Sample records for array project process

  1. Automated Array Assembly, Phase 2. Low-cost Solar Array Project, Task 4

    NASA Technical Reports Server (NTRS)

    Lopez, M.

    1978-01-01

    Work was done to verify the technological readiness of a select process sequence with respect to satisfying the Low Cost Solar Array Project objectives of meeting the designated goals of $.50 per peak watt in 1986 (1975 dollars). The sequence examined consisted of: (1) 3 inches diameter as-sawn Czochralski grown 1:0:0 silicon, (2) texture etching, (3) ion implanting, (4) laser annealing, (5) screen printing of ohmic contacts and (6) sprayed anti-reflective coatings. High volume production projections were made on the selected process sequence. Automated processing and movement of hardware at high rates were conceptualized to satisfy the PROJECT's 500 MW/yr capability. A production plan was formulated with flow diagrams integrating the various processes in the cell fabrication sequence.

  2. Low-cost solar array project and Proceedings of the 15th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period December 1979 to April 1980 is described. Project analysis and integration, technology development in silicon material, large area silicon sheet and encapsulation, production process and equipment development, engineering, and operation are included.

  3. Direct write of microlens array using digital projection photopolymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Yi; Chen Shaochen

    Microlens array is a key element in the field of information processing, optoelectronics, and integrated optics. Many existing fabrication processes remain expensive and complicated even though relatively low-cost replication processes have been developed. Here, we demonstrate the fabrication of microlens arrays through projection photopolymerization using a digital micromirror device (DMD) as a dynamic photomask. The DMD projects grayscale images, which are designed in a computer, onto a photocurable resin. The resin is then solidified with its thickness determined by a grayscale ultraviolet light and exposure time. Therefore, various geometries can be formed in a single-step, massively parallel fashion. We presentmore » microlens arrays made of acrylate-based polymer precursor. The physical and optical characteristics of the resulting lenses suggest that this fabrication technique is potentially suitable for applications in integrated optics.« less

  4. Flat-plate solar array project. Volume 5: Process development

    NASA Technical Reports Server (NTRS)

    Gallagher, B.; Alexander, P.; Burger, D.

    1986-01-01

    The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly.

  5. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made by the Low-Cost Silicon Solar Array Project during the period January through March 1978 is reported. It includes task reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations, and manufacturing techniques, plus the steps taken to integrate these efforts.

  6. BRDF-dependent accuracy of array-projection-based 3D sensors.

    PubMed

    Heist, Stefan; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther

    2017-03-10

    In order to perform high-speed three-dimensional (3D) shape measurements with structured light systems, high-speed projectors are required. One possibility is an array projector, which allows pattern projection at several tens of kilohertz by switching on and off the LEDs of various slide projectors. The different projection centers require a separate analysis, as the intensity received by the cameras depends on the projection direction and the object's bidirectional reflectance distribution function (BRDF). In this contribution, we investigate the BRDF-dependent errors of array-projection-based 3D sensors and propose an error compensation process.

  7. Low-cost solar array project progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1981-01-01

    The considered project is part of the DOE Photovoltaic Technology and Market Development Program. This program is concerned with the development and the utilization of cost-competitive photovoltaic systems. The project has the objective to develop, by 1986, the national capability to manufacture low-cost, long-life photovoltaic arrays at production rates that will realize economies of scale, and at a price of less than $0.70/watt. The array performance objectives include an efficiency greater than 10% and an operating lifetime longer than 20 years. The objective of the silicon material task is to establish the practicality of processes for producing silicon suitable for terrestrial photovoltaic applications at a price of $14/kg. The large-area sheet task is concerned with the development of process technology for sheet formation. Low-cost encapsulation material systems are being developed in connection with the encapsulation task. Another project goal is related to the development of economical process sequences.

  8. Subarray Processing for Projection-based RFI Mitigation in Radio Astronomical Interferometers

    NASA Astrophysics Data System (ADS)

    Burnett, Mitchell C.; Jeffs, Brian D.; Black, Richard A.; Warnick, Karl F.

    2018-04-01

    Radio Frequency Interference (RFI) is a major problem for observations in Radio Astronomy (RA). Adaptive spatial filtering techniques such as subspace projection are promising candidates for RFI mitigation; however, for radio interferometric imaging arrays, these have primarily been used in engineering demonstration experiments rather than mainstream scientific observations. This paper considers one reason that adoption of such algorithms is limited: RFI decorrelates across the interferometric array because of long baseline lengths. This occurs when the relative RFI time delay along a baseline is large compared to the frequency channel inverse bandwidth used in the processing chain. Maximum achievable excision of the RFI is limited by covariance matrix estimation error when identifying interference subspace parameters, and decorrelation of the RFI introduces errors that corrupt the subspace estimate, rendering subspace projection ineffective over the entire array. In this work, we present an algorithm that overcomes this challenge of decorrelation by applying subspace projection via subarray processing (SP-SAP). Each subarray is designed to have a set of elements with high mutual correlation in the interferer for better estimation of subspace parameters. In an RFI simulation scenario for the proposed ngVLA interferometric imaging array with 15 kHz channel bandwidth for correlator processing, we show that compared to the former approach of applying subspace projection on the full array, SP-SAP improves mitigation of the RFI on the order of 9 dB. An example of improved image synthesis and reduced RFI artifacts for a simulated image “phantom” using the SP-SAP algorithm is presented.

  9. Summary of flat-plate solar array project documentation: Abstracts of published documents, 1975-1986, revision 1

    NASA Technical Reports Server (NTRS)

    Phillips, M. J.

    1986-01-01

    Abstracts of final reports, or the latest quarterly or annual, of the Flat-Plate Solar Array (FSA) Project Contractor of Jet Propulsion Laboratory (JPL) in-house activities are presented. Also presented is a list of proceedings and publications, by author, of work connected with the project. The aim of the program has been to stimulate the development of technology that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and Government applications at a cost per watt that is competitive with utility generated power. FSA Project activities have included the sponsoring of research and development efforts in silicon refinement processes, advanced silicon sheet growth techniques, higher efficiency solar cells, solar cell/module fabrication processes, encapsulation, module/array engineering and reliability, and economic analyses.

