Science.gov

Sample records for array hybridization experiments

  1. Results of lower hybrid wave experiments using a dielectric loaded waveguide array antenna on TST-2

    NASA Astrophysics Data System (ADS)

    Wakatsuki, T.; Ejiri, A.; Shinya, T.; Takase, Y.; Furui, H.; Hiratsuka, J.; Imamura, K.; Inada, T.; Kakuda, H.; Kasahara, H.; Nagashima, Y.; Nakamura, K.; Nakanishi, A.; Oosako, T.; Saito, K.; Seki, T.; Shimpo, F.; Sonehara, M.; Togashi, H.; Tsuda, S.; Tsujii, N.; Yamaguchi, T.

    2014-02-01

    Lower hybrid current drive experiments were performed on the TST-2 spherical tokamak (R = 0.38 m, a = 0.25 m, Bt = 0.3 T, Ip = 0.1 MA). A waveguide array antenna consisting of four dielectric (alumina, ɛr = 10.0) loaded waveguides was used. The coupling characteristics were investigated over a wide range of input power (0.1 W - 40 kW). The reflection coefficient of this antenna increased when the input power exceeded approximately 1 kW. This result was compared with a numerical simulation based on the finite element method (FEM). The ponderomotive effect was calculated for the wave field calculated by COMSOL [1]. This calculation also showed variation of the reflection coefficient with the input power. Non-inductive plasma current start-up to 10 kA was demonstrated using 40 kW of lower hybrid wave (LHW) power. The current drive figure of merit (ηCD = IpneR/PRF) of this antenna was higher than that obtained using the combline antenna, which is designed to excite a travelling fast wave. The best current drive efficiency was obtained in the case in which the n∥ (= ck∥/ω) spectrum of the excited LHW was peaked around 9 and the toroidal field was higher than in previous experiments.

  2. Hybrid Arrays for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  3. Hybrid Avalanche Photodiode Array Imaging

    NASA Astrophysics Data System (ADS)

    Aihara, Hiroaki

    A hybrid avalanche photodiode (APD) array is a vacuum tube containing a photocathode and an array of avalanche photodiodes. It is a hybrid device that combines a traditional phototube technology and an advanced semiconductor technology. A photon produces a photoelectron with quantum efficiency at the photocathode. Unlike a phototube with dynodes, multiplication of the photoelectron is provided by a bombardment of the accelerated photoelectron into the avalanche photodiode resulting in a number of electron-hole pairs and a subsequent avalanche multiplication of the secondary electrons at the pn junction of the reverse-biased diode. The resulting total gain ranging from 104 to 105 is large enough to retain a single-photon sensitivity by using low-noise amplifiers. Segmentation of the pn junction of the diode provides the position information of an incident photoelectron and enables imaging of an incident photon. We report the recent progress on R&D of a single-pixel large format hybrid APD and a multipixel hybrid APD array. A hybrid avalanche photodiode (APD) array is a vacuum tube containing a photocathode and an array of avalanche photodiodes. It is a hybrid device that combines a traditional phototube technology and an advanced semiconductor technology. A photon produces a photoelectron with quantum efficiency at the photocathode. Unlike a phototube with dynodes, multiplication of the photoelectron is provided by a bombardment of the accelerated photoelectron into the avalanche photodiode resulting in a number of electron-hole pairs and a subsequent avalanche multiplication of the secondary electrons at the pn junction of the reverse-biased diode. The resulting total gain ranging from 104 to 105 is large enough to retain a single-photon sensitivity by using low-noise amplifiers. Segmentation of the pn junction of the diode provides the position information of an incident photoelectron and enables imaging of an incident photon. We report the recent progress on R

  4. Hybrid silicon focal plane arrays

    NASA Technical Reports Server (NTRS)

    Pommerrenig, D.; Enders, D.; Trousil, L.; Capps, R.; Irwin, E.; Tollestrup, E.; Dereniak, E.

    1983-01-01

    Applications were demonstrated for hybrid silicon infrared CCD arrays in both ground and space based astronomical instrumentation. The primary goal was to provide a point of departure for both instrument designs and further development of the device. The test device is an indium doped silicon (Si:In) version of the 32 x 32 Rockwell 30331 surface channel hybrid silicon IRCCD. The device structure and a typical instrument interface are shown. The motivation for further study is presented along with a discussion in detail of some of the issues.

  5. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-03-30

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  6. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  7. [First experiences with preimplantation genetic screening of chromosomal aberrations using oligonucleotide-based array comparative genomic hybridization].

    PubMed

    Kuglík, Petr; Smetana, Jan; Němcová, Darja; Vallová, Vladimíra; Mikulášová, Aneta; Gaillyová, Renata; Hubinka, Vít; Koudelka, Marek

    2015-01-01

    Preimplantation genetic diagnosis (PGD) is a complex approach for detecting genetic abnormalities in early-stage embryos using genetic or molecular cytogenetic methods. Recently, single cell genomic methods based on DNA microarrays have been used for PGD. In the presented paper, we discuss and demonstrate the possibility to detect copy number variation (CNVs) in trophectoderm cells biopsied from 5-day embryos using 60-mer oligonucleotide-based array-CGH with CytoSure 8 × 15K Aneuploidy Array. Whereas this microarray platform was originally designed for analysis of unamplified DNA derived from many cells, the new methods, developed for single-cell genomics, allow the application of oligo arrays technology in preimplanation genetic diagnosis. Preclinical validation of single cell array-CGH was made by analysis of 30 positive and negative controls. Validation process included whole genome amplification of DNA from 5-10 cells with normal karyotype and from samples with known aneuploidies and structural aberrations. Subsequently, we analyzed the whole genome profiles in 118 embryos; aneuploidies of chromosomes were observed in 26.7%; segmental imbalances were proved in 6.8% of embryos. Our first experience confirmed that this oligonucleotide-based array technique enables high-resolution preimplantation aneuploidy screening of all the 23 chromosome pairs and sensitive preimplantation diagnosis of segmental imbalances such as deletions, duplications and amplifications.

  8. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  9. Microheater Array Boiling Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    By conducting pool boiling tests in microgravity, the effect of buoyancy on the overall boiling process and the relative magnitude of other phenomena can be assessed. Data from KC-135 and sounding rocket experiments indicate little effect of gravity on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble, surrounded by smaller satellite bubbles, moved over the surface, occasionally causing nucleation. Once formed, the primary bubble size remained constant for a given superheat, indicating evaporation at the bubble base is balanced with condensation on the bubble cap. The primary bubble's size increased with wall superheat. Most heaters under the primary bubble had low heat transfer rates, suggesting liquid dryout. Strong Marangoni convection developed in microgravity, forming a 'jet' into the bulk liquid that forced the bubble onto the heater. An experiment is being designed for the. Microgravity Science Glovebox. This experiment uses two 96 element microheater arrays, 2.7 and 7.0 mm in size. These heaters are individually controlled to operate at a constant temperature, measuring local heat fluxes as a function of time and space. Most boiling experiments operate at constant wall heat flux with larger heaters, allowing only time and space-averaged measurements. Each heater is about the bubble departure size in normal gravity, but significantly smaller than the bubble departure size in reduced gravity.

  10. Hybrid Beamforming and Steering With Reconfigurable Arrays

    PubMed Central

    Hooi, Fong Ming; Thomenius, Kai E.; Fisher, Rayette; Carson, Paul L.

    2010-01-01

    Reconfigurable arrays offer an advantage over traditional ultrasound arrays because of their flexibility in channel selection. To improve ultrasound beamforming and coverage through beam steering, we propose a hybrid beamforming technique to elongate the depth of focus of transmit beams and a method of element selection that improves steering capabilities that take advantage of array reconfigurability using annular rings. A local minimization technique to optimize the hybrid aperture is discussed in this paper. The chosen hybrid apertures covering four focal zones result in improved range in depth of focus when compared with pure spherical beams via point spread functions (PSF) and lesion signal-tonoise ratio (LSNR) calculations. Improvements were statistically significant at focal depth extremes. Our method of beam steering utilizing a quantized phase delay selection to minimize delay errors indicated better performance by removing an artifact present with traditional ringed element selection. PMID:20529707

  11. Plasma Start-up Experiments Using the Lower Hybrid Wave Excited by a Dielectric Loaded Waveguide Array Antenna on the TST-2 Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Wakatsuki, Takuma; Ejiri, Akira; Takase, Yuichi; Furui, Hirokazu; Hashimoto, Takahiro; Hiratsuka, Junichi; Kakuda, Hidetoshi; Kato, Kunihiko; Nakanishi, Ayaka; Oosako, Takuya; Shinya, Takahiro; Sonehara, Masateru; Togashi, Hiro; Yamaguchi, Takashi; Kasahara, Hiroshi; Kumazawa, Ryuhei; Saito, Kenji; Seki, Tetsuo; Shimpo, Fujio; Nagashima, Yoshihiko

    2012-10-01

    Plasma current start-up experiments were performed on the TST-2 spherical tokamak (R= 0.38 m, a = 0.25 m, Bt = 0.3 T, Ip = 0.1 MA) using the lower hybrid wave (LHW) at f = 200 MHz. A waveguide array antenna consisting of four dielectric (alumina, ɛr = 10.0) loaded waveguides was used. The coupling characteristics of this antenna were investigated by low power experiments (PFWD< 5 kW). The measured characteristics were qualitatively consistent with those predicted by calculations using a finite element method solver package (COMSOL). The experimentally observed reflection coefficient is large (greater than 36 % averaged over four waveguides), and there are large differences in reflectivities in neighboring waveguides. It was necessary to take into account of the private limiter surrounding the antenna in order to reproduce these features. Non-inductive plasma current start-up to 6 kA has been demonstrated using 20 kW of LHW power. In this experiment, the reflection coefficient was very high because the initial plasma density was much lower than the predicted optimum plasma density.

  12. Hybrid Enrichment Verification Array: Module Characterization Studies

    SciTech Connect

    Zalavadia, Mital A.; Smith, Leon E.; McDonald, Benjamin S.; Kulisek, Jonathan A.; Mace, Emily K.; Deshmukh, Nikhil S.

    2016-03-01

    The work presented in this report is focused on the characterization and refinement of the Hybrid Enrichment Verification Array (HEVA) approach, which combines the traditional 186-keV 235U signature with high-energy prompt gamma rays from neutron capture in the detector and surrounding collimator material, to determine the relative enrichment and 235U mass of the cylinder. The design of the HEVA modules (hardware and software) deployed in the current field trial builds on over seven years of study and evolution by PNNL, and consists of a ø3''×3'' NaI(Tl) scintillator coupled to an Osprey digital multi-channel analyzer tube base from Canberra. The core of the HEVA methodology, the high-energy prompt gamma-ray signature, serves as an indirect method for the measurement of total neutron emission from the cylinder. A method for measuring the intrinsic efficiency of this “non-traditional” neutron signature and the results from a benchmark experiment are presented. Also discussed are potential perturbing effects on the non-traditional signature, including short-lived activation of materials in the HEVA module. Modeling and empirical results are presented to demonstrate that such effects are expected to be negligible for the envisioned implementation scenario. In comparison to previous versions, the new design boosts the high-energy prompt gamma-ray signature, provides more flexible and effective collimation, and improves count-rate management via commercially available pulse-processing electronics with a special modification prompted by PNNL.

  13. Novel fabrication technique of hybrid structure lens array for 3D images

    NASA Astrophysics Data System (ADS)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Won, Yong Hyub

    2016-03-01

    Tunable liquid lens arrays can produce three dimensional images by using electrowetting principle that alters surface tensions by applying voltage. This method has advantages of fast response time and low power consumption. However, it is challenging to fabricate a high fill factor liquid lens array and operate three dimensional images which demand high diopter. This study describes a hybrid structure lens array which has not only a liquid lens array but a solid lens array. A concave-shape lens array is unavoidable when using only the liquid lens array and some voltages are needed to make the lens flat. By placing the solid lens array on the liquid lens array, initial diopter can be positive. To fabricate the hybrid structure lens array, a conventional lithographic process in semiconductor manufacturing is needed. A negative photoresist SU-8 was used as chamber master molds. PDMS and UV adhesive replica molding are done sequentially. Two immiscible liquids, DI water and dodecane, are injected in the fabricated chamber, followed by sealing. The fabricated structure has a 20 by 20 pattern of cylindrical shaped circle array and the aperture size of each lens is 1mm. The thickness of the overall hybrid structure is about 2.8mm. Hybrid structure lens array has many advantages. Solid lens array has almost 100% fill factor and allow high efficiency. Diopter can be increased by more than 200 and negative diopter can be shifted to the positive region. This experiment showed several properties of the hybrid structure and demonstrated its superiority.

  14. Solar Array Experiment (SAE) Flight Experience

    NASA Technical Reports Server (NTRS)

    Hill, H. C.; Young, L. E.; Turner, G. F.

    1985-01-01

    The space flight testing of a large, flat, flexible panel solar array is examined. The experiment objectives are: to demonstrate the functional operational of the wind deployment and packaging system; Electrical performance; Thermal performance; and dynamic performance. A complete description of the experiment and the flight results are given.

  15. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, R. W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  16. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1987-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures' dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on space shuttle flight STS-41D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  17. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  18. Solar array flight dynamic experiment

    NASA Technical Reports Server (NTRS)

    Schock, Richard W.

    1986-01-01

    The purpose of the Solar Array Flight Dynamic Experiment (SAFDE) is to demonstrate the feasibility of on-orbit measurement and ground processing of large space structures dynamic characteristics. Test definition or verification provides the dynamic characteristic accuracy required for control systems use. An illumination/measurement system was developed to fly on Space Shuttle flight STS-31D. The system was designed to dynamically evaluate a large solar array called the Solar Array Flight Experiment (SAFE) that had been scheduled for this flight. The SAFDE system consisted of a set of laser diode illuminators, retroreflective targets, an intelligent star tracker receiver and the associated equipment to power, condition, and record the results. In six tests on STS-41D, data was successfully acquired from 18 retroreflector targets and ground processed, post flight, to define the solar array's dynamic characteristic. The flight experiment proved the viability of on-orbit test definition of large space structures dynamic characteristics. Future large space structures controllability should be greatly enhanced by this capability.

  19. The hybrid energy spectrum of Telescope Array's Middle Drum Detector and surface array

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M. G.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-08-01

    The Telescope Array experiment studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated when a primary cosmic ray particle interacts with the atmosphere. Meanwhile, scintillator detectors measure the lateral distribution of secondary shower particles that hit the ground. The Middle Drum (MD) fluorescence telescope station consists of 14 telescopes from the High Resolution Fly's Eye (HiRes) experiment, providing a direct link back to the HiRes measurements. Using the scintillator detector data in conjunction with the telescope data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum is presented and compared to that measured by the Middle Drum station in monocular mode. Further, the hybrid data establishes a link between the Middle Drum data and the surface array. A comparison between the Middle Drum hybrid energy spectrum and scintillator Surface Detector (SD) spectrum is also shown.

  20. Survey of lower hybrid experiments

    SciTech Connect

    Porkolab, M.

    1983-05-01

    Recent developments in lower hybrid experiments are discussed. While a decade ago there were many small scale experiments which verified the fundamental aspects of wave propagation near and above the lower hybrid frequency, more recently the greatest interest has been in using lower hybrid waves to heat the plasma, and to drive currents in toroidal devices. While in the mid 70's lower hybrid heating experiments in tokamaks were carried out at the 100 to 200 kW level, in recent experiments powers up to 1 MW have been injected in the Alcator C tokamak at MIT. Also, while the earlier lower hybrid experiments concentrated on the ion heating regime (..omega.. approx. = ..omega../sub LH/), in the more recent experiments the electron heating regime (..omega.. greater than or equal to 2..omega../sub LH/) and the current drive regime (..omega.. > 2..omega../sub LH/) has been explored to a greater extent. The reason for this is that bulk ion heating near the mode conversion layer appears to be less reproducible and more difficult to achieve than electron heating (and concommitant collisional bulk ion heating). While the reason for this is not well understood, it is likely that as the wave frequency gets closer to the lower hybrid frequency the shorter wavelength waves may be more effectively absorbed and/or scattered near the plasma surface by nonlinear effects (parametric instabilities, low frequency fluctuations, etc.). Toroidal effects may further enhance such mechanisms.

  1. Computational Methods for the Analysis of Array Comparative Genomic Hybridization

    PubMed Central

    Chari, Raj; Lockwood, William W.; Lam, Wan L.

    2006-01-01

    Array comparative genomic hybridization (array CGH) is a technique for assaying the copy number status of cancer genomes. The widespread use of this technology has lead to a rapid accumulation of high throughput data, which in turn has prompted the development of computational strategies for the analysis of array CGH data. Here we explain the principles behind array image processing, data visualization and genomic profile analysis, review currently available software packages, and raise considerations for future software development. PMID:17992253

  2. Microfabrication of encoded microparticle array for multiplexed DNA hybridization detection.

    PubMed

    Zhi, Zheng-Liang; Morita, Yasutaka; Yamamura, Shouhei; Tamiya, Eiichi

    2005-05-21

    A strategy for the high-sensitivity, high-selectivity, and multiplexed detection of oligonucleotide hybridizations has been developed with an encoded Ni microparticle random array that was manufactured by a "top-down" approach using micromachining and microfabrication techniques.

  3. Broadband-antireflective hybrid nanopillar array for photovoltaic application

    SciTech Connect

    Watanabe, Keiji Yamamoto, Jiro; Tsuchiya, Ryuta

    2015-08-28

    Subwavelength structures such as nanopillars, nanoholes, and nanodomes have recently attracted considerable attention as antireflective structures for solar cells. Recent studies on the optical property of nanopillar array revealed that the reflection minimum is related to the diameter, the pitch, and the height of nanopillars. Here, we investigate the “hybrid” nanopillar array, which is composed of different diameters of nanopillars. Finite differential time domain simulations revealed that the photogeneration in a hybrid nanopillar array is spatially heterogeneous: carriers are generated mainly in the narrower pillars for short-wavelength incident light and in the thicker pillars for long-wavelength light, respectively. Hybrid silicon nanopillar arrays fabricated by using electron beam lithography and dry etching show excellent broadband antireflection property. Hybrid nanopillar array is thus highly promising for next-generation antireflection for photovoltaic applications.

  4. Polychromatic microarrays: simultaneous multicolor array hybridization of eight samples.

    PubMed

    Shepard, Jason R E

    2006-04-15

    High-throughput microscale platforms have transformed modern analytical investigations. Traditional microarray analyses involve a comparative approach, with two samples, a known control and an unknown sample, hybridized side-by-side and then contrasted for genetic differences. The samples are labeled with separate dyes and hybridized together, providing a differential expression pattern based on the reporter intensities. In contrast, the fiber-optic microarray platform described herein is analyzed with a microscope, thereby enabling the use of virtually any reporter, including quantum dots. The instrumentation takes advantage of the narrow emission bands characteristic of quantum dots to perform multiplexed detection of Bacillus anthracis. Advancing beyond the standard red/green microarray experiment, a panel of eight reporters were linked to eight B. anthracis samples and simultaneously analyzed in a microarray format. The ability to employ an assortment of reporters, along with the capacity to simultaneously hybridize eight samples confers an unprecedented flexibility to array-based analyses, providing a 4-fold increase in throughput over standard two-color assays.

  5. Analysis of Small RNA Populations Using Hybridization to DNA Tiling Arrays.

    PubMed

    Boccara, Martine; Sarazin, Alexis; Billoud, Bernard; Bulski, Agnes; Chapell, Louise; Baulcombe, David; Colot, Vincent

    2017-01-01

    Epigenetic response to stress in plants involves changes in DNA methylation, histone modifications, and expression of small noncoding RNAs (sRNA). Here we present the method of analysis of differential expression of sRNA populations using DNA tiling arrays. sRNA extracted from Arabidopsis thaliana plants exposed to pathogen elicitor or control plants were reverse-transcribed into cDNAs, and subsequently hybridized after labeling to a custom-made DNA tiling array covering Arabidopsis chromosome 4. We first designed a control experiment with eight cDNA clones corresponding to sequences located on chromosome 4 and obtained robust and specific hybridization signals. Furthermore, hybridization signals along chromosome 4 were in good agreement with sRNA abundance as previously determined by massive parallel sequence signature (MPSS) in the case of untreated plants, but differed substantially after stress treatment. These results demonstrate the utility of hybridization to DNA tiling arrays to detect major changes in sRNA abundance.

  6. Arrays of probes for positional sequencing by hybridization

    DOEpatents

    Cantor, Charles R.; Prezetakiewiczr, Marek; Smith, Cassandra L.; Sano, Takeshi

    2008-01-15

    This invention is directed to methods and reagents useful for sequencing nucleic acid targets utilizing sequencing by hybridization technology comprising probes, arrays of probes and methods whereby sequence information is obtained rapidly and efficiently in discrete packages. That information can be used for the detection, identification, purification and complete or partial sequencing of a particular target nucleic acid. When coupled with a ligation step, these methods can be performed under a single set of hybridization conditions. The invention also relates to the replication of probe arrays and methods for making and replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.

  7. High voltage solar array experiments

    NASA Technical Reports Server (NTRS)

    Kennerud, K. L.

    1974-01-01

    The interaction between the components of a high voltage solar array and a simulated space plasma is studied to obtain data for the design of a high voltage solar array capable of 15kW at 2 to 16kV. Testing was conducted in a vacuum chamber 1.5-m long by 1.5-m diameter having a plasma source which simulated the plasma conditions existing in earth orbit between 400 nautical miles and synchronous altitude. Test samples included solar array segments pinholes in insulation covering high voltage electrodes, and plain dielectric samples. Quantitative data are presented in the areas of plasma power losses, plasma and high voltage induced damage, and dielectric properties. Limitations of the investigation are described.

  8. Solar Array Passive LDEF Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Marshall researcher examines a sample from the Solar Array Passive Long Duration Exposure Facility (LDEF). LDEF, which flew in space, measured the number, severity, and effects of micrometeroid hits on various materials. The data will lead to improved spacecraft design in the future.

  9. Patterned hybrid nanohole array surfaces for cell adhesion and migration.

    PubMed

    Westcott, Nathan P; Lou, Yi; Muth, John F; Yousaf, Muhammad N

    2009-10-06

    We report the fabrication of hybrid nanohole array surfaces to study the role of the surface nanoevironment on cell adhesion and cell migration. We use polystyrene beads and reactive ion etching to control the size and the spacing between nanoholes on a tailored self-assembled monolayer inert gold surface. The arrays were characterized by scanning electron microscopy and brightfield microscopy. For cell adhesion studies, cells were seeded to these substrates to study the effect of ligand spacing on cell spreading, stress fiber formation, and focal adhesion structure and size. Finally, comparative cell migration rates were examined on the various nanohole array surfaces using time-lapse microscopy.

  10. Photovoltaic array space power plus diagnostics experiment

    NASA Technical Reports Server (NTRS)

    Guidice, Donald A.

    1990-01-01

    The objective of the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment is to measure the effects of the interaction of the low- to mid-altitude space environment on the performance of a diverse set of small solar-cell arrays (planar and concentrator, representative of present and future military technologies) under differing conditions of velocity-vector orientation and simulated (by biasing) high-voltage operation. Solar arrays to be tested include Si and GaAs planar arrays and several types of GaAs concentrator arrays. Diagnostics (a Langmuir probe and a pressure gauge) and a transient pulse monitor (to measure radiated and conducted EMI during arcing) will be used to determine the impact of the environment on array operation to help verify various interactions models. Results from a successful PASP Plus flight will furnish answers to important interactions questions and provide inputs for design and test standards for photovoltaic space-power subsystems.

  11. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    SciTech Connect

    Reynolds, D.B.; Seib, D.H.; Stetson, S.B.; Herter, T.; Rowlands, N.; Schoenwald, J.

    1989-02-01

    High-performance infrared hybrid focal plane arrays using 10 x 50 element Si:As Blocked-Impurity-Band (BIB) detectors (cut-off wavelength = 28 ..mu..m) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity band conduction technology provides detectors which are nuclear radiation hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in this paper is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increase quantum efficiency (particular at short wavelength infrared), obtained by varying the Blocked-Impurity-Band detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Read noise and dark current for different temperatures have been measured and are also described. The hybrid array performance achieved clearly demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  12. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    NASA Technical Reports Server (NTRS)

    Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.

    1989-01-01

    High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  13. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    NASA Technical Reports Server (NTRS)

    Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.

    1989-01-01

    High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  14. arrayCGHbase: an analysis platform for comparative genomic hybridization microarrays

    PubMed Central

    Menten, Björn; Pattyn, Filip; De Preter, Katleen; Robbrecht, Piet; Michels, Evi; Buysse, Karen; Mortier, Geert; De Paepe, Anne; van Vooren, Steven; Vermeesch, Joris; Moreau, Yves; De Moor, Bart; Vermeulen, Stefan; Speleman, Frank; Vandesompele, Jo

    2005-01-01

    Background The availability of the human genome sequence as well as the large number of physically accessible oligonucleotides, cDNA, and BAC clones across the entire genome has triggered and accelerated the use of several platforms for analysis of DNA copy number changes, amongst others microarray comparative genomic hybridization (arrayCGH). One of the challenges inherent to this new technology is the management and analysis of large numbers of data points generated in each individual experiment. Results We have developed arrayCGHbase, a comprehensive analysis platform for arrayCGH experiments consisting of a MIAME (Minimal Information About a Microarray Experiment) supportive database using MySQL underlying a data mining web tool, to store, analyze, interpret, compare, and visualize arrayCGH results in a uniform and user-friendly format. Following its flexible design, arrayCGHbase is compatible with all existing and forthcoming arrayCGH platforms. Data can be exported in a multitude of formats, including BED files to map copy number information on the genome using the Ensembl or UCSC genome browser. Conclusion ArrayCGHbase is a web based and platform independent arrayCGH data analysis tool, that allows users to access the analysis suite through the internet or a local intranet after installation on a private server. ArrayCGHbase is available at . PMID:15910681

  15. Design, processing and testing of LSI arrays, hybrid microelectronics task

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.; Rothrock, C. W.

    1979-01-01

    Mathematical cost models previously developed for hybrid microelectronic subsystems were refined and expanded. Rework terms related to substrate fabrication, nonrecurring developmental and manufacturing operations, and prototype production are included. Sample computer programs were written to demonstrate hybrid microelectric applications of these cost models. Computer programs were generated to calculate and analyze values for the total microelectronics costs. Large scale integrated (LST) chips utilizing tape chip carrier technology were studied. The feasibility of interconnecting arrays of LSU chips utilizing tape chip carrier and semiautomatic wire bonding technology was demonstrated.

  16. Compact collimated fiber optic array diagnostic for railgun plasma experiments

    SciTech Connect

    Tang, V; Solberg, J; Ferriera, T; Tully, L; Stephan, P

    2008-10-02

    We have developed and tested a compact collimated sixteen channel fiber optic array diagnostic for studying the light emission of railgun armature plasmas with {approx}mm spatial and sub-{micro}s temporal resolution. The design and operational details of the diagnostic are described. Plasma velocities, oscillation, and dimension data from the diagnostic for the Livermore Fixed Hybrid Armature experiment are presented and compared with 1-D simulations. The techniques and principles discussed allow the extension of the diagnostic to other railgun and related dense plasma experiments.

  17. Methylation profiling using methylated DNA immunoprecipitation and tiling array hybridization.

    PubMed

    Cheung, Hoi-Hung; Lee, Tin-Lap; Rennert, Owen M; Chan, Wai-Yee

    2012-01-01

    DNA methylation is an important epigenetic modification that regulates development and plays a role in the pathophysiology of many diseases. It is dynamically changed during germline development. Methylated DNA immunoprecipitation (MeDIP) is an efficient, cost-effective method for locus-specific and genome-wide analysis. Methylated DNA fragments are enriched by a 5-methylcytidine-recognizing antibody, therefore allowing the analysis of both CpG and non-CpG methylation. The enriched DNA fragments can be amplified and hybridized to tiling arrays covering CpG islands, promoters, or the entire genome. Comparison of different methylomes permits the discovery of differentially methylated regions that might be important in disease- or tissue-specific expression. Here, we describe an established MeDIP protocol and tiling array hybridization method for profiling methylation of testicular germ cells.

  18. Underwater hybrid near-field acoustical holography based on the measurement of vector hydrophone array

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu

    2010-06-01

    Hybrid near-field acoustical holography (NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH, we combine statistically optimized near-field acoustical holography (SONAH) and broadband acoustical holography from intensity measurements (BAHIM) to reconstruct the underwater cylindrical source field. First, the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary, and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal, and the measurement array can be smaller than the source, thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then, an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement, as well as the identification and localization of noise sources.

  19. The Simons Array CMB polarization experiment

    NASA Astrophysics Data System (ADS)

    Stebor, N.; Ade, P.; Akiba, Y.; Aleman, C.; Arnold, K.; Baccigalupi, C.; Barch, B.; Barron, D.; Beckman, S.; Bender, A.; Boettger, D.; Borrill, J.; Chapman, S.; Chinone, Y.; Cukierman, A.; de Haan, T.; Dobbs, M.; Ducout, A.; Dunner, R.; Elleflot, T.; Errard, J.; Fabbian, G.; Feeney, S.; Feng, C.; Fujino, T.; Fuller, G.; Gilbert, A. J.; Goeckner-Wald, N.; Groh, J.; Hall, G.; Halverson, N.; Hamada, T.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Hill, C.; Holzapfel, W. L.; Hori, Y.; Howe, L.; Inoue, Y.; Irie, F.; Jaehnig, G.; Jaffe, A.; Jeong, O.; Katayama, N.; Kaufman, J. P.; Kazemzadeh, K.; Keating, B. G.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Kusaka, A.; Le Jeune, M.; Lee, A. T.; Leon, D.; Linder, E. V.; Lowry, L.; Matsuda, F.; Matsumura, T.; Miller, N.; Montgomery, J.; Navaroli, M.; Nishino, H.; Paar, H.; Peloton, J.; Poletti, D.; Puglisi, G.; Raum, C. R.; Rebeiz, G. M.; Reichardt, C. L.; Richards, P. L.; Ross, C.; Rotermund, K. M.; Segawa, Y.; Sherwin, B. D.; Shirley, I.; Siritanasak, P.; Steinmetz, L.; Stompor, R.; Suzuki, A.; Tajima, O.; Takada, S.; Takatori, S.; Teply, G. P.; Tikhomirov, A.; Tomaru, T.; Westbrook, B.; Whitehorn, N.; Zahn, A.; Zahn, O.

    2016-07-01

    The Simons Array is a next generation cosmic microwave background (CMB) polarization experiment whose science target is a precision measurement of the B-mode polarization pattern produced both by inflation and by gravitational lensing. As a continuation and extension of the successful POLARBEAR experimental program, the Simons Array will consist of three cryogenic receivers each featuring multichroic bolometer arrays mounted onto separate 3.5m telescopes. The first of these, also called POLARBEAR-2A, will be the first to deploy in late 2016 and has a large diameter focal plane consisting of dual-polarization dichroic pixels sensitive at 95 GHz and 150 GHz. The POLARBEAR-2A focal plane will utilize 7,588 antenna-coupled superconducting transition edge sensor (TES) bolometers read out with SQUID amplifiers using frequency domain multiplexing techniques. The next two receivers that will make up the Simons Array will be nearly identical in overall design but will feature extended frequency capability. The combination of high sensitivity, multichroic frequency coverage and large sky area available from our mid-latitude Chilean observatory will allow Simons Array to produce high quality polarization sky maps over a wide range of angular scales and to separate out the CMB B-modes from other astrophysical sources with high fidelity. After accounting for galactic foreground separation, the Simons Array will detect the primordial gravitational wave B-mode signal to r > 0.01 with a significance of > 5σ and will constrain the sum of neutrino masses to 40 meV (1σ) when cross-correlated with galaxy surveys. We present the current status of this funded experiment, its future, and discuss its projected science return.

  20. SEP solar array Shuttle flight experiment

    NASA Technical Reports Server (NTRS)

    Elms, R. V., Jr.; Young, L. E.; Hill, H. C.

    1981-01-01

    An experiment to verify the operational performance of a full-scale Solar Electric Propulsion (SEP) solar array is described. Scheduled to fly on the Shuttle in 1983, the array will be deployed from the bay for ten orbits, with dynamic excitation to test the structural integrity being furnished by the Orbiter verniers; thermal, electrical, and sun orientation characteristics will be monitored, in addition to safety, reliability, and cost effective performance. The blanket, with aluminum and glass as solar cell mass simulators, is 4 by 32 m, with panels (each 0.38 by 4 m) hinged together; two live Si cell panels will be included. The panels are bonded to stiffened graphite-epoxy ribs and are storable in a box in the bay. The wing support structure is detailed, noting the option of releasing the wing into space by use of the Remote Manipulator System if the wing cannot be refolded. Procedures and equipment for monitoring the array behavior are outlined, and comprise both analog data and TV recording for later playback and analysis. The array wing experiment will also aid in developing measurement techniques for large structure dynamics in space.

  1. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    This conference poster reviews the Indium hybridization of the large format TES bolometer arrays. We are developing a key technology to enable the next generation of detectors. That is the Hybridization of Large Format Arrays using Indium bonded detector arrays containing 32x40 elements which conforms to the NIST multiplexer readout architecture of 1135 micron pitch. We have fabricated and hybridized mechanical models with the detector chips bonded after being fully back-etched. The mechanical support consists of 30 micron walls between elements Demonstrated electrical continuity for each element. The goal is to hybridize fully functional array of TES detectors to NIST readout.

  2. Photovoltaic array space power plus diagnostics experiment

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1990-01-01

    The objective is to summarize the five years of hardware development and fabrication represented by the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) Instrument. The original PASP Experiment requirements and background is presented along with the modifications which were requested to transform the PASP Experiment into the PASP Plus Instrument. The PASP Plus hardware and software is described. Test results for components and subsystems are given as well as final system tests. Also included are appendices which describe the major subsystems and present supporting documentation such as block diagrams, schematics, circuit board artwork, drawings, test procedures and test reports.

  3. Optical simulations of P3HT/Si nanowire array hybrid solar cells.

    PubMed

    Wang, Wenbo; Li, Xinhua; Wen, Long; Zhao, Yufeng; Duan, Huahua; Zhou, Bukang; Shi, Tongfei; Zeng, Xuesong; Li, Ning; Wang, Yuqi

    2014-01-01

    An optical simulation of poly(3-hexylthiophene) (P3HT)/Si nanowire array (NWA) hybrid solar cells was investigated to evaluate the optical design requirements of the system by using finite-difference time-domain (FDTD) method. Steady improvement of light absorption was obtained with increased P3HT coating shell thickness from 0 to 80 nm on Si NWA. Further increasing the thickness caused dramatic decrease of the light absorption. Combined with the analysis of ultimate photocurrents, an optimum geometric structure with a coating P3HT thickness of 80 nm was proposed. At this structure, the hybrid solar cells show the most efficient light absorption. The optimization of the geometric structure and further understanding of the optical characteristics may contribute to the development for the practical experiment of the promising hybrid solar cells.

  4. Solar array flight experiment/dynamic augmentation experiment

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.; Pack, Homer C., Jr.

    1987-01-01

    This report presents the objectives, design, testing, and data analyses of the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE) that was tested aboard Shuttle in September 1984. The SAFE was a lightweight, flat-fold array that employed a thin polyimide film (Kapton) as a substrate for the solar cells. Extension/retraction, dynamics, electrical and thermal tests, were performed. Of particular interest is the dynamic behavior of such a large lightweight structure in space. Three techniques for measuring and analyzing this behavior were employed. The methodology for performing these tests, gathering data, and data analyses are presented. The report shows that the SAFE solar array technology is ready for application and that new methods are available to assess the dynamics of large structures in space.

  5. Orthogonally-oriented nanotube arrays: experiment I.

    PubMed

    Sheehan, D P; Webster, J T; Baird, L M

    2007-10-01

    Recently a new type of self-assembling surface has been proposed that, in theory, possesses a number of desirable tribological, electrical, and thermal characterstics. The surface consists of arrays of carbon nanotubes partially embedded lengthwise in a substrate such that when two arrayed surfaces are brought together orthogonally, the areal contact between them is small, limited to a lattice of nearly point-like contacts. These orthogonally-oriented nanotube arrays (ONAs) are predicted to exhibit: (i) surface adhesion (stiction) 10-100 times less than for Teflon or other advanced perfluorocarbons; (ii) frictional coefficients up to 1000 times less than for conventional solids; (iii) ultra-low wear; and (iv) superior thermal and electrical conductivity. In this paper, laboratory methods are described for embedding nanotubes in trenched substrates. Using microscopically trenched substrates and a custom ultrasonic atomization source, experiments show that individual nanotubes can spontaneously and controllably entrench themselves via interfacial forces (capillary and surface tension). Results indicate ONAs might be relatively simply and inexpensively fabricated. More decisive experiments are proposed.

  6. Geometry Study of Ultra High Energy Cosmic Ray Showers Using Hybrid Analysis from Telescope Array

    NASA Astrophysics Data System (ADS)

    Allen, Monica

    2010-10-01

    The Telescope Array experiment studies ultra high energy cosmic rays at energies >10^18 eV using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated by a primary cosmic ray particle. Meanwhile, scintillator surface detectors measure the lateral distribution of secondary particles that hit the ground, the ``footprint'' of the shower. Combining the information from both detectors, a more precise measurement of the shower geometry can be obtained, and hence, a more accurate understanding of the energy and composition of the primary particle. The Middle Drum (MD) fluorescence observatory is located at the northwest corner of the Telescope Array and consists of 14 telescopes. It is one of three fluorescence observatories which observe the sky above the 507 scintillator surface detectors of the Telescope Array. I will discuss the MD hybrid data and resolution. I will show that in comparison with using MD information alone, the hybrid method improves the geometrical resolution of the shower by a factor of five in shower-detector plane angle, and by an order of magnitude in the shower core distance.

  7. Ultra high energy cosmic ray energy spectrum and composition using hybrid analysis with telescope array

    NASA Astrophysics Data System (ADS)

    Allen, Monica Gene

    Cosmic radiation was discovered in 1912. This year, the 100 th anniversary of the discovery, marks not only the major progress that has been made in understanding these particles, but also the remaining questions about them. Questions about their sources, acceleration mechanisms, propagation and composition are still unanswered. There are only two experiments currently running that have the ability to study cosmic rays in the Ultra High Energy (E > 1018.0 eV) regime. The Telescope Array studies Ultra High Energy Cosmic Rays (UHECRs) using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated by a primary cosmic ray particle, while scintillator detectors measure the lateral distribution of secondary particles that hit the ground. The Middle Drum (MD) fluorescence telescope consists of 14 refurbished telescopes from the High Resolution Fly's Eye (HiRes) experiment, providing a direct link back to the HiRes experiment and data. The surface array is comprised of 507 Scintillator Detectors (SD) of a similar design as was used by the Akeno Giant Air Shower Array (AGASA), providing a link to that experiment as well. Studying TA hybrid events (events observed by both the FD and SD), makes the analysis presented in this work the lynchpin that connects the HiRes experiment to the AGASA experiment. This uniquely allows for a direct comparison between the two detection types and allows us to answer questions about the differences in the energy spectrum measurements shown by the two previous experiments. Furthermore, the hybrid analysis improves the geometrical reconstruction of the showers significantly. This provides a more accurate measurement of the energy of the primary particle and makes it possible to make an accurate prediction regarding the chemical composition of the cosmic ray particle. Historically, only the HiRes experiment and the Pierre Auger Observatory (PAO) have made significant composition

  8. Hybrid-integrated prism array optoelectronic targeting system

    NASA Astrophysics Data System (ADS)

    Chang, C. C.; Chang, H. C.; Tang, L. C.; Young, W. K.; Wang, J. C.; Huang, K. L.

    2005-11-01

    This investigation proposes a cost-effective, compact, and robust optoelectronic targeting system for measuring ballistic impact velocity and the distribution of projectile motion. The major elements of this system are four photo-gates hybridized by compound one-dimensional prism array and analog/digital electronic components. The number of light sources and photodetectors used in a photo-gate was reduced to one pair of light source and photodetector. The average velocity and location of the projectile are determined according to the measured time intervals ( ˜10 -8 s) passing each pair. The system can accurately measure the velocity of a bullet as it leaves a gun barrel, as well as the velocity at specific points along the trajectory outside the firearm. Additionally, the system uses a widespread low-powered laser pointer as a light source. Compared with other optoelectronic targeting systems that use high-powered lasers, the proposed system is both economical and safe.

  9. Lower hybrid system design for the Tokamak physics experiment

    SciTech Connect

    Goranson, P.L.; Conner, D.L.; Swain, D.W.; Yugo, J.J.; Bernabei, S.; Greenough, N.

    1995-12-31

    The lower hybrid (LH) launcher configuration has been redesigned to integrate the functions of the vertical four-way power splitter and the front waveguide array (front array). This permits 256 waveguide channels to be fed by only 64 waveguides at the vacuum window interface. The resulting configuration is a more compact coupler, which incorporates the simplicity of a multijunction coupler while preserving the spectral flexibility of a conventional lower hybrid launcher. Other spin-offs of the redesign are reduction in thermal incompatibility between the front array and vacuum windows, improved maintainability, in situ vacuum window replacement, a reduced number of radio frequency (rf) connections, and a weight reduction of 7300 kg. There should be a significant cost reduction as well. Issues associated with the launcher design and fabrication have been addressed by a research and development program that includes brazing of the front array and testing of the power splitter configuration to confirm that phase errors due to reflections in the shorted splitter legs will not significantly impact the rf spectrum. The Conceptual Design Review requires that radiation levels at the torus radial port mounting flange and outer surface of the toroidal field coils should be sufficiently low to permit hands-on maintenance. Low activation materials and neutron shielding are incorporated in the launcher design to meet these requirements. The launcher is configured to couple 3 MW of steady state LH heating/LH current drive power at 3.7 GHz to the Tokamak Physics Experiment plasma.

  10. Array-based comparative genomic hybridization (array CGH) for rapid prenatal diagnosis of cytogenetic abnormalities

    USDA-ARS?s Scientific Manuscript database

    We have shown in a prospective validation study that an array CGH test was highly accurate for rapid detection of chromosomal aneuploidies and deletions or duplications on fetal DNA samples in a clinical prenatal diagnostic setting. Here we present our updated "post-validation phase" experience with...

  11. First Data with the Hybrid Array of Gamma-Ray Detectors (HAGRiD)

    NASA Astrophysics Data System (ADS)

    Smith, Karl; Burcher, S.; Carter, A. B.; Gryzwacz, R.; Jones, K. L.; Munoz, S.; Paulauskas, S. V.; Schmitt, K.; Thornsberry, C.; Chipps, K. A.; Febbraro, M.; Pain, S. D.; Baugher, T.; Cizewski, J. A.; Ratkiewicz, A.; Toomey, B.

    2016-09-01

    The structure of nuclei provides insight into astrophysical reaction rates that are difficult to measure directly. These studies are often performed with transfer reaction and beta-decay measurements. These experiments benefit from particle-gamma coincident measurements providing information beyond that of particle detection alone. The Hybrid Array of Gamma Ray Detectors (HAGRiD) of LaBr3(Ce) scintillators has been designed with this purpose in mind. The design of the array permits it to be coupled with particle detector systems, such as the Oak Ridge Rutgers University Barrel Array (ORRUBA) of silicon detectors and the Versatile Array of Neutron Detectors at Low Energy (VANDLE). It is also designed to operate with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) advanced target system. HAGRiD's design avoids compromising the charged-particle angular resolution due to compact geometries often used to increase the gamma efficiency in other systems. First experimental data with HAGRiD coupled to VANDLE as well as ORRUBA and JENSA will be presented. This work is supported in part by the U.S. Department of Energy, Office of Science Nuclear Physics and the National Science Foundation.

  12. Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography.

    PubMed

    Zhao, Xiaoyu; Wen, Jiahong; Zhang, Mengning; Wang, Dunhui; Wang, Yaxin; Chen, Lei; Zhang, Yongjun; Yang, Jinghai; Du, Youwei

    2017-03-01

    An easy-handling and low-cost method is utilized to controllably fabricate nanopattern arrays as the surface-enhanced Raman scattering (SERS) active substrates with high density of SERS-active areas (hot spots). A hybrid silver array of nanocaps and nanotriangles are prepared by combining magnetron sputtering and plasma etching. By adjusting the etching time of polystyrene (PS) colloid spheres array in silver nanobowls, the morphology of the arrays can be easily manipulated to control the formation and distribution of hot spots. The experimental results show that the hybrid nanostructural arrays have large enhancement factor, which is estimated to be seven times larger than that in the array of nanocaps and three times larger than that in the array of nanorings and nanoparticles. According to the results of finite-difference time-domain simulation, the excellent SERS performance of this array is ascribed to the high density of hot spots and enhanced electromagnetic field.

  13. TileMap: create chromosomal map of tiling array hybridizations.

    PubMed

    Ji, Hongkai; Wong, Wing Hung

    2005-09-15

    Tiling array is a new type of microarray that can be used to survey genomic transcriptional activities and transcription factor binding sites at high resolution. The goal of this paper is to develop effective statistical tools to identify genomic loci that show transcriptional or protein binding patterns of interest. A two-step approach is proposed and is implemented in TileMap. In the first step, a test-statistic is computed for each probe based on a hierarchical empirical Bayes model. In the second step, the test-statistics of probes within a genomic region are used to infer whether the region is of interest or not. Hierarchical empirical Bayes model shrinks variance estimates and increases sensitivity of the analysis. It allows complex multiple sample comparisons that are essential for the study of temporal and spatial patterns of hybridization across different experimental conditions. Neighboring probes are combined through a moving average method (MA) or a hidden Markov model (HMM). Unbalanced mixture subtraction is proposed to provide approximate estimates of false discovery rate for MA and model parameters for HMM. TileMap is freely available at http://biogibbs.stanford.edu/~jihk/TileMap/index.htm. http://biogibbs.stanford.edu/~jihk/TileMap/index.htm (includes coloured versions of all figures).

  14. Report on Hybrid Rocket Cold Flow Experiments

    NASA Technical Reports Server (NTRS)

    Haapanen, Siina

    2004-01-01

    The discovery of paraffin based fuels has lead to renewed interest in hybrid rocket research. Experiments have shown that they burn 3-5 times faster than conventional hybrid fuels. High thrust level that would have required a multi-port design in the past can now be achieved with a single-port motor. While tests performed in Stanford and NASA Ames have demonstrated the paraffin hybrids to be a promising technology, one of the major challenges has been the relatively low efficiency. The c* efficiency has ranged between 80% and 90% in experiments conducted at the Ames Hybrid Combustion Facility (HCF). The test motor in these experiments had a 45 inch long fuel grain with the initial port diameter ranging between 3 and 5_inches. The c* efficiency is defined as the ratio of measured and theoretical characteristic velocities and is related to how completely the fuel and oxidizer are converted to combustion products. A low efficiency means that the reactants burn incompletely, and the reaction does not release the maximum possible amount of energy.

  15. Si/PEDOT:PSS core/shell nanowire arrays for efficient hybrid solar cells.

    PubMed

    Lu, Wenhui; Wang, Chengwei; Yue, Wei; Chen, Liwei

    2011-09-01

    A solution filling and drying method has been demonstrated to fabricate Si/PEDOT:PSS core/shell nanowire arrays for hybrid solar cells. The hybrid core/shell nanowire arrays show excellent broadband anti-reflection, and resulting hybrid solar cells absorb about 88% of AM 1.5G photons in the 300-1100 nm range. The power conversion efficiency (PCE) of the hybrid solar cell reaches 6.35%, and is primarily limited by direct and indirect interfacial recombination of charge carriers.

  16. 488 X 640-element hybrid platinum silicide Schottky focal plane array

    NASA Astrophysics Data System (ADS)

    Gates, J. L.; Connelly, W. G.; Franklin, T. D.; Mills, R. E.; Price, F. W.; Wittwer, T. Y.

    1991-12-01

    A medium wavelength infrared (MWIR) staring focal plane array (FPA) technology using Schottky barrier detectors with arrays consisting of 20-micron pixel spacings in a 488 x 640 array format is described. The new 488 x 640 hybrid FPA is a result of an ongoing developmental process that has evolved from a 62 x 58 array to a 488 x 640 array over the past nine years. Reported are the performance goals, design, fabrication, and test results of this high-density hybrid FPA based on PtSi infrared detector technology. The advantages of the hybrid approach include the ease of fabrication, high optical fill factor, compatibility with existing multiplexer technology, and excellent imaging performance. We review past Schottky FPA development and discuss the technical trade-offs of our approach. Also discussed are the design, fabrication, and test results of our most recent Schottky FPA.

  17. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules

    NASA Technical Reports Server (NTRS)

    Cooley, William T.; Adams, Steven F.; Reinhardt, Kitt C.; Piszczor, Michael F.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cells or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application.

  18. Photovoltaic Array Space Power flight experiment plus diagnostics (PASP+) modules

    NASA Technical Reports Server (NTRS)

    Cooley, William T.; Adams, Steven F.; Reinhardt, Kitt C.; Piszczor, Michael F.

    1992-01-01

    The Photovoltaic Array Space Power Plus Diagnostics flight experiment (PASP+) subsumes twelve solar array modules which represent the state of the art in the space photovoltaic array industry. Each of the twelve modules individually feature specific photovoltaic technologies such as advanced semiconductor materials, multi-bandgap structures, lightweight array designs, advanced interconnect technologies, or concentrator array designs. This paper will describe each module in detail including the configuration, components, materials, anticipated on orbit performance, and some of the aspects of each array technology. The layout of each module and the photovoltaic cells or array cross section will be presented graphically. A discussion on the environmental constraints and materials selection will be included as well as a delineation of the differences between the modules and the baseline array configuration in its intended application.

  19. Array comparative genomic hybridization in retinoma and retinoblastoma tissues.

    PubMed

    Sampieri, Katia; Amenduni, Mariangela; Papa, Filomena Tiziana; Katzaki, Eleni; Mencarelli, Maria Antonietta; Marozza, Annabella; Epistolato, Maria Carmela; Toti, Paolo; Lazzi, Stefano; Bruttini, Mirella; De Filippis, Roberta; De Francesco, Sonia; Longo, Ilaria; Meloni, Ilaria; Mari, Francesca; Acquaviva, Antonio; Hadjistilianou, Theodora; Renieri, Alessandra; Ariani, Francesca

    2009-03-01

    In retinoblastoma, two RB1 mutations are necessary for tumor development. Recurrent genomic rearrangements may represent subsequent events required for retinoblastoma progression. Array-comparative genomic hybridization was carried out in 18 eye samples, 10 from bilateral and eight from unilateral retinoblastoma patients. Two unilateral cases also showed areas of retinoma. The most frequent imbalance in retinoblastomas was 6p gain (40%), followed by gains at 1q12-q25.3, 2p24.3-p24.2, 9q22.2, and 9q33.1 and losses at 11q24.3, 13q13.2-q22.3, and 16q12.1-q21. Bilateral cases showed a lower number of imbalances than unilateral cases (P = 0.002). Unilateral cases were divided into low-level (< or = 4) and high-level (> or = 7) chromosomal instability groups. The first group presented with younger age at diagnosis (mean 511 days) compared with the second group (mean 1606 days). In one retinoma case ophthalmoscopically diagnosed as a benign lesion no rearrangements were detected, whereas the adjacent retinoblastoma displayed seven aberrations. The other retinoma case identified by retrospective histopathological examination shared three rearrangements with the adjacent retinoblastoma. Two other gene-free rearrangements were retinoma specific. One rearrangement, dup5p, was retinoblastoma specific and included the SKP2 gene. Genomic profiling indicated that the first retinoma was a pretumoral lesion, whereas the other represents a subclone of cells bearing 'benign' rearrangements overwhelmed by another subclone presenting aberrations with higher 'oncogenic' potential. In summary, the present study shows that bilateral and unilateral retinoblastoma have different chromosomal instability that correlates with the age of tumor onset in unilateral cases. This is the first report of genomic profiling in retinoma tissue, shedding light on the different nature of lesions named 'retinoma'.

  20. Array comparative genomic hybridization analysis of olfactory neuroblastoma.

    PubMed

    Guled, Mohamed; Myllykangas, Samuel; Frierson, Henry F; Mills, Stacey E; Knuutila, Sakari; Stelow, Edward B

    2008-06-01

    Olfactory neuroblastoma is an unusual neuroectodermal malignancy, which is thought to arise at the olfactory membrane of the sinonasal tract. Due to its rarity, little is understood regarding its molecular and cytogenetic abnormalities. The aim of the current study is to identify specific DNA copy number changes in olfactory neuroblastoma. Thirteen dissected tissue samples were analyzed using array comparative genomic hybridization. Our results show that gene copy number profiles of olfactory neuroblastoma samples are complex. The most frequent changes included gains at 7q11.22-q21.11, 9p13.3, 13q, 20p/q, and Xp/q, and losses at 2q31.1, 2q33.3, 2q37.1, 6q16.3, 6q21.33, 6q22.1, 22q11.23, 22q12.1, and Xp/q. Gains were more frequent than losses, and high-stage tumors showed more alterations than low-stage olfactory neuroblastoma. Frequent changes in high-stage tumors were gains at 13q14.2-q14.3, 13q31.1, and 20q11.21-q11.23, and loss of Xp21.1 (in 66% of cases). Gains at 5q35, 13q, and 20q, and losses at 2q31.1, 2q33.3, and 6q16-q22, were present in 50% of cases. The identified regions of gene copy number change have been implicated in a variety of tumors, especially carcinomas. In addition, our results indicate that gains in 20q and 13q may be important in the progression of this cancer, and that these regions possibly harbor genes with functional relevance in olfactory neuroblastoma.

  1. Landsat 7 Solar Array Testing Experiences

    NASA Technical Reports Server (NTRS)

    Helfrich, Daniel

    2000-01-01

    This paper covers the extensive Landsat 7 solar array flight qualification testing effort. Details of the mechanical design of the solar array and its retention/release system are presented. A testing chronology is provided beginning with the onset of problems encountered at the subsystem level and carrying through the third and final powered-spacecraft ground deployment test. Design fixes and other changes are explained in the same order as they became necessary to flight-qualify the array. Some interesting lessons learned are included along with key references.

  2. Phased Array Antenna Analysis Using Hybrid Finite Element Methods

    DTIC Science & Technology

    1993-06-01

    Waveguide ; (b) Geometry Model for Method of Moments ........................ 4 2. Printed Dipole Radiator: (a) Actual Geometry with Microstrip Balun and...Finite Elem ents . ............................................. 19 11. Equivalence Model for Waveguide /Cavity Problem: (a) Original Problem; (b... Waveguide Array Active Reflection Coefficient - Comparison of Results Uscig Cavity Array (CAVIARR) and General Array (PARANA) Models . 76 45. Rectangular

  3. Single-molecule DNA hybridization on nanoporous gold nanoparticle array chip

    NASA Astrophysics Data System (ADS)

    Li, Jingting; Zhao, Fusheng; Shih, Wei-Chuan

    2017-02-01

    DNA hybridization, where two single-stranded DNA molecules form duplex through sequence-specific interactions, is a fundamental biological process. To gain better understanding, sequence-specific detection of hybridization at the singlemolecule level has been instrumental and can find a wide variety of applications. Nanoporous gold nanoparticle (NPGNP) array chip features large specific surface area and high-density plasmonic field enhancement known as "hot-spots" that are attractive in nanoplasmonic sensor development. In this paper, we discuss results on detecting single-molecule DNA hybridization on functionalizing NPG-NP array chip with unique bio-recognition elements towards both high sensitivity and specificity.

  4. A Bio-Hybrid Tactile Sensor Incorporating Living Artificial Skin and an Impedance Sensing Array

    PubMed Central

    Cheneler, David; Buselli, Elisa; Camboni, Domenico; Anthony, Carl; Grover, Liam; Adams, Michael John; Oddo, Calogero Maria

    2014-01-01

    The development of a bio-hybrid tactile sensor array that incorporates a skin analogue comprised of alginate encapsulated fibroblasts is described. The electrical properties are modulated by mechanical stress induced during contact, and changes are detected by a ten-channel dual-electrode impedance sensing array. By continuously monitoring the impedance of the sensor array at a fixed frequency, whilst normal and tangential loads are applied to the skin surface, transient mechanotransduction has been observed. The results demonstrate the effectiveness and feasibility of the preliminary prototype bio-hybrid tactile sensor. PMID:25615726

  5. Hybrid monopole/loop coil array for human head MR imaging at 7T.

    PubMed

    Yan, Xinqiang; Wei, Long; Xue, Rong; Zhang, Xiaoliang

    2015-05-01

    The monopole coil and loop coil have orthogonal radiofrequency (RF) fields and thus are intrinsically decoupled electromagnetically if they are laid out appropriately. In this study, we proposed a hybrid monopole/loop technique which could combine the advantages of both loop arrays and monopole arrays. To investigate this technique, a hybrid RF coil array containing 4 monopole channels and 4 loop channels was developed for human head MR imaging at 7T. In vivo MR imaging and g-factor results using monopole-only channels, loop-only channels and all channels of the hybrid array were acquired and evaluated. Compared with the monopole-only and loop-only channels, the proposed hybrid array has higher SNR and better parallel imaging performance. Sufficient electromagnetic decoupling and diverse RF magnetic field (B1) distributions of monopole channels and loop channels may contribute to this performance improvement. From experimental results, the hybrid monopole/loop array has low g-factor and excellent SNR at both periphery and center of the brain, which is valuable for human head imaging at ultrahigh fields.

  6. Energy Spectrum and Composition of Ultra High Energy Cosmic Ray Showers Using Hybrid Analysis from Telescope Array

    NASA Astrophysics Data System (ADS)

    Allen, Monica; Abu-Zayyad, Tareq; Stokes, Benjamin T.

    2012-10-01

    The Telescope Array studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated by a primary cosmic ray particle, while scintillator detectors measure the lateral distribution of secondary particles that hit the ground. The Middle Drum (MD) fluorescence telescope consists of 14 refurbished telescopes from the High Resolution Fly's Eye experiment (HiRes), providing a direct link back to the HiRes experiment and data. Using the scintillator detector data in conjunction with the MD data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The Middle Drum hybrid spectrum will be presented. In addition, a MD hybrid composition study was also performed, and results will be shown.

  7. Air Fluorescence Calorimetry with the High Resolution Fly's Eye and Telescope Array Experiments

    NASA Astrophysics Data System (ADS)

    Jui, Charles C. H.

    2006-10-01

    The air fluorescence technique was first successfully deployed on the Fly's Eye Experiment (1981-1993) by the University of Utah. Its successor, the High Resolution Fly's Eye (HiRes) experiment has further exploited this technique, first in hybrid mode with the MIA muon array (1993-1996), and then in monocular and stereoscopic modes (1997-2006). Results from HiRes will be presented, including evidence for the Greisen-Zatsepin-K'uzmin (GZK) Effect predicted 40 years ago. Most recently, members of the HiRes are collaborating with groups from Japan, led by University of Tokyo, to construct and operate the Telescope Array (TA) experiment, which will deploy a large scintillation-based ground array in combination with fluorescence detectors. Funding for TA in the US has already been approved by NSF. TA will begin operation in 2007.

  8. Energy Spectrum of Ultra High Energy Cosmic Ray Showers Using Hybrid Analysis from Telescope Array

    NASA Astrophysics Data System (ADS)

    Allen, Monica; Abu-Zayyad, Tareq; Stokes, Benjamin

    2011-10-01

    The Telescope Array studies ultra high energy cosmic rays using a hybrid detector. Fluorescence telescopes measure the longitudinal development of the extensive air shower generated by a primary cosmic ray particle, while scintillator detectors measure the lateral distribution of secondary particles that hit the ground. The Middle Drum (MD) fluorescence telescope consists of 14 refurbished telescopes from the High Resolution Fly's Eye experiment (HiRes), providing a direct link back to the HiRes experiment and data. Using the scintillator detector data in conjunction with the MD data improves the geometrical reconstruction of the showers significantly, and hence, provides a more accurate reconstruction of the energy of the primary particle. The method for determining the spectrum will be described. The event selection and reconstruction process, along with the Monte Carlo simulation used for calculating the detector aperture and exposure will also be discussed. Detector resolutions and comparisons between Monte Carlo and data distributions of key variables that contribute to the aperture will be shown to validate the simulation. Finally, the resulting hybrid spectrum obtained from the Middle Drum fluorescence detector will be presented.

  9. Array-Based Comparative Genomic Hybridization for the Genomewide Detection of Submicroscopic Chromosomal Abnormalities

    PubMed Central

    Vissers, Lisenka E. L. M. ; de Vries, Bert B. A. ; Osoegawa, Kazutoyo ; Janssen, Irene M. ; Feuth, Ton ; Choy, Chik On ; Straatman, Huub ; van der Vliet, Walter ; Huys, Erik H. L. P. G. ; van Rijk, Anke ; Smeets, Dominique ; van Ravenswaaij-Arts, Conny M. A. ; Knoers, Nine V. ; van der Burgt, Ineke ; de Jong, Pieter J. ; Brunner, Han G. ; van Kessel, Ad Geurts ; Schoenmakers, Eric F. P. M. ; Veltman, Joris A. 

    2003-01-01

    Microdeletions and microduplications, not visible by routine chromosome analysis, are a major cause of human malformation and mental retardation. Novel high-resolution, whole-genome technologies can improve the diagnostic detection rate of these small chromosomal abnormalities. Array-based comparative genomic hybridization allows such a high-resolution screening by hybridizing differentially labeled test and reference DNAs to arrays consisting of thousands of genomic clones. In this study, we tested the diagnostic capacity of this technology using ∼3,500 flourescent in situ hybridization–verified clones selected to cover the genome with an average of 1 clone per megabase (Mb). The sensitivity and specificity of the technology were tested in normal-versus-normal control experiments and through the screening of patients with known microdeletion syndromes. Subsequently, a series of 20 cytogenetically normal patients with mental retardation and dysmorphisms suggestive of a chromosomal abnormality were analyzed. In this series, three microdeletions and two microduplications were identified and validated. Two of these genomic changes were identified also in one of the parents, indicating that these are large-scale genomic polymorphisms. Deletions and duplications as small as 1 Mb could be reliably detected by our approach. The percentage of false-positive results was reduced to a minimum by use of a dye-swap-replicate analysis, all but eliminating the need for laborious validation experiments and facilitating implementation in a routine diagnostic setting. This high-resolution assay will facilitate the identification of novel genes involved in human mental retardation and/or malformation syndromes and will provide insight into the flexibility and plasticity of the human genome. PMID:14628292

  10. Diffusion-controlled evolution of core-shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Jiang, Jian; Luo, Jingshan; Zhu, Jianhui; Huang, Xintang; Liu, Jinping; Yu, Ting

    2013-08-01

    Controlled integration of multiple semiconducting oxides into each single unit of ordered nanotube arrays is highly desired in scientific research for the realization of more attractive applications. We herein report a diffusion-controlled solid-solid route to evolve simplex Co(CO3)0.5(OH)0.11H2O@TiO2 core-shell nanowire arrays (NWs) into CoO-CoTiO3 integrated hybrid nanotube arrays (NTs) with preserved morphology. During the evolution procedure, the decomposition of Co(CO3)0.5(OH)0.11H2O NWs into chains of CoCO3 nanoparticles initiates the diffusion process and promotes the interfacial solid-solid diffusion reaction even at a low temperature of 450 °C. The resulting CoO-CoTiO3 NTs possess well-defined sealed tubular geometries and a special ``inner-outer'' hybrid nature, which is suitable for application in Li-ion batteries (LIBs). As a proof-of-concept demonstration of the functions of such hybrid NTs in LIBs, CoO-CoTiO3 NTs are directly tested as LIB anodes, exhibiting both a high capacity (~600 mA h g-1 still remaining after 250 continuous cycles) and a much better cycling performance (no capacity fading within 250 total cycles) than CoO NWs. Our work presents not only a diffusion route for the formation of integrated hybrid NTs but also a new concept that can be employed as a general strategy to fabricate other oxide-based hybrid NTs for energy storage devices.Controlled integration of multiple semiconducting oxides into each single unit of ordered nanotube arrays is highly desired in scientific research for the realization of more attractive applications. We herein report a diffusion-controlled solid-solid route to evolve simplex Co(CO3)0.5(OH)0.11H2O@TiO2 core-shell nanowire arrays (NWs) into CoO-CoTiO3 integrated hybrid nanotube arrays (NTs) with preserved morphology. During the evolution procedure, the decomposition of Co(CO3)0.5(OH)0.11H2O NWs into chains of CoCO3 nanoparticles initiates the diffusion process and promotes the interfacial solid

  11. Enhanced Lower Hybrid Current Drive Experiments on HT-7 Tokamak

    NASA Astrophysics Data System (ADS)

    Shen, Wei-ci; Kuang, Guang-li; Liu, Yue-xiu; Ding, Bo-jiang; Shi, Yao-jiang; HT-7 Team

    2003-02-01

    Effective Lower Hybrid Current Driving (LHCD) and improved confinement experiments in higher plasma parameters (Ip > 200 kA, ne > 2 × 1013 cm-3, Te >= 1 keV) have been curried out in optimized LH wave spectrum and plasma parameters in HT-7 superconducting tokamak. The dependence of current driving efficiency on LH power spectrum, plasma density ne and toroidal magnetic field BT has been obtained under optimal conditions. A good CD efficiency was obtained at higher plasma current and higher electron density. The improvement of the energy confinement time is accompanied with the increase in line averaged electron density, and in ion and electron temperatures. The highest current driving efficiency reached ηCD = Ipbar neR/PRF approx 1.05 × 1019 Am-2/W. Wave-plasma coupling was sustained in a good state and the reflective coefficient was less than 5%. The experiments have also demonstrated the ability of LH wave in the start-up and ramp-up of the plasma current. The measurement of the temporal distribution of plasma parameter shows that lower hybrid leads to a broader profile in plasma parameter. The LH power deposition profile and the plasma current density profile were modeled with a 2D Fokker-Planck code corresponding to the evolution process of the hard x-ray detector array.

  12. Hybridization of detector array and integrated circuit for readout

    NASA Astrophysics Data System (ADS)

    Fossum, Eric R.; Grunthaner, Frank J.

    1992-04-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  13. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nicholas P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit paths by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabricated parts were hybridized using a flip-chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  14. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nick P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit patbs by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabric.ted parts were hybridized using a Suss FCI50 flip chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  15. Diffusion-controlled evolution of core-shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries.

    PubMed

    Jiang, Jian; Luo, Jingshan; Zhu, Jianhui; Huang, Xintang; Liu, Jinping; Yu, Ting

    2013-09-07

    Controlled integration of multiple semiconducting oxides into each single unit of ordered nanotube arrays is highly desired in scientific research for the realization of more attractive applications. We herein report a diffusion-controlled solid-solid route to evolve simplex Co(CO3)0.5(OH)0.11H2O@TiO2 core-shell nanowire arrays (NWs) into CoO-CoTiO3 integrated hybrid nanotube arrays (NTs) with preserved morphology. During the evolution procedure, the decomposition of Co(CO3)0.5(OH)0.11H2O NWs into chains of CoCO3 nanoparticles initiates the diffusion process and promotes the interfacial solid-solid diffusion reaction even at a low temperature of 450 °C. The resulting CoO-CoTiO3 NTs possess well-defined sealed tubular geometries and a special "inner-outer" hybrid nature, which is suitable for application in Li-ion batteries (LIBs). As a proof-of-concept demonstration of the functions of such hybrid NTs in LIBs, CoO-CoTiO3 NTs are directly tested as LIB anodes, exhibiting both a high capacity (~600 mA h g(-1) still remaining after 250 continuous cycles) and a much better cycling performance (no capacity fading within 250 total cycles) than CoO NWs. Our work presents not only a diffusion route for the formation of integrated hybrid NTs but also a new concept that can be employed as a general strategy to fabricate other oxide-based hybrid NTs for energy storage devices.

  16. PIT-like effect with high directivity in hybrid plasmonic array

    NASA Astrophysics Data System (ADS)

    Ni, Yuan; Zhang, Cheng; Wang, Yong; Lu, Yonghua; Wang, Pei; Zhang, Douguo; Ming, Hai

    2016-12-01

    We demonstrate the existence of plasmon-induced transparency (PIT) like spectral response in a hybrid system of plasmonic antenna array coupled with dielectric silicon array. After tuning the period of the silicon array, different resonant wavelength with high quality factor (range from 50 to 400) can be achieved. When the subradiant resonator (dielectric array) get close to the superradiant resonator (metallic nanoantenna array), a peak of PIT comes into emerging between the two asymmetric resonant dips. Meanwhile, the far-field emission pattern of the PIT peak was also observed with a highly directivity that was neatly two times than a same period of plasmonic Au array and the backward scattering was obviously suppressed. Our works provide productive insight into the light manipulation with near-field electromagnetic coupling.

  17. Pre- and postnatal genetic testing by array-comparative genomic hybridization: genetic counseling perspectives.

    PubMed

    Darilek, Sandra; Ward, Patricia; Pursley, Amber; Plunkett, Katie; Furman, Patti; Magoulas, Pilar; Patel, Ankita; Cheung, Sau Wai; Eng, Christine M

    2008-01-01

    Recently, a new genetic test has been developed that allows a more detailed examination of the genome when compared with a standard chromosome analysis. Array comparative genomic hybridization (CGH microarray; also known as chromosome microarray analysis) in effect, combines chromosome and fluorescence in situ hybridization analyses allowing detection not only of aneuploidies, but also of all known microdeletion and microduplication disorders, including telomere rearrangements. Since 2004, this testing has been available in the Medical Genetics Laboratory at Baylor College of Medicine for postnatal evaluation and diagnosis of individuals with suspected genomic disorders. Subsequently, to assess the feasibility of offering CGH microarray for prenatal diagnosis, a prospective study was conducted on 98 pregnancies in a clinical setting comparing the results obtained from array CGH with those obtained from a standard karyotype. This was followed by the availability of prenatal testing on a clinical basis in 2005. To date, we have analyzed over 8000 cases referred to our clinical laboratory, including approximately 300 prenatal cases. With the clinical introduction of any new testing strategy, and particularly one focused on genetic disorders, issues of patient education, result interpretation, and genetic counseling must be anticipated and strategies adopted to allow the implementation of the testing with maximum benefit and minimum risk. In this article, we describe our experience with over 8000 clinical prenatal and postnatal cases of CGH microarray ordered by our clinical service or referred to the Baylor Medical Genetics Laboratory and describe the strategies used to optimize patient and provider education, facilitate clinical interpretation of results, and provide counseling for unique clinical circumstances.

  18. Ground testing of array modules for the photovoltaic array space power (PASP) experiment

    NASA Technical Reports Server (NTRS)

    Morris, Robert K.; Grier, Norman T.

    1987-01-01

    One of the objectives of the PASP experiment is the verification of cost-effective ground simulations of high-voltage solar array/space-environment interactions by comparing the results with flight data. These ground tests consist of electrical characterization, thermal cycling, and plasma chamber simulations. The results of the latter tests are reported. Five array modules which are representative of the flight arrays were tested. The module types are planar silicon, planar gallium arsenide, planar silicon passivated with an integrally deposited cover glass, mini-Cassegrainian concentrator, and SLATS concentrator. The modules were biased to -1000 V in varying plasma densities from 4 x 103 to 2 x 105 e-/cu cm. Each array was tested in both dark and illuminated conditions with a load resistance. In addition to monitoring arcing during the plasma tests, the arrays were visually inspected and electrically characterized before and after exposure in the chamber. The electrical results are tabulated and briefly discussed.

  19. A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications.

    PubMed

    Kim, Kuk-Hwan; Gaba, Siddharth; Wheeler, Dana; Cruz-Albrecht, Jose M; Hussain, Tahir; Srinivasa, Narayan; Lu, Wei

    2012-01-11

    Crossbar arrays based on two-terminal resistive switches have been proposed as a leading candidate for future memory and logic applications. Here we demonstrate a high-density, fully operational hybrid crossbar/CMOS system composed of a transistor- and diode-less memristor crossbar array vertically integrated on top of a CMOS chip by taking advantage of the intrinsic nonlinear characteristics of the memristor element. The hybrid crossbar/CMOS system can reliably store complex binary and multilevel 1600 pixel bitmap images using a new programming scheme.

  20. A handy motion driven hybrid energy harvester: dual Halbach array based electromagnetic and triboelectric generators

    NASA Astrophysics Data System (ADS)

    Salauddin, M.; Park, J. Y.

    2016-11-01

    In this work, we have proposed and experimentally validated of hybrid electromagnetic and triboelectric energy harvester using dual Halbach magnets array excited by human handy motion. Hybrid electromagnetic (EM) and triboelectric (TE) generator that can deliver an output performance much higher than that of the individual energy-harvesting unit due to the combination operation of EM and TE mechanisms under the same mechanical movements. A Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. When an external mechanical vibration is applied to the hybrid structure in the axial direction of the harvester, the suspended mass (two sided dual-Halbach-array frame) starts to oscillate within the magnetic springs and TEG part. Therefore, the TEG part, the Al film and microstructure PDMS film are collected into full contact with each other, generating triboelectric charges due to the various triboelectricities between them. A prototype of the hybrid harvester has been fabricated and tested. The EMG is capable of delivering maximum 11.5mW peak power at 32.5Ω matching load resistance and the TEG delivering 88μW peak power at 10MΩ load resistance.

  1. AFRL Nanotechnology Initiative: Hybrid Nanomaterials in Photonic Crystal Cavities for Multi-Spectral Infrared Detector Arrays

    DTIC Science & Technology

    2010-03-31

    INITIATIVE) HYBRID NANOMATERIALS IN PHOTONIC CRYSTAL CAVITIES FOR MULTI -SPECTRAL INFRARED DETECTOR ARRAYS 5b. GRANT NUMBER F A9550-06-1-0482 5c...IR) photodetector using hybrid nanornaterials in photonic crystal (PC) cavities for enhanced absorption at selected wavelengths. The simultaneous...infrared photodetection, quantum dots, photonic crystal cavities, matrix-assisted pulsed laser evaporation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  2. Photoluminescence spectroscopy and lifetime measurements from self assembled semiconducting quantum dot- metal nanoparticle hybrid arrays

    NASA Astrophysics Data System (ADS)

    Haridas, M.; Basu, J. K.

    2011-03-01

    We demonstrate how the emission properties of a hybrid array consisting of semiconducting quantum dot (QD) and metal nanoparticles (NP) can be controlled by varying the density and distance between QD and NP independently. Our hybrid system consists of chemically synthesized cadmium selenide quantum dots (CdSe QDs) and polymer capped gold nanoparticles (Au NP) embedded in a block copolymer matrix having the topology of cylinders oriented perpendicular to the substrate. We have prepared hybrid arrays with two different densities of CdSe QDs (ρQD) each having same Au NP densities (ρAu) . The photoluminescence measurements (PL) from such hybrid system shows enhancement in emission with increase in ρAu , compared to the CdSe QD film and the enhancement factor is lower for hybrid films with high ρQD . The lifetime measurement shows double exponent PL decay with systematic reduction in exciton lifetime for hybrid arrays with respect to ρAu . The film with high ρQD shows larger reduction in lifetime. Similarly, the amplitudes of the two relaxations switch over with increase in ρAu . It is clear that the shorter time becomes the dominant relaxation mode with increasing ρAu . Observed phenomena have been explained in terms of exciton plasmon interaction .

  3. Application of array-based comparative genomic hybridization to pediatric neurologic diseases.

    PubMed

    Byeon, Jung Hye; Shin, Eunsim; Kim, Gun-Ha; Lee, Kyungok; Hong, Young Sook; Lee, Joo Won; Eun, Baik-Lin

    2014-01-01

    Array comparative genomic hybridization (array-CGH) is a technique used to analyze quantitative increase or decrease of chromosomes by competitive DNA hybridization of patients and controls. This study aimed to evaluate the benefits and yield of array-CGH in comparison with conventional karyotyping in pediatric neurology patients. We included 87 patients from the pediatric neurology clinic with at least one of the following features: developmental delay, mental retardation, dysmorphic face, or epilepsy. DNA extracted from patients and controls was hybridized on the Roche NimbleGen 135K oligonucleotide array and compared with G-band karyotyping. The results were analyzed with findings reported in recent publications and internet databases. Chromosome imbalances, including 9 cases detected also by G-band karyotyping, were found in 28 patients (32.2%), and at least 19 of them seemed to be causally related to the abnormal phenotypes. Regarding each clinical symptom, 26.2% of 42 developmental delay patients, 44.4% of 18 mental retardation patients, 42.9% of 28 dysmorphic face patients, and 34.6% of 26 epilepsy patients showed abnormal array results. Although there were relatively small number of tests in patients with pediatric neurologic disease, this study demonstrated that array-CGH is a very useful tool for clinical diagnosis of unknown genome abnormalities performed in pediatric neurology clinics.

  4. Application of Array-Based Comparative Genomic Hybridization to Pediatric Neurologic Diseases

    PubMed Central

    Byeon, Jung Hye; Shin, Eunsim; Kim, Gun-Ha; Lee, Kyungok; Hong, Young Sook; Lee, Joo Won

    2014-01-01

    Purpose Array comparative genomic hybridization (array-CGH) is a technique used to analyze quantitative increase or decrease of chromosomes by competitive DNA hybridization of patients and controls. This study aimed to evaluate the benefits and yield of array-CGH in comparison with conventional karyotyping in pediatric neurology patients. Materials and Methods We included 87 patients from the pediatric neurology clinic with at least one of the following features: developmental delay, mental retardation, dysmorphic face, or epilepsy. DNA extracted from patients and controls was hybridized on the Roche NimbleGen 135K oligonucleotide array and compared with G-band karyotyping. The results were analyzed with findings reported in recent publications and internet databases. Results Chromosome imbalances, including 9 cases detected also by G-band karyotyping, were found in 28 patients (32.2%), and at least 19 of them seemed to be causally related to the abnormal phenotypes. Regarding each clinical symptom, 26.2% of 42 developmental delay patients, 44.4% of 18 mental retardation patients, 42.9% of 28 dysmorphic face patients, and 34.6% of 26 epilepsy patients showed abnormal array results. Conclusion Although there were relatively small number of tests in patients with pediatric neurologic disease, this study demonstrated that array-CGH is a very useful tool for clinical diagnosis of unknown genome abnormalities performed in pediatric neurology clinics. PMID:24339284

  5. Probe hybridization array typing: a binary typing method for Escherichia coli.

    PubMed

    Srinivasan, U; Zhang, L; France, A M; Ghosh, D; Shalaby, W; Xie, J; Marrs, C F; Foxman, B

    2007-01-01

    The ability to distinguish between Escherichia coli strains is critical for outbreak investigations. Binary typing, based on the presence or absence of genetic material, provides a high-throughput alternative to gel- and PCR-based typing techniques that generate complex banding patterns and lack uniform interpretation criteria. We developed, validated, and determined the discriminatory power of an E. coli binary typing method, probe hybridization array typing (PHAT). In PHAT, the absence or presence of genetic material is identified by using DNA hybridization to produce a reproducible and portable fingerprint for each genome. PHAT probes were generated from genome subtractive hybridization experiments. We PHAT typed the ECOR collection of strains from a variety of geographical locations, and 33 rectal E. coli strains selected from college-aged women with urinary tract infection. In the set of 33 human rectal strains, the discriminatory power of PHAT (98%) equaled that of multilocus sequence typing (MLST) and pulsed-field gel electrophoresis. However, for ECOR strains, which include nonhuman strains, the current set of PHAT probes was less discriminating than MLST, ribotyping, and enterobacterial repetitive intergenic consensus sequence PCR (80% versus 97, 92, and 97%, respectively). When we limited the analysis to ECOR strains of B2 and D lineage, which are associated with human infection, current PHAT probes were highly discriminatory (94%). PHAT can be applied in a high-throughput format (i.e., "library on a slide"), the discriminatory ability can be varied based on the probe set, and PHAT is readily adapted to other bacterial species with high variation in genetic content.

  6. Conceptual design of a hybrid Ge:Ga detector array

    NASA Technical Reports Server (NTRS)

    Parry, C. M.

    1984-01-01

    For potential applications in space infrared astronomy missions such as the Space Infrared Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength detectors are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear detector modules is presented. The spectral response of the Ge:Ga detectors is extended to 200 microns by application of uniaxial stress to the stack of modules. The detectors are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.

  7. Hybridization Analysis of D4Z4 Repeat Arrays Linked to FSHD

    PubMed Central

    Ehrlich, Melanie; Jackson, Kesmic; Tsumagari, Koji; Camaño, Pilar; Lemmers, Richard J.F.L.

    2007-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disease involving shortening of D4Z4, an array of tandem 3.3-kb repeat units on chromosome 4. These arrays are in subtelomeric regions of 4q and 10q and have 1 – 100 units. FSHD is associated with an array of 1 – 10 units at 4q35. Unambiguous clinical diagnosis of FSHD depends on determining the array length at 4q35, usually with the array-adjacent p13E-11 probe after pulsed-field or linear gel electrophoresis. Complicating factors for molecular diagnosis of FSHD are the phenotypically neutral 10q D4Z4 arrays, cross-hybridizing sequences elsewhere in the genome, deletions including the genomic p13E-11 sequence and part of D4Z4, translocations between 4q and 10q D4Z4 arrays, and the extremely high G+C content of D4Z4 arrays (73%). In this study, we optimized conditions for molecular diagnosis of FSHD with a 1-kb D4Z4 subfragment probe following hybridization with p13E-11. We demonstrate that these hybridization conditions allow the identification of FSHD alleles with deletions of the genomic p13E-11 sequence and aid in determination of the nonpathogenic D4Z4 arrays at 10q. Furthermore, we show that the D4Z4-like sequences present elsewhere in the genome are not tandemly arranged, like those at 4q35 and 10q26. PMID:17131163

  8. Ka-band MMIC arrays for ACTS Aero Terminal Experiment

    NASA Technical Reports Server (NTRS)

    Raquet, C.; Zakrajsek, R.; Lee, R.; Turtle, J.

    1992-01-01

    An antenna system consisting of three experimental Ka-band active arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification is presented. The MMIC arrays are to be demonstrated in the ACTS Aeronautical Terminal Experiment, planned for early 1994. The experiment is outlined, with emphasis on a description of the antenna system. Attention is given to the way in which proof-of-concept MMIC arrays featuring three different state-of-the-art approaches to Ka-band MMIC insertion are being incorporated into an experimental aircraft terminal for the demonstration of an aircraft-to-satellite link, providing a basis for follow-on MMIC array development.

  9. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    The advance of new detector technologies combined with enhanced fabrication methods has resulted in an increase in development of large format arrays. The next generation of scientific instruments will utilize detectors containing hundreds to thousands of elements providing a more efficient means to conduct large area sky surveys. Some notable detectors include a 32x32 x-ray microcalorimeter for Constellation-X, an infrared bolometer called SAFIRE to fly on the airborne observatory SOFIA, and the sub-millimeter bolometer SCUBA-2 to be deployed at the JCMT which will use more than 10,000 elements for two colors, each color using four 32x40 arrays. Of these detectors, SCUBA-2 is farthest along in development and uses indium hybridization to multiplexers for readout of the large number of elements, a technology that will be required to enable the next generation of large format arrays. Our current efforts in working toward large format arrays have produced GISMO, the Goddard IRAM Superconducting 2-Millimeter observer. GISMO is a far infrared instrument to be field tested later this year at the IRAM 30 meter telescope in Spain. GISMO utilizes transition edge sensor (TES) technology in an 8x16 filled array format that allows for typical fan-out wiring and wire-bonding to four 1x32 NIST multiplexers. GISMO'S electrical wiring is routed along the tops of 30 micron walls which also serve as the mechanical framework for the array. This architecture works well for the 128 element array, but is approaching the limit for routing the necessary wires along the surface while maintaining a high fill factor. Larger format arrays will benefit greatly from making electrical connections through the wafer to the backside, where they can be hybridized to a read-out substrate tailored to handling the wiring scheme. The next generation array we are developing is a 32x40 element array on a pitch of 1135 microns that conforms to the NIST multiplexer, already developed for the SCUBA-2

  10. Energy Spectrum and Composition of Ultra High Energy Cosmic Ray Showers Using Hybrid Analysis from Telescope Array

    NASA Astrophysics Data System (ADS)

    Jui, Charles; Allen, Monica; Abu-Zayyad, Tareq; Stokes, Benjamin; Ivanov, Dmitri

    2013-04-01

    The Telescope Array (TA) consists of 38 fluorescence telescopes spread over three detector sites. The three sites at located the periphery of a surface array of 507 scintillation counters, covering 700 square km, with a spacing of 1.2 km. TA is designed to study the energy spectrum, composition, and arrival direction anisotropy of ultrahigh energy cosmic rays (UHECR). A unique feature of TA is that one of three fluorescence detector (FD) sites, Middle Drum (MD), is instrumented with 14 refurbished telescopes from the High Resolution Fly's Eye (HiRes) experiment. This commonality provides TA with a direct link back to the HiRes experiment and data. Using the scintillator detector data in conjunction with the MD data improves the geometrical reconstruction and hence provides a more accurate reconstruction of the energy of the primary particle and shower profile. The Middle Drum hybrid spectrum composition results will be presented.

  11. Response Surface Model Building Using Orthogonal Arrays for Computer Experiments

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Braun, Robert D.; Moore, Arlene A.; Lepsch, Roger A.

    1997-01-01

    This study investigates response surface methods for computer experiments and discusses some of the approaches available. Orthogonal arrays constructed for computer experiments are studied and an example application to a technology selection and optimization study for a reusable launch vehicle is presented.

  12. Design, processing and testing of LSI arrays: Hybrid microelectronics task

    NASA Technical Reports Server (NTRS)

    Himmel, R. P.; Stuhlbarg, S. M.; Ravetti, R. G.; Zulueta, P. J.

    1979-01-01

    Mathematical cost factors were generated for both hybrid microcircuit and printed wiring board packaging methods. A mathematical cost model was created for analysis of microcircuit fabrication costs. The costing factors were refined and reduced to formulae for computerization. Efficient methods were investigated for low cost packaging of LSI devices as a function of density and reliability. Technical problem areas such as wafer bumping, inner/outer leading bonding, testing on tape, and tape processing, were investigated.

  13. Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    NASA Astrophysics Data System (ADS)

    Postnikov, E. B.; Grinyuk, A. A.; Kuzmichev, L. A.; Sveshnikova, L. G.

    2017-06-01

    This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV). It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.

  14. EPOXI Uplink Array Experiment of June 27, 2008

    NASA Astrophysics Data System (ADS)

    Vilnrotter, V.; Tsao, P. C.; Lee, D. K.; Cornish, T. P.; Paal, L.; Jamnejad, V.

    2008-08-01

    Uplink array technology is currently being developed for NASA's Deep Space Network (DSN) to provide greater range and data throughput for future NASA missions, including manned missions to Mars and exploratory missions to the outer planets, the Kuiper Belt, and beyond. The DSN uplink arrays employ N microwave antennas transmitting at 7.2 GHz (X-band) to produce signals that add coherently at the spacecraft, hence providing a power gain of N^2 over a single antenna. This gain can be traded off directly for an N^2 higher data rate at a given distance such as Mars, providing, for example, high-definition video broadcast from Earth to a future human mission, or it can provide a given data rate for commands and software uploads at a distance N times greater than would be possible with a single antenna. The uplink arraying concept has been recently demonstrated using the three operational 34-m antennas of the Apollo Complex at the Goldstone Deep Space Communications Complex in California, which transmitted arrayed signals to the EPOXI spacecraft (an acronym formed from EPOCh and DIXI: Extrasolar Planetary Observation and Characterization and Deep Impact Extended Investigation). Both two-element and three-element uplink arrays were configured, and the theoretical array gains of 6 dB and 9.5 dB, respectively, were demonstrated experimentally. This required initial phasing of the array elements, the generation of accurate frequency predicts to maintain phase from each antenna despite relative velocity components due to Earth rotation and spacecraft trajectory, and monitoring of the ground-system phase for possible drifts caused by thermal effects over the 16-km fiber-optic signal distribution network. This article provides a description of the equipment and techniques used to demonstrate the uplink arraying concept in a relevant operational environment. Data collected from the EPOXI spacecraft are also analyzed to verify array calibration, array gain, and system stability

  15. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    NASA Astrophysics Data System (ADS)

    Felice, Maria V.; Velichko, Alexander; Wilcox, Paul D.; Barden, Tim; Dunhill, Tony

    2015-03-01

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.

  16. Clinical utility of an array comparative genomic hybridization analysis for Williams syndrome.

    PubMed

    Yagihashi, Tatsuhiko; Torii, Chiharu; Takahashi, Reiko; Omori, Mikimasa; Kosaki, Rika; Yoshihashi, Hiroshi; Ihara, Masahiro; Minagawa-Kawai, Yasuyo; Yamamoto, Junichi; Takahashi, Takao; Kosaki, Kenjiro

    2014-11-01

    To reveal the relation between intellectual disability and the deleted intervals in Williams syndrome, we performed an array comparative genomic hybridization analysis and standardized developmental testing for 11 patients diagnosed as having Williams syndrome based on fluorescent in situ hybridization testing. One patient had a large 4.2-Mb deletion spanning distally beyond the common 1.5-Mb intervals observed in 10/11 patients. We formulated a linear equation describing the developmental age of the 10 patients with the common deletion; the developmental age of the patient with the 4.2-Mb deletion was significantly below the expectation (developmental age = 0.51 × chronological age). The large deletion may account for the severe intellectual disability; therefore, the use of array comparative genomic hybridization may provide practical information regarding individuals with Williams syndrome. © 2014 Japanese Teratology Society.

  17. Detection of DNA copy number alterations in cancer by array comparative genomic hybridization.

    PubMed

    Michels, Evi; De Preter, Katleen; Van Roy, Nadine; Speleman, Frank

    2007-09-01

    Over the past few years, various reliable platforms for high-resolution detection of DNA copy number changes have become widely available. Together with optimized protocols for labeling and hybridization and algorithms for data analysis and representation, this has lead to a rapid increase in the application of this technology in the study of copy number variation in the human genome in normal cells and copy number imbalances in genetic diseases, including cancer. In this review, we briefly discuss specific technical issues relevant for array comparative genomic hybridization analysis in cancer tissues. We specifically focus on recent successes of array comparative genomic hybridization technology in the progress of our understanding of oncogenesis in a variety of cancer types. A third section highlights the potential of sensitive genome-wide detection of patterns of DNA imbalances or molecular portraits for class discovery and therapeutic stratification.

  18. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    SciTech Connect

    Felice, Maria V.; Velichko, Alexander Wilcox, Paul D.; Barden, Tim; Dunhill, Tony

    2015-03-31

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.

  19. Control of large collector arrays: The SSPS experience

    NASA Astrophysics Data System (ADS)

    Carmona, R.; Martin, J. G.

    Experience gained in the control of the distributed collector fields at the IEA Small Solar Power Systems project may be of value in the design of control systems for future large arrays. The project experience with analog and digital systems is discussed, as are details on the improvements that were made and the lessons learned. A priority item in this year's efforts on site is the evaluation of the potential for fully automatic operation, with a suitable control algorithm, of a reliable collector array. Preliminary results from dynamic models of the fields in terms of lumped and distributed parameters are given. Adaptive controls are discussed.

  20. Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Miyata, K.; Murano, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Urban, F.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhou, X.; Zollinger, R.; Zundel, Z.

    2015-02-01

    We measure the spectrum of cosmic rays with energies greater than 1018.2 eV with the fluorescence detectors (FDs) and the surface detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27, 2008 to September 7, 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.

  1. Collective photonic-plasmonic resonances in noble metal - dielectric nanoparticle hybrid arrays

    DOE PAGES

    Hong, Yan; Reinhard, Björn M.

    2014-10-27

    Coherent scattering of gold and silver nanoparticles (NPs) in regular arrays can generate Surface Lattice Resonances (SLRs) with characteristically sharp spectral features. Herein, we investigate collective resonances in compositionally more complex arrays comprising NP clusters and NPs with different chemical compositions at pre-defined lattice sites. We first characterize the impact of NP clustering by exchanging individual gold NPs in the array through dimers of electromagnetically strongly coupled gold NPs. Then, we analyze hybrid arrays that contain both gold metal NP dimers and high refractive index dielectric NPs as building blocks. We demonstrate that the integration of gold NP clusters andmore » dielectric NPs into one array enhances E-field intensities not only in the vicinity of the NPs but also in the ambient medium of the entire array. In addition, this work shows that the ability to integrate multiple building blocks with different resonance conditions in one array provides new degrees of freedom for engineering optical fields in the array plane with variable amplitude and phase.« less

  2. Collective photonic-plasmonic resonances in noble metal - dielectric nanoparticle hybrid arrays

    SciTech Connect

    Hong, Yan; Reinhard, Björn M.

    2014-10-27

    Coherent scattering of gold and silver nanoparticles (NPs) in regular arrays can generate Surface Lattice Resonances (SLRs) with characteristically sharp spectral features. Herein, we investigate collective resonances in compositionally more complex arrays comprising NP clusters and NPs with different chemical compositions at pre-defined lattice sites. We first characterize the impact of NP clustering by exchanging individual gold NPs in the array through dimers of electromagnetically strongly coupled gold NPs. Then, we analyze hybrid arrays that contain both gold metal NP dimers and high refractive index dielectric NPs as building blocks. We demonstrate that the integration of gold NP clusters and dielectric NPs into one array enhances E-field intensities not only in the vicinity of the NPs but also in the ambient medium of the entire array. In addition, this work shows that the ability to integrate multiple building blocks with different resonance conditions in one array provides new degrees of freedom for engineering optical fields in the array plane with variable amplitude and phase.

  3. Active microelectronic array system for DNA hybridization, genotyping and pharmacogenomic applications.

    PubMed

    Sosnowski, Ron; Heller, Michael J; Tu, Eugene; Forster, Anita H; Radtkey, Ray

    2002-12-01

    Microelectronic arrays have been developed for DNA hybridization analysis of point mutations, single nucleotide polymorphisms, short tandem repeats and gene expression. In addition to a variety of molecular biology and genomic research applications, such devices will also be used for infectious disease detection, genetic and cancer diagnostics, and pharmacogenomic applications. These microelectronic array devices are able to produce defined electric fields on their surfaces that allow charged molecules and other entities to be transported to or from any test site or micro-location on the planar surface of the device. These molecules and entities include DNA, RNA, proteins, enzymes, antibodies and cells. Electronic-based molecule addressing and hybridization can then be carried out, where the electric field is now used to greatly accelerate the hybridization reactions that occur on the selected test sites. When reversed, the electric field can be used to provide an additional parameter for improved hybridization. Special low-conductance buffers have been developed that provide for the rapid transport of the DNA molecules and facilitate the electronic hybridization reactions under conditions that do not support hybridization. Important to the device function is the permeation layer that overcoats the underlying microelectrodes. Generally composed of a porous hydrogel material impregnated with attachment chemistry, this permeation layer prevents the destruction of analytes at the active microelectrode surface, ameliorates the adverse effects of electrolysis products on the sensitive hybridization and affinity reactions, and serves as a support structure for attaching DNA probes and other molecules to the array. The microelectronic chip or array device is incorporated into a cartridge package (NanoChip trade mark cartridge) that provides the electronic, optical, and fluidic interfacing. A complete instrument system (NanoChip trade mark Molecular Biology Workstation

  4. A 2D/3D hybrid integral imaging display by using fast switchable hexagonal liquid crystal lens array

    NASA Astrophysics Data System (ADS)

    Lee, Hsin-Hsueh; Huang, Ping-Ju; Wu, Jui-Yi; Hsieh, Po-Yuan; Huang, Yi-Pai

    2017-05-01

    The paper proposes a new display which could switch 2D and 3D images on a monitor, and we call it as Hybrid Display. In 3D display technologies, the reduction of image resolution is still an important issue. The more angle information offer to the observer, the less spatial resolution would offer to image resolution because of the fixed panel resolution. Take it for example, in the integral photography system, the part of image without depth, like background, will reduce its resolution by transform from 2D to 3D image. Therefore, we proposed a method by using liquid crystal component to quickly switch the 2D image and 3D image. Meanwhile, the 2D image is set as a background to compensate the resolution.. In the experiment, hexagonal liquid crystal lens array would be used to take the place of fixed lens array. Moreover, in order to increase lens power of the hexagonal LC lens array, we applied high resistance (Hi-R) layer structure on the electrode. Hi-R layer would make the gradient electric field and affect the lens profile. Also, we use panel with 801 PPI to display the integral image in our system. Hence, the consequence of full resolution 2D background with the 3D depth object forms the Hybrid Display.

  5. Hybrid-array-based optoacoustic and ultrasound (OPUS) imaging of biological tissues

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. L.; Merčep, E.; Razansky, D.

    2017-05-01

    Hybrid optoacoustic and pulse-echo ultrasound imaging is an attractive multi-modal combination owing to the highly complementary contrast of the two techniques. Efficient hybridization is often hampered by significant dissimilarities between their optimal data acquisition and image formation strategies. Herein, we introduce an approach for combined optoacoustic and ultrasound imaging based on a plano-concave detector array design with a non-uniform pitch distribution. The hybrid design optimized for both modalities allows for maintaining an extended field of view for efficient ultrasound navigation while simultaneously providing broad tomographic coverage for optimal optoacoustic imaging performance. Imaging sessions performed in tissue-mimicking phantoms and healthy volunteers demonstrate that the suggested approach renders an enhanced imaging performance as compared with the previously reported hybrid optoacoustic and ultrasound imaging approaches. Thus, it can greatly facilitate clinical translation of the optoacoustic imaging technology by means of its efficient combination with ultrasonography, a well-established clinical imaging modality.

  6. Elliptical concave microlens arrays built in the photosensitive TiO2/ormosils hybrid films

    NASA Astrophysics Data System (ADS)

    Zhang, Xuehua; Que, Wenxiu; Javed, Hafiz M. Asif; Wei, Wei

    2014-11-01

    Photosensitive TiO2/organically modified silane hybrid thin films were prepared by a low-temperature sol-gel spin-coating technique. Optical and structural properties of the hybrid films with different titanium contents were characterized by prism coupling technique, UV-visible spectroscopy, Fourier transform infrared spectroscopy, and thermal gravimetric analysis. Advantages for fabrication of elliptical concave micro-lens arrays (MLAs) based on the as-prepared hybrid films were demonstrated by combining polydimethylsiloxane soft mold with a UV-cured imprint technique. Results indicate that the as-prepared hybrid films have great applicability for the fabrication of photonic components, and the fabrication technique provides a simple and cost-effective way for the fabrication of the sol-gel elliptical concave MLAs.

  7. Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Zhou, Weiya; Zhang, Qiang; Luan, Pingshan; Cai, Le; Yang, Feng; Zhang, Xiao; Fan, Qingxia; Zhou, Wenbin; Xiao, Zhuojian; Gu, Xiaogang; Chen, Huiliang; Li, Kewei; Xiao, Shiqi; Wang, Yanchun; Liu, Huaping; Xie, Sishen

    2015-07-01

    In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the fibers endow the supercapacitor with 100% stretchability along all directions. In addition, the supercapacitor exhibited good transparency, as well as excellent electrochemical properties and stability after being stretched 5000 times.In order to meet the growing need for smart bionic devices and epidermal electronic systems, biaxial stretchability is essential for energy storage units. Based on porous single-walled carbon nanotube/poly(3,4-ethylenedioxythiophene) (SWCNT/PEDOT) hybrid fiber, we designed and fabricated a biaxially stretchable supercapacitor, which possesses a unique configuration of the parallel buckled hybrid fiber array. Owing to the reticulate SWCNT film and the improved fabrication technique, the hybrid fiber retained its porous architecture both outwardly and inwardly, manifesting a superior capacity of 215 F g-1. H3PO4-polyvinyl alcohol gel with an optimized component ratio was introduced as both binder and stretchable electrolyte, which contributed to the regularity and stability of the buckled fiber array. The buckled structure and the quasi one-dimensional character of the

  8. A hybrid deconvolution approach to separate static and moving single-tone acoustic sources by phased microphone array measurements

    NASA Astrophysics Data System (ADS)

    Mo, Pinxi; Jiang, Weikang

    2017-02-01

    Beamforming approaches are developed to locate and quantify either static or moving acoustic sources by phased microphone array measurements. They would meet difficulties in mapping combined sources consisting of both static and moving sources. In this work, a hybrid deconvolution approach is proposed to separate static and moving single-tone sources. The approach is derived based on the source independence assumption as in the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS). The static beamforming and the moving beamforming are integrated to construct a linear matrix equation. The source distributions for the static sources and moving sources are simultaneously obtained by solving the equation. Numerical simulations and experiments were implemented on the combined sources with one static source and one rotating source. From the results, the hybrid deconvolution approach shows its effectiveness in separating the two sources, even with large source strength differences.

  9. Integrated hybrid silicon DFB laser-EAM array using quantum well intermixing.

    PubMed

    Jain, Siddharth R; Sysak, Matthew N; Kurczveil, Geza; Bowers, John E

    2011-07-04

    We demonstrate multiple bandgap integration on the hybrid silicon platform using quantum well intermixing. A broadband DFB laser array and a DFB-EAM array are realized on a single chip using four bandgaps defined by ion implantation enhanced disordering. The broadband laser array uses two bandgaps with 17 nm blue shift to compensate for gain roll-off while the integrated DFB-EAMs use the as-grown bandgap for optical gain and a 30 nm blue shifted bandgap for modulation. The multi-channel DFB array includes 13 lasers with >90 nm gain-bandwidth. The transponder includes four DFB-EAMs with 14 dB DC extinction at 4 V bias.

  10. Streptococcus pneumoniae Supragenome Hybridization Arrays for Profiling of Genetic Content and Gene Expression.

    PubMed

    Kadam, Anagha; Janto, Benjamin; Eutsey, Rory; Earl, Joshua P; Powell, Evan; Dahlgren, Margaret E; Hu, Fen Z; Ehrlich, Garth D; Hiller, N Luisa

    2015-02-02

    There is extensive genomic diversity among Streptococcus pneumoniae isolates. Approximately half of the comprehensive set of genes in the species (the supragenome or pangenome) is present in all the isolates (core set), and the remaining is unevenly distributed among strains (distributed set). The Streptococcus pneumoniae Supragenome Hybridization (SpSGH) array provides coverage for an extensive set of genes and polymorphisms encountered within this species, capturing this genomic diversity. Further, the capture is quantitative. In this manner, the SpSGH array allows for both genomic and transcriptomic analyses of diverse S. pneumoniae isolates on a single platform. In this unit, we present the SpSGH array, and describe in detail its design and implementation for both genomic and transcriptomic analyses. The methodology can be applied to construction and modification of SpSGH array platforms, as well to other bacterial species as long as multiple whole-genome sequences are available that collectively capture the vast majority of the species supragenome.

  11. Vitis Phylogenomics: Hybridization Intensities from a SNP Array Outperform Genotype Calls

    PubMed Central

    Miller, Allison J.; Matasci, Naim; Schwaninger, Heidi; Aradhya, Mallikarjuna K.; Prins, Bernard; Zhong, Gan-Yuan; Simon, Charles; Buckler, Edward S.; Myles, Sean

    2013-01-01

    Understanding relationships among species is a fundamental goal of evolutionary biology. Single nucleotide polymorphisms (SNPs) identified through next generation sequencing and related technologies enable phylogeny reconstruction by providing unprecedented numbers of characters for analysis. One approach to SNP-based phylogeny reconstruction is to identify SNPs in a subset of individuals, and then to compile SNPs on an array that can be used to genotype additional samples at hundreds or thousands of sites simultaneously. Although powerful and efficient, this method is subject to ascertainment bias because applying variation discovered in a representative subset to a larger sample favors identification of SNPs with high minor allele frequencies and introduces bias against rare alleles. Here, we demonstrate that the use of hybridization intensity data, rather than genotype calls, reduces the effects of ascertainment bias. Whereas traditional SNP calls assess known variants based on diversity housed in the discovery panel, hybridization intensity data survey variation in the broader sample pool, regardless of whether those variants are present in the initial SNP discovery process. We apply SNP genotype and hybridization intensity data derived from the Vitis9kSNP array developed for grape to show the effects of ascertainment bias and to reconstruct evolutionary relationships among Vitis species. We demonstrate that phylogenies constructed using hybridization intensities suffer less from the distorting effects of ascertainment bias, and are thus more accurate than phylogenies based on genotype calls. Moreover, we reconstruct the phylogeny of the genus Vitis using hybridization data, show that North American subgenus Vitis species are monophyletic, and resolve several previously poorly known relationships among North American species. This study builds on earlier work that applied the Vitis9kSNP array to evolutionary questions within Vitis vinifera and has general

  12. Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment

    NASA Astrophysics Data System (ADS)

    Pitarka, A.

    2014-12-01

    Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  13. Adaptive multibeam phased array design for a Spacelab experiment

    NASA Technical Reports Server (NTRS)

    Noji, T. T.; Fass, S.; Fuoco, A. M.; Wang, C. D.

    1977-01-01

    The parametric tradeoff analyses and design for an Adaptive Multibeam Phased Array (AMPA) for a Spacelab experiment are described. This AMPA Experiment System was designed with particular emphasis to maximize channel capacity and minimize implementation and cost impacts for future austere maritime and aeronautical users, operating with a low gain hemispherical coverage antenna element, low effective radiated power, and low antenna gain-to-system noise temperature ratio.

  14. Josephson Junction Arrays with Positional Disorder: Experiments and Simulations

    DTIC Science & Technology

    1988-02-01

    Caislinuo an loe*@*. old* it no.ee.q Aid taoncitI y IOcA flMwb~wJ Josephson junctions Positional disorder Monta Carlo simulations 20. AUSTRACT (Conoidiie an...both experiments and Monte Carlo siimulations. We have fabricated 50 x 50 arrays of Pb/Cu proximity-effect junctions, with controlled positional...However, our experiments show no evidence for the predicted reentrant phase transition. Our Monte Carlo simulations of XY spin systems with positional

  15. Comparative genomic hybridization array study and its utility in detection of constitutional and acquired anomalies.

    PubMed

    Andrieux, Joris; Sheth, Frenny

    2009-10-01

    The last decade has witnessed an upsurge in the knowledge of cytogenetic disorders and putting the old technology in a new basket with molecular genetics. As conventional cytogenetic can detect the genetic alteration of 10-15 Mb, many of the micro-deletions and micro-duplications are missed. However, with the advent of technology of fluorescence in situ hybridization (FISH), the resolution of genetic aberrations can reach to 3-5 Mb, nonetheless the anomalies smaller than the above, need further precision which has been achieved using comparative genomic hybridization array (CGH-array). Introduction of array-CGH has brought higher sensitivity with automated DNA fragment analyzer and DNA chip for submicroscopic chromosomal anomalies that are missed till date in many of the acquired and constitutional genetic disorders. The resolution of the technology varies from several Kb to 1 Mb depending upon the type of array selected. With the recent improvement in the array-CGH technology, a link between cytogenetic and molecular biology has been established without replacing conventional cytogenetic technique. The wider accessibility of the technology shall certainly provide a clue to the many unidentified/unexplained genetic disorders which shall prove to be a boon to the clinicians.

  16. Fast XUV 16 × 16 Array Hybrid Module for Plasma Imaging Applications

    NASA Astrophysics Data System (ADS)

    Alekseyev, Andrey G.; Belov, Alexandr M.; Zabrodsky, Vladimir V.; Sukhanov, Vladislav L.; Sorokin, Andrey A.; Peterson, Byron J.

    A hybrid matrix array detector is developed for ultra-fast plasma imaging applications with the use of XUV Si photodiodes (SPD diodes) manufactured according to Ioffe Institute original technology. A basic 16 × 16 hybrid module is comprised of eight stacked sub-modules with 2 × 16 linear SPD diode arrays combined with a circuit board with a 32-channel preamplifier and four 8-channel fast multiplexers. Array front size is 31 × 31 mm2 with ˜25 % sensitive area. The module has a “zero-edge” design providing an option of stacking into the larger arrays, if necessary. The data acquisition system (DAS) consists of eight 4-channel synchronous 12-bit ADC modules with 40 MS/s upper sampling rate, thus providing less than 1 μs minimum time for the complete read-out of the array. Each channel has a 64 MB on-board memory limiting the duration of the acquired period to 0.8 sec at the maximum sampling rate. A common TCP/IP Ethernet protocol is used for the data transmission into the main PC operating as a DAS control console, data preview and storage computer.

  17. The mass composition of ultra-high energy cosmic rays measured by the Telescope Array experiment

    NASA Astrophysics Data System (ADS)

    Fujii, Toshihiro

    2014-03-01

    Measurements of the mass composition and its energy dependence are necessary to understand sources and propagations of cosmic rays and to exclude several theoretical models. A longitudinal development of an extensive air shower reaches its maximum at a depth, Xmax, that depends on the species of the primary cosmic ray. Using a technique based on Xmax, we report the mass composition of ultra-high energy cosmic rays from analyses of data observed by fluorescence detectors of the Telescope Array experiment. We summarize results analyzed by three different types of reconstruction procedures which are stereo, monocular and hybrid mode. JSPS Postdoctoral Fellowship for Research Abroad.

  18. Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits

    PubMed Central

    Fernandez, Antonio; Ferrando-Soria, Jesus; Pineda, Eufemio Moreno; Tuna, Floriana; Vitorica-Yrezabal, Iñigo J.; Knappke, Christiane; Ujma, Jakub; Muryn, Christopher A.; Timco, Grigore A.; Barran, Perdita E.; Ardavan, Arzhang; Winpenny, Richard E.P.

    2016-01-01

    Quantum information processing (QIP) would require that the individual units involved—qubits—communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic–inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2CtBu)16]– coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron–electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates. PMID:26742716

  19. Hybrid rocket engine, theoretical model and experiment

    NASA Astrophysics Data System (ADS)

    Chelaru, Teodor-Viorel; Mingireanu, Florin

    2011-06-01

    The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.

  20. Model Experiments with Slot Antenna Arrays for Imaging

    NASA Technical Reports Server (NTRS)

    Johansson, J. F.; Yngvesson, K. S.; Kollberg, E. L.

    1985-01-01

    A prototype imaging system at 31 GHz was developed, which employs a two-dimensional (5x5) array of tapered slot antennas, and integrated detector or mixer elements, in the focal plane of a prime-focus paraboloid reflector, with an f/D=1. The system can be scaled to shorter millimeter waves and submillimeter waves. The array spacing corresponds to a beam spacing of approximately one Rayleigh distance and a two-point resolution experiment showed that two point-sources at the Rayleigh distance are well resolved.

  1. Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties

    NASA Astrophysics Data System (ADS)

    Ramaneti, R.; Sankaran, K. J.; Korneychuk, S.; Yeh, C. J.; Degutis, G.; Leou, K. C.; Verbeeck, J.; Van Bael, M. K.; Lin, I. N.; Haenen, K.

    2017-06-01

    A "patterned-seeding technique" in combination with a "nanodiamond masked reactive ion etching process" is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of the DGH nanorods, which contain sp2-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices.

  2. A Hybrid Particle Swarm with Differential Evolution Operator Approach (DEPSO) for Linear Array Synthesis

    NASA Astrophysics Data System (ADS)

    Sarkar, Soham; Das, Swagatam

    In recent years particle swarm optimization emerges as one of the most efficient global optimization tools. In this paper, a hybrid particle swarm with differential evolution operator, termed DEPSO, is applied for the synthesis of linear array geometry. Here, the minimum side lobe level and null control, both are obtained by optimizing the spacing between the array elements by this technique. Moreover, a statistical comparison is also provided to establish its performance against the results obtained by Genetic Algorithm (GA), classical Particle Swarm Optimization (PSO), Tabu Search Algorithm (TSA), Differential Evolution (DE) and Memetic Algorithm (MA).

  3. Faculty Experiences in Higher Education Institutions Teaching Hybrid Courses

    ERIC Educational Resources Information Center

    Calderon, Blanca I. Rodriguez

    2013-01-01

    This qualitative phenomenological study investigated how professors perceive the effectiveness of hybrid courses at the university level. The study gathered data related to professor's experiences that could give insight about the factors encouraging the development of hybrid instruction in higher education. The targeted population consisted of…

  4. Faculty Experiences in Higher Education Institutions Teaching Hybrid Courses

    ERIC Educational Resources Information Center

    Calderon, Blanca I. Rodriguez

    2013-01-01

    This qualitative phenomenological study investigated how professors perceive the effectiveness of hybrid courses at the university level. The study gathered data related to professor's experiences that could give insight about the factors encouraging the development of hybrid instruction in higher education. The targeted population consisted of…

  5. Measurement of the proton-air cross section with Telescope Array's Middle Drum detector and surface array in hybrid mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.; Telescope Array Collaboration

    2015-08-01

    In this work we are reporting on the measurement of the proton-air inelastic cross section σp-air inel using the Telescope Array detector. Based on the measurement of the σp-air inel, the proton-proton cross section σp -p value is also determined at √{s }=9 5-8+5 TeV . Detecting cosmic ray events at ultrahigh energies with the Telescope Array enables us to study this fundamental parameter that we are otherwise unable to access with particle accelerators. The data used in this report are the hybrid events observed by the Middle Drum fluorescence detector together with the surface array detector collected over five years. The value of the σp-air inel is found to be equal to 567.0 ±70.5 [Stat]-25+29[Sys] mb . The total proton-proton cross section is subsequently inferred from Glauber formalism and the Block, Halzen and Stanev QCD inspired fit and is found to be equal to 17 0-44+48[Stat]-17+19[Sys] mb .

  6. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    SciTech Connect

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krticka, M.; Becvar, F.

    2009-03-31

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF{sub 2} scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  7. Neutron Capture Experiments Using the DANCE Array at Los Alamos

    NASA Astrophysics Data System (ADS)

    Dashdorj, D.; Mitchell, G. E.; Baramsai, B.; Chyzh, A.; Walker, C.; Agvaanluvsan, U.; Becker, J. A.; Parker, W.; Sleaford, B.; Wu, C. Y.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wouters, J. M.; Krtička, M.; Bečvář, F.

    2009-03-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is designed for neutron capture measurements on very small and/or radioactive targets. The DANCE array of 160 BaF2 scintillation detectors is located at the Lujan Center at the Los Alamos Neutron Science Center (LANSCE). Accurate measurements of neutron capture data are important for many current applications as well as for basic understanding of neutron capture. The gamma rays following neutron capture reactions have been studied by the time-of-flight technique using the DANCE array. The high granularity of the array allows measurements of the gamma-ray multiplicity. The gamma-ray multiplicities and energy spectra for different multiplicities can be measured and analyzed for spin and parity determination of the resolved resonances.

  8. Skylab experiment performance evaluation manual. Appendix S: Experiment T027 contamination measurement sample array (MSFC)

    NASA Technical Reports Server (NTRS)

    Tonetti, B. B.

    1973-01-01

    Analyses for Experiment T027, Contamination Measurement Sample Array (MSFC), to be used for evaluating the performance of the Skylab corrollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

  9. Muon Detector R&D in Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Nonaka, T.; Takamura, M.; Honda, K.; Matthews, J. N.; Ogio, S.; Sakurai, N.; Sagawa, H.; Stokes, B. T.; Tsujimoto, M.; Yashiro, K.

    The Telescope Array (TA) experiment, located in the western desert of Utah, U.S.A., at 39.38° north and 112.9° west, is collecting data of ultra high energy cosmic rays in the energy range 1018-1020 eV. The experiment has a Surface Detector (SD) array surrounded by three Fluorescence Detector (FD) stations to enable simultaneous detection of shower particles and fluorescence photons generated by the extensive air shower. Measurement of shower particles at the ground level, with different absorber thickness, enables a more detailed studies of the experiment's energy scale and of hadron interaction models. In this report, we present a design and the first observation result of a surface muon detector using lead plates and concrete as absorbers.

  10. Experimental characterization of the lower hybrid wave field on the first pass using a magnetic probe array

    NASA Astrophysics Data System (ADS)

    Shinya, T.; Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Takase, Y.

    2016-10-01

    Experimental characterization of the lower hybrid (LH) wave propagation from the launcher to the core plasma is important to validate an antenna spectrum model and to identify parasitic wave-edge plasma interactions occurring in front of the launcher. On Alcator C-Mod, the wave frequency spectrum and dominant parallel wavenumber are characterized with two probe arrays installed near the edge plasma. The first one is mounted on a radially movable structure that is about 108 deg toroidally away from the launcher. A phasing scan experiment at moderate density suggests a resonance-cone propagation of the launched slow LH wave with a finite spectral width. As plasma density is raised, the measured power decreases, correlated with the observed loss of efficiency. Recently, the second probe array with an increased number of probes has been installed on a limiter that is 54 deg. toroidally away from the launcher, which is expected to be dominantly sensitive to the wave-field directly leaving the launcher. An initial measurement shows that the probe array detects a coherent wave field. A full-wave model to evaluate the wave electric-field pattern in front of the probe array is under development. If available, further experimental and modeling results will be presented. Supported by USDoE Award(s) DE-FC02-99ER54512 and Japan/U.S. Cooperation in Fusion Research and Development.

  11. A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell.

    PubMed

    Yan, Xin; Zhang, Chen; Wang, Jiamin; Zhang, Xia; Ren, Xiaomin

    2017-12-01

    A low-cost Si nanowire array/perovskite hybrid solar cell is proposed and simulated. The solar cell consists of a Si p-i-n nanowire array filled with CH3NH3PbI3, in which both the nanowires and perovskite absorb the incident light while the nanowires act as the channels for transporting photo-generated electrons and holes. The hybrid structure has a high absorption efficiency in a broad wavelength range of 300~800 nm. A large short-circuit current density of 28.8 mA/cm(2) and remarkable conversion efficiency of 13.3% are obtained at a thin absorber thickness of 1.6 μm, which are comparable to the best results of III-V nanowire solar cells.

  12. A High-Efficiency Si Nanowire Array/Perovskite Hybrid Solar Cell

    NASA Astrophysics Data System (ADS)

    Yan, Xin; Zhang, Chen; Wang, Jiamin; Zhang, Xia; Ren, Xiaomin

    2017-01-01

    A low-cost Si nanowire array/perovskite hybrid solar cell is proposed and simulated. The solar cell consists of a Si p-i-n nanowire array filled with CH3NH3PbI3, in which both the nanowires and perovskite absorb the incident light while the nanowires act as the channels for transporting photo-generated electrons and holes. The hybrid structure has a high absorption efficiency in a broad wavelength range of 300 800 nm. A large short-circuit current density of 28.8 mA/cm2 and remarkable conversion efficiency of 13.3% are obtained at a thin absorber thickness of 1.6 μm, which are comparable to the best results of III-V nanowire solar cells.

  13. Hybrid cryogenic low noise amplifier for the MeetKAT array

    NASA Astrophysics Data System (ADS)

    Jiang, Frank; Claude, Stephan; Garcia, Dominic

    2014-07-01

    Hybrid microwave integrated circuit technology is used to design and develop an L-band (900-2100 MHz) ultra-low noise amplifier for the MeerKAT array. This low noise amplifier achieved 2 K noise temperature, more than 40 dB gain, S11 & S22 better than -11 & -15 dB at 15 K ambient. Linearity and gain compression is verified. The noise performance is explored as the cooling temperature changes from 15 to 85 K.

  14. Hybrid Rocket Experiment Station for Capstone Design

    NASA Technical Reports Server (NTRS)

    Conley, Edgar; Hull, Bethanne J.

    2012-01-01

    Portable hybrid rocket motors and test stands can be seen in many papers but none have been reported on the design or instrumentation at such a small magnitude. The design of this hybrid rocket and test stand is to be small and portable (suitcase size). This basic apparatus will be used for demonstrations in rocket propulsion. The design had to include all of the needed hardware to operate the hybrid rocket unit (with the exception of the external Oxygen tank). The design of this project includes making the correlation between the rocket's thrust and its size, the appropriate transducers (physical size, resolution, range, and cost), compatability with a laptop analog card, the ease of setup, and its portability.

  15. The Polarbear-2 and the Simons Array experiments

    DOE PAGES

    Suzuki, A.; Ade, P.; Akiba, Y.; ...

    2016-01-06

    Here, we present an overview of the design and status of the POLARBEAR-2 and the Simons Array experiments. POLARBEAR- 2 is a Cosmic Microwave Background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 milli-Kelvin. The focal plane is filled with 7,588 dichroic lenslet-antenna coupled polarization sensitive Transition Edge Sensor (TES) bolometric pixels that are sensitive to 95 GHz and 150 GHz bands simultaneously. The TES bolometers aremore » read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 µKCMB√s in each frequency band. POLARBEAR-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three POLARBEAR-2 type receivers. The Simons Array will cover 95 GHz, 150 GHz and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ(r) = 6×10$-$3 at r = 0.1 and Σmν(σ = 1) to 40 meV.« less

  16. The Polarbear-2 and the Simons Array experiments

    SciTech Connect

    Suzuki, A.; Ade, P.; Akiba, Y.; Aleman, C.; Arnold, K.; Baccigalupi, C.; Barch, B.; Barron, D.; Bender, A.; Boettger, D.; Borrill, J.; Chapman, S.; Chinone, Y.; Cukierman, A.; Dobbs, M.; Ducout, A.; Dunner, R.; Elleflot, T.; Errard, J.; Fabbian, G.; Feeney, S.; Feng, C.; Fujino, T.; Fuller, G.; Gilbert, A.; Goeckner-Wald, N.; Groh, J.; Haan, T. De; Hall, G.; Halverson, N.; Hamada, T.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Hill, C.; Holzapfel, W.; Hori, Y.; Howe, L.; Inoue, Y.; Irie, F.; Jaehnig, G.; Jaffe, A.; Jeong, O.; Katayama, N.; Kaufman, J.; Kazemzadeh, K.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Kusaka, A.; Jeune, M. Le; Lee, A.; Leon, D.; Linder, E.; Lowry, L.; Matsuda, F.; Matsumura, T.; Miller, N.; Mizukami, K.; Montgomery, J.; Navaroli, M.; Nishino, H.; Peloton, J.; Poletti, D.; Puglisi, G.; Rebeiz, G.; Raum, C.; Reichardt, C.; Richards, P.; Ross, C.; Rotermund, K.; Segawa, Y.; Sherwin, B.; Shirley, I.; Siritanasak, P.; Stebor, N.; Stompor, R.; Suzuki, J.; Tajima, O.; Takada, S.; Takakura, S.; Takatori, S.; Tikhomirov, A.; Tomaru, T.; Westbrook, B.; Whitehorn, N.; Yamashita, T.; Zahn, A.; Zahn, O.

    2016-01-06

    Here, we present an overview of the design and status of the POLARBEAR-2 and the Simons Array experiments. POLARBEAR- 2 is a Cosmic Microwave Background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 milli-Kelvin. The focal plane is filled with 7,588 dichroic lenslet-antenna coupled polarization sensitive Transition Edge Sensor (TES) bolometric pixels that are sensitive to 95 GHz and 150 GHz bands simultaneously. The TES bolometers are read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 µKCMB√s in each frequency band. POLARBEAR-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three POLARBEAR-2 type receivers. The Simons Array will cover 95 GHz, 150 GHz and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ(r) = 6×10$-$3 at r = 0.1 and Σmν(σ = 1) to 40 meV.

  17. TANGO ARRAY I: An Air Shower Experiment in Buenos Aires

    NASA Astrophysics Data System (ADS)

    Bauleo, P.; Bonifazi, C.; Filevich, A.; Reguera, A.

    The TANGO Array is an air shower experiment which has been recently constructed in Buenos Aires, Argentina. It became fully operational in September, 2000. The array consists of 4 water ˇCerenkov detector stations enclosing a geometrical area of ˜ 30.000 m2 and its design has been optimized for the observation of EAS produced by cosmic rays near the "knee" energy region. Three of the detectors have been constructed using 12000-liter stainless steel tanks, and the fourth has been mounted in a smaller, 400liter plastic container. The detectors are connected by cables to the data acquisition room, where a fully automatic system, which takes advantage of the features of a 4-channel digital oscilloscope, was set for data collection without the need of operator intervention. This automatic experiment control includes monitoring, data logging, and daily calibration of all stations. This paper describes the detectors and their associated electronics, and details are given on the data acquisition system, the triggering and calibration procedures, and the operation of the array. Examples of air shower traces, recorded by the array, are presented.

  18. The Polarbear-2 and the Simons Array Experiments

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Ade, P.; Akiba, Y.; Aleman, C.; Arnold, K.; Baccigalupi, C.; Barch, B.; Barron, D.; Bender, A.; Boettger, D.; Borrill, J.; Chapman, S.; Chinone, Y.; Cukierman, A.; Dobbs, M.; Ducout, A.; Dunner, R.; Elleflot, T.; Errard, J.; Fabbian, G.; Feeney, S.; Feng, C.; Fujino, T.; Fuller, G.; Gilbert, A.; Goeckner-Wald, N.; Groh, J.; Haan, T. De; Hall, G.; Halverson, N.; Hamada, T.; Hasegawa, M.; Hattori, K.; Hazumi, M.; Hill, C.; Holzapfel, W.; Hori, Y.; Howe, L.; Inoue, Y.; Irie, F.; Jaehnig, G.; Jaffe, A.; Jeong, O.; Katayama, N.; Kaufman, J.; Kazemzadeh, K.; Keating, B.; Kermish, Z.; Keskitalo, R.; Kisner, T.; Kusaka, A.; Jeune, M. Le; Lee, A.; Leon, D.; Linder, E.; Lowry, L.; Matsuda, F.; Matsumura, T.; Miller, N.; Mizukami, K.; Montgomery, J.; Navaroli, M.; Nishino, H.; Peloton, J.; Poletti, D.; Puglisi, G.; Rebeiz, G.; Raum, C.; Reichardt, C.; Richards, P.; Ross, C.; Rotermund, K.; Segawa, Y.; Sherwin, B.; Shirley, I.; Siritanasak, P.; Stebor, N.; Stompor, R.; Suzuki, J.; Tajima, O.; Takada, S.; Takakura, S.; Takatori, S.; Tikhomirov, A.; Tomaru, T.; Westbrook, B.; Whitehorn, N.; Yamashita, T.; Zahn, A.; Zahn, O.

    2016-08-01

    We present an overview of the design and status of the Polarbear-2 and the Simons Array experiments. Polarbear-2 is a cosmic microwave background polarimetry experiment which aims to characterize the arc-minute angular scale B-mode signal from weak gravitational lensing and search for the degree angular scale B-mode signal from inflationary gravitational waves. The receiver has a 365 mm diameter focal plane cooled to 270 mK. The focal plane is filled with 7588 dichroic lenslet-antenna-coupled polarization sensitive transition edge sensor (TES) bolometric pixels that are sensitive to 95 and 150 GHz bands simultaneously. The TES bolometers are read-out by SQUIDs with 40 channel frequency domain multiplexing. Refractive optical elements are made with high-purity alumina to achieve high optical throughput. The receiver is designed to achieve noise equivalent temperature of 5.8 \\upmu K_CMB√{s} in each frequency band. Polarbear-2 will deploy in 2016 in the Atacama desert in Chile. The Simons Array is a project to further increase sensitivity by deploying three Polarbear-2 type receivers. The Simons Array will cover 95, 150, and 220 GHz frequency bands for foreground control. The Simons Array will be able to constrain tensor-to-scalar ratio and sum of neutrino masses to σ (r) = 6× 10^{-3} at r = 0.1 and sum m_{\\upnu } (σ =1) to 40 meV.

  19. Stochastic segmentation models for array-based comparative genomic hybridization data analysis.

    PubMed

    Lai, Tze Leung; Xing, Haipeng; Zhang, Nancy

    2008-04-01

    Array-based comparative genomic hybridization (array-CGH) is a high throughput, high resolution technique for studying the genetics of cancer. Analysis of array-CGH data typically involves estimation of the underlying chromosome copy numbers from the log fluorescence ratios and segmenting the chromosome into regions with the same copy number at each location. We propose for the analysis of array-CGH data, a new stochastic segmentation model and an associated estimation procedure that has attractive statistical and computational properties. An important benefit of this Bayesian segmentation model is that it yields explicit formulas for posterior means, which can be used to estimate the signal directly without performing segmentation. Other quantities relating to the posterior distribution that are useful for providing confidence assessments of any given segmentation can also be estimated by using our method. We propose an approximation method whose computation time is linear in sequence length which makes our method practically applicable to the new higher density arrays. Simulation studies and applications to real array-CGH data illustrate the advantages of the proposed approach.

  20. Synthesis of porous NiO/CeO2 hybrid nanoflake arrays as a platform for electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Cui, Jiewu; Luo, Jinbao; Peng, Bangguo; Zhang, Xinyi; Zhang, Yong; Wang, Yan; Qin, Yongqiang; Zheng, Hongmei; Shu, Xia; Wu, Yucheng

    2015-12-01

    Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing.Porous NiO/CeO2 hybrid nanoflake arrays fabricated by a facile hydrothermal method were employed as substrates for electrochemical biosensors. The resulting NiO/CeO2 hybrid nanoflake arrays with a large specific surface area and good biocompatibility presented an excellent platform for electrochemical biosensing. Electronic supplementary information (ESI) available: Optical photographs of the as-prepared samples, SEM, TEM, EDS, XRD and BET data of the samples are presented, I-t curves of glucose biosensors based on NiO and NiO/CeO2 NFAs, EIS results of different electrodes. See DOI: 10.1039/c5nr05924k

  1. Simultaneous capturing of RGB and additional band images using hybrid color filter array

    NASA Astrophysics Data System (ADS)

    Kiku, Daisuke; Monno, Yusuke; Tanaka, Masayuki; Okutomi, Masatoshi

    2014-03-01

    Extra band information in addition to the RGB, such as the near-infrared (NIR) and the ultra-violet, is valuable for many applications. In this paper, we propose a novel color filter array (CFA), which we call "hybrid CFA," and a demosaicking algorithm for the simultaneous capturing of the RGB and the additional band images. Our proposed hybrid CFA and demosaicking algorithm do not rely on any specific correlation between the RGB and the additional band. Therefore, the additional band can be arbitrarily decided by users. Experimental results demonstrate that our proposed demosaicking algorithm with the proposed hybrid CFA can provide the additional band image while keeping the RGB image almost the same quality as the image acquired by using the standard Bayer CFA.

  2. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    SciTech Connect

    Bosia, G.; Ragona, R.; Helou, W.; Goniche, M.; Hillaret, J.

    2014-02-12

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  3. Synchronization for an array of neural networks with hybrid coupling by a novel pinning control strategy.

    PubMed

    Gong, Dawei; Lewis, Frank L; Wang, Liping; Xu, Ke

    2016-05-01

    In this paper, a novel pinning synchronization (synchronization with pinning control) scheme for an array of neural networks with hybrid coupling is investigated. The main contributions are as follows: (1) A novel pinning control strategy is proposed for the first time. Pinning control schemes are introduced as an array of column vector. The controllers are designed as simple linear systems, which are easy to be analyzed or tested. (2) Augmented Lyapunov-Krasovskii functional (LKF) is applied to introduce more relax variables, which can alleviate the requirements of the positive definiteness of the matrix. (3) Based on the appropriate LKF, by introducing some free weighting matrices, some novel synchronization criteria are derived. Furthermore, the proposed pinning control scheme described by column vector can also be expanded to almost all the other array of neural networks. Finally, numerical examples are provided to show the effectiveness of the proposed results.

  4. Maize and tripsacum: experiments in intergeneric hybridization

    USDA-ARS?s Scientific Manuscript database

    Research in maize-Tripsacum hybridization is extensive and encompasses a period of more than 60 years of collective research. The publication “The origin of Indian corn and its relatives” describes some of the initial research in this area (Mangelsdorf and Reeves, 1939) and is recommended reading f...

  5. Real-time detection of DNA hybridization and melting on oligonucleotide arrays by using optical wave guides.

    PubMed Central

    Stimpson, D I; Hoijer, J V; Hsieh, W T; Jou, C; Gordon, J; Theriault, T; Gamble, R; Baldeschwieler, J D

    1995-01-01

    The challenge of the Human Genome Project is to increase the rate of DNA sequence acquisition by two orders of magnitude to complete sequencing of the human genome by the year 2000. The present work describes a rapid detection method using a two-dimensional optical wave guide that allows measurement of real-time binding or melting of a light-scattering label on a DNA array. A particulate label on the target DNA acts as a light-scattering source when illuminated by the evanescent wave of the wave guide and only the label bound to the surface generates a signal. Imaging/visual examination of the scattered light permits interrogation of the entire array simultaneously. Hybridization specificity is equivalent to that obtained with a conventional system using autoradiography. Wave guide melting curves are consistent with those obtained in the liquid phase and single-base discrimination is facile. Dilution experiments showed an apparent lower limit of detection at 0.4 nM oligonucleotide. This performance is comparable to the best currently known fluorescence-based systems. In addition, wave guide detection allows manipulation of hybridization stringency during detection and thereby reduces DNA chip complexity. It is anticipated that this methodology will provide a powerful tool for diagnostic applications that require rapid cost-effective detection of variations from known sequences. Images Fig. 1 Fig. 2 Fig. 3 PMID:7603999

  6. Experiences with array-based sequence capture; toward clinical applications

    PubMed Central

    Almomani, Rowida; van der Heijden, Jaap; Ariyurek, Yavuz; Lai, Yuching; Bakker, Egbert; van Galen, Michiel; Breuning, Martijn H; den Dunnen, Johan T

    2011-01-01

    Although sequencing of a human genome gradually becomes an option, zooming in on the region of interest remains attractive and cost saving. We performed array-based sequence capture using 385K Roche NimbleGen, Inc. arrays to zoom in on the protein-coding and immediate intron-flanking sequences of 112 genes, potentially involved in mental retardation and congenital malformation. Captured material was sequenced using Illumina technology. A data analysis pipeline was built that detects sequence variants, positions them in relation to the gene, checks for presence in databases (eg, db single-nucleotide polymorphism (SNP)) and predicts the potential consequences at the level of RNA splicing and protein translation. In the samples analyzed, all known variants were reliably detected, including pathogenic variants from control cases and SNPs derived from array experiments. Although overall coverage varied considerably, it was reproducible per region and facilitated the detection of large deletions and duplications (copy number variations), including a partial deletion in the B3GALTL gene from a patient sample. For ultimate diagnostic application, overall results need to be improved. Future arrays should contain probes from both DNA strands, and to obtain a more even coverage, one could add fewer probes from densely and more probes from sparsely covered regions. PMID:21102627

  7. Advanced numerical modeling and hybridization techniques for third-generation infrared detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Schuster, Jonathan

    to their final hybridization onto expensive silicon read-out integrated circuit (ROIC) chips. The approach is to temporarily hybridize each candidate HgCdTe detector array to a standard reusable ROIC for complete screen testing. We tested the technique by temporarily hybridizing LPE grown HgCdTe test chips to fan-out boards and characterizing their performance.

  8. DNA probe attachment on plastic surfaces and microfluidic hybridization array channel devices with sample oscillation.

    PubMed

    Liu, Yingjie; Rauch, Cory B

    2003-06-01

    DNA probe immobilization on plastic surfaces and device assembly are both critical to the fabrication of microfluidic hybridization array channel (MHAC) devices. Three oligonucleotide (oligo) probe immobilization procedures were investigated for attaching oligo probes on four different types of plastic surfaces (polystyrene, polycarbonate, poly(methylmethacrylate), and polypropylene). These procedures are the Surmodics procedure, the cetyltrimethylammonium bromide (CTAB) procedure, and the Reacti-Bind procedure. To determine the optimal plastic substrate and attachment chemistry for array fabrication, we investigated plastic hydrophobicity, intrinsic fluorescence, and oligo attachment efficiency. The Reacti-Bind procedure is least effective for attaching oligo probes in the microarray format. The CTAB procedure performs well enough to use in array fabrication, and the concentration of CTAB has a significant effect on oligo immobilization efficiency. We also found that use of amine-modified oligo probes resulted in better immobilization efficiency than use of unmodified oligos with the CTAB procedure. The oligo probe immobilization on plastic surfaces by the Surmodics procedure is the most effective with regard to probe spot quality and hybridization sensitivity. A DNA hybridization assay on such a device results in a limit of detection of 12pM. Utilizing a CO(2) IR laser machining and adhesive layer approach, we have developed an improved procedure for realizing a DNA microarray inside a microfluidic channel. This device fabrication procedure allows for more feasible spot placement in the channel and reduced sample adsorption by adhesive tapes used in the fabrication procedure. We also demonstrated improved hybridization kinetics and increased detection sensitivity in MHAC devices by implementing sample oscillation inside the channel. A limit of detection of 5pM has been achieved in MHAC devices with sample oscillation.

  9. Solar-array-materials passive LDEF experiment (A0171)

    NASA Astrophysics Data System (ADS)

    Whitaker, A. F.; Smith, C. F., Jr.; Young, L. E.; Brandhorst, H. W., Jr.; Forestieri, A. F.; Gaddy, E. M.; Bass, J. A.; Stella, P. M.

    1984-02-01

    The objective of this experiment is to evaluate the synergistic effects of the space environment on various solar-array materials, including solar cells, cover slips with various antireflectance coatings, adhesive, encapsulants, reflector materials, substrate strength materials, mast and harness materials, structural composites, and thermal control treatments. The experiment is passive and consists of an arrangement of material specimens mounted in a 3-in.-deep peripheral tray. The effects of the space environment on the specimens will be determined by comparison of preflight and postflight measurements of mechanical, electrical, and optical properties.

  10. Rapid and specific detection of Lassa virus by reverse transcription-PCR coupled with oligonucleotide array hybridization.

    PubMed

    Olschläger, Stephan; Günther, Stephan

    2012-07-01

    To facilitate sequence-specific detection of DNA amplified in a diagnostic reverse transcription (RT)-PCR for Lassa virus, we developed an array featuring 47 oligonucleotide probes for post-PCR hybridization of the amplicons. The array procedure may be performed with low-tech equipment and does not take longer than agarose gel detection.

  11. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.

    PubMed

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2017-01-01

    A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.

  12. Hybrid method for identifying mass groups of primary cosmic rays in the joint operation of IACTs and wide angle Cherenkov timing arrays

    NASA Astrophysics Data System (ADS)

    Postnikov, E. B.; Grinyuk, A. A.; Kuzmichev, L. A.; Sveshnikova, L. G.

    2017-01-01

    This work is a methodical study of another option of the hybrid method originally aimed at gamma/hadron separation in the TAIGA experiment. In the present paper this technique was performed to distinguish between different mass groups of cosmic rays in the energy range 200 TeV – 500 TeV. The study was based on simulation data of TAIGA prototype and included analysis of geometrical form of images produced by different nuclei in the IACT simulation as well as shower core parameters reconstructed using timing array simulation. We show that the hybrid method can be sufficiently effective to precisely distinguish between mass groups of cosmic rays.

  13. Nanoparticle-nanocup hybrid array structure with a tunable sensitivity for colorimetric biosensing

    NASA Astrophysics Data System (ADS)

    Seo, Sujin; Liu, Gang L.

    2016-03-01

    Colorimetric detection is cost-effective and user-friendly when used for sensing target analytes without a need of bulky and expensive equipment. The extraordinary transmission phenomena through plasmonic periodic nanocup arrays achieve colorimetric sensing by detecting color changes of transmitted light associated with the refractive index variation. The application of the nanocup arrays, however, is relatively restricted due to a limited sensitivity for monolayered target analyte detections on the surface. In order to improve the sensitivity bounded by the underlying nanostructures, hybrid nanoparticle (NP) - nanocup array substrates are developed for enhancing the sensitivity to the refractive index change. The three dimensionally assembled Au NPs in circle along the sidewall of each nanocup increases the density of hot spots by the heterogeneous plasmonic coupling between the NP and the edge of the nanocup; thus a small refractive index change at the hot spot becomes easily detected than bare nanocup arrays. In addition to the bulk refractive index sensing, an ultrasensitive spectroscopic detection of the antigen-antibody binding is achieved by this three-dimensional self-assembly of Au NPs on the Au nanocup arrays.

  14. Normalization and centering of array-based heterologous genome hybridization based on divergent control probes.

    PubMed

    Darby, Brian J; Jones, Kenneth L; Wheeler, David; Herman, Michael A

    2011-05-21

    Hybridization of heterologous (non-specific) nucleic acids onto arrays designed for model-organisms has been proposed as a viable genomic resource for estimating sequence variation and gene expression in non-model organisms. However, conventional methods of normalization that assume equivalent distributions (such as quantile normalization) are inappropriate when applied to non-specific (heterologous) hybridization. We propose an algorithm for normalizing and centering intensity data from heterologous hybridization that makes no prior assumptions of distribution, reduces the false appearance of homology, and provides a way for researchers to confirm whether heterologous hybridization is suitable. Data are normalized by adjusting for Gibbs free energy binding, and centered by adjusting for the median of a common set of control probes assumed to be equivalently dissimilar for all species. This procedure was compared to existing approaches and found to be as successful as Loess normalization at detecting sequence variations (deletions) and even more successful than quantile normalization at reducing the accumulation of false positive probe matches between two related nematode species, Caenorhabditis elegans and C. briggsae. Despite the improvements, we still found that probe fluorescence intensity was too poorly correlated with sequence similarity to result in reliable detection of matching probe sequence. Cross-species hybridizations can be a way to adapt genome-enabled tools for closely related non-model organisms, but data must be appropriately normalized and centered in a way that accommodates hybridization of nucleic acids with diverged sequence. For short, 25-mer probes, hybridization intensity alone may be insufficiently correlated with sequence similarity to allow reliable inference of homology at the probe level.

  15. Normalization and centering of array-based heterologous genome hybridization based on divergent control probes

    PubMed Central

    2011-01-01

    Background Hybridization of heterologous (non-specific) nucleic acids onto arrays designed for model-organisms has been proposed as a viable genomic resource for estimating sequence variation and gene expression in non-model organisms. However, conventional methods of normalization that assume equivalent distributions (such as quantile normalization) are inappropriate when applied to non-specific (heterologous) hybridization. We propose an algorithm for normalizing and centering intensity data from heterologous hybridization that makes no prior assumptions of distribution, reduces the false appearance of homology, and provides a way for researchers to confirm whether heterologous hybridization is suitable. Results Data are normalized by adjusting for Gibbs free energy binding, and centered by adjusting for the median of a common set of control probes assumed to be equivalently dissimilar for all species. This procedure was compared to existing approaches and found to be as successful as Loess normalization at detecting sequence variations (deletions) and even more successful than quantile normalization at reducing the accumulation of false positive probe matches between two related nematode species, Caenorhabditis elegans and C. briggsae. Despite the improvements, we still found that probe fluorescence intensity was too poorly correlated with sequence similarity to result in reliable detection of matching probe sequence. Conclusions Cross-species hybridizations can be a way to adapt genome-enabled tools for closely related non-model organisms, but data must be appropriately normalized and centered in a way that accommodates hybridization of nucleic acids with diverged sequence. For short, 25-mer probes, hybridization intensity alone may be insufficiently correlated with sequence similarity to allow reliable inference of homology at the probe level. PMID:21600029

  16. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Sato, Keisuke; Dutta, Mrinal; Fukata, Naoki

    2014-05-01

    Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and post-annealing. The PCE of 9.3% is obtained by forming efficient transport pathways for photogenerated charge carriers to electrodes. Our approach is a significant contribution to design of high-performance and low-cost inorganic/organic hybrid heterojunction solar cells.Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and

  17. Three-dimensional modeling and simulation of large-format hybrid indium antimonide detector arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Wen; Shao, Ming; Zhang, Xiao-Ling; Meng, Qing-Duan; Wang, Jin-Chan; Lv, Yan-Qiu

    2013-10-01

    Infrared sensors, such as indium antimonide (InSb) detectors, are generally required to be cooled to 77 K in operation. High fracture probability under thermal shock, especially in large InSb infrared focal plane arrays (IRFPAs), limits their applicability. It is necessary to establish a realistic three-dimensional (3-D) structural model of large-format InSb IRFPAs. However, few data are available on 3-D high-fidelity structural modeling and simulation of large IRFPAs due to their complicated structure and huge meshing numbers. A simple equivalent modeling method had been used in our early works, which could reduce meshing numbers, but did not consider the complicated structure, and also brought a new problem that the equivalent outer region of the model was not consistent with the actual IRFPAs. To solve the problems, an improved equivalent modeling method is proposed, where a small-format array is first split into two parts and then employed to equivalently replace the real large-format array. A 3-D high-fidelity structural model of large-format hybrid InSb IRFPAs is developed; here, a 32×32 array is adopted to replace the real 128×128 array. The results show that the simulated stress and strain distribution characteristics of InSb chip are well in agreement with the fracture photograph of actual 128×128 InSb IRFPAs in testing, verifying the validity and feasibility of the 3-D structural model of large-format IRFPAs. All these are beneficial to further explore fracture mechanisms and improve the reliability of large-format hybrid InSb IRFPAs.

  18. A deployable structure and solar array controls experiment for STEP

    NASA Technical Reports Server (NTRS)

    Nishimoto, T. S.

    1984-01-01

    A candidate configuration for a controls experiment on the Space Technology Experiments Platform (STEP) is described. The elements of the experiment are the mast, the solar array, and an articulation module between the two. The characteristic dimensions are very compatible for integration on a pallet such a STEP's proposed configuration. The controls' objective would be the measurement of orbiter interaction as well as the system identification of the appendages. The flight experiment configuration would also provide a test bed for various active vibration controls concepts. The instrumentation being considered would measure accelerations, strains, displacements, and temperatures. The deployable mast has eight elements defining a structural bay. Uniaxial measurements would be required to define loads at a cross section of the structure. Displacements due to thermal distortion of the mast and the local state of the solar concentrator may be measured by an optical ranging technique from the orbiter aft flight deck.

  19. Damage assessment in hybrid laminates using an array of embedded fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Austin, Timothy S. P.; Singh, Margaret M.; Gregson, Peter J.; Dakin, John P.; Powell, Philip M.

    1999-05-01

    Hybrid laminates typically consist of alternate layers of fiber-reinforced polymer and aluminium alloy. Developed primarily for fatigue critical aerospace applications, the hybrid laminates are orthotropic materials with lower density and higher strength compared to the aluminium alloy monolith. One of the damage mechanism of particular interest is that of fatigue crack growth, which for hybrid laminates is a relatively complex process that includes a combination of delamination and fiber bridging. To facilitate the development of a unified model for both crack and damage growth processes, a remote sensing system, reliant upon fiber optic sensor technology, has been utilized to monitor strain within the composite layer. The fiber optic system, with capacity for sub microstrain resolution, combines time domain multiplexing with line switching to monitor continuously an array of Bragg grating sensors. Herein are detailed the findings from a study performed using an array of 40 sensors distributed across a small area of a test price containing a fatigue crack initiated at a through- thickness fastener hole. Together with details of system operation, sensor measurements of the strain profiles associated with the developing delamination zone are reported.

  20. Modeling of hybridized infrared arrays for characterization of interpixel capacitive coupling

    NASA Astrophysics Data System (ADS)

    Donlon, Kevan; Ninkov, Zoran; Baum, Stefi; Cheng, Linpeng

    2017-02-01

    Interpixel capacitance (IPC) is a deterministic electronic coupling resulting in a portion of signal incident on one pixel of a hybridized detector array being measured in adjacent pixels. Data collected by light sensitive HgCdTe arrays that exhibit this coupling typically goes uncorrected or is corrected by treating the coupling as a fixed point spread function. Evidence suggests that this coupling is not uniform across signal and background levels. Subarrays of pixels using design parameters based upon HgCdTe indium hybridized arrays akin to those contained in the James Webb Space Telescope's NIRcam have been modeled from first principles using Lumerical DEVICE Software. This software simultaneously solves Poisson's equation and the drift diffusion equations yielding charge distributions and electric fields. Modeling of this sort generates the local point spread function across a range of detector parameters. This results in predictive characterization of IPC across scene and device parameters that would permit proper photometric correction and signal restoration to the data. Additionally, the ability to visualize potential distributions and couplings as generated by the models yields insight that can be used to minimize IPC coupling in the design of future detectors.

  1. Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays

    DOE PAGES

    Boulesbaa, Abdelaziz; Babicheva, Viktoriia E.; Wang, Kai; ...

    2016-11-17

    With the advanced progress achieved in the field of nanotechnology, localized surface plasmons resonances (LSPRs) are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump-probe spectroscopy results indicate that within ~830 fs after photoexcitation of the 2D-WS2 semiconductor, energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfermore » back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2D exciton transition energies at later time-delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime of the 2D-excitons from ~15 to ~58 ps in absence and presence of the Al array, respectively. Furthermore, the indirectly excited plasmons were found to live as long as the 2D-WS2 excitons exist. Furthermore, the demonstrated ability to generate exciton-plasmons coupling in a hybrid nanostructure may open new opportunities for optoelectronic applications such as plasmonic-based photodetection and photocatalysis.« less

  2. ASSISTANT: A hybrid expert system for assisting seismologists in the analysis of seismic array performance

    SciTech Connect

    Hiebert-Dodd, K.L.; Walck, M.C.; Elbring, G.J.

    1988-12-01

    This report describes an expert system, ASSISTANT, that is written in Lisp and runs on a Symbolics 3610 but invokes numerical codes written in FORTRAN on a MicroVAX II. It is the result of a project whose purpose was to investigate and develop an expert system that can reduce the amount of the human expert's time required to process sensor data and that can be used to determine a more optimal sensor system. The focus was on the concept of a hybrid expert system. An expert system is a well known technique from the field of artificial intelligence that tries to capture human expertise in computer software. The term hybrid is used to imply the coupling of this technique to direct the more traditional numerical techniques of signal analysis. An exemplary task, the evaluation of seismic array data to determine optimal array configurations for nuclear test ban treaty applications, was selected in order to develop this concept. The array configurations analysis proved to be a very appropriate application and has lead to a powerful concept for an expert system that manages and assists in the parametric analysis of numerical databases. 11 refs., 5 figs.

  3. Control of Physiological Experiments Using a Hybrid Computer.

    ERIC Educational Resources Information Center

    Jermann, William H.; Watkins, Melinda G.

    1980-01-01

    Described is the use of a general purpose hybrid computer in controlling and monitoring certain experiments on human subjects. In these investigations, researchers produce various sensory stimuli and measure participants' responses as voltage produced at a scalp node. The computer system discussed facilitates implementation of these experiments as…

  4. Highly Enhanced Fluorescence Signals of Quantum Dot-Polymer Composite Arrays Formed by Hybridization of Ultrathin Plasmonic Au Nanowalls.

    PubMed

    Cho, Soo-Yeon; Jeon, Hwan-Jin; Yoo, Hae-Wook; Cho, Kyeong Min; Jung, Woo-Bin; Kim, Jong-Seon; Jung, Hee-Tae

    2015-11-11

    Enhancement of the fluorescence intensity of quantum dot (QD)-polymer nanocomposite arrays is an important issue in QD studies because of the significant reduction of fluorescence signals of such arrays due to nonradiative processes in densely packed polymer chains in solid films. In this study, we enhance the fluorescence intensity of such arrays without significantly reducing their optical transparency. Enhanced fluorescence is achieved by hybridizing ultrathin plasmonic Au nanowalls onto the sidewalls of the arrays via single-step patterning and hybridization. The plasmonic Au nanowall induces metal-enhanced fluorescence, resulting in a maximum 7-fold enhancement of the fluorescence signals. We also prepare QD nanostructures of various shapes and sizes by controlling the dry etching time. In the near future, this facile approach can be used for fluorescence enhancement of colloidal QDs with plasmonic hybrid structures. Such structures can be used as optical substrates for imaging applications and for fabrication of QD-LED devices.

  5. Toward Evolvable Hardware Chips: Experiments with a Programmable Transistor Array

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    1998-01-01

    Evolvable Hardware is reconfigurable hardware that self-configures under the control of an evolutionary algorithm. We search for a hardware configuration can be performed using software models or, faster and more accurate, directly in reconfigurable hardware. Several experiments have demonstrated the possibility to automatically synthesize both digital and analog circuits. The paper introduces an approach to automated synthesis of CMOS circuits, based on evolution on a Programmable Transistor Array (PTA). The approach is illustrated with a software experiment showing evolutionary synthesis of a circuit with a desired DC characteristic. A hardware implementation of a test PTA chip is then described, and the same evolutionary experiment is performed on the chip demonstrating circuit synthesis/self-configuration directly in hardware.

  6. Solar Array Module Plasma Interaction Experiment (SAMPIE): Technical requirements document

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry; Ferguson, Dale C.

    1992-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a NASA shuttle space flight experiment scheduled for launch in early 1994. The SAMPIE experiment will investigate plasma interactions of high voltage space power systems in low earth orbit. Solar cell modules, representing several technologies, will be biased to high voltages to characterize both arcing and plasma current collection. Other solar modules, specially modified in accordance with current theories of arcing and breakdown, will demonstrate the possibility of arc suppression. Finally, several test modules will be included to study the basic nature of these interactions. The science and technology goals for the project are defined in the Technical Requirements Document (TRD) which is presented here.

  7. Experiments on Nanoscale Disordered Superconductor-Normal-Superconductor Arrays

    NASA Astrophysics Data System (ADS)

    Long, Zhenyi; Kouh, Taejoon; Stewart, Michael; Valles, James

    2003-03-01

    We are studying a quasi-two-dimensional system of nanoscale, superconducting grains (Pb) overlain by a normal metal (Ag), which can be described as an array of mesoscopic superconductor-normal-superconductor junctions. The Pb grains are smaller than the bulk Pb coherence volume and consequently, these arrays are expected to exhibit a superconductor to metal quantum phase transition [1]. Previous measurements of the decrease in critical temperature with increasing Ag thickness show clear deviations from the predictions of mean field theories of the proximity effect [2]. Our recent experiments on systems with even smaller Pb grains exhibit similar deviations. We will discuss these and our latest tunneling and transport results in terms of recent theories[1] and contrast them with the behavior of ultrathin, disordered films near the superconductor to insulator transition. [1] B.Spivak, A.Zyuzin, M.Hruska ,Phys. Rev. B. 64, 132502(2001) [2] Taejoon Kouh and James Valles Jr Breakdown of Cooper Limit Theory in Disordered Nanoscale Superconductor-Normal-Superconductor Arrays (cond-mat 0202104)

  8. Plasmon hybridization in stacked double crescents arrays fabricated by colloidal lithography.

    PubMed

    Vogel, Nicolas; Fischer, Janina; Mohammadi, Reza; Retsch, Markus; Butt, Hans-Jürgen; Landfester, Katharina; Weiss, Clemens K; Kreiter, Max

    2011-02-09

    We apply colloidal lithography to construct stacked nanocrescent dimer structures with an exact vertical alignment and a separation distance of approximately 10 nm. Highly ordered, large arrays of these nanostructures are accessible using nonclose-packed colloidal monolayers as masks. Spatially separated nanocrescent dimers are obtained by application of spatially distributed colloids. The polarization dependent optical properties of the nanostructures are investigated in detail and compared to single crescents. The close proximity of the nanocrescents leads to a coupling process that gives rise to new optical resonances which can be described as linear superpositions of the individual crescents' plasmonic modes. We apply a plasmon hybridization model to explain the spectral differences of all polarization dependent resonances and use geometric arguments to explain the respective shifts of the resonances. Theoretical calculations are performed to support the hybridization model and extend it to higher order resonances not resolved experimentally.

  9. Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting.

    PubMed

    Li, Xiaojuan; Lu, Wenhui; Dong, Weiling; Chen, Qi; Wu, Dan; Zhou, Wenzheng; Chen, Liwei

    2013-06-21

    Si/poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell nanowire arrays have been prepared by chemical etching of Si nanowires followed by vapor-phase polymerization of PEDOT as hybrid photoanodes for photoelectrochemical water-splitting. The PEDOT layer is employed as a multi-functional coating to prevent photocorrosion of Si nanowires, collect photogenerated holes and catalyze the water oxidation reaction. The amino silane modified Si nanowire surface improves PEDOT layer adhesion, and the resulting photoanode exhibits better photoresponse and improved stability. By tuning the length of the nanowires, we identify that the competition between the carrier recombination and catalytic water oxidation reaction is the primary factor determining the photoelectrocatalytic activity of the hybrid photoanode.

  10. Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon

    2016-01-01

    Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.

  11. Scattering and radiation analysis of three-dimensional cavity arrays via a hybrid finite element method

    NASA Technical Reports Server (NTRS)

    Jin, Jian-Ming; Volakis, John L.

    1992-01-01

    A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of three-dimensional cavity arrays recessed in a ground plane. The technique combines the finite element and boundary integral methods and invokes Floquet's representation to formulate a system of equations for the fields at the apertures and those inside the cavities. The system is solved via the conjugate gradient method in conjunction with the Fast Fourier Transform (FFT) thus achieving an O(N) storage requirement. By virtue of the finite element method, the proposed technique is applicable to periodic arrays comprised of cavities having arbitrary shape and filled with inhomogeneous dielectrics. Several numerical results are presented, along with new measured data, which demonstrate the validity, efficiency, and capability of the technique.

  12. Monolithic and hybrid near infrared detection and imaging based on poly-Ge photodiode arrays

    NASA Astrophysics Data System (ADS)

    Masini, G.; Colace, L.; Petulla, F.; Assanto, G.; Cencelli, V.; DeNotaristefani, F.

    2005-02-01

    In recent years, several Ge-on-Si technologies for the fabrication of near infrared photodetectors on Si substrates were proposed. In particular, using a low temperature (300 °C) technique, we have demonstrated poly-Ge_on_Si detectors with high speed and good NIR responsivity. The low process temperature allows the monolithic integration of the detectors as a final step in the fabrication of Si CMOS integrated circuits. After an introduction on poly-Ge, we describe a novel integrated chip (NIRCAM-1) designed as a readout/control circuit for arrays of 64 (32) poly-Ge_on_Si photodetectors. The photodiodes, monolithically integrated (wire-bonded with a hybrid approach) on the IC, generate a photocurrent which is then ADC converted after subtraction of the dark component, thus allowing a convenient digital readout of the array. The extensive optoelectronic characterization of the IC is presented.

  13. C-scan transmission ultrasound based on a hybrid microelectronic sensor array and its physical performance

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung B.; Rich, David; Lasser, Marvin E.; Kula, John; Zhao, Hui; Lasser, Bob; Freedman, Matthew T.

    2001-05-01

    A C-scan through-transmission ultrasound system has been constructed based on a patented hybrid microelectronic array that is capable of generating ultrasound images with fluoroscopic presentation. To generate real-time images, ultrasound is introduced into the object under study with a large unfocused plane wave source. The resultant pressure wave strikes the object and is attenuated and scattered. The device detects scattered as well as attenuated ultrasound energy which allows the use of an acoustic lens to focus on detected energy from an object plane. The acoustic lens collects the transmitted energy and focuses it onto the ultrasound sensitive array. The array is made up to two components, a silicon detector/readout array and a piezoelectric material that is deposited onto the array through semiconductor processing. The array is 1 cm on a side consisting of 128x128 pixel elements with 85micrometers pixel spacing. The energy that strikes the piezoelectric material is converted to an analog voltage that is digitized and processed by low cost commercial video electronics. The images generated by the device appear with no speckle artifact with fluoroscopy-like presentation. The images show no obvious geometrical distortion. The experimental results indicated that the system has a spatial resolution of 0.32 mm. It can resolve 3mm objects with low differential contrast and an attenuation coefficient difference less than 0.07 dB/cm/MHz. Phase contrast of the objects are also clearly measurable. A presentation of a C- scan image guided breast biopsy was demonstrated. In addition, punctured needle tracks in a tumor was clearly observed. This implies the potential of observing the spiculation of masses in vivo.

  14. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays.

    PubMed

    Sato, Keisuke; Dutta, Mrinal; Fukata, Naoki

    2014-06-07

    Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and post-annealing. The PCE of 9.3% is obtained by forming efficient transport pathways for photogenerated charge carriers to electrodes. Our approach is a significant contribution to design of high-performance and low-cost inorganic/organic hybrid heterojunction solar cells.

  15. Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells.

    PubMed

    Jeong, Huisu; Song, Hui; Pak, Yusin; Kwon, Il Keun; Jo, Kyubong; Lee, Heon; Jung, Gun Young

    2014-06-04

    By combining nanoimprint lithography technique and a two-step lift-off process, a Si nanotube array is fabricated and applied as a light absorber for n-Si/PEDOT:PSS hybrid solar cells. The light is effectively trapped within the nanotubes and the device reveals a Jsc of 29.9 mA · cm(-2) and a power conversion efficiency of 10.03%, which is an enhancement of 13.4% compared to the cell having the best-known Si architecture of nanocones as a light absorber to date.

  16. Using Array-Based Comparative Genomic Hybridization to Diagnose Pallister-Killian Syndrome

    PubMed Central

    Lee, Mi-Na; Lee, Jiwon; Yu, Hee Joon; Lee, Jeehun

    2017-01-01

    Pallister-Killian syndrome (PKS) is a rare multisystem disorder characterized by isochromosome 12p and tissue-limited mosaic tetrasomy 12p. In this study, we diagnosed three pediatric patients who were suspicious of having PKS using array-based comparative genomic hybridization (array CGH) and FISH analyses performed on peripheral lymphocytes. Patients 1 and 2 presented with craniofacial dysmorphic features, hypotonia, and a developmental delay. Array CGH revealed two to three copies of 12p in patient 1 and three copies in patient 2. FISH analysis showed trisomy or tetrasomy 12p. Patient 3, who had clinical features comparable to those of patients 1 and 2, was diagnosed by using FISH analysis alone. Here, we report three patients with mosaic tetrasomy 12p. There have been only reported cases diagnosed by chromosome analysis and FISH analysis on skin fibroblast or amniotic fluid. To our knowledge, patient 1 was the first case diagnosed by using array CGH performed on peripheral lymphocytes in Korea. PMID:27834069

  17. Using Array-Based Comparative Genomic Hybridization to Diagnose Pallister-Killian Syndrome.

    PubMed

    Lee, Mi Na; Lee, Jiwon; Yu, Hee Joon; Lee, Jeehun; Kim, Sun Hee

    2017-01-01

    Pallister-Killian syndrome (PKS) is a rare multisystem disorder characterized by isochromosome 12p and tissue-limited mosaic tetrasomy 12p. In this study, we diagnosed three pediatric patients who were suspicious of having PKS using array-based comparative genomic hybridization (array CGH) and FISH analyses performed on peripheral lymphocytes. Patients 1 and 2 presented with craniofacial dysmorphic features, hypotonia, and a developmental delay. Array CGH revealed two to three copies of 12p in patient 1 and three copies in patient 2. FISH analysis showed trisomy or tetrasomy 12p. Patient 3, who had clinical features comparable to those of patients 1 and 2, was diagnosed by using FISH analysis alone. Here, we report three patients with mosaic tetrasomy 12p. There have been only reported cases diagnosed by chromosome analysis and FISH analysis on skin fibroblast or amniotic fluid. To our knowledge, patient 1 was the first case diagnosed by using array CGH performed on peripheral lymphocytes in Korea.

  18. Microphone matching for hybrid-order directional arrays in hearing aid applications

    NASA Astrophysics Data System (ADS)

    Warren, Daniel M.; Thompson, Steve C.

    2003-04-01

    The ability of a hearing aid user to distinguish a single speech source amidst general background noise (for example, dinner table or cocktail party conversation) may be improved by a directional array of microphones in the hearing instrument. The theoretical maximum directivity index (DI) of a first-order pairing of microphones is 6 dB, and a second-order array of three microphones is 9.5 dB, assuming all three microphones have identical frequency responses. The close spacing of microphone ports in a hearing aid body means that directivity degrades rapidly with differences in microphone sensitivities. A hybrid of first- and second-order arrays can mitigate this effect, although close microphone matching is still necessary for high directivity. This paper explores the effect of microphone mismatch on the directivity of such arrays, and describes practical criteria for selecting matched microphones out of production batches to maximize a speech intelligibility weighted directivity index. [Work supported by Knowles Electronics, LLC.

  19. Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Martínez, O.; Pérez, E.; Salazar, H.; Villaseñor, L.

    We describe the design of an extensive air shower detector array built in the Campus of the University of Puebla (located at 19°N, 90°W, 800 gcm -2) to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 18 liquid scintillator detectors (12 in the first stage) and 6 water Cherenkov detectors (one of 10 m 2 cross section and five smaller ones of 1.86 m 2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m 2. In this paper we discuss the calibration and stability of the array, and discuss the capability of hybrid arrays, such as this one consisting of water Cherenkov and liquid scintillator detectors, to allow a separation of the electromagnetic and muon components of extensive air showers. This separation plays an important role in the determination of the mass and identity of the primary cosmic ray. This facility is also used to train students interested in the field of cosmic rays.

  20. Streptococcus pneumoniae Supragenome Hybridization Arrays for Profiling of Genetic Content and Gene Expression

    PubMed Central

    Kadam, Anagha; Janto, Benjamin; Eutsey, Rory; Earl, Joshua P; Powell, Evan; Dahlgren, Margaret E; Hu, Fen Z; Ehrlich, Garth D; Hiller, N. Luisa

    2015-01-01

    There is extensive genomic diversity among Streptococcus pneumoniae isolates. Approximately half of the comprehensive set of genes in the species (the supragenome or pangenome) is present in all the isolates (core set), and the remaining is unevenly distributed among strains (distributed set). The Streptococcus pneumoniae Supragenome Hybridization (SpSGH) array provides coverage for an extensive set of genes and polymorphisms encountered within this species, capturing this genomic diversity. Further, the capture is quantitative. In this manner, the SpSGH array allows for both genomic and transcriptomic analyses of diverse S. pneumoniae isolates on a single platform. In this unit, we present the SpSGH array, and describe in detail its design and implementation for both genomic and transcriptomic analyses. The methodology can be applied to construction and modification of SpSGH array platforms, as well as applied to other bacterial species as long as multiple whole genome sequences are available that collectively capture the vast majority of the species supragenome. PMID:25641101

  1. Si/PEDOT hybrid core/shell nanowire arrays as photoelectrodes for photoelectrochemical water-splitting

    NASA Astrophysics Data System (ADS)

    Li, Xiaojuan; Lu, Wenhui; Dong, Weiling; Chen, Qi; Wu, Dan; Zhou, Wenzheng; Chen, Liwei

    2013-05-01

    Si/poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell nanowire arrays have been prepared by chemical etching of Si nanowires followed by vapor-phase polymerization of PEDOT as hybrid photoanodes for photoelectrochemical water-splitting. The PEDOT layer is employed as a multi-functional coating to prevent photocorrosion of Si nanowires, collect photogenerated holes and catalyze the water oxidation reaction. The amino silane modified Si nanowire surface improves PEDOT layer adhesion, and the resulting photoanode exhibits better photoresponse and improved stability. By tuning the length of the nanowires, we identify that the competition between the carrier recombination and catalytic water oxidation reaction is the primary factor determining the photoelectrocatalytic activity of the hybrid photoanode.Si/poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell nanowire arrays have been prepared by chemical etching of Si nanowires followed by vapor-phase polymerization of PEDOT as hybrid photoanodes for photoelectrochemical water-splitting. The PEDOT layer is employed as a multi-functional coating to prevent photocorrosion of Si nanowires, collect photogenerated holes and catalyze the water oxidation reaction. The amino silane modified Si nanowire surface improves PEDOT layer adhesion, and the resulting photoanode exhibits better photoresponse and improved stability. By tuning the length of the nanowires, we identify that the competition between the carrier recombination and catalytic water oxidation reaction is the primary factor determining the photoelectrocatalytic activity of the hybrid photoanode. Electronic supplementary information (ESI) available: The schematic setup of photoelectrochemical performance tests, and the SEM images of different photoanodes before and after photoelectrochemical tests. See DOI: 10.1039/c3nr00867c

  2. Single electron tunneling in large scale nanojunction arrays with bisferrocene-nanoparticle hybrids

    NASA Astrophysics Data System (ADS)

    Karmakar, Shilpi; Kumar, Susmit; Marzo, Pasquale; Primiceri, Elisabetta; di Corato, Riccardo; Rinaldi, Ross; Cozzi, Pier Giorgio; Bramanti, Alessandro Paolo; Maruccio, Giuseppe

    2012-03-01

    We report on the fabrication and single electron tunneling behaviour of large scale arrays of nanogap electrodes bridged by bisferrocene-gold nanoparticle hybrids (BFc-AuNP). Coulomb staircase was observed in the low temperature current-voltage curves measured on the junctions with asymmetric tunnel barriers. On the other hand, junctions with symmetric tunneling barrier exhibited mere nonlinear current voltage characteristics without discrete staircase. The experimental results agreed well with simulations based on the orthodox theory. The junction resistance showed thermally activated conduction behaviour at higher temperature. The overall voltage and temperature dependent results show that the transport behaviour of the large arrays of single particle devices obtained by a facile optical lithography and chemical etching process corresponds with the behaviour of single particle devices fabricated by other techniques like e-beam lithography and mechanical breaking methods.We report on the fabrication and single electron tunneling behaviour of large scale arrays of nanogap electrodes bridged by bisferrocene-gold nanoparticle hybrids (BFc-AuNP). Coulomb staircase was observed in the low temperature current-voltage curves measured on the junctions with asymmetric tunnel barriers. On the other hand, junctions with symmetric tunneling barrier exhibited mere nonlinear current voltage characteristics without discrete staircase. The experimental results agreed well with simulations based on the orthodox theory. The junction resistance showed thermally activated conduction behaviour at higher temperature. The overall voltage and temperature dependent results show that the transport behaviour of the large arrays of single particle devices obtained by a facile optical lithography and chemical etching process corresponds with the behaviour of single particle devices fabricated by other techniques like e-beam lithography and mechanical breaking methods. Electronic supplementary

  3. Molecular characterization of 20 small supernumerary marker chromosome cases using array comparative genomic hybridization and fluorescence in situ hybridization.

    PubMed

    Sun, Mingran; Zhang, Han; Li, Guiying; Guy, Carrie J; Wang, Xianfu; Lu, Xianglan; Gong, Fangchao; Lee, Jiyun; Hassed, Susan; Li, Shibo

    2017-09-04

    The variability of a small supernumerary marker chromosome (sSMC)-related phenotype is determined by the molecular component, the size, and shape of the marker chromosome. As fluorescence in situ hybridization has limitations regarding the resolution, efficiency, and accuracy. Recently, array comparative genomic hybridization (aCGH) was used for sSMC characterization. In this study, twenty cases with sSMCs were characterized by aCGH and FISH. Chromosomal origin of the marker chromosomes were successfully identified in seventeen of them. For the three cases with negative aCGH results, two of them were more likely due to that the sSMCs only contained centromere heterochromatin, whereas the reason for the remaining case with negative aCGH finding was uncertain. In order to establish a stronger genotype-phenotype correlation for clinical service in the future and avoid miss characterization, more sSMC cases were needed to be detailed characterized. This will help to clarify the variable clinical characteristics of sSMCs and provide additional information to aid clinical service and future research.

  4. 1p36 deletion syndrome confirmed by fluorescence in situ hybridization and array-comparative genomic hybridization analysis

    PubMed Central

    Kang, Dong Soo; Shin, Eunsim

    2016-01-01

    Pediatric epilepsy can be caused by various conditions, including specific syndromes. 1p36 deletion syndrome is reported in 1 in 5,000–10,000 newborns, and its characteristic clinical features include developmental delay, mental retardation, hypotonia, congenital heart defects, seizure, and facial dysmorphism. However, detection of the terminal deletion in chromosome 1p by conventional G-banded karyotyping is difficult. Here we present a case of epilepsy with profound developmental delay and characteristic phenotypes. A 7-year- and 6-month-old boy experienced afebrile generalized seizure at the age of 5 years and 3 months. He had recurrent febrile seizures since 12 months of age and showed severe global developmental delay, remarkable hypotonia, short stature, and dysmorphic features such as microcephaly; small, low-set ears; dark, straight eyebrows; deep-set eyes; flat nasal bridge; midface hypoplasia; and a small, pointed chin. Previous diagnostic work-up, including conventional chromosomal analysis, revealed no definite causes. However, array-comparative genomic hybridization analysis revealed 1p36 deletion syndrome with a 9.15-Mb copy loss of the 1p36.33-1p36.22 region, and fluorescence in situ hybridization analysis (FISH) confirmed this diagnosis. This case highlights the need to consider detailed chromosomal study for patients with delayed development and epilepsy. Furthermore, 1p36 deletion syndrome should be considered for patients presenting seizure and moderate-to-severe developmental delay, particularly if the patient exhibits dysmorphic features, short stature, and hypotonia. PMID:28018437

  5. 1p36 deletion syndrome confirmed by fluorescence in situ hybridization and array-comparative genomic hybridization analysis.

    PubMed

    Kang, Dong Soo; Shin, Eunsim; Yu, Jeesuk

    2016-11-01

    Pediatric epilepsy can be caused by various conditions, including specific syndromes. 1p36 deletion syndrome is reported in 1 in 5,000-10,000 newborns, and its characteristic clinical features include developmental delay, mental retardation, hypotonia, congenital heart defects, seizure, and facial dysmorphism. However, detection of the terminal deletion in chromosome 1p by conventional G-banded karyotyping is difficult. Here we present a case of epilepsy with profound developmental delay and characteristic phenotypes. A 7-year- and 6-month-old boy experienced afebrile generalized seizure at the age of 5 years and 3 months. He had recurrent febrile seizures since 12 months of age and showed severe global developmental delay, remarkable hypotonia, short stature, and dysmorphic features such as microcephaly; small, low-set ears; dark, straight eyebrows; deep-set eyes; flat nasal bridge; midface hypoplasia; and a small, pointed chin. Previous diagnostic work-up, including conventional chromosomal analysis, revealed no definite causes. However, array-comparative genomic hybridization analysis revealed 1p36 deletion syndrome with a 9.15-Mb copy loss of the 1p36.33-1p36.22 region, and fluorescence in situ hybridization analysis (FISH) confirmed this diagnosis. This case highlights the need to consider detailed chromosomal study for patients with delayed development and epilepsy. Furthermore, 1p36 deletion syndrome should be considered for patients presenting seizure and moderate-to-severe developmental delay, particularly if the patient exhibits dysmorphic features, short stature, and hypotonia.

  6. Characterization of Deletions of the HBA and HBB Loci by Array Comparative Genomic Hybridization.

    PubMed

    Sabath, Daniel E; Bender, Michael A; Sankaran, Vijay G; Vamos, Esther; Kentsis, Alex; Yi, Hye-Son; Greisman, Harvey A

    2016-01-01

    Thalassemia is among the most common genetic diseases worldwide. α-Thalassemia is usually caused by deletion of one or more of the duplicated HBA genes on chromosome 16. In contrast, most β-thalassemia results from point mutations that decrease or eliminate expression of the HBB gene on chromosome 11. Deletions within the HBB locus result in thalassemia or hereditary persistence of fetal Hb. Although routine diagnostic testing cannot distinguish thalassemia deletions from point mutations, deletional hereditary persistence of fetal Hb is notable for having an elevated HbF level with a normal mean corpuscular volume. A small number of deletions accounts for most α-thalassemias; in contrast, there are no predominant HBB deletions causing β-thalassemia. To facilitate the identification and characterization of deletions of the HBA and HBB globin loci, we performed array-based comparative genomic hybridization using a custom oligonucleotide microarray. We accurately mapped the breakpoints of known and previously uncharacterized HBB deletions defining previously uncharacterized deletion breakpoints by PCR amplification and sequencing. The array also successfully identified the common HBA deletions --(SEA) and --(FIL). In summary, comparative genomic hybridization can be used to characterize deletions of the HBA and HBB loci, allowing high-resolution characterization of novel deletions that are not readily detected by PCR-based methods. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. Characterization of Deletions of the HBA and HBB Loci by Array Comparative Genomic Hybridization

    PubMed Central

    Sabath, Daniel E.; Bender, Michael A.; Sankaran, Vijay G.; Vamos, Esther; Kentsis, Alex; Yi, Hye-Son; Greisman, Harvey A.

    2017-01-01

    Thalassemia is among the most common genetic diseases worldwide. α-Thalassemia is usually caused by deletion of one or more of the duplicated HBA genes on chromosome 16. In contrast, most β-thalassemia results from point mutations that decrease or eliminate expression of the HBB gene on chromosome 11. Deletions within the HBB locus result in thalassemia or hereditary persistence of fetal Hb. Although routine diagnostic testing cannot distinguish thalassemia deletions from point mutations, deletional hereditary persistence of fetal Hb is notable for having an elevated HbF level with a normal mean corpuscular volume. A small number of deletions accounts for most α-thalassemias; in contrast, there are no predominant HBB deletions causing β-thalassemia. To facilitate the identification and characterization of deletions of the HBA and HBB globin loci, we performed array-based comparative genomic hybridization using a custom oligonucleotide microarray. We accurately mapped the breakpoints of known and previously uncharacterized HBB deletions defining previously uncharacterized deletion breakpoints by PCR amplification and sequencing. The array also successfully identified the common HBA deletions --SEA and --FIL. In summary, comparative genomic hybridization can be used to characterize deletions of the HBA and HBB loci, allowing high-resolution characterization of novel deletions that are not readily detected by PCR-based methods. PMID:26612711

  8. Array comparative genomic hybridization analysis of small supernumerary marker chromosomes in human infertility.

    PubMed

    Guediche, N; Tosca, L; Kara Terki, A; Bas, C; Lecerf, L; Young, J; Briand-Suleau, A; Tou, B; Bouligand, J; Brisset, S; Misrahi, M; Guiochon-Mantel, A; Goossens, M; Tachdjian, G

    2012-01-01

    Small supernumerary marker chromosomes (sSMC) are structurally abnormal chromosomes that cannot be unambiguously identified by conventional banding cytogenetics. This study describes four patients with sSMC in relation with infertility. Patient 1 had primary infertility. His brother, fertile, carried the same sSMC (patient 2). Patient 3 presented polycystic ovary syndrome and patient 4 primary ovarian insufficiency. Cytogenetic studies, array comparative genomic hybridization (CGH) and sperm analyses were compared with cases previously reported. sSMC corresponded to the 15q11.2 region (patients 1 and 2), the centromeric chromosome 15 region (patient 3) and the 21p11.2 region (patient 4). Array CGH showed 3.6-Mb gain for patients 1 and 2 and 0.266-Mb gain for patient 4. Sperm fluorescent in-situ hybridization analyses found ratios of 0.37 and 0.30 of sperm nuclei with sSMC(15) for patients 1 and 2, respectively (P < 0.001). An increase of sperm nuclei with disomy X, Y and 18 was noted for patient 1 compared with control and patient 2 (P < 0.001). Among the genes mapped in the unbalanced chromosomal regions, POTE B and BAGE are related to the testis and ovary, respectively. The implication of sSMC in infertility could be due to duplication, but also to mechanical effects perturbing meiosis. Copyright © 2011 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  9. Detection limit of intragenic deletions with targeted array comparative genomic hybridization

    PubMed Central

    2013-01-01

    Background Pathogenic mutations range from single nucleotide changes to deletions or duplications that encompass a single exon to several genes. The use of gene-centric high-density array comparative genomic hybridization (aCGH) has revolutionized the detection of intragenic copy number variations. We implemented an exon-centric design of high-resolution aCGH to detect single- and multi-exon deletions and duplications in a large set of genes using the OGT 60 K and 180 K arrays. Here we describe the molecular characterization and breakpoint mapping of deletions at the smaller end of the detectable range in several genes using aCGH. Results The method initially implemented to detect single to multiple exon deletions, was able to detect deletions much smaller than anticipated. The selected deletions we describe vary in size, ranging from over 2 kb to as small as 12 base pairs. The smallest of these deletions are only detectable after careful manual review during data analysis. Suspected deletions smaller than the detection size for which the method was optimized, were rigorously followed up and confirmed with PCR-based investigations to uncover the true detection size limit of intragenic deletions with this technology. False-positive deletion calls often demonstrated single nucleotide changes or an insertion causing lower hybridization of probes demonstrating the sensitivity of aCGH. Conclusions With optimizing aCGH design and careful review process, aCGH can uncover intragenic deletions as small as dozen bases. These data provide insight that will help optimize probe coverage in array design and illustrate the true assay sensitivity. Mapping of the breakpoints confirms smaller deletions and contributes to the understanding of the mechanism behind these events. Our knowledge of the mutation spectra of several genes can be expected to change as previously unrecognized intragenic deletions are uncovered. PMID:24304607

  10. Ultrafast dynamics of metal plasmons induced by 2D semiconductor excitons in hybrid nanostructure arrays

    SciTech Connect

    Boulesbaa, Abdelaziz; Babicheva, Viktoriia E.; Wang, Kai; Kravchenko, Ivan I.; Lin, Ming -Wei; Mahjouri-Samani, Masoud; Jacobs, Christopher B.; Puretzky, Alexander A.; Xiao, Kai; Ivanov, Ilia N.; Rouleau, Christopher M.; Geohegan, David B.

    2016-11-17

    With the advanced progress achieved in the field of nanotechnology, localized surface plasmons resonances (LSPRs) are actively considered to improve the efficiency of metal-based photocatalysis, photodetection, and photovoltaics. Here, we report on the exchange of energy and electric charges in a hybrid composed of a two-dimensional tungsten disulfide (2D-WS2) monolayer and an array of aluminum (Al) nanodisks. Femtosecond pump-probe spectroscopy results indicate that within ~830 fs after photoexcitation of the 2D-WS2 semiconductor, energy transfer from the 2D-WS2 excitons excites the plasmons of the Al array. Then, upon the radiative and/or nonradiative damping of these excited plasmons, energy and/or electron transfer back to the 2D-WS2 semiconductor takes place as indicated by an increase in the reflected probe at the 2D exciton transition energies at later time-delays. This simultaneous exchange of energy and charges between the metal and the 2D-WS2 semiconductor resulted in an extension of the average lifetime of the 2D-excitons from ~15 to ~58 ps in absence and presence of the Al array, respectively. Furthermore, the indirectly excited plasmons were found to live as long as the 2D-WS2 excitons exist. Furthermore, the demonstrated ability to generate exciton-plasmons coupling in a hybrid nanostructure may open new opportunities for optoelectronic applications such as plasmonic-based photodetection and photocatalysis.

  11. Statistical methods for detecting genomic alterations through array-based comparative genomic hybridization (CGH).

    PubMed

    Wang, Yuedong; Guo, Sun-Wei

    2004-01-01

    Array-based comparative genomic hybridization (ABCGH) is an emerging high-resolution and high-throughput molecular genetic technique that allows genome-wide screening for chromosome alterations associated with tumorigenesis. Like the cDNA microarrays, ABCGH uses two differentially labeled test and reference DNAs which are cohybridized to cloned genomic fragments immobilized on glass slides. The hybridized DNAs are then detected in two different fluorochromes, and the significant deviation from unity in the ratios of the digitized intensity values is indicative of copy-number differences between the test and reference genomes. Proper statistical analyses need to account for many sources of variation besides genuine differences between the two genomes. In particular, spatial correlations, the variable nature of the ratio variance and non-Normal distribution call for careful statistical modeling. We propose two new statistics, the standard t-statistic and its modification with variances smoothed along the genome, and two tests for each statistic, the standard t-test and a test based on the hybrid adaptive spline (HAS). Simulations indicate that the smoothed t-statistic always improves the performance over the standard t-statistic. The t-tests are more powerful in detecting isolated alterations while those based on HAS are more powerful in detecting a cluster of alterations. We apply the proposed methods to the identification of genomic alterations in endometrium in women with endometriosis.

  12. Telescience operations with the solar array module plasma interaction experiment

    SciTech Connect

    Wald, L.W.; Bibyk, I.K.

    1995-09-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. Parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology.

  13. Telescience operations with the solar array module plasma interaction experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence W.; Bibyk, Irene K.

    1995-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is a flight experiment that flew on the Space Shuttle Columbia (STS-62) in March 1994, as part of the OAST-2 mission. The overall objective of SAMPIE was to determine the adverse environmental interactions within the space plasma of low earth orbit (LEO) on modern solar cells and space power system materials which are artificially biased to high positive and negative direct current (DC) voltages. The two environmental interactions of interest included high voltage arcing from the samples to the space plasma and parasitic current losses. High voltage arcing can cause physical damage to power system materials and shorten expected hardware life. parasitic current losses can reduce power system efficiency because electric currents generated in a power system drain into the surrounding plasma via parasitic resistance. The flight electronics included two programmable high voltage DC power supplies to bias the experiment samples, instruments to measure the surrounding plasma environment in the STS cargo bay, and the on-board data acquisition system (DAS). The DAS provided in-flight experiment control, data storage, and communications through the Goddard Space Flight Center (GSFC) Hitchhiker flight avionics to the GSFC Payload Operations Control Center (POCC). The DAS and the SAMPIE POCC computer systems were designed for telescience operations; this paper will focus on the experiences of the SAMPIE team regarding telescience development and operations from the GSFC POCC during STS-62. The SAMPIE conceptual development, hardware design, and system verification testing were accomplished at the NASA Lewis Research Center (LeRC). SAMPIE was developed under the In-Space Technology Experiment Program (IN-STEP), which sponsors NASA, industry, and university flight experiments designed to enable and enhance space flight technology. The IN-STEP Program is sponsored by the Office of Space Access and Technology (OSAT).

  14. Hybrid triple-level-cell/multi-level-cell NAND flash storage array with chip exchangeable method

    NASA Astrophysics Data System (ADS)

    Hachiya, Shogo; Johguchi, Koh; Miyaji, Kousuke; Takeuchi, Ken

    2014-01-01

    This paper proposes a mix-and-match design method for triple level cell (TLC)/multi level cell (MLC) NAND flash hybrid and exchangeable storage arrays. A TLC-NAND flash provides an low cost and high capacity memory solution. However the reliability and access latency of TLC NAND flash are degraded from MLC NAND flash. Additionally, the block unit write is preferable for TLC NAND flash since the write order is complicated due to narrow data margin and write disturbance. The proposed solution combines TLC and MLC NAND flash memories for a storage array. To reduce access to TLC NAND flash, the stored data is screened and only the static frozen data are stored into TLC NAND flash with a Round-Robin frozen data collection algorithm (RR-FDCA). Furthermore, the proposed chip exchanging method extends the solid-state drive (SSD) lifetime without system suspending. As a result, in spite of moderate characteristics of TLC NAND flash, the proposed storage array can achieve 29% write energy saving and 56% write performance enhancement with 17% cost reduction, compared with the conventional MLC-only SSD.

  15. Directional hearing aid using hybrid adaptive beamformer (HAB) and binaural ITE array

    NASA Astrophysics Data System (ADS)

    Shaw, Scott T.; Larow, Andy J.; Gibian, Gary L.; Sherlock, Laguinn P.; Schulein, Robert

    2002-05-01

    A directional hearing aid algorithm called the Hybrid Adaptive Beamformer (HAB), developed for NIH/NIA, can be applied to many different microphone array configurations. In this project the HAB algorithm was applied to a new array employing in-the-ear microphones at each ear (HAB-ITE), to see if previous HAB performance could be achieved with a more cosmetically acceptable package. With diotic output, the average benefit in threshold SNR was 10.9 dB for three HoH and 11.7 dB for five normal-hearing subjects. These results are slightly better than previous results of equivalent tests with a 3-in. array. With an innovative binaural fitting, a small benefit beyond that provided by diotic adaptive beamforming was observed: 12.5 dB for HoH and 13.3 dB for normal-hearing subjects, a 1.6 dB improvement over the diotic presentation. Subjectively, the binaural fitting preserved binaural hearing abilities, giving the user a sense of space, and providing left-right localization. Thus the goal of creating an adaptive beamformer that simultaneously provides excellent noise reduction and binaural hearing was achieved. Further work remains before the HAB-ITE can be incorporated into a real product, optimizing binaural adaptive beamforming, and integrating the concept with other technologies to produce a viable product prototype. [Work supported by NIH/NIDCD.

  16. Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process.

    PubMed

    Hassanin, H; Mohammadkhani, A; Jiang, K

    2012-10-21

    In the study, a novel and low cost nanofabrication process is proposed for producing hybrid polydimethylsiloxane (PDMS) nanostructured arrays. The proposed process involves monolayer self-assembly of polystyrene (PS) spheres, PDMS nanoreplication, thin film coating, and PDMS to PDMS (PDMS/PDMS) replication. A self-assembled monolayer of PS spheres is used as the first template. Second, a PDMS template is achieved by replica moulding. Third, the PDMS template is coated with a platinum or gold layer. Finally, a PDMS nanostructured array is developed by casting PDMS slurry on top of the coated PDMS. The cured PDMS is peeled off and used as a replica surface. In this study, the influences of the coating on the PDMS topography, contact angle of the PDMS slurry and the peeling off ability are discussed in detail. From experimental evaluation, a thickness of at least 20 nm gold layer or 40 nm platinum layer on the surface of the PDMS template improves the contact angle and eases peeling off. The coated PDMS surface is successfully used as a template to achieve the replica with a uniform array via PDMS/PDMS replication process. Both the PDMS template and the replica are free of defects and also undistorted after demoulding with a highly ordered hexagonal arrangement. In addition, the geometry of the nanostructured PDMS can be controlled by changing the thickness of the deposited layer. The simplicity and the controllability of the process show great promise as a robust nanoreplication method for functional applications.

  17. Beam extraction experiment with field-emission arrays

    SciTech Connect

    Ishizuka, H.; Watanabe, A.; Shiho, M.

    1995-12-31

    An experimental project aimed to develop FEL drivers using a field-emission array is under way. The subject covers design and fabrication of novel micro-emitters, operation of FEAs, beam formation and emittance diagnostics. So far the generation of a focused beam has been demonstrated with an array of double-gated microemitters. Active control of FEAs has greatly improved the stability of the emission current. Large FEAs with an emitting area of up to 2 x 2 cm{sup 2} have been fabricated for the production of high-current beams. DC beams (1 - 5 keV < 100 {mu}A) extracted from Spindt cathodes were propagated over 1 m and projected on a fluorescent screen. Separate images of FEA tips were observed and emittance measurement has been carried out. The cathode is going to be replaced by a double-gated FEA to improve the beam quality. Pulsed extraction of high currents will also be tested, employing a non-gated FEA as the cathode of a 1 MV induction linac. Results of these experiments will be presented and perspectives concerning the FEA gun will be discussed.

  18. The Status and Recent Results of the Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Yamazaki, Katsuya

    The Telescope Array (TA) is a cosmic ray observatory of the largest aperture in the northern hemisphere, located in a desert in the western part of Utah, U.S.A., to explore the origin of ultrahigh energy cosmic rays, photons, and neutrinos. The TA employs two types of detectors to observe air showers generated by cosmic rays in the atmosphere: the first is a "surface detector (SD)" of scintillation counters to measure shower particles on the ground, and the second is a "fluorescence detector (FD)" of telescopes installed in three stations to observe fluorescence light, caused by air shower particles, from the atmosphere above the SD array. The TA detectors have been in routine operation since May 2008. We measured the energy spectrum of cosmic rays with energy greater than 1018 eV from our first 4-year data. We found a clear suppression of comic ray intensity above 5 × 1019 eV. This feature is consistent with a theoretical prediction that cosmic rays lose energies due to interaction with cosmic microwave background photons during propagation in the intergalactic space. In this talk, We will present the status of the TA experiment and the recent results, including the energy spectrum, study of the primary mass composition, and searches for anisotropies in the arrival directions. We also briefly describe plans for further extensions.

  19. Experiences from the Roadrunner petascale hybrid systems

    SciTech Connect

    Kerbyson, Darren J; Pakin, Scott; Lang, Mike; Sancho Pitarch, Jose C; Davis, Kei; Barker, Kevin J; Peraza, Josh

    2010-01-01

    The combination of flexible microprocessors (AMD Opterons) with high-performing accelerators (IBM PowerXCell 8i) resulted in the extremely powerful Roadrunner system. Many challenges in both hardware and software were overcome to achieve its goals. In this talk we detail some of the experiences in achieving performance on the Roadrunner system. In particular we examine several implementations of the kernel application, Sweep3D, using a work-queue approach, a more portable Thread-building-blocks approach, and an MPI on the accelerator approach.

  20. Fabrication of nanoporous arrays from photosensitive organic-inorganic hybrid materials by using an UV soft nanoimprint technique.

    PubMed

    Zhang, Xuehua; Que, Wenxiu; Hu, Jiaxing; Chen, Jin; Zhang, Jin; Liu, Weiguo

    2013-02-01

    A honeycomb-like regular nanoporous pattern built in the photosensitive organic-inorganic hybrid film was fabricated by an UV soft nanoimprint technique. Polydimethylsiloxane (PDMS) soft mold was firstly replicated from an anodic aluminum oxide (AAO) template obtained by using a two-step anodization method. Scanning electron microscopy images show that the AAO template has a regular honeycomb-like nanoporous structure, while the PDMS soft mold has a relief structure of nanopillar arrays. Photosensitive TiO2-contained organic-inorganic hybrid films, which were prepared by combining a low temperature sol-gel process with a spin-coating technique, were used as the imprinted layer. Thus, a honeycomb-like regular nanoporous pattern built in the hybrid film can be easily obtained by imprinting the PDMS soft mold into the photosensitive hybrid film under an UV-irradiation. The as-fabricated organic-inorganic regular nonporous arrays have potential applications in two-dimensional photonic crystal.

  1. The ETscope Ground Array for the ULTRA Experiment

    NASA Astrophysics Data System (ADS)

    Chauvin, J.; Fava, L.; Lebrun, L.; Teyssier, D.; Vallania, P.; Vigorito, C.; EUSO Collaboration

    2003-07-01

    The ETscope detector designed for the ULTRA experiment is a small array made of 7 particle detection stations. operating simultaneously with an optical telescope it ˇ detects the Extensive Air Showers in coincidence with the Cerenkov light, diffused by the impact on the ground. The main goal of the detector is the characterization of the impinging shower by the measurement of size and arrival direction. These informations, together with the UV light measurement and an accurate MC simulation, will allow the determination of the diffusing features of the ground. Since it must be placed on different surfaces including sea, it has been optimized as portable, floating and waterpro of detector. First test has been performed during October 2002 at Mont-Cenis in the Alps region, at the France-Italy border. Detector performances and preliminary results will be discussed here.

  2. Taguchi’s Orthogonal Arrays Are Classical Designs of Experiments

    PubMed Central

    Kacker, Raghu N.; Lagergren, Eric S.; Filliben, James J.

    1991-01-01

    Taguchi’s catalog of orthogonal arrays is based on the mathematical theory of factorial designs and difference sets developed by R. C. Bose and his associates. These arrays evolved as extensions of factorial designs and latin squares. This paper (1) describes the structure and constructions of Taguchi’s orthogonal arrays, (2) illustrates their fractional factorial nature, and (3) points out that Taguchi’s catalog can be expanded to include orthogonal arrays developed since 1960. PMID:28184132

  3. 480 x 8 hybrid HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masako; Wada, Hideo; Okamura, Toshihiro; Kudo, Jun-ichi; Tanikawa, Kunihiro; Hikida, Soichiro; Miyamoto, Yoshihiro; Miyazaki, Shinji; Yoshida, Yukihiro

    2001-10-01

    This paper explains the technologies used for high-performance long linear arrays based on HgCdTe/CMOS hybrid multiplexers with bidirectional Time Delay and Integration (TDI) functions, and it describes the development of the first high-resolution Forward Looking Infrared (FLIR) system with the SXGA format. Long-wavelength Infrared (LWIR) photodiode arrays are fabricated using liquid-phase epitaxially grown HgCdTe on a CdZnTe substrate. Each photodiode array consists of 480x8-element n+/n-on-p diodes formed by B+ implantation. Each photodiode is surrounded by a crosswise drain diode to define the detection area. The diodes with a 10.3-μm cutoff wavelength had a typical zero-bias resistance of 10 MΩ and a shunt resistance of 1 GΩ. Four CMOS Read Out Integrated Circuits (ROICs) were used for bidirectional TDI and multiplex operations where each ROIC summed up and multiplexed eight signals from 120 channels. The ROIC also includes pixel deselection and gain control circuits along with the corresponding memory and writing means. The Infrared Focal Plane Arrays (IRFPAs) had a typical Noise Equivalent Temperature Difference (NETD) of 18 mK after TDI with F/1.55 optics and 10-μs integration. The FLIR system using the 480x8 IRFPA demonstrated a high spatial resolution of 1280 horizontal lines by 960 vertical lines (SXGA format) and NETD of less than 30 mK. The unique algorithm for image enhancement was successfully confirmed to be efficient.

  4. Biological sensing using hybridization phase of plasmonic resonances with photonic lattice modes in arrays of gold nanoantennas

    NASA Astrophysics Data System (ADS)

    Gutha, Rithvik R.; Sadeghi, Seyed M.; Sharp, Christina; Wing, Waylin J.

    2017-09-01

    We study biological sensing using the hybridization phase of localized surface plasmon resonances (LSPRs) with diffraction modes (photonic lattice modes) in arrays of gold nanoantennas. We map the degree of the hybridization process using an embedding dielectric material (Si), identifying the critical thicknesses wherein the optical responses of the arrays are mainly governed by pure LSPRs (insignificant hybridization), Fano-type coupling of LSPRs with diffraction orders (hybridization state), and their intermediate state (hybridization phase). The results show that hybridization phase can occur with slight change in the refractive index (RI), leading to sudden reduction of the linewidth of the main spectral feature of the arrays by about one order of magnitude while it is shifted nearly 140 nm. These processes, which offer significant improvement in RI sensitivity and figure of merit, are utilized to detect monolayers of biological molecules and streptavidin-conjugated semiconductor quantum dots with sensitivities far higher than pure LSPRs. We further explore how these sensors can be used based on the uncoupled LSPRs by changing the polarization of the incident light.

  5. Biological sensing using hybridization phase of plasmonic resonances with photonic lattice modes in arrays of gold nanoantennas.

    PubMed

    Gutha, Rithvik R; Sadeghi, Seyed M; Sharp, Christina; Wing, Waylin J

    2017-09-01

    We study biological sensing using the hybridization phase of localized surface plasmon resonances (LSPRs) with diffraction modes (photonic lattice modes) in arrays of gold nanoantennas. We map the degree of the hybridization process using an embedding dielectric material (Si), identifying the critical thicknesses wherein the optical responses of the arrays are mainly governed by pure LSPRs (insignificant hybridization), Fano-type coupling of LSPRs with diffraction orders (hybridization state), and their intermediate state (hybridization phase). The results show that hybridization phase can occur with slight change in the refractive index (RI), leading to sudden reduction of the linewidth of the main spectral feature of the arrays by about one order of magnitude while it is shifted nearly 140 nm. These processes, which offer significant improvement in RI sensitivity and figure of merit, are utilized to detect monolayers of biological molecules and streptavidin-conjugated semiconductor quantum dots with sensitivities far higher than pure LSPRs. We further explore how these sensors can be used based on the uncoupled LSPRs by changing the polarization of the incident light.

  6. The First Experiment with VLBI-GPS Hybrid System

    NASA Technical Reports Server (NTRS)

    Kwak, Younghee; Kondo, Tetsuro; Gotoh, Tadahiro; Amagai, Jun; Takiguchi, Hiroshi; Sekido, Mamoru; Ichikawa, Ryuichi; Sasao, Tetsuo; Cho, Jungho; Kim, Tuhwan

    2010-01-01

    In this paper, we introduce our GPS-VLBI hybrid system and show the results of the first experiment which is now under way. In this hybrid system, GPS signals are captured by a normal GPS antenna, down-converted to IF signals, and then sampled by the VLBI sampler VSSP32 developed by NICT. The sampled GPS data are recorded and correlated in the same way as VLBI observation data. The correlator outputs are the group delay and the delay rate. Since the whole system uses the same frequency standard, many sources of systematic errors are common between the VLBI system and the GPS system. In this hybrid system, the GPS antenna can be regarded as an additional VLBI antenna having multiple beams towards GPS satellites. Therefore, we expect that this approach will provide enough data to improve zenith delay estimates and geodetic results.

  7. Kinetics of Oligonucleotide Hybridization to DNA Probe Arrays on High-Capacity Porous Silica Substrates

    PubMed Central

    Glazer, Marc I.; Fidanza, Jacqueline A.; McGall, Glenn H.; Trulson, Mark O.; Forman, Jonathan E.; Frank, Curtis W.

    2007-01-01

    We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of ∼23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-μm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-μm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22°C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (ka, kd, and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22°C is described well by the predictive equations for

  8. PV-Diesel Hybrid SCADA Experiment Network Design

    NASA Technical Reports Server (NTRS)

    Kalu, Alex; Durand, S.; Emrich, Carol; Ventre, G.; Wilson, W.; Acosta, R.

    1999-01-01

    The essential features of an experimental network for renewable power system satellite based supervisory, control and data acquisition (SCADA) are communication links, controllers, diagnostic equipment and a hybrid power system. Required components for implementing the network consist of two satellite ground stations, to satellite modems, two 486 PCs, two telephone receivers, two telephone modems, two analog telephone lines, one digital telephone line, a hybrid-power system equipped with controller and a satellite spacecraft. In the technology verification experiment (TVE) conducted by Savannah State University and Florida Solar Energy Center, the renewable energy hybrid system is the Apex-1000 Mini-Hybrid which is equipped with NGC3188 for user interface and remote control and the NGC2010 for monitoring and basic control tasks. This power system is connected to a satellite modem via a smart interface, RS232. Commands are sent to the power system control unit through a control PC designed as PC1. PC1 is thus connected to a satellite model through RS232. A second PC, designated PC2, the diagnostic PC is connected to both satellite modems via separate analog telephone lines for checking modems'health. PC2 is also connected to PC1 via a telephone line. Due to the unavailability of a second ground station for the ACTS, one ground station is used to serve both the sending and receiving functions in this experiment. Signal is sent from the control PC to the Hybrid system at a frequency f(sub 1), different from f(sub 2), the signal from the hybrid system to the control PC. f(sub l) and f(sub 2) are sufficiently separated to avoid interference.

  9. PV-Diesel Hybrid SCADA Experiment Network Design

    NASA Technical Reports Server (NTRS)

    Kalu, Alex; Durand, S.; Emrich, Carol; Ventre, G.; Wilson, W.; Acosta, R.

    1999-01-01

    The essential features of an experimental network for renewable power system satellite based supervisory, control and data acquisition (SCADA) are communication links, controllers, diagnostic equipment and a hybrid power system. Required components for implementing the network consist of two satellite ground stations, to satellite modems, two 486 PCs, two telephone receivers, two telephone modems, two analog telephone lines, one digital telephone line, a hybrid-power system equipped with controller and a satellite spacecraft. In the technology verification experiment (TVE) conducted by Savannah State University and Florida Solar Energy Center, the renewable energy hybrid system is the Apex-1000 Mini-Hybrid which is equipped with NGC3188 for user interface and remote control and the NGC2010 for monitoring and basic control tasks. This power system is connected to a satellite modem via a smart interface, RS232. Commands are sent to the power system control unit through a control PC designed as PC1. PC1 is thus connected to a satellite model through RS232. A second PC, designated PC2, the diagnostic PC is connected to both satellite modems via separate analog telephone lines for checking modems'health. PC2 is also connected to PC1 via a telephone line. Due to the unavailability of a second ground station for the ACTS, one ground station is used to serve both the sending and receiving functions in this experiment. Signal is sent from the control PC to the Hybrid system at a frequency f(sub 1), different from f(sub 2), the signal from the hybrid system to the control PC. f(sub l) and f(sub 2) are sufficiently separated to avoid interference.

  10. Calculations of EURACOS iron benchmark experiment using the HYBRID method

    SciTech Connect

    Chang, B.J.; Liu, Y.W.H.; Wun, C.C. ); Rief, H. )

    1992-09-01

    In this paper, the HYBRID method is used in the calculations of the iron benchmark experiment at the EURACOS-II device. The saturation activities of the [sup 32]S(n,p)[sup 32]P reaction at different depths in an iron block are computed with ENDF/B-IV data to compare with the measurements. At the outer layers of the iron block, the HYBRID calculation gives increasingly higher results than the VITAMIN-C multigroup calculation. With the adjustment of the two- to one-dimensional ratios, the HYBRID results agree with the measurements to within 10% at most penetration depths, a considerable improvement over the VITAMIN-C multigroup results. The development of a collapsing method for the HYBRID cross sections provides a more direct and practical way of using the HYBRID method in the two-dimensional calculations. It is observed that half of the window effect is smeared in the collapsing treatment, but it still provides a better cross-section set than the VITAMIN-C cross sections for the deep-penetration calculations.

  11. EARLY EXPERIENCE WITH A HYBRID PROCESSOR: K-MEANS CLUSTERING

    SciTech Connect

    M. GOKHALE; ET AL

    2001-02-01

    We discuss hardware/software coprocessing on a hybrid processor for a compute- and data-intensive hyper-spectral imaging algorithm, K-Means Clustering. The experiments are performed on the Altera Excalibur board using the soft IP core 32-bit NIOS RISC processor. In our experiments, we compare performance of the sequential algorithm with two different accelerated versions. We consider granularity and synchronization issues when mapping an algorithm to a hybrid processor. Our results show that on the Excalibur NIOS, a 15% speedup can be achieved over the sequential algorithm on images with 8 spectral bands where the pixels are divided into 8 categories. Speedup is limited by the communication cost of transferring data from external memory through the NIOS processor to the customized circuits. Our results indicate that future hybrid processors must either (1) have a clock rate 10X the speed of the configurable logic circuits or (2) include dual port memories that both the processor and configurable logic can access. If either of these conditions is met, the hybrid processor will show a factor of 10 speedup over the sequential algorithm. Such systems will combine the convenience of conventional processors with the speed of configurable logic.

  12. Customized Array Comparative Genomic Hybridization Analysis of 25 Phosphatase-encoding Genes in Colorectal Cancer Tissues

    PubMed Central

    LACZMANSKA, IZABELA; SKIBA, PAWEL; KARPINSKI, PAWEL; BEBENEK, MAREK; M. SASIADEK, MARIA

    2016-01-01

    Background/Aim: Molecular mechanisms of alterations in protein tyrosine phosphatases (PTPs) genes in cancer have been previously described and include chromosomal aberrations, gene mutations, and epigenetic silencing. However, little is known about small intragenic gains and losses that may lead to either changes in expression or enzyme activity and even loss of protein function. Materials and Methods: The aim of this study was to investigate 25 phosphatase genes using customized array comparative genomic hybridization in 16 sporadic colorectal cancer tissues. Results: The analysis revealed two unique small alterations: of 2 kb in PTPN14 intron 1 and of 1 kb in PTPRJ intron 1. We also found gains and losses of whole PTPs gene sequences covered by large chromosome aberrations. Conclusion: In our preliminary studies using high-resolution custom microarray we confirmed that PTPs are frequently subjected to whole-gene rearrangements in colorectal cancer, and we revealed that non-polymorphic intragenic changes are rare. PMID:28031238

  13. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays

    NASA Astrophysics Data System (ADS)

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-03-01

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems.

  14. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays

    PubMed Central

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-01-01

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems. PMID:28332611

  15. A hybrid computational model for ultrasound phased-array heating in presence of strongly scattering obstacles.

    PubMed

    Botros, Y Y; Volakis, J L; VanBaren, P; Ebbini, E S

    1997-11-01

    A computationally efficient hybrid ray-physical optics (HRPO) model is presented for the analysis and synthesis of multiple-focus ultrasound heating patterns through the human rib cage. In particular, a ray method is used to propagate the ultrasound fields from the source to the frontal plane of the rib cage. The physical-optics integration method is then employed to obtain the intensity pattern inside the rib cage. The solution of the matrix system is carried out by using the pseudo inverse technique to synthesize the desired heating pattern. The proposed technique guides the fields through the intercostal spacings between the solid ribs and, thus, minimal intensity levels are observed over the solid ribs. This simulation model allows for the design and optimization of large-aperture phased-array applicator systems for noninvasive ablative thermal surgery in the heart and liver through the rib cage.

  16. Visible light focusing flat lenses based on hybrid dielectric-metal metasurface reflector-arrays.

    PubMed

    Fan, Qingbin; Huo, Pengcheng; Wang, Daopeng; Liang, Yuzhang; Yan, Feng; Xu, Ting

    2017-03-23

    Conventional metasurface reflector-arrays based on metallic resonant nanoantenna to control the wavefront of light for focusing always suffer from strong ohmic loss at optical frequencies. Here, we overcome this challenge by constructing a non-resonant, hybrid dielectric-metal configuration consisting of TiO2 nanofins associated with an Ag reflector substrate that provides a broadband response and high polarization conversion efficiency in the visible range. A reflective flat lens based on this configuration shows an excellent focusing performance with the spot size close to the diffraction limit. Furthermore, by employing the superimposed phase distribution design to manipulate the wavefront of the reflected light, various functionalities, such as multifocal and achromatic focusing, are demonstrated for the flat lenses. Such a reflective flat lens will find various applications in visible light imaging and sensing systems.

  17. Whole Genome Amplification of Labeled Viable Single Cells Suited for Array-Comparative Genomic Hybridization.

    PubMed

    Kroneis, Thomas; El-Heliebi, Amin

    2015-01-01

    Understanding details of a complex biological system makes it necessary to dismantle it down to its components. Immunostaining techniques allow identification of several distinct cell types thereby giving an inside view of intercellular heterogeneity. Often staining reveals that the most remarkable cells are the rarest. To further characterize the target cells on a molecular level, single cell techniques are necessary. Here, we describe the immunostaining, micromanipulation, and whole genome amplification of single cells for the purpose of genomic characterization. First, we exemplify the preparation of cell suspensions from cultured cells as well as the isolation of peripheral mononucleated cells from blood. The target cell population is then subjected to immunostaining. After cytocentrifugation target cells are isolated by micromanipulation and forwarded to whole genome amplification. For whole genome amplification, we use GenomePlex(®) technology allowing downstream genomic analysis such as array-comparative genomic hybridization.

  18. High-Resolution Array Comparative Genomic Hybridization Utility in Polish Newborns with Isolated Cleft Lip and Palate.

    PubMed

    Szczałuba, Krzysztof; Nowakowska, Beata A; Sobecka, Katarzyna; Smyk, Marta; Castaneda, Jennifer; Dudkiewicz, Zofia; Kutkowska-Kaźmierczak, Anna; Sąsiadek, Maria M; Śmigiel, Robert; Bocian, Ewa

    2015-01-01

    Cleft lip with or without cleft palate is one of the most common birth defects of unknown etiology. A fraction of its genetic causes is attributable to copy number variations detected by array comparative genomic hybridization. The value of array comparative genomic hybridization screening as a first-tier test in the newborn population with multiple congenital anomalies has now been accepted. Due to unspecific clinical picture at this age, it can also be applied to neonates with isolated anomalies. Our purpose was to assess utility of array comparative genomic hybridization in the population of newborns with isolated cleft lip and palate. We conducted the study in a group of 52 Polish newborns with apparently isolated cleft lip and palate. In the study group, we found 8 rearrangements. Of these, 2 de novo events have been noted that potentially explain the phenotype. In addition, 2 novel candidate genes for cleft lip and palate, CHN2 and CDH19, are suggested. Given the high number of inherited potentially benign changes, we question the clinical utility of array comparative genomic hybridization in the newborn population with isolated cleft lip and palate, at the same time pointing to the need of skilled professional's clinical assessment at a later age. However, the value of this technology in searching for the cause of isolated anomalies cannot be underestimated. © 2015 S. Karger AG, Basel.

  19. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application.

    PubMed

    Zhang, Fute; Song, Tao; Sun, Baoquan

    2012-05-17

    The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl(5) solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance.

  20. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application

    NASA Astrophysics Data System (ADS)

    Zhang, Fute; Song, Tao; Sun, Baoquan

    2012-05-01

    The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl5 solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance.

  1. Morphology-controlled ZnO nanowire arrays for tailored hybrid composites with high damping.

    PubMed

    Malakooti, Mohammad H; Hwang, Hyun-Sik; Sodano, Henry A

    2015-01-14

    Hybrid fiber reinforced composites using a nanoscale reinforcement of the interface have not reached their optimal performance in practical applications due to their complex design and the challenging assembly of their multiscale components. One promising approach to the fabrication of hybrid composites is the growth of zinc oxide (ZnO) nanowire arrays on the surface of carbon fibers to provide improved interfacial strength and out of plane reinforcement. However, this approach has been demonstrated mainly on fibers and thus still requires complex processing conditions. Here we demonstrate a simple approach to the fabrication of such composites through the growth of the nanowires on the fabric. The fabricated composites with nanostructured graded interphase not only exhibit remarkable damping enhancement but also stiffness improvement. It is demonstrated that these two extremely important properties of the composite can be controlled by tuning the morphology of the ZnO nanowires at the interface. Higher damping and flexural rigidity of these composites over traditional ones offer practical high-performance composites.

  2. [Attention deficit hyperactivity disorder analyzed with array comparative genome hybridization method. Case report].

    PubMed

    Duga, Balázs; Czakó, Márta; Komlósi, Katalin; Hadzsiev, Kinga; Sümegi, Katalin; Kisfali, Péter; Melegh, Márton; Melegh, Béla

    2014-10-05

    One of the most common psychiatric disorders during childhood is attention deficit hyperactivity disorder, which affects 5-6% of children worldwide. Symptoms include attention deficit, hyperactivity, forgetfulness and weak impulse control. The exact mechanism behind the development of the disease is unknown. However, current data suggest that a strong genetic background is responsible, which explains the frequent occurrence within a family. Literature data show that copy number variations are very common in patients with attention deficit hyperactivity disorder. The authors present a patient with attention deficit hyperactivity disorder who proved to have two approximately 400 kb heterozygous microduplications at 6p25.2 and 15q13.3 chromosomal regions detected by comparative genomic hybridization methods. Both duplications affect genes (6p25.2: SLC22A23; 15q13.3: CHRNA7) which may play a role in the development of attention deficit hyperactivity disorder. This case serves as an example of the wide spectrum of indication of the array comparative genome hybridization method.

  3. Allelic genome structural variations in maize detected by array comparative genome hybridization.

    PubMed

    Beló, André; Beatty, Mary K; Hondred, David; Fengler, Kevin A; Li, Bailin; Rafalski, Antoni

    2010-01-01

    DNA polymorphisms such as insertion/deletions and duplications affecting genome segments larger than 1 kb are known as copy-number variations (CNVs) or structural variations (SVs). They have been recently studied in animals and humans by using array-comparative genome hybridization (aCGH), and have been associated with several human diseases. Their presence and phenotypic effects in plants have not been investigated on a genomic scale, although individual structural variations affecting traits have been described. We used aCGH to investigate the presence of CNVs in maize by comparing the genome of 13 maize inbred lines to B73. Analysis of hybridization signal ratios of 60,472 60-mer oligonucleotide probes between inbreds in relation to their location in the reference genome (B73) allowed us to identify clusters of probes that deviated from the ratio expected for equal copy-numbers. We found CNVs distributed along the maize genome in all chromosome arms. They occur with appreciable frequency in different germplasm subgroups, suggesting ancient origin. Validation of several CNV regions showed both insertion/deletions and copy-number differences. The nature of CNVs detected suggests CNVs might have a considerable impact on plant phenotypes, including disease response and heterosis.

  4. Composition of Ultra High Energy Cosmic Rays Observed by Telescope Array in Hybrid Mode

    NASA Astrophysics Data System (ADS)

    Hanlon, William; Telescope Array Collaboration

    2016-03-01

    The energy spectrum of cosmic rays exhibits several important features such as the knee (E ~10 15 . 5 eV), ankle (E ~10 18 . 7 eV), and high energy suppression (E ~10 19 . 8 eV). Cosmic ray chemical composition is the key to understanding their galactic and extragalactic sources as well as the origin of particle production and acceleration mechanisms. Energy dependent chemical composition is a fundamental input for models of cosmic ray sources and interstellar transport which may lead to competing explanations of the observed spectral features. Understanding composition will therefore allow one to distinguish between the different scenarios of cosmic ray origin, a decades old problem in astrophysics. In this talk we will describe measurements of ultra high energy cosmic ray composition performed by Telescope Array (TA) using Xmax measured in extended air showers (EAS) simultaneously observed by the TA surface array and TA fluorescence stations (called hybrid mode). Showers with primary energies above 1018 eV will be considered. We will also discuss improved methods of comparing the measured composition to EAS models.

  5. Custom Array Comparative Genomic Hybridization: the Importance of DNA Quality, an Expert Eye, and Variant Validation

    PubMed Central

    Lantieri, Francesca; Malacarne, Michela; Gimelli, Stefania; Santamaria, Giuseppe; Coviello, Domenico; Ceccherini, Isabella

    2017-01-01

    The presence of false positive and false negative results in the Array Comparative Genomic Hybridization (aCGH) design is poorly addressed in literature reports. We took advantage of a custom aCGH recently carried out to analyze its design performance, the use of several Agilent aberrations detection algorithms, and the presence of false results. Our study provides a confirmation that the high density design does not generate more noise than standard designs and, might reach a good resolution. We noticed a not negligible presence of false negative and false positive results in the imbalances call performed by the Agilent software. The Aberration Detection Method 2 (ADM-2) algorithm with a threshold of 6 performed quite well, and the array design proved to be reliable, provided that some additional filters are applied, such as considering only intervals with average absolute log2ratio above 0.3. We also propose an additional filter that takes into account the proportion of probes with log2ratio exceeding suggestive values for gain or loss. In addition, the quality of samples was confirmed to be a crucial parameter. Finally, this work raises the importance of evaluating the samples profiles by eye and the necessity of validating the imbalances detected. PMID:28287439

  6. Large 2D-arrays of size-controllable silver nanoparticles prepared by hybrid deposition

    NASA Astrophysics Data System (ADS)

    Dieu Thuy Ung, Thi; Hoa Nguyen, Thi; Liem Nguyen, Quang

    2016-09-01

    Two main results are presented in this paper. (i) Silver nanoparticles (AgNPs) with uniform size-distribution and controllability in the range of 20-50 nm were synthesized by seeding and growing at ambient conditions. The single-crystal Ag nano-seeds were created by reduction of AgNO3 in presence of citrate surfactant at 70 °C. Then, importantly, the fresh AgCl precursor was used in the presence of polyvinylpyrrolidone to adjust the reaction rate with ascorbic acid to generate Ag for growing on the surface of single-crystal Ag nano-seeds. The AgNPs size could be well-controlled by varying the amount of Ag nano-seeds while keeping the AgCl precursor concentration to be constant. (ii) The large 2D-arrays with homogeneous and dense monolayers of AgNPs were prepared on ITO substrates by hybrid method, in which the key technological point is the surface functionalization of AgNPs using mixed alkanethiols (dodecanethiol:octadecanethiol = 6:1). We have used the fabricated 2D-arrays from the 50 nm AgNPs as a surface enhanced Raman scattering substrate to take the Raman scattering spectra of rhodamine B (RhB), glucose and viral pathogen (H5N1) at very low concentrations of 10-10 M, 10-12 M and 4 ng μl-1, respectively.

  7. Genome profiling of chondrosarcoma using oligonucleotide array-based comparative genomic hybridization.

    PubMed

    Hameed, Meera; Ulger, Celal; Yasar, Duygu; Limaye, Neha; Kurvathi, Rohini; Streck, Deanna; Benevenia, Joseph; Patterson, Francis; Dermody, James J; Toruner, Gokce A

    2009-07-15

    Chondrosarcomas of the bone are malignant hyaline cartilage-forming tumors with an annual incidence rate of 3.6% of all primary bone malignancies in the United States. Specimens of 25 chondrosarcomas (10 grade I, 9 grade II, 1 grade III, and 5 dedifferentiated) from 23 patients were collected from the Department of Pathology at the University Hospital at UMDNJ-New Jersey Medical School from 1996 to 2007. Array-based comparative genomic hybridization (array-CGH) studies were performed on frozen tumor specimens. Recurrent deletions observed in at least in six tumors were 5q13.2, 5q14.2 approximately q21.3, 6q12 approximately q13, 6q16 approximately q25.3, 9p24.2 approximately q12, and 9p21.3. There was a statistically significant association between high-grade tumor (grade III and dedifferentiated) and the recurrent genetic deletions at 5q14.2 approximately q21.3, 6q16 approximately q25.3, 9p24.2 approximately q12, and 9p21.3. There is consistency between increased levels of aneuploidy and the progression of chondrosarcoma from lower to higher grades.

  8. Hybridization of Strength Pareto Multiobjective Optimization with Modified Cuckoo Search Algorithm for Rectangular Array

    NASA Astrophysics Data System (ADS)

    Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A. Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah

    2017-04-01

    This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele’s (ZDT’s) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.

  9. Analysis of MMIC arrays for use in the ACTS Aero Experiment

    NASA Technical Reports Server (NTRS)

    Zimmerman, M.; Lee, R.; Rho, E.; Zaman, Z.

    1993-01-01

    The Aero Experiment is designed to demonstrate communication from an aircraft to an Earth terminal via the ACTS. This paper describes the link budget and antenna requirements for a 4.8 kbps full-duplex voice link at Ka-Band frequencies. Three arrays, one transmit array developed by TI and two receive arrays developed by GE and Boeing, were analyzed. The predicted performance characteristics of these arrays are presented and discussed in the paper.

  10. Lower Hybrid Current Drive Experiments in Alcator C-Mod

    SciTech Connect

    J.R. Wilson, S. Bernabei, P. Bonoli, A. Hubbard, R. Parker, A. Schmidt, G. Wallace, J. Wright, and the Alcator C-Mod Team

    2007-10-09

    A Lower Hybrid Current Drive (LHCD) system has been installed on the Alcator C-MOD tokamak at MIT. Twelve klystrons at 4.6 GHz feed a 4x22 waveguide array. This system was designed for maximum flexibility in the launched parallel wave-number spectrum. This flexibility allows tailoring of the lower hybrid deposition under a variety of plasma conditions. Power levels up to 900 kW have been injected into the tokomak. The parallel wave number has been varied over a wide range, n|| ~ 1.6–4. Driven currents have been inferred from magnetic measurements by extrapolating to zero loop voltage and by direct comparison to Fisch-Karney theory, yielding an efficiency of n20IR/P ~ 0.3. Modeling using the CQL3D code supports these efficiencies. Sawtooth oscillations vanish, accompanied with peaking of the electron temperature (Te0 rises from 2.8 to 3.8 keV). Central q is inferred to rise above unity from the collapse of the sawtooth inversion radius, indicating off-axis cd as expected. Measurements of non-thermal x-ray and electron cyclotron emission confirm the presence of a significant fast electron population that varies with phase and plasma density. The x-ray emission is observed to be radialy broader than that predicted by simple ray tracing codes. Possible explanations for this broader emission include fast electron diffusion or broader deposition than simple ray tracing predictions (perhaps due to diffractive effects).

  11. Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments.

    PubMed

    Ambroise, Matthieu; Levi, Timothée; Joucla, Sébastien; Yvert, Blaise; Saïghi, Sylvain

    2013-01-01

    This investigation of the leech heartbeat neural network system led to the development of a low resources, real-time, biomimetic digital hardware for use in hybrid experiments. The leech heartbeat neural network is one of the simplest central pattern generators (CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech neural network system was previously investigated and this CPG formalized in the Hodgkin-Huxley neural model (HH), the most complex devised to date. However, the resources required for a neural model are proportional to its complexity. In response to this issue, this article describes a biomimetic implementation of a network of 240 CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and proposes a new synapse model: activity-dependent depression synapse. The network implementation architecture operates on a single computation core. This digital system works in real-time, requires few resources, and has the same bursting activity behavior as the complex model. The implementation of this CPG was initially validated by comparing it with a simulation of the complex model. Its activity was then matched with pharmacological data from the rat spinal cord activity. This digital system opens the way for future hybrid experiments and represents an important step toward hybridization of biological tissue and artificial neural networks. This CPG network is also likely to be useful for mimicking the locomotion activity of various animals and developing hybrid experiments for neuroprosthesis development.

  12. Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments

    PubMed Central

    Ambroise, Matthieu; Levi, Timothée; Joucla, Sébastien; Yvert, Blaise; Saïghi, Sylvain

    2013-01-01

    This investigation of the leech heartbeat neural network system led to the development of a low resources, real-time, biomimetic digital hardware for use in hybrid experiments. The leech heartbeat neural network is one of the simplest central pattern generators (CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech neural network system was previously investigated and this CPG formalized in the Hodgkin–Huxley neural model (HH), the most complex devised to date. However, the resources required for a neural model are proportional to its complexity. In response to this issue, this article describes a biomimetic implementation of a network of 240 CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and proposes a new synapse model: activity-dependent depression synapse. The network implementation architecture operates on a single computation core. This digital system works in real-time, requires few resources, and has the same bursting activity behavior as the complex model. The implementation of this CPG was initially validated by comparing it with a simulation of the complex model. Its activity was then matched with pharmacological data from the rat spinal cord activity. This digital system opens the way for future hybrid experiments and represents an important step toward hybridization of biological tissue and artificial neural networks. This CPG network is also likely to be useful for mimicking the locomotion activity of various animals and developing hybrid experiments for neuroprosthesis development. PMID:24319408

  13. SKS splitting beneath the MAGIC FlexArray experiment

    NASA Astrophysics Data System (ADS)

    Aragon, J. C.; Long, M. D.; Benoit, M. H.; Kirby, E.; King, S. D.

    2015-12-01

    The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) is an EarthScope and GeoPRISMS-funded project that involves a collaborative effort among seismologists, geodynamicists, and geomorphologists to understand the relationships among surface processes, crustal and lithospheric structure, and deep mantle flow beneath eastern North America. The eastern passive continental margin has been modified by multiple episodes of orogenesis and rifting through several cycles of supercontinent assembly and breakup over the past 1.3 billion years of Earth history. The MAGIC Flexible Array broadband seismic deployment began in October 2013, with the main phase of the deployment taking place in October 2014. As of summer 2015 the experiment had 27 stations running; the deployment will demobilize in October 2016. We have investigated splitting of SKS phases measured at MAGIC stations during the early stages of the deployment. As illustrated by this presentation, stations located in the Appalachian Mountains, present fast splitting directions parallel to the strike of the Appalachian range, with delay times of approximately 1 sec. At stations to the east and west of the high topography, we find more complicated splitting patterns, with fast directions that vary over short length scales and a large number of null SKS arrivals over a range of backazimuths. These observations suggest a significant contribution to SKS splitting from anisotropy in the lithospheric upper mantle in our study region.

  14. Hybrid model prediction of guided wave array system detection sensitivity for the SHM of fatigue cracks in large structures

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2011-04-01

    Localized and distributed guided ultrasonic wave array systems allow for the efficient structural health monitoring of large structures, such as aircraft, ship hulls, or oil storage tanks. Permanently attached sensor arrays have been applied for the detection of corrosion and fatigue damage. A hybrid model has been developed for the efficient prediction of the sensitivity of guided waves array systems to detect through thickness and part-through fatigue cracks at different locations in plate structures. Using a point transmitter and receiver model for the wave propagation along the structure, the distances between sensor elements and potential defect locations are taken into account. The influence of the orientation of the crack relative to the transducer elements has been predicted from localized 3D Finite Element simulations. The directivity pattern of the scattered guided wave field has been shown to depend on the defect orientation and on the ratio of the characteristic defect size and depth to wavelength, and has been verified from experimental measurements. Good agreement was found and the localized amplitude and directivity patterns provide the basis for the quantification of the detection sensitivity for fatigue cracks. Using a hybrid model, the relative amplitudes of received pulses for different sensor array layouts can be calculated. From a comparison with the signal to noise ratio of the array system, detection capabilities can be predicted for various defect sizes and orientation. This provides a rapid tool for the development and optimization of guided wave array SHM systems.

  15. Characterization of novel Hamamatsu Multi Pixel Photon Counter (MPPC) arrays for the GlueX experiment

    NASA Astrophysics Data System (ADS)

    Soto, Orlando; Rojas, Rimsky; Kuleshov, Sergey; Hakobyan, Hayk; Toro, Alam; Brooks, William K.

    2013-12-01

    The novel Hamamatsu Multi Pixel Photon Counter Array S12045(X) is an array of 16 individual MPPCs (3×3 mm2) (further in the paper MPPC array channel) each with 3600 G-APD (Geiger-mode Avalanche Photodiodes) pixels (50×50 [μm2]). Each MPPC in the array works with its individual reverse bias voltage mode (around 70 V). The paper summarizes the characterization process of MPPC arrays used in GlueX experiment (Hall D, Jefferson Lab). We studied the main features of each MPPC array channel for 2800 MPPC arrays at different temperatures. Two measurement stations were built to extract gain, breakdown voltage, photo detection efficiency (PDE), optical crosstalk and dark rate for each MPPC array channel. The hardware and the data analysis are described, which includes new analytical expressions to obtain the mean number of photo-electrons and optical crosstalk. The dynamical behavior of characterization parameters is presented as well.

  16. Characterization of novel Hamamatsu Multi Pixel Photon Counter (MPPC) arrays for the GlueX experiment

    SciTech Connect

    Soto, Orlando; Rojas, Rimsky; Kuleshov, Sergey V.; Hakobyan, Hayk; Toro, Alam; Brooks, William K.

    2013-12-01

    The novel Hamamatsu Multi Pixel Photon Counter Array S12045(X) is an array of 16 individual MPPCs (3x3 mm{sup 2}) (further in the paper MPPC array channel) each with 3600 G-APD (Geiger-mode Avalanche Photodiodes) pixels (50x50 [{micro}m{sup 2}]). Each MPPC in the array works with its individual reverse bias voltage mode (around 70 V). The paper summarizes the characterization process of MPPC arrays used in GlueX experiment (Hall D, Jefferson Lab). We studied the main features of each MPPC array channel for 2800 MPPC arrays at different temperatures. Two measurement stations were built to extract gain, breakdown voltage, photo detection efficiency (PDE), optical crosstalk and dark rate for each MPPC array channel. The hardware and the data analysis are described, which includes new analytical expressions to obtain the mean number of photo-electrons and optical crosstalk. The dynamical behavior of characterization parameters is presented as well.

  17. Field experience with voltage breakdown in photovoltaic (PV) arrays

    NASA Astrophysics Data System (ADS)

    Harrison, T. D.; Fernandez, J. P.

    Information about voltage breakdown of photovoltaic arrays in the field was obtained array sites. The arrays were located at Beverly High School, Lovington Square Shopping Center, Newman Power Station, and the Oklahoma Center for Sciences and Arts. No breakdowns are reported for these sites. Breakdowns at other sites which are attributed to burrs on washers piercing insulation in one instance and delamination of a metal frame causing a short circuit in another are discussed. Other problems not attributable to voltage breakdown are also discussed.

  18. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    PubMed Central

    2011-01-01

    The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs) is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene). A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers. PMID:21884596

  19. Apollo lunar surface experiments package. Apollo 17 ALSEP (array E) familiarization course handout

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The familiarization course for the Apollo 17 ALSEP (ARRAY E) is presented. The subjects discussed are: (1) power and data subsystems, (2) lunar surface gravimeter, (3) lunar mass spectrometer, (4) lunar seismic profiling experiment, and (5) heat flow experiment.

  20. Ramp-rate limitation experiments using a hybrid superconducting cable

    NASA Astrophysics Data System (ADS)

    Jeong, S.; Schultz, J. H.; Takayasu, M.; Vysotsky, V.; Michael, P. C.; Warnes, W.; Shen, S.

    Ramp-rate limitation experiments were done in a new facility at the MIT (Massachusetts Institute of Technology) Plasma Fusion Center. The features of this new facility include (1) a superconducting pulse coil that can superimpose high ramp-down rates, up to 25 T s -1, (2 T in 80 ms) at a background field up to 5 T, (2) new power supplies that can supply high rates of dl/dt and dB/dt to the sample under test and (3) a forced-flow supercritical helium system for cooling CICCs (Cable-In-Conduit Conductors). This paper discusses the results of the ramp-rate limitation experiments on a 27-strand hybrid Nb 3Sn cable. The cable was tested under field ramps of up to 2.5 T s -1 with various operating currents. It did not quench with dB/dt, field and average strand currents that were simultaneously above the operating range of TPX-PF (Tokamak Physics Experiment Poloidal Field) coils. Further ramp-rate limitation experiments revealed that the tested 27-strand hybrid cable has very high transient stability at ramped fields, extending out to average strand currents that are nearly triple the TPX-PF operating current.

  1. Integration of graphene/ZnS nanowire film hybrids based photodetector arrays for high-performance image sensors

    NASA Astrophysics Data System (ADS)

    Wu, Congjun; Wang, Fei; Cai, Caoyuan; Xu, Zhihao; Ma, Yang; Huang, Fan; Jia, Feixiang; Wang, Min

    2017-06-01

    High-performance photodetector arrays are desired to achieve integrated devices for various technological applications. Film based photodetectors have shown great potential as photodetector arrays because they are compatible with traditional complementary metal oxide semiconductor (CMOS) electronics. Herein, high-mobility graphene/single-crystal ZnS nanowire film hybrids based photodetector arrays have been successfully achieved. With 3 orders of magnitude higher conductance compared with ZnS nanoparticle films, single-crystal ZnS nanowire films are expected to enable a larger portion of photo-generated carriers to move to graphene channel via charge transfer mechanism. As a result, the as-produced graphene/ZnS nanowire film hybrids based devices possess a high photocurrent of 320 µA, a high responsivity of 2.6  ×  106 A W-1, a high detectivity of 8.0  ×  1012 Jones, and a low detectable light intensity of 1 µW cm-2. Moreover, the integrated graphene/ZnS nanowire film hybrids based photodetector arrays are demonstrated as high-performance image sensors with good uniformity.

  2. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

    PubMed

    Edgar, Ron; Domrachev, Michael; Lash, Alex E

    2002-01-01

    The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.

  3. Parametric Acoustic Receiving Array (Parray) Research and Experiments.

    DTIC Science & Technology

    1980-02-06

    AD-AC83 704 TEXAS UNIV AT AUSTIN APPLIED RESEARCH LABS FIG 17/1 PARAMETRIC ACOUSTIC RECEIVING ARRAY ( PARRAY ) RESEARCH AND EXPER-CTC(U) FEB 80 T G...TITLE anld Subtitle) ,__t, I -1rilUl tT :. 40441" ,APT19* .... ,. L PARAMETRIC ACOUSTIC RECEIVING ARRAY ( PARRAY ) inal technical re. m , LIESEARCH AND...WORDS (Continue on reverse side it necaesary and Identify by block number) PARRAY parametric acoustic receiver nonlinear acoustics parametric acoustic

  4. Application of a target array Comparative Genomic Hybridization to prenatal diagnosis

    PubMed Central

    2010-01-01

    Background While conventional G-banded karyotyping still remains a gold standard in prenatal genetic diagnoses, the widespread adoption of array Comparative Genomic Hybridization (array CGH) technology for postnatal genetic diagnoses has led to increasing interest in the use of this same technology for prenatal diagnosis. We have investigated the value of our own designed DNA chip as a prenatal diagnostic tool for detecting submicroscopic deletions/duplications and chromosome aneuploidies. Methods We designed a target bacterial artificial chromosome (BAC)-based aCGH platform (MacArray™ M-chip), which specifically targets submicroscopic deletions/duplications for 26 known genetic syndromes of medical significance observed prenatally. To validate the DNA chip, we obtained genomic DNA from 132 reference materials generated from patients with 22 genetic diseases and 94 clinical amniocentesis samples obtained for karyotyping. Results In the 132 reference materials, all known genomic alterations were successfully identified. In the 94 clinical samples that were also subjected to conventional karyotyping, three cases of balanced chromosomal aberrations were not detected by aCGH. However, we identified eight cases of microdeletions in the Yq11.23 chromosomal region that were not found by conventional karyotyping. This region harbors the DAZ gene, and deletions may lead to non-obstructive spermatogenesis. Conclusions We have successfully designed and applied a BAC-based aCGH platform for prenatal diagnosis. This platform can be used in conjunction with conventional karyotyping and will provide rapid and accurate diagnoses for the targeted genomic regions while eliminating the need to interpret clinically-uncertain genomic regions. PMID:20576126

  5. Array-Based Genomic Comparative Hybridization Analysis of Field Strains of Mycoplasma hyopneumoniae▿ †

    PubMed Central

    Madsen, Melissa L.; Oneal, Michael J.; Gardner, Stuart W.; Strait, Erin L.; Nettleton, Dan; Thacker, Eileen L.; Minion, F. Chris

    2007-01-01

    Mycoplasma hyopneumoniae is the causative agent of porcine enzootic pneumonia and a major factor in the porcine respiratory disease complex. A clear understanding of the mechanisms of pathogenesis does not exist, although it is clear that M. hyopneumoniae adheres to porcine ciliated epithelium by action of a protein called P97. Previous studies have shown variation in the gene encoding the P97 cilium adhesin in different strains of M. hyopneumoniae, but the extent of genetic variation among field strains across the genome is not known. Since M. hyopneumoniae is a worldwide problem, it is reasonable to expect that a wide range of genetic variability may exist given all of the different breeds and housing conditions. This variation may impact the overall virulence of a single strain. Using microarray technology, this study examined the potential variation of 14 field strains compared to strain 232, on which the array was based. Genomic DNA was obtained, amplified with TempliPhi, and labeled indirectly with Alexa dyes. After genomic hybridization, the arrays were scanned and data were analyzed using a linear statistical model. The results indicated that genetic variation could be detected in all 14 field strains but across different loci, suggesting that variation occurs throughout the genome. Fifty-nine percent of the variable loci were hypothetical genes. Twenty-two percent of the lipoprotein genes showed variation in at least one field strain. A permutation test identified a location in the M. hyopneumoniae genome where there is spatial clustering of variability between the field strains and strain 232. PMID:17873054

  6. Identification of prefoldin amplification (1q23.3-q24.1) in bladder cancer using comparative genomic hybridization (CGH) arrays of urinary DNA

    PubMed Central

    2013-01-01

    Background Array-CGH represents a comprehensive tool to discover genomic disease alterations that could potentially be applied to body fluids. In this report, we aimed at applying array-CGH to urinary samples to characterize bladder cancer. Methods Urinary DNA from bladder cancer patients and controls were hybridized on 44K oligonucleotide arrays. Validation analyses of identified regions and candidates included fluorescent in situ hybridization (FISH) and immunohistochemistry in an independent set of bladder tumors spotted on custom-made tissue arrays (n = 181). Results Quality control of array-CGH provided high reproducibility in dilution experiments and when comparing reference pools. The most frequent genomic alterations (minimal recurrent regions) among bladder cancer urinary specimens included gains at 1q and 5p, and losses at 10p and 11p. Supervised hierarchical clustering identified the gain at 1q23.3-q24.1 significantly correlated to stage (p = 0.011), and grade (p = 0.002). The amplification and overexpression of Prefoldin (PFND2), a selected candidate mapping to 1q23.3-q24.1, correlated to increasing stage and tumor grade by means of custom-designed and optimized FISH (p = 0.013 and p = 0.023, respectively), and immunohistochemistry (p ≤0.0005 and p = 0.011, respectively), in an independent set of bladder tumors included in tissue arrays. Moreover, PFND2 overexpression was significantly associated with poor disease-specific survival (p ≤0.0005). PFND2 was amplified and overexpressed in bladder tumors belonging to patients providing urinary specimens where 1q23.3q24.1 amplification was detected by array-CGH. Conclusions Genomic profiles of urinary DNA mirrowed bladder tumors. Molecular profiling of urinary DNA using array-CGH contributed to further characterize genomic alterations involved in bladder cancer progression. PFND2 was identified as a tumor stratification and clinical outcome prognostic biomarker for bladder cancer

  7. Inkjet-Printed Photodetector Arrays Based on Hybrid Perovskite CH3NH3PbI3 Microwires.

    PubMed

    Liu, Yang; Li, Fushan; Perumal Veeramalai, Chandrasekar; Chen, Wei; Guo, Tailiang; Wu, Chaoxing; Kim, Tae Whan

    2017-04-05

    Hybrid perovskite CH3NH3PbI3 has attracted extensive research interests in optoelectronic devices in recent years. Herein an inkjet printing method has been employed to deposit a perovskite CH3NH3PbI3 layer. By choosing the proper solvent and controlling the crystal growth rate, hybrid perovskite CH3NH3PbI3 nanowires, microwires, a network, and islands were synthesized by means of inkjet printing. Electrode-gap-electrode lateral-structured photodetectors were fabricated with these different crystals, of which a hybrid perovskite microwire-based photodetector would balance the uniformity and low defects to obtain a switching ratio of 16000%, responsivity of 1.2 A/W, and normalized detectivity of 2.39 × 10(12) Jones at a light power density of 0.1 mW/cm(2). Furthermore, the hybrid perovskite microwire-based photodetector arrays were fabricated and applied in an imaging sensor, from which the clear mapping of the light source signal was successfully obtained. This work paves the way for the realization of low-cost, solution-processed, and high-performance hybrid perovskite-based photodetector arrays.

  8. Plasmon-enhanced second-harmonic generation from hybrid ZnO-covered silver-bowl array.

    PubMed

    Yang, Mingming; Shen, Shaoxin; Wang, Xiangjie; Yu, Binbin; Huang, Shengli; Xu, Die; Hu, Jiawen; Yang, Zhilin

    2016-06-02

    High-efficient, plasmon-enhanced nonlinear phenomena based on hybrid nanostructures, which combine nonlinear dielectrics with plasmonic metals, are of fundamental importance for various applications ranging from all-optical switching to imaging or bio-sensing. However, the high loss of the excitation energy in nanostructures and the poor spatial overlap between the plasmon enhancement and the bulk of nonlinear materials largely limit the operation of plasmon-enhanced nonlinear effects, resulting in low nonlinear conversion efficiency. Here, we design and fabricate a ZnO-covered, 2D silver-bowl array, which can serve as an efficient platform for plasmon-enhanced second-harmonic generation (PESHG). Validated by experiments and simulations, we demonstrate that the high spatial overlap between the near-field enhancement and the ZnO film plays the key role for this nanostructure-based PESHG process. The enhancement mainly originates from the fundamental wavelength-derived plasmon resonance, providing an enhancement factor of approximately 33 times. These results achieved pave the way for future applications, which require localized light sources at nanoscale.

  9. Plasmon-enhanced second-harmonic generation from hybrid ZnO-covered silver-bowl array

    NASA Astrophysics Data System (ADS)

    Yang, Mingming; Shen, Shaoxin; Wang, Xiangjie; Yu, Binbin; Huang, Shengli; Xu, Die; Hu, Jiawen; Yang, Zhilin

    2016-06-01

    High-efficient, plasmon-enhanced nonlinear phenomena based on hybrid nanostructures, which combine nonlinear dielectrics with plasmonic metals, are of fundamental importance for various applications ranging from all-optical switching to imaging or bio-sensing. However, the high loss of the excitation energy in nanostructures and the poor spatial overlap between the plasmon enhancement and the bulk of nonlinear materials largely limit the operation of plasmon-enhanced nonlinear effects, resulting in low nonlinear conversion efficiency. Here, we design and fabricate a ZnO-covered, 2D silver-bowl array, which can serve as an efficient platform for plasmon-enhanced second-harmonic generation (PESHG). Validated by experiments and simulations, we demonstrate that the high spatial overlap between the near-field enhancement and the ZnO film plays the key role for this nanostructure-based PESHG process. The enhancement mainly originates from the fundamental wavelength-derived plasmon resonance, providing an enhancement factor of approximately 33 times. These results achieved pave the way for future applications, which require localized light sources at nanoscale.

  10. Designing hybrid onconase nanocarriers for mesothelioma therapy: a Taguchi orthogonal array and multivariate component driven analysis.

    PubMed

    Tekade, Rakesh K; Youngren-Ortiz, Susanne R; Yang, Haining; Haware, Rahul; Chougule, Mahavir B

    2014-10-06

    Onconase (ONC) is a member of a ribonuclease superfamily that has cytostatic activity against malignant mesothelioma (MM). The objective of this investigation was to develop bovine serum albumin (BSA)-chitosan based hybrid nanoformulations for the efficient delivery of ONC to MM while minimizing the exposure to normal tissues. Taguchi orthogonal array L9 type design was used to formulate ONC loaded BSA nanocarriers (ONC-ANC) with a mean particle size of 15.78 ± 0.24 nm (ζ = -21.89 ± 0.11 mV). The ONC-ANC surface was hybridized using varying chitosan concentrations ranging between 0.100 and 0.175% w/v to form various ONC loaded hybrid nanocarriers (ONC-HNC). The obtained data set was analyzed by principal component analysis (PCA) and principal component regressions (PCR) to decode the effects of investigated design variables. PCA showed positive correlations between investigated design variables like BSA, ethanol dilution, and total ethanol with particle size and entrapment efficiency (EE) of formulated nanocarriers. PCR showed that the particle size depends on BSA, ethanol dilution, and total ethanol content, while EE was only influenced by BSA content. Further analysis of chitosan and TPP effects used for coating of ONC-ANC by PCR confirmed their positive impacts on the particle size, zeta potential, and prolongation of ONC release compared to uncoated ONC-ANC. PCR analysis of preliminary stability studies showed increase in the particle size and zeta potential at lower pH. However, particle size, zeta potential, and EE of developed HNC were below 63 nm, 31 mV, and 96%, respectively, indicating their stability under subjected buffer conditions. Out of the developed formulations, HNC showed enhanced inhibition of cell viability with lower IC50 against human MM-REN cells compared to ONC and ONC-ANC. This might be attributed to the better cell uptake of HNC, which was confirmed in the cell uptake fluorescence studies. These studies indicated that a developed

  11. Formulation Development and Evaluation of Hybrid Nanocarrier for Cancer Therapy: Taguchi Orthogonal Array Based Design

    PubMed Central

    Tekade, Rakesh K.; Chougule, Mahavir B.

    2013-01-01

    Taguchi orthogonal array design is a statistical approach that helps to overcome limitations associated with time consuming full factorial experimental design. In this study, the Taguchi orthogonal array design was applied to establish the optimum conditions for bovine serum albumin (BSA) nanocarrier (ANC) preparation. Taguchi method with L9 type of robust orthogonal array design was adopted to optimize the experimental conditions. Three key dependent factors namely, BSA concentration (% w/v), volume of BSA solution to total ethanol ratio (v : v), and concentration of diluted ethanolic aqueous solution (% v/v), were studied at three levels 3%, 4%, and 5% w/v; 1 : 0.75, 1 : 0.90, and 1 : 1.05 v/v; 40%, 70%, and 100% v/v, respectively. The ethanolic aqueous solution was used to impart less harsh condition for desolvation and attain controlled nanoparticle formation. The interaction plot studies inferred the ethanolic aqueous solution concentration to be the most influential parameter that affects the particle size of nanoformulation. This method (BSA, 4% w/v; volume of BSA solution to total ethanol ratio, 1 : 0.90 v/v; concentration of diluted ethanolic solution, 70% v/v) was able to successfully develop Gemcitabine (G) loaded modified albumin nanocarrier (M-ANC-G) of size 25.07 ± 2.81 nm (ζ = −23.03 ± 1.015 mV) as against to 78.01 ± 4.99 nm (ζ = −24.88 ± 1.37 mV) using conventional method albumin nanocarrier (C-ANC-G). Hybrid nanocarriers were generated by chitosan layering (solvent gelation technique) of respective ANC to form C-HNC-G and M-HNC-G of sizes 125.29 ± 5.62 nm (ζ = 12.01 ± 0.51 mV) and 46.28 ± 2.21 nm (ζ = 15.05 ± 0.39 mV), respectively. Zeta potential, entrapment, in vitro release, and pH-based stability studies were investigated and influence of formulation parameters are discussed. Cell-line-based cytotoxicity assay (A549 and H460 cells) and cell internalization assay (H460 cell line) were

  12. Formulation development and evaluation of hybrid nanocarrier for cancer therapy: Taguchi orthogonal array based design.

    PubMed

    Tekade, Rakesh K; Chougule, Mahavir B

    2013-01-01

    Taguchi orthogonal array design is a statistical approach that helps to overcome limitations associated with time consuming full factorial experimental design. In this study, the Taguchi orthogonal array design was applied to establish the optimum conditions for bovine serum albumin (BSA) nanocarrier (ANC) preparation. Taguchi method with L9 type of robust orthogonal array design was adopted to optimize the experimental conditions. Three key dependent factors namely, BSA concentration (% w/v), volume of BSA solution to total ethanol ratio (v : v), and concentration of diluted ethanolic aqueous solution (% v/v), were studied at three levels 3%, 4%, and 5% w/v; 1 : 0.75, 1 : 0.90, and 1 : 1.05 v/v; 40%, 70%, and 100% v/v, respectively. The ethanolic aqueous solution was used to impart less harsh condition for desolvation and attain controlled nanoparticle formation. The interaction plot studies inferred the ethanolic aqueous solution concentration to be the most influential parameter that affects the particle size of nanoformulation. This method (BSA, 4% w/v; volume of BSA solution to total ethanol ratio, 1 : 0.90 v/v; concentration of diluted ethanolic solution, 70% v/v) was able to successfully develop Gemcitabine (G) loaded modified albumin nanocarrier (M-ANC-G) of size 25.07 ± 2.81 nm (ζ = -23.03 ± 1.015 mV) as against to 78.01 ± 4.99 nm (ζ = -24.88 ± 1.37 mV) using conventional method albumin nanocarrier (C-ANC-G). Hybrid nanocarriers were generated by chitosan layering (solvent gelation technique) of respective ANC to form C-HNC-G and M-HNC-G of sizes 125.29 ± 5.62 nm (ζ = 12.01 ± 0.51 mV) and 46.28 ± 2.21 nm (ζ = 15.05 ± 0.39 mV), respectively. Zeta potential, entrapment, in vitro release, and pH-based stability studies were investigated and influence of formulation parameters are discussed. Cell-line-based cytotoxicity assay (A549 and H460 cells) and cell internalization assay (H460 cell line) were performed

  13. Monolithically integrated 20-channel optical add/drop multiplexer subsystem with hybrid-integrated 40-channel photodetector array

    NASA Astrophysics Data System (ADS)

    Schumacher, Andreas B.; Krabe, Detlef; Dieckroeger, Jens; Spott, Thorsten; Kraeker, Tobias; Martins, Evely; Zavrsnik, Miha; Schneider, Hartmut W.; Baumann, Ingo

    2003-03-01

    We built a 20 channel, 200 GHz, fully reconfigurable optical add-/drop multiplexer with integrated variable optical attenuators and power monitor diodes. A single planar lightwave circuit chip contains demultiplexer, switch array, attenuators and multiplexers. It also serves as an "optical motherboard" for a hybrid, flip-chip assembly containing four 10-channel photo detector arrays. A thermal management concept which considers both microscopic and macroscopic aspects of the device was developed. The final device exhibits an insertion loss of 9 dB from "in"- to "through"-port, a 1 dB bandwidth of >50 GHz and switch extinction ratios in excess of 40 dB.

  14. Enhanced optical second harmonic generation in hybrid polymer nanoassemblies based on coupled surface plasmon resonance of a gold nanoparticle array

    NASA Astrophysics Data System (ADS)

    Ishifuji, Miki; Mitsuishi, Masaya; Miyashita, Tokuji

    2006-07-01

    Effective utilization of coupled surface plasmon resonance from gold nanoparticles was demonstrated experimentally for optoelectronic applications based on second-order nonlinear optics. Hybrid polymer nanoassemblies were constructed by manipulating gold nanoparticle arrays with nonlinear optical active polymer nanosheets to investigate the second harmonic generation. The gold nanoparticle arrays were assembled on heterodeposited polymer nanosheets. The second harmonic light intensity was enhanced by a factor of 8. The observed enhancement was attributed to coupling of surface plasmons between two adjacent gold nanoparticles, thereby enhancing the surface electromagnetic field around the nanoparticles at the fundamental light wavelength (1064nm).

  15. A model of binding on DNA microarrays: understanding the combined effect of probe synthesis failure, cross-hybridization, DNA fragmentation and other experimental details of affymetrix arrays

    PubMed Central

    2012-01-01

    Background DNA microarrays are used both for research and for diagnostics. In research, Affymetrix arrays are commonly used for genome wide association studies, resequencing, and for gene expression analysis. These arrays provide large amounts of data. This data is analyzed using statistical methods that quite often discard a large portion of the information. Most of the information that is lost comes from probes that systematically fail across chips and from batch effects. The aim of this study was to develop a comprehensive model for hybridization that predicts probe intensities for Affymetrix arrays and that could provide a basis for improved microarray analysis and probe development. The first part of the model calculates probe binding affinities to all the possible targets in the hybridization solution using the Langmuir isotherm. In the second part of the model we integrate details that are specific to each experiment and contribute to the differences between hybridization in solution and on the microarray. These details include fragmentation, wash stringency, temperature, salt concentration, and scanner settings. Furthermore, the model fits probe synthesis efficiency and target concentration parameters directly to the data. All the parameters used in the model have a well-established physical origin. Results For the 302 chips that were analyzed the mean correlation between expected and observed probe intensities was 0.701 with a range of 0.88 to 0.55. All available chips were included in the analysis regardless of the data quality. Our results show that batch effects arise from differences in probe synthesis, scanner settings, wash strength, and target fragmentation. We also show that probe synthesis efficiencies for different nucleotides are not uniform. Conclusions To date this is the most complete model for binding on microarrays. This is the first model that includes both probe synthesis efficiency and hybridization kinetics/cross-hybridization. These

  16. Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors.

    PubMed

    Voortman, Johannes; Lee, Jih-Hsiang; Killian, Jonathan Keith; Suuriniemi, Miia; Wang, Yonghong; Lucchi, Marco; Smith, William I; Meltzer, Paul; Wang, Yisong; Giaccone, Giuseppe

    2010-07-20

    The goal of this study was to characterize and classify pulmonary neuroendocrine tumors based on array comparative genomic hybridization (aCGH). Using aCGH, we performed karyotype analysis of 33 small cell lung cancer (SCLC) tumors, 13 SCLC cell lines, 19 bronchial carcinoids, and 9 gastrointestinal carcinoids. In contrast to the relatively conserved karyotypes of carcinoid tumors, the karyotypes of SCLC tumors and cell lines were highly aberrant. High copy number (CN) gains were detected in SCLC tumors and cell lines in cytogenetic bands encoding JAK2, FGFR1, and MYC family members. In some of those samples, the CN of these genes exceeded 100, suggesting that they could represent driver alterations and potential drug targets in subgroups of SCLC patients. In SCLC tumors, as well as bronchial carcinoids and carcinoids of gastrointestinal origin, recurrent CN alterations were observed in 203 genes, including the RB1 gene and 59 microRNAs of which 51 locate in the DLK1-DIO3 domain. These findings suggest the existence of partially shared CN alterations in these tumor types. In contrast, CN alterations of the TP53 gene and the MYC family members were predominantly observed in SCLC. Furthermore, we demonstrated that the aCGH profile of SCLC cell lines highly resembles that of clinical SCLC specimens. Finally, by analyzing potential drug targets, we provide a genomics-based rationale for targeting the AKT-mTOR and apoptosis pathways in SCLC.

  17. Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity

    DOE PAGES

    Mitrofanov, Oleg; Brener, Igal; Luk, Ting S.; ...

    2015-11-19

    Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. Themore » effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). As a result, by monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.« less

  18. Photoconductive terahertz near-field detector with a hybrid nanoantenna array cavity

    SciTech Connect

    Mitrofanov, Oleg; Brener, Igal; Luk, Ting S.; Reno, John L.

    2015-11-19

    Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. The effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). As a result, by monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.

  19. A slot-scanned photodiode-array/CCD hybrid detector for digital mammography.

    PubMed

    Mainprize, James G; Ford, Nancy L; Yin, Shi; Tümer, Türmay; Yaffe, Martin J

    2002-02-01

    We have developed a novel direct conversion detector for use in a slot-scanning digital mammography system. The slot-scan concept allows for dose efficient scatter rejection and the ability to use small detectors to produce a large-area image. The detector is a hybrid design with a 1.0 mm thick silicon PIN photodiode array (the x-ray absorber) indium-bump bonded to a CCD readout that is operated in time-delay integration (TDI) mode. Because the charge capacity requirement for good image quality exceeds the capabilities of standard CCDs, a novel CCD was developed. This CCD consists of 24 independent sections, each acting as a miniature CCD with eight rows for TDI. The signal from each section is combined off-chip to produce a full signal image. The MTF and DQE for the device was measured at several exposures and compared to a linear systems model of signal and noise propagation. Because of the scanning nature of TDI imaging, both the MTF(f) and DQE(f) are reduced along the direction of the scanning motion. For a 26 kVp spectrum, the DQE(0) was measured to be 0.75+/-0.02 for an exposure of 1.29 x 10(-5) C/kg (50 mR).

  20. New Tools for Embryo Selection: Comprehensive Chromosome Screening by Array Comparative Genomic Hybridization

    PubMed Central

    Cobo, Ana Cristina; Milán, Miguel; Al-Asmar, Nasser; García-Herrero, Sandra; Mir, Pere; Simón, Carlos

    2014-01-01

    The objective of this study was to evaluate the usefulness of comprehensive chromosome screening (CCS) using array comparative genomic hybridization (aCGH). The study included 1420 CCS cycles for recurrent miscarriage (n = 203); repetitive implantation failure (n = 188); severe male factor (n = 116); previous trisomic pregnancy (n = 33); and advanced maternal age (n = 880). CCS was performed in cycles with fresh oocytes and embryos (n = 774); mixed cycles with fresh and vitrified oocytes (n = 320); mixed cycles with fresh and vitrified day-2 embryos (n = 235); and mixed cycles with fresh and vitrified day-3 embryos (n = 91). Day-3 embryo biopsy was performed and analyzed by aCGH followed by day-5 embryo transfer. Consistent implantation (range: 40.5–54.2%) and pregnancy rates per transfer (range: 46.0–62.9%) were obtained for all the indications and independently of the origin of the oocytes or embryos. However, a lower delivery rate per cycle was achieved in women aged over 40 years (18.1%) due to the higher percentage of aneuploid embryos (85.3%) and lower number of cycles with at least one euploid embryo available per transfer (40.3%). We concluded that aneuploidy is one of the major factors which affect embryo implantation. PMID:24877108

  1. The energy spectrum of Telescope Array's Middle Drum detector and the direct comparison to the High Resolution Fly's Eye experiment

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Gorbunov, D.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lim, S. I.; Machida, S.; Martens, K.; Martineau, J.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Myers, I.; Minamino, M.; Miyata, K.; Murano, Y.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Sonley, T. J.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Vasiloff, G.; Wada, Y.; Wong, T.; Wood, M.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2012-12-01

    The Telescope Array's Middle Drum fluorescence detector was instrumented with telescopes refurbished from the High Resolution Fly's Eye's HiRes-1 site. The data observed by Middle Drum in monocular mode was analyzed via the HiRes-1 profile-constrained geometry reconstruction technique and utilized the same calibration techniques enabling a direct comparison of the energy spectra and energy scales between the two experiments. The spectrum measured using the Middle Drum telescopes is based on a three-year exposure collected between December 16, 2007 and December 16, 2010. The calculated difference between the spectrum of the Middle Drum observations and the published spectrum obtained by the data collected by the HiRes-1 site allows the HiRes-1 energy scale to be transferred to Middle Drum. The HiRes energy scale is applied to the entire Telescope Array by making a comparison between Middle Drum monocular events and hybrid events that triggered both Middle Drum and the Telescope Array's scintillator ground array.

  2. Cloth-based hybridization array system for the detection of Clostridium botulinum type A, B, E, and F neurotoxin genes.

    PubMed

    Gauthier, M; Cadieux, B; Austin, J W; Blais, B W

    2005-07-01

    A simple cloth-based hybridization array system was developed for the characterization of Clostridium botulinum isolates based on the botulinum neurotoxin serotype. Bacterial isolates were subjected to a multiplex PCR incorporating digoxigenin-dUTP and primers targeting the four botulinum neurotoxin gene serotypes (A, B, E, and F) predominantly involved in human illness, followed by hybridization of the amplicons with an array of toxin gene-specific oligonucleotide probes immobilized on polyester cloth and subsequent immunoenzymatic assay of the bound digoxigenin label. This system provided sensitive and specific detection of the different botulinum neurotoxin gene markers in a variety of C. botulinum strains, exhibiting the expected patterns of reactivity with a panel of target and nontarget organisms.

  3. Association between chromosomal aberration of COX8C and tethered spinal cord syndrome: array-based comparative genomic hybridization analysis

    PubMed Central

    Zhao, Qiu-jiong; Bai, Shao-cong; Cheng, Cheng; Tao, Ben-zhang; Wang, Le-kai; Liang, Shuang; Yin, Ling; Hang, Xing-yi; Shang, Ai-jia

    2016-01-01

    Copy number variations have been found in patients with neural tube abnormalities. In this study, we performed genome-wide screening using high-resolution array-based comparative genomic hybridization in three children with tethered spinal cord syndrome and two healthy parents. Of eight copy number variations, four were non-polymorphic. These non-polymorphic copy number variations were associated with Angelman and Prader-Willi syndromes, and microcephaly. Gene function enrichment analysis revealed that COX8C, a gene associated with metabolic disorders of the nervous system, was located in the copy number variation region of Patient 1. Our results indicate that array-based comparative genomic hybridization can be used to diagnose tethered spinal cord syndrome. Our results may help determine the pathogenesis of tethered spinal cord syndrome and prevent occurrence of this disease. PMID:27651783

  4. Efficient electron transfers in ZnO nanorod arrays with N719 dye for hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Thitima, Rattanavoravipa; Patcharee, Chareonsirithavorn; Takashi, Sagawa; Susumu, Yoshikawa

    2009-02-01

    Hybrid organic-inorganic solar cells have been focused on producing materials in the combination of metal oxide with high electron mobility and organic semiconductors of conjugated polymers. In this article, we demonstrated the charge injection efficiency of hybrid solar cell consisting of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C 61 butyric acid methyl ester (PCBM)/ZnO with and without N719 dye molecule. After the modification of ZnO nanorod arrays with N719, short-circuit current density ( Jsc) of 8.89 mA/cm 2 was obtained, and it was 1.5 times higher than that of without the N719. The power conversion efficiency was enhanced from 1.16% to 2.0% through the additional surface modification of the ZnO nanorod array with N719 dye.

  5. Field experiments of dispersion through regular arrays of cubic structures

    NASA Astrophysics Data System (ADS)

    MacDonald, R. W.; Griffiths, R. F.; Cheah, S. C.

    To investigate the effect of plan area density on the near-field dispersion of pollutant plumes in built-up areas, scaled field measurements have been made of the dispersion of a plume released upwind of regular arrays of cubes of varying plan area density.It was found that the lateral concentration profiles were Gaussian in all cases. Close to the source, the lateral dispersion parameter σy was increased, relative to that of a plume in open terrain and was highest for the most dense array. Despite the increased plume dimensions in the array, the reduction in advection velocity resulted in ground-level concentrations that were in general not too different from those of a plume in open terrain. This behaviour can be modelled by a Gaussian-plume-type expression for time-averaged concentration.

  6. Hybrid pairwise likelihood analysis of animal behavior experiments.

    PubMed

    Cattelan, Manuela; Varin, Cristiano

    2013-12-01

    The study of the determinants of fights between animals is an important issue in understanding animal behavior. For this purpose, tournament experiments among a set of animals are often used by zoologists. The results of these tournament experiments are naturally analyzed by paired comparison models. Proper statistical analysis of these models is complicated by the presence of dependence between the outcomes of fights because the same animal is involved in different contests. This paper discusses two different model specifications to account for between-fights dependence. Models are fitted through the hybrid pairwise likelihood method that iterates between optimal estimating equations for the regression parameters and pairwise likelihood inference for the association parameters. This approach requires the specification of means and covariances only. For this reason, the method can be applied also when the computation of the joint distribution is difficult or inconvenient. The proposed methodology is investigated by simulation studies and applied to real data about adult male Cape Dwarf Chameleons.

  7. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  8. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  9. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  10. Highly Ordered Vertical Arrays of TiO2/ZnO Hybrid Nanowires: Synthesis and Electrochemical Characterization.

    PubMed

    Gujarati, Tanvi P; Ashish, Ajithan G; Rai, Maniratnam; Shaijumon, Manikoth M

    2015-08-01

    We report the fabrication of vertically aligned hierarchical arrays of TiO2/ZnO hybrid nanowires, consisting of ZnO nanowires grown directly from within the pores of TiO2 nanotubes, through a combination of electrochemical anodization and hydrothermal techniques. These novel nano-architectured hybrid nanowires with its unique properties show promise as high performance supercapacitor electrodes. The electrochemical behaviour of these hybrid nanowires has been studied using Cyclic voltammetry, Galvanostatic charge-discharge and Electrochemical impedance spectroscopy (EIS) measurements using 1.5 M tetraethylammoniumtetrafluoroborate in acetonitrile as the electrolyte. Excellent electrochemical performances with a maximum specific capacitance of 2.6 mF cm-2 at a current density of 10 µA cm-2, along with exceptional cyclic stability, have been obtained for TiO2/ZnO-1 h hybrid material. The obtained results demonstrate the possibility of fabricating new geometrical architectures of inorganic hybrid nanowires with well adhered interfaces for the development of hybrid energy devices.

  11. Test Array Number 1 for Mine Detection Experiments.

    DTIC Science & Technology

    1980-01-01

    are documented, and data are presented on test site vegetation, s ,il conditions, and soil moisture content, also on meteorological conditions during...requirements and measured data on test site soil characteristics. iii TABLE OF CONTENTS PREFACE...13 4.1 Test Site Vegetation 13 4.2 Soil Conditions and Soil Moisture Content 16 5. TEST ARRAY

  12. Mars Array Technology Experiment Developed to Test Solar Arrays on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    Solar arrays will be the power supply for future missions to the planet Mars, including landers, rovers, and eventually human missions to explore the Martian surface. Until Mars Pathfinder landed in July 1997, no solar array had been used on the surface. The MATE package is intended to measure the solar energy reaching the surface, characterize the Martian environment to gather the baseline information required for designing power systems for long-duration missions, and to quantify the performance and degradation of advanced solar cells on the Martian surface. To measure the properties of sunlight reaching the Martian surface, MATE incorporates two radiometers and a visible/NIR spectrometer. The radiometers consist of multiple thermocouple junctions using thin-film technology. These devices generate a voltage proportional to the solar intensity. One radiometer measures the global broadband solar intensity, including both the direct and scattered sunlight, with a field of view of approximately 130. The second radiometer incorporates a slit to measure the direct (unscattered) intensity radiation. The direct radiometer can only be read once per day, with the Sun passing over the slit. The spectrometer measures the global solar spectrum with two 256-element photodiode arrays, one Si sensitive in the visible range (300 to 1100 nm), and a second InGaAs sensitive to the near infrared (900 to 1700 nm). This range covers 86 percent of the total energy from the Sun, with approximately 5-nm resolution. Each photodiode array has its own fiber-optic feed and grating. Although the purpose of the MATE is to gather data useful in designing solar arrays for Mars surface power systems, the radiometer and spectrometer measurements are expected to also provide important scientific data for characterizing the properties of suspended atmospheric dust. In addition to measuring the solar environment of Mars, MATE will measure the performance of five different individual solar cell types

  13. An Improved Solution for Integrated Array Optics in Quasi-Optical mm and Submm Receivers: the Hybrid Antenna

    NASA Technical Reports Server (NTRS)

    Buttgenbach, Thomas H.

    1993-01-01

    The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.

  14. An Improved Solution for Integrated Array Optics in Quasi-Optical mm and Submm Receivers: the Hybrid Antenna

    NASA Technical Reports Server (NTRS)

    Buttgenbach, Thomas H.

    1993-01-01

    The hybrid antenna discussed here is defined as a dielectric lens-antenna as a special case of an extended hemi-spherical dielectric lens that is operated in the diffraction limited regime. It is a modified version of the planar antenna on a lens scheme developed by Rutledge. The dielectric lens-antenna is fed by a planar-structure antenna, which is mounted on the flat side of the dielectric lens-antenna using it as a substrate, and the combination is termed a hybrid antenna. Beam pattern and aperture efficiency measurements were made at millimeter and submillimeter wavelengths as a function of extension of the hemi- spherical lens and different lens sizes. An optimum extension distance is found experimentally and numerically for which excellent beam patterns and simultaneously high aperture efficiencies can be achieved. At 115 GHz the aperture efficiency was measured to be (76 4 +/- 6) % for a diffraction limited beam with sidelobes below -17 dB. Results of a single hybrid antenna with an integrated Superconductor-Insulator-Superconductor (SIS) detector and a broad-band matching structure at submillimeter wavelengths are presented. The hybrid antenna is diffraction limited, space efficient in an array due to its high aperture efficiency, and is easily mass produced, thus being well suited for focal plane heterodyne receiver arrays.

  15. Carbon fiber/Co9S8 nanotube arrays hybrid structures for flexible quantum dot-sensitized solar cells.

    PubMed

    Guo, Wenxi; Chen, Chang; Ye, Meidan; Lv, Miaoqiang; Lin, Changjian

    2014-04-07

    Recently, hybrid carbon materials and inorganic nanocrystals have received an intensive amount of attention and have opened up an exciting new field in the design and fabrication of high-performance catalysts. Here we present a novel kind of hybrid counter electrode (CE) consisting of a carbon fiber (CF) and Co9S8 nanotube arrays (NTs) for fiber-shaped flexible quantum dot-sensitized solar cells (QDSSCs). The growth mechanisms of Co(CO3)0.35Cl0.20(OH)1.10 nanowire arrays (NWs) on the CFs were discussed, and the catalytic activity of the CF, Pt and Co9S8/CF hybrid structure (Co9S8@CF) were elucidated systematically as well. An absolute energy conversion efficiency of 3.79% has been demonstrated under 100 mW cm(-2) AM 1.5 illumination by using Co9S8@CF as a CE. This work not only demonstrates an innovative approach for growing cobalt sulfide NTs on flexible substrates that can be applied in flexible devices for energy harvesting and storage, but also provides a kind of hybrid structure and high-efficiency CE for QDSSCs.

  16. Validation Report for the EO-1 Lightweight Flexible Solar Array Experiment

    NASA Technical Reports Server (NTRS)

    Carpenter, Bernie; Lyons, John; Day, John (Technical Monitor)

    2001-01-01

    The controlled deployment of the Lightweight Flexible Solar Array (LFSA) experiment using the shape memory alloy release and deployment system has been demonstrated. Work remains to be done in increasing the efficiency of Copper Indium Diselinide (CIS) terminations to the flexible harness that carries current from the array to the I-V measurement electronics.

  17. Fast and enhanced broadband photoresponse of a ZnO nanowire array/reduced graphene oxide film hybrid photodetector from the visible to the near-infrared range.

    PubMed

    Liu, Hao; Sun, Qi; Xing, Jie; Zheng, Zhiyuan; Zhang, Zhili; Lü, Zhiqing; Zhao, Kun

    2015-04-01

    In the present work, a ZnO nanowire array/reduced graphene oxide film hybrid nanostructure was realized, and the photovoltaic responses from the visible to the near-infrared range were investigated. Compared with the pure ZnO nanowire array and rGO thin film, the hybrid composite exhibited a fast and greatly enhanced broadband photovoltaic response that resulted from the formation of interfacial Schottky junctions between ZnO and rGO.

  18. Data Quality Analysis for the Bighorn Arch Seismic Array Experiment

    NASA Astrophysics Data System (ADS)

    Mancinelli, N. J.; Yang, Z.; Yeck, W. L.; Sheehan, A. F.

    2010-12-01

    We analyze background noise to assess the difference in station noise levels of different types of seismic sensors and the effects of deployed site locations, and to identify local noise sources, using the data from the Bighorn Arch Seismic Experiment (BASE). Project BASE is an EarthScope Flexible Array (FA) project and includes the deployment of 38 broadband seismometers (Guralp CMG3T), 173 short-period seismometers (L22 and CMG40T-1s), and 1850 high-frequency geophones with Reftek RT125 “Texans” in northern Wyoming, providing continuous dataset of various seismic sensor types and site locations in different geologic setups (basins and mountains). We carry out our analysis through a recently developed approach of using probability density function (PDF) to display the distribution of seismic power spectral density (PSD) [McNamara and Buland, 2004]. This new approach bypasses the tedious pre-screening for transient signals (earthquakes, mass recentering, calibration pulses, etc.) which is required by the traditional PSD analysis. Using the program PQLX, we were able to correlate specific noise sources—mine blasts, teleseisms, passing cars, etc—with features seen on PDF plots. We analyzed eight months of continuous BASE project broadband and short period data for this study. The power spectral density plots suggest that, of the 3 different instrument types used in the BASE project, the broadband CMG3T stations have the lowest background noise in the period range of 0.1-1 s while the short-period L22 stations have the highest background noise. As expected, stations located in the Bighorn Mountain Range are closer to the Low Noise Model [Peterson, 1993] than those located in the adjacent Bighorn Basin and Powder River Basin, particularly in the 0.1-1 s period range. This is mainly attributed to proximity to bedrock, though increased distance from cultural noise also contributes. At longer periods (1-100 s), the noise level of broadband instruments is lower

  19. Diminished effect of maternal age on implantation after preimplantation genetic diagnosis with array comparative genomic hybridization.

    PubMed

    Harton, Gary L; Munné, Santiago; Surrey, Mark; Grifo, Jamie; Kaplan, Brian; McCulloh, David H; Griffin, Darren K; Wells, Dagan

    2013-12-01

    To assess the relationship between maternal age, chromosome abnormality, implantation, and pregnancy loss. Multicenter retrospective study. IVF centers in the United States. IVF patients undergoing chromosome screening. Embryo biopsy on day 3 or day 5/6 with preimplantation genetic diagnosis (PGD) by array comparative genomic hybridization. Aneuploidy, implantation, pregnancy, and loss rates. Aneuploidy rates increased with maternal age from 53% to 93% for day 3 biopsies and from 32% to 85% for blastocyst biopsies. Implantation rates for euploid embryos for ages <35-42 years did not decrease after PGD: ranges 44%-32% for day 3 and 51%-40% for blastocyst. Ongoing pregnancy rates per transfer did not decrease for maternal ages <42 years after PGD with day 3 biopsy (48.5%-38.1%) or blastocyst biopsy (64.4%-54.5%). Patients >42 years old had implantation rates of 23.3% (day 3), 27.7% (day 5/6), and the pregnancy rate with day 3 biopsy was 9.3% and with day 5 biopsy 10.3%. Selective transfer of euploid embryos showed that implantation and pregnancy rates were not significantly different between reproductively younger and older patients up to age 42 years. Some patients who start an IVF cycle planning to have chromosome screening do not have euploid embryos available for transfer, a situation that increases with advancing maternal age. Mounting data suggests that the dramatic decline in IVF treatment success rates with female age is primarily caused by aneuploidy. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Application of array-comparative genomic hybridization in tetralogy of Fallot.

    PubMed

    Liu, Lin; Wang, Hong-Dan; Cui, Cun-Ying; Wu, Dong; Li, Tao; Fan, Tai-Bing; Peng, Bang-Tian; Zhang, Lian-Zhong; Wang, Cheng-Zeng

    2016-12-01

    To explore the underlying pathogenesis and provide references for genetic counseling and prenatal gene diagnosis, we analyzed the chromosome karyotypes and genome-wide copy number variations (CNVs) in 86 patients with tetralogy of Fallot (TOF) by G-banding karyotype analysis and array-comparative genomic hybridization (aCGH), respectively. And then quantitative polymerase chain reaction was used to validate these candidate CNVs. Based on their different properties, CNVs were categorized into benign CNVs, suspiciously pathogenic CNVs, and indefinite CNVs. Data analysis was based on public databases such as UCSC, DECIPHER, DGV, ISCA, and OMIM.The karyotype was normal in all the 86 patients with TOF. CNVs were detected in 11 patients by aCGH and quantitative polymerase chain reaction. Patient no. 0001, 0010, and 0029 had 2.52-Mb deletion in the chromosome 22q11.21 region; patient no. 0008 had both 595- and 428-kb duplications, respectively, in 12p12.3p12.2 and 14q23.2q23.3 regions; patient no. 0009 had 1.46-Mb duplication in the 1q21.1q21.2 region; patient no. 0016 had 513-kb duplication in the 1q42.13 region; patient no. 0024 had 292-kb duplication in the 16q11.2 region; patient no. 0026 had 270-kb duplication in the 16q24.1 region; patient no. 0028 had 222-kb deletion in the 7q31.1 region; patient no. 0033 had 1.73-Mb duplication in the 17q12 region; and patient no. 0061 had 5.79-Mb deletion in the 1p36.33p36.31 region.aCGH can accurately detect CNVs in the patients with TOF. This is conducive to genetic counseling and prenatal diagnosis for TOF and provides a new clue and theoretical basis for exploring the pathogenesis of congenital heart disease.

  1. Characterization of copy number variation in genomic regions containing STR loci using array comparative genomic hybridization.

    PubMed

    Repnikova, Elena A; Rosenfeld, Jill A; Bailes, Andrea; Weber, Cecilia; Erdman, Linda; McKinney, Aimee; Ramsey, Sarah; Hashimoto, Sayaka; Lamb Thrush, Devon; Astbury, Caroline; Reshmi, Shalini C; Shaffer, Lisa G; Gastier-Foster, Julie M; Pyatt, Robert E

    2013-09-01

    Short tandem repeat (STR) loci are commonly used in forensic casework, familial analysis for human identification, and for monitoring hematopoietic cell engraftment after bone marrow transplant. Unexpected genetic variation leading to sequence and length differences in STR loci can complicate STR typing, and presents challenges in casework interpretation. Copy number variation (CNV) is a relatively recently identified form of genetic variation consisting of genomic regions present at variable copy numbers within an individual compared to a reference genome. Large scale population studies have demonstrated that likely all individuals carry multiple regions with CNV of 1kb in size or greater in their genome. To date, no study correlating genomic regions containing STR loci with CNV has been conducted. In this study, we analyzed results from 32,850 samples sent for clinical array comparative genomic hybridization (CGH) analysis for the presence of CNV at regions containing the 13 CODIS (Combined DNA Index System) STR, and the Amelogenin X (AMELX) and Amelogenin Y (AMELY) loci. Thirty-two individuals with CNV involving STR loci on chromosomes 2, 4, 7, 11, 12, 13, 16, and 21, and twelve with CNV involving the AMELX/AMELY loci were identified. These results were correlated with data from publicly available databases housing information on CNV identified in normal populations and additional clinical cases. These collective results demonstrate the presence of CNV in regions containing 9 of the 13 CODIS STR and AMELX/Y loci. Further characterization of STR profiles within regions of CNV, additional cataloging of these variants in multiple populations, and contributing such examples to the public domain will provide valuable information for reliable use of these loci.

  2. Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties

    PubMed Central

    2010-01-01

    Background Trichoderma reesei is the main industrial producer of cellulases and hemicellulases that are used to depolymerize biomass in a variety of biotechnical applications. Many of the production strains currently in use have been generated by classical mutagenesis. In this study we characterized genomic alterations in high-producing mutants of T. reesei by high-resolution array comparative genomic hybridization (aCGH). Our aim was to obtain genome-wide information which could be utilized for better understanding of the mechanisms underlying efficient cellulase production, and would enable targeted genetic engineering for improved production of proteins in general. Results We carried out an aCGH analysis of four high-producing strains (QM9123, QM9414, NG14 and Rut-C30) using the natural isolate QM6a as a reference. In QM9123 and QM9414 we detected a total of 44 previously undocumented mutation sites including deletions, chromosomal translocation breakpoints and single nucleotide mutations. In NG14 and Rut-C30 we detected 126 mutations of which 17 were new mutations not documented previously. Among these new mutations are the first chromosomal translocation breakpoints identified in NG14 and Rut-C30. We studied the effects of two deletions identified in Rut-C30 (a deletion of 85 kb in the scaffold 15 and a deletion in a gene encoding a transcription factor) on cellulase production by constructing knock-out strains in the QM6a background. Neither the 85 kb deletion nor the deletion of the transcription factor affected cellulase production. Conclusions aCGH analysis identified dozens of mutations in each strain analyzed. The resolution was at the level of single nucleotide mutation. High-density aCGH is a powerful tool for genome-wide analysis of organisms with small genomes e.g. fungi, especially in studies where a large set of interesting strains is analyzed. PMID:20642838

  3. Array comparative genomic hybridization and cytogenetic analysis in pediatric acute leukemias.

    PubMed

    Dawson, A J; Yanofsky, R; Vallente, R; Bal, S; Schroedter, I; Liang, L; Mai, S

    2011-10-01

    Most patients with acute lymphocytic leukemia (all) are reported to have acquired chromosomal abnormalities in their leukemic bone marrow cells. Many established chromosome rearrangements have been described, and their associations with specific clinical, biologic, and prognostic features are well defined. However, approximately 30% of pediatric and 50% of adult patients with all do not have cytogenetic abnormalities of clinical significance. Despite significant improvements in outcome for pediatric all, therapy fails in approximately 25% of patients, and these failures often occur unpredictably in patients with a favorable prognosis and "good" cytogenetics at diagnosis.It is well known that karyotype analysis in hematologic malignancies, although genome-wide, is limited because of altered cell kinetics (mitotic rate), a propensity of leukemic blasts to undergo apoptosis in culture, overgrowth by normal cells, and chromosomes of poor quality in the abnormal clone. Array comparative genomic hybridization (acgh-"microarray") has a greatly increased genomic resolution over classical cytogenetics. Cytogenetic microarray, which uses genomic dna, is a powerful tool in the analysis of unbalanced chromosome rearrangements, such as copy number gains and losses, and it is the method of choice when the mitotic index is low and the quality of metaphases is suboptimal. The copy number profile obtained by microarray is often called a "molecular karyotype."In the present study, microarray was applied to 9 retrospective cases of pediatric all either with initial high-risk features or with at least 1 relapse. The conventional karyotype was compared to the "molecular karyotype" to assess abnormalities as interpreted by classical cytogenetics. Not only were previously undetected chromosome losses and gains identified by microarray, but several karyotypes interpreted by classical cytogenetics were shown to be discordant with the microarray results. The complementary use of microarray

  4. The arcing rate for a High Voltage Solar Array - Theory, experiment and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces which can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays which ascribes the arcing to electric field runaway at the interface of the plasma, conductor and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array (HVSA) experiment which will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail to the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  5. Arcing rates for High Voltage Solar Arrays - Theory, experiment, and predictions

    NASA Technical Reports Server (NTRS)

    Hastings, Daniel E.; Cho, Mengu; Kuninaka, Hitoshi

    1992-01-01

    All solar arrays have biased surfaces that can be exposed to the space environment. It has been observed that when the array bias is less than a few hundred volts negative, then the exposed conductive surfaces may undergo arcing in the space plasma. A theory for arcing is developed on these high voltage solar arrays that ascribes the arcing to electric field runaway at the interface of the plasma, conductor, and solar cell dielectric. Experiments were conducted in the laboratory for the High Voltage Solar Array experiment that will fly on the Japanese Space Flyer Unit (SFU) in 1994. The theory was compared in detail with the experiment and shown to give a reasonable explanation for the data. The combined theory and ground experiments were then used to develop predictions for the SFU flight.

  6. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode

    NASA Astrophysics Data System (ADS)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Fujii, T.; Fukushima, M.; Goto, T.; Hanlon, W.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzawa, T.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2015-04-01

    Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly's Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of Xmax are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.

  7. Double hypernuclei experiment with hybrid emulsion method (J-PARC E07)

    NASA Astrophysics Data System (ADS)

    Ekawa, Hiroyuki; J-APRC E07 Collaboration

    2014-09-01

    Double hypernuclei are important probes to study the system with strangeness -2. In order to search for double hypernuclei, an upgrade experiment is planned at J-PARC K1.8 beam line. In the experiment, the KURAMA spectrometer system will detect Ξ- production in the (K- ,K+) reaction on a diamond target. SSDs located the upstream and the downstream of emulsion plates will record Ξ- tracks which flight toward emulsion plates precisely. Tracks in SSDs and emulsion will be automatically connected by a hybrid method. Discoveries of more than 10 new double hypernuclear species are expected, which enable us to discuss binding energy in terms of mass number dependence. On the other hand, we will also observe X rays from Ξ- atoms with a Germanium detector array installed close to the emulsion by tagging Ξ-stopped events. This will be the first measurement in the world and give information on the Ξ-potential shape at the nuclear surface region. Emulsion production has been completely done and a test experiment for some detectors of KURAMA spectrometer was carried out. In this talk, physics motivation and current status of the J-PARC E07 experiment will be reported.

  8. Microphthalmia with linear skin defects (MLS) syndrome evaluated by prenatal karyotyping, FISH and array comparative genomic hybridization.

    PubMed

    Cain, Colyn Cargile; Saul, Daniel; Attanasio, Lisa; Oehler, Erin; Hamosh, Ada; Blakemore, Karin; Stetten, Gail

    2007-04-01

    To explore the utility of comparative genomic hybridization to BAC arrays (array CGH) for prenatal diagnosis of microphthalmia and linear skin defects syndrome. We used karyotype analysis, FISH and array CGH to investigate an X;Y translocation. Replication studies were done on cultured amniocytes and lymphoblasts. We describe a severe case of MLS syndrome that presented prenatally with multiple anomalies including cystic hygroma, microphthalmia, intrauterine growth restriction and a complex congenital heart defect. Cytogenetic analysis of amniocytes revealed an unbalanced de novo translocation between chromosomes X and Y [karyotype 46,X,der(X)t(X;Y)(p22.3;q11.2).ish der(X)(DXZ1+,DMD+,KAL-,STS-,SRY-),22q11.2 (Tuple1 x 2)]. MLS diagnosis was made at birth and the prenatal karyotype was confirmed. Replication studies showed the derivative X chromosome was the inactive X. Array CGH confirmed the X and Y imbalances seen in the karyotype and also showed twelve BACs in the MLS region were deleted as a result of the translocation. FISH with BAC clones verified the array findings and placed the X breakpoint in Xp22.2, resulting in the amended karyotype, 46,X,der(X)t(X;Y)(p22.2;q11.2).ish der(X)(DXZ1+,DMD+,KAL-,STS-,SRY-),22q11.2(Tuple1 x 2) arr cgh Xp22.33p22.2(LLNOYCO3M15D10 -->GS1-590J6)x 1,Yq11.222q23(RP11-20H21-->RP11-79J10)x 1. The sensitivity of array CGH was valuable in detecting monosomy of the MLS critical region. Array CGH should be considered for the prenatal diagnosis of this syndrome. Copyright (c) 2007 John Wiley & Sons, Ltd.

  9. Development of Yangbajing air shower core detector for a new EAS hybrid experiment

    NASA Astrophysics Data System (ADS)

    Liu, Jin-Sheng; Huang, Jing; Chen, Ding; Zhang, Ying; Zhai, Liu-Ming; Chen, Xu; Hu, Xiao-Bin; Lin, Yu-Hui; Zhang, Xue-Yao; Feng, Cun-Feng; Jia, Huan-Yu; Zhou, Xun-Xiu; Danzengluobu; Chen, Tian-Lu; Li, Hai-Jin; Liu, Mao-Yuan; Yuan, Ai-Fang

    2015-08-01

    Aiming at the observation of cosmic-ray chemical composition in the “knee” energy region, we have been developing a new type of air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522° E, 30.102° N, 4300 m above sea level, atmospheric depth: 606 g/m2) in Tibet, China. YAC works together with the Tibet air-shower array (Tibet-III) and an underground water Cherenkov muon detector array (MD) as a hybrid experiment. Each YAC detector unit consists of lead plates of 3.5 cm thickness and a scintillation counter which detects the burst size induced by high energy particles in the air-shower cores. The burst size can be measured from 1 MIP (Minimum Ionization Particle) to 106 MIPs. The first phase of this experiment, named “YAC- I”, consists of 16 YAC detectors each with a size of 40 cm×50 cm and distributed in a grid with an effective area of 10 m2. YAC- I is used to check hadronic interaction models. The second phase of the experiment, called “YAC- II”, consists of 124 YAC detectors with coverage of about 500 m2. The inner 100 detectors of 80 cm×50 cm each are deployed in a 10×10 matrix with a 1.9 m separation; the outer 24 detectors of 100 cm×50 cm each are distributed around these to reject non-core events whose shower cores are far from the YAC- II array. YAC- II is used to study the primary cosmic-ray composition, in particular, to obtain the energy spectra of protons, helium and iron nuclei between 5×1013 eV and 1016 eV, covering the “knee” and also connected with direct observations at energies around 100 TeV. We present the design and performance of YAC- II in this paper. Supported by grants from the National Natural Science Foundation of China (11078002, 11275212, 11165013), the Chinese Academy of Sciences (H9291450S3, Y4293211S5) and the Knowledge Innovation Fund of Institute of High Energy Physics (IHEP), China (H95451D0U2, H8515530U1)

  10. Analysis of Molecular Cytogenetic Alteration in Rhabdomyosarcoma by Array Comparative Genomic Hybridization

    PubMed Central

    Liu, Chunxia; Li, Dongliang; Jiang, Jinfang; Hu, Jianming; Zhang, Wei; Chen, Yunzhao; Cui, Xiaobin; Qi, Yan; Zou, Hong; Zhang, WenJie; Li, Feng

    2014-01-01

    Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. The genetic etiology of RMS remains largely unclear underlying its development and progression. To reveal novel genes more precisely and new therapeutic targets associated with RMS, we used high-resolution array comparative genomic hybridization (aCGH) to explore tumor-associated copy number variations (CNVs) and genes in RMS. We confirmed several important genes by quantitative real-time polymerase chain reaction (QRT-PCR). We then performed bioinformatics-based functional enrichment analysis for genes located in the genomic regions with CNVs. In addition, we identified miRNAs located in the corresponding amplification and deletion regions and performed miRNA functional enrichment analysis. aCGH analyses revealed that all RMS showed specific gains and losses. The amplification regions were 12q13.12, 12q13.3, and 12q13.3–q14.1. The deletion regions were 1p21.1, 2q14.1, 5q13.2, 9p12, and 9q12. The recurrent regions with gains were 12q13.3, 12q13.3–q14.1, 12q14.1, and 17q25.1. The recurrent regions with losses were 9p12–p11.2, 10q11.21–q11.22, 14q32.33, 16p11.2, and 22q11.1. The mean mRNA level of GLI1 in RMS was 6.61-fold higher than that in controls (p = 0.0477) by QRT-PCR. Meanwhile, the mean mRNA level of GEFT in RMS samples was 3.92-fold higher than that in controls (p = 0.0354). Bioinformatic analysis showed that genes were enriched in functions such as immunoglobulin domain, induction of apoptosis, and defensin. Proto-oncogene functions were involved in alveolar RMS. miRNAs that located in the amplified regions in RMS tend to be enriched in oncogenic activity (miR-24 and miR-27a). In conclusion, this study identified a number of CNVs in RMS and functional analyses showed enrichment for genes and miRNAs located in these CNVs regions. These findings may potentially help the identification of novel biomarkers and/or drug targets implicated in diagnosis of

  11. Application of array-comparative genomic hybridization in tetralogy of Fallot

    PubMed Central

    Liu, Lin; Wang, Hong-Dan; Cui, Cun-Ying; Wu, Dong; Li, Tao; Fan, Tai-Bing; Peng, Bang-Tian; Zhang, Lian-Zhong; Wang, Cheng-Zeng

    2016-01-01

    Abstract To explore the underlying pathogenesis and provide references for genetic counseling and prenatal gene diagnosis, we analyzed the chromosome karyotypes and genome-wide copy number variations (CNVs) in 86 patients with tetralogy of Fallot (TOF) by G-banding karyotype analysis and array-comparative genomic hybridization (aCGH), respectively. And then quantitative polymerase chain reaction was used to validate these candidate CNVs. Based on their different properties, CNVs were categorized into benign CNVs, suspiciously pathogenic CNVs, and indefinite CNVs. Data analysis was based on public databases such as UCSC, DECIPHER, DGV, ISCA, and OMIM. The karyotype was normal in all the 86 patients with TOF. CNVs were detected in 11 patients by aCGH and quantitative polymerase chain reaction. Patient no. 0001, 0010, and 0029 had 2.52-Mb deletion in the chromosome 22q11.21 region; patient no. 0008 had both 595- and 428-kb duplications, respectively, in 12p12.3p12.2 and 14q23.2q23.3 regions; patient no. 0009 had 1.46-Mb duplication in the 1q21.1q21.2 region; patient no. 0016 had 513-kb duplication in the 1q42.13 region; patient no. 0024 had 292-kb duplication in the 16q11.2 region; patient no. 0026 had 270-kb duplication in the 16q24.1 region; patient no. 0028 had 222-kb deletion in the 7q31.1 region; patient no. 0033 had 1.73-Mb duplication in the 17q12 region; and patient no. 0061 had 5.79-Mb deletion in the 1p36.33p36.31 region. aCGH can accurately detect CNVs in the patients with TOF. This is conducive to genetic counseling and prenatal diagnosis for TOF and provides a new clue and theoretical basis for exploring the pathogenesis of congenital heart disease. PMID:27930557

  12. A hybrid microsystem for parallel perfusion experiments on living cells

    NASA Astrophysics Data System (ADS)

    Greve, Frauke; Seemann, Livia; Hierlemann, Andreas; Lichtenberg, Jan

    2007-08-01

    A fully integrated microchip device for performing a complete and automated sample-perfusion experiment on living cells is presented. Cells were trapped and immobilized in a defined grid pattern inside a small 0.5 µl volume incubation chamber by pneumatic anchoring on 1000 5-µm orifices. This new cell trapping technique assures a precise and repeatable cell quantity for each experiment and enables the formation of a homogeneous cell population in the incubation chamber. The microsystem includes a perforated silicon chip seamlessly integrated by a new embedding technique in a larger elastomer substrate, which features the microfluidic network. The latter forms the incubation chamber and allows for economic logarithmic dilution of the sample reagent over a range of three orders of magnitude with subsequent perfusion of the cell population. First, the logarithmic dilution stage was validated using quantitative fluorescent imaging of fluorescein solution. Then, the cell adhesion and culturing inside the incubation chamber was studied using primary normal human dermal fibroblasts (NHDFs). The cells adhered well on laminin-coated surfaces and proliferated to form a confluent cell layer after 6 days in vitro. Finally, the complete system was tested by a perfusion experiment with cultured NHDFs, which were exposed to a fluorescent cell tracker at dilutions of 100 µm, 10 µm, 1 µm, 0.1 µm and 0 µm at a flow rate of 1.25 µl min-1 for 20 min. Fluorescence imaging of the cell array after incubation and image analysis showed a logarithmic relationship between sample concentration and the fluorescence signal. This paper describes the fabrication of the components and the assembly of the microsystem, the design approach and the validation of the sample diluter, cell-adhesion and cell-culturing experiments over several days.

  13. Carbon-coated silicon nanotube arrays on carbon cloth as a hybrid anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Gu, Lin; Qian, Haolei; Zhao, Ming; Ding, Xi; Peng, Xinsheng; Sha, Jian; Wang, Yewu

    2016-03-01

    Silicon hollow nanostructure has been considered as one of the most promising material for commercial application in lithium-ion batteries due to its significant improvement of cycling stability. The fabricated hybrid structures, carbon-coated silicon nanotube arrays on carbon cloth substrate, with a high surface area and short electron collection pathway have been directly used as anode electrodes without any additional binder. The electrodes exhibit high capacity, excellent rate capability and good cycling stability. The discharge capacity of the hybrid electrode (the deposition time of silicon shell: 5 min) keeps stable, and after 100 cycles, the discharge capacities still remain 3654 mAh g-1 at the rate of 0.5 C.

  14. A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity

    NASA Astrophysics Data System (ADS)

    Jin, Jian-Ming; Volakis, John L.

    1991-11-01

    A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of microstrip patch antennas and arrays residing in a cavity recessed in a ground plane. The technique combines the finite-element and boundary integral methods to formulate a system for the solution of the fields at the aperture and those inside the cavity via the biconjugate gradient method in conjunction with the fast Fourier transform (FFT). By virtue of the finite-element method, the proposed technique is applicable to patch antennas and arrays residing on or embedded in a layered dielectric substrate and is also capable of treating various feed configurations and impedance loads. Several numerical results are presented, demonstrating the validity, efficiency, and capability of the technique.

  15. Surface plasmon resonance imaging system with Mach-Zehnder phase-shift interferometry for DNA micro-array hybridization

    NASA Astrophysics Data System (ADS)

    Hsiu, Feng-Ming; Chen, Shean-Jen; Tsai, Chien-Hung; Tsou, Chia-Yuan; Su, Y.-D.; Lin, G.-Y.; Huang, K.-T.; Chyou, Jin-Jung; Ku, Wei-Chih; Chiu, S.-K.; Tzeng, C.-M.

    2002-09-01

    Surface plasmon resonance (SPR) imaging system is presented as a novel technique based on modified Mach-Zehnder phase-shifting interferometry (PSI) for biomolecular interaction analysis (BIA), which measures the spatial phase variation of a resonantly reflected light in biomolecular interaction. In this technique, the micro-array SPR biosensors with over a thousand probe NDA spots can be detected simultaneously. Owing to the feasible and swift measurements, the micro-array SPR biosensors can be extensively applied to the nonspecific adsorption of protein, the membrane/protein interactions, and DNA hybridization. The detection sensitivity of the SPR PSI imaging system is improved to about 1 pg/mm2 for each spot over the conventional SPR imaging systems. The SPR PSI imaging system and its SPR sensors have been successfully used to observe slightly index change in consequence of argon gas flow through the nitrogen in real time, with high sensitivity, and at high-throughout screening rates.

  16. Hybrid graphene-copper UWB array sensor for brain tumor detection via scattering parameters in microwave detection system

    NASA Astrophysics Data System (ADS)

    Jamlos, Mohd Aminudin; Ismail, Abdul Hafiizh; Jamlos, Mohd Faizal; Narbudowicz, Adam

    2017-01-01

    Hybrid graphene-copper ultra-wideband array sensor applied to microwave imaging technique is successfully used in detecting and visualizing tumor inside human brain. The sensor made of graphene coated film for the patch while copper for both the transmission line and parasitic element. The hybrid sensor performance is better than fully copper sensor. Hybrid sensor recorded wider bandwidth of 2.0-10.1 GHz compared with fully copper sensor operated from 2.5 to 10.1 GHz. Higher gain of 3.8-8.5 dB is presented by hybrid sensor, while fully copper sensor stated lower gain ranging from 2.6 to 6.7 dB. Both sensors recorded excellent total efficiency averaged at 97 and 94%, respectively. The sensor used for both transmits equivalent signal and receives backscattering signal from stratified human head model in detecting tumor. Difference in the data of the scattering parameters recorded from the head model with presence and absence of tumor is used as the main data to be further processed in confocal microwave imaging algorithm in generating image. MATLAB software is utilized to analyze S-parameter signals obtained from measurement. Tumor presence is indicated by lower S-parameter values compared to higher values recorded by tumor absence.

  17. The impact of array genomic hybridization on mental retardation research: a review of current technologies and their clinical utility.

    PubMed

    Zahir, F; Friedman, J M

    2007-10-01

    Our understanding of the causes of mental retardation is benefiting greatly from whole-genome scans to detect submicroscopic pathogenic copy number variants (CNVs) that are undetectable by conventional cytogenetic analysis. The current method of choice for performing whole-genome scans for CNVs is array genomic hybridization (AGH). Several platforms are available for AGH, each with its own strengths and limitations. This review discusses considerations that are relevant to the clinical use of whole-genome AGH platforms for the diagnosis of pathogenic CNVs in children with mental retardation. Whole-genome AGH studies are a maturing technology, but their high diagnostic utility assures their increasing use in clinical genetics.

  18. Underwater imaging using a hybrid Kirchhoff migration: direction of arrival method and a sparse surface sensor array.

    PubMed

    Dord, Jean-Francois; Farhat, Charbel

    2010-08-01

    This paper considers the problem of imaging a complex object submerged in shallow waters using a sparse surface sensor array and a hybrid signal processing method. This method is constructed by refining the Kirchhoff migration technique to incorporate a zoning of the sensors and an analysis of multiple reflections, and combining it with the direction of arrival estimation method. Its performance is assessed and analyzed with the shape identification of a mockup submarine by numerical simulation. The obtained numerical results highlight the potential of this approach for identifying underwater intruders.

  19. Clinical utility of array comparative genomic hybridization: uncovering tumor susceptibility in individuals with developmental delay.

    PubMed

    Adam, Margaret P; Justice, April N; Schelley, Susan; Kwan, Andrea; Hudgins, Louanne; Martin, Christa L

    2009-01-01

    Microarray-based comparative genomic hybridization can determine genome-wide copy number alterations at the kilobase level. We highlight the clinical utility of microarray-based comparative genomic hybridization in determining tumor susceptibility in 3 patients with dysmorphic features and developmental delay, likely decreasing both morbidity and mortality in these patients.

  20. 'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments

    SciTech Connect

    Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R.

    2004-10-01

    We are developing large pixel count, fast ({>=}100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory.

  1. SAMPIE (Solar Array Module Plasma Interactions Experiment). (Videotape)

    SciTech Connect

    Not Available

    1994-02-01

    SAMPIE is an in-space technology experiment that flew on STS-62. Its intent is to investigate the potentially damaging effects of space plasma (gases) on different types, sizes, and shapes of solar cells, solar modules, and spacecraft materials.

  2. Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization

    USDA-ARS?s Scientific Manuscript database

    This study was designed to evaluate the feasibility of using a targeted array-CGH strategy for prenatal diagnosis of genomic imbalances in a clinical setting of current pregnancies. Women undergoing prenatal diagnosis were counseled and offered array-CGH (BCM V4.0) in addition to routine chromosome ...

  3. In-Space Structural Validation Plan for a Stretched-Lens Solar Array Flight Experiment

    NASA Technical Reports Server (NTRS)

    Pappa, Richard S.; Woods-Vedeler, Jessica A.; Jones, Thomas W.

    2001-01-01

    This paper summarizes in-space structural validation plans for a proposed Space Shuttle-based flight experiment. The test article is an innovative, lightweight solar array concept that uses pop-up, refractive stretched-lens concentrators to achieve a power/mass density of at least 175 W/kg, which is more than three times greater than current capabilities. The flight experiment will validate this new technology to retire the risk associated with its first use in space. The experiment includes structural diagnostic instrumentation to measure the deployment dynamics, static shape, and modes of vibration of the 8-meter-long solar array and several of its lenses. These data will be obtained by photogrammetry using the Shuttle payload-bay video cameras and miniature video cameras on the array. Six accelerometers are also included in the experiment to measure base excitations and small-amplitude tip motions.

  4. Ka-band MMIC array system for ACTS aeronautical terminal experiment (Aero-X)

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A.; Zakrajsek, Robert J.; Lee, Richard Q.; Andro, Monty; Turtle, John P.

    1995-01-01

    During the summer of 1994, the Advanced Communication Technology Satellite (ACTS) Aeronautical Terminal Experiment (Aero-X) was successfully completed by the NASA Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). 4.8 and 9.6 Kbps duplex voice links were established between the LeRC Learjet and the ACTS Link Evaluation Terminal (LET) in Cleveland, Ohio, via the ACTS. The antenna system used in this demonstration was developed by LeRC and featured LeRC and US Air Force experimental arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The antenna system consisted of three arrays mounted inside the LeRC Learjet, pointing out through the windows. An open loop tracking controller developed by LeRC used information from the aircraft position and attitude sensors to automatically steer the arrays toward ACTS during flight JPL ACTS Mobile Terminal (AMT) system hardware was used as transceivers both on the aircraft and at the LET. The single 32 element MMIC transmit array developed by NASA/LeRC and Texas Instruments has an EIRP of 23.4 dBW at boresight. The two 20 GHz MMIC receive arrays were developed in a cooperative effort with the USAF Rome Laboratory/Electronic System Center, taking advantage of existing USAF array development contracts with Boeing and Martin Marietta. The Boeing array has 23 elements and a G/T of 16/6 db/degK at boresight. The Martin Marietta array has 16 elements and a G/T of 16.1 db/degK at boresight. The three proof-of-concept arrays, the array control system and their integration and operation in the Learjet for Aero-X are described.

  5. Early experience in human hybrid transgastric and transvaginal endoscopic cholecystectomy.

    PubMed

    Salinas, Gustavo; Saavedra, Lil; Agurto, Hellen; Quispe, Rosa; Ramírez, Edwin; Grande, José; Tamayo, Juan; Sánchez, Victoria; Málaga, Daniel; Marks, Jeffrey M

    2010-05-01

    Abdominal procedures have been performed for a long time through the anterior abdominal wall. Since the first reports in the 1980s, laparoscopy has become the standard for cholecystectomy, with many advantages over open procedures. Now a natural-orifice approach to the peritoneal cavity may further reduce the invasiveness of surgery by either diminishing or avoiding abdominal incisions. Several orifice routes to the abdominal cavity have been described: transgastric, transvaginal, transvesical, and transcolonic. Although most experiences with the porcine model showed the possibility of these approaches, few surgeons reported experiences with humans. The authors present their complete early experience with transgastric (TG) and transvaginal (TV) cholecystectomies in human beings. Thirty-nine patients (4 males and 35 females) underwent hybrid NOTES procedures from January 2007 to January 2009. The mean age was 46 years (range = 19-83). The body mass index ranged from 20 to 41 and ASA was I-II. Transgastric (TG) cholecystectomy was performed in 27 patients and 12 patients had a transvaginal (TV) cholecystectomy. The mean operative time was 140 min. Although operative times were slightly shorter in the TG group 005B137 +/- 34.6 min (range = 75-195)] compared to the TV route [147 +/- 31.5 min (range = 95-220)], there were no significant differences between the two groups (p = 0.5, Mann-Whitney U test). Patients were started on liquids within 1 h and discharged 2 h later, except the last 11 TG patients, who went home 24 h later because of enrollment in a separate protocol. An overall 20% morbidity rate and no mortality were found. The complication rates for the TG and TV groups were 18% (5/27) and 25% (3/12), respectively, which was not statistically significant (p = 0.6, chi(2) test). Seventy-five percent of complications (6/8) occurred the first year and 25% (2/8) during the second year of our experience. Transgastric and transvaginal cholecystectomies are feasible

  6. Platinum nanoparticles-single-walled carbon nanotubes hybrid based chemiresistive sensor array for myoglobin detection

    NASA Astrophysics Data System (ADS)

    Sharma, Vikash; Puri, Nitin K.; Mulchandani, Ashok; Rajesh

    2016-03-01

    We examined the potential of platinum nanoparticles (PtNP) modified single-walled carbon nanotube (SWNT) hybrid chemiresistive sensor for detection of antigen myoglobin (Mb) in phosphate buffer saline. Protein antibody, Ab-Mb, was covalently immobilized through site specific binding on PtNP attached over SWNT. A concentration-dependent change in the source-drain current of the hybrid device was observed in the range of 0.1-1000 ng ml-1. The hybrid device response fitted well with the Hill-Langmuir equation with a maximum response of 111.14% and low dissociation constant value (K d = 19.98 ng ml-1), indicating high protein antigen binding affinity at hybrid nanostructure.

  7. Male with mosaicism for supernumerary ring X chromosome: analysis of phenotype and characterization of genotype using array comparative genome hybridization.

    PubMed

    Baker, Peter R; Tsai, Anne Chun-Hui; Springer, Michelle; Swisshelm, Karen; March, Jennifer; Brown, Kathleen; Bellus, Gary

    2010-09-01

    Supernumerary, derivative, and ring X chromosomes are relatively common in Turner syndrome females but have been reported rarely in males. To date, less than 10 cases have been published, of which only 2 have been partially characterized in defining the breakpoints and genetic content of the derivative X chromosome. We describe a male with mosaicism for a supernumerary X chromosome (46,XY/47,XY, r(X)) who has multiple congenital anomalies, including features of craniofrontonasal dysplasia (Mendelian Inheritance in Man 304110) and the presence of ectopic female reproductive organs. Using comparative genomic hybridization array mapping, we determined that the derivative X is composed of a 24-Mb fragment that contains the regions Xp11.3 through Xq13.1 and lacks the XIST gene. This is the first report to describe a detailed molecular characterization of a ring X chromosome in a male by comparative genomic hybridization array analysis. We compare the clinical and molecular findings in this patient to other 46,XY, r(X) patients reported in the literature and discuss the potential role of disomy for known genes contained on the ring X chromosome.

  8. Effects of chromosomal variations on pharmacokinetic activity of zolpidem in healthy volunteers: an array-based comparative genomic hybridization study.

    PubMed

    Moon, Ho-Jin; Choi, Jin Soo; Park, E-Jin; Kang, Chin-Yang; Jeon, Yang-Whan; Lee, Kweon-Haeng; Rha, Hyoung Kyun; Han, Sang-Ick

    2007-05-18

    Zolpidem has been known as a very safe and effective hypnotic drug used to treat a variety of patients with insomnia. Even though the same dose of the medicine is administered to each patient, the blood level of zolpidem and the time required to obtain peak concentration are not consistent among different people. We evaluated the relationship between the peak concentrations of zolpidem and chromosomal imbalances using a high-resolution genome-wide array-based comparative genomic hybridization (CGH) in 16 healthy volunteers in order to detect the genetic factors underlying the variations. The present study showed that chromosomal losses were detected in the 4q35.2, 9p13.1 and 9p12 regions, and those gains were indicated in the 2p14, 11q13.4 and 15q11.2 regions. The abnormal regions were confirmed by fluorescence in situ hybridization (FISH) and real-time PCR. It is suggested that array-CGH analysis may be used as a measure for pharmacogenomic applications in the patients with insomnia and for further exploration of candidate genomic regions implicated in sleep disturbances.

  9. Method for producing a hybridization of detector array and integrated circuit for readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Grunthaner, Frank J. (Inventor)

    1993-01-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  10. Method for producing a hybridization of detector array and integrated circuit for readout

    NASA Astrophysics Data System (ADS)

    Fossum, Eric R.; Grunthaner, Frank J.

    1993-08-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  11. Design and experiment of 256-element ultrasound phased array for noninvasive focused ultrasound surgery.

    PubMed

    Lu, Mingzhu; Wan, Mingxi; Xu, Feng; Wang, Xiaodong; Chang, Xiaozhen

    2006-12-22

    A 256-element phased array high intensity focused ultrasound system has been designed and constructed in our laboratory. The 256-element spherical-section ultrasound phased array made from piezocomposite material operates at 1.1 MHz with 11-cm radius of curvature, 14-cm outer diameter, and 3.4-cm diameter central hole for mounting diagnostic ultrasound imaging probe. First, the explicit sound field calculation approach for the spherical-section phased array and the genetic optimal algorithm are briefly introduced as the optimal focus pattern control methods. Then, the design guidelines of 256-element spherical-section focused ultrasound phased array and 256-channel driver system are given. The results of single on and off axial focus, multiple on and off axial foci, half sub-array focus pattern provide further evidence for the 3D focus steering and sub-array mode for avoiding obstacles in focused ultrasound surgery. The multi-foci pattern can enlarge the treatment volume to 22 times larger than that of a single focus in one sonication. Finally, in vitro and transparent tissue-mimicking phantom experiment results confirm the ability of 256-element spherical-section phased array system to induce thermal lesions for noninvasive ultrasound surgery.

  12. Ambiguity Function Analysis for the Hybrid Mimo Phased-Array Radar (Postprint)

    DTIC Science & Technology

    2009-09-01

    Multiple - Input Multiple Output , or MIMO , radar systems are next-generation radar systems with multiple transmit and receive...architecture that combines elements of traditional phased-array radar with the emerging technology of Multiple - Input Multiple Out- put ( MIMO ) radar. A HMPAR...a multisensor radar architecture that combines elements of traditional phased-array radar with the emerging technology of Multiple - Input Multiple

  13. Determination of the Pressure Equivalent Noise Signal of Vector Sensors in a Hybrid Array

    DTIC Science & Technology

    2012-12-01

    Electromagnetic Interference HDPE High Density Polyethylene LOFAR Low Frequency Analysis and Recording MRA Maximum Response Axis NPS Naval... amplitude and phase of the array channels relative to the central microphone and then implemented the beamformer in the frequency domain. Under anechoic...rigid clamps to the stand helps to damp out high frequency vibration induced noise signals. The relatively large aspect presented by the array in

  14. Design of a dual sensor probe array for internal field measurement in Versatile Experiment Spherical Torus.

    PubMed

    Jeong-hun, Yang; Chung, Kyoung-Jae; An, YoungHwa; Jung, Bong Ki; Jo, Jong Gab; Hwang, Y S

    2012-10-01

    A dual sensor probe array is designed and constructed for internal magnetic field measurement at Versatile Experiment Spherical Torus (VEST) at the Seoul National University. Simultaneous use of Hall sensors and chip inductors allows cross-calibration among the measurements and compensation for each other's weaknesses while their small sizes are expected to cause only mild plasma perturbations. Calibration of the dual sensor probe array, using a Helmholtz coil, shows good sensitivity for the magnetic field measurement of the VEST. Prior to Ohmic start-up, the magnetic field structure inside the vacuum chamber is measured by using the calibrated probe array. The dual sensor probe array is expected to be useful in analyzing the temporal magnetic field structure change during the magnetic reconnection and in reconstruction of the current profile during the discharge of the VEST device.

  15. Design of a dual sensor probe array for internal field measurement in Versatile Experiment Spherical Torusa)

    NASA Astrophysics Data System (ADS)

    Jeong-hun, Yang; Chung, Kyoung-Jae; An, YoungHwa; Jung, Bong Ki; Jo, Jong Gab; Hwang, Y. S.

    2012-10-01

    A dual sensor probe array is designed and constructed for internal magnetic field measurement at Versatile Experiment Spherical Torus (VEST) at the Seoul National University. Simultaneous use of Hall sensors and chip inductors allows cross-calibration among the measurements and compensation for each other's weaknesses while their small sizes are expected to cause only mild plasma perturbations. Calibration of the dual sensor probe array, using a Helmholtz coil, shows good sensitivity for the magnetic field measurement of the VEST. Prior to Ohmic start-up, the magnetic field structure inside the vacuum chamber is measured by using the calibrated probe array. The dual sensor probe array is expected to be useful in analyzing the temporal magnetic field structure change during the magnetic reconnection and in reconstruction of the current profile during the discharge of the VEST device.

  16. Preliminary results from the flight of the Solar Array Module Plasma Interactions Experiment (SAMPIE)

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Hillard, G. Barry

    1994-01-01

    SAMPIE, the Solar Array Module Plasma Interactions Experiment, flew in the Space Shuttle Columbia payload bay as part of the Office of Aeronautics and Space Technology-2 (OAST-2) mission on STS-62, March, 1994. SAMPIE biased samples of solar arrays and space power materials to varying potentials with respect to the surrounding space plasma, and recorded the plasma currents collected and the arcs which occurred, along with a set of plasma diagnostics data. A large set of high quality data was obtained on the behavior of solar arrays and space power materials in the space environment. This paper is the first report on the data SAMPIE telemetered to the ground during the mission. It will be seen that the flight data promise to help determine arcing thresholds, snapover potentials, and floating potentials for arrays and spacecraft in LEO.

  17. A Method to Detect Differential Gene Expression in Cross-Species Hybridization Experiments at Gene and Probe Level

    PubMed Central

    Chen, Ying; Wu, Rebekah; Felton, James; Rocke, David M.; Chakicherla, Anu

    2010-01-01

    Motivation Whole genome microarrays are increasingly becoming the method of choice to study responses in model organisms to disease, stressors or other stimuli. However, whole genome sequences are available for only some model organisms, and there are still many species whose genome sequences are not yet available. Cross-species studies, where arrays developed for one species are used to study gene expression in a closely related species, have been used to address this gap, with some promising results. Current analytical methods have included filtration of some probes or genes that showed low hybridization activities. But consensus filtration schemes are still not available. Results A novel masking procedure is proposed based on currently available target species sequences to filter out probes and study a cross-species data set using this masking procedure and gene-set analysis. Gene-set analysis evaluates the association of some priori defined gene groups with a phenotype of interest. Two methods, Gene Set Enrichment Analysis (GSEA) and Test of Test Statistics (ToTS) were investigated. The results showed that masking procedure together with ToTS method worked well in our data set. The results from an alternative way to study cross-species hybridization experiments without masking are also presented. We hypothesize that the multi-probes structure of Affymetrix microarrays makes it possible to aggregate the effects of both well-hybridized and poorly-hybridized probes to study a group of genes. The principles of gene-set analysis were applied to the probe-level data instead of gene-level data. The results showed that ToTS can give valuable information and thus can be used as a powerful technique for analyzing cross-species hybridization experiments. Availability Software in the form of R code is available at http://anson.ucdavis.edu/~ychen/cross-species.html Supplementary Data Supplementary data are available at http://anson.ucdavis.edu/~ychen/cross-species.html PMID

  18. A Method to Detect Differential Gene expression in Cross-Species Hybridization Experiments at Gene and Probe Level

    PubMed Central

    Chen, Ying; Wu, Rebekah; Felton, James; Rocke, David M.; Chakicherla, Anu

    2010-01-01

    Motivation Whole genome microarrays are increasingly becoming the method of choice to study responses in model organisms to disease, stressors or other stimuli. However, whole genome sequences are available for only some model organisms, and there are still many species whose genome sequences are not yet available. Cross-species studies, where arrays developed for one species are used to study gene expression in a closely related species, have been used to address this gap, with some promising results. Current analytical methods have included filtration of some probes or genes that showed low hybridization activities. But consensus filtration schemes are still not available. Results A novel masking procedure is proposed based on currently available target species sequences to filter out probes and study a cross-species data set using this masking procedure and gene-set analysis. Gene-set analysis evaluates the association of some priori defined gene groups with a phenotype of interest. Two methods, Gene Set Enrichment Analysis (GSEA) and Test of Test Statistics (ToTS) were investigated. The results showed that masking procedure together with ToTS method worked well in our data set. The results from an alternative way to study cross-species hybridization experiments without masking are also presented. We hypothesize that the multi-probes structure of Affymetrix microarrays makes it possible to aggregate the effects of both well-hybridized and poorly-hybridized probes to study a group of genes. The principles of gene-set analysis were applied to the probe-level data instead of gene-level data. The results showed that ToTS can give valuable information and thus can be used as a powerful technique for analyzing cross-species hybridization experiments. Availability Software in the form of R code is available at http://anson.ucdavis.edu/~ychen/cross-species.html PMID:20798791

  19. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes.

    PubMed

    Ma, Tian Yi; Dai, Sheng; Jaroniec, Mietek; Qiao, Shi Zhang

    2014-10-01

    Hybrid porous nanowire arrays composed of strongly interacting Co3O4 and carbon were prepared by a facile carbonization of the metal-organic framework grown on Cu foil. The resulting material, possessing a high surface area of 251 m(2) g(-1) and a large carbon content of 52.1 wt %, can be directly used as the working electrode for oxygen evolution reaction without employing extra substrates or binders. This novel oxygen evolution electrode can smoothly operate in alkaline solutions (e.g., 0.1 and 1.0 M KOH), affording a low onset potential of 1.47 V (vs reversible hydrogen electrode) and a stable current density of 10.0 mA cm(-2) at 1.52 V in 0.1 M KOH solution for at least 30 h, associated with a high Faradaic efficiency of 99.3%. The achieved ultrahigh oxygen evolution activity and strong durability, with superior performance in comparison to the state-of-the-art noble-metal/transition-metal and nonmetal catalysts, originate from the unique nanowire array electrode configuration and in situ carbon incorporation, which lead to the large active surface area, enhanced mass/charge transport capability, easy release of oxygen gas bubbles, and strong structural stability. Furthermore, the hybrid Co3O4-carbon porous nanowire arrays can also efficiently catalyze oxygen reduction reaction, featuring a desirable four-electron pathway for reversible oxygen evolution and reduction, which is potentially useful for rechargeable metal-air batteries, regenerative fuel cells, and other important clean energy devices.

  20. Hybrid Li-air battery cathodes with sparse carbon nanotube arrays directly grown on carbon fiber papers

    SciTech Connect

    Li, YF; Huang, ZP; Huang, K; Carnahan, D; Xing, YC

    2013-11-01

    Sparsely populated, vertically aligned nitrogen doped carbon nanotube arrays (CNTAs) with dislocated-graphene stacking were grown directly on carbon fiber papers and investigated as hierarchical air cathodes in hybrid Li-air batteries with aqueous catholytes. The CNTAs were made with electrodeposited Ni nanocatalysts, followed by plasma-enhanced chemical vapor deposition. The thus obtained CNTAs can reach a population number density as low as similar to 10(7) per cm(2) on the carbon fibers, achieving an extremely high porosity of over 99% for the active layer in the cathode. The sparse CNTAs not only provide effective pathways for the reacting species, but also show a significantly high catalytic activity, which is found to be comparable to that of a supported Pt electrocatalyst. The high activity of the CNTAs is attributed to the rich graphene edges exposed on the CNT surface and nitrogen doping. Hybrid Li-air batteries with such cathodes have shown a consistent discharging capacity of 710 mA h g(-1) and a specific energy of 2057 W h kg(-1) at 0.5 mA cm(-2). Stable charge-discharge cycling at 0.5 mA cm(-2) showed an average potential difference of 1.35 V, indicative of a relatively small overpotential and high round trip efficiency (71%). Furthermore, the hybrid Li-air battery based on the hierarchical cathode can reach a power density as high as 10.4 mW cm(-2).

  1. Characterization of genomic alterations in radiation-associated breast cancer among childhood cancer survivors, using comparative genomic hybridization (CGH) arrays.

    PubMed

    Yang, Xiaohong R; Killian, J Keith; Hammond, Sue; Burke, Laura S; Bennett, Hunter; Wang, Yonghong; Davis, Sean R; Strong, Louise C; Neglia, Joseph; Stovall, Marilyn; Weathers, Rita E; Robison, Leslie L; Bhatia, Smita; Mabuchi, Kiyohiko; Inskip, Peter D; Meltzer, Paul

    2015-01-01

    Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH) to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS). Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29), had invasive ductal tumors (81%, n = 26), estrogen receptor (ER)-positive staining (68%, n = 19 out of 28), and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22). Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2) was much higher among CCSS cases (38%, n = 12). Our findings suggest that second primary breast cancers in CCSS were enriched for an "amplifier" genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings.

  2. A customized high-resolution array-comparative genomic hybridization to explore copy number variations in Parkinson's disease.

    PubMed

    La Cognata, Valentina; Morello, Giovanna; Gentile, Giulia; D'Agata, Velia; Criscuolo, Chiara; Cavalcanti, Francesca; Cavallaro, Sebastiano

    2016-10-01

    Parkinson's disease (PD), the second most common progressive neurodegenerative disorder, was long believed to be a non-genetic sporadic syndrome. Today, only a small percentage of PD cases with genetic inheritance patterns are known, often complicated by reduced penetrance and variable expressivity. The few well-characterized Mendelian genes, together with a number of risk factors, contribute to the major sporadic forms of the disease, thus delineating an intricate genetic profile at the basis of this debilitating and incurable condition. Along with single nucleotide changes, gene-dosage abnormalities and copy number variations (CNVs) have emerged as significant disease-causing mutations in PD. However, due to their size variability and to the quantitative nature of the assay, CNV genotyping is particularly challenging. For this reason, innovative high-throughput platforms and bioinformatics algorithms are increasingly replacing classical CNV detection methods. Here, we report the design strategy, development, validation and implementation of NeuroArray, a customized exon-centric high-resolution array-based comparative genomic hybridization (aCGH) tailored to detect single/multi-exon deletions and duplications in a large panel of PD-related genes. This targeted design allows for a focused evaluation of structural imbalances in clinically relevant PD genes, combining exon-level resolution with genome-wide coverage. The NeuroArray platform may offer new insights in elucidating inherited potential or de novo structural alterations in PD patients and investigating new candidate genes.

  3. Characterization of Genomic Alterations in Radiation-Associated Breast Cancer among Childhood Cancer Survivors, Using Comparative Genomic Hybridization (CGH) Arrays

    PubMed Central

    Yang, Xiaohong R.; Killian, J. Keith; Hammond, Sue; Burke, Laura S.; Bennett, Hunter; Wang, Yonghong; Davis, Sean R.; Strong, Louise C.; Neglia, Joseph; Stovall, Marilyn; Weathers, Rita E.; Robison, Leslie L.; Bhatia, Smita; Mabuchi, Kiyohiko; Inskip, Peter D.; Meltzer, Paul

    2015-01-01

    Ionizing radiation is an established risk factor for breast cancer. Epidemiologic studies of radiation-exposed cohorts have been primarily descriptive; molecular events responsible for the development of radiation-associated breast cancer have not been elucidated. In this study, we used array comparative genomic hybridization (array-CGH) to characterize genome-wide copy number changes in breast tumors collected in the Childhood Cancer Survivor Study (CCSS). Array-CGH data were obtained from 32 cases who developed a second primary breast cancer following chest irradiation at early ages for the treatment of their first cancers, mostly Hodgkin lymphoma. The majority of these cases developed breast cancer before age 45 (91%, n = 29), had invasive ductal tumors (81%, n = 26), estrogen receptor (ER)-positive staining (68%, n = 19 out of 28), and high proliferation as indicated by high Ki-67 staining (77%, n = 17 out of 22). Genomic regions with low-copy number gains and losses and high-level amplifications were similar to what has been reported in sporadic breast tumors, however, the frequency of amplifications of the 17q12 region containing human epidermal growth factor receptor 2 (HER2) was much higher among CCSS cases (38%, n = 12). Our findings suggest that second primary breast cancers in CCSS were enriched for an “amplifier” genomic subgroup with highly proliferative breast tumors. Future investigation in a larger irradiated cohort will be needed to confirm our findings. PMID:25764003

  4. Identification of DNA copy-number aberrations by array-comparative genomic hybridization in patients with schizophrenia.

    PubMed

    Moon, Ho Jin; Yim, Sung-Vin; Lee, Woon Kyu; Jeon, Yang-Whan; Kim, Young Hoon; Ko, Young Jin; Lee, Kwang-Soo; Lee, Kweon-Haeng; Han, Sang-Ick; Rha, Hyoung Kyun

    2006-06-02

    Chromosomal abnormalities are implicated as important markers for the pathogenesis in patients with schizophrenia. In this study, with using bacterial artificial chromosome (BAC) array-based comparative genomic hybridization (CGH), we analyzed DNA copy-number changes among 30 patients with schizophrenia. The most frequent changes were partial gain of Xq23 (52%) and loss of 3q13.12 (32%). Other frequent gains were found in: 1p, 6q, 10p, 11p, 11q, 14p, and 15q regions, and frequent losses were found in: 2p, 9q, 10q, 14q, 20q, and 22q regions. The set of abnormal regions was confirmed by real-time PCR (9q12, 9q34.2, 11p15.4, 14q32.33, 15q15.1, 22q11.21, and Xq23). All real-time PCR results were consistent with the array-CGH results. Therefore, it is suggested that array-CGH and real-time PCR analysis could be used as powerful tools in screening for schizophrenia-related genes. Our results might be useful for further exploration of candidate genomic regions in the pathogenesis of schizophrenia.

  5. Differential adhesion of microspheres mediated by DNA hybridization I: experiment.

    PubMed

    Zhang, Ying; Milam, Valeria T; Graves, David J; Hammer, Daniel A

    2006-06-01

    We have developed a novel method to study collective behavior of multiple hybridized DNA chains by measuring the adhesion of DNA-coated micron-scale beads under hydrodynamic flow. Beads coated with single-stranded DNA probes are linked to surfaces coated with single target strands through DNA hybridization, and hydrodynamic shear forces are used to discriminate between strongly and weakly bound beads. The adhesiveness of microspheres depends on the strength of interaction between DNA chains on the bead and substrate surfaces, which is a function of the degree of DNA chain overlap, the fidelity of the match between hybridizing pairs, and other factors that affect the hybridization energy, such as the salt concentration in the hybridization buffer. The force for bead detachment is linearly proportional to the degree of chain overlap. There is a detectable drop in adhesion strength when there is a single base mismatch in one of the hybridizing chains. The effect of single nucleotide mismatch was tested with two different strand chemistries, with mutations placed at several different locations. All mutations were detectable, but there was no comprehensive rule relating the drop in adhesive strength to the location of the defect. Since adhesiveness can be coupled to the strength of overlap, the method holds promise to be a novel methodology for oligonucleotide detection.

  6. Dual-facet coupling of SOA array on 4-μm silicon-on-insulator implementing a hybrid integrated SOA-MZI wavelength converter

    NASA Astrophysics Data System (ADS)

    Alexoudi, T.; Fitsios, D.; Kanellos, G. T.; Pleros, N.; Tekin, T.; Cherchi, M.; Ylinen, S.; Harjanne, M.; Kapulainen, M.; Aalto, T.

    2014-03-01

    Hybrid integration on Silicon-on-Insulator (SOI) has emerged as a practical solution for compact and high-performance Photonic Integrated Circuits (PICs). It aims at combining the cost-effectiveness and CMOS-compatibility benefits of the low-loss SOI waveguide platform with the versatile active optical functions that can be realized by III-V photonic materials. The utilization of SOI, as an integration board, with μm-scale dimensions allows for an excellent optical mode matching between silicon rib waveguides and active chips, allowing for minimal-loss coupling of the pre-fabricated IIIV components. While dual-facet coupling as well as III-V multi-element array bonding should be employed to enable enhanced active on-chip functions, so far only single side SOA bonding has been reported. In the present communication, we present a novel integration scheme that flip-chip bonds a 6-SOA array on 4-μm thick SOI technology by coupling both lateral SOA facets to the waveguides, and report on the experimental results of wavelength conversion operation of a dual-element Semiconductor Optical Amplifier - Mach Zehnder Interferometer (SOA-MZI) circuit. Thermocompression bonding was applied to integrate the pre-fabricated SOAs on SOI, with vertical and horizontal alignment performed successfully at both SOA facets. The demonstrated device has a footprint of 8.2mm x 0.3mm and experimental evaluation revealed a 12Gb/s wavelength conversion operation capability with only 0.8dB power penalty for the first SOA-MZI-on-SOI circuit and a 10Gb/s wavelength conversion operation capability with 2 dB power penalty for the second SOA-MZI circuit. Our experiments show how dual facet integration can significantly increase the level of optical functionalities achievable by flip-chip hybrid technology and pave the way for more advanced and more densely PICs.

  7. Hybrid simulation of the Z-pinch instabilities for profiles generated during wire array implosion in the Saturn pulsed power generator

    SciTech Connect

    Sotnikov, V.I.; Leboeuf, J.N.; Deeney, C.; Coverdale, C.A.; Hellinger, P.; Travnicek, P.; Fiala, V.

    2005-09-15

    Experimental evidence suggests that the energy balance between processes in play during wire array implosions is not well understood. In fact the radiative yields can exceed by several times the implosion kinetic energy. A possible explanation is that the coupling from magnetic energy to kinetic energy as magnetohydrodynamic plasma instabilities develop provides additional energy. It is thus important to model the instabilities produced in the after implosion stage of the wire array in order to determine how the stored magnetic energy can be connected with the radiative yields. To this aim three-dimensional hybrid simulations have been performed. They are initialized with plasma radial density profiles, deduced in recent experiments [C. Deeney et al., Phys. Plasmas 6, 3576 (1999)] that exhibited large x-ray yields, together with the corresponding magnetic field profiles. Unlike previous work, these profiles do not satisfy pressure balance and differ substantially from those of a Bennett equilibrium. They result in faster growth with an associated transfer of magnetic energy to plasma motion and hence kinetic energy.

  8. Hybrid simulation of the Z-pinch instabilities for profiles generated in the process of wire array implosion in the Saturn pulsed power generator.

    SciTech Connect

    Coverdale, Christine Anne; Travnicek, P.; Hellinger, P.; Fiala, V.; Leboeuf, J. N.; Deeney, Christopher; Sotnikov, Vladimir Isaakovich

    2005-02-01

    Experimental evidence suggests that the energy balance between processes in play during wire array implosions is not well understood. In fact the radiative yields can exceed by several times the implosion kinetic energy. A possible explanation is that the coupling from magnetic energy to kinetic energy as magnetohydrodynamic plasma instabilities develop provides additional energy. It is thus important to model the instabilities produced in the after implosion stage of the wire array in order to determine how the stored magnetic energy can be connected with the radiative yields. To this aim three-dimensional hybrid simulations have been performed. They are initialized with plasma radial density profiles, deduced in recent experiments [C. Deeney et al., Phys. Plasmas 6, 3576 (1999)] that exhibited large x-ray yields, together with the corresponding magnetic field profiles. Unlike previous work, these profiles do not satisfy pressure balance and differ substantially from those of a Bennett equilibrium. They result in faster growth with an associated transfer of magnetic energy to plasma motion and hence kinetic energy.

  9. Designing a Hybrid Laminar-Flow Control Experiment: The CFD-Experiment Connection

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    2003-01-01

    The NASA/Boeing hybrid laminar flow control (HLFC) experiment, designed during 1993-1994 and conducted in the NASA LaRC 8-foot Transonic Pressure Tunnel in 1995, utilized computational fluid dynamics and numerical simulation of complex fluid mechanics to an unprecedented extent for the design of the test article and measurement equipment. CFD was used in: the design of the test wing, which was carried from definition of desired disturbance growth characteristics, through to the final airfoil shape that would produce those growth characteristics; the design of the suction-surface perforation pattern that produced enhanced crossflow-disturbance growth: and in the design of the hot-wire traverse system that produced minimal influence on measured disturbance growth. These and other aspects of the design of the test are discussed, after the historical and technical context of the experiment is described.

  10. Extending Learning beyond the Classroom: Graduate Student Experiences of Online Discussions in a Hybrid Course

    ERIC Educational Resources Information Center

    Sullivan, Timothy M.; Freishtat, Richard

    2013-01-01

    While a range of research has been done on hybrid learning and online discussions, few studies have examined the voice of students in regard to their perceptions of these types of learning experiences. This article presents current research findings gathered from part-time graduate students enrolled in a hybrid course. The students' perceptions…

  11. Detection of high energy electromagnetic and hadron components of air-shower cores in the new hybrid experiment "Pamir-XXI"

    NASA Astrophysics Data System (ADS)

    Tamada, M.; Inoue, N.; Misaki, A.; Ohsawa, A.

    2017-06-01

    In the Chacaltaya hybrid experiment we have shown that the observed characteristics of the events accompanying atmospheric families (a bundle of high energy particles in the air-shower core) can not be well described by current simulations. The atmospheric families detected so far by emulsion chambers (sandwiches of X-ray films and lead plates) are key ingredients in the analysis. But the number of analyzed events with atmospheric family is still small due to the limited size of the experiment. Now a new very large hybrid experiment "PAMIR-XXI" is proposed to be constructed at the Pamirs. The notable feature of the experiment is to construct large hadron calorimeters at the center of air-shower arrays to study the air-shower core in detail. We study the possibility to analyze high energy air-shower cores in the "Pamir-XXI" experiment by using the burst density of scintillation detectors instead of using the family data of emulsion chambers. It is shown that the unusual characteristics of the events observed by the Chacaltaya hybrid experiment can be well seen in the hybrid experiment "PAMIR-XXI" too.

  12. Clinical application of array-based comparative genomic hybridization for the identification of prognostically important genetic alterations in chronic lymphocytic leukemia.

    PubMed

    Higgins, Russell A; Gunn, Shelly R; Robetorye, Ryan S

    2008-01-01

    Genomic aberrations have increasingly gained attention as prognostic markers in B-cell chronic lymphocytic leukemia (CLL). Fluorescence in situ hybridization (FISH) has improved the detection rate of genomic alterations in CLL from approximately 50% using conventional cytogenetics to greater than 80%. More recently, array comparative genomic hybridization (CGH) has gained popularity as a clinical tool that can be applied to detect genomic gains and losses of prognostic importance in CLL. Array CGH and FISH are particularly useful in CLL because genomic gains and losses are key events with both biologic and prognostic significance, while balanced translocations have limited prognostic value. Although FISH has a higher technical sensitivity, it requires separate, targeted hybridizations for the detection of alterations at genomic loci of interest. Array CGH, on the other hand, has the ability to provide a genome-wide survey of genomic aberrations with a single hybridization reaction. Array CGH is expanding the known genomic regions of importance in CLL and allows these regions to be evaluated in the context of a genome-wide perspective. Ongoing clinical trials are evaluating the use of genomic aberrations as tools for risk-stratifying patients for therapy, thus increasing the need for reliable and high-yield methods to detect these genomic changes. In this review, we consider the use of array CGH as a clinical tool for the identification of genomic alterations with prognostic significance in CLL, and suggest ways to integrate this test into the clinical molecular diagnostic laboratory work flow.

  13. PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis.

    PubMed

    Yamamoto, Takatoki; Fujii, Takahiko; Nojima, Teruo

    2002-11-01

    A microreactor array was developed which enables high-throughput cell-free protein synthesis. The microreactor array is composed of a temperature control chip and a reaction chamber chip. The temperature control chip is a glass-made chip on which temperature control devices, heaters and temperature sensors, are fabricated with an ITO (indium tin oxide) resistive material. The reaction chamber chip is fabricated by micromolding of PDMS (polydimethylsiloxane), and is designed to have an array of reaction chambers and flow channels for liquid introduction. The microreactor array is assembled by placing the reaction chamber chip on the temperature control chip. The small thermal mass of the reaction chamber resulted in a short thermal time constant of 170 ms for heating and 3 s for cooling. The performance of the microreactor array was examined through the experiments of cell-free protein synthesis. By measuring the fluorescence emission from the products, it was confirmed that GFP (Green Fluorescent Protein) and BFP (Blue Fluorescent Protein) were successfully synthesized using Escherichia coli extract.

  14. Automated Hybridization of X-ray Absorber Elements-A Path to Large Format Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, S.; Kelley, R.; Allen, C.; Kilbourne, C.; Costen, N.; Miller, T.

    2007-01-01

    In the design of microcalorimeters, it is often desirable to produce the X-ray absorber separately from the detector element. In this case, the attachment of the absorber to the detector element with the required thermal and mechanical characteristics is a major challenge. In such arrays, the attachment has been done by hand. This process is not easily extended to the large format arrays required for future X- ray astronomy missions such as the New x-ray Telescope or NeXT. In this paper we present an automated process for attaching absorber tiles to the surface of a large-scale X-ray detector array. The absorbers are attached with stycast epoxy to a thermally isolating polymer structure made of SU-8. SU-8 is a negative epoxy based photo resist produced by Microchem. We describe the fabrication of the X-ray absorbers and their suspension on a handle die in an adhesive matrix. We describe the production process for the polymer isolators on the detector elements. We have developed a new process for the alignment, and simultaneous bonding of the absorber tiles to an entire detector array. This process uses equipment and techniques used in the flip-chip bonding industry and approaches developed in the fabrication of the XRS-2 instrument. XRS-2 was an X-ray spectrometer that was launched on the Suzaku telescope in July 10, 2005. We describe the process and show examples of sample arrays produced by this process. Arrays with up to 300 elements have been bonded. The present tests have used dummy absorbers made of Si. In future work, we will demonstrate bonding of HgTe absorbers.

  15. Automated Hybridization of X-ray Absorber Elements-A Path to Large Format Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, S.; Kelley, R.; Allen, C.; Kilbourne, C.; Costen, N.; Miller, T.

    2007-01-01

    In the design of microcalorimeters, it is often desirable to produce the X-ray absorber separately from the detector element. In this case, the attachment of the absorber to the detector element with the required thermal and mechanical characteristics is a major challenge. In such arrays, the attachment has been done by hand. This process is not easily extended to the large format arrays required for future X- ray astronomy missions such as the New x-ray Telescope or NeXT. In this paper we present an automated process for attaching absorber tiles to the surface of a large-scale X-ray detector array. The absorbers are attached with stycast epoxy to a thermally isolating polymer structure made of SU-8. SU-8 is a negative epoxy based photo resist produced by Microchem. We describe the fabrication of the X-ray absorbers and their suspension on a handle die in an adhesive matrix. We describe the production process for the polymer isolators on the detector elements. We have developed a new process for the alignment, and simultaneous bonding of the absorber tiles to an entire detector array. This process uses equipment and techniques used in the flip-chip bonding industry and approaches developed in the fabrication of the XRS-2 instrument. XRS-2 was an X-ray spectrometer that was launched on the Suzaku telescope in July 10, 2005. We describe the process and show examples of sample arrays produced by this process. Arrays with up to 300 elements have been bonded. The present tests have used dummy absorbers made of Si. In future work, we will demonstrate bonding of HgTe absorbers.

  16. Generation of Localized Surface Plasmon Resonance Using Hybrid Au–Ag Nanoparticle Arrays as a Sensor of Polychlorinated Biphenyls Detection

    PubMed Central

    Liu, Jing; Cai, Haoyuan; Chen, Chaoyang; Yang, Guangsong; Yang, Cheng-Fu

    2016-01-01

    In this study, the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic nanoparticle arrays (PNAs) were designed to investigate their extinction spectra of the localized surface plasmon resonances (LSPRs). First, their simulating extinction spectra were calculated by discrete dipole approximation (DDA) numerical method by changing the media refractive index. Simulation results showed that as the media refractive index was changed from 1.0 to 1.2, the maximum peak intensity of LSPRs spectra had no apparent change and the wavelength to reveal the maximum peak intensity of LSPRs spectra was shifted lower value. Polystyrene (PS) nanospheres with two differently arranged structures were used as the templates to deposit the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic PNAs by evaporation method. The hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate PNAs were grown on single crystal silicon (c-Si) substrates, and their measured extinction spectra were compared with the calculated results. Finally, the fabricated hexagonal lattices of triangular PNAs were investigated as a sensor of polychlorinated biphenyl solution (PCB-77) by observing the wavelength to reveal the maximum extinction efficiency (λmax). We show that the adhesion of β-cyclodextrins (SH-β-CD) on the hybrid Au–Ag hexagonal lattice of triangular PNAs could be used to increase the variation of λmax. We also demonstrate that the adhesion of SH-β-CD increases the sensitivity and detection effect of PCB-77 in hexagonal lattice of triangular PNAs. PMID:27527188

  17. Referencing cross-reactivity of detection antibodies for protein array experiments

    PubMed Central

    Lemass, Darragh; O'Kennedy, Richard; Kijanka, Gregor S.

    2016-01-01

    Protein arrays are frequently used to profile antibody repertoires in humans and animals. High-throughput protein array characterisation of complex antibody repertoires requires a platform-dependent, lot-to-lot validation of secondary detection antibodies. This article details the validation of an affinity-isolated anti-chicken IgY antibody produced in rabbit and a goat anti-rabbit IgG antibody conjugated with alkaline phosphatase using protein arrays consisting of 7,390 distinct human proteins. Probing protein arrays with secondary antibodies in absence of chicken serum revealed non-specific binding to 61 distinct human proteins. The cross-reactivity of the tested secondary detection antibodies points towards the necessity of platform-specific antibody characterisation studies for all secondary immunoreagents. Secondary antibody characterisation using protein arrays enables generation of reference lists of cross-reactive proteins, which can be then excluded from analysis in follow-up experiments. Furthermore, making such cross-reactivity lists accessible to the wider research community may help to interpret data generated by the same antibodies in applications not related to protein arrays such as immunoprecipitation, Western blots or other immunoassays. PMID:27335636

  18. A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment

    NASA Astrophysics Data System (ADS)

    Asadi, Ehsan; Ribeiro, Roberto; Behrad Khamesee, Mir; Khajepour, Amir

    2015-07-01

    This paper presents the development of a new electromagnetic hybrid damper which provides regenerative adaptive damping force for various applications. Recently, the introduction of electromagnetic technologies to the damping systems has provided researchers with new opportunities for the realization of adaptive semi-active damping systems with the added benefit of energy recovery. In this research, a hybrid electromagnetic damper is proposed. The hybrid damper is configured to operate with viscous and electromagnetic subsystems. The viscous medium provides a bias and fail-safe damping force while the electromagnetic component adds adaptability and the capacity for regeneration to the hybrid design. The electromagnetic component is modeled and analyzed using analytical (lumped equivalent magnetic circuit) and electromagnetic finite element method (FEM) (COMSOL® software package) approaches. By implementing both modeling approaches, an optimization for the geometric aspects of the electromagnetic subsystem is obtained. Based on the proposed electromagnetic hybrid damping concept and the preliminary optimization solution, a prototype is designed and fabricated. A good agreement is observed between the experimental and FEM results for the magnetic field distribution and electromagnetic damping forces. These results validate the accuracy of the modeling approach and the preliminary optimization solution. An analytical model is also presented for viscous damping force, and is compared with experimental results The results show that the damper is able to produce damping coefficients of 1300 and 0-238 N s m-1 through the viscous and electromagnetic components, respectively.

  19. Impact of LDEF photovoltaic experiment findings upon spacecraft solar array design and development requirements

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.

    1993-01-01

    Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.

  20. Calibration of the MoNA and LISA Arrays for the LISA Commissioning Experiment

    NASA Astrophysics Data System (ADS)

    Grovom, A.; Kwiatkowski, J.; Rogers, W. F.; MoNA Collaboration

    2011-10-01

    The new LISA (the Large-area multi-Institutional Scintillator Array) neutron detector array, designed to be used in conjunction with MoNA (Modular Neutron Array) at the NSCL was recently commissioned in an experiment designed to investigate excited states of neutron-rich Oxygen isotopes near the neutron drip-line. In order for the trajectories of neutrons arising from decay to be determined with sufficient precision to allow reconstruction of the invariant mass of the decaying system, all 288 scintillator bars must be precisely position-calibrated and time-synchronized to within a few tenths of a nanosecond, and the time origin for neutron time-of-flight determination must coincide precisely with the secondary beam particle/target interaction. The former was accomplished using cosmic muons passing through the array, and the latter using detection of gamma-rays produced at the target in each of the 18 layers of the MoNA-LISA array. Several Root C++ macros were developed in order to produce these calibrations. Results for the LISA commissioning run experiment will be presented. Work supported by NSF grant PHY-1101745.

  1. Advanced Signaling Strategies for the Hybrid MIMO Phased-Array Radar

    DTIC Science & Technology

    2010-05-01

    Multiple - Input Multiple Output , or MIMO , radar systems are next-generation radar systems with... Multiple - Input Multiple Output ( MIMO ) radar. A HMPAR comprises a large number MP, of T/R elements, organized into M subarrays of P elements each. Within...multisensor radar architecture that combines elements of traditional phased-array radar with the emerging technology of Multiple - Input Multiple Out-

  2. Kinetics of hybridization on surface oligonucleotide microchips: theory, experiment, and comparison with hybridization on gel-based microchips.

    PubMed

    Sorokin, N V; Chechetkin, V R; Pan'kov, S V; Somova, O G; Livshits, M A; Donnikov, M Y; Turygin, A Y; Barsky, V E; Zasedatelev, A S

    2006-08-01

    The optimal design of oligonucleotide microchips and efficient discrimination between perfect and mismatch duplexes strongly depend on the external transport of target DNA to the cells with immobilized probes as well as on respective association and dissociation rates at the duplex formation. In this paper we present the relevant theory for hybridization of DNA fragments with oligonucleotide probes immobilized in the cells on flat substrate. With minor modifications, our theory also is applicable to reaction-diffusion hybridization kinetics for the probes immobilized on the surface of microbeads immersed in hybridization solution. The main theoretical predictions are verified with control experiments. Besides that, we compared the characteristics of the surface and gel-based oligonucleotide microchips. The comparison was performed for the chips printed with the same pin robot, for the signals measured with the same devices and processed by the same technique, and for the same hybridization conditions. The sets of probe oligonucleotides and the concentrations of probes in respective solutions used for immobilization on each platform were identical as well. We found that, despite the slower hybridization kinetics, the fluorescence signals and mutation discrimination efficiency appeared to be higher for the gel-based microchips with respect to their surface counterparts even for the relatively short hybridization time about 0.5-1 hour. Both the divergence between signals for perfects and the difference in mutation discrimination efficiency for the counterpart platforms rapidly grow with incubation time. In particular, for hybridization during 3 h the signals for gel-based microchips surpassed their surface counterparts in 5-20 times, while the ratios of signals for perfect-mismatch pairs for gel microchips exceeded the corresponding ratios for surface microchips in 2-4 times. These effects may be attributed to the better immobilization efficiency and to the higher

  3. Criticality experiments with planar arrays of three-liter bottles containing plutonium nitrate solution

    SciTech Connect

    Durst, B.M.; Clayton, E.D.; Smith, J.H.

    1985-01-01

    The objective of these experiments was to provide benchmark data to validate calculational codes used in critically safety assessments of plant configurations. Arrays containing up to as many as sixteen three-liter bottles filled with plutonium nitrate were used in the experiments. A split-table device was used in the final assembly of the arrays. Ths planar arrays were reflected with close fitting plexiglas on each side and on the bottom but not the top surface. The experiments addressed a number of factors effecting criticality: the critical air gap between bottles in an array of fixed number of bottles, the number of bottles required for criticality if the bottles were touching, and the effect on critical array spacing and critical bottle number due to the insertion of an hydrogeneous substance into the air gap between bottles. Each bottle contained about 2.4l of Pu(NO{sub 3}){sub 4} solution at a Pu concentration of 105g Pu/l, with the {sup 240}Pu content being 2.9 wt% at a free acid molarity H{sup +} of 5.1. After the initial series of experiments were performed with bottles separated by air gaps, plexiglas shells of varying thicknesses were placed around each bottle to investigate how moderation between bottles affects both the number of bottles required for criticality and the critical spacing between each bottle. The minimum of bottles required for criticality was found to be 10.9 bottles, occurring for a square array with bottles in contact. As the bottles were spaced apart, the critical number increased. For sixteen bottles in a square array, the critical separation between surfaces in both x and y direction was 0.96 cm. The addition of plexiglas around each bottle decreased the critical bottle number, compared to those separated in air, but the critical bottle number, even with interstitial plastic in place was always greater than 10.9 bottles. The most reactive configuration was a tightly packed array of bottles with no intervening material.

  4. Copy number analysis of the low-copy repeats at the primate NPHP1 locus by array comparative genomic hybridization.

    PubMed

    Yuan, Bo; Liu, Pengfei; Rogers, Jeffrey; Lupski, James R

    2016-06-01

    Array comparative genomic hybridization (aCGH) has been widely used to detect copy number variants (CNVs) in both research and clinical settings. A customizable aCGH platform may greatly facilitate copy number analyses in genomic regions with higher-order complexity, such as low-copy repeats (LCRs). Here we present the aCGH analyses focusing on the 45 kb LCRs [1] at the NPHP1 region with diverse copy numbers in humans. Also, the interspecies aCGH analysis comparing human and nonhuman primates revealed dynamic copy number transitions of the human 45 kb LCR orthologues during primate evolution and therefore shed light on the origin of complexity at this locus. The original aCGH data are available at GEO under GSE73962.

  5. One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor.

    PubMed

    Lee, Kang-Ho; Lee, Jeong-Oen; Sohn, Mi-Jin; Lee, Byunghun; Choi, Suk-Hwan; Kim, Sang Kyu; Yoon, Jun-Bo; Cho, Gyu-Hyeong

    2010-12-15

    This paper describes a label-free and fully electronic detection method of DNA hybridization, which is achieved through the use of a 16×8 microarray sensor in conjunction with a new type of impedance spectroscopy constructed with standard complementary metal-oxide-semiconductor (CMOS) technology. The impedance-based method is based on changes in the reactive capacitance and the charge-transfer resistance after hybridization with complementary DNA targets. In previously published label-free techniques, the measured capacitance presented unstable capacitive properties due to the parallel resistance that is not infinite and can cause a leakage by discharging the charge on the capacitor. This paper presents an impedance extraction method that uses excitation by triangular wave voltage, which enables a reliable measurement of both C and R producing a highly sensitive sensor with a stable operation independent of external variables. The system was fabricated in an industrial 0.35-μm 4-metal 2-poly CMOS process, integrating working electrodes and readout electronics into one chip. The integrated readout, which uses a parasitic insensitive integrator, achieves an enlarged detection range and improved noise performance. The maximum average relative variations of C and R are 31.5% and 68.6%, respectively, after hybridization with a 1 μM target DNA. The proposed sensor allows quantitative evaluation of the molecule densities on the chip with distinguishable variation in the impedance. This fully electronic microsystem has great potential for use with bioanalytical tools and point-of-care diagnosis.

  6. Hybrid antenna arrays with non-uniform Electromagnetic Band Gap lattices for wireless communication networks

    NASA Astrophysics Data System (ADS)

    Mourtzios, Ch.; Siakavara, K.

    2015-08-01

    A method to design hybrid antenna configurations with very low profile, suitable for smart and Multiple Input-Multiple Output antenna systems is proposed. The antennas are incorporated with novel Electromagnetic Band Gap (EBG) surfaces with non-similar cells. These non-uniform EBG surfaces have been properly designed to cause focusing, of the incident waves, thus enhancing the characteristics of operation of antenna elements positioned in close proximity to the surface and also to increase the isolation between them. Theoretical analysis of the reflection mechanism of this type of lattices as well as the prediction of the resulting performance of the antenna is presented. All these considerations are validated with implementation and simulation of the hybrid structures inside the Universal Mobile Telecommunications System frequency band. The results show that increment of the gain and isolation between the antenna elements can be obtained. Moreover, results for the correlation coefficient between the elements, for Gaussian distribution of the incoming waves have been received and the tolerance of the antennas to the variation of the polarization characteristics of the incoming waves has been investigated. A Genetic Algorithm has been constructed and applied to find the proper geometry of the hybrid antennas in order the correlation coefficient to be minimized and get almost independent from the polarization of incident waves.

  7. Application of a silicon photodiode array for solar edge tracking in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. S.; Mayo, L. S.

    1985-01-01

    The optical and electronic design of the Halogen Occultation Experiment (HALOE) elevation sunsensor is described. This system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned, monolithic charge coupled device. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the HALOE science instantaneous-field-of-view (IFOV) across the vertical solar diameter during instrument calibration, and then maintain the science IFOV four arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 0.7 micrometer operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability. The HALOE instrument is a gas correlation radiometer that is now being developed by NASA Langley Research Center for the Upper Atmospheric Research Satellite.

  8. Application of a silicon photodiode array for solar edge tracking in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. S.; Mayo, L. S.

    1985-01-01

    The optical and electronic design of the Halogen Occultation Experiment (HALOE) elevation sunsensor is described. This system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned, monolithic charge coupled device. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the HALOE science instantaneous-field-of-view (IFOV) across the vertical solar diameter during instrument calibration, and then maintain the science IFOV four arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 0.7 micrometer operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability. The HALOE instrument is a gas correlation radiometer that is now being developed by NASA Langley Research Center for the Upper Atmospheric Research Satellite.

  9. Improved Si:As BIBIB (Back-Illuminated Blocked-Impurity-Band) hybrid arrays

    NASA Technical Reports Server (NTRS)

    Herter, T.; Rowlands, N.; Beckwith, S. V. W.; Gull, G. E.; Reynolds, D. B.; Seib, D. H.; Stapelbroek, M. G.

    1989-01-01

    Results of a program to increase the short wavelength (less than 10 microns) detective quantum efficiency, eta/beta, of Si:As Impurity Band Conduction arrays are presented. The arrays are epitaxially grown Back-Illuminated Blocked (BIB) Impurity-Band (BIBIB) 10x50 detectors bonded to switched-FET multiplexers. It is shown that the 4.7 microns detective quantum efficiency increases proportionately with the thickness of the infrared active layer. A BIB array with a thick active layer, designed for low dark current, exhibits eta/beta = 7 to 9 percent at 4.7 microns for applied bias voltages between 3 and 5 V. The product of quantum efficiency and photoelectric gain, etaG, increases from 0.3 to 2.5 as the voltage increases from 3 to 5 V. Over this voltage range, the dark current increases from 8 to 120 e(-)s(-1) at a device temperature of 4.2 K and is under 70 e(-)s(-1) for all voltages at 2 K. Because of device gain, the effective dark current (equivalent photon rate) is less than 3 e(-)s(-1) under all operating conditions. The effective read noise (equivalent photon noise) is found to be less than 12 electrons under all operating conditions and for integration times between 0.05 and 100 seconds.

  10. ArrayNinja: An Open Source Platform for Unified Planning and Analysis of Microarray Experiments

    PubMed Central

    Dickson, B.M.; Cornett, E.M.; Ramjan, Z.; Rothbart, S.B.

    2017-01-01

    Microarray-based proteomic platforms have emerged as valuable tools for studying various aspects of protein function, particularly in the field of chromatin biochemistry. Microarray technology itself is largely unrestricted in regard to printable material and platform design, and efficient multidimensional optimization of assay parameters requires fluidity in the design and analysis of custom print layouts. This motivates the need for streamlined software infrastructure that facilitates the combined planning and analysis of custom microarray experiments. To this end, we have developed ArrayNinja as a portable, open source, and interactive application that unifies the planning and visualization of microarray experiments and provides maximum flexibility to end users. Array experiments can be planned, stored to a private database, and merged with the imaged results for a level of data interaction and centralization that is not currently attainable with available microarray informatics tools. PMID:27423857

  11. Vertically Aligned Two-Dimensional Graphene-Metal Hydroxide Hybrid Arrays for Li-O2 Batteries.

    PubMed

    Zhu, Jixin; Metzger, Michael; Antonietti, Markus; Fellinger, Tim-Patrick

    2016-10-05

    Lithium oxygen batteries (LOBs) are a very promising upcoming technology which, however, still suffers from low lifespan and dramatic capacities fading. Solid discharge products increase the contact resistance and block the electrochemically active electrodes. The resulting high oxidative potentials and formation of Li2CO3 due to electrolyte and carbon electrode decomposition at the positive electrode lead to irreversible deactivation of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) sites. Here we demonstrate a facile strategy for the scalable production of a new electrode structure constituted of vertically aligned carbon nanosheets and metal hydroxide (M(OH)x@CNS) hybrid arrays, integrating both favorable ORR and OER active materials to construct bifunctional catalysts for LOBs. Excellent lithium-oxygen battery properties with high specific capacity of 5403 mAh g(-1) and 12123 mAh g(-1) referenced to the carbon and M(OH)x weight, respectively, long cyclability, and low charge potentials are achieved in the resulting M(OH)x@CNS cathode architecture. The properties are explained by improved O2/ion transport properties and spatially limited precipitation of Li2O2 nanoparticles inside interstitial cavities resulting in high reversibility. The strategy of creating ORR and OER bifunctional catalysts in a single conductive hybrid component may pave the way to new cathode architectures for metal air batteries.

  12. Genetic characterization of dogs via chromosomal analysis and array-based comparative genomic hybridization (aCGH).

    PubMed

    Müller, M H; Reimann-Berg, N; Bullerdiek, J; Murua Escobar, H

    2012-01-01

    The results of cytogenetic and molecular cytogenetic investigations revealed similarities in genetic background and biological behaviour between tumours and genetic diseases of humans and dogs. These findings classify the dog a good and accepted model for human cancers such as osteosarcomas, mammary carcinomas, oral melanomas and others. With the appearance of new studies and advances in canine genome sequencing, the number of known homologies in diseases between these species raised and still is expected to increase. In this context, array-based comparative genomic hybridization (aCGH) provides a novel tool to rapidly characterize numerical aberrations in canine tumours or to detect copy number aberrations between different breeds. As it is possible to spot probes covering the whole genome on each chip to discover copy number aberrations of all chromosomes simultaneously, this method is time-saving and cost-effective - considering the relation of costs and the amount of data obtained. Complemented with traditional methods like karyotyping and fluorescence in situ hybridization (FISH) analyses, the aCGH is able to provide new insights into the underlying causes of canine carcinogenesis.

  13. Genomic arrays in chronic lymphocytic leukemia routine clinical practice: are we ready to substitute conventional cytogenetics and fluorescence in situ hybridization techniques?

    PubMed

    Puiggros, Anna; Puigdecanet, Eulàlia; Salido, Marta; Ferrer, Ana; Abella, Eugènia; Gimeno, Eva; Nonell, Lara; Herranz, María José; Galván, Ana Belén; Rodríguez-Rivera, María; Melero, Carme; Pairet, Silvia; Bellosillo, Beatriz; Serrano, Sergi; Florensa, Lourdes; Solé, Francesc; Espinet, Blanca

    2013-05-01

    Chronic lymphocytic leukemia (CLL) is characterized by a highly variable clinical course. Del(11q) and del(17p), routinely studied by conventional G-banding cytogenetics (CGC) and fluorescence in situ hybridization (FISH), have been related to progression and shorter overall survival. Recently, array-based karyotyping has gained acceptance as a high-resolution new tool for detecting genomic imbalances. The aim of the present study was to compare genomic arrays with CGC and FISH to ascertain whether the current techniques could be substituted in routine procedures. We analyzed 70 patients with CLL using the Cytogenetics Whole-Genome 2.7M Array and CytoScan HD Array (Affymetrix), CGC and FISH with the classical CLL panel. Whereas 31.4% and 68.6% of patients presented abnormalities when studied by CGC and FISH, respectively, these rates increased when arrays were also analyzed (78.6% and 80%). Although abnormality detection is higher when arrays are applied, one case with del(11q) and three with del(17p) were missed by genomic arrays due to their limited sensitivity. We consider that the complete substitution of CGC and FISH by genomic arrays in routine laboratories could negatively affect the management of some patients harboring 11q or 17p deletions. In conclusion, genomic arrays are valid to detect known and novel genomic imbalances in CLL, but should be maintained as a complementary tool to the current techniques.

  14. A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination.

    PubMed

    Chen, Po-Chiang; Ishikawa, Fumiaki N; Chang, Hsiao-Kang; Ryu, Koungmin; Zhou, Chongwu

    2009-03-25

    A novel hybrid chemical sensor array composed of individual In(2)O(3) nanowires, SnO(2) nanowires, ZnO nanowires, and single-walled carbon nanotubes with integrated micromachined hotplates for sensitive gas discrimination was demonstrated. Key features of our approach include the integration of nanowire and carbon nanotube sensors, precise control of the sensor temperature using the micromachined hotplates, and the use of principal component analysis for pattern recognition. This sensor array was exposed to important industrial gases such as hydrogen, ethanol and nitrogen dioxide at different concentrations and sensing temperatures, and an excellent selectivity was obtained to build up an interesting 'smell-print' library of these gases. Principal component analysis of the sensing results showed great discrimination of those three tested chemicals, and in-depth analysis revealed clear improvement of selectivity by the integration of carbon nanotube sensors. This nanoelectronic nose approach has great potential for detecting and discriminating between a wide variety of gases, including explosive ones and nerve agents.

  15. A nanoelectronic nose: a hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination

    NASA Astrophysics Data System (ADS)

    Chen, Po-Chiang; Ishikawa, Fumiaki N.; Chang, Hsiao-Kang; Ryu, Koungmin; Zhou, Chongwu

    2009-03-01

    A novel hybrid chemical sensor array composed of individual In2O3 nanowires, SnO2 nanowires, ZnO nanowires, and single-walled carbon nanotubes with integrated micromachined hotplates for sensitive gas discrimination was demonstrated. Key features of our approach include the integration of nanowire and carbon nanotube sensors, precise control of the sensor temperature using the micromachined hotplates, and the use of principal component analysis for pattern recognition. This sensor array was exposed to important industrial gases such as hydrogen, ethanol and nitrogen dioxide at different concentrations and sensing temperatures, and an excellent selectivity was obtained to build up an interesting 'smell-print' library of these gases. Principal component analysis of the sensing results showed great discrimination of those three tested chemicals, and in-depth analysis revealed clear improvement of selectivity by the integration of carbon nanotube sensors. This nanoelectronic nose approach has great potential for detecting and discriminating between a wide variety of gases, including explosive ones and nerve agents.

  16. Zoom-in array comparative genomic hybridization (aCGH) to detect germline rearrangements in cancer susceptibility genes.

    PubMed

    Staaf, Johan; Borg, Ake

    2010-01-01

    Disease predisposing germline mutations in cancer susceptibility genes may consist of large genomic rearrangements, including deletions or duplications that are challenging, to detect and characterize using standard PCR-based mutation screening methods. Such rearrangements range from single exons up to hundreds of kilobases of sequence in size. Array-based comparative genomic hybridization (aCGH) has evolved as a powerful technique to detect copy number alterations on a genome-wide scale. However, the conventional genome-wide approach of aCGH still provides only limited information about copy number status for individual exons. Custom-designed aCGH arrays focused on only a few target regions (zoom-in aCGH) may circumvent this drawback. Benefits of zoom-in aCGH include the possibility to target almost any region in the genome, and an unbiased coverage of exonic and intronic sequence facilitating convenient design of primers for sequence determination of the breakpoints. Furthermore, zoom-in aCGH can be streamlined for a particular application, for example, focusing on breast cancer susceptibility genes, with increased capacity using multiformat design.

  17. Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ

    SciTech Connect

    Spielman, R.B.; Deeney, C.; Chandler, G.A.; Douglas, M.R.; Fehl, D.L.; Matzen, M.K.; McDaniel, D.H.; Nash, T.J.; Porter, J.L.; Sanford, T.W.; Seamen, J.F.; Stygar, W.A.; Struve, K.W.; Breeze, S.P.; McGurn, J.S.; Torres, J.A.; Zagar, D.M.; Gilliland, T.L.; Jobe, D.O.; McKenney, J.L.; Mock, R.C.; Vargas, M.; Wagoner, T.; Peterson, D.L.

    1998-05-01

    Here Z, a 60 TW/5 MJ electrical accelerator located at Sandia National Laboratories, has been used to implode tungsten wire-array Z pinches. These arrays consisted of large numbers of tungsten wires (120{endash}300) with wire diameters of 7.5 to 15 {mu}m placed in a symmetric cylindrical array. The experiments used array diameters ranging from 1.75 to 4 cm and lengths from 1 to 2 cm. A 2 cm long, 4 cm diam tungsten array consisting of 240, 7.5 {mu}m diam wires (4.1 mg mass) achieved an x-ray power of {approximately}200TW and an x-ray energy of nearly 2 MJ. Spectral data suggest an optically thick, Planckian-like radiator below 1000 eV. One surprising experimental result was the observation that the total radiated x-ray energies and x-ray powers were nearly independent of pinch length. These data are compared with two-dimensional radiation magnetohydrodynamic code calculations. {copyright} {ital 1998 American Institute of Physics.}

  18. Automated UF6 Cylinder Enrichment Assay: Status of the Hybrid Enrichment Verification Array (HEVA) Project: POTAS Phase II

    SciTech Connect

    Jordan, David V.; Orton, Christopher R.; Mace, Emily K.; McDonald, Benjamin S.; Kulisek, Jonathan A.; Smith, Leon E.

    2012-06-01

    Pacific Northwest National Laboratory (PNNL) intends to automate the UF6 cylinder nondestructive assay (NDA) verification currently performed by the International Atomic Energy Agency (IAEA) at enrichment plants. PNNL is proposing the installation of a portal monitor at a key measurement point to positively identify each cylinder, measure its mass and enrichment, store the data along with operator inputs in a secure database, and maintain continuity of knowledge on measured cylinders until inspector arrival. This report summarizes the status of the research and development of an enrichment assay methodology supporting the cylinder verification concept. The enrichment assay approach exploits a hybrid of two passively-detected ionizing-radiation signatures: the traditional enrichment meter signature (186-keV photon peak area) and a non-traditional signature, manifested in the high-energy (3 to 8 MeV) gamma-ray continuum, generated by neutron emission from UF6. PNNL has designed, fabricated, and field-tested several prototype assay sensor packages in an effort to demonstrate proof-of-principle for the hybrid assay approach, quantify the expected assay precision for various categories of cylinder contents, and assess the potential for unsupervised deployment of the technology in a portal-monitor form factor. We refer to recent sensor-package prototypes as the Hybrid Enrichment Verification Array (HEVA). The report provides an overview of the assay signatures and summarizes the results of several HEVA field measurement campaigns on populations of Type 30B UF6 cylinders containing low-enriched uranium (LEU), natural uranium (NU), and depleted uranium (DU). Approaches to performance optimization of the assay technique via radiation transport modeling are briefly described, as are spectroscopic and data-analysis algorithms.

  19. Three-dimensional Ni/SnOx/C hybrid nanostructured arrays for lithium-ion microbattery anodes with enhanced areal capacity.

    PubMed

    Zhu, Jianhui; Jiang, Jian; Feng, Yamin; Meng, Gaoxiang; Ding, Hao; Huang, Xintang

    2013-04-10

    The areal capacity of lithium-ion microbatteies (LIMBs) can be potentially increased by adopting a three-dimensional (3D) architectured electrode. Herein, we report the novel 3D Ni/SnOx/C hybrid nanostructured arrays that were built directly on current collectors via a facile hydrothermal method followed by a calcination-reduction process. Branched SnO2 nanorods grew uniformly on Ni2(OH)2CO3 nanowall arrays, resulting in the formation of precursors with a 3D interconnected architecture. By using ethylene glycol as the reducing agent, the glucose-coated SnO2/Ni2(OH)2CO3 precursors were evolved into an interesting 3D Ni/SnOx/C hybrid nanostructured arrays within the calcination treatment. Compared to conventional 2D SnOx/C nanorod arrays, the electrode of 3D Ni/SnOx/C hybrid nanostructured arrays exhibited enhanced lithium storage capacity per unit area, preferable rate capability and improved cycling performance when tested for LIMBs. The superior performance might be attributed to the open-up Ni frameworks that can not only serve as effective channels for electrons transport and Li+ diffusion but also help to accommodate the large volume changes upon lithiation/delithiation.

  20. Preimplantation genetic diagnosis for chromosomal rearrangements with the use of array comparative genomic hybridization at the blastocyst stage.

    PubMed

    Christodoulou, Christodoulos; Dheedene, Annelies; Heindryckx, Björn; van Nieuwerburgh, Filip; Deforce, Dieter; De Sutter, Petra; Menten, Björn; Van den Abbeel, Etienne

    2017-01-01

    To establish the value of array comparative genomic hybridization (CGH) for preimplantation genetic diagnosis (PGD) in embryos of translocation carriers in combination with vitrification and frozen embryo transfer in nonstimulated cycles. Retrospective data analysis study. Academic centers for reproductive medicine and genetics. Thirty-four couples undergoing PGD for chromosomal rearrangements from October 2013 to December 2015. Trophectoderm biopsy at day 5 or day 6 of embryo development and subsequently whole genome amplification and array CGH were performed. This approach revealed a high occurrence of aneuploidies and structural rearrangements unrelated to the parental rearrangement. Nevertheless, we observed a benefit in pregnancy rates of these couples. We detected chromosomal abnormalities in 133/207 embryos (64.2% of successfully amplified), and 74 showed a normal microarray profile (35.7%). In 48 of the 133 abnormal embryos (36.1%), an unbalanced rearrangement originating from the parental translocation was identified. Interestingly, 34.6% of the abnormal embryos (46/133) harbored chromosome rearrangements that were not directly linked to the parental translocation in question. We also detected a combination of unbalanced parental-derived rearrangements and aneuploidies in 27 of the 133 abnormal embryos (20.3%). The use of trophectoderm biopsy at the blastocyst stage is less detrimental to the survival of the embryo and leads to a more reliable estimate of the genomic content of the embryo than cleavage-stage biopsy. In this small cohort PGD study, we describe the successful implementation of array CGH analysis of blastocysts in patients with a chromosomal rearrangement to identify euploid embryos for transfer. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Comparison of array comparative genomic hybridization and quantitative real-time PCR-based aneuploidy screening of blastocyst biopsies.

    PubMed

    Capalbo, Antonio; Treff, Nathan R; Cimadomo, Danilo; Tao, Xin; Upham, Kathleen; Ubaldi, Filippo Maria; Rienzi, Laura; Scott, Richard T

    2015-07-01

    Comprehensive chromosome screening (CCS) methods are being extensively used to select chromosomally normal embryos in human assisted reproduction. Some concerns related to the stage of analysis and which aneuploidy screening method to use still remain. In this study, the reliability of blastocyst-stage aneuploidy screening and the diagnostic performance of the two mostly used CCS methods (quantitative real-time PCR (qPCR) and array comparative genome hybridization (aCGH)) has been assessed. aCGH aneuploid blastocysts were rebiopsied, blinded, and evaluated by qPCR. Discordant cases were subsequently rebiopsied, blinded, and evaluated by single-nucleotide polymorphism (SNP) array-based CCS. Although 81.7% of embryos showed the same diagnosis when comparing aCGH and qPCR-based CCS, 18.3% (22/120) of embryos gave a discordant result for at least one chromosome. SNP array reanalysis showed that a discordance was reported in ten blastocysts for aCGH, mostly due to false positives, and in four cases for qPCR. The discordant aneuploidy call rate per chromosome was significantly higher for aCGH (5.7%) compared with qPCR (0.6%; P<0.01). To corroborate these findings, 39 embryos were simultaneously biopsied for aCGH and qPCR during blastocyst-stage aneuploidy screening cycles. 35 matched including all 21 euploid embryos. Blinded SNP analysis on rebiopsies of the four embryos matched qPCR. These findings demonstrate the high reliability of diagnosis performed at the blastocyst stage with the use of different CCS methods. However, the application of aCGH can be expected to result in a higher aneuploidy rate than other contemporary methods of CCS.

  2. Experimental characterization, evaluation, and diagnosis of advanced hybrid infrared focal plane array electro-optical performance

    NASA Astrophysics Data System (ADS)

    Lomheim, Terrence S.; Schumann, Lee W.; Kohn, Stanley E.

    1998-07-01

    High performance scanning time-delay-and-integration and staring hybrid focal plane devices with very large formats, small pixel sizes, formidable frame and line rates, on-chip digital programmability, and high dynamic ranges, are being developed for a myriad of defense, civil, and commercial applications that span the spectral range from shortwave infrared (SWIR) to longwave infrared (LWIR). An essential part in the development of such new advanced hybrid infrared focal planes is empirical validation of their electro-optical (EO) performance. Many high-reliability, high-performance applications demand stringent and near flawless EO performance over a wide variety of operating conditions and environments. Verification of focal plane performance compliance over this wide range of parametric conditions requires the development and use of accurate, flexible, and statistically complete test methods and associated equipment. In this paper we review typical focal plane requirements, the ensuing measurement requirements (quantity, accuracy, repeatability, etc.), test methodologies, test equipment requirements, electronics and computer-based data acquisition requirements, statistical data analysis and display requirements, and associated issues. We also discuss special test requirements for verifying the performance of panchromatic thermal and multispectral imaging focal planes where characterization of dynamic modulation transfer function (MTF), and point-image response and optical overload is generally required. We briefly overview focal plane radiation testing. We conclude with a discussion of the technical challenges of characterizing future advanced hybrid focal plane testing where it is anticipated that analog-to- digital conversion will be included directly on focal plane devices, thus creating the scenario of 'photons-in-to-bits- out' within the focal plane itself.

  3. A palladium-nanoparticle and silicon-nanowire-array hybrid: a platform for catalytic heterogeneous reactions.

    PubMed

    Yamada, Yoichi M A; Yuyama, Yoshinari; Sato, Takuma; Fujikawa, Shigenori; Uozumi, Yasuhiro

    2014-01-03

    We report the development of a silicon nanowire array-stabilized palladium nanoparticle catalyst, SiNA-Pd. Its use in the palladium-catalyzed Mizoroki-Heck reaction, the hydrogenation of an alkene, the hydrogenolysis of nitrobenzene, the hydrosilylation of an α,β-unsaturated ketone, and the C-H bond functionalization reactions of thiophenes and indoles achieved a quantitative production with high reusability. The catalytic activity reached several hundred-mol ppb of palladium, reaching a TON of 2 000 000.

  4. Trypanosoma cruzi 5S rRNA arrays define five groups and indicate the geographic origins of an ancestor of the heterozygous hybrids.

    PubMed

    Westenberger, Scott J; Sturm, Nancy R; Campbell, David A

    2006-03-01

    Isolates of the etiological agent of Chagas disease, Trypanosoma cruzi, have been subdivided into six subgroups referred to as discrete typing units. The subgroups are related through two distinct hybridisation events: representatives of homozygous discrete typing units I and IIb fused to form discrete typing units IIa and IIc, whose homozygous genotypes have features of both ancestral types; a second fusion between strains of homozygous discrete typing units IIb and IIc created the heterozygous hybrid strains discrete typing units IId and IIe. The intergenic region of the tandemly repeated 5S rRNA array displays four variant sequence classes, allowing the discrimination of five discrete typing units. The genome project reference strain, CL Brener, is a hybrid discrete typing unit IIe strain that contains both discrete typing unit IIb and IIc classes of 5S rRNA repeats in distinct arrays present on different chromosomes. The CL Brener discrete typing unit IIb-type array contains approximately 193 repeated units, of which about one-third contain a 129 bp sequence that replaces a majority of the 5S rRNA sequence. The 129 bp 'invader' sequence was detected within the arrays of all hybrid discrete typing unit IId and IIe strains and in a subset of discrete typing unit IIb strains. This array invader replaces the internal promoter elements conserved in 5S rRNA. The discrete typing unit IIb Esmeraldo strain contains approximately 135 repeats and shows a region of homology to the array invader in the 5' flank of the array, but no evidence of the invading sequence element within the array. A survey of additional discrete typing unit IIb strains revealed a split within the subgroup, in which some strains contained invaded arrays and others were homogeneous for the 5S rRNA. The putative discrete typing unit IIb ancestor of the hybrid discrete typing units IId and IIe more closely resembles the extant Bolivian/Chilean IIb isolates than the Brazilian IIb isolates based on the

  5. Criticality experiments with mixed oxide fuel pin arrays in plutonium-uranium nitrate solution

    SciTech Connect

    Lloyd, R.C. ); Smolen, G.R. )

    1988-08-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having a Pu/(Pu + U) ratio of approximately 0.22 in a boiler tube-type lattice assembly. These experiments were conducted as part of the Criticality Data Development Program between the United States Department of Energy (USDOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of the experiments and data are included in this report. The experiments were performed with an array of mixed oxide fuel pins in aqueous plutonium-uranium solutions. The fuel pins were contained in a boiler tube-type tank and arranged in a 1.4 cm square pitch array which resembled cylindrical geometry. One experiment was perfomed with the fuel pins removed from the vessel. The experiments were performed with a water reflector. The concentration of the solutions in the boiler tube-type tank was varied from 4 to 468 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was approximately 0.22 for all experiments.

  6. The STEP/STACBEAM experiment technology development for very large solar array deployers

    NASA Technical Reports Server (NTRS)

    Samuels, R.

    1984-01-01

    The Stacking Triangular Articulated Compact Beam (STACBEAM) is discussed with reference to structural testing experiments afforded by ground simulation and the Space Technology Experiments Platform (STEP). The STACBEAM lends itself to a deployment technique which offers a radical improvement in flexible blanket solar array technology. A system for deployment and support of a solar array blanket is described which consists of the blanket, its containment structure, the support structure and its deployer, the blanket stiffening battens, and the deployable boom standoffs. In operation, the blanket is pulled out and supported by the STACBEAM which packages next to the folded blanket. Since the STACBEAM does not rotate during extension, complete control of the blanket is maintained during extension. Deployment of this system occurs one bay at a time in a sequential manner. The deployer provides sufficient rigidity so that beam stiffness is not degraded during the deployment process.

  7. Flight Experience from Space Photovoltaic Concentrator Arrays and its Implication on Terrestrial Concentrator Systems

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.

    2003-01-01

    Nearly all photovoltaic solar arrays flown in space have used a planar (non- concentrating) design. However, there have been a few notable exceptions where photovoltaic concentrators have been tested and used as the mission s primary power source. Among these are the success experienced by the SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) concept used to power NASA's Deep Space 1 mission and the problems encountered by the original Boeing 702 reflective trough concentrator design. This presentation will give a brief overview of past photovoltaic concentrator systems that have flown in space, specifically addressing the valuable lessons learned from flight experience, and other viable concentrator concepts that are being proposed for the future. The general trends of this flight experience will be noted and discussed with regard to its implications on terrestrial photovoltaic concentrator designs.

  8. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  9. One year orthopaedic trauma experience using an advanced interdisciplinary hybrid operating room.

    PubMed

    Richter, Peter H; Yarboro, Seth; Kraus, Michael; Gebhard, Florian

    2015-10-01

    Hybrid operating rooms have been used successfully in several surgical specialties, but no data have been published for orthopaedic trauma. We present our one-year orthopaedic trauma experience using a hybrid operating room, which incorporates 3D fluoroscopic imaging as well as navigation capabilities. Data were compiled for a series of 92 cases performed in an advanced hybrid operating room at the level one trauma center in Ulm, Germany. All patients who had surgery performed using this operating room during the first year were included. Setup time and surgical complications using hybrid operating room were recorded and analysed. The hybrid operating room resulted in no higher rate of complication than expected from the same cases in a conventional operating room. The hybrid room did however allow the surgeon to confidently place implants for orthopaedic trauma cases, and was most advantageous for spine and pelvis cases, both minimally invasive and conventional. Further, appropriate reduction and implant position was confirmed with 3D imaging prior to leaving the operating room and obviated the need for postoperative CT scan. Based on our one-year experience, the hybrid operating room is a useful and safe tool for orthopaedic trauma surgery.

  10. New Planar Wire Array Experiments on the LTD Generator at U Michigan

    NASA Astrophysics Data System (ADS)

    Weller, M. E.; Safronova, A. S.; Kantsyrev, V. L.; Shrestha, I.; Shlyaptseva, V. V.; Cooper, M. C.; Lorance, M. Y.; Stafford, A.; Petkov, E. E.; Jordan, N. M.; Patel, S. G.; Steiner, A. M.; Yager-Elorriaga, D. A.; Gilgenbach, R. M.

    2014-10-01

    Experiments on planar wire array z-pinches have been carried out on the MAIZE Linear Transformer Driver (LTD) generator at the University of Michigan (UM) for the first time. Specifically, Al (Al 5056, 95% Al, 5% Mg) double planar wire arrays (DPWAs) comprising six wires in each plane with interplanar gaps of 3.0 mm and 6.0 mm and interwire gaps of 0.7 mm and 1.0 mm were imploded with x-ray time-integrated spectra indicating electron temperatures of over 450 eV for K-shell Al and Mg, while producing mostly optically thin lines. In addition to x-ray time-integrated spectra, the diagnostics included x-ray time-integrated pinhole cameras, two silicon diodes, and shadowgraphy, which are analyzed and compared. The MAIZE LTD is capable of supplying up 1.0 MA, 100 kV pulses with 100 ns rise time into a matched load. However, for these experiments the LTD was charged to +-70 kV resulting in up to 0.5 MA with a current rise time of approximately 150 ns. Future experiments and the importance of studying planar wire arrays on LTD devices are discussed. This work supported by NNSA under DOE Cooperative Agreement DE-NA0001984. S. Patel & A. Steiner supported by Sandia. D. Yager-Elorriaga supported by NSF GF.

  11. LDEF (Postflight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 EL-1994-00147 LDEF (Postflight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 The post flight photograph was taken in the SAEF II at KSC prior to removal of the experiment tray from the LDEF and shows the Solar Array Materials Passive LDEF Experiment (SAMPLE) on the LDEF. Six (6) plates of passive components, provided by various experiment organizations and designated plate I thru plate VI, are shown mounted in a three (3) inch deep LDEF peripheral tray. All six plates are aluminum and attach to the LDEF experiment tray with non-magnetic stainless steel fasteners. Plate I, located in the upper right corner, consist of a combination of solar cells with and without covers, solar cell modules and solar arrays assembled on the baseplate. Three of the four solar arrays are missing. Other components appear to be secure. Plate II in the top center section, has twenty seven (27) composite samples, carbon fiber and glass fiber, mounted on the baseplate. The composites appear to be intact with no physical damage. Plate III, in the upper left corner, consist of metallized and thin polymeric films (Kapton, Mylar, TEFLON® , white Tedlar,etc.). The thin films without protective coatings sustained significant damage and most were destroyed. The thin film specimen hanging by one end in the flight photograph is missing. The metallized film apparently survived the mission with minimum damage. Plate IV located in the lower right corner consist of metals and coatings mounted in an aluminum baseplate and covered with a thin aluminum coverplate that partially mask the specimen. Several of the coatings appear to have darkened and a unique pattern of light brown discoloration appears around the outer edges of the mounting plate and along the lower edge of the coverplates. Plate V, in the lower center section, contained thermal plastics and structural film configured into tensile and

  12. X-Ray Spectroscopic Imaging of Tokamaks with Photon-Counting Hybrid Pixel Array Detectors (PAD)

    NASA Astrophysics Data System (ADS)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N.; Beiersdorfer, P.; Reinke, M. L.; Podpaly, Y.; Rice, J. E.; Lee, S. G.; Shi, Y.; Broennimann, Ch.; Eikenberry, E.

    2011-10-01

    Hybrid PADs, such as Pilatus (www.dectris.com) offer the possibility of 1D and 2D x-ray spectroscopic imaging of tokamaks with good spatial and temporal resolution, using pinhole x-ray cameras. These cameras can be either radially viewing (1D) or tangentially viewing (2D), and can provide fast profiles of electron temperature, impurity concentration and transport, and non-thermal electron distributions. Each pixel counts x-ray photons having energy above a threshold value, and different groups of pixels are set to different thresholds to provide spectral discrimination. X-ray camera designs, simulations of performance, and progress on energy- threshold calibration on a per-pixel basis will be presented. Supported by US DoE under contract DE-AC02-09CH11466.

  13. LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization.

    PubMed

    Kresse, Stine H; Ohnstad, Hege O; Paulsen, Erik B; Bjerkehagen, Bodil; Szuhai, Karoly; Serra, Massimo; Schaefer, Karl-Ludwig; Myklebost, Ola; Meza-Zepeda, Leonardo A

    2009-08-01

    Osteosarcomas are the most common primary malignant tumor of bone, and almost all conventional osteosarcomas are high-grade tumors with complex karyotypes. We have examined DNA copy number changes in 36 osteosarcoma tumors and 20 cell lines using microarray-based comparative genomic hybridization. The most frequent minimal recurrent regions of gain identified in the tumor samples were in 1q21.2-q21.3 (78% of the samples), 1q21.3-q22 (78%), and 8q22.1 (72%). Minimal recurrent regions in 10q22.1-q22.2 (81%), 6q16.1 (67%), 13q14.2 (67%), and 13q21.1 (67%) were most frequently lost. A small region in 3q13.31 (2.1 Mb) containing the gene limbic system-associated membrane protein (LSAMP) was frequently deleted (56%). LSAMP has previously been reported to be a candidate tumor suppressor gene in other cancer types. The deletion was validated using fluorescence in situ hybridization, and the expression level and promoter methylation status of LSAMP were investigated using quantitative real-time reverse transcription PCR and methylation-specific PCR, respectively. LSAMP showed low expression compared to two normal bone samples in 6/15 tumors and 5/9 cell lines with deletion of 3q13.31, and also in 5/14 tumors and 3/11 cell lines with normal copy number or gain. Partial or full methylation of the investigated CpG island was identified in 3/30 tumors and 7/20 cell lines. Statistical analyses revealed that loss of 11p15.4-p15.3 and low expression of LSAMP (both P = 0.011) were significantly associated with poor survival. Our results show that LSAMP is a novel candidate tumor suppressor gene in osteosarcomas.

  14. Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/Photochemical Approach to Solar Fuels.

    PubMed

    Hoch, Laura B; O'Brien, Paul G; Jelle, Abdinoor; Sandhel, Amit; Perovic, Douglas D; Mims, Charles A; Ozin, Geoffrey A

    2016-09-27

    The field of solar fuels seeks to harness abundant solar energy by driving useful molecular transformations. Of particular interest is the photodriven conversion of greenhouse gas CO2 into carbon-based fuels and chemical feedstocks, with the ultimate goal of providing a sustainable alternative to traditional fossil fuels. Nonstoichiometric, hydroxylated indium oxide nanoparticles, denoted In2O3-x(OH)y, have been shown to function as active photocatalysts for CO2 reduction to CO via the reverse water gas shift reaction under simulated solar irradiation. However, the relatively wide band gap (2.9 eV) of indium oxide restricts the portion of the solar irradiance that can be utilized to ∼9%, and the elevated reaction temperatures required (150-190 °C) reduce the overall energy efficiency of the process. Herein we report a hybrid catalyst consisting of a vertically aligned silicon nanowire (SiNW) support evenly coated by In2O3-x(OH)y nanoparticles that utilizes the vast majority of the solar irradiance to simultaneously produce both the photogenerated charge carriers and heat required to reduce CO2 to CO at a rate of 22.0 μmol·gcat(-1)·h(-1). Further, improved light harvesting efficiency of the In2O3-x(OH)y/SiNW films due to minimized reflection losses and enhanced light trapping within the SiNW support results in a ∼6-fold increase in photocatalytic conversion rates over identical In2O3-x(OH)y films prepared on roughened glass substrates. The ability of this In2O3-x(OH)y/SiNW hybrid catalyst to perform the dual function of utilizing both light and heat energy provided by the broad-band solar irradiance to drive CO2 reduction reactions represents a general advance that is applicable to a wide range of catalysts in the field of solar fuels.

  15. Balanced Dipole Effects on Interfacial Engineering for Polymer/TiO2 Array Hybrid Solar Cells.

    PubMed

    Wu, Fan; Zhu, Yanyan; Ye, Xunheng; Li, Xiaoyi; Tong, Yanhua; Xu, Jiaxing

    2017-12-01

    The polymer/TiO2 array heterojunction interfacial characteristics can be tailored by balanced dipole effects through integration of TiO2-quantum dots (QDs) and N719 at heterojunction interface, resulting in the tunable photovoltaic performance. The changes of V oc with interfacial engineering originate from the shift of the conduction band (E c) edge in the TiO2 nanorod by the interfacial dipole with different directions (directed away or toward the TiO2 nanorod). The J sc improvement originates from the enhanced charge separation efficiency with an improved electronic coupling property and better charge transfer property. The balanced dipole effects caused by TiO2-QDs and N719 modification on the device V oc are confirmed by the changed built-in voltage V bi and reverse saturation current density J s.

  16. Balanced Dipole Effects on Interfacial Engineering for Polymer/TiO2 Array Hybrid Solar Cells

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Zhu, Yanyan; Ye, Xunheng; Li, Xiaoyi; Tong, Yanhua; Xu, Jiaxing

    2017-02-01

    The polymer/TiO2 array heterojunction interfacial characteristics can be tailored by balanced dipole effects through integration of TiO2-quantum dots (QDs) and N719 at heterojunction interface, resulting in the tunable photovoltaic performance. The changes of V oc with interfacial engineering originate from the shift of the conduction band ( E c) edge in the TiO2 nanorod by the interfacial dipole with different directions (directed away or toward the TiO2 nanorod). The J sc improvement originates from the enhanced charge separation efficiency with an improved electronic coupling property and better charge transfer property. The balanced dipole effects caused by TiO2-QDs and N719 modification on the device V oc are confirmed by the changed built-in voltage V bi and reverse saturation current density J s.

  17. Miniature multiplexed fiber-grating-array sensor for the interrogation of localized strain patterns during crack growth studies upon hybrid laminate panels

    NASA Astrophysics Data System (ADS)

    Dakin, John P.; Austin, Timothy S. P.; Gregson, Peter J.; Guerrier, Daniel J.; Trundle, Keith J.

    1999-02-01

    As part of a project to optimize hybrid laminates for resistance to fatigue failure, arrays of fiber Bragg gratings are being used to monitor small-scale strain perturbations in composite materials. A remote multiplexed sensing system with 40 remote sensing sties using fiber optic technology, has been developed to monitor the strain field developed across the composite lamina of a hybrid laminate in the vicinity of a fatigue crack. Developed primarily for fatigue-critical aerospace applications, i.e. fuselage and lower wing skins, the hybrid laminates are orthotropic materials having lower density and higher strength than a simple alloy monolith without reinforcement. Fatigue crack growth in hybrid laminates is a complex process that involves a combination of delamination and fiber bridging. The fiber optic system has been applied to the problem of characterizing delamination zone development about a fatigue crack, initiated at a through-thickness fastener hole.

  18. 3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors.

    PubMed

    Zhu, Jianhui; Jiang, Jian; Sun, Zhipeng; Luo, Jingshan; Fan, Zhanxi; Huang, Xintang; Zhang, Hua; Yu, Ting

    2014-07-23

    The electrochemical performance of supercapacitors relies not only on the exploitation of high-capacity active materials, but also on the rational design of superior electrode architectures. Herein, a novel supercapacitor electrode comprising 3D hierarchical mixed-oxide nanostructured arrays (NAs) of C/CoNi3 O4 is reported. The network-like C/CoNi3 O4 NAs exhibit a relatively high specific surface area; it is fabricated from ultra-robust Co-Ni hydroxide carbonate precursors through glucose-coating and calcination processes. Thanks to their interconnected three-dimensionally arrayed architecture and mesoporous nature, the C/CoNi3 O4 NA electrode exhibits a large specific capacitance of 1299 F/g and a superior rate performance, demonstrating 78% capacity retention even when the discharge current jumps by 100 times. An optimized asymmetric supercapacitor with the C/CoNi3 O4 NAs as the positive electrode is fabricated. This asymmetric supercapacitor can reversibly cycle at a high potential of 1.8 V, showing excellent cycling durability and also enabling a remarkable power density of ∼13 kW/kg with a high energy density of ∼19.2 W·h/kg. Two such supercapacitors linked in series can simultaneously power four distinct light-emitting diode indicators; they can also drive the motor of remote-controlled model planes. This work not only presents the potential of C/CoNi3 O4 NAs in thin-film supercapacitor applications, but it also demonstrates the superiority of electrodes with such a 3D hierarchical architecture.

  19. The Solar Array Module Plasma Interactions Experiment (SAMPIE): Science and technology objectives

    NASA Technical Reports Server (NTRS)

    Hillard, G. Barry

    1992-01-01

    The Solar Array Module Plasma Interactions Experiment (SAMPIE) is an approved NASA Space Shuttle space flight experiment to be launched in Jul. 1993. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of cell coupons, representing technologies of current interest, will be biased to high voltages to characterize both negative potential arcing and positive potential current collection. Additionally, various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of these interactions. The rationale for a space flight experiment, the measurements to be made, the significance of the expected results, and the current design status of the flight hardware are described.

  20. Oligonucleotide-directed self-assembly of proteins: semisynthetic DNA--streptavidin hybrid molecules as connectors for the generation of macroscopic arrays and the construction of supramolecular bioconjugates.

    PubMed Central

    Niemeyer, C M; Sano, T; Smith, C L; Cantor, C R

    1994-01-01

    Modified biomolecules were used for the non-covalent assembly of novel bioconjugates. Hybrid molecules were synthesized from short single-stranded DNA and streptavidin by chemical methods using a heterobispecific crosslinker. The covalent attachment of an oligonucleotide moiety to streptavidin provides a specific recognition domain for a complementary nucleic acid sequence, in addition to the four native biotin-binding sites. These bispecific binding capabilities allow the hybrid molecules to serve as versatile connectors in a variety of applications. Bifunctional constructs have been prepared from two complementary hybrid molecules, each previously conjugated to biotinylated immunoglobulin G or alkaline phosphatase. The use of nucleic acid sequences as a template for the formation of an array of proteins is further demonstrated on two size scales. A macroscopic DNA array on a microtiter plate has been transformed into a comparable protein chip. A nano-scale array was made by hybridizing DNA-tagged proteins to specific positions along a RNA or DNA sequence. The generation of supramolecular bioconjugates was shown by quantitative measurements and gel-retardation assays. Images PMID:7530841

  1. Dynamic Gain Equalizer Using Hybrid Integrated Silica-Based Planar Lightwave Circuits With LiNbO3 Phase Shifter Array

    NASA Astrophysics Data System (ADS)

    Maru, Koichi; Chiba, Takafumi; Tanaka, Kotaro; Himi, Susumu; Uetsuka, Hisato

    2006-01-01

    This paper proposes a dynamic gain equalizer (DGE) using hybrid integrated silica-based planar lightwave circuits (PLCs) with a LiNbO3 (LN) phase shifter array to achieve a DGE that offers both excellent optical performance and control of the phase shifters. The structure consists of two PLCs having arrayed-waveguide gratings (AWGs) and couplers directly attached to the LN phase shifter array at its end faces. To reduce polarization-dependent characteristics, a polarization diversity technique using a polarization beam splitter (PBS) and a circulator was employed. To reduce polarization-dependent loss (PDL) due to the reflected light at the PLC-LN interfaces, tilted waveguides from the normal direction to the interfaces were introduced, and the relation between PDL and power reflectivity was theoretically investigated. A hybrid integrated DGE using super-high-Delta PLCs and a 25-channel electrooptic (EO) phase shifter array was demonstrated. The PDL was effectively suppressed with the introduced polarization diversity technique, and the measured spectra were in good agreement with designed profiles. These results indicate that the proposed hybrid integrated DGE offers good performance and controllability for practical applications.

  2. Report: Optimization study of the preparation factors for argan oil microcapsule based on hybrid-level orthogonal array design via SPSS modeling.

    PubMed

    Zhao, Xi; Wu, Xiaoli; Zhou, Hui; Jiang, Tao; Chen, Chun; Liu, Mingshi; Jin, Yuanbao; Yang, Dongsheng

    2014-11-01

    To optimize the preparation factors for argan oil microcapsule using complex coacervation of chitosan cross-linked with gelatin based on hybrid-level orthogonal array design via SPSS modeling. Eight relatively significant factors were firstly investigated and selected as calculative factors for the orthogonal array design from the total of ten factors effecting the preparation of argan oil microcapsule by utilizing the single factor variable method. The modeling of hybrid-level orthogonal array design was built in these eight factors with the relevant levels (9, 9, 9, 9, 7, 6, 2 and 2 respectively). The preparation factors for argan oil microcapsule were investigated and optimized according to the results of hybrid-level orthogonal array design. The priorities order and relevant optimum levels of preparation factors standard to base on the percentage of microcapsule with the diameter of 30~40 μm via SPSS. Experimental data showed that the optimum factors were controlling the chitosan/gelatin ratio, the systemic concentration and the core/shell ratio at 1:2, 1.5% and 1:7 respectively, presetting complex coacervation pH at 6.4, setting cross-linking time and complex coacervation at 75 min and 30 min, using the glucose-delta lactone as the type of cross-linking agent, and selecting chitosan with the molecular weight of 2000~3000.

  3. Experiments With Radiatively Cooled Supersonic Plasma Jets Generated in Conical Wire Array Z-Pinches

    NASA Astrophysics Data System (ADS)

    Lebedev, S. V.; Ampleford, D. J.; Bland, S. N.; Chittenden, J. P.; Ciardi, A.; Naz, N.; Haines, M. G.; Frank, A.; Blackman, E.; Gardiner, T.

    2002-12-01

    We present results of astrophysically relevant experiments where highly supersonic plasma jets are generated via conically convergent plasma flows in a conical wire array Z-pinch. Stagnation of plasma flow on the axis of symmetry forms a standing conical shock effectively collimating the flow in the axial direction. This scenario is essentially similar to that discussed by Canto and collaborators [1] as a purely hydrodynamic mechanism for jet formation in astrophysical systems. Experiments using different materials (Al, Fe and W) show that a hypersonic (M ~ 20), well-collimated jet is generated when the radiative cooling rate of the plasma is significant.

  4. Experience using an automated fault location system with a time-of-flight wall detector array

    NASA Astrophysics Data System (ADS)

    Olson, D.; Greiman, W.; Hall, D.; Balaban, D.; Day, C.

    1990-08-01

    We describe the architecture of a general purpose monitoring system and give examples of its use with a 300 element detector array in a relativistic heavy ion experiment. The system has a simple and well defined interface between the detector specific parts of the system and those which are independent of any detector specific features. Tracking simple statistics on the fundamental data items (ADC and TDC values) are sufficient to diagnose the higher level components in the system. The monitoring of on-line beam data provides a sensitive monitor of global parameters of the experiment.

  5. LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 EL-1994-00666 LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval prior to berthing the LDEF in the Orbiter cargo bay and shows the Solar Array Materials Passive LDEF Experiment (SAMPLE) on the LDEF. Six (6) plates of passive components, provided by various experiment organizations and designated plate I thru plate VI, are shown mounted in a three (3) inch deep LDEF peripheral tray. All six plates are aluminum and attach to the LDEF experiment tray with non-magnetic stainless steel fasteners. Plate I, located in the upper left corner, consist of a combination of solar cells with and without covers, solar cell modules and solar arrays assembled on the baseplate. Two of the four solar arrays are missing and one appears to be attached at only one corner. Other components appear to be secure. Plate II in the left center section, has twenty-seven (27) composite samples, carbon fiber and glass fiber, mounted on the baseplate. The composites appear to be intact with no physical damage. Plate III, in the lower left corner, consist mostly of metallized and thin polymeric films (Kapton, Mylar, TEFLON® , white Tedlar,etc.). The thin films without protective coatings sustained significant damage and most were destroyed. The metallized film apparently survived with minimum damage. Plate IV located in the upper right corner consist of metals and coatings mounted in an aluminum baseplate and covered with a thin aluminum coverplate that partially mask the specimen. Several of the coatings appear to have changed to a darker color and a light brown discoloration appears around the outer edges of the mounting plate and along the right edge of the coverplates. Plate V, in the right center section, contained thermal plastics and structural film configured into tensile and shear specimen. All

  6. 4K×4K format 10μm pixel pitch H4RG-10 hybrid CMOS silicon visible focal plane array for space astronomy

    NASA Astrophysics Data System (ADS)

    Bai, Yibin; Tennant, William; Anglin, Selmer; Wong, Andre; Farris, Mark; Xu, Min; Holland, Eric; Cooper, Donald; Hosack, Joseph; Ho, Kenneth; Sprafke, Thomas; Kopp, Robert; Starr, Brian; Blank, Richard; Beletic, James W.; Luppino, Gerard A.

    2012-07-01

    Teledyne’s silicon hybrid CMOS focal plane array technology has matured into a viable, high performance and high- TRL alternative to scientific CCD sensors for space-based applications in the UV-visible-NIR wavelengths. This paper presents the latest results from Teledyne’s low noise silicon hybrid CMOS visible focal place array produced in 4K×4K format with 10 μm pixel pitch. The H4RG-10 readout circuit retains all of the CMOS functionality (windowing, guide mode, reference pixels) and heritage of its highly successful predecessor (H2RG) developed for JWST, with additional features for improved performance. Combined with a silicon PIN detector layer, this technology is termed HyViSI™ (Hybrid Visible Silicon Imager). H4RG-10 HyViSI™ arrays achieve high pixel interconnectivity (<99.99%), low readout noise (<10 e- rms single CDS), low dark current (<0.5 e-/pixel/s at 193K), high quantum efficiency (<90% broadband), and large dynamic range (<13 bits). Pixel crosstalk and interpixel capacitance (IPC) have been predicted using detailed models of the hybrid structure and these predictions have been confirmed by measurements with Fe-55 Xray events and the single pixel reset technique. For a 100-micron thick detector, IPC of less than 3% and total pixel crosstalk of less than 7% have been achieved for the HyViSI™ H4RG-10. The H4RG-10 array is mounted on a lightweight silicon carbide (SiC) package and has been qualified to Technology Readiness Level 6 (TRL-6). As part of space qualification, the HyViSI™ H4RG-10 array passed radiation testing for low earth orbit (LEO) environment.

  7. Spectrum of Cytogenomic Abnormalities Revealed by Array Comparative Genomic Hybridization on Products of Conception Culture Failure and Normal Karyotype Samples.

    PubMed

    Zhou, Qinghua; Wu, Shen-Yin; Amato, Katherine; DiAdamo, Autumn; Li, Peining

    2016-03-20

    Approximately 30% of pregnancies after implantation end up in spontaneous abortions, and 50% of them are caused by chromosomal abnormalities. However, the spectrum of genomic copy number variants (CNVs) in products of conception (POC) and the underlying gene-dosage-sensitive mechanisms causing spontaneous abortions remain largely unknown. In this study, array comparative genomic hybridization (aCGH) analysis was performed as a salvage procedure for 128 POC culture failure (POC-CF) samples and as a supplemental procedure for 106 POC normal karyotype (POC-NK) samples. Chromosomal abnormalities were detected in 10% of POC-CF and pathogenic CNVs were detected in 3.9% of POC-CF and 5.7% of POC-NK samples. Compiled results from this study and relevant case series through a literature review demonstrated an abnormality detection rate (ADR) of 35% for chromosomal abnormalities in POC-CF samples, 3.7% for pathogenic CNVs in POC-CF samples, and 4.6% for pathogenic CNVs in POC-NK samples. Ingenuity Pathway Analysis (IPA) was performed on the genes from pathogenic CNVs found in POC samples. The denoted primary gene networks suggested that apoptosis and cell proliferation pathways are involved in miscarriage. In summary, a similar spectrum of cytogenomic abnormalities was observed in POC culture success and POC-CF samples. A threshold effect correlating the number of dosage-sensitive genes in a chromosome with the observed frequency of autosomal trisomy is proposed. A rationalized approach using firstly fluorescence in situ hybridization (FISH) testing with probes of chromosomes X/Y/18, 13/21, and 15/16/22 for common aneuploidies and polyploidies and secondly aCGH for other cytogenomic abnormalities is recommended for POC-CF samples.

  8. Revisiting Milgram's Cyranoid Method: Experimenting With Hybrid Human Agents.

    PubMed

    Corti, Kevin; Gillespie, Alex

    2015-01-01

    In two studies based on Stanley Milgram's original pilots, we present the first systematic examination of cyranoids as social psychological research tools. A cyranoid is created by cooperatively joining in real-time the body of one person with speech generated by another via covert speech shadowing. The resulting hybrid persona can subsequently interact with third parties face-to-face. We show that naïve interlocutors perceive a cyranoid to be a unified, autonomously communicating person, evidence for a phenomenon Milgram termed the "cyranic illusion." We also show that creating cyranoids composed of contrasting identities (a child speaking adult-generated words and vice versa) can be used to study how stereotyping and person perception are mediated by inner (dispositional) vs. outer (physical) identity. Our results establish the cyranoid method as a unique means of obtaining experimental control over inner and outer identities within social interactions rich in mundane realism.

  9. Analysis of oligonucleotide array experiments with repeated measures using mixed models.

    PubMed

    Li, Hao; Wood, Constance L; Getchell, Thomas V; Getchell, Marilyn L; Stromberg, Arnold J

    2004-12-30

    Two or more factor mixed factorial experiments are becoming increasingly common in microarray data analysis. In this case study, the two factors are presence (Patients with Alzheimer's disease) or absence (Control) of the disease, and brain regions including olfactory bulb (OB) or cerebellum (CER). In the design considered in this manuscript, OB and CER are repeated measurements from the same subject and, hence, are correlated. It is critical to identify sources of variability in the analysis of oligonucleotide array experiments with repeated measures and correlations among data points have to be considered. In addition, multiple testing problems are more complicated in experiments with multi-level treatments or treatment combinations. In this study we adopted a linear mixed model to analyze oligonucleotide array experiments with repeated measures. We first construct a generalized F test to select differentially expressed genes. The Benjamini and Hochberg (BH) procedure of controlling false discovery rate (FDR) at 5% was applied to the P values of the generalized F test. For those genes with significant generalized F test, we then categorize them based on whether the interaction terms were significant or not at the alpha-level (alphanew = 0.0033) determined by the FDR procedure. Since simple effects may be examined for the genes with significant interaction effect, we adopt the protected Fisher's least significant difference test (LSD) procedure at the level of alphanew to control the family-wise error rate (FWER) for each gene examined. A linear mixed model is appropriate for analysis of oligonucleotide array experiments with repeated measures. We constructed a generalized F test to select differentially expressed genes, and then applied a specific sequence of tests to identify factorial effects. This sequence of tests applied was designed to control for gene based FWER.

  10. Analysis of oligonucleotide array experiments with repeated measures using mixed models

    PubMed Central

    Li, Hao; Wood, Constance L; Getchell, Thomas V; Getchell, Marilyn L; Stromberg, Arnold J

    2004-01-01

    Background Two or more factor mixed factorial experiments are becoming increasingly common in microarray data analysis. In this case study, the two factors are presence (Patients with Alzheimer's disease) or absence (Control) of the disease, and brain regions including olfactory bulb (OB) or cerebellum (CER). In the design considered in this manuscript, OB and CER are repeated measurements from the same subject and, hence, are correlated. It is critical to identify sources of variability in the analysis of oligonucleotide array experiments with repeated measures and correlations among data points have to be considered. In addition, multiple testing problems are more complicated in experiments with multi-level treatments or treatment combinations. Results In this study we adopted a linear mixed model to analyze oligonucleotide array experiments with repeated measures. We first construct a generalized F test to select differentially expressed genes. The Benjamini and Hochberg (BH) procedure of controlling false discovery rate (FDR) at 5% was applied to the P values of the generalized F test. For those genes with significant generalized F test, we then categorize them based on whether the interaction terms were significant or not at the α-level (αnew = 0.0033) determined by the FDR procedure. Since simple effects may be examined for the genes with significant interaction effect, we adopt the protected Fisher's least significant difference test (LSD) procedure at the level of αnew to control the family-wise error rate (FWER) for each gene examined. Conclusions A linear mixed model is appropriate for analysis of oligonucleotide array experiments with repeated measures. We constructed a generalized F test to select differentially expressed genes, and then applied a specific sequence of tests to identify factorial effects. This sequence of tests applied was designed to control for gene based FWER. PMID:15626348

  11. Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays.

    PubMed

    Yuen, Po Ki; Li, Guangshan; Bao, Yijia; Muller, Uwe R

    2003-02-01

    Reactions of biomolecules with surface mounted materials on microscope slides are often limited by slow diffusion kinetics, especially in low volumes where diffusion is the only means of mixing. This is a particular problem for reactions where only small amounts of analyte are available and the required reaction volume limits the analyte concentration. A low volume microfluidic device consisting of two interconnected 9 mm x 37.5 mm reaction chambers was developed to allow mixing and closed loop fluidic circulation over most of the surface of a microscope slide. Fluid samples are moved from one reaction chamber to the other by the rotation of a magnetic stirring bar that is driven by a standard magnetic stirrer. We demonstrate that circulation and mixing of different reagents can be efficiently accomplished by this closed loop device with solutions varying in viscosity from 1 to 16.2 centipoise. We also show by example of a microarray hybridization that the reaction efficiency can be enhanced 2-5 fold through fluid mixing under conditions where diffusion is rate limiting. For comparison, similar results were achieved with a disposable commercial device that covers only half of the reaction area of the closed loop device.

  12. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  13. Iontophoresis and Flame Photometry: A Hybrid Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Sharp, Duncan; Cottam, Linzi; Bradley, Sarah; Brannigan, Jeanie; Davis, James

    2010-01-01

    The combination of reverse iontophoresis and flame photometry provides an engaging analytical experiment that gives first-year undergraduate students a flavor of modern drug delivery and analyte extraction techniques while reinforcing core analytical concepts. The experiment provides a highly visual demonstration of the iontophoresis technique and…

  14. Iontophoresis and Flame Photometry: A Hybrid Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Sharp, Duncan; Cottam, Linzi; Bradley, Sarah; Brannigan, Jeanie; Davis, James

    2010-01-01

    The combination of reverse iontophoresis and flame photometry provides an engaging analytical experiment that gives first-year undergraduate students a flavor of modern drug delivery and analyte extraction techniques while reinforcing core analytical concepts. The experiment provides a highly visual demonstration of the iontophoresis technique and…

  15. Characterization of hemizygous deletions in citrus using array-comparative genomic hybridization and microsynteny comparisons with the poplar genome.

    PubMed

    Ríos, Gabino; Naranjo, Miguel A; Iglesias, Domingo J; Ruiz-Rivero, Omar; Geraud, Marion; Usach, Antonio; Talón, Manuel

    2008-08-09

    Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny and local gene colinearity in

  16. Characterization of hemizygous deletions in Citrus using array-Comparative Genomic Hybridization and microsynteny comparisons with the poplar genome

    PubMed Central

    Ríos, Gabino; Naranjo, Miguel A; Iglesias, Domingo J; Ruiz-Rivero, Omar; Geraud, Marion; Usach, Antonio; Talón, Manuel

    2008-01-01

    Background Many fruit-tree species, including relevant Citrus spp varieties exhibit a reproductive biology that impairs breeding and strongly constrains genetic improvements. In citrus, juvenility increases the generation time while sexual sterility, inbreeding depression and self-incompatibility prevent the production of homozygous cultivars. Genomic technology may provide citrus researchers with a new set of tools to address these various restrictions. In this work, we report a valuable genomics-based protocol for the structural analysis of deletion mutations on an heterozygous background. Results Two independent fast neutron mutants of self-incompatible clementine (Citrus clementina Hort. Ex Tan. cv. Clemenules) were the subject of the study. Both mutants, named 39B3 and 39E7, were expected to carry DNA deletions in hemizygous dosage. Array-based Comparative Genomic Hybridization (array-CGH) using a Citrus cDNA microarray allowed the identification of underrepresented genes in these two mutants. Subsequent comparison of citrus deleted genes with annotated plant genomes, especially poplar, made possible to predict the presence of a large deletion in 39B3 of about 700 kb and at least two deletions of approximately 100 and 500 kb in 39E7. The deletion in 39B3 was further characterized by PCR on available Citrus BACs, which helped us to build a partial physical map of the deletion. Among the deleted genes, ClpC-like gene coding for a putative subunit of a multifunctional chloroplastic protease involved in the regulation of chlorophyll b synthesis was directly related to the mutated phenotype since the mutant showed a reduced chlorophyll a/b ratio in green tissues. Conclusion In this work, we report the use of array-CGH for the successful identification of genes included in a hemizygous deletion induced by fast neutron irradiation on Citrus clementina. The study of gene content and order into the 39B3 deletion also led to the unexpected conclusion that microsynteny

  17. Review of world experience and properties of materials for encapsulation of terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Carmichael, D. C.; Gaines, G. B.; Sliemers, F. A.; Kistler, C. W.; Igou, R. D.

    1976-01-01

    Published and unpublished information relating to encapsulation systems and materials properties was collected by searching the literature and appropriate data bases (over 1,300 documents were selected and reviewed) and by personal contacts including site and company visits. A data tabulation summarizing world experience with terrestrial photovoltaic arrays (50 installations) is presented in the report. Based on criteria of properties, processability, availability, and cost, candidate materials were identified which have potential for use in encapsulation systems for arrays with a lifetime of over 20 years high reliability, an efficiency greater than 10 percent, a total price less than $500/kW, and a production capacity of 500,000 kW/yr. The recommended materials (all commercially available) include, depending upon the device design, various borosilicate and soda-lime glasses and numerous polymerics suitable for specific encapsulation system functions.

  18. Simultaneous processing of photographic and accelerator array data from sled impact experiment

    NASA Astrophysics Data System (ADS)

    Ash, M. E.

    1982-12-01

    A Quaternion-Kalman filter model is derived to simultaneously analyze accelerometer array and photographic data from sled impact experiments. Formulas are given for the quaternion representation of rotations, the propagation of dynamical states and their partial derivatives, the observables and their partial derivatives, and the Kalman filter update of the state given the observables. The observables are accelerometer and tachometer velocity data of the sled relative to the track, linear accelerometer array and photographic data of the subject relative to the sled, and ideal angular accelerometer data. The quaternion constraints enter through perfect constraint observations and normalization after a state update. Lateral and fore-aft impact tests are analyzed with FORTRAN IV software written using the formulas of this report.

  19. TNB Experience in Developing Solar Hybrid Station at RPS Kemar, Gerik, Perak Darul Ridzuan

    NASA Astrophysics Data System (ADS)

    Aziz, K. A.; Shamsudin, K. N.

    2013-06-01

    This paper will discuss on TNB experience in developing Solar Hybrid Station at RPS Kemar, Gerik, Perak. TNB has been approached by KKLW to submit proposal to provide electricity in the rural area namely RPS Kemar. Looking at area and source available, Solar Hybrid System was the best method in order to provide electricity at this area. This area is far from national grid sources. Solar Hybrid System is the best method to produce electrical power using the renewable energy from Solar PV, Battery and Diesel Generator Set. Nowadays, price of petroleum is slightly high due to higher demand from industry. Solar energy is good alternative in this country to practice in order to reduce cost for produce of electrical energy. Generally, Solar will produce energy during daytime and when become cloudy and dark, automatically battery and diesel generator set will recover the system through the hybrid controller system.

  20. Preimplantation Genetic Diagnosis for Aneuploidy and Translocations Using Array Comparative Genomic Hybridization

    PubMed Central

    Munné, Santiago

    2012-01-01

    At least 50% of human embryos are abnormal, and that increases to 80% in women 40 years or older. These abnormalities result in low implantation rates in embryos transferred during in vitro fertilization procedures, from 30% in women <35 years to 6% in women 40 years or older. Thus selecting normal embryos for transfer should improve pregnancy results. The genetic analysis of embryos is called Preimplantation Genetic Diagnosis (PGD) and for chromosome analysis it was first performed using FISH with up to 12 probes analyzed simultaneously on single cells. However, suboptimal utilization of the technique and the complexity of fixing single cells produced conflicting results. PGD has been invigorated by the introduction of microarray testing which allows for the analysis of all 24 chromosome types in one test, without the need of cell fixation, and with staggering redundancy, making the test much more robust and reliable. Recent data published and presented at scientific meetings has been suggestive of increased implantation rates and pregnancy rates following microarray testing, improvements in outcome that have been predicted for quite some time. By using markers that cover most of the genome, not only aneuploidy can be detected in single cells but also translocations. Our validation results indicate that array CGH has a 6Mb resolution in single cells, and thus the majority of translocations can be analyzed since this is also the limit of karyotyping. Even for translocations with smaller exchanged fragments, provided that three out of the four fragments are above 6Mb, the translocation can be detected. PMID:23448851

  1. Using array-comparative genomic hybridization to define molecular portraits of primary breast cancers.

    PubMed

    Chin, S-F; Wang, Y; Thorne, N P; Teschendorff, A E; Pinder, S E; Vias, M; Naderi, A; Roberts, I; Barbosa-Morais, N L; Garcia, M J; Iyer, N G; Kranjac, T; Robertson, J F R; Aparicio, S; Tavaré, S; Ellis, I; Brenton, J D; Caldas, C

    2007-03-22

    We analysed 148 primary breast cancers using BAC-arrays containing 287 clones representing cancer-related gene/loci to obtain genomic molecular portraits. Gains were detected in 136 tumors (91.9%) and losses in 123 tumors (83.1%). Eight tumors (5.4%) did not have any genomic aberrations in the 281 clones analysed. Common (more than 15% of the samples) gains were observed at 8q11-qtel, 1q21-qtel, 17q11-q12 and 11q13, whereas common losses were observed at 16q12-qtel, 11ptel-p15.5, 1p36-ptel, 17p11.2-p12 and 8ptel-p22. Patients with tumors registering either less than 5% (median value) or less than 11% (third quartile) total copy number changes had a better overall survival (log-rank test: P=0.0417 and P=0.0375, respectively). Unsupervised hierarchical clustering based on copy number changes identified four clusters. Women with tumors from the cluster with amplification of three regions containing known breast oncogenes (11q13, 17q12 and 20q13) had a worse prognosis. The good prognosis group (Nottingham Prognostic Index (NPI)

  2. Comprehensive genome characterization of solitary fibrous tumors using high-resolution array-based comparative genomic hybridization.

    PubMed

    Bertucci, François; Bouvier-Labit, Corinne; Finetti, Pascal; Adélaïde, José; Metellus, Philippe; Mokhtari, Karima; Decouvelaere, Anne-Valérie; Miquel, Catherine; Jouvet, Anne; Figarella-Branger, Dominique; Pedeutour, Florence; Chaffanet, Max; Birnbaum, Daniel

    2013-02-01

    Solitary fibrous tumors (SFTs) are rare spindle cell tumors with limited therapeutic options. Their molecular basis is poorly known. No consistent cytogenetic abnormality has been reported. We used high-resolution whole-genome array-based comparative genomic hybridization (Agilent 244K oligonucleotide chips) to profile 47 samples, meningeal in >75% of cases. Few copy number aberrations (CNAs) were observed. Sixty-eight percent of samples did not show any gene CNA after exclusion of probes located in regions with referenced copy number variation (CNV). Only low-level CNAs were observed. The genomic profiles were very homogeneous among samples. No molecular class was revealed by clustering of DNA copy numbers. All cases displayed a "simplex" profile. No recurrent CNA was identified. Imbalances occurring in >20%, such as the gain of 8p11.23-11.22 region, contained known CNVs. The 13q14.11-13q31.1 region (lost in 4% of cases) was the largest altered region and contained the lowest percentage of genes with referenced CNVs. A total of 425 genes without CNV showed copy number transition in at least one sample, but only but only 1 in at least 10% of samples. The genomic profiles of meningeal and extra-meningeal cases did not show any differences.

  3. Lipid oxidation in herring fillets (Clupea harengus) during ice storage measured by a commercial hybrid gas-sensor array system.

    PubMed

    Haugen, John-Erik; Undeland, Ingrid

    2003-01-29

    Volatile compounds released from herring fillets (Clupea harengus) during 15 days of storage on ice have been measured with a commercial hybrid gas-sensor array system. Using partial least-squares regression modeling, the sensor responses were correlated with data from chemical analyses (lipid oxidation products and antioxidants) and sensory analyses (odor). Eight of the 16 sensors proved significant in the correlation studies: 6 metal oxide semiconductor field effect transistor (MOSFET) sensors and 2 Taguchi type sensors. Correlation coefficients for chemical and sensory data ranged from 0.9 to 0.98 and from 0.49 to 0.92, respectively, with 0.92 referring to both "sharp/acrid" and "rancid" odors. Prediction errors ranged from 8 to 14% and from 11 to 25% for the chemical and sensory measures, respectively. That the prediction errors for oxidation product formation (5-9%) were close to the analytical errors of the chemical reference methods indicated close to "optimum" performance of the gas-sensor system. The sensor system predicted the storage time of the herring with a 1-day error. Results illustrate high potential of the gas-sensor technology in rapid nondestructive quality determination of ice-stored herring.

  4. Hybrid Transmission Line for ECRH in the Helically Symmetric Experiment

    NASA Astrophysics Data System (ADS)

    Radder, J. W.; Likin, K. M.; Anderson, F. S. B.; Anderson, D. T.

    2008-04-01

    The HSX oversized, mode-converting ECRH transmission line has been upgraded to a hybrid system to increase launched microwave power and reduce electrical arcing. Filtering of high-order, spurious modes ensures efficient coupling to a Gaussian beam for optimal electron heating. A Vlasov mode converter and two phase-correcting ellipsoidal mirrors convert the TE02 gyrotron output mode to a symmetric, linearly polarized, microwave beam. A swappable twist reflector plate rotates beam polarization for 2nd-harmonic X-mode or fundamental O-mode ECRH. Long distances are traversed by coupling the beam to a dual-mode (TE11 + TM11), smooth, circular cross-section waveguide. This system has been successfully tested without arcing for 50 ms pulses and over 100 kW of launched power. Analysis of the microwave beam for 50 kW, 2 ms microwave pulses reveals agreement with predicted beam shapes at two beam locations. The new system has also demonstrated increased plasma stored energy for ECRH plasmas with equal launched power.

  5. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.

  6. DASH-2: flexible, low-cost, and high-throughput SNP genotyping by dynamic allele-specific hybridization on membrane arrays.

    PubMed

    Jobs, Magnus; Howell, W Mathias; Stromqvist, Linda; Mayr, Torsten; Brookes, Anthony J

    2003-05-01

    Genotyping technologies need to be continually improved in terms of their flexibility, cost-efficiency, and throughput, to push forward genome variation analysis. To this end, we have leveraged the inherent simplicity of dynamic allele-specific hybridization (DASH) and coupled it to recent innovations of centrifugal arrays and iFRET. We have thereby created a new genotyping platform we term DASH-2, which we demonstrate and evaluate in this report. The system is highly flexible in many ways (any plate format, PCR multiplexing, serial and parallel array processing, spectral-multiplexing of hybridization probes), thus supporting a wide range of application scales and objectives. Precision is demonstrated to be in the range 99.8-100%, and assay costs are 0.05 USD or less per genotype assignment. DASH-2 thus provides a powerful new alternative for genotyping practice, which can be used without the need for expensive robotics support.

  7. Validation studies based on critical experiments performed with fuel pin arrays moderated by Pu + U solutions

    SciTech Connect

    Smolen, G.R.; Matsumoto, T. )

    1989-01-01

    This paper outlines the results of a calculational study that was performed to validate the SCALE computer code system using data from critical experiments performed with fuel pin arrays moderated by mixed Pu + U aqueous solutions. A companion paper describes the experiments and discusses the criticality data that were obtained. These experimental activities are part of a joint exchange program between the US Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation of Japan in the area of criticality data development. The Consolidated fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) manages the program for the DOE. The experiments were conducted at the Battelle Pacific Northwest Laboratories-Critical Mass Laboratory (PNL-CML).

  8. First Experiments with Planar Wire Arrays on U Michigan's Linear Transformer Driver

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Kantsyrev, V. L.; Weller, M. E.; Shrestha, I. K.; Shlyaptseva, V. V.; Cooper, M. C.; Lorance, M.; Stafford, A.; Patel, S. G.; Steiner, A. M.; Yager-Elorriaga, D. A.; Jordan, N. M.; Gilgenbach, R. M.

    2014-10-01

    For petawatt-class Z-pinch accelerators, a Linear Transformer Driver (LTD)-driven accelerator promises to be (at a given pinch current and implosion time) more efficient than the conventionally used Marx-driven accelerator. Because there exists almost no data on how wire arrays radiate on LTD-based machines in the USA, it is very important to perform radiation and plasma physics studies on this new type of generator. We report on the first outcome of the new partnership with University of Michigan (UM), which resulted in successful UNR-UM experiments on the low-impedance MAIZE generator with planar wire arrays (PWA). PWA is a novel wire array load that was introduced and tested in detail on high-impedance Zebra at UNR during the last years and found to be the most efficient radiator. Implosion of Al Double PWAs of different configurations were achieved on MAIZE, observed with a set of various diagnostics which include x-ray diode detectors, x-ray spectroscopy and imaging, and shadowgraphy. Al and Mg plasmas of more than 450 eV were studied in detail. Research supported by NNSA under DOE Cooperative Agreement DE-NA0001984. S. G. Patel and A. M. Steiner supported by Sandia National Laboratories. D. A. Yager-Elorriaga supported by NSF GF.

  9. Design of solid state neutral particle analyzer array for National Spherical Torus Experiment-Upgrade

    SciTech Connect

    Liu, D. Heidbrink, W. W.; Zhu, Y. B.; Tritz, K.; Roquemore, A. L.; Medley, S. S.

    2014-11-15

    A new compact, multi-channel Solid State Neutral Particle Analyzer (SSNPA) diagnostic based on silicon photodiode array has been designed and is being fabricated for the National Spherical Torus Experiment-Upgrade (NSTX-U). The SSNPA system utilizes a set of vertically stacked photodiode arrays in current mode viewing the same plasma region with different filter thickness to obtain fast temporal resolution (∼120 kHz bandwidth) and coarse energy information in three bands of >25 keV, >45 keV, and >65 keV. The SSNPA system consists of 15 radial sightlines that intersect existing on-axis neutral beams at major radii between 90 and 130 cm, 15 tangential sightlines that intersect new off-axis neutral beams at major radii between 120 and 145 cm. These two subsystems aim at separating the response of passing and trapped fast ions. In addition, one photodiode array whose viewing area does not intersect any neutral beams is used to monitor passive signals produced by fast ions that charge exchange with background neutrals.

  10. A novel coil array for combined TMS/fMRI experiments at 3 T

    PubMed Central

    Navarro de Lara, Lucia I.; Windischberger, Christian; Kuehne, Andre; Woletz, Michael; Sieg, Jürgen; Bestmann, Sven; Weiskopf, Nikolaus; Strasser, Bernhard; Moser, Ewald

    2014-01-01

    Purpose To overcome current limitations in combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies by employing a dedicated coil array design for 3 Tesla. Methods The state‐of‐the‐art setup for concurrent TMS/fMRI is to use a large birdcage head coil, with the TMS between the subject's head and the MR coil. This setup has drawbacks in sensitivity, positioning, and available imaging techniques. In this study, an ultraslim 7‐channel receive‐only coil array for 3 T, which can be placed between the subject's head and the TMS, is presented. Interactions between the devices are investigated and the performance of the new setup is evaluated in comparison to the state‐of‐the‐art setup. Results MR sensitivity obtained at the depth of the TMS stimulation is increased by a factor of five. Parallel imaging with an acceleration factor of two is feasible with low g‐factors. Possible interactions between TMS and the novel hardware were investigated and were found negligible. Conclusion The novel coil array is safe, strongly improves signal‐to‐noise ratio in concurrent TMS/fMRI experiments, enables parallel imaging, and allows for flexible positioning of the TMS on the head while ensuring efficient TMS stimulation due to its ultraslim design. Magn Reson Med 74:1492–1501, 2015. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. PMID:25421603

  11. A novel coil array for combined TMS/fMRI experiments at 3 T.

    PubMed

    Navarro de Lara, Lucia I; Windischberger, Christian; Kuehne, Andre; Woletz, Michael; Sieg, Jürgen; Bestmann, Sven; Weiskopf, Nikolaus; Strasser, Bernhard; Moser, Ewald; Laistler, Elmar

    2015-11-01

    To overcome current limitations in combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies by employing a dedicated coil array design for 3 Tesla. The state-of-the-art setup for concurrent TMS/fMRI is to use a large birdcage head coil, with the TMS between the subject's head and the MR coil. This setup has drawbacks in sensitivity, positioning, and available imaging techniques. In this study, an ultraslim 7-channel receive-only coil array for 3 T, which can be placed between the subject's head and the TMS, is presented. Interactions between the devices are investigated and the performance of the new setup is evaluated in comparison to the state-of-the-art setup. MR sensitivity obtained at the depth of the TMS stimulation is increased by a factor of five. Parallel imaging with an acceleration factor of two is feasible with low g-factors. Possible interactions between TMS and the novel hardware were investigated and were found negligible. The novel coil array is safe, strongly improves signal-to-noise ratio in concurrent TMS/fMRI experiments, enables parallel imaging, and allows for flexible positioning of the TMS on the head while ensuring efficient TMS stimulation due to its ultraslim design. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  12. Velocity Model Using the Large-N Seismic Array from the Source Physics Experiment (SPE)

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.

    2016-12-01

    The Source Physics Experiment (SPE) is a multi-institutional, multi-disciplinary project that consists of a series of chemical explosions conducted at the Nevada National Security Site (NNSS). The goal of SPE is to understand the complicated effect of geological structures on seismic wave propagation and source energy partitioning, develop and validate physics-based modeling, and ultimately better monitor low-yield nuclear explosions. A Large-N seismic array was deployed at the SPE site to image the full 3D wavefield from the most recent SPE-5 explosion on April 26, 2016. The Large-N seismic array consists of 996 geophones (half three-component and half vertical-component sensors), and operated for one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources (a large hammer). This study uses Large-N array recordings of the SPE-5 chemical explosion to develop high resolution images of local geologic structures. We analyze different phases of recorded seismic data and construct a velocity model based on arrival times. The results of this study will be incorporated into the large modeling and simulation efforts as ground-truth further validating the models.

  13. Use of within-array replicate spots for assessing differential expression in microarray experiments.

    PubMed

    Smyth, Gordon K; Michaud, Joëlle; Scott, Hamish S

    2005-05-01

    Spotted arrays are often printed with probes in duplicate or triplicate, but current methods for assessing differential expression are not able to make full use of the resulting information. The usual practice is to average the duplicate or triplicate results for each probe before assessing differential expression. This results in the loss of valuable information about genewise variability. A method is proposed for extracting more information from within-array replicate spots in microarray experiments by estimating the strength of the correlation between them. The method involves fitting separate linear models to the expression data for each gene but with a common value for the between-replicate correlation. The method greatly improves the precision with which the genewise variances are estimated and thereby improves inference methods designed to identify differentially expressed genes. The method may be combined with empirical Bayes methods for moderating the genewise variances between genes. The method is validated using data from a microarray experiment involving calibration and ratio control spots in conjunction with spiked-in RNA. Comparing results for calibration and ratio control spots shows that the common correlation method results in substantially better discrimination of differentially expressed genes from those which are not. The spike-in experiment also confirms that the results may be further improved by empirical Bayes smoothing of the variances when the sample size is small. The methodology is implemented in the limma software package for R, available from the CRAN repository http://www.r-project.org

  14. Polarimeter Arrays with Comprehensive Frequency Coverage for the Next Generation of Precision Microwave Background Experiments

    NASA Astrophysics Data System (ADS)

    Austermann, Jason Edward; Beall, James; Becker, Dan; Cho, Hsiao-Mei; Duff, Shannon; gao, jiansong; Hilton, Gene; Hubmayr, Johannes; Irwin, Kent; li, dale; McKenney, Christopher; Ullom, Joel; van lanen, jeffrey; Vissers, Michael

    2016-06-01

    Spectral resolution at (sub-)millimeter wavelengths is now understood to be crucially important in precision measurements of the cosmic microwave background (CMB). Recent results from the Planck and BICEP/KECK experiments have established that measurements of the CMB polarization signal is limited, in part, by polarized foreground emission. In particular, polarized emission from galactic dust has been found to dominate and obscure potential signals of cosmic inflation, even in regions of the sky specifically identified as having relatively low galactic emission. Current and future experiments aim to address foreground contamination by conducting high-sensitivity observations with broad spectral coverage that will allow for differentiation within the measured signal between foreground sources of polarization and that of the CMB, which each have distinct spectral characteristics. To efficiently achieve these goals within a limited focal plane area, NIST-Boulder has developed multi-band TES-based polarimeters that simultaneously measure multiple spectral bands in each of two orthogonal polarizations. This acts to both increase pixel sensitivity through an increased total bandwidth, as well as providing broad spectral information for differentiation of emission sources. Here, we describe recent achievements and ongoing efforts at NIST-Boulder in the development of millimeter and sub-millimeter detector and focal plane technologies for future experiments, including the stage-IV CMB experiment, CMB-S4. NIST-Boulder provides critical cryogenic components to a large number of current and in-development CMB experiments. Recent milestones include the fielding of the first broadband multi-chroic mm-wave polarimeters in the ACTPol experiment, multi-band array fabrication on large-format 150 mm wafers, and development of matching 150 mm silicon platelet feedhorn arrays. We also review several related development efforts in detector, optical coupling, and readout technologies

  15. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at “QiangGuang-I” facility

    SciTech Connect

    Sheng, Liang; Peng, Bodong; Yuan, Yuan; Zhang, Mei; Zhao, Chen; Zhao, Jizhen; Wang, Liangping; Li, Yang Li, Mo

    2016-01-15

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on “QiangGuang-I” facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/t{sub imp} < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GW for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.

  16. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at "QiangGuang-I" facility

    NASA Astrophysics Data System (ADS)

    Sheng, Liang; Peng, Bodong; Li, Yang; Yuan, Yuan; Li, Mo; Zhang, Mei; Zhao, Chen; Zhao, Jizhen; Wang, Liangping

    2016-01-01

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on "QiangGuang-I" facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/timp < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GW for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.

  17. A Center-The Continuous Transverse (CTS) Array: Basic Theory, Experiment, and Application

    DTIC Science & Technology

    1992-02-01

    slotted waveguide array , printed patch array , Lnd reflector/lens antenna approaches. Some distinct advantages in...C5 (U) 19. Pencil Beam Antenna Array (U) 20. Shaped Beam Array "Trough" iTansverse WIG (U) 21. CTS Element Trough (U) 22. Slotted Waveguide Cavity...reduced. Design modification: or iterations are easily and quiikly implemented. 5.1 Pencil Beam Array A standard pencil beam antenna array as shown

  18. Design and experiment of human hand motion driven electromagnetic energy harvester using dual Halbach magnet array

    NASA Astrophysics Data System (ADS)

    Salauddin, M.; Park, Jae Y.

    2017-03-01

    We present a dual Halbach array electromagnetic energy harvester that generates significant power from hand shaking vibration. The magnetic-spring configuration is employed for generating sufficient power from the hand motion of irregular and low-frequency vibrations. However, significant power generation at low-frequency vibrations is challenging because the power flow decreases as the frequency decreases; moreover, designing a spring-mass system that is suitable for low-frequency-vibration energy harvesting is difficult. In this work, our proposed device overcomes both of these challenges by using a dual Halbach array and magnetic springs. During the experiment, vibration was applied in a horizontal direction to reduce the gravity effect on the Halbach-array structure. To achieve an increased power generation at low-amplitude and low-frequency vibrations, the magnetic structure of the dual Halbach array and the magnetic springs were optimized in terms of the operating frequency and the power density. A prototype was fabricated and tested both using a vibration exciter and by manual hand-shaking. The fabricated device showed resonant behavior during the vibration exciter test. For the vibration exciter test, the prototype device offers a maximum average power of 2.92 mW to a 62 Ω optimum load, at a 6 Hz resonance frequency and under a 0.5 g acceleration. The prototype device is capable of delivering a maximum average power of 2.27 mW from hand shaking. The fabricated device exhibited a normalized power density 0.46 mW cm-2g-2 which is very high compared to the current state-of-the-art devices, representing its ability in powering portable and wearable smart devices from extremely low frequency vibration.

  19. Hybridization experiments indicate incomplete reproductive isolating mechanism between Fasciola hepatica and Fasciola gigantica.

    PubMed

    Itagaki, T; Ichinomiya, M; Fukuda, K; Fusyuku, S; Carmona, C

    2011-09-01

    Experiments on hybridization between Fasciola hepatica and Fasciola gigantica were carried out to clarify whether a reproductive isolating mechanism appears between the two Fasciola species. Molecular evidence for hybridization was based on the DNA sequence of the internal transcribed spacer 1 (ITS1) region in nuclear ribosomal DNA, which differs between the species. The results suggested that there were not pre-mating but post-mating isolating mechanisms between the two species. However, viable adults of the hybrids F1 and F2 were produced from both parental F. hepatica and F. gigantica. The hybrids inherited phenotypic characteristics such as ratio of body length and width and infectivity to rats from parental Fasciola hepatica and F. gigantica. These findings suggest that reproductive isolation is incomplete between Fasciola hepatica and F. gigantica. Adults of the hybrids F1 and F2 were completely different in mode of reproduction from aspermic Fasciola forms that occur in Asia and seem to be offspring originated from hybridization between F. hepatica and F. gigantica and to reproduce parthenogenetically.

  20. Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices: Interfacing vertical core-shell array electrodes with a gel polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Pandey, Gaind P.; Klankowski, Steven A.; Liu, Tao; Wu, Judy; Li, Jun

    2017-02-01

    A novel solid-state battery-supercapacitor hybrid device is fabricated for high-performance electrical energy storage using a Si anode and a TiO2 cathode in conjunction with a flexible, solid-like gel polymer electrolyte film as the electrolyte and separator. The electrodes were fabricated as three-dimensional nanostructured vertical arrays by sputtering active materials as conformal shells on vertically aligned carbon nanofibers (VACNFs) which serve as the current collector and structural template. Such nanostructured vertical core-shell array-electrodes enable short Li-ion diffusion path and large pseudocapacitive contribution by fast surface reactions, leading to the hybrid features of batteries and supercapacitors that can provide high specific energy over a wide range of power rates. Due to the improved mechanical stability of the infiltrated composite structure, the hybrid cell shows excellent cycling stability and is able to retain more than 95% of the original capacity after 3500 cycles. More importantly, this solid-state device can stably operate in a temperature range from -20 to 60 °C with a very low self-discharge rate and an excellent shelf life. This solid-state architecture is promising for the development of highly stable thin-film hybrid energy storage devices for unconventional applications requiring largely varied power, wider operation temperature, long shelf-life and higher safety standards.

  1. Hybridization of the Vector Finite Element Method with the Boundary Integral Method for the Solution of Finite Arrays of Cavity-Backed Slot Antennas

    NASA Astrophysics Data System (ADS)

    Polycarpou, A. C.

    2009-10-01

    The vector finite element method (FEM) is hybridized with the boundary integral (BI) method to solve for the radiation characteristics of a cavity-backed slot (CBS) antenna. The hybridization of the two methods is made possible at the aperture of the antenna separating the cavity interior and the half-space exterior region above an infinite conducting ground plane. Having to solve for a finite array of CBS antennas requires an excessive amount of memory, in order to store the system matrix, and considerable CPU time for the solution of the resulting linear system of equations. Increasing the number of array elements results in a non-linear increase in the number of unknowns, thus making the solution of the linear system impossible. In this paper, we adopt array domain decomposition (ADD) and by taking advantage of the repetitive features of the array, we can reduce the memory requirements to a minimum. In addition, we introduce stationary and non-stationary iteration techniques, with or without preconditioning, to solve the system of linear equations in an efficient manner. Singular value decomposition (SVD) is also used in order to further reduce memory requirements and speed-up matrix-vector multiplications that are inherent in either type of iterative techniques. Computational statistics and comparisons between stationary and non-stationary techniques are presented and discussed.

  2. Binder-free Co3O4@NiCoAl-layered double hydroxide core-shell hybrid architectural nanowire arrays with enhanced electrochemical performance

    NASA Astrophysics Data System (ADS)

    Li, Xuan; Yang, Zhengchun; Qi, Wen; Li, Yutao; Wu, Ying; Zhou, Shaoxiong; Huang, Shengming; Wei, Jun; Li, Huijun; Yao, Pei

    2016-02-01

    Herein, binder-free Co3O4@NiCoAl-layered double hydroxide (Co3O4@LDH) core-shell hybrid architectural nanowire arrays were prepared via a two-step hydrothermal synthesis route. LDH nanosheets possessing a large electroactive surface area uniformly dispersed on the surface of Co3O4 nanowires were successfully fabricated allowing for fast electron transport that enhances the electrochemical performance of LDH nanosheets. Co3O4@LDH nanowire arrays of 2 to 1.5 molar ratio (Co3O4:LDH) exhibit high specific capacitance (1104 F g-1 at 1 A g-1), adequate rate capability and cycling stability (87.3% after 5000 cycles), attributed to the synergistic effect between the robust Co3O4 nanowire arrays and LDH nanosheets.

  3. bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS

    SciTech Connect

    Ade, P. A. R.; Aikin, R. W.; Bock, J. J.; Brevik, J. A.; Filippini, J. P.; Golwala, S. R.; Hildebrandt, S. R.; Hui, H.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bradford, K. J.; Buder, I.; Bullock, E.; Dowell, C. D.; Duband, L.; Fliescher, S.; Halpern, M.; Hasselfield, M.; Hilton, G. C.; Collaboration: bicep2 and Keck Array Collaborations; and others

    2015-06-20

    bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array share a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.

  4. Applying TSOI Hybrid Learning Model to Enhance Blended Learning Experience in Science Education

    ERIC Educational Resources Information Center

    Tsoi, Mun Fie

    2009-01-01

    Purpose: Research on the nature of blended learning and its features has led to a variety of approaches to the practice of blended learning. The purpose of this paper is to provide an alternative practice model, the TSOI hybrid learning model (HLM) to enhance the blended learning experiences in science education. Design/methodology/approach: The…

  5. Applying TSOI Hybrid Learning Model to Enhance Blended Learning Experience in Science Education

    ERIC Educational Resources Information Center

    Tsoi, Mun Fie

    2009-01-01

    Purpose: Research on the nature of blended learning and its features has led to a variety of approaches to the practice of blended learning. The purpose of this paper is to provide an alternative practice model, the TSOI hybrid learning model (HLM) to enhance the blended learning experiences in science education. Design/methodology/approach: The…

  6. A Qualitative Experiment: Research on Mediated Meaning Construction Using a Hybrid Approach

    ERIC Educational Resources Information Center

    Robinson, Sue; Mendelson, Andrew L.

    2012-01-01

    This article presents a hybrid methodological technique that fuses elements of experimental design with qualitative strategies to explore mediated communication. Called the "qualitative experiment," this strategy uses focus groups and in-depth interviews "within" randomized stimulus conditions typically associated with…

  7. A Qualitative Experiment: Research on Mediated Meaning Construction Using a Hybrid Approach

    ERIC Educational Resources Information Center

    Robinson, Sue; Mendelson, Andrew L.

    2012-01-01

    This article presents a hybrid methodological technique that fuses elements of experimental design with qualitative strategies to explore mediated communication. Called the "qualitative experiment," this strategy uses focus groups and in-depth interviews "within" randomized stimulus conditions typically associated with…

  8. EPFL (Swiss) fusion-fission hybrid experiment. Progress report, November 1, 1981-January 31, 1982

    SciTech Connect

    Woodruff, G.L.

    1982-02-08

    The trip provided an opportunity for extensive discussions with the staff of the Institut de Genie Atomique (IGA) of the Ecole Polytechnique Federale de Lausanne (EPFL). The discussions covered both the planning of the first series of experiments to be performed in the Hybrid Experiment (hereafter referred to as LOTUS) and the status of calculational work being performed at the University of Washington in support of the LOTUS project.

  9. Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma by array-based comparative genomic hybridization.

    PubMed

    Hartmann, Sylvia; Martin-Subero, José I; Gesk, Stefan; Hüsken, Julia; Giefing, Maciej; Nagel, Inga; Riemke, Jennifer; Chott, Andreas; Klapper, Wolfram; Parrens, Marie; Merlio, Jean-Philippe; Küppers, Ralf; Bräuninger, Andreas; Siebert, Reiner; Hansmann, Martin-Leo

    2008-09-01

    Cytogenetic analysis of classical Hodgkin's lymphoma is limited by the low content of the neoplastic Hodgkin-Reed-Sternberg cells in the affected tissues. However, available cytogenetic data point to an extreme karyotype complexity. To obtain insights into chromosomal imbalances in classical Hodgkin's lymphoma, we applied array-based comparative genomic hybridization (array comparative genomic hybridization) using DNA from microdissected Hodgkin-Reed-Sternberg cells. To avoid biases introduced by DNA amplification for array comparative genomic hybridization, cHL cases rich in Hodgkin-Reed-Sternberg cells were selected. DNA obtained from approximately 100,000 microdissected Hodgkin-Reed-Sternberg cells of each of ten classical Hodgkin's lymphoma cases was hybridized onto commercial 105 K oligonucleotide comparative genomic hybridization microarrays. Selected imbalances were confirmed by interphase cytogenetics and quantitative polymerase chain reaction analysis and further studied in an independent series of classical Hodgkin's lymphoma. Gains identified in at least five cHL affected 2p12-16, 5q15-23, 6p22, 8q13, 8q24, 9p21-24, 9q34, 12q13-14, 17q12, 19p13, 19q13 and 20q11 whereas losses recurrent in at least five cases involved Xp21, 6q23-24 and 13q22. Copy number changes of selected genes and a small deletion (156 kb) of the CDKN2B (p15) gene were confirmed by interphase cytogenetics and polymerase chain reaction analysis, respectively. Several gained regions included genes constitutively expressed in cHL. Among these, gains of STAT6 (12q13), NOTCH1 (9q34) and JUNB (19p13) were present in additional cHL with the usual low Hodgkin-Reed-Sternberg cell content. The present study demonstrates that array comparative genomic hybridization of microdissected Hodgkin-Reed-Sternberg cells is suitable for identifying and characterizing chromosomal imbalances. Regions affected by genomic changes in Hodgkin-Reed-Sternberg cells recurrently include genes constitutively

  10. Additional information from array comparative genomic hybridization technology over conventional karyotyping in prenatal diagnosis: a systematic review and meta-analysis.

    PubMed

    Hillman, S C; Pretlove, S; Coomarasamy, A; McMullan, D J; Davison, E V; Maher, E R; Kilby, M D

    2011-01-01

    Array comparative genomic hybridization (CGH) is transforming clinical cytogenetics with its ability to interrogate the human genome at increasingly high resolution. The aim of this study was to determine whether array CGH testing in the prenatal population provides diagnostic information over conventional karyotyping. MEDLINE (1970 to December 2009), EMBASE (1980 to December 2009) and CINAHL (1982 to December 2009) databases were searched electronically. Studies were selected if array CGH was used on prenatal samples or if array CGH was used on postnatal samples following termination of pregnancy for structural abnormalities that were detected on an ultrasound scan. Of the 135 potential articles, 10 were included in this systematic review and eight were included in the meta-analysis. The pooled rate of extra information detected by array CGH when the prenatal karyotype was normal was meta-analyzed using a random-effects model. The pooled rate of receiving an array CGH result of unknown significance was also meta-analyzed. Array CGH detected 3.6% (95% CI, 1.5-8.5) additional genomic imbalances when conventional karyo-typing was 'normal', regardless of referral indication. This increased to 5.2% (95% CI, 1.9-13.9) more than karyotyping when the referral indication was a structural malformation on ultrasound. There appears to be an increased detection rate of chromosomal imbalances, compared with conventional karyotyping, when array CGH techniques are employed in the prenatal population. However, some are copy number imbalances that are not clinically significant. This carries implications for prenatal counseling and maternal anxiety.

  11. Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems

    PubMed Central

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based image enhancement approach and the “model-based” descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations. PMID:22163859

  12. Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems.

    PubMed

    Shkvarko, Yuriy; Tuxpan, José; Santos, Stewart

    2011-01-01

    We consider a problem of high-resolution array radar/SAR imaging formalized in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed scene observed through a kernel signal formation operator and contaminated with random Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of consistent kernel SSP estimators with the reproducing kernel structures adapted to the metrics in such the solution space. Next, the "model-free" variational analysis (VA)-based image enhancement approach and the "model-based" descriptive experiment design (DEED) regularization paradigm are unified into a new dynamic experiment design (DYED) regularization framework. Application of the proposed DYED framework to the adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic windowing with the projections onto convex sets to enforce the consistency and robustness of the overall iterative SSP estimators. We also show how the proposed DYED regularization method may be considered as a generalization of the MVDR, APES and other high-resolution nonparametric adaptive radar sensing techniques. A family of the DYED-related algorithms is constructed and their effectiveness is finally illustrated via numerical simulations.

  13. Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis.

    PubMed

    Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen

    2015-11-01

    Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.

  14. Rescue karyotyping: a case series of array-based comparative genomic hybridization evaluation of archival conceptual tissue

    PubMed Central

    2014-01-01

    Background Determination of fetal aneuploidy is central to evaluation of recurrent pregnancy loss (RPL). However, obtaining this information at the time of a miscarriage is not always possible or may not have been ordered. Here we report on “rescue karyotyping”, wherein DNA extracted from archived paraffin-embedded pregnancy loss tissue from a prior dilation and curettage (D&C) is evaluated by array-based comparative genomic hybridization (aCGH). Methods A retrospective case series was conducted at an academic medical center. Patients included had unexplained RPL and a prior pregnancy loss for which karyotype information would be clinically informative but was unavailable. After extracting DNA from slides of archived tissue, aCGH with a reduced stringency approach was performed, allowing for analysis of partially degraded DNA. Statistics were computed using STATA v12.1 (College Station, TX). Results Rescue karyotyping was attempted on 20 specimens from 17 women. DNA was successfully extracted in 16 samples (80.0%), enabling analysis at either high or low resolution. The longest interval from tissue collection to DNA extraction was 4.2 years. There was no significant difference in specimen sufficiency for analysis in the collection-to-extraction interval (p = 0.14) or gestational age at pregnancy loss (p = 0.32). Eight specimens showed copy number variants: 3 trisomies, 2 partial chromosomal deletions, 1 mosaic abnormality and 2 unclassified variants. Conclusions Rescue karyotyping using aCGH on DNA extracted from paraffin-embedded tissue provides the opportunity to obtain critical fetal cytogenetic information from a prior loss, even if it occurred years earlier. Given the ubiquitous archiving of paraffin embedded tissue obtained during a D&C and the ease of obtaining results despite long loss-to-testing intervals or early gestational age at time of fetal demise, this may provide a useful technique in the evaluation of couples with recurrent pregnancy

  15. Rescue karyotyping: a case series of array-based comparative genomic hybridization evaluation of archival conceptual tissue.

    PubMed

    Kudesia, Rashmi; Li, Marilyn; Smith, Janice; Patel, Ankita; Williams, Zev

    2014-03-03

    Determination of fetal aneuploidy is central to evaluation of recurrent pregnancy loss (RPL). However, obtaining this information at the time of a miscarriage is not always possible or may not have been ordered. Here we report on "rescue karyotyping", wherein DNA extracted from archived paraffin-embedded pregnancy loss tissue from a prior dilation and curettage (D&C) is evaluated by array-based comparative genomic hybridization (aCGH). A retrospective case series was conducted at an academic medical center. Patients included had unexplained RPL and a prior pregnancy loss for which karyotype information would be clinically informative but was unavailable. After extracting DNA from slides of archived tissue, aCGH with a reduced stringency approach was performed, allowing for analysis of partially degraded DNA. Statistics were computed using STATA v12.1 (College Station, TX). Rescue karyotyping was attempted on 20 specimens from 17 women. DNA was successfully extracted in 16 samples (80.0%), enabling analysis at either high or low resolution. The longest interval from tissue collection to DNA extraction was 4.2 years. There was no significant difference in specimen sufficiency for analysis in the collection-to-extraction interval (p=0.14) or gestational age at pregnancy loss (p=0.32). Eight specimens showed copy number variants: 3 trisomies, 2 partial chromosomal deletions, 1 mosaic abnormality and 2 unclassified variants. Rescue karyotyping using aCGH on DNA extracted from paraffin-embedded tissue provides the opportunity to obtain critical fetal cytogenetic information from a prior loss, even if it occurred years earlier. Given the ubiquitous archiving of paraffin embedded tissue obtained during a D&C and the ease of obtaining results despite long loss-to-testing intervals or early gestational age at time of fetal demise, this may provide a useful technique in the evaluation of couples with recurrent pregnancy loss.

  16. Non-invasive prenatal screening versus prenatal diagnosis by array comparative genomic hybridization: a comparative retrospective study.

    PubMed

    Sotiriadis, Alexandros; Papoulidis, Ioannis; Siomou, Elisavet; Papageorgiou, Elena; Eleftheriades, Makarios; Papadopoulos, Vasilios; Alexiou, Maria; Manolakos, Emmanouil; Athanasiadis, Apostolos

    2017-06-01

    To calculate the proportion of array comparative genomic hybridization (aCGH) pathogenic results, that would not be detectable by non-invasive prenatal screening (NIPS). This is a comparative study using data from 2779 fetuses, which underwent invasive prenatal diagnosis, and the samples were analyzed using aCGH. The simulated NIPS assay would test for trisomies 21, 18, 13, monosomy X, 47, XXX, 47, XYY, and 47, XXY. Indications for invasive testing were grouped into categories and the absolute, relative rates of pathogenic/likely pathogenic results of aCGH analysis that would not be detectable by NIPS were calculated. The expected rate of aCGH-detected abnormalities that would not be detectable by NIPS was 28.0% (95% CI 14.3-47.6) for nuchal translucency (NT) 95 to 99th centile; 14.3% (95% 5.0-34.6) for NT > 99th centile; 34.2% (95% CI 21.1-50.1) for high-risk first-trimester results (regardless of NT); 52.4% (95% CI 32.4-71.7) for second-trimester markers; and 50.0% (95% CI 26.8-73.2) for advanced maternal age. The overall rate of aCGH pathogenic/likely pathogenic results was 5.0% and 44.0% (95% CI 36.0-52.2) of them would not be detected by NIPS. Approximately half of the abnormal aCGH results would not be detectable by standard NIPS assays, highlighting the necessity of pre-test counseling, and illustrating the limitations of NIPS. © 2017 John Wiley & Sons, Ltd. © 2017 John Wiley & Sons, Ltd.

  17. Array-comparative genomic hybridization profiling of immunohistochemical subgroups of diffuse large B-cell lymphoma shows distinct genomic alterations

    PubMed Central

    Guo, Ying; Takeuchi, Ichiro; Karnan, Sivasundaram; Miyata, Tomoko; Ohshima, Koichi; Seto, Masao

    2014-01-01

    Diffuse large B-cell lymphoma (DLBCL) displays striking heterogeneity at the clinical, genetic and molecular levels. Subtypes include germinal center B-cell-like (GCB) DLBCL and activated B-cell-like (ABC) DLBCL, according to microarray analysis, and germinal center type or non-germinal center type by immunohistochemistry. Although some reports have described genomic aberrations based upon microarray classification system, genomic aberrations based upon immunohistochemical classifications have rarely been reported. The present study aimed to ascertain the relationship between genomic aberrations and subtypes identified by immunohistochemistry, and to study the pathogenetic character of Chinese DLBCL. We conducted immunohistochemistry using antibodies against CD10, BCL6 and MUM1 in 59 samples of DLBCL from Chinese patients, and then performed microarray-based comparative genomic hybridization for each case. Characteristic genomic differences were found between GCB and non-GCB DLBCL from the array data. The GCB type was characterized by more gains at 7q (7q22.1, P < 0.05) and losses at 16q (P ≤ 0.05), while the non-GCB type was characterized by gains at 11q24.3 and 3q13.2 (P < 0.05). We found completely different mutations in BCL6+ and BCL6− non-GCB type DLBCL, whereby the BCL6− group had a higher number of gains at 1q and a loss at 14q32.13 (P ≤ 0.005), while the BCL6+ group showed a higher number of gains at 14q23.1 (P = 0.15) and losses at 6q (P = 0.07). The BCL6− group had a higher frequency of genomic imbalances compared to the BCL6+ group. In conclusion, the BCL6+ and BCL6− non-GCB type of DLBCL appear to have different mechanisms of pathogenesis. PMID:24843885

  18. Array-comparative genomic hybridization profiling of immunohistochemical subgroups of diffuse large B-cell lymphoma shows distinct genomic alterations.

    PubMed

    Guo, Ying; Takeuchi, Ichiro; Karnan, Sivasundaram; Miyata, Tomoko; Ohshima, Koichi; Seto, Masao

    2014-04-01

    Diffuse large B-cell lymphoma (DLBCL) displays striking heterogeneity at the clinical, genetic and molecular levels. Subtypes include germinal center B-cell-like (GCB) DLBCL and activated B-cell-like (ABC) DLBCL, according to microarray analysis, and germinal center type or non-germinal center type by immunohistochemistry. Although some reports have described genomic aberrations based upon microarray classification system, genomic aberrations based upon immunohistochemical classifications have rarely been reported. The present study aimed to ascertain the relationship between genomic aberrations and subtypes identified by immunohistochemistry, and to study the pathogenetic character of Chinese DLBCL. We conducted immunohistochemistry using antibodies against CD10, BCL6 and MUM1 in 59 samples of DLBCL from Chinese patients, and then performed microarray-based comparative genomic hybridization for each case. Characteristic genomic differences were found between GCB and non-GCB DLBCL from the array data. The GCB type was characterized by more gains at 7q (7q22.1, P < 0.05) and losses at 16q (P ≤ 0.05), while the non-GCB type was characterized by gains at 11q24.3 and 3q13.2 (P < 0.05). We found completely different mutations in BCL6+ and BCL6- non-GCB type DLBCL, whereby the BCL6- group had a higher number of gains at 1q and a loss at 14q32.13 (P ≤ 0.005), while the BCL6+ group showed a higher number of gains at 14q23.1 (P = 0.15) and losses at 6q (P = 0.07). The BCL6- group had a higher frequency of genomic imbalances compared to the BCL6+ group. In conclusion, the BCL6+ and BCL6- non-GCB type of DLBCL appear to have different mechanisms of pathogenesis.

  19. Aneuploidy screening by array comparative genomic hybridization improves success rates of in vitro fertilization: A multicenter Indian study

    PubMed Central

    Kotdawala, Aditi; Patel, Deven; Herrero, Javier; Khajuria, Rajni; Mahajan, Nalini; Banker, Manish

    2016-01-01

    OBJECTIVE: To evaluate the usefulness of preimplantation genetic screening (PGS) using array comparative genomic hybridization (aCGH) in the Indian population. MATERIALS AND METHODS: This is a retrospective, multicenter study including 235 PGS cycles following intracytoplasmic sperm injection performed at six different infertility centers from September 2013 to June 2015. Patients were divided as per maternal age in several groups (<35, 35–36, 37–38, 39–40, and >40 years) and as per indication for undergoing PGS. Indications for performing PGS were recurrent miscarriage, repetitive implantation failure, severe male factor, previous trisomic pregnancy, and advanced maternal age (≥35). Day 3 embryo biopsy was performed and analyzed by aCGH followed by day 5 embryo transfer in the same cycle or the following cycle. Outcomes such as pregnancy rates (PRs)/transfer, implantation rates, miscarriage rates, percentage of abnormal embryos, and number of embryos with more than one aneuploidy and chaotic patterns were recorded for all the treated subjects based on different age and indication groups. RESULTS: aCGH helped in identifying aneuploid embryos, thus leading to consistent implantation (range: 33.3%–42.9%) and PRs per transfer (range: 31.8%–54.9%) that were obtained for all the indications in all the age groups, after performing PGS. CONCLUSION: Aneuploidy is one of the major factors which affect embryo implantation. aCGH can be successfully employed for screening of aneuploid embryos. When euploid embryos are transferred, an increase in PRs can be achieved irrespective of the age or the indication. PMID:28216909

  20. Array comparative genomic hybridization profiling analysis reveals deoxyribonucleic acid copy number variations associated with premature ovarian failure.

    PubMed

    Aboura, Azzedine; Dupas, Claire; Tachdjian, Gérard; Portnoï, Marie-France; Bourcigaux, Nathalie; Dewailly, Didier; Frydman, René; Fauser, Bart; Ronci-Chaix, Nathalie; Donadille, Bruno; Bouchard, Philippe; Christin-Maitre, Sophie

    2009-11-01

    Premature ovarian failure (POF) is defined by amenorrhea of at least 4- to 6-month duration, occurring before 40 yr of age, with two FSH levels in the postmenopausal range. Its etiology remains unknown in more than 80% of cases. Standard karyotypes, having a resolution of 5-10 Mb, have identified critical chromosomal regions, mainly located on the long arm of the X chromosome. Array comparative genomic hybridization (a-CGH) analysis is able to detect submicroscopic chromosomal rearrangements with a higher genomic resolution. We searched for copy number variations (CNVs), using a-CGH analysis with a resolution of approximately 0.7 Mb, in a cohort of patients with POF. We prospectively included 99 women. Our study included a conventional karyotype and DNA microarrays comprising 4500 bacterial artificial chromosome clones spread on the entire genome. Thirty-one CNVs have been observed, three on the X chromosome and 28 on autosomal chromosomes. Data have been compared to control populations obtained from the Database of Genomic Variants (http://projects.tcag.ca/variation). Eight statistically significantly different CNVs have been identified in chromosomal regions 1p21.1, 5p14.3, 5q13.2, 6p25.3, 14q32.33, 16p11.2, 17q12, and Xq28. We report the first study of CNV analysis in a large cohort of Caucasian POF patients. In the eight statistically significant CNVs we report, we found five genes involved in reproduction, thus representing potential candidate genes in POF. The current study along with emerging information regarding CNVs, as well as data on their potential association with human diseases, emphasizes the importance of assessing CNVs in cohorts of POF women.

  1. Electron Cyclotron / Bernstein Wave Heating and Current Drive Experiments using Phased-array Antenna in QUEST

    SciTech Connect

    Idei, H.; Zushi, H.; Hanada, K.; Nakamura, K.; Fujisawa, A.; Hasegawa, M.; Yoshida, N.; Watanebe, H.; Tokunaga, K.; Nagashima, Y.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Sakamoto, M.; Ejiri, A.; Takase, Y.; Sakaguchi, M.; Kalinnikova, E.; Ishiguro, M.; Tashima, S.

    2011-12-23

    The phased-array antenna system for Electron Cyclotron/Bernstein Wave Heating and Current Drive experiments has been developed in the QUEST. The antenna was designed to excite a pure O-mode wave in the oblique injection for the O-X-B mode conversion experiments, and its good performances were confirmed at a low power level. The plasma current (<{approx}15 kA) with an aspect ratio of 1.5 was started up and sustained by only RF injection in the low-density operations. The long pulse discharge of 10 kA was also attained for 37 s. The new density window to sustain the plasma current was observed in the high-density plasmas. The single-null divertor configuration with the high plasma current (<{approx}25 kA) was attained in the 17 s plasma sustainment.

  2. Current profile modification during lower hybrid current drive in the Princeton Beta Experiment-Modification

    SciTech Connect

    Kaita, R.; Bell, R.; Batha, S.H.

    1996-02-01

    Current profile modification with lower hybrid waves has been demonstrated in the Princeton Beta Experiment-Modification tokamak. When the n{parallel} spectrum of the launched waves was varied, local changes in the current profile were observed according to equilibria reconstructed from motional Stark effect polarimetry measurements. Changes in the central safety factor (q) were also determined to be a function of the applied radio frequency (rf) power. These results have been modeled with the Tokamak Simulation Code/Lower Hybrid Simulation Code, which is able to duplicate the general trends seen in the data.

  3. Experiments on Nitrogen Oxide Production of Droplet Arrays Burning under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Moesl, Klaus; Sattelmayer, Thomas; Kikuchi, Masao; Yamamoto, Shin; Yoda, Shinichi

    The optimization of the combustion process is top priority in current aero-engine and aircraft development, particularly from the perspectives of high efficiency, minimized fuel consumption, and a sustainable exhaust gas production. Aero-engines are exclusively liquid-fueled with a strong correlation between the combustion temperature and the emissions of nitric oxide (NOX ). Due to safety concerns, the progress in NOX reduction has been much slower than in stationary gas turbines. In the past, the mixing intensity in the primary zone of aero-engine combustors was improved and air staging implemented. An important question for future aero-engine combustors, consequently, is how partial vaporization influences the NOX emissions of spray flames? In order to address this question, the combustion of partially vaporized, linear droplet arrays was studied experimentally under microgravity conditions. The influence of fuel pre-vaporization on the NOX emissions was assessed in a wide range. The experiments were performed in a drop tower and a sounding rocket campaign. The microgravity environment provided ideal experiment conditions without the disturbing ef-fect of natural convection. This allowed the study of the interacting phenomena of multi-phase flow, thermodynamics, and chemical kinetics. This way the understanding of the physical and chemical processes related to droplet and spray combustion could be improved. The Bremen drop tower (ZARM) was utilized for the precursor campaign in July 2008, which was com-prised of 30 drops. The sounding rocket experiments, which totaled a microgravity duration of 6 minutes, were finally performed on the flight of TEXUS-46 in November 2009. On both campaigns the "Japanese Combustion Module" (JCM) was used. It is a cooperative experi-ment on droplet array combustion between the Japan Aerospace Exploration Agency (JAXA) and ESA's (European Space Agency) research team, working on the combustion properties of partially premixed sprays

  4. Element pattern of an axial dipole in a cylindrical phased array. I - Theory. II - Element design and experiments

    NASA Astrophysics Data System (ADS)

    Herper, J. C.; Hessel, A.; Tomasic, B.

    1985-03-01

    It is pointed out that circular cylindrical antenna arrays are of interest for radar and communication applications because of the uniformity of their circumferential radiation characteristics. In surveys of state-of-the-art arrays, most of the cited bibliographies deal with aperture arrays. On the other hand, a dipole element is an attractive choice for an array radiator due to its simplicity of manufacture, reasonably wide bandwidth and polarization purity. For this reason, a two-phase study has been conducted, taking into account a theoretical and experimental investigation. In the first phase, cylindrical stacked ring antenna arrays of uniformly spaced axial dipoles were investigated to establish the mutually coupled element pattern characteristics. The first part of the present paper is concerned with details of this investigation. The second part of the paper will provide an account of the second phase of the study, which consisted of experiments supporting the theoretical phase.

  5. Multifrequency Beam Characterization and Systematics for the Keck Array, BICEP3, and Future CMB Polarization Experiments

    NASA Astrophysics Data System (ADS)

    Karkare, Kirit S.; BICEP/Keck Array Collaboration

    2017-01-01

    The BICEP/Keck Array cosmic microwave background (CMB) polarization experiments located at the South Pole are a series of small-aperture refracting telescopes focused on the degree-scale B-mode signature of inflationary gravitational waves. These highly-targeted experiments have produced the world's deepest maps of CMB polarization, leading to the most stringent constraints on the tensor-to-scalar ratio to date: sigma(r) = 0.024 and r < 0.09 from B-modes alone, and r < 0.07 in combination with other datasets. These constraints will rapidly improve with upcoming measurements at the multiple frequencies needed to separate Galactic foregrounds from the CMB, and in combination with higher-resolution experiments to remove B-modes induced by gravitational lensing. The primary instrumental systematic for pair differencing CMB experiments is temperature-to-polarization leakage from mismatched co-located orthogonally polarized beams. We present extensive far field beam measurements taken in situ at the South Pole, and demonstrate how the resulting high-fidelity beam maps for each detector are used in dedicated simulations to predict the expected leakage in the final CMB maps, focusing on the 95, 150, and 220 GHz beams present in the BK15 dataset. We discuss prospects for dealing with temperature-to-polarization leakage in next-generation CMB experiments with hundreds of thousands of detectors, and how the beams systematics levels we achieve with current instrument and analysis technology will scale with detector count.

  6. Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Bonoli, Paul

    2007-11-01

    Recently, lower hybrid current drive (LHCD) experiments have been carried out on Alcator C-Mod using an RF system consisting of 12 klystrons at 4.6 GHz, feeding a 4 x 22 waveguide array. Up to 900 kW of LH power has been coupled in the range1.6 <= n//<= 4), where n// is the parallel refractive index. Driven LH currents have been inferred from magnetic measurements by extrapolating to zero loop voltage, yielding an efficiency of n20ILHR/PLH 0.3 [1]. We have simulated the LH current drive in these discharges using the combined ray tracing / 3D (r, v, v//) Fokker Planck code GENRAY -- CQL3D [2] and found similar current drive efficiencies. Measurements of nonthermal x-ray emission and electron cyclotron emission (ECE) confirm the presence of a significant fast electron population that varies with waveguide phasing and plasma density. Studies are currently underway to investigate the role of fast electron diffusion and full-wave effects such as diffractional broadening in determining the spatial and velocity space structure of the nonthermal electrons. The 3D (r, v, v//) electron distribution function from CQL3D has been used in synthetic diagnostic codes to simulate the measured hard x-ray and ECE emissions. Fast electron diffusion times have been inferred from x-ray data by employing a radial diffusion operator in CQL3D and determining the fast electron diffusivities that are required to reproduce the experimentally observed profiles of hard x-ray emission. Finally, we have been performing full-wave LH field simulations using the massively parallel TORIC --LH solver [3] in order to assess spatial and spectral broadening of the incident wave front that can result from diffraction and wave focusing effects. [1] R. Parker, Bull. Am. Phys. Soc. 51, 20 (2006). [2] R.W. Harvey and M. McCoy, ``The CQL3D Fokker Planck Code,'' Proc. IAEA Tech. Comm. Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992. [3] J. C. Wright et al., Nucl. Fusion 45

  7. Early experiments with the OpenMP/MPI hybrid programming model.

    SciTech Connect

    Lusk, E.; Chan, A.; Mathematics and Computer Science; Univ. of Chicago

    2008-01-01

    The paper describes some very early experiments on new architectures that support the hybrid programming model. The results are promising in that OpenMP threads interact with MPI as desired, allowing OpenMP-agnostic tools to be used. They explore three environments: a 'typical' Linux cluster, a new large-scale machine from SiCortex, and the new IBM BG/P, which have quite different compilers and runtime systems for both OpenMP and MPI. They look at a few simple, diagnostic programs, and one 'application-like' test program. They demonstrate the use of a tool that can examine the detailed sequence of events in a hybrid program and illustrate that a hybrid computation might not always proceed as expected.

  8. Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold

    2013-05-01

    High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.

  9. Comprehensive magnetohydrodynamic hybrid simulations of fast ion driven instabilities in a Large Helical Device experiment

    NASA Astrophysics Data System (ADS)

    Todo, Y.; Seki, R.; Spong, D. A.; Wang, H.; Suzuki, Y.; Yamamoto, S.; Nakajima, N.; Osakabe, M.

    2017-08-01

    Alfvén eigenmodes (AEs) destabilized by the neutral beam injection (NBI) in a Large Helical Device experiment are investigated using multi-phase magnetohydrodynamic (MHD) hybrid simulation, which is a combination of classical and MHD hybrid simulations for fast ions. The fast ion distribution is simulated with NBI, collisions, and losses in the equilibrium magnetic field in the classical simulation, while the MHD hybrid simulation takes account of the interaction between fast ions and an MHD fluid, in addition to the classical dynamics. It is found in the multi-phase hybrid simulation that the stored fast ion energy is saturated due to the interaction with AEs at a lower level than that of the classical simulation. Two groups of AEs with frequencies close to those observed in the experiment are destabilized alternately at each hybrid simulation. Firstly destabilized are two toroidal Alfvén eigenmodes whose frequency is close to the local minimum of the upper Alfvén continuous spectrum. Secondly destabilized is a global Alfvén eigenmode whose frequency is located well inside the Alfvén continuous spectrum gap. In addition, two AEs whose frequencies are close to that of the ellipticity-induced Alfvén eigenmode are observed with a lower amplitude. When the hybrid simulation is run continuously, the interchange mode grows more slowly than the AEs, but becomes dominant in the long time scale. The interchange mode oscillates with a constant amplitude and a frequency of ˜1 kHz. The interchange mode reduces the stored fast ion energy to a lower level than that of the AEs.

  10. From MAD to SAD: The Italian experience for the low-frequency aperture array of SKA1-LOW

    NASA Astrophysics Data System (ADS)

    Bolli, P.; Pupillo, G.; Virone, G.; Farooqui, M. Z.; Lingua, A.; Mattana, A.; Monari, J.; Murgia, M.; Naldi, G.; Paonessa, F.; Perini, F.; Pluchino, S.; Rusticelli, S.; Schiaffino, M.; Schillirò, F.; Tartarini, G.; Tibaldi, A.

    2016-03-01

    This paper describes two small aperture array demonstrators called Medicina and Sardinia Array Demonstrators (MAD and SAD, respectively). The objectives of these instruments are to acquire experience and test new technologies for a possible application to the low-frequency aperture array of the low-frequency telescope of the Square Kilometer Array phase 1 (SKA1-LOW). The MAD experience was concluded in 2014, and it turned out to be an important test bench for implementing calibration techniques based on an artificial source mounted in an aerial vehicle. SAD is based on 128 dual-polarized Vivaldi antennas and is 1 order of magnitude larger than MAD. The architecture and the station size of SAD, which is along the construction phase, are more similar to those under evaluation for SKA1-LOW, and therefore, SAD is expected to provide useful hints for SKA1-LOW.

  11. bicep2/ KECK ARRAY . IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS

    SciTech Connect

    Ade, P. A. R.; Aikin, R. W.; Barkats, D.; Benton, S. J.; Bischoff, C. A.; Bock, J. J.; Bradford, K. J.; Brevik, J. A.; Buder, I.; Bullock, E.; Dowell, C. D.; Duband, L.; Filippini, J. P.; Fliescher, S.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hildebrandt, S. R.; Hilton, G. C.; Hui, H.; Irwin, K. D.; Kang, J. H.; Karkare, K. S.; Kaufman, J. P.; Keating, B. G.; Kefeli, S.; Kernasovskiy, S. A.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Lueker, M.; Megerian, K. G.; Netterfield, C. B.; Nguyen, H. T.; O’Brient, R.; IV, R. W. Ogburn; Orlando, A.; Pryke, C.; Richter, S.; Schwarz, R.; Sheehy, C. D.; Staniszewski, Z. K.; Sudiwala, R. V.; Teply, G. P.; Thompson, K.; Tolan, J. E.; Turner, A. D.; Vieregg, A. G.; Weber, A. C.; Wong, C. L.; Yoon, K. W.

    2015-06-18

    bicep2/KECK ARRAY. IV. OPTICAL CHARACTERIZATION AND PERFORMANCE OF THE bicep2 AND KECK ARRAY EXPERIMENTS P. A. R. Ade1, R. W. Aikin2, D. Barkats3, S. J. Benton4, C. A. Bischoff5, J. J. Bock2,6, K. J. Bradford5, J. A. Brevik2, I. Buder5, E. Bullock7Show full author list Published 2015 June 18 • © 2015. The American Astronomical Society. All rights reserved. The Astrophysical Journal, Volume 806, Number 2 Article PDF Figures Tables References Citations 273 Total downloads Cited by 6 articles Turn on MathJax Share this article Get permission to re-use this article Article information Abstract bicep2 and the Keck Array are polarization-sensitive microwave telescopes that observe the cosmic microwave background (CMB) from the South Pole at degree angular scales in search of a signature of inflation imprinted as B-mode polarization in the CMB. bicep2 was deployed in late 2009, observed for three years until the end of 2012 at 150 GHz with 512 antenna-coupled transition edge sensor bolometers, and has reported a detection of B-mode polarization on degree angular scales. The Keck Array was first deployed in late 2010 and will observe through 2016 with five receivers at several frequencies (95, 150, and 220 GHz). bicep2 and the Keck Array share a common optical design and employ the field-proven bicep1 strategy of using small-aperture, cold, on-axis refractive optics, providing excellent control of systematics while maintaining a large field of view. This design allows for full characterization of far-field optical performance using microwave sources on the ground. Here we describe the optical design of both instruments and report a full characterization of the optical performance and beams of bicep2 and the Keck Array at 150 GHz.

  12. Analysis of immune system gene expression in small rheumatoid arthritis biopsies using a combination of subtractive hybridization and high-density cDNA arrays.

    PubMed

    Zanders, E D; Goulden, M G; Kennedy, T C; Kempsell, K E

    2000-01-13

    Subtractive hybridization of cDNAs generated from synovial RNA which had been isolated from patients with rheumatoid arthritis (RA) or normal controls was used in conjunction with high-density array hybridization to identify genes of immunological interest. The method was designed to detect gene expression in small needle biopsy specimens by means of a prior amplification of nanogram amounts of total RNA to full-length cDNA using PCR. The latter was cut with Rsa I, ligated with adapters, hybridized with unmodified driver cDNA, and subjected to suppression subtraction PCR. Differentially expressed products were cloned into E. coli and picked into 384 well plates. Inserts were obtained by PCR across the multiple cloning site, and the products arrayed at high density on nylon filters. The subtracted cDNAs were also labelled by random priming for use as probes for library screening. The libraries chosen were the subtracted one described above and a set of 45,000 ESTs from the I.M. A.G.E consortium. Clones showing positive hybridization were identified by sequence analysis and homology searching. The results showed that the subtracted hybridization approach could identify many gene fragments expressed at different levels, the most abundant being immunoglobulins and HLA-DR. The expression profile was characteristic of macrophage, B cell and plasma cell infiltration with evidence of interferon induction. In addition, a significant number of sequences without matches in the nucleotide databases were obtained, this demonstrates the utility of the method in finding novel gene fragments for further characterisation as potential members of the immune system. Although RA was studied here, the technology is applicable to any disease process even in cases where amounts of tissue may be limited.

  13. Selective Recognition of 5-Hydroxytryptamine and Dopamine on a Multi-Walled Carbon Nanotube-Chitosan Hybrid Film-Modified Microelectrode Array

    PubMed Central

    Xu, Huiren; Wang, Li; Luo, Jinping; Song, Yilin; Liu, Juntao; Zhang, Song; Cai, Xinxia

    2015-01-01

    It is difficult to determine dopamine (DA) and 5-hydroxytryptamine (5-HT) accurately because of the interference of ascorbic acid (AA) in vitro, which has a high concentration and can be oxidized at a potential close to DA and 5-HT at a conventional electrode, combined with the overlapping voltammetric signal of DA and 5-HT at a bare electrode. Herein, chitosan (CS) was used as a stabilizing matrix by electrochemical reaction, and multi-walled carbon nanotubes (MWCNTs) were modified onto the microelectrode array (MEA). The CS-MWCNT hybrid film-modified MEA was quite effective at simultaneously recognizing these species in a mixture and resolved the overlapping anodic peaks of AA, DA and 5-HT into three well-defined oxidation peaks in differential pulse voltammetry (DPV) at −80 mV, 105 mV and 300 mV (versus Ag|AgCl), respectively. The linear responses were obtained in the range of 5 × 10−6 M to 2 × 10−4 M for DA (r = 0.996) and in the range of 1 × 10−5 M to 3 × 10−4 M for 5-HT (r = 0.999) using the DPV under the presence of a single substance. While DA coexisted with 5-HT in the interference of 3 × 10−4 M AA, the linear responses were obtained in the range of 1 × 10−5 M to 3 × 10−4 M for selective molecular recognition of DA (r = 0.997) and 5-HT (r = 0.997) using the DPV. Therefore, this proposed MEA was successfully used for selective molecular recognition and determination of DA and 5-HT using the DPV, which has a potential application for real-time determination in vitro experiments. PMID:25580900

  14. Selective recognition of 5-hydroxytryptamine and dopamine on a multi-walled carbon nanotube-chitosan hybrid film-modified microelectrode array.

    PubMed

    Xu, Huiren; Wang, Li; Luo, Jinping; Song, Yilin; Liu, Juntao; Zhang, Song; Cai, Xinxia

    2015-01-08

    It is difficult to determine dopamine (DA) and 5-hydroxytryptamine (5-HT) accurately because of the interference of ascorbic acid (AA) in vitro, which has a high concentration and can be oxidized at a potential close to DA and 5-HT at a conventional electrode, combined with the overlapping voltammetric signal of DA and 5-HT at a bare electrode. Herein, chitosan (CS) was used as a stabilizing matrix by electrochemical reaction, and multi-walled carbon nanotubes (MWCNTs) were modified onto the microelectrode array (MEA). The CS-MWCNT hybrid film-modified MEA was quite effective at simultaneously recognizing these species in a mixture and resolved the overlapping anodic peaks of AA, DA and 5-HT into three well-defined oxidation peaks in differential pulse voltammetry (DPV) at -80 mV, 105 mV and 300 mV (versus Ag|AgCl), respectively. The linear responses were obtained in the range of 5 × 10(-6) M to 2 × 10(-4) M for DA (r = 0.996) and in the range of 1 × 10(-5) M to 3 × 10(-4) M for 5-HT (r = 0.999) using the DPV under the presence of a single substance. While DA coexisted with 5-HT in the interference of 3 × 10(-4) M AA, the linear responses were obtained in the range of 1 × 10(-5) M to 3 × 10(-4) M for selective molecular recognition of DA (r = 0.997) and 5-HT (r = 0.997) using the DPV. Therefore, this proposed MEA was successfully used for selective molecular recognition and determination of DA and 5-HT using the DPV, which has a potential application for real-time determination in vitro experiments.

  15. EMSCOPE - Electromagnetic Component of EarthScope Backbone and Transportable Array Experiments 2006-2008

    NASA Astrophysics Data System (ADS)

    Egbert, G.; Evans, R.; Ingate, S.; Livelybrooks, D.; Mickus, K.; Park, S.; Schultz, A.; Unsworth, M.; Wannamaker, P.

    2007-12-01

    USArray (http://www.iris.edu/USArray) in conjunction with EMSOC (Electromagnetic Studies of the Continents) (http://emsoc.ucr.edu/emsoc) is installing magnetotelluric (MT) stations as part of Earthscope. The MT component of Earthscope consists of permanent (Backbone) and transportable long period stations to record naturally occurring, time varying electric and magnetic fields to produce a regional lithospheric/asthensospheric electrical conductivity map of the United States. The recent arrival of 28 long period MT instruments allows for the final installation of the Backbone stations throughout the US and yearly transportable array studies. The Backbone MT survey consists of 7 stations spaced throughout the continental US with preliminary installation at Soap Creek, Oregon; Parkfield, California; Braden, Missouri and Socorro, New Mexico.Siting and permitting are underway or completed at stations in eastern Montana, northern Wisconsin and Virginia. These stations will be recording for at least five years to determine electrical conductivities at depths that extend into the mantle transition zone. The first transportable array experiment was performed in the summer and fall of 2006 in central and eastern Oregon (Oregon Pilot Project) using equipment loaned from EMSOC. Thirty-one long period MT stations were recorded with 14 to 21 day occupations. Preliminary 3D inverse models indicate several lithospheric electrical conductivity anomalies including a linear zone marked by low-high conductivity transition along the Klamath-Blue Mountain Lineament associated with a linear trend of gravity minima. High electrical conductivity values occur in the upper crust under the accreted terrains in the Blue Mountains region. The second transportable array experiment was performed in the summer and fall of 2007 and completes coverage of the Oregon, Washington, and western Idaho, targeting the Cascadia subduction zone, Precambrian boundaries, and sub-basalt lithologies. The 2008

  16. Short-lag Spatial Coherence Imaging on Matrix Arrays Part II: Phantom and In Vivo Experiments

    PubMed Central

    Jakovljevic, Marko; Byram, Brett C.; Hyun, Dongwoon; Dahl, Jeremy J.; Trahey, Gregg E.

    2014-01-01

    In Part I of the paper, we demonstrated through simulation the potential of volumetric Short-lag Spatial Coherence (SLSC) imaging to improve visualization of hypoechoic targets in three dimensions. Here, we demonstrate the application of volumetric SLSC imaging in phantom and in vivo experiments using a clinical 3-D ultrasound scanner and matrix array. Using a custom single-channel acquisition tool, we collected partially beamformed channel data from the fully sampled matrix array at high speeds and created matched B-mode and SLSC volumes of a vessel phantom and in vivo liver vasculature. 2-D and 3-D images rendered from the SLSC volumes display reduced clutter and improved visibility of the vessels when compared to their B-mode counterparts. We use concurrently acquired color Doppler volumes to confirm the presence of the vessels of interest and to define the regions inside the vessels used in contrast and CNR calculations. SLSC volumes show higher CNR values than their matched B-mode volumes while the contrast values appear to be similar between the two imaging methods. PMID:24960701

  17. Development of arrays of Silicon Drift Detectors and readout ASIC for the SIDDHARTA experiment

    NASA Astrophysics Data System (ADS)

    Quaglia, R.; Schembari, F.; Bellotti, G.; Butt, A. D.; Fiorini, C.; Bombelli, L.; Giacomini, G.; Ficorella, F.; Piemonte, C.; Zorzi, N.

    2016-07-01

    This work deals with the development of new Silicon Drift Detectors (SDDs) and readout electronics for the upgrade of the SIDDHARTA experiment. The detector is based on a SDDs array organized in a 4×2 format with each SDD square shaped with 64 mm2 (8×8) active area. The total active area of the array is therefore 32×16 mm2 while the total area of the detector (including 1 mm border dead area) is 34 × 18mm2. The SIDDHARTA apparatus requires 48 of these modules that are designed and manufactured by Fondazione Bruno Kessler (FBK). The readout electronics is composed by CMOS preamplifiers (CUBEs) and by the new SFERA (SDDs Front-End Readout ASIC) circuit. SFERA is a 16-channels readout ASIC designed in a 0.35 μm CMOS technology, which features in each single readout channel a high order shaping amplifier (9th order Semi-Gaussian complex-conjugate poles) and a high efficiency pile-up rejection logic. The outputs of the channels are connected to an analog multiplexer for the external analog to digital conversion. An on-chip 12-bit SAR ADC is also included. Preliminary measurements of the detectors in the single SDD format are reported. Also measurements of low X-ray energies are reported in order to prove the possible extension to the soft X-ray range.

  18. Definition Study for Space Shuttle Experiments Involving Large, Steerable Millimeter-Wave Antenna Arrays

    NASA Technical Reports Server (NTRS)

    Levis, C. A.

    1976-01-01

    The potential uses and techniques for the shuttle spacelab Millimeter Wave Large Aperture Antenna Experiment (MWLAE) are documented. Potential uses are identified: applications to radio astronomy, the sensing of atmospheric turbulence by its effect on water vapor line emissions, and the monitoring of oil spills by multifrequency radiometry. IF combining is preferable to RF combining with respect to signal to noise ratio for communications receiving antennas of the size proposed for MWLAE. A design approach using arrays of subapertures is proposed to reduce the number of phase shifters and mixers for uses which require a filled aperture. Correlation radiometry and a scheme utilizing synchronous Dicke switches and IF combining are proposed as potential solutions.

  19. Adaptive Array for Weak Interfering Signals: Geostationary Satellite Experiments. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Steadman, Karl

    1989-01-01

    The performance of an experimental adaptive array is evaluated using signals from an existing geostationary satellite interference environment. To do this, an earth station antenna was built to receive signals from various geostationary satellites. In these experiments the received signals have a frequency of approximately 4 GHz (C-band) and have a bandwidth of over 35 MHz. These signals are downconverted to a 69 MHz intermediate frequency in the experimental system. Using the downconverted signals, the performance of the experimental system for various signal scenarios is evaluated. In this situation, due to the inherent thermal noise, qualitative instead of quantitative test results are presented. It is shown that the experimental system can null up to two interfering signals well below the noise level. However, to avoid the cancellation of the desired signal, the use a steering vector is needed. Various methods to obtain an estimate of the steering vector are proposed.

  20. The eddy current probe array for Keda Torus eXperiment

    NASA Astrophysics Data System (ADS)

    Li, Zichao; Li, Hong; Tu, Cui; Hu, Jintong; You, Wei; Luo, Bing; Tan, Mingsheng; Adil, Yolbarsop; Wu, Yanqi; Shen, Biao; Xiao, Bingjia; Zhang, Ping; Mao, Wenzhe; Wang, Hai; Wen, Xiaohui; Zhou, Haiyang; Xie, Jinlin; Lan, Tao; Liu, Adi; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2016-11-01

    In a reversed field pinch device, the conductive shell is placed as close as possible to the plasma so as to balance the plasma during discharge. Plasma instabilities such as the resistive wall mode and certain tearing modes, which restrain the plasma high parameter operation, respond closely with conditions in the wall, in essence the eddy current present. Also, the effect of eddy currents induced by the external coils cannot be ignored when active control is applied to control instabilities. One diagnostic tool, an eddy current probe array, detects the eddy current in the composite shell. Magnetic probes measuring differences between the inner and outer magnetic fields enable estimates of the amplitude and angle of these eddy currents. Along with measurements of currents through the copper bolts connecting the poloidal shield copper shells, we can obtain the eddy currents over the entire shell. Magnetic field and eddy current resolutions approach 2 G and 6 A, respectively. Additionally, the vortex electric field can be obtained by eddy current probes. As the conductivity of the composite shell is high, the eddy current probe array is very sensitive to the electric field and has a resolution of 0.2 mV/cm. In a bench test experiment using a 1/4 vacuum vessel, measurements of the induced eddy currents are compared with simulation results based on a 3D electromagnetic model. The preliminary data of the eddy currents have been detected during discharges in a Keda Torus eXperiment device. The typical value of toroidal and poloidal eddy currents across the magnetic probe coverage rectangular area could reach 3.0 kA and 1.3 kA, respectively.

  1. The eddy current probe array for Keda Torus eXperiment.

    PubMed

    Li, Zichao; Li, Hong; Tu, Cui; Hu, Jintong; You, Wei; Luo, Bing; Tan, Mingsheng; Adil, Yolbarsop; Wu, Yanqi; Shen, Biao; Xiao, Bingjia; Zhang, Ping; Mao, Wenzhe; Wang, Hai; Wen, Xiaohui; Zhou, Haiyang; Xie, Jinlin; Lan, Tao; Liu, Adi; Ding, Weixing; Xiao, Chijin; Liu, Wandong

    2016-11-01

    In a reversed field pinch device, the conductive shell is placed as close as possible to the plasma so as to balance the plasma during discharge. Plasma instabilities such as the resistive wall mode and certain tearing modes, which restrain the plasma high parameter operation, respond closely with conditions in the wall, in essence the eddy current present. Also, the effect of eddy currents induced by the external coils cannot be ignored when active control is applied to control instabilities. One diagnostic tool, an eddy current probe array, detects the eddy current in the composite shell. Magnetic probes measuring differences between the inner and outer magnetic fields enable estimates of the amplitude and angle of these eddy currents. Along with measurements of currents through the copper bolts connecting the poloidal shield copper shells, we can obtain the eddy currents over the entire shell. Magnetic field and eddy current resolutions approach 2 G and 6 A, respectively. Additionally, the vortex electric field can be obtained by eddy current probes. As the conductivity of the composite shell is high, the eddy current probe array is very sensitive to the electric field and has a resolution of 0.2 mV/cm. In a bench test experiment using a 1/4 vacuum vessel, measurements of the induced eddy currents are compared with simulation results based on a 3D electromagnetic model. The preliminary data of the eddy currents have been detected during discharges in a Keda Torus eXperiment device. The typical value of toroidal and poloidal eddy currents across the magnetic probe coverage rectangular area could reach 3.0 kA and 1.3 kA, respectively.

  2. Molecular cytogenetic analysis of head and neck squamous cell carcinoma: By comparative genomic hybridization, spectral karyotyping, and expression array analysis.

    PubMed

    Squire, Jeremy A; Bayani, Jane; Luk, Catherine; Unwin, Lianne; Tokunaga, Jason; MacMillan, Christina; Irish, Jonathan; Brown, Dale; Gullane, Patrick; Kamel-Reid, Suzanne

    2002-09-01

    A combination of molecular cytogenetic and expression array analysis has been performed on head and neck squamous cell carcinoma (HNSCC) of the oral cavity and supraglottis. These studies were performed to identify consensus regions of chromosomal imbalance and structural rearrangement to determine whether genes located in these genomic regions are subject to alterations in gene expression. Such combinatorial studies may help to identify recurrent patterns of altered gene expression in the context of specific chromosomal changes. Comparative genomic hybridization (CGH) was used to identify net genomic imbalances and spectral karyotyping (SKY) to visualize the numerical and structural chromosomal changes in metaphase preparations. Expression microarray analysis of HNSCC cell lines and primary tongue tumors was also performed to identify genes that were commonly overexpressed or underexpressed compared with adjacent normal tissue. CGH detected gains at 3q (64%), 8q (45%) and 6q22-qter (45%) and losses at 18q22-qter (27%). SKY analysis of seven cell lines identified frequent structural rearrangement of the following chromosomal regions: 3q, 5p13-q11.2, 5q32-q34, 7p12-q11.2, 8p12-q12, 9p, 10p, 13p13-q12, 14q11.1-q11.2, 15p13-q11.2, 16p11.1-q11.1, 18q22-q23, and 22p13-q11.2. Consistent deregulation of interleukin 8, integrin alpha-6, c-MYC, epithelial discoidin domain receptor 1, and sterol regulatory element binding protein were apparent by expression analysis. Interestingly, some of these genes map to regions of genomic imbalance and chromosomal rearrangement as determined by our molecular cytogenetic analysis. In this small study, a combinatorial analysis using SKY, CGH, and microarray provides a model linking the changes in gene expression to changes in chromosomal dosage and structure. This approach has identified a subset of genetic changes that provide new opportunities for investigating the genetic basis of tumorigenesis in HNSCC. Copyright 2002 Wiley

  3. High-resolution mapping of genotype-phenotype relationships in cri du chat syndrome using array comparative genomic hybridization.

    PubMed

    Zhang, Xiaoxiao; Snijders, Antoine; Segraves, Richard; Zhang, Xiuqing; Niebuhr, Anita; Albertson, Donna; Yang, Huanming; Gray, Joe; Niebuhr, Erik; Bolund, Lars; Pinkel, Dan

    2005-02-01

    We have used array comparative genomic hybridization to map DNA copy-number changes in 94 patients with cri du chat syndrome who had been carefully evaluated for the presence of the characteristic cry, speech delay, facial dysmorphology, and level of mental retardation (MR). Most subjects had simple deletions involving 5p (67 terminal and 12 interstitial). Genotype-phenotype correlations localized the region associated with the cry to 1.5 Mb in distal 5p15.31, between bacterial artificial chromosomes (BACs) containing markers D5S2054 and D5S676; speech delay to 3.2 Mb in 5p15.32-15.33, between BACs containing D5S417 and D5S635; and the region associated with facial dysmorphology to 2.4 Mb in 5p15.2-15.31, between BACs containing D5S208 and D5S2887. These results overlap and refine those reported in previous publications. MR depended approximately on the 5p deletion size and location, but there were many cases in which the retardation was disproportionately severe, given the 5p deletion. All 15 of these cases, approximately two-thirds of the severely retarded patients, were found to have copy-number aberrations in addition to the 5p deletion. Restriction of consideration to patients with only 5p deletions clarified the effect of such deletions and suggested the presence of three regions, MRI-III, with differing effect on retardation. Deletions including MRI, a 1.2-Mb region overlapping the previously defined cri du chat critical region but not including MRII and MRIII, produced a moderate level of retardation. Deletions restricted to MRII, located just proximal to MRI, produced a milder level of retardation, whereas deletions restricted to the still-more proximal MRIII produced no discernible phenotype. However, MR increased as deletions that included MRI extended progressively into MRII and MRIII, and MR became profound when all three regions were deleted.

  4. High-resolution mapping of genotype-phenotype relationships in cridu chat syndrome using array comparative genomic hybridization

    SciTech Connect

    Zhang, Xiaoxiao; Snijders, Antoine; Segraves, Richard; Zhang,Xiuqing; Niebuhr, Anita; Albertson, Donna; Yang, Huanming; Gray, Joe; Niebuhr, Erik; Bolund, Lars; Pinkel, Dan

    2007-07-03

    We have used array comparative genomic hybridization to map DNA copy-number changes in 94 patients with cri du chat syndrome who had been carefully evaluated for the presence of the characteristic cry, speech delay, facial dysmorphology, and level of mental retardation (MR). Most subjects had simple deletions involving 5p (67 terminal and 12 interstitial). Genotype-phenotype correlations localized the region associated with the cry to 1.5 Mb in distal 5p15.31, between bacterial artificial chromosomes (BACs) containing markers D5S2054 and D5S676; speech delay to 3.2 Mb in 5p15.32-15.33, between BACs containing D5S417 and D5S635; and the region associated with facial dysmorphology to 2.4 Mb in 5p15.2-15.31, between BACs containing D5S208 and D5S2887. These results overlap and refine those reported in previous publications. MR depended approximately on the 5p deletion size and location, but there were many cases in which the retardation was disproportionately severe, given the 5p deletion. All 15 of these cases, approximately two-thirds of the severely retarded patients, were found to have copy-number aberrations in addition to the 5p deletion. Restriction of consideration to patients with only 5p deletions clarified the effect of such deletions and suggested the presence of three regions, MRI-III, with differing effect on retardation. Deletions including MRI, a 1.2-Mb region overlapping the previously defined cri du chat critical region but not including MRII and MRIII, produced a moderate level of retardation. Deletions restricted to MRII, located just proximal to MRI, produced a milder level of retardation, whereas deletions restricted to the still-more proximal MRIII produced no discernible phenotype. However, MR increased as deletions that included MRI extended progressively into MRII and MRIII, and MR became profound when all three regions were deleted.

  5. The Effect of Precursor Plasma Flow on Foam Targets in Wire Array Z-Pinch Experiments

    NASA Astrophysics Data System (ADS)

    Palmer, James B. A.; Lebedev, Sergey V.; Bland, Simon N.; Chittenden, Jeremy P.; Ampleford, David J.

    2002-12-01

    Previous experiments have demonstrated that the slow ablation rate of material from wire arrays results in the formation of a precursor plasma stream bombarding the axis [1]. This could have major repercussions for the centrally located foam targets used in dynamic and static walled hohlraum configurations on the Z facility at Sandia National Laboratory (SNL) [2]. Experiments to characterise the effect of precursor plasma flow on foam targets were carried out on the MAGPIE generator at Imperial College. The TPX foam used is similar in size and density to foam used in the experiments at SNL. Diagnostics included: x-pinch backlighter; x-ray framing cameras; diamond PCDs; laser shadowgraphy and interferometry; optical streak photography. Backlighter results suggested that the foam was compressed at a rate consistent with experimental estimates of the momentum of the bombarding plasma streams. Laser probing images, however, showed expansion of low density plasma from the foam surface that exhibited structure similar to an m=0 instability. Side-on XUV and x-ray imaging showed axially modulated emission from the foam.

  6. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    PubMed

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  7. Fast-Track, One-Step E. coli Detection: A Miniaturized Hydrogel Array Permits Specific Direct PCR and DNA Hybridization while Amplification.

    PubMed

    Beyer, Antje; Pollok, Sibyll; Rudloff, Anne; Cialla-May, Dana; Weber, Karina; Popp, Jürgen

    2016-09-01

    A timesaving and convenient method for bacterial detection based on one-step, one-tube deoxyribonucleic acid (DNA) hybridization on hydrogel array while target gene amplification is described. The hydrogel array is generated by a fast one-pot synthesis, where N,N'-dimethylacrylamide/polyethyleneglycol(PEG1900 )-bisacrylamide mixture polymerizes via radical photoinitiation by visible light within 20 min concomitant with in situ capture probe immobilization. These DNA-functionalized hydrogel droplets arrayed on a planar glass surface are placed in the polymerase chain reaction (PCR) mixture during the thermal amplification cycles. The bacterial cells can be implemented in a direct PCR reaction, omitting the need for prior template DNA extraction. The resulting fluorescence signal is immediately detectable after the end of the PCR (1 h) following one short washing step by microscopy. Therefore a valid signal can be reached within 1.5 h including 10 min for pipetting and placement of the tubes and chips. The performance of this novel hydrogel DNA array was successfully proven with varying cell numbers down to a limit of 10(1) Escherichia coli cells.

  8. Clinical and cytogenetic features of a patient with partial trisomy 8q and partial monosomy 13q delineated by array comparative genomic hybridization.

    PubMed

    Sohn, Young Bae; Yun, Jun No; Park, Sang-Jin; Park, Moon Sung; Kim, Sung Hwan; Lee, Jang Hoon

    2013-01-01

    Partial trisomy 8q is rare and has distinctive clinical features, including severe mental retardation, growth impairment, dysmorphic facial appearances, cleft palate, congenital heart disease, and urogenital anomalies. Partial monosomy 13q is a rare genetic disorder displaying a variety of phenotypic characteristics including mental retardation, dysmorphic facial features, and congenital anomalies. Here, we describe for the first time clinical observations and cytogenetic analysis of a patient with a concomitant occurrence of partial trisomy of 8q (8q21.3→qter) and partial monosomy 13q(13q34→qter). The patient was a female neonate with facial dysmorphia, agenesis of the corpus callosum, cleft palate, and congenital heart disease. G-band standard karyotype was 46,XX,add(13)(q34). To determine the origin of additional genomic gain in chromosome 13, array comparative genomic hybridization (CGH) was performed. Array CGH showed a 56.8 Mb sized gain on chromosome 8q and a 0.28 Mb sized loss on chromosome 13q. Therefore, the final karyotype of the patient was defined as 46,XX, der(13)t(8;13)(q21.3;q34). In conclusion, we described the clinical and cytogenetic analysis of the patient with concomitant occurrence of partial trisomy 8q and partial monosomy 13q delineated by array CGH. This report suggests that the array CGH would be a valuable diagnostic tool for identifying the origin of small additional genetic materials.

  9. Investigation of the diagnostic value of chromosome analysis and bacterial artificial chromosome-based array comparative genomic hybridization in prenatal diagnosis.

    PubMed

    Savli, Hakan; Keskin, Seda Eren; Cine, Naci

    2015-01-01

    To investigate the diagnostic value of bacterial artificial chromosome (BAC)-based array comparative genomic hybridization (CGH) and chromosome analysis in prenatal diagnosis. This study included the chromosome analysis and BAC-based array CGH analysis of 140 amniocentesis samples with prenatal diagnosis indications. Karyotype analysis showed trisomy 21 in 4 patients, trisomy 18 in 5 patients, monosomy X in 1 patient, and other anomalies in 3 patients. The BAC-based array CGH analysis showed 4 patients with trisomy 21, 4 patients with trisomy 18, and 1 patient with monosomy X as a numerical chromosome anomaly, while partial duplication was observed in chromosome 14 in 1 case as a structural anomaly. The array CGH is the most effective method available to complement cases where chromosome analysis, a gold standard in prenatal diagnosis, proves to be insufficient. Considering the inherent limitations of both methods, complementary features should be introduced in order to be able to give the most accurate data at the right time.

  10. Analyses of Genotypes and Phenotypes of Ten Chinese Patients with Wolf-Hirschhorn Syndrome by Multiplex Ligation-dependent Probe Amplification and Array Comparative Genomic Hybridization

    PubMed Central

    Yang, Wen-Xu; Pan, Hong; Li, Lin; Wu, Hai-Rong; Wang, Song-Tao; Bao, Xin-Hua; Jiang, Yu-Wu; Qi, Yu

    2016-01-01

    Background: Wolf-Hirschhorn syndrome (WHS) is a contiguous gene syndrome that is typically caused by a deletion of the distal portion of the short arm of chromosome 4. However, there are few reports about the features of Chinese WHS patients. This study aimed to characterize the clinical and molecular cytogenetic features of Chinese WHS patients using the combination of multiplex ligation-dependent probe amplification (MLPA) and array comparative genomic hybridization (array CGH). Methods: Clinical information was collected from ten patients with WHS. Genomic DNA was extracted from the peripheral blood of the patients. The deletions were analyzed by MLPA and array CGH. Results: All patients exhibited the core clinical symptoms of WHS, including severe growth delay, a Greek warrior helmet facial appearance, differing degrees of intellectual disability, and epilepsy or electroencephalogram anomalies. The 4p deletions ranged from 2.62 Mb to 17.25 Mb in size and included LETM1, WHSC1, and FGFR3. Conclusions: The combined use of MLPA and array CGH is an effective and specific means to diagnose WHS and allows for the precise identification of the breakpoints and sizes of deletions. The deletion of genes in the WHS candidate region is closely correlated with the core WHS phenotype. PMID:26960370

  11. First-generation hybrid solar lighting collector system development and operating experience

    NASA Astrophysics Data System (ADS)

    Beshears, David; Earl, D. D.; Muhs, Jeff; Maxey, L. Curt; Capps, Gary; Stellern, Scott; Bayless, David; Switzer, Shyler

    2004-01-01

    operating experience to date of two hybrid lighting solar collectors installed at ORNL and at Ohio University. The first hybrid lighting collector system was tested at ORNL and then installed at Ohio University in June of 2002. A second collector of the same design was installed at ORNL in September of 2002. The Ohio University collector system has been running continually since its installation while the ORNL unit has been operated in a research mode on most sunny days. They have operated with very little human interaction and this paper will summarize the development, operating experience, collection efficiency, as well as providing information on additional data being collected as part of the system operation.

  12. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment

    NASA Technical Reports Server (NTRS)

    Baurle, Robert A.; Edwards, Jack R.

    2010-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure

  13. Combining Soft X-Ray, Magnetic, and Interferometric Diagnostics for Equilibrium Reconstruction on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Hanson, J. D.; Cianciosa, M.; Herfindal, J. L.; Knowlton, S. F.; Miller, M. C.; Maurer, D. A.; Traverso, P.; Pandya, M.; Ma, X.

    2012-10-01

    Reconstruction of the 3-dimensional equilibrium is important for both improving the operation and understanding the physics of non-axisymmetric stellarator type devices. Equilibrium reconstructions using the V3FIT[1] code will be presented for current carrying plasmas on the Compact Toroidal Hybrid (CTH) torsatron experiment (Ro = 0.75 m, ap˜ 0.2 m, B <= 0.7T, ne<=5 x 10^19 m-3, Te<= 300 eV, Ip<=75kA). The reconstruction input data set includes Soft X-Ray (SXR) chord signals, magnetic diagnostics, data from a 1mm microwave interferometer, and shunt signals. The SXR data set includes signals from four cameras, each consisting of a 20-channel AXUV-20EL photo-diode array viewing the CTH plasma through 2μm Be foil. Two full rogowski coils measure the plasma and vacuum vessel current, while additional eight-segment rogowski coils measure moments of the plasma position. Interferometer measurements along three chords help to constrain the density profile, while the shunt signals provide external coil current inputs. Reconstructions are explored using different SXR emissivity, density and current profile models, with different combinations of input data. [4pt] [1] J.D. Hanson, S.P. Hirshman, S.F. Knowlton, L.L. Lao, E.A. Lazarus, J.M. Shields, Nucl. Fusion, 49 (2009) 075031

  14. Incorporation of Soft X-Ray Chordal Diagnostics into Equilibrium Reconstruction on the Compact Toroidal Hybrid Experiment

    NASA Astrophysics Data System (ADS)

    Hartwell, G. J.; Hanson, J. D.; Knowlton, S. F.; Stevenson, B. A.

    2010-11-01

    Signals from Soft X-Ray (SXR) chords normally used for tomographic reconstruction on the Compact Toroidal Hybrid (CTH) torsatron experiment (R = 0.75 m, a ˜ 0.2 m, B <= 0.7 T, ne <= 10^19 m-3, Te <= 250 eV) have been incorporated into the V3FIT[1] equilibrium reconstruction code. Four cameras, each consisting of a 20-channel AXUV-20EL photo-diode array view the plasma through 2μm Be foil. Three cameras view the plasma in one symmetry plane ( =36^o) while the fourth views the plasma at another symmetry plane ( =0^o), one-half field period away. Under the assumption of uniform SXR emissivity on a flux surface, the signals provide additional constraints to V3FIT, which primarily uses magnetic data to fit the equilibrium. A description of the V3FIT code additions and capabilities will be given. Use of the signal effectiveness to optimize the placement SXR cameras will be discussed. Equilibrium reconstruction results will be presented. [4pt] [1] J. Hanson, S. Hirshman, S. Knowlton, L. Lao, E. Lazarus, J. Shields, Nucl. Fusion, 49 (2009) 075031

  15. A Micrograting Sensor for DNA Hybridization and Antibody Human Serum Albumin-Antigen Human Serum Albumin Interaction Experiments

    NASA Astrophysics Data System (ADS)

    Chathirat, Naphat; Atthi, Nithi; Hruanun, Charndet; Poyai, Amporn; Leasen, Suthisa; Osotchan, Tanakorn; Hodak, Jose H.

    2011-01-01

    A biosensor structure comprising silicon nitride (Si3N4) micrograting arrays coated with a spin-on-glass (SOG) material was investigated. This grating structure was located on a silicon groove, which was etched by a deep reactive ion etching (DRIE) process. The biosensor was used as a specific detector of DNA molecules and antibody-antigen interactions. In our DNA sensing experiments, the first step was the activation of the grating surface with amine functional groups, followed by attachment of a 23-base oligonucleotide probe layer for hybridization with a complementary target DNA. The sensing device was tested for detecting specific antigen/antibody interactions for human serum albumin (HSA) and antigen bovine serum albumin (BSA). The readout system consisted of a white light lamp that illuminated a small spot on the grating surface at normal incidence through a fiber optic probe with a spectrometer used to collect the reflected light through a second fiber. We show that these sensing devices have the capability to detect DNA as well as antigen-antibody binding for HSA. The detection sensitivity for HSA was better than that for DNA mainly owing to the larger size and concomitant refractive index changes upon binding to the sensor. We show that it is possible to quantify the amount of biomolecules bound to the grating surface by measuring the wavelength shift of the reflectance spectra upon exposure to the samples.

  16. Three clinical experiences with SNP array results consistent with parental incest: a narrative with lessons learned.

    PubMed

    Helm, Benjamin M; Langley, Katherine; Spangler, Brooke; Vergano, Samantha

    2014-08-01

    Single nucleotide polymorphism microarrays have the ability to reveal parental consanguinity which may or may not be known to healthcare providers. Consanguinity can have significant implications for the health of patients and for individual and family psychosocial well-being. These results often present ethical and legal dilemmas that can have important ramifications. Unexpected consanguinity can be confounding to healthcare professionals who may be unprepared to handle these results or to communicate them to families or other appropriate representatives. There are few published accounts of experiences with consanguinity and SNP arrays. In this paper we discuss three cases where molecular evidence of parental incest was identified by SNP microarray. We hope to further highlight consanguinity as a potential incidental finding, how the cases were handled by the clinical team, and what resources were found to be most helpful. This paper aims to contribute further to professional discourse on incidental findings with genomic technology and how they were addressed clinically. These experiences may provide some guidance on how others can prepare for these findings and help improve practice. As genetic and genomic testing is utilized more by non-genetics providers, we also hope to inform about the importance of engaging with geneticists and genetic counselors when addressing these findings.

  17. Sputtering and redeposition of ion irradiated Au nanoparticle arrays: direct comparison of simulations to experiments

    NASA Astrophysics Data System (ADS)

    Holland-Moritz, Henry; Ilinov, Andrey; Djurabekova, Flyura; Nordlund, Kai; Ronning, Carsten

    2017-01-01

    Ion beam processing of surfaces is well known to lead to sputtering, which conventionally is associated only with erosion of atoms from the material. We show here, by combination of experiments and a newly developed Monte Carlo algorithm, that in the case of nanoparticles in a regular two-dimensional array on surfaces, the redeposition of sputtered atoms may play a significant role on the system development. The simulations are directly compared to in situ experiments obtained using a dual focused Ga+ ion beam system and high resolution scanning electron microscopy, and explain the size evolution by a combination of sputtering and redeposition of sputtered material on neighboring particles. The effect is found to be dependent on the size of the nanoparticles: if the nanoparticle size is comparable to the ion range, the reposition is negligible. For larger nanoparticles the redeposition becomes significant and is able to compensate up to 20% of the sputtered material, effectively reducing the process of sputtering. The redeposition may even lead to significant growth: this was seen for the nanoparticles with the sizes much smaller than the ion range. Furthermore, the algorithm shows that significant redeposition is possible when the large size neighboring nanoparticles are present.

  18. Smith-Purcell experiment utilizing a field-emitter array cathode: measurements of radiation

    NASA Astrophysics Data System (ADS)

    Ishizuka, H.; Kawamura, Y.; Yokoo, K.; Shimawaki, H.; Hosono, A.

    2001-12-01

    Smith-Purcell (SP) radiation at wavelengths of 350-750 nm was produced in a tabletop experiment using a field-emitter array (FEA) cathode. The electron gun was 5 cm long, and a 25 mm×25 mm holographic replica grating was placed behind the slit provided in the anode. A regulated DC power supply accelerated electron beams in excess of 10 μA up to 45 keV, while a small Van de Graaff generator accelerated smaller currents to higher energies. The grating had a 0.556 μm period, 30° blaze and a 0.2 μm thick aluminum coating. Spectral characteristics of the radiation were measured both manually and automatically; in the latter case, the spectrometer was driven by a stepping motor to scan the wavelength, and AD-converted signals from a photomultiplier tube were processed by a personal computer. The measurement, made at 80° relative to the electron beam, showed good agreement with theoretical wavelengths of the SP radiation. Diffraction orders were -2 and -3 for beam energies higher than 45 keV, -3 to -5 at 15-25 keV, and -2 to -4 in between. The experiment has thus provided evidence for the practical applicability of FEAs to compact radiation sources.

  19. Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE)

    SciTech Connect

    Deutsch, Eric W.; Ball, Catherine A.; Berman, Jules J.; Bova, G. Steven; Brazma, Alvis; Bumgarner, Roger E.; Campbell, David; Causton, Helen C.; Christiansen, Jeff; Daian, Fabrice; Dauga, Delphine; Davidson, Duncan; Gimenez, Gregory; Goo, Young Ah; Grimmond, Sean; Henrich, Thorsten; Herrmann, Bernhard G.; Johnson, Michael H.; Korb, Martin; Mills, Jason C.; Oudes, Asa; Parkinson, Helen E.; Pascal, Laura E.; Pollet, Nicolas; Quackenbush, John; Ramaialison, Mirana; Ringwald, Martin; Salgado, David; Sansone, Susanna A.; Sherlock, Gavin; Stoeckert, Christian Jr. J.; Swedlow, Jason; Taylor, Ronald C.; Walasheck, Laura; Warford, Anthony; Wilkinson, David G.; Zhou, Yi; Zon, Leonard I.; Liu, Alvin Y.; True, Lawrence D.

    2008-03-28

    Herein, we present for consideration such a specification, termed “Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE)”. It is modelled after the MIAME (Minimum Information About a Microarray Experiment) specification for microarray experiments. The purpose of data standards like MIAME and MISFISHIE is to specify information content without specifying a format for encoding that information. The MISFISHIE standard specifies six sections of information that must be detailed for each experiment: Experimental Design, Specimens, Reporters, Staining, Imaging Data, and Image Characterizations. A general checklist is provided to quickly and efficiently establish adherence to the standard. Currently, we estimate that most articles describing gene expression localization studies, such as in situ hybridization assays, do not fully provide the minimum information needed for independent verification of results. In a small survey of 32 journal articles from the past five years, we found that nearly 90% did not meet all the requirements, although many met most of them. We propose that requiring authors to provide the minimum experimental detail about gene expression localization experiments would substantially facilitate reproducibility and interpretability of results by fellow investigators. Furthermore, inclusion of specific experimental details such as reagents and methods in publications would ultimately allow o