, 381.2, and 647.7 keV which have been identified as feeding the 2.0 ×105yr , Jπ=(8+) isomer and yield an improved value of 148.2 (5 )keV for the isomer energy. These transitions may have astrophysical implications related to the use of the Re-Os cosmochronometer.
Thermally modulated biomolecule transport through nanoconfined channels
NASA Astrophysics Data System (ADS)
Liu, Lei; Zhu, Lizhong
2015-04-01
In this work, a nanofluidic device containing both a feed cell and a permeation cell linked by nanopore arrays has been fabricated, which is employed to investigate thermally controlled biomolecular transporting properties through confined nanochannels. The ionic currents modulated by the translocations of goat antibody to human immunoglobulin G (IgG) or bovine serum albumin (BSA) are recorded and analyzed. The results suggest that the modulation effect decreases with the electrolyte concentration increasing, while the effects generated by IgG translocation are more significant than that generated by BSA translocation. More importantly, there is a maximum decreasing value in each modulated current curve with biomolecule concentration increasing for thermally induced intermolecular collision. Furthermore, the turning point for the maximum shifts to lower biomolecule concentrations with the system temperature rising (from 4°C to 45°C), and it is mainly determined by the temperature in the feed cell if the temperature difference exists in the two separated cells. These findings are expected to be valuable for the future design of novel sensing device based on nanopore and/or nanopore arrays.
Design and development of LED-based irregular leather area measuring machine
NASA Astrophysics Data System (ADS)
Adil, Rehan; Khan, Sarah Jamal
2012-01-01
Using optical sensor array, a precision motion control system in a conveyer follows the irregular shaped leather sheet to measure its surface area. In operation, irregular shaped leather sheet passes on conveyer belt and optical sensor array detects the leather sheet edge. In this way outside curvature of the leather sheet is detected and is then feed to the controller to measure its approximate area. Such system can measure irregular shapes, by neglecting rounded corners, ellipses etc. To minimize the error in calculating surface area of irregular curve to the above mentioned system, the motion control system only requires the footprint of the optical sensor to be small and the distance between the sensors is to be minimized. In the proposed technique surface area measurement of irregular shaped leather sheet is done by defining velocity and detecting position of the move. The motion controller takes the information and creates the necessary edge profile on point-to-point bases. As a result irregular shape of leather sheet is mapped and is then feed to the controller to calculate surface area.
Vortex arrays and ciliary tangles underlie the feeding-swimming trade-off in starfish larvae
NASA Astrophysics Data System (ADS)
Gilpin, William; Prakash, Vivek N.; Prakash, Manu
2017-04-01
Many marine invertebrates have larval stages covered in linear arrays of beating cilia, which propel the animal while simultaneously entraining planktonic prey. These bands are strongly conserved across taxa spanning four major superphyla, and they are responsible for the unusual morphologies of many invertebrate larvae. However, few studies have investigated their underlying hydrodynamics. Here, we study the ciliary bands of starfish larvae, and discover a beautiful pattern of slowly evolving vortices that surrounds the swimming animals. Closer inspection of the bands reveals unusual ciliary `tangles' analogous to topological defects that break up and re-form as the animal adjusts its swimming stroke. Quantitative experiments and modelling demonstrate that these vortices create a physical trade-off between feeding and swimming in heterogeneous environments, which manifests as distinct flow patterns or `eigenstrokes' representing each behaviour--potentially implicating neuronal control of cilia. This quantitative interplay between larval form and hydrodynamic function may generalize to other invertebrates with ciliary bands, and illustrates the potential effects of active boundary conditions in other biological and synthetic systems.
A new root-based direction-finding algorithm
NASA Astrophysics Data System (ADS)
Wasylkiwskyj, Wasyl; Kopriva, Ivica; DoroslovačKi, Miloš; Zaghloul, Amir I.
2007-04-01
Polynomial rooting direction-finding (DF) algorithms are a computationally efficient alternative to search-based DF algorithms and are particularly suitable for uniform linear arrays of physically identical elements provided that mutual interaction among the array elements can be either neglected or compensated for. A popular algorithm in such situations is Root Multiple Signal Classification (Root MUSIC (RM)), wherein the estimation of the directions of arrivals (DOA) requires the computation of the roots of a (2N - 2) -order polynomial, where N represents number of array elements. The DOA are estimated from the L pairs of roots closest to the unit circle, where L represents number of sources. In this paper we derive a modified root polynomial (MRP) algorithm requiring the calculation of only L roots in order to estimate the L DOA. We evaluate the performance of the MRP algorithm numerically and show that it is as accurate as the RM algorithm but with a significantly simpler algebraic structure. In order to demonstrate that the theoretically predicted performance can be achieved in an experimental setting, a decoupled array is emulated in hardware using phase shifters. The results are in excellent agreement with theory.
Bian, Xu; Li, Yibo; Feng, Hao; Wang, Jiaqiang; Qi, Lei; Jin, Shijiu
2015-01-01
This paper proposes a continuous leakage location method based on the ultrasonic array sensor, which is specific to continuous gas leakage in a pressure container with an integral stiffener. This method collects the ultrasonic signals generated from the leakage hole through the piezoelectric ultrasonic sensor array, and analyzes the space-time correlation of every collected signal in the array. Meanwhile, it combines with the method of frequency compensation and superposition in time domain (SITD), based on the acoustic characteristics of the stiffener, to obtain a high-accuracy location result on the stiffener wall. According to the experimental results, the method successfully solves the orientation problem concerning continuous ultrasonic signals generated from leakage sources, and acquires high accuracy location information on the leakage source using a combination of multiple sets of orienting results. The mean value of location absolute error is 13.51 mm on the one-square-meter plate with an integral stiffener (4 mm width; 20 mm height; 197 mm spacing), and the maximum location absolute error is generally within a ±25 mm interval. PMID:26404316
WIMP detection and slow ion dynamics in carbon nanotube arrays.
Cavoto, G; Cirillo, E N M; Cocina, F; Ferretti, J; Polosa, A D
2016-01-01
Large arrays of aligned carbon nanotubes (CNTs), open at one end, could be used as target material for the directional detection of weakly interacting dark matter particles (WIMPs). As a result of a WIMP elastic scattering on a CNT, a carbon ion might be injected in the body of the array and propagate through multiple collisions within the lattice. The ion may eventually emerge from the surface with open end CNTs, provided that its longitudinal momentum is large enough to compensate energy losses and its transverse momentum approaches the channeling conditions in a single CNT. Therefore, the angle formed between the WIMP wind apparent orientation and the direction of parallel carbon nanotube axes must be properly chosen. We focus on very low ion recoil kinetic energies, related to low mass WIMPs ([Formula: see text] GeV) where most of the existing experiments have low sensitivity. Relying on some exact results on two-dimensional lattices of circular obstacles, we study the low energy ion motion in the transverse plane with respect to CNT directions. New constraints are obtained on how to devise the CNT arrays to maximize the target channeling efficiency.
Ka Band Objects: Observation and Monitoring (KaBOOM)
NASA Astrophysics Data System (ADS)
Geldzahler, B.
2012-09-01
NASA has embarked on a path that will enable the implementation of a high power, high resolution X/Ka band radar system using widely spaced 12m antennas to better track and characterize near Earth objects and orbital debris. This radar system also has applications for cost effective space situational awareness. We shall demonstrate Ka band coherent uplink arraying with real-time atmospheric compensation using three 12m antennas at the Kennedy Space Center (KSC). Our proposed radar system can complement and supplement the activities of the Space Fence. The proposed radar array has the advantages of filling the gap between dusk and dawn and offers the possibility of high range resolution (4 cm) and high spatial resolution (?10 cm at GEO) when used in a VLBI mode. KSC was chosen because [a] of reduced implementation costs, [b] there is a lot of water vapor in the air (not Ka band friendly), and [c] the test satellites have a low elevation adding more attenuation and turbulence to the demonstration. If Ka band coherent uplink arraying can be made to work at KSC, it will work anywhere. We expect to rebaseline X-band in 2013, and demonstrate Ka band uplink arraying in 2014.
Antennas for mobile satellite communications
NASA Technical Reports Server (NTRS)
Huang, John
1991-01-01
A NASA sponsored program, called the Mobile Satellite (MSAT) system, has prompted the development of several innovative antennas at L-band frequencies. In the space segment of the MSAT system, an efficient, light weight, circularly polarized microstrip array that uses linearly polarized elements was developed as a multiple beam reflector feed system. In the ground segment, a low-cost, low-profile, and very efficient microstrip Yagi array was developed as a medium-gain mechanically steered vehicle antenna. Circularly shaped microstrip patches excited at higher-order modes were also developed as low-gain vehicle antennas. A more recent effort called for the development of a 20/30 GHz mobile terminal antenna for future-generation mobile satellite communications. To combat the high insertion loss encountered at 20/30 GHz, series-fed Monolithic Microwave Integrated Circuit (MMIC) microstrip array antennas are currently being developed. These MMIC arrays may lead to the development of several small but high-gain Ka-band antennas for the Personal Access Satellite Service planned for the 2000s.
NASA Technical Reports Server (NTRS)
Kierein, J. W.
1977-01-01
The baseline configuration defined has the SERGE antenna panel array mounted on the OFT-2 pallet sufficiently high in the bay that negligible amounts of radiation from the beam are reflected from orbiter surfaces into the shuttle payload bay. The array is symmetrically mounted to the pallet along the array long dimension with the pallet at the center. It utilizes a graphite epoxy trusswork support structure. The antenna panels are of SEASAT engineering model design and construction. The antenna array has 7 panels and a 7-way naturally tapered coax corporate feed system. The performance of the system is predicted to exceed 33 db gain, have -15 db sidelobes in the E-plane and even lower in the H-plane, and have and E-plane beamwidth less than 2.2 deg, all within performance specification. The primary support structure is predicted to exceed the specified greater than 25 hertz fundamental frequency, although individual panels will have hertz fundamental frequency.
Polarization sensitive Multi-Chroic MKIDs
NASA Astrophysics Data System (ADS)
Johnson, Bradley R.; Flanigan, Daniel; Abitbol, Maximilian H.; Ade, Peter A. R.; Bryan, Sean; Cho, Hsiao-Mei; Datta, Rahul; Day, Peter; Doyle, Simon; Irwin, Kent; Jones, Glenn; Kernasovskiy, Sarah; Li, Dale; Mauskopf, Philip; McCarrick, Heather; McMahon, Jeff; Miller, Amber; Pisano, Giampaolo; Song, Yanru; Surdi, Harshad; Tucker, Carole
2016-07-01
We report on the development of scalable prototype microwave kinetic inductance detector (MKID) arrays tai- lored for future multi-kilo-pixel experiments that are designed to simultaneously characterize the polarization properties of both the cosmic microwave background (CMB) and Galactic dust emission. These modular arrays are composed of horn-coupled, polarization-sensitive MKIDs, and each pixel has four detectors: two polariza- tions in two spectral bands between 125 and 280 GHz. A horn is used to feed each array element, and a planar orthomode transducer, composed of two waveguide probe pairs, separates the incoming light into two linear po- larizations. Diplexers composed of resonant-stub band-pass filters separate the radiation into 125 to 170 GHz and 190 to 280 GHz pass bands. The millimeter-wave power is ultimately coupled to a hybrid co-planar waveguide microwave kinetic inductance detector using a novel, broadband circuit developed by our collaboration. Elec- tromagnetic simulations show the expected absorption efficiency of the detector is approximately 90%. Array fabrication will begin in the summer of 2016.
Auditory compensation for head rotation is incomplete.
Freeman, Tom C A; Culling, John F; Akeroyd, Michael A; Brimijoin, W Owen
2017-02-01
Hearing is confronted by a similar problem to vision when the observer moves. The image motion that is created remains ambiguous until the observer knows the velocity of eye and/or head. One way the visual system solves this problem is to use motor commands, proprioception, and vestibular information. These "extraretinal signals" compensate for self-movement, converting image motion into head-centered coordinates, although not always perfectly. We investigated whether the auditory system also transforms coordinates by examining the degree of compensation for head rotation when judging a moving sound. Real-time recordings of head motion were used to change the "movement gain" relating head movement to source movement across a loudspeaker array. We then determined psychophysically the gain that corresponded to a perceptually stationary source. Experiment 1 showed that the gain was small and positive for a wide range of trained head speeds. Hence, listeners perceived a stationary source as moving slightly opposite to the head rotation, in much the same way that observers see stationary visual objects move against a smooth pursuit eye movement. Experiment 2 showed the degree of compensation remained the same for sounds presented at different azimuths, although the precision of performance declined when the sound was eccentric. We discuss two possible explanations for incomplete compensation, one based on differences in the accuracy of signals encoding image motion and self-movement and one concerning statistical optimization that sacrifices accuracy for precision. We then consider the degree to which such explanations can be applied to auditory motion perception in moving listeners. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Trends in measurement of solar vector magnetic fields using the Zeeman effect
NASA Technical Reports Server (NTRS)
Harvey, J. W.
1985-01-01
Trends in spectropolarimetry as applied to the problem of Zeeman effect measurement are discussed. The use of detector arrays to improve observing efficiency is obtained. Which required new polarization modulation schemes that match the time required to read detector arrays. Another significant trend is narrowband filters, to improve angular and temporal coverage, and to Fourier transform spectrometers, to improve spectral coverage and precision. Low-polarization designs and improved methods for compensating instrumental polarization were developed. A requirement for high angular resolution suggests using adaptive optical devices to subdue the effects of bad seeing. The ultimate strategy to beat the seeing is to loft the telescope above the atmosphere such as is planned with a 30-cm telescope in 1985 and a 1250-cm telescope in 1990.
The calibration of an HF radar used for ionospheric research
NASA Astrophysics Data System (ADS)
From, W. R.; Whitehead, J. D.
1984-02-01
The HF radar on Bribie Island, Australia, uses crossed-fan beams produced by crossed linear transmitter and receiver arrays of 10 elements each to simulate a pencil beam. The beam points vertically when all the array elements are in phase, and is steerable by up to 20 deg off vertical at the central one of the three operating frequencies. Phase and gain changes within the transmitters and receivers are compensated for by an automatic system of adjustment. The 10 transmitting antennas are, as nearly as possible, physically identical as are the 10 receiving antennas. Antenna calibration using high flying aircraft or satellites is not possible. A method is described for using the ionospheric reflections to measure the polar diagram and also to correct for errors in the direction of pointing.
NASA Astrophysics Data System (ADS)
Ching-Lin Fan,; Yi-Yan Lin,; Jyu-Yu Chang,; Bo-Jhang Sun,; Yan-Wei Liu,
2010-06-01
This study presents one novel compensation pixel design and driving method for active matrix organic light-emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage feed-back method and the simulation results are proposed and verified by SPICE simulator. The measurement and simulation of LTPS TFT characteristics demonstrate the good fitting result. The proposed circuit consists of four TFTs and two capacitors with an additional signal line. The error rates of OLED anode voltage variation are below 0.3% under the threshold voltage deviation of driving TFT (Δ VTH = ± 0.33 V). The simulation results show that the pixel design can improve the display image non-uniformity by compensating the threshold voltage deviation of driving TFT and the degradation of OLED threshold voltage at the same time.
NASA Astrophysics Data System (ADS)
Fan, Ching-Lin; Lin, Yi-Yan; Chang, Jyu-Yu; Sun, Bo-Jhang; Liu, Yan-Wei
2010-06-01
This study presents one novel compensation pixel design and driving method for active matrix organic light-emitting diode (AMOLED) displays that use low-temperature polycrystalline silicon thin-film transistors (LTPS-TFTs) with a voltage feed-back method and the simulation results are proposed and verified by SPICE simulator. The measurement and simulation of LTPS TFT characteristics demonstrate the good fitting result. The proposed circuit consists of four TFTs and two capacitors with an additional signal line. The error rates of OLED anode voltage variation are below 0.3% under the threshold voltage deviation of driving TFT (ΔVTH = ±0.33 V). The simulation results show that the pixel design can improve the display image non-uniformity by compensating the threshold voltage deviation of driving TFT and the degradation of OLED threshold voltage at the same time.
Automated control of linear constricted plasma source array
Anders, Andre; Maschwitz, Peter A.
2000-01-01
An apparatus and method for controlling an array of constricted glow discharge chambers are disclosed. More particularly a linear array of constricted glow plasma sources whose polarity and geometry are set so that the contamination and energy of the ions discharged from the sources are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The quality of film along deposition "tracks" opposite the plasma sources can be measured and compared to desired absolute or relative values by optical and/or electrical sensors. Plasma quality can then be adjusted by adjusting the power current values, gas feed pressure/flow, gas mixtures or a combination of some or all of these to improve the match between the measured values and the desired values.
Overview of the Atacama Cosmology Telescope: Receiver, Instrumentation, and Telescope Systems
NASA Astrophysics Data System (ADS)
Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Battistelli, E. S.; Burger, B.; Chervenak, J.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Dünner, R.; Essinger-Hileman, T.; Fisher, R. P.; Fowler, J. W.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Hincks, A. D.; Irwin, K. D.; Jarosik, N.; Kaul, M.; Klein, J.; Lau, J. M.; Limon, M.; Marriage, T. A.; Marsden, D.; Martocci, K.; Mauskopf, P.; Moseley, H.; Netterfield, C. B.; Niemack, M. D.; Nolta, M. R.; Page, L. A.; Parker, L.; Staggs, S. T.; Stryzak, O.; Switzer, E. R.; Thornton, R.; Tucker, C.; Wollack, E.; Zhao, Y.
2011-06-01
The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' × 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.
The Atacama Cosmology Telescope: The Receiver and Instrumentation
NASA Technical Reports Server (NTRS)
Swetz, D. S.; Ade, P. A. R.; Amiri, M.; Appel, J. W.; Burger, B.; Devlin, M. J.; Dicker, S. R.; Doriese, W. B.; Essinger-Hileman, T.; Fisher, R. P.;
2010-01-01
The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the Cosmic Microwave Background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Taco in the Atacama Desert, at an altitude of 5190 meters. A six-met.er off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three WOO-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space mm-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance.
Signalling from the periphery to the brain that regulates energy homeostasis.
Kim, Ki-Suk; Seeley, Randy J; Sandoval, Darleen A
2018-04-01
The CNS regulates body weight; however, we still lack a clear understanding of what drives decisions about when, how much and what to eat. A vast array of peripheral signals provides information to the CNS regarding fluctuations in energy status. The CNS then integrates this information to influence acute feeding behaviour and long-term energy homeostasis. Previous paradigms have delegated the control of long-term energy homeostasis to the hypothalamus and short-term changes in feeding behaviour to the hindbrain. However, recent studies have identified target hindbrain neurocircuitry that integrates the orchestration of individual bouts of ingestion with the long-term regulation of energy balance.
Echolocation clicks from killer whales (Orcinus orca) feeding on herring (Clupea harengus).
Simon, Malene; Wahlberg, Magnus; Miller, Lee A
2007-02-01
Echolocation clicks from Norwegian killer whales feeding on herring schools were recorded using a four-hydrophone array. The clicks had broadband bimodal frequency spectra with low and high frequency peaks at 24 and 108 kHz, respectively. The -10 dB bandwidth was 35 kHz. The average source level varied from 173 to 202 dB re 1 microPa (peak-to-peak) at 1 m. This is considerably lower than source levels described for Canadian killer whales foraging on salmon. It is suggested that biosonar clicks of Norwegian killer whales are adapted for localization of prey with high target strength and acute hearing abilities.
OPSATCOM Field Measurements. Volume II. Supplemental Information
1976-06-01
amplitude is to be expected. Long-term stability is determined by how well the output control system compensates for changes in the output of the flashlamp...a remotely processed S-20 photocathode. The responsivity of tile photocathode was measured at 0,039 A/W for a quantum efficiency of approximately 9...gives operator control over thle size of, thle array as well , allowinig sia 11r fraimes to be taken tmnic rap idly. 2- 25 CALIBRATION The purpose of
Demonstration of a plenoptic microscope based on laser optical feedback imaging.
Glastre, Wilfried; Hugon, Olivier; Jacquin, Olivier; Guillet de Chatellus, Hugues; Lacot, Eric
2013-03-25
A new kind of plenoptic imaging system based on Laser Optical Feedback Imaging (LOFI) is presented and is compared to another previously existing device based on microlens array. Improved photometric performances, resolution and depth of field are obtained at the price of a slow point by point scanning. Main properties of plenoptic microscopes such as numerical refocusing on any curved surface or aberrations compensation are both theoretically and experimentally demonstrated with a LOFI-based device.
ARL Summer Student Research Symposium. Volume 2: Compendium of Abstracts
2012-08-01
7 Acoustic Localization with Compensation for Wind Au, Brandon Accurate localization of targets is difficult, as we are often unaware of all the...gathered by the arrays. However, many sources of signal interference add noise. While wind will have a negligible effect on sensors close to the...error over 1 m. However, wind data is often not collected or changes rapidly, so blind wind estimation is calculated to best fit the given data. The
Ibrahem, Mai D.
2013-01-01
The increase in the human population in addition to the massive demand for protein of animal origin forced the authorities to seek for additional sources of feed supplies. Aquaculture is the world worth coming expansion to compensate the shortage in animal protein. Feed in aquaculture plays an important role in the production cycle and exert threshold on both practical and economic aspects. Feed additive sectors are expanding day after day to achieve better growth and health for fish and shrimp and to meet the potential requirements of the culturists. Probiotic proved its successes in human and animal feeding practices and recently gained attention in aquaculture; it has beneficial effects in diseases control and competes with various environmental stressors as well as to promote the growth of the cultured organisms. Probiotics have the privilege to manipulate the non-specific innate immunity among fishes, hence help them into resist many pathogenic agents and are actively used worldwide. The present review is an informative compilation of the probiotics, their mode of action and their useful effects on fishes. The review also highlights the status of probiotics in aquaculture of Egypt, probiotic recent prospective for the possible role of probiotics in fish external and internal environment. PMID:26644914
Riedl, Antonia M; Völkel, Inger; Schlindwein, Bernhard; Czerny, Claus-Peter
2013-01-01
Considering continuously increasing forage costs, the feed conversion rate has a major impact on the economic efficiency in hog fattening. The influence of hygienic management strategies on animal health and feed efficiency was evaluated by an online-study comprising animal health management data of 202 German pig fatteners. Data analysis included a simple comparison of averages, a linear regression analysis, and a cluster analysis. Due to geographical distribution and size of premises, the random sample was not representative but yielded in significant results. The total impact of hygienic management on feed conversion was calculated to be 23.9 %. Professional performance of rodent control (beta = 0.357; p < or = 0.001), efficient insect larvae control (beta = 0.276; p = 0.008), requiring visitors to wear protective gear (beta = 0.261; p = 0.009), and immediately performed cleaning and disinfection of emptied pens (beta = 0.247; p = 0.017) were top-ranking variables. Furthermore, a significantly better fed efficiency was observed in companies reporting stables in a good state of repair or performing further preventive strategies to control animal health on herd-level (storage of fodder retain samples, health screening based on blood and faecal samples, cross-section to verify unclear death cases). For pig fatteners the benefit resulting from improved feed conversion ranged from Euro 1.15 to and Euro 2.53 per pig. Likewise optimized growth performance as a result of improved hygienic management could partly compensate increasing feed costs. The results of this online-study reveal the need to establish reliable HACCP systems on farm level.
A 4MP high-dynamic-range, low-noise CMOS image sensor
NASA Astrophysics Data System (ADS)
Ma, Cheng; Liu, Yang; Li, Jing; Zhou, Quan; Chang, Yuchun; Wang, Xinyang
2015-03-01
In this paper we present a 4 Megapixel high dynamic range, low dark noise and dark current CMOS image sensor, which is ideal for high-end scientific and surveillance applications. The pixel design is based on a 4-T PPD structure. During the readout of the pixel array, signals are first amplified, and then feed to a low- power column-parallel ADC array which is already presented in [1]. Measurement results show that the sensor achieves a dynamic range of 96dB, a dark noise of 1.47e- at 24fps speed. The dark current is 0.15e-/pixel/s at -20oC.
Simulation of ultrasonic and EMAT arrays using FEM and FDTD.
Xie, Yuedong; Yin, Wuliang; Liu, Zenghua; Peyton, Anthony
2016-03-01
This paper presents a method which combines electromagnetic simulation and ultrasonic simulation to build EMAT array models. For a specific sensor configuration, Lorentz forces are calculated using the finite element method (FEM), which then can feed through to ultrasonic simulations. The propagation of ultrasound waves is numerically simulated using finite-difference time-domain (FDTD) method to describe their propagation within homogenous medium and their scattering phenomenon by cracks. Radiation pattern obtained with Hilbert transform on time domain waveforms is proposed to characterise the sensor in terms of its beam directivity and field distribution along the steering angle. Copyright © 2015 Elsevier B.V. All rights reserved.
HERA Broadband Feed Design for Low-Frequency Radio Astronomy
NASA Astrophysics Data System (ADS)
Garza, Sierra; Trung, Vincent; Ewall-Wice, Aaron Michael; Li, Jianshu; Hewitt, Jacqueline; Riley, Daniel; Bradley, Richard F.; Makhija, Krishna
2018-01-01
As part of the Hydrogen Epoch of Reionization Array (HERA) project, we are designing a broadband low-frequency radio feed to extend the bandwidth from 100-200 MHz to 50-220 MHz. By extending the lower-limit to 50 MHz, we hope to detect the signatures of the first black holes heating the hydrogen gas in the intergalactic medium.The isolation of a very faint signal from vastly brighter foregrounds sets strict requirements on antenna spectral smoothness, polarization purity, forward gain, and internal reflections. We are currently working to meet these requirements with a broad-band sinuous antenna feed suspended over the 14-m parabolic HERA dish, using a combination of measurements and simulations to verify the performance of our design.A sinuous feed has been designed and simulated with Computer Simulation Technology (CST) software. We will present the construction of a prototype sinuous antenna and measurements of its reflection coefficient, S11, including laboratory characterization of baluns. Our measurements agree well with the CST simulations of the antenna’s performance, giving us confidence in our ability to model the feed and ensure that it meets the requirements of a 21cm cosmology measurement.
Development of an Ultra-Wideband Receiver for the North America Array
NASA Astrophysics Data System (ADS)
Velazco, J. E.; Soriano, M.; Hoppe, D.; Russell, D.; D'Addario, L.; Long, E.; Bowen, J.; Samoska, L.; Lazio, J.
2016-11-01
The North America Array (NAA) is a concept for a radio astronomical interferometric array operating in the 1.2 GHz to 116 GHz frequency range. It has been designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage beyond the current Karl G. Jansky Very Large Array (VLA). It will have a continuous frequency coverage of 1.2 GHz to 50 GHz and 70 to 116 GHz, and a total aperture 10 times more sensitive than the VLA (and 25 times more sensitive than a 34-m-diameter antenna of the Deep Space Network [DSN]). One of the key goals for the NAA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range in contrast to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs. To minimize implementation, operational, and maintenance costs, we are developing a receiver that is compact, simple to assemble, and that consumes less power. The objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower-band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feedhorn, low-noise amplifier (LNA), and downconverters to analog intermediate frequencies. Both the feedhorn and the LNA are cryogenically cooled. Key features of this design are a quad-ridge feedhorn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30°K at the low end of the band. In this article, we report on the status of this receiver package development, including the feed design and LNA implementation. We present simulation studies of the feed horn carried out to optimize illumination efficiencies across the band of interest. In addition, we show experimental results of low-noise 70-nm gallium arsenide, metamorphic high-electron-mobility-transistor (HEMT) amplifier testing performed across the 1 to 18 GHz frequency range. Also presented are 8 to 48 GHz simulation results for 35-nm indium phosphide HEMT amplifiers.
Othman, Rahimah; Vladisavljević, Goran T; Simone, Elena; Nagy, Zoltan K; Holdich, Richard G
2017-12-06
Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 μm and was controlled by the PRX concentration in the feed solution (15-25 g L -1 ), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L -1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.
NASA Astrophysics Data System (ADS)
McCarthy, Darragh; Trappe, Neil; Murphy, J. Anthony; O'Sullivan, Créidhe; Gradziel, Marcin; Doherty, Stephen; Huggard, Peter G.; Polegro, Arturo; van der Vorst, Maarten
2016-05-01
In order to investigate the origins of the Universe, it is necessary to carry out full sky surveys of the temperature and polarisation of the Cosmic Microwave Background (CMB) radiation, the remnant of the Big Bang. Missions such as COBE and Planck have previously mapped the CMB temperature, however in order to further constrain evolutionary and inflationary models, it is necessary to measure the polarisation of the CMB with greater accuracy and sensitivity than before. Missions undertaking such observations require large arrays of feed horn antennas to feed the detector arrays. Corrugated horns provide the best performance, however owing to the large number required (circa 5000 in the case of the proposed COrE+ mission), such horns are prohibitive in terms of thermal, mechanical and cost limitations. In this paper we consider the optimisation of an alternative smooth-walled piecewise conical profiled horn, using the mode-matching technique alongside a genetic algorithm. The technique is optimised to return a suitable design using efficient modelling software and standard desktop computing power. A design is presented showing a directional beam pattern and low levels of return loss, cross-polar power and sidelobes, as required by future CMB missions. This design is manufactured and the measured results compared with simulation, showing excellent agreement and meeting the required performance criteria. The optimisation process described here is robust and can be applied to many other applications where specific performance characteristics are required, with the user simply defining the beam requirements.
Freed, Michael A
2017-11-15
Bipolar and amacrine cells presynaptic to the ON sustained α cell of mouse retina provide currents with a higher signal-to-noise power ratio (SNR) than those presynaptic to the OFF sustained α cell. Yet the ON cell loses proportionately more SNR from synaptic inputs to spike output than the OFF cell does. The higher SNR of ON bipolar cells at the beginning of the ON pathway compensates for losses incurred by the ON ganglion cell, and improves the processing of positive contrasts. ON and OFF pathways in the retina include functional pairs of neurons that, at first glance, appear to have symmetrically similar responses to brightening and darkening, respectively. Upon careful examination, however, functional pairs exhibit asymmetries in receptive field size and response kinetics. Until now, descriptions of how light-adapted retinal circuitry maintains a preponderance of signal over the noise have not distinguished between ON and OFF pathways. Here I present evidence of marked asymmetries between members of a functional pair of sustained α ganglion cells in the mouse retina. The ON cell exhibited a proportionately greater loss of signal-to-noise power ratio (SNR) from its presynaptic arrays to its postsynaptic currents. Thus the ON cell combines signal and noise from its presynaptic arrays of bipolar and amacrine cells less efficiently than the OFF cell does. Yet the inefficiency of the ON cell is compensated by its presynaptic arrays providing a higher SNR than the arrays presynaptic to the OFF cell, apparently to improve visual processing of positive contrasts. Dynamic clamp experiments were performed that introduced synaptic conductances into ON and OFF cells. When the amacrine-modulated conductance was removed, the ON cell's spike train exhibited an increase in SNR. The OFF cell, however, showed the opposite effect of removing amacrine input, which was a decrease in SNR. Thus ON and OFF cells have different modes of synaptic integration with direct effects on the SNR of the spike output. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Reliability of spring interconnects for high channel-count polyimide electrode arrays
NASA Astrophysics Data System (ADS)
Khan, Sharif; Ordonez, Juan Sebastian; Stieglitz, Thomas
2018-05-01
Active neural implants with a high channel-count need robust and reliable operational assembly for the targeted environment in order to be classified as viable fully implantable systems. The discrete functionality of the electrode array and the implant electronics is vital for intact assembly. A critical interface exists at the interconnection sites between the electrode array and the implant electronics, especially in hybrid assemblies (e.g. retinal implants) where electrodes and electronics are not on the same substrate. Since the interconnects in such assemblies cannot be hermetically sealed, reliable protection against the physiological environment is essential for delivering high insulation resistance and low defusibility of salt ions, which are limited in complexity by current assembly techniques. This work reports on a combination of spring-type interconnects on a polyimide array with silicone rubber gasket insulation for chronically active implantable systems. The spring design of the interconnects on the backend of the electrode array compensates for the uniform thickness of the sandwiched gasket during bonding in assembly and relieves the propagation of extrinsic stresses to the bulk polyimide substrate. The contact resistance of the microflex-bonded spring interconnects with the underlying metallized ceramic test vehicles and insulation through the gasket between adjacent contacts was investigated against the MIL883 standard. The contact and insulation resistances remained stable in the exhausting environmental conditions.
USDA-ARS?s Scientific Manuscript database
The semi-arid and arid rangelands and irrigated pastures of the western U.S. provide a broad array of ecosystem services, includig wildlife/livestock feed, a diversity of native plants, pollinators, wildlife, and recreational activities. However, disturbances by wildfire, livestock, wildlife, and h...
USDA-ARS?s Scientific Manuscript database
Meeting the increasing market demands for pork products requires improvement of the feed efficiency of growing pigs. The use of Affymetrix Porcine Gene 1.0 ST array containing 19,211 genes in this study provides a comprehensive gene expression profile of skeletal muscle of finishing pigs in response...
Suppression of fixed pattern noise for infrared image system
NASA Astrophysics Data System (ADS)
Park, Changhan; Han, Jungsoo; Bae, Kyung-Hoon
2008-04-01
In this paper, we propose suppression of fixed pattern noise (FPN) and compensation of soft defect for improvement of object tracking in cooled staring infrared focal plane array (IRFPA) imaging system. FPN appears an observable image which applies to non-uniformity compensation (NUC) by temperature. Soft defect appears glittering black and white point by characteristics of non-uniformity for IR detector by time. This problem is very important because it happen serious problem for object tracking as well as degradation for image quality. Signal processing architecture in cooled staring IRFPA imaging system consists of three tables: low, normal, high temperature for reference gain and offset values. Proposed method operates two offset tables for each table. This is method which operates six term of temperature on the whole. Proposed method of soft defect compensation consists of three stages: (1) separates sub-image for an image, (2) decides a motion distribution of object between each sub-image, (3) analyzes for statistical characteristic from each stationary fixed pixel. Based on experimental results, the proposed method shows an improved image which suppresses FPN by change of temperature distribution from an observational image in real-time.
McDonald, G.D.; Paillet, Frederick L.; Barton, C.C.; Johnson, C.D.
1997-01-01
The clustering of orientations of hydraulically conductive fractures in bedrock at the Mirror Lake, New Hampshire fractured rock study site was investigated by comparing the orientations of fracture populations in two subvertical borehole arrays with those mapped on four adjacent subvertical roadcuts. In the boreholes and the roadcuts, the orientation of fracture populations appears very similar after borehole data are compensated for undersampling of steeply dipping fractures. Compensated borehole and pavement fracture data indicate a northeast-striking population of fractures with varying dips concentrated near that of the local foliation in the adjacent rock. The data show no correlation between fracture density (fractures/linear meter) and distance from lithologic contacts in both the boreholes and the roadcuts. The population of water-producing borehole fractures is too small (28 out of 610 fractures) to yield meaningful orientation comparisons. However, the orientation of large aperture fractures (which contains all the producing fractures) contains two or three subsidiary clusters in orientation frequency that are not evident in stereographic projections of the entire population containing all aperture sizes. Further, these subsidiary orientation clusters do not coincide with the dominant (subhorizontal and subvertical) regional fracture orientations.
Zhang, Lu; Ouyang, Xing; Shao, Xiaopeng; Zhao, Jian
2016-06-27
Performance degradation induced by the DC components at the output of real-time analogue-to-digital converter (ADC) is experimentally investigated for optical fast-OFDM receiver. To compensate this degradation, register transfer level (RTL) circuits for real-time digital DC blocker with 20GS/s throughput are proposed and implemented in field programmable gate array (FPGA). The performance of the proposed real-time digital DC blocker is experimentally investigated in a 15Gb/s optical fast-OFDM system with intensity modulation and direct detection over 40 km standard single-mode fibre. The results show that the fixed-point DC blocker has negligible performance penalty compared to the offline floating point one, and can overcome the error floor of the fast OFDM receiver caused by the DC components from the real-time ADC output.
Rolling Shutter Effect aberration compensation in Digital Holographic Microscopy
NASA Astrophysics Data System (ADS)
Monaldi, Andrea C.; Romero, Gladis G.; Cabrera, Carlos M.; Blanc, Adriana V.; Alanís, Elvio E.
2016-05-01
Due to the sequential-readout nature of most CMOS sensors, each row of the sensor array is exposed at a different time, resulting in the so-called rolling shutter effect that induces geometric distortion to the image if the video camera or the object moves during image acquisition. Particularly in digital holograms recording, while the sensor captures progressively each row of the hologram, interferometric fringes can oscillate due to external vibrations and/or noises even when the object under study remains motionless. The sensor records each hologram row in different instants of these disturbances. As a final effect, phase information is corrupted, distorting the reconstructed holograms quality. We present a fast and simple method for compensating this effect based on image processing tools. The method is exemplified by holograms of microscopic biological static objects. Results encourage incorporating CMOS sensors over CCD in Digital Holographic Microscopy due to a better resolution and less expensive benefits.
Shune, Samantha E.; Moon, Jerald B.
2016-01-01
To best prevent and treat eating/swallowing problems, it is essential to understand how components of oral physiology contribute to the preservation and/or degradation of eating/swallowing in healthy aging. Anticipatory, pre-swallow motor movements may be critical to safe and efficient eating/swallowing, particularly for older adults. However, the nature of these responses is relatively unknown. This study compared the magnitude of anticipatory mouth opening during eating in healthy older (ages 70–85) and younger (ages 18–30) adults under four eating conditions: typical self-feeding, typical assisted feeding (being fed by a research assistant resulting in proprioceptive loss), sensory loss self-feeding (wearing blindfold/headphones resulting in exteroceptive loss), and sensory loss assisted feeding (proprioceptive and exteroceptive loss). Older adults opened their mouths wider than younger adults in anticipation of food intake under both typical and most non-oropharyngeal sensory loss conditions. Further, the loss of proprioceptive and exteroceptive cues resulted in decreased anticipatory mouth opening for all participants. Greater mouth opening in older adults may be a protective compensation, contributing to the preservation of function associated with healthy aging. Our finding that the loss of non-oropharyngeal sensory cues resulted in decreased anticipatory mouth opening highlights how important proprioception, vision, and hearing are in pre-swallow behavior. Age- and disease-related changes in vision, hearing, and the ability to self-feed may reduce the effectiveness of these pre-swallow strategies. PMID:27377757
Shune, S E; Moon, J B
2016-09-01
To best prevent and treat eating/swallowing problems, it is essential to understand how components of oral physiology contribute to the preservation and/or degradation of eating/swallowing in healthy ageing. Anticipatory, pre-swallow motor movements may be critical to safe and efficient eating/swallowing, particularly for older adults. However, the nature of these responses is relatively unknown. This study compared the magnitude of anticipatory mouth opening during eating in healthy older (aged 70-85) and younger (aged 18-30) adults under four eating conditions: typical self-feeding, typical assisted feeding (being fed by a research assistant resulting in proprioceptive loss), sensory loss self-feeding (wearing blindfold/headphones resulting in exteroceptive loss) and sensory loss assisted feeding (proprioceptive and exteroceptive loss). Older adults opened their mouths wider than younger adults in anticipation of food intake under both typical and most non-oropharyngeal sensory loss conditions. Further, the loss of proprioceptive and exteroceptive cues resulted in decreased anticipatory mouth opening for all participants. Greater mouth opening in older adults may be a protective compensation, contributing to the preservation of function associated with healthy ageing. Our finding that the loss of non-oropharyngeal sensory cues resulted in decreased anticipatory mouth opening highlights how important proprioception, vision, and hearing are in pre-swallow behaviour. Age- and disease-related changes in vision, hearing, and the ability to self-feed may reduce the effectiveness of these pre-swallow strategies. © 2016 John Wiley & Sons Ltd.
Windscapes shape seabird instantaneous energy costs but adult behavior buffers impact on offspring.
Elliott, Kyle Hamish; Chivers, Lorraine S; Bessey, Lauren; Gaston, Anthony J; Hatch, Scott A; Kato, Akiko; Osborne, Orla; Ropert-Coudert, Yan; Speakman, John R; Hare, James F
2014-01-01
Windscapes affect energy costs for flying animals, but animals can adjust their behavior to accommodate wind-induced energy costs. Theory predicts that flying animals should decrease air speed to compensate for increased tailwind speed and increase air speed to compensate for increased crosswind speed. In addition, animals are expected to vary their foraging effort in time and space to maximize energy efficiency across variable windscapes. We examined the influence of wind on seabird (thick-billed murre Uria lomvia and black-legged kittiwake Rissa tridactyla) foraging behavior. Airspeed and mechanical flight costs (dynamic body acceleration and wing beat frequency) increased with headwind speed during commuting flights. As predicted, birds adjusted their airspeed to compensate for crosswinds and to reduce the effect of a headwind, but they could not completely compensate for the latter. As we were able to account for the effect of sampling frequency and wind speed, we accurately estimated commuting flight speed with no wind as 16.6 ms(?1) (murres) and 10.6 ms(?1) (kittiwakes). High winds decreased delivery rates of schooling fish (murres), energy (murres) and food (kittiwakes) but did not impact daily energy expenditure or chick growth rates. During high winds, murres switched from feeding their offspring with schooling fish, which required substantial above-water searching, to amphipods, which required less above-water searching. Adults buffered the adverse effect of high winds on chick growth rates by switching to other food sources during windy days or increasing food delivery rates when weather improved.
Analysis and synthesis of (SAR) waveguide phased array antennas
NASA Astrophysics Data System (ADS)
Visser, H. J.
1994-02-01
This report describes work performed due to ESA contract No. 101 34/93/NL/PB. Started is with a literature study on dual polarized waveguide radiators, resulting in the choice for the open ended square waveguide. After a thorough description of the mode matching infinite waveguide array analysis method - including finiteness effects - that forms the basis for all further described analysis and synthesis methods, the accuracy of the analysis software is validated by comparison with measurements on two realized antennas. These antennas have centered irises in the waveguide apertures and a dielectric wide angle impedance matching sheet in front of the antenna. A synthesis method, using simulated annealing and downhill simplex, is described next and different antenna designs, based on the analysis of a single element in an infinite array environment, are presented. Next, designs of subarrays are presented. Shown is the paramount importance of including the array environment in the design of a subarray. A microstrip patch waveguide exciter and subarray feeding network are discussed and the depth of the waveguide radiator is estimated. Chosen is a rectangular grid array with waveguides of 2.5 cm depth without irises and without dielectric sheet, grouped in linear 8 elements subarrays.
Superconducting Nb DHEB Mixer Arrays for Far-Infrared Spectroscopy
NASA Technical Reports Server (NTRS)
Gerecht, E.; Reintsema, C. D.; Grossman, E. N.; Betz, A. L.; Boreiko, R. T.
2001-01-01
We are developing a heterodyne focal plane array with up to eight elements to study lines of the interstellar medium and planetary atmospheres with frequencies of 2 THz and above. Our fabrication process utilizes selective ion milling techniques to produce Nb Diffusion-Cooled Hot Electron Bolometric (DHEB) mixers from a bilayer thin film of Au/Nb deposited on a silicon substrate. A micro-bridge of 10 nm thick Nb forms the HEB device. The first generation of devices with lateral dimensions of 100 nm by 80 nm were fabricated at the feed of a broadband spiral antenna with a frequency response designed for up to 16 THz. Harmonic multiplier sources becoming available within the next few years should have sufficient power to provide a local-oscillator source for small-format, quasi-optically coupled arrays of these mixers. First generation devices measured at our laboratory have demonstrated a critical temperature (Tc) of 4.8 K with a 0.5 K transition width. These DHEB mixers are expected to have an optimum operational temperature of 1.8-2.0 K. The current four element array mixer block will ultimately be replaced by a dual polarization slot-ring array configuration with up to eight elements.
First Results from the Telescope Array RAdar (TARA) Detector
NASA Astrophysics Data System (ADS)
Myers, Isaac
2014-03-01
The TARA cosmic ray detector has been in operation for about a year and a half. This bi-static radar detector was designed with the goal of detecting cosmic rays in coincidence with Telescope Array (TA). A new high power (25 kW, 5 MW effective radiated power) transmitter and antenna array and 250 MHz fPGA-based DAQ have been operational since August 2013. The eight-Yagi antenna array broadcasts a 54.1 MHz tone across the TA surface detector array toward our receiver station 50 km away at the Long Ridge fluorescence detector. Receiving antennas feed an intelligent DAQ that self-adjusts to the fluctuating radio background and which employs a bank of matched filters that search in real-time for chirp radar echoes. Millions of triggers have been collected in this mode. A second mode is a forced trigger scheme that uses the trigger status of the fluorescence telescope. Of those triggers collected in FD-triggered mode, about 800 correspond with well-reconstructed TA events. I will describe recent advancements in calibrating key components in the transmitter and receiver RF chains and the analysis of FD-triggered data. Work supported by W.M. Keck Foundation and NSF.
NASA Astrophysics Data System (ADS)
Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.
2013-05-01
Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals - particularly, calcifiers - are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of hypercapnia and hypoxia on the deep-sea urchin Strongylocentrotus fragilis, during two long-term exposure experiments (1 month and 4 month) at three levels of reduced pH at in situ O2 levels of approx. 10% saturation, and also to control pH at 100% O2 saturation. During the first experiment, internal acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by reduced pH, due in part to low non-bicarbonate extracellular fluid buffering capacity. During the second experiment, longer-term effects of hypercapnia and variable O2 on locomotion, feeding, growth, and gonadosomatic index (GSI) were investigated; results show significant mortality and correlation of all measured parameters with environmental acidification at pH 6.6. Transient adverse effects on locomotion and feeding were seen at pH 7.2, without compromise of growth or GSI. Based on the expected changes in ocean pH and oxygen, results suggest extinction of S. fragilis in the eastern North Pacific is unlikely. Rather, we expect a shoaling and contraction of its bathymetric range.
Adaptive Control of Truss Structures for Gossamer Spacecraft
NASA Technical Reports Server (NTRS)
Yang, Bong-Jun; Calise, Anthony J.; Craig, James I.; Whorton, Mark S.
2007-01-01
Neural network-based adaptive control is considered for active control of a highly flexible truss structure which may be used to support solar sail membranes. The objective is to suppress unwanted vibrations in SAFE (Solar Array Flight Experiment) boom, a test-bed located at NASA. Compared to previous tests that restrained truss structures in planar motion, full three dimensional motions are tested. Experimental results illustrate the potential of adaptive control in compensating for nonlinear actuation and modeling error, and in rejecting external disturbances.
[Effectiveness, benefit and necessity: making an attempt at a scientific definition].
Köbberling, Johannes
2009-01-01
Effectiveness does not always mean benefit but there is no benefit without effectiveness. Benefit does not always involve necessity but there is no necessity without benefit. In spite of this simple relationship these three important terms of the social security regulations are not well-defined. The array of the terms "effectiveness", "benefit" and "necessity" exhibits a decreasing accuracy of definition, a diminishing popularity in the context of scientific discourse, a rising importance for cost compensation, an increase of context dependencies and growing judgement dependence.
Retaining U.S. Air Force Pilots When the Civilian Demand for Pilots Is Growing
2016-01-01
pilot retention and determine the changes in ARP and AP that could offset those effects. It also simulates the effects of eliminating AP for pilots...array of compensation policies for pilots, thereby providing the USAF with an empirically based analytical platform to determine the special and...greatly from the input and support of our project monitor, Maj Ryan Theiss, Chief, Rated Force Policy-Mobility Forces (HQ USAF/A1PPR), as well as Lt
H I debris in the IC 1459 galaxy group
NASA Astrophysics Data System (ADS)
Saponara, Juliana; Koribalski, Bärbel S.; Benaglia, Paula; Fernández López, Manuel
2018-01-01
We present H I synthesis imaging of the giant elliptical galaxy IC 1459 and its surroundings with the Australia Telescope Compact Array. Our search for extended H I emission revealed a large complex of H I clouds near IC 1459, likely to be the debris from tidal interactions with neighbouring galaxies. The total H I mass (∼109 M⊙) in the detected clouds spans 250 kpc from the north-east of the gas-rich spiral NGC 7418A to the south-east of IC 1459. The extent and mass of the H I debris, which shows rather irregular morphology and kinematics, are similar to those in other nearby groups. Together with H I clouds recently detected near two other IC 1459 group members, namely IC 5270 and NGC 7418, using phased-array feeds on the Australian Square Kilometre Array Pathfinder, the detected debris make up a significant fraction of the group's intergalactic medium.
Benrekia, Fayçal; Attari, Mokhtar; Bouhedda, Mounir
2013-01-01
This paper develops a primitive gas recognition system for discriminating between industrial gas species. The system under investigation consists of an array of eight micro-hotplate-based SnO2 thin film gas sensors with different selectivity patterns. The output signals are processed through a signal conditioning and analyzing system. These signals feed a decision-making classifier, which is obtained via a Field Programmable Gate Array (FPGA) with Very High-Speed Integrated Circuit Hardware Description Language. The classifier relies on a multilayer neural network based on a back propagation algorithm with one hidden layer of four neurons and eight neurons at the input and five neurons at the output. The neural network designed after implementation consists of twenty thousand gates. The achieved experimental results seem to show the effectiveness of the proposed classifier, which can discriminate between five industrial gases. PMID:23529119
Li, Long; Zhou, Xiaoxiao
2018-03-23
In this paper, a mechanically reconfigurable circular array with single-arm spiral antennas (SASAs) is designed, fabricated, and experimentally demonstrated to generate broadband circularly polarized orbital angular momentum (OAM) vortex waves in radio frequency domain. With the symmetrical and broadband properties of single-arm spiral antennas, the vortex waves with different OAM modes can be mechanically reconfigurable generated in a wide band from 3.4 GHz to 4.7 GHz. The prototype of the circular array is proposed, conducted, and fabricated to validate the theoretical analysis. The simulated and experimental results verify that different OAM modes can be effectively generated by rotating the spiral arms of single-arm spiral antennas with corresponding degrees, which greatly simplify the feeding network. The proposed method paves a reconfigurable way to generate multiple OAM vortex waves with spin angular momentum (SAM) in radio and microwave satellite communication applications.
Thermoacoustic chips with carbon nanotube thin yarn arrays.
Wei, Yang; Lin, Xiaoyang; Jiang, Kaili; Liu, Peng; Li, Qunqing; Fan, Shoushan
2013-10-09
Aligned carbon nanotube (CNT) films drawn from CNT arrays have shown the potential as thermoacoustic loudspeakers. CNT thermoacoustic chips with robust structures are proposed to promote the applications. The silicon-based chips can play sound and fascinating rhythms by feeding alternating currents and audio signal to the suspending CNT thin yarn arrays across grooves in them. In additional to the thin yarns, experiments further revealed more essential elements of the chips, the groove depth and the interdigital electrodes. The sound pressure depends on the depth of the grooves, and the thermal wavelength can be introduced to define the influence-free depth. The interdigital fingers can effectively reduce the driving voltage, making the chips safe and easy to use. The chips were successfully assembled into earphones and have been working stably for about one year. The thermoacoustic chips can find many applications in consumer electronics and possibly improve the audiovisual experience.
Multilevel photonic modules for millimeter-wave phased-array antennas
NASA Astrophysics Data System (ADS)
Paolella, Arthur C.; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.
1998-11-01
Optical signal distribution for phased array antennas in communication system is advantageous to designers. By distributing the microwave and millimeter wave signal through optical fiber there is the potential for improved performance and lower weight. In addition when applied to communication satellites this weight saving translates into substantially reduced launch costs. The goal of the Phase I Small Business Innovation Research (SBIR) Program is the development of multi-level photonic modules for phased array antennas. The proposed module with ultimately comprise of a monolithic, InGaAs/InP p-i-n photodetector-p-HEMT power amplifier, opto-electronic integrated circuit, that has 44 GHz bandwidth and output power of 50 mW integrated with a planar antenna. The photodetector will have a high quantum efficiency and will be front-illuminated, thereby improved optical performance. Under Phase I a module was developed using standard MIC technology with a high frequency coaxial feed interconnect.
Embedded scattering eigenstates using resonant metasurfaces
NASA Astrophysics Data System (ADS)
Krasnok, Alex; Alú, Andrea
2018-06-01
Optical embedded eigenstates (EEs) are localized modes of an open structure that are compatible to radiation, yet they have infinite lifetime and diverging quality factors. Their realization in nanostructures finite in all dimensions is inherently challenging, because they require materials with extreme electromagnetic properties. Here we explore the realization of these bound states in the continuum using ultrathin metasurfaces composed of arrays of nanoparticles. We first show that arrays of lossless nanoparticles can realize the condition for EEs, and then explore the use of Ag nanoparticles coated with gain media shells to compensate material loss and revive the EE despite realistic loss in plasmonic materials. We discuss the possible experimental realization of the proposed structures, and provide useful guidelines for practical implementation in nanophotonics systems with largely enhanced light–matter interactions. These metasurfaces may lead to highly efficient lasers, filters, frequency comb generation and sensors.
Strain-compensated infrared photodetector and photodetector array
Kim, Jin K; Hawkins, Samuel D; Klem, John F; Cich, Michael J
2013-05-28
A photodetector is disclosed for the detection of infrared light with a long cutoff wavelength in the range of about 4.5-10 microns. The photodetector, which can be formed on a semiconductor substrate as an nBn device, has a light absorbing region which includes InAsSb light-absorbing layers and tensile-strained layers interspersed between the InAsSb light-absorbing layers. The tensile-strained layers can be formed from GaAs, InAs, InGaAs or a combination of these III-V compound semiconductor materials. A barrier layer in the photodetector can be formed from AlAsSb or AlGaAsSb; and a contact layer in the photodetector can be formed from InAs, GaSb or InAsSb. The photodetector is useful as an individual device, or to form a focal plane array.
Method of constructing dished ion thruster grids to provide hole array spacing compensation
NASA Technical Reports Server (NTRS)
Banks, B. A. (Inventor)
1976-01-01
The center-to-center spacings of a photoresist pattern for an array of holes applied to a thin metal sheet are increased by uniformly stretching the thin metal sheet in all directions along the plane of the sheet. The uniform stretching is provided by securely clamping the periphery of the sheet and applying an annular force against the face of the sheet, within the periphery of the sheet and around the photoresist pattern. The technique is used in the construction of ion thruster grid units where the outer or downstream grid is subjected to uniform stretching prior to convex molding. The technique provides alignment of the holes of grid pairs so as to direct the ion beamlets in a direction parallel to the axis of the grid unit and thereby provide optimization of the available thrust.
Cho, Sangbuem; Ryu, Chaehwa; Yang, Jinho; Mbiriri, David Tinotenda; Choi, Chang-Weon; Chae, Jung-Il; Kim, Young-Hoon; Shim, Kwan-Seob; Kim, Young Jun; Choi, Nag-Jin
2013-01-01
The effect of conjugated linoleic acid (CLA) feeding on growth performance and fatty acid profiles in thigh meat of broiler chicken was investigated using meta-analysis with a total of 9 studies. Overall effects were calculated by standardized mean differences between treatment (CLA fed) and control using Hedges’s adjusted g from fixed and random effect models. Meta-regression was conducted to evaluate the effect of CLA levels. Subgroups in the same study were designated according to used levels of CLA, CP levels or substituted oils in diets. The effects on final body weight, weight gain, feed intake and feed conversion ratio were investigated as growth parameters. Total saturated and unsaturated fatty acid concentrations and C16:0, C18:0, C18:2 and C18:3 concentrations in thigh meat of broiler chicken were used as fatty acid profile parameters. The overall effect of CLA feeding on final weight was negative and it was only significant in fixed effect model (p<0.01). Significantly lower weight gain, feed intake and higher feed conversion ratio compared to control were found (p<0.05). CLA feeding on the overall increased total saturated fatty acid concentration in broilers compared to the control diet (p<0.01). Total unsaturated fatty acid concentration was significantly decreased by CLA feeding (p<0.01). As for individual fatty acid profiles, C16:0, C18:0 and C18:3 were increased and C18:2 was significantly decreased by CLA feeding (p<0.01). In conclusion, CLA was proved not to be beneficial for improving growth performance, whereas it might be supposed that CLA is effective modulating n-6/n-3 fatty acids ratio in thigh meat. However, the economical compensation of the loss from suppressed growth performance and increased saturated fatty acids with the benefit from enhanced n-6/n-3 ratio should be investigated in further studies in order to propose an appropriate use of dietary CLA in the broiler industry. PMID:25049878
A novel compensation method for the anode gain non-uniformity of multi-anode photomultiplier tubes
NASA Astrophysics Data System (ADS)
Lee, Chan Mi; Kwon, Sun Il; Ko, Guen Bae; Ito, Mikiko; Yoon, Hyun Suk; Lee, Dong Soo; Jong Hong, Seong; Lee, Jae Sung
2012-01-01
The position-sensitive multi-anode photomultiplier tube (MA-PMT) is widely used in high-resolution scintillation detectors. However, the anode gain non-uniformity of this device is a limiting factor that degrades the intrinsic performance of the detector module. The aim of this work was to develop a gain compensation method for the MA-PMT and evaluate the resulting enhancement in the performance of the detector. The method employs a circuit that is composed only of resistors and is placed between the MA-PMT and a resistive charge division network (RCN) used for position encoding. The goal of the circuit is to divide the output current from each anode, so the same current flows into the RCN regardless of the anode gain. The current division is controlled by the combination of a fixed-value series resistor with an output impedance that is much larger than the input impedance of the RCN, and a parallel resistor, which detours part of the current to ground. PSpice simulations of the compensation circuit and the RCN were performed to determine optimal values for the compensation resistors when used with Hamamatsu H8500 MA-PMTs. The intrinsic characteristics of a detector module consisting of this MA-PMT and a lutetium-gadolinium-oxyorthosilicate (LGSO) crystal array were tested with and without the gain compensation method. In simulation, the average coefficient of variation and max/min ratio decreased from 15.7% to 2.7% and 2.0 to 1.2, respectively. In the flood map of the LGSO-H8500 detector, the uniformity of the photopeak position for individual crystals and the energy resolution were much improved. The feasibility of the method was shown by applying it to an octagonal prototype positron emission tomography scanner.
Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning
2014-03-01
Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper.
NASA Astrophysics Data System (ADS)
Jiang, Jia-Jia; Duan, Fa-Jie; Li, Yan-Chao; Hua, Xiang-Ning
2014-03-01
Synchronization sampling is very important in underwater towed array system where every acquisition node (AN) samples analog signals by its own analog-digital converter (ADC). In this paper, a simple and effective synchronization sampling method is proposed to ensure synchronized operation among different ANs of the underwater towed array system. We first present a master-slave synchronization sampling model, and then design a high accuracy phase-locked loop to synchronize all delta-sigma ADCs to a reference clock. However, when the master-slave synchronization sampling model is used, both the time-delay (TD) of messages traveling along the wired transmission medium and the jitter of the clocks will bring out synchronization sampling error (SSE). Therefore, a simple method is proposed to estimate and compensate the TD of the messages transmission, and then another effective method is presented to overcome the SSE caused by the jitter of the clocks. An experimental system with three ANs is set up, and the related experimental results verify the validity of the synchronization sampling method proposed in this paper.
Ackerman, P. J.; van de Lagemaat, J.; Smalyukh, I. I.
2015-01-21
Some of the most exotic condensed matter phases, such as twist grain boundary and blue phases in liquid crystals and Abrikosov phases in superconductors, contain arrays of topological defects in their ground state. Comprised of a triangular lattice of double-twist tubes of magnetization, the so-called ‘A-phase’ in chiral magnets is an example of a thermodynamically stable phase with topologically nontrivial solitonic field configurations referred to as two-dimensional skyrmions, or baby-skyrmions. Here we report that three-dimensional skyrmions in the form of double-twist tori called ‘hopfions’, or ‘torons’ when accompanied by additional self-compensating defects, self-assemble into periodic arrays and linear chains thatmore » exhibit electrostriction. In confined chiral nematic liquid crystals, this self-assembly is similar to that of liquid crystal colloids and originates from long-range elastic interactions between particle-like skyrmionic torus knots of molecular alignment field, which can be tuned from isotropic repulsive to weakly or highly anisotropic attractive by low-voltage electric fields.« less
Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing
NASA Technical Reports Server (NTRS)
Scheidegger, Noemy; Ferris, Mark; Phillips, Nigel
2014-01-01
The development of the Bi-Axial Solar Array Drive Mechanism (BSADM) presented in this paper is a demonstration of SSTL's unique space manufacturing approach that enables performing rapid development cycles for cost-effective products that meet ever-challenging mission requirements: The BSADM is designed to orient a solar array wing towards the sun, using its first rotation axis to track the sun, and its second rotation axis to compensate for the satellite orbit and attitude changes needed for a successful payload operation. The tight development schedule, with manufacture of 7 Flight Models within 1.5 year after kick-off, is offset by the risk-reduction of using qualified key component-families from other proven SSTL mechanisms. This allowed focusing the BSADM design activities on the mechanism features that are unique to the BSADM, and having an Engineering Qualification Model (EQM) built 8 months after kick-off. The EQM is currently undergoing a full environmental qualification test campaign. This paper presents the BSADM design approach that enabled meeting such a challenging schedule, its design particularities, and the ongoing verification activities.
Vincent, Ursula; Serano, Federica; von Holst, Christoph
2017-08-01
Carotenoids are used in animal nutrition mainly as sensory additives that favourably affect the colour of fish, birds and food of animal origin. Various analytical methods exist for their quantification in compound feed, reflecting the different physico-chemical characteristics of the carotenoid and the corresponding feed additives. They may be natural products or specific formulations containing the target carotenoids produced by chemical synthesis. In this study a multi-analyte method was developed that can be applied to the determination of all 10 carotenoids currently authorised within the European Union for compound feedingstuffs. The method functions regardless of whether the carotenoids have been added to the compound feed via natural products or specific formulations. It is comprised of three steps: (1) digestion of the feed sample with an enzyme; (2) pressurised liquid extraction; and (3) quantification of the analytes by reversed-phase HPLC coupled to a photodiode array detector in the visible range. The method was single-laboratory validated for poultry and fish feed covering a mass fraction range of the target analyte from 2.5 to 300 mg kg - 1 . The following method performance characteristics were obtained: the recovery rate varied from 82% to 129% and precision expressed as the relative standard deviation of intermediate precision varied from 1.6% to 15%. Based on the acceptable performance obtained in the validation study, the multi-analyte method is considered fit for the intended purpose.
Lindsay, Ana Cristina; Sussner, Katrina Mucha; Greaney, Mary; Wang, Monica L; Davis, Rachel; Peterson, Karen E
2012-05-01
Obesity rates remain high among children in the United States (US), but children of low-income, minority families are at particularly high risk. Latinos are the largest and most rapidly growing US population group. Effective strategies will require attention to a wide array of culturally mediated variables that influence child feeding practices through the social contexts in which behaviors take place. This paper presents the design and implementation of a qualitative study examining low-income, Latina mothers' perceptions of child weight status and feeding practices, and their associations with the development of overweight in children. Guided by the social ecologic model and social contextual model on the role of the family in mediating health behavior, the Latina Mother Child Feeding Practices (LMCFP) study provided a systematic exploration of the influence of social class, culture, and environmental factors associated with mothers' perceptions of child overweight on feeding practices and behaviors. The design for this qualitative study consisted of three sequential phases: focus groups, in-depth interviews and cognitive interviews with Latina mothers conducted by Spanish-speaking researchers. Results showed the important role of socio-cultural factors in influencing Latina mothers' child feeding practices. In the short-term, this research yielded information to develop a child-feeding questionnaire appropriate for low-income, Latina mothers. Findings have important implications in developing nutrition education strategies for child health promotion that account for the social and cultural context of minority, low-income caregivers.
Endogenous opioids and feeding behavior: a 30-year historical perspective.
Bodnar, Richard J
2004-04-01
This invited review, based on the receipt of the Third Gayle A. Olson and Richard D. Olson Prize for the publication of the outstanding behavioral article published in the journal Peptides in 2002, examines the 30-year historical perspective of the role of the endogenous opioid system in feeding behavior. The review focuses on the advances that this field has made over the past 30 years as a result of the timely discoveries that were made concerning this important neuropeptide system, and how these discoveries were quickly applied to the analysis of feeding behavior and attendant homeostatic processes. The discoveries of the opioid receptors and opioid peptides, and the establishment of their relevance to feeding behavior were pivotal in studies performed in the 1970s. The 1980s were characterized by the establishment of opioid receptor subtype agonists and antagonists and their relevance to the modulation of feeding behavior as well as by the use of general opioid antagonists in demonstrating the wide array of ingestive situations and paradigms involving the endogenous opioid system. The more recent work from the 1990s to the present, utilizes the advantages created by the cloning of the opioid receptor genes, the development of knockout and knockdown techniques, the systematic utilization of a systems neuroscience approach, and establishment of the reciprocity of how manipulations of opioid peptides and receptors affect feeding behavior with how feeding states affect levels of opioid peptides and receptors. The role of G-protein effector systems in opioid-mediated feeding responses, which was the subject of the prize-winning article, is then reviewed. Copyright 2004 Elsevier Inc.
Status of the development of Brazilian Decimetric Array (BDA)
NASA Astrophysics Data System (ADS)
Sawant, Hanumant; Fernandes, Francisco; Chellasamy, Ebenezer; Cecatto, Jose R.; Costa, D. Joaquim; Sirothia, Sandeep Kumar; Subramanian, Koovapady
BDA will consists of 38 antennas of 4 meters diameter, capable of operating at frequency range of (1.2-1.7, 2.8 and 5.6) GHz. The array will be spread over the distances 2 x 1 km in a T shape with longest base line in E-W direction, having spatial resolution of ~10 sec of arc at 5.6 GHz. The visibility data can be processed to provide two dimensional images at a time resolution of 100 ms (or higher). In the second phase of the BDA, almost all systems of the 26 antennas are installed. LO of 10 MHz is send from receiver room to each receiver located in the each antenna tower. This receiver operates in the frequency range of 1-6 GHz and converts received signal to 70 MHz. Fiber optical system is partially installed in tower converts 70 MHz signal to optical signal and send to receiver room with low loss and phase compensation of 100 ps, where it is converted back to 70 MHz and processed to give output of 0-5 MHz bandpass and further processed by the correlator. Tracking system, with Dual feed back facility has tracking accuracy of +/- 3 arc minutes. All safety features are installed, with on line offset adjustment. Data logging and event logging for future investigations are available. Tracking system was tested for one month with 8 hours tracking and results of these will also be presented. Field programmable Gate Array based complex correlator system capable of producing all four Stokes parameters was designed and developed for correlating base band outputs from 38 antennas. The correlator produces delay and fringe corrected, visibility correlations between any two signal channels of the same polarizations from any given pair of antennas, providing visibility data. Fringes using this system have been obtained for baseline combinations of 12 fully installed antennas. Simulations of the UV coverage and imaging were carried out for the full synthesis observations of sources at different configurations and various declinations in -70 to +23 degrees range. The current system can image the Sun with spatial resolution of 3.40 x 4.54 arc min at 1.4 GHz. Results of the each of the above systems along with the observed fringes from the FPGA based complex correlator system from non redundant 12 antennas in two dimensions will be presented. BDA phase II will be operational shortly.
Design of the Longitudinal Dispersion Compensation System for the CHARA Array
NASA Astrophysics Data System (ADS)
Berger, D. H.; Bagnuolo, W. G.
2001-05-01
In recent years, the baselines of optical and infrared interferometers have been approaching half of a kilometer in length. With increased spatial layout comes new and challenging problems to solve. One common hurdle occurs when observing objects not perpendicular to the baseline. The result is one beam with added path length that must be added to the non-delayed beam such that identical phase fronts are combined together to produce fringes. For several interferometers without the addition of costly and logistically difficult evacuated delay lines, path length equalization occurs in long buildings through the ambient air medium. This causes a beam which is spectrally dispersed along the optical axis. The undesirable consequence is decreased fringe contrast. A solution is to disperse the uncompensated beam by inserting a block of glass to match the optical path lengths for all wavelengths within the observing waveband. A single glass solution is presented for the CHARA Array. Modeling, design and fabrication methods are also considered. The CHARA Array, a six-telescope O/IR interferometric array operated by Georgia State University on Mt. Wilson, California, was funded by the National Science Foundation, the W.M. Keck Foundation, the David and Lucile Packard Foundation, and Georgia State University. This research is also funded in part by the Michelson Fellowship Program sponsored by Jet Propulsion Laboratory.
High Resolution Radar for NASA and Space Situational Awareness for Observation and Monitoring
NASA Astrophysics Data System (ADS)
Geldzahler, B.; D'Addario, L.; Ott, M.; Birr, R.; Woods, G.; Miller, M.
2014-09-01
NASA has embarked on a series of demonstrations that will enable the implementation of a high power, high resolution X/Ka-band radar system using a phased array of widely spaced 12m antennas to better track and characterize near Earth objects and orbital debris. This radar system also has applications for cost effective space situational awareness. Ka band can provide 5cm ranging resolution, and, with arrays in the western United States and Australia used in an astrometric mode, ? 10 cm resolution at GEO. Here we report the results of a successful X-band demonstration of coherent uplink arraying with real time compensation for atmospheric phase fluctuations at the Kennedy Space Center (KSC) using a system simplified from work previously undertaken. The X-band system is a prelude to the Ka-band work currently underway. The target satellites were components of the DSCS and WGS systems. KSC was chosen for the demonstration site because [a] of reduced implementation costs, [b] there is a lot of water vapor in the air (not Ka-band friendly), and [c] some of the test satellites have low elevations thereby adding more attenuation and turbulence to the demonstration. When Ka-band coherent uplink arraying is demonstrated to work at KSC, it will work and can be deployed anywhere.