  10. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.

  11. Photoacoustic projection imaging using an all-optical detector array

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  12. Flat-plate solar array progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1984-01-01

    The results of research into the technology of flat-plate solar arrays undertaken in the Flat-Plate Solar Array Project under the sponsorship of the U.S. Department of Energy are surveyed. Topics examined include Si refinement, ribbon-sheet substrate formation, module process sequences, environmental isolation, module engineering and testing, and photovoltaic-array economics.

  13. General MoM Solutions for Large Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasenfest, B; Capolino, F; Wilton, D R

    2003-07-22

    This paper focuses on a numerical procedure that addresses the difficulties of dealing with large, finite arrays while preserving the generality and robustness of full-wave methods. We present a fast method based on approximating interactions between sufficiently separated array elements via a relatively coarse interpolation of the Green's function on a uniform grid commensurate with the array's periodicity. The interaction between the basis and testing functions is reduced to a three-stage process. The first stage is a projection of standard (e.g., RWG) subdomain bases onto a set of interpolation functions that interpolate the Green's function on the array face. Thismore » projection, which is used in a matrix/vector product for each array cell in an iterative solution process, need only be carried out once for a single cell and results in a low-rank matrix. An intermediate stage matrix/vector product computation involving the uniformly sampled Green's function is of convolutional form in the lateral (transverse) directions so that a 2D FFT may be used. The final stage is a third matrix/vector product computation involving a matrix resulting from projecting testing functions onto the Green's function interpolation functions; the low-rank matrix is either identical to (using Galerkin's method) or similar to that for the bases projection. An effective MoM solution scheme is developed for large arrays using a modification of the AIM (Adaptive Integral Method) method. The method permits the analysis of arrays with arbitrary contours and nonplanar elements. Both fill and solve times within the MoM method are improved with respect to more standard MoM solvers.« less

  14. Implementation of an Antenna Array Signal Processing Breadboard for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2006-01-01

    The Deep Space Network Large Array will replace/augment 34 and 70 meter antenna assets. The array will mainly be used to support NASA's deep space telemetry, radio science, and navigation requirements. The array project will deploy three complexes in the western U.S., Australia, and European longitude each with 400 12m downlink antennas and a DSN central facility at JPL. THis facility will remotely conduct all real-time monitor and control for the network. Signal processing objectives include: provide a means to evaluate the performance of the Breadboard Array's antenna subsystem; design and build prototype hardware; demonstrate and evaluate proposed signal processing techniques; and gain experience with various technologies that may be used in the Large Array. Results are summarized..

  15. Proceedings of the 16th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1980-01-01

    The principal achievement of the Low Cost Solar Array Project in 1980 was the attainment of $2.80/Wp Technical Readiness, and that processes and equipment now commercially available can make possible a deliverable product in 1982. A prototype array for intermediate load applications was demonstrated using frameless modules. It was proof tested to 40 lb/sq ft loading, and priced at $24/sq m, including array fabrication, module installation, shipping to the site and site installation for quantities of 20 MW.

  16. Development of an Advanced Hydraulic Fracture Mapping System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norm Warpinski; Steve Wolhart; Larry Griffin

    The project to develop an advanced hydraulic fracture mapping system consisted of both hardware and analysis components in an effort to build, field, and analyze combined data from tiltmeter and microseismic arrays. The hardware sections of the project included: (1) the building of new tiltmeter housings with feedthroughs for use in conjunction with a microseismic array, (2) the development of a means to use separate telemetry systems for the tilt and microseismic arrays, and (3) the selection and fabrication of an accelerometer sensor system to improve signal-to-noise ratios. The analysis sections of the project included a joint inversion for analysismore » and interpretation of combined tiltmeter and microseismic data and improved methods for extracting slippage planes and other reservoir information from the microseisms. In addition, testing was performed at various steps in the process to assess the data quality and problems/issues that arose during various parts of the project. A prototype array was successfully tested and a full array is now being fabricated for industrial use.« less

  17. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Photovoltaic Conversion Program was established to find methods of economically generating enough electrical power to meet future requirements. Activities and progress in the following areas are discussed: silicon-refinement processes; silicon-sheet-growth techniques; encapsulants; manufacturing of off-the-shelf solar arrays; and procurement of semistandardized solar arrays.

  18. Spatial light modulator array with heat minimization and image enhancement features

    DOEpatents

    Jain, Kanti [Briarcliff Manor, NY; Sweatt, William C [Albuquerque, NM; Zemel, Marc [New Rochelle, NY

    2007-01-30

    An enhanced spatial light modulator (ESLM) array, a microelectronics patterning system and a projection display system using such an ESLM for heat-minimization and resolution enhancement during imaging, and the method for fabricating such an ESLM array. The ESLM array includes, in each individual pixel element, a small pixel mirror (reflective region) and a much larger pixel surround. Each pixel surround includes diffraction-grating regions and resolution-enhancement regions. During imaging, a selected pixel mirror reflects a selected-pixel beamlet into the capture angle of a projection lens, while the diffraction grating of the pixel surround redirects heat-producing unused radiation away from the projection lens. The resolution-enhancement regions of selected pixels provide phase shifts that increase effective modulation-transfer function in imaging. All of the non-selected pixel surrounds redirect all radiation energy away from the projection lens. All elements of the ESLM are fabricated by deposition, patterning, etching and other microelectronic process technologies.

  19. Development of a Wireless Brain Implant: The Telemetric Electrode Array System (TEAS) Project

    DTIC Science & Technology

    2001-10-25

    8 array connected to an electronic system through a special polyimide flexible cable. The neuronal signals recorded by the electrode array at 1 mm...deposition prior to applying an insulation coating of glass using electron-beam deposition or a biocompatible epoxy through a dipping process. In the case...layer can be made relatively easily, by melting and cooling glass powder or curing biocompatible epoxy, it was desirable to simplify the process and

  20. Summary of flat-plate solar array project documentation. Abstracts of published documents, 1975 to June 1982

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Technologies that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and government applications at a cost per watt that is competitive with other means is investigated. Silicon refinement processes, advanced silicon sheet growth techniques, solar cell development, encapsulation, automated fabrication process technology, advanced module/array design, and module/array test and evaluation techniques are developed.

  1. Adaptive and mobile ground sensor array.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holzrichter, Michael Warren; O'Rourke, William T.; Zenner, Jennifer

    The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) accuracy to obtain enhancement of our capability to locate and characterize remote targets. The capability to accurately place sensors and then retrieve and reconfigure them allows sensors to be placed in phased arrays in an initial monitoring configuration and then to be reconfigured in an array tuned to the specific frequencies and directions of the selected target. This report reviews the findings and accomplishments achieved during this three-year project. This project successfully demonstrated autonomousmore » deployment and retrieval of a payload package with an accuracy of a few centimeters using differential global positioning system (GPS) signals. It developed an autonomous, multisensor, temporally aligned, radio-frequency communication and signal processing capability, and an array optimization algorithm, which was implemented on a digital signal processor (DSP). Additionally, the project converted the existing single-threaded, monolithic robotic vehicle control code into a multi-threaded, modular control architecture that enhances the reuse of control code in future projects.« less

  2. Measuring research progress in photovoltaics

    NASA Technical Reports Server (NTRS)

    Jackson, B.; Mcguire, P.

    1986-01-01

    The role and some results of the project analysis and integration function in the Flat-plate Solar Array (FSA) Project are presented. Activities included supporting the decision-making process, preparation of plans for project direction, setting goals for project activities, measuring progress within the project, and the development and maintenance of analytical models.

  3. Array automated assembly task low cost silicon solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Olson, C.

    1980-01-01

    Analyses of solar cell and module process steps for throughput rate, cost effectiveness, and reproductibility are reported. In addition to the concentration on cell and module processing sequences, an investigation was made into the capability of using microwave energy in the diffusion, sintering, and thick film firing steps of cell processing. Although the entire process sequence was integrated, the steps are treated individually with test and experimental data, conclusions, and recommendations.

  4. Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. L.

    1978-01-01

    Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.

  5. Analysis and Evaluation of Processes and Equipment in Tasks 2 and 4 of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1978-01-01

    The significant economic data for the current production multiblade wafering and inner diameter slicing processes were tabulated and compared to data on the experimental and projected multiblade slurry, STC ID diamond coated blade, multiwire slurry and crystal systems fixed abrasive multiwire slicing methods. Cost calculations were performed for current production processes and for 1982 and 1986 projected wafering techniques.

  6. Liquid sodium testing of in-house phased array EMAT transducer for L-wave applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Bourdais, F.; Le Polles, T.; Baque, F.

    2015-07-01

    This paper describes the development of an in-house phased array EMAT transducer for longitudinal wave inspection in liquid sodium. The work presented herein is part of an undergoing project aimed at improving in-service inspection techniques for the ASTRID reactor project. The design process of the phased array EMAT probe is briefly explained and followed by a review of experimental test results. We first present test results obtained in the laboratory while the last part of the paper describes the liquid sodium testing and the produced ultrasound images. (authors)

  7. LSA: Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Topics discussed include silicon material processing; large-area silicon sheet development; encapsulation materials testing and development; project engineering and operations activities, and manufacturing techniques. The steps taken to integrate these efforts, are described.

  8. Automated Array Assembly, Phase 2

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1979-01-01

    The Automated Array Assembly Task, Phase 2 of the Low Cost Silicon Solar Array Project is a process development task. The contract provides for the fabrication of modules from large area tandem junction cells (TJC). During this quarter, effort was focused on the design of a large area, approximately 36 sq cm, TJC and process verification runs. The large area TJC design was optimized for minimum I squared R power losses. In the TJM activity, the cell-module interfaces were defined, module substrates were formed and heat treated and clad metal interconnect strips were fabricated.

  9. Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology

    NASA Astrophysics Data System (ADS)

    Riahi, Mohammadreza

    2016-06-01

    In this article, the fabrication of a corner cube array retro-reflective structure is presented by using DLP-based 3D printing technology. In this additive manufacturing technology a pattern of a cube corner array is designed in a computer and sliced with specific software. The image of each slice is then projected from the bottom side of a reservoir, containing UV cure resin, utilizing a DLP video projector. The projected area is cured and attached to a base plate. This process is repeated until the entire part is made. The best orientation of the printing process and the effect of layer thicknesses on the surface finish of the cube has been investigated. The thermal reflow surface finishing and replication with soft molding has also been presented in this article.

  10. Low-cost solar array project and Proceedings of the 14th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1980-01-01

    Activities are reported on the following areas: project analysis and integration; technology development in silicon material, large area sheet silicon, and encapsulation; production process and equipment development; and engineering and operations, and the steps taken to integrate these efforts. Visual materials presented at the project Integration Meeting are included.

  11. Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  12. Ku- and Ka-Band Phased Array Antenna for the Space-Based Telemetry and Range Safety Project

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  13. The Automated Array Assembly Task of the Low-cost Silicon Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Grenon, L.; Pastirik, E. M.; Pryor, R. A.; Sparks, T. G.

    1978-01-01

    An advanced process sequence for manufacturing high efficiency solar cells and modules in a cost-effective manner is discussed. Emphasis is on process simplicity and minimizing consumed materials. The process sequence incorporates texture etching, plasma processes for damage removal and patterning, ion implantation, low pressure silicon nitride deposition, and plated metal. A reliable module design is presented. Specific process step developments are given. A detailed cost analysis was performed to indicate future areas of fruitful cost reduction effort. Recommendations for advanced investigations are included.

  14. Imaging System With Confocally Self-Detecting Laser.

    DOEpatents

    Webb, Robert H.; Rogomentich, Fran J.

    1996-10-08

    The invention relates to a confocal laser imaging system and method. The system includes a laser source, a beam splitter, focusing elements, and a photosensitive detector. The laser source projects a laser beam along a first optical path at an object to be imaged, and modulates the intensity of the projected laser beam in response to light reflected from the object. A beam splitter directs a portion of the projected laser beam onto a photodetector. The photodetector monitors the intensity of laser output. The laser source can be an electrically scannable array, with a lens or objective assembly for focusing light generated by the array onto the object of interest. As the array is energized, its laser beams scan over the object, and light reflected at each point is returned by the lens to the element of the array from which it originated. A single photosensitive detector element can generate an intensity-representative signal for all lasers of the array. The intensity-representative signal from the photosensitive detector can be processed to provide an image of the object of interest.

  15. A Comparison of Earthquake Back-Projection Imaging Methods for Dense Local Arrays, and Application to the 2011 Virginia Aftershock Sequence

    NASA Astrophysics Data System (ADS)

    Beskardes, G. D.; Hole, J. A.; Wang, K.; Wu, Q.; Chapman, M. C.; Davenport, K. K.; Michaelides, M.; Brown, L. D.; Quiros, D. A.

    2016-12-01

    Back-projection imaging has recently become a practical method for local earthquake detection and location due to the deployment of densely sampled, continuously recorded, local seismograph arrays. Back-projection is scalable to earthquakes with a wide range of magnitudes from very tiny to very large. Local dense arrays provide the opportunity to capture very tiny events for a range applications, such as tectonic microseismicity, source scaling studies, wastewater injection-induced seismicity, hydraulic fracturing, CO2 injection monitoring, volcano studies, and mining safety. While back-projection sometimes utilizes the full seismic waveform, the waveforms are often pre-processed to overcome imaging issues. We compare the performance of back-projection using four previously used data pre-processing methods: full waveform, envelope, short-term averaging / long-term averaging (STA/LTA), and kurtosis. The goal is to identify an optimized strategy for an entirely automated imaging process that is robust in the presence of real-data issues, has the lowest signal-to-noise thresholds for detection and for location, has the best spatial resolution of the energy imaged at the source, preserves magnitude information, and considers computational cost. Real data issues include aliased station spacing, low signal-to-noise ratio (to <1), large noise bursts and spatially varying waveform polarity. For evaluation, the four imaging methods were applied to the aftershock sequence of the 2011 Virginia earthquake as recorded by the AIDA array with 200-400 m station spacing. These data include earthquake magnitudes from -2 to 3 with highly variable signal to noise, spatially aliased noise, and large noise bursts: realistic issues in many environments. Each of the four back-projection methods has advantages and disadvantages, and a combined multi-pass method achieves the best of all criteria. Preliminary imaging results from the 2011 Virginia dataset will be presented.

  16. Phase 2 of the Array Automated Assembly Task for the Low Cost Silicon Solar Array Project

    NASA Technical Reports Server (NTRS)

    Wihl, M.; Torro, J.; Scheinine, A.; Anderson, J.

    1978-01-01

    An automated process sequence, to manufacture photovoltaic modules at a capacity of approximately 500 MW per year at a cost of approximately $0.50 per peak watt is described. Verification tests were performed and are reported along with cost predictions.

  17. Proceedings of the 24th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Tustin, D.

    1984-01-01

    Progress made by the Flat-Plate Solar Array Project is described. Reports on silicon sheet growth and characterization, silicon material, process development, high-efficiency cells, environmental isolation, engineering sciences, and reliability physics are presented along with copies of visual presentations made at the 24th Project Integration Meeting.

  18. Phase 1 of the automated array assembly task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Grenon, L. A.; Lesk, I. A.

    1977-01-01

    The state of technology readiness for the automated production of solar cells and modules is reviewed. Individual process steps and process sequences for making solar cells and modules were evaluated both technically and economically. High efficiency with a suggested cell goal of 15% was stressed. It is concluded that the technology exists to manufacture solar cells which will meet program goals.

  19. Acoustic Vector-Sensor Array Processing

    DTIC Science & Technology

    2010-06-01

    NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) Massachusetts Institute...ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public...section shows, vector-sensor arrays are more versatile than arrays of only pressure-sensors. Exploiting this versatility raises a number of ques

  20. Airborne laser-diode-array illuminator assessment for the night vision's airborne mine-detection arid test

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.

    2004-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.

  1. Phase 2 of the Array Automated Assembly Task for the Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.; Rai-Choundhury, P.; Seman, E. J.; Rohatgi, A.; Davis, J. R.; Ostroski, J. W.; Stapleton, R. E.

    1979-01-01

    Two process specifications supplied by contractors were tested. The aluminum silk screening process resulted in cells comparable to those from sputtered Al. The electroless plating of contacts specification could be used only with extensive modification. Several experiments suggest that there is some degradation of the front junction during the Al back surface field (BSF) fabrication. A revised process sequence was defined which incorporates Al BSF formation. A cost analysis of this process yielded a selling price of $0.75/watt peak in 1980.

  2. Flat-plate solar array project. Volume 3: Silicon sheet: Wafers and ribbons

    NASA Technical Reports Server (NTRS)

    Briglio, A.; Dumas, K.; Leipold, M.; Morrison, A.

    1986-01-01

    The primary objective of the Silicon Sheet Task of the Flat-Plate Solar Array (FSA) Project was the development of one or more low cost technologies for producing silicon sheet suitable for processing into cost-competitive solar cells. Silicon sheet refers to high purity crystalline silicon of size and thickness for fabrication into solar cells. Areas covered in the project were ingot growth and casting, wafering, ribbon growth, and other sheet technologies. The task made and fostered significant improvements in silicon sheet including processing of both ingot and ribbon technologies. An additional important outcome was the vastly improved understanding of the characteristics associated with high quality sheet, and the control of the parameters required for higher efficiency solar cells. Although significant sheet cost reductions were made, the technology advancements required to meet the task cost goals were not achieved.

  3. Progress Report 18 for the Period February to July 1981 and Proceeidngs of the 18th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in the low cost solar array project during the period February to July 1981 is reported. Included are: (1) project analysis and integration; (2) technology development in silicon material, large area silicon sheer and encapsulation; (3) process development; (4) engineering, and operations.

  4. Low-cost Solar Array Project. Feasibility of the Silane Process for Producing Semiconductor-grade Silicon

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of Union Carbide's silane process for commercial application was established. An integrated process design for an experimental process system development unit and a commercial facility were developed. The corresponding commercial plant economic performance was then estimated.

  5. Reduction of solar vector magnetograph data using a microMSP array processor

    NASA Technical Reports Server (NTRS)

    Kineke, Jack

    1990-01-01

    The processing of raw data obtained by the solar vector magnetograph at NASA-Marshall requires extensive arithmetic operations on large arrays of real numbers. The objectives of this summer faculty fellowship study are to: (1) learn the programming language of the MicroMSP Array Processor and adapt some existing data reduction routines to exploit its capabilities; and (2) identify other applications and/or existing programs which lend themselves to array processor utilization which can be developed by undergraduate student programmers under the provisions of project JOVE.

  6. Quantification of the effectiveness of handheld equipment for ground verification of detected rail internal defects.

    DOT National Transportation Integrated Search

    2014-04-01

    The objective of this project was to quantify the effectiveness of the rail inspection ground verification process. More specifically, : the project focused on comparing the effectiveness of conventional versus phased array probes to manually detect ...

  7. Astronomical Data Processing Using SciQL, an SQL Based Query Language for Array Data

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Scheers, B.; Kersten, M.; Ivanova, M.; Nes, N.

    2012-09-01

    SciQL (pronounced as ‘cycle’) is a novel SQL-based array query language for scientific applications with both tables and arrays as first class citizens. SciQL lowers the entrance fee of adopting relational DBMS (RDBMS) in scientific domains, because it includes functionality often only found in mathematics software packages. In this paper, we demonstrate the usefulness of SciQL for astronomical data processing using examples from the Transient Key Project of the LOFAR radio telescope. In particular, how the LOFAR light-curve database of all detected sources can be constructed, by correlating sources across the spatial, frequency, time and polarisation domains.

  8. Conceptual approach on harvesting PV dissipated heat for enhancing water evaporation

    NASA Astrophysics Data System (ADS)

    Latiff, N. Abdul; Ya'acob, M. E.; Yunos, Khairul Faezah Md.

    2017-09-01

    The fluctuating sun radiation in tropical climate conditions has significantly affected the output performance of the PV array and also processes related to direct-sun drying. Apart from this, the dissipated heat under PV array projected from photonic effects of generating electricity is currently wasted to the environment. This study shares some conceptual idea on a new approach for harvesting the dissipated heat energy from PV arrays for the purpose of enhancing water evaporation process. Field measurements for ambient temperature (Ta) and PV bottom surface temperature (FFb) are measured and recorded for calculating the evaporation rates at different condition in real time. The waste heat dissipated in this condition is proposed as a medium to increase evaporation thru speeding up the water condensation process. The significant increase of water evaporation rate based on Penman equation supports the idea of integration with landed PV array structures.

  9. Demonstration of KHILS two-color IR projection capability

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence E.; Coker, Jason S.; Garbo, Dennis L.; Olson, Eric M.; Murrer, Robert Lee, Jr.; Bergin, Thomas P.; Goldsmith, George C., II; Crow, Dennis R.; Guertin, Andrew W.; Dougherty, Michael; Marler, Thomas M.; Timms, Virgil G.

    1998-07-01

    For more than a decade, there has been considerable discussion about using different IR bands for the detection of low contrast military targets. Theory predicts that a target can have little to no contrast against the background in one IR band while having a discernible signature in another IR band. A significant amount of effort has been invested towards establishing hardware that is capable of simultaneously imaging in two IR bands to take advantage of this phenomenon. Focal plane arrays (FPA) are starting to materialize with this simultaneous two-color imaging capability. The Kinetic Kill Vehicle Hardware-in-the-loop Simulator (KHILS) team of the Air Force Research Laboratory and the Guided Weapons Evaluation Facility (GWEF), both at Eglin AFB, FL, have spent the last 10 years developing the ability to project dynamic IR scenes to imaging IR seekers. Through the Wideband Infrared Scene Projector (WISP) program, the capability to project two simultaneous IR scenes to a dual color seeker has been established at KHILS. WISP utilizes resistor arrays to produce the IR energy. Resistor arrays are not ideal blackbodies. The projection of two IR colors with resistor arrays, therefore, requires two optically coupled arrays. This paper documents the first demonstration of two-color simultaneous projection at KHILS. Agema cameras were used for the measurements. The Agema's HgCdTe detector has responsivity from 4 to 14 microns. A blackbody and two IR filters (MWIR equals 4.2 t 7.4 microns, LWIR equals 7.7 to 13 microns) were used to calibrate the Agema in two bands. Each filter was placed in front of the blackbody one at a time, and the temperature of the blackbody was stepped up in incremental amounts. The output counts from the Agema were recorded at each temperature. This calibration process established the radiance to Agema output count curves for the two bands. The WISP optical system utilizes a dichroic beam combiner to optically couple the two resistor arrays. The transmission path of the beam combiner provided the LWIR (6.75 to 12 microns), while the reflective path produced the MWIR (3 to 6.5 microns). Each resistor array was individually projected into the Agema through the beam combiner at incremental output levels. Once again the Agema's output counts were recorded at each resistor array output level. These projections established the resistor array output to Agema count curves for the MWIR and LWIR resistor arrays. Using the radiance to Agema counts curves, the MWIR and LWIR resistor array output to radiance curves were established. With the calibration curves established, a two-color movie was projected and compared to the generated movie radiance values. By taking care to correctly account for the spectral qualities of the Agema camera, the calibration filters, and the diachroic beam combiner, the projections matched the theoretical calculations. In the near future, a Lockheed- Martin Multiple Quantum Well camera with true two-color IR capability will be tested.

  10. Proceedings of the Flat-Plate Solar Array Project Workshop on Low-Cost Polysilicon for Terrestrial Photovoltaic Solar-Cell Applications

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Sessions conducted included: polysilicon material requirements; economics; process development in the U.S.; international process development; and polysilicon market and forecasts. Twenty-one papers were presented and discussed.

  11. Observations of Seafloor Ambient Noise with an Ocean Bottom Seismometer Array

    DTIC Science & Technology

    1989-12-01

    April and May of 1987. The array was situated near Deep Sea Drilling Project (DSDP) Hole 469 at a depth of 3.8 km (Figure 2.1). The area is a 400 m...any array processing method can be gauged by its resolution, bias 34 and stability. These quantities are sensitive to errors such as uncertain...Spectral Ocean Wave Model, Bull. Amer. Meteor. Soc, 67,498-512,1986. Cox, C. S., T. Deaton, and S. C. Webb, A deep-sea differential pressure gauge

  12. The 17th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1981-01-01

    Progress made by the Low-Cost Solar Array Project during the period September 1980 to February 1981 is described. Included are reports on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering, and operations. A report on and copies of visual presentations made at the Project Integration Meeting held at Pasadena, California on February 4 and 5, 1981 are also included.

  13. Phase 1 of the automated array assembly task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.; Grenon, L. A.; Coleman, M. G.

    1978-01-01

    The results of a study of process variables and solar cell variables are presented. Interactions between variables and their effects upon control ranges of the variables are identified. The results of a cost analysis for manufacturing solar cells are discussed. The cost analysis includes a sensitivity analysis of a number of cost factors.

  14. Sunlight-Driven Hydrogen Formation by Membrane-Supported Photoelectrochemical Water Splitting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Nathan S.

    2014-03-26

    This report describes the significant advances in the development of the polymer-supported photoelectrochemical water-splitting system that was proposed under DOE grant number DE-FG02-05ER15754. We developed Si microwire-array photoelectrodes, demonstrated control over the material and light-absorption properties of the microwire-array photoelectrodes, developed inexpensive processes for synthesizing the arrays, and doped the arrays p-type for use as photocathodes. We also developed techniques for depositing metal-nanoparticle catalysts of the hydrogen-evolution reaction (HER) on the wire arrays, investigated the stability and catalytic performance of the nanoparticles, and demonstrated that Ni-Mo alloys are promising earth-abundant catalysts of the HER. We also developed methods that allowmore » reuse of the single-crystalline Si substrates used for microwire growth and methods of embedding the microwire photocathodes in plastic to enable large-scale processing and deployment of the technology. Furthermore we developed techniques for controlling the structure of WO3 films, and demonstrated that structural control can improve the quantum yield of photoanodes. Thus, by the conclusion of this project, we demonstrated significant advances in the development of all components of a sunlight-driven membrane-supported photoelectrochemical water-splitting system. This final report provides descriptions of some of the scientific accomplishments that were achieved under the support of this project and also provides references to the peer-reviewed publications that resulted from this effort.« less

  15. Proceedings of the 21st Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Progress made by the Flat Plate Solar Array Project during the period April 1982 to January 1983 is described. Reports on polysilicon refining, thin film solar cell and module technology development, central station electric utility activities, silicon sheet growth and characteristics, advanced photovoltaic materials, cell and processes research, module technology, environmental isolation, engineering sciences, module performance and failure analysis and project analysis and integration are included.

  16. Graphical Environment Tools for Application to Gamma-Ray Energy Tracking Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todd, Richard A.; Radford, David C.

    2013-12-30

    Highly segmented, position-sensitive germanium detector systems are being developed for nuclear physics research where traditional electronic signal processing with mixed analog and digital function blocks would be enormously complex and costly. Future systems will be constructed using pipelined processing of high-speed digitized signals as is done in the telecommunications industry. Techniques which provide rapid algorithm and system development for future systems are desirable. This project has used digital signal processing concepts and existing graphical system design tools to develop a set of re-usable modular functions and libraries targeted for the nuclear physics community. Researchers working with complex nuclear detector arraysmore » such as the Gamma-Ray Energy Tracking Array (GRETA) have been able to construct advanced data processing algorithms for implementation in field programmable gate arrays (FPGAs) through application of these library functions using intuitive graphical interfaces.« less

  17. Navigating Earthquake Physics with High-Resolution Array Back-Projection

    NASA Astrophysics Data System (ADS)

    Meng, Lingsen

    Understanding earthquake source dynamics is a fundamental goal of geophysics. Progress toward this goal has been slow due to the gap between state-of-art earthquake simulations and the limited source imaging techniques based on conventional low-frequency finite fault inversions. Seismic array processing is an alternative source imaging technique that employs the higher frequency content of the earthquakes and provides finer detail of the source process with few prior assumptions. While the back-projection provides key observations of previous large earthquakes, the standard beamforming back-projection suffers from low resolution and severe artifacts. This thesis introduces the MUSIC technique, a high-resolution array processing method that aims to narrow the gap between the seismic observations and earthquake simulations. The MUSIC is a high-resolution method taking advantage of the higher order signal statistics. The method has not been widely used in seismology yet because of the nonstationary and incoherent nature of the seismic signal. We adapt MUSIC to transient seismic signal by incorporating the Multitaper cross-spectrum estimates. We also adopt a "reference window" strategy that mitigates the "swimming artifact," a systematic drift effect in back projection. The improved MUSIC back projections allow the imaging of recent large earthquakes in finer details which give rise to new perspectives on dynamic simulations. In the 2011 Tohoku-Oki earthquake, we observe frequency-dependent rupture behaviors which relate to the material variation along the dip of the subduction interface. In the 2012 off-Sumatra earthquake, we image the complicated ruptures involving orthogonal fault system and an usual branching direction. This result along with our complementary dynamic simulations probes the pressure-insensitive strength of the deep oceanic lithosphere. In another example, back projection is applied to the 2010 M7 Haiti earthquake recorded at regional distance. The high-frequency subevents are located at the edges of geodetic slip regions, which are correlated to the stopping phases associated with rupture speed reduction when the earthquake arrests.

  18. Large area projection liquid-crystal video display system with inherent grid pattern optically removed

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor)

    1992-01-01

    A relatively small and low-cost system is provided for projecting a large and bright television image onto a screen. A miniature liquid crystal array is driven by video circuitry to produce a pattern of transparencies in the array corresponding to a television image. Light is directed against the rear surface of the array to illuminate it, while a projection lens lies in front of the array to project the image of the array onto a large screen. Grid lines in the liquid crystal array are eliminated by a spacial filter which comprises a negative of the Fourier transform of the grid.

  19. Proceedings of the 13th Project integration meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1979-01-01

    Progress made by the Low Cost Solar Array Project during the period April through August 1979 is presented. Reports are given on project analysis and integration; technology development in silicon material, large area sheet silicon, and encapsulation; production process and equipment development; engineering and operations, and a discussion of the steps taken to integrate these efforts. A report on, and copies of viewgraphs presented at the Project Integration Meeting held August 22-23, 1979 are presented.

  20. Sensitivity analysis of the add-on price estimate for the silicon web growth process

    NASA Technical Reports Server (NTRS)

    Mokashi, A. R.

    1981-01-01

    The web growth process, a silicon-sheet technology option, developed for the flat plate solar array (FSA) project, was examined. Base case data for the technical and cost parameters for the technical and commercial readiness phase of the FSA project are projected. The process add on price, using the base case data for cost parameters such as equipment, space, direct labor, materials and utilities, and the production parameters such as growth rate and run length, using a computer program developed specifically to do the sensitivity analysis with improved price estimation are analyzed. Silicon price, sheet thickness and cell efficiency are also discussed.

  1. Process research of non-cz silicon material. Low cost solar array project, cell and module formation research area

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated.

  2. Encapsulation task of the low-cost silicon solar array project. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.; White, R. A.

    1978-01-01

    The results of an investigation of solar module encapsulation systems applicable to the Low-Cost Solar Array Project 1986 cost and performance goals are presented. Six basic construction elements were identified and their specific uses in module construction defined. A uniform coating basis was established for each element. The survey results were also useful in revealing price ranges for classes of materials and estimating the cost allocation for each element within the encapsulating cost goal. The six construction elements were considered to be substrates, superstrates, pottants, adhesives, outer covers and back covers.

  3. Proceedings of the 26th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Progress made by the Flat-plate Solar Array (FSA) Project is described for the period July 1985 to April 1986. Included are reports on silicon sheet growth and characterization, silicon material, process development, high-efficienty cells, environmental isolation, engineering sciences, and reliability physics. Also included are technical and plenary presentations made at the 26th Project Integration Meeting (PIM) held on April 29 to 30 and May 1, 1986.

  4. Silicon material task - Low cost solar array project /JPL/DOE/

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1979-01-01

    The paper describes the silicon material task of the low-cost solar array project, which has the objective of establishing a silicon production capability equivalent to 500 mW per year at a price less than 10 dollars/kg (1975 dollars) in 1986. The task program is divided into four phases: technical feasibility, scale-up studies (the present phase), experimental process system development units, and implementation of large-scale production plants, and it involves the development of processes for two groups of materials, that is, semiconductor grade and solar cell grade. In addition, the effects of impurities on solar cell performance are being investigated. Attention is given to problem areas of the task program, such as environmental protection, material compatibility between the reacting chemicals and materials of construction of the equipment, and waste disposal.

  5. Flat-plate solar array project. Volume 2: Silicon material

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1986-01-01

    The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.

  6. Flat-plate solar array project. Volume 2: Silicon material

    NASA Astrophysics Data System (ADS)

    Lutwack, R.

    1986-10-01

    The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.

  7. Radio Observations of the Ionosphere From an Imaging Array and a CubeSat

    NASA Astrophysics Data System (ADS)

    Isham, B.; Gustavsson, B.; Bullett, T. W.; Bergman, J. E. S.; Rincón-Charris, A.; Bruhn, F.; Funk, P.

    2017-12-01

    The ionosphere is a source of many radio emissions in the various low-frequency, medium-frequency, and high-frequency bands (0 to 30 MHz). In addition to natural radio emissions, artificial emissions can be stimulated using high-power radiowave ionospheric modification facilities. Two complementary projects are underway for the purpose of improving our knowledge of the processes of radio emissions from the ionosphere. One project is the Aguadilla radio array, located in northwestern Puerto Rico. The Aguadilla array is intended to produce 2 to 25 MHz radio images of the ionosphere, as well as to perform bistatic radar imaging of the ionosphere over Puerto Rico. The array will consist of multiple antenna elements, each of which is a single active (electromagnetically short) crossed electric dipole. The elements are arranged within a roughly 200 by 300-meter core array, in a semi-random pattern providing an optimal distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. In addition, several elements are arranged in a partial ring around the central core, providing a roughly four times expanded region in u-v space for improved image resolution and quality. Phase is maintained via cabled connections to a central location. A remote array is also being developed, in which phase is maintained between elements by through the use of GPS-disciplined rubidium clocks. The other project involves the GimmeRF radio instrument, designed for 0.3 to 30 MHz vector observation of the radio electric field, and planned for launch in 2020 on a CubeSat. The data rate that can be sustained by GimmeRF far exceeds any available communication strategy. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. Radio images recorded by the radio array from below the ionosphere can be directly compared with the radio data received by GimmeRF in the topside ionosphere, with the goal of better understanding the geometry and therefore the mechanisms of the radio emission processes.

  8. Cleaning up Silicon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A development program that started in 1975 between Union Carbide and JPL, led to Advanced Silicon Materials LLC's, formerly ASiMI, commercial process for producing silane in viable quantities. The process was expanded to include the production of high-purity polysilicon for electronic devices. The technology came out of JPL's Low Cost Silicon Array Project.

  9. Proceedings of the 22nd Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This report describes progress made by the Flat-Plate Solar Array Project during the period January to September 1983. It includes reports on silicon sheet growth and characterization, module technology, silicon material, cell processing and high-efficiency cells, environmental isolation, engineering sciences, module performance and failure analysis and project analysis and integration. It includes a report on, and copies of visual presentations made at the 22nd Project Integration Meeting held at Pasadena, California, on September 28 and 29, 1983.

  10. Heat pipe with improved wick structures

    DOEpatents

    Benson, David A.; Robino, Charles V.; Palmer, David W.; Kravitz, Stanley H.

    2000-01-01

    An improved planar heat pipe wick structure having projections formed by micromachining processes. The projections form arrays of interlocking, semi-closed structures with multiple flow paths on the substrate. The projections also include overhanging caps at their tops to increase the capillary pumping action of the wick structure. The capped projections can be formed in stacked layers. Another layer of smaller, more closely spaced projections without caps can also be formed on the substrate in between the capped projections. Inexpensive materials such as Kovar can be used as substrates, and the projections can be formed by electrodepositing nickel through photoresist masks.

  11. Method and apparatus for synthesis of arrays of DNA probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerrina, Francesco; Sussman, Michael R.; Blattner, Frederick R.

    The synthesis of arrays of DNA probes sequences, polypeptides, and the like is carried out using a patterning process on an active surface of a substrate. An image is projected onto the active surface of the substrate utilizing an image former that includes a light source that provides light to a micromirror device comprising an array of electronically addressable micromirrors, each of which can be selectively tilted between one of at least two positions. Projection optics receives the light reflected from the micromirrors along an optical axis and precisely images the micromirrors onto the active surface of the substrate, whichmore » may be used to activate the surface of the substrate. The first level of bases may then be applied to the substrate, followed by development steps, and subsequent exposure of the substrate utilizing a different pattern of micromirrors, with further repeats until the elements of a two dimensional array on the substrate surface have an appropriate base bound thereto. The micromirror array can be controlled in conjunction with a DNA synthesizer supplying appropriate reagents to a flow cell containing the active substrate to control the sequencing of images presented by the micromirror array in coordination of the reagents provided to the substrate.« less

  12. LSA Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  13. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  14. Fully parallel write/read in resistive synaptic array for accelerating on-chip learning

    NASA Astrophysics Data System (ADS)

    Gao, Ligang; Wang, I.-Ting; Chen, Pai-Yu; Vrudhula, Sarma; Seo, Jae-sun; Cao, Yu; Hou, Tuo-Hung; Yu, Shimeng

    2015-11-01

    A neuro-inspired computing paradigm beyond the von Neumann architecture is emerging and it generally takes advantage of massive parallelism and is aimed at complex tasks that involve intelligence and learning. The cross-point array architecture with synaptic devices has been proposed for on-chip implementation of the weighted sum and weight update in the learning algorithms. In this work, forming-free, silicon-process-compatible Ta/TaO x /TiO2/Ti synaptic devices are fabricated, in which >200 levels of conductance states could be continuously tuned by identical programming pulses. In order to demonstrate the advantages of parallelism of the cross-point array architecture, a novel fully parallel write scheme is designed and experimentally demonstrated in a small-scale crossbar array to accelerate the weight update in the training process, at a speed that is independent of the array size. Compared to the conventional row-by-row write scheme, it achieves >30× speed-up and >30× improvement in energy efficiency as projected in a large-scale array. If realistic synaptic device characteristics such as device variations are taken into an array-level simulation, the proposed array architecture is able to achieve ∼95% recognition accuracy of MNIST handwritten digits, which is close to the accuracy achieved by software using the ideal sparse coding algorithm.

  15. Low-cost solar array progress and plans

    NASA Astrophysics Data System (ADS)

    Callaghan, W. T.

    It is pointed out that significant redirection has occurred in the U.S. Department of Energy (DOE) Photovoltaics Program, and thus in the Flat-Plate Solar Array Project (FSA), since the 3rd European Communities Conference. The Silicon Materials Task has now the objective to sponsor theoretical and experimental research on silicon material refinement technology suitable for photovoltaic flat-plate solar arrays. With respect to the hydrochlorination reaction, a process proof of concept was completed through definition of reaction kinetics, catalyst, and reaction characteristics. In connection with the dichlorosilane chemical vapor desposition process, a preliminary design was completed of an experimental process system development unit with a capacity of 100 to 200 MT/yr of Si.Attention is also given to the silicon-sheet formation research area, environmental isolation research, the cell and module formation task, the engineering sciences area, and the module performance and failure analysis area.

  16. Multi-Array Back-Projections of The 2015 Gorkha Earthquake With Physics-Based Aftershock Calibrations

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhang, A.; Yagi, Y.

    2015-12-01

    The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9,000 people is the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process is well imaged by the teleseismic MUSIC back-projections (BP). Here, we perform independent back-projections of high-frequency recordings (0.5-2 Hz) from the Australian seismic network (AU), the North America network (NA) and the European seismic network (EU), located in complementary orientations. Our results of all three arrays show unilateral linear rupture path to the east of the hypocenter. But the propagating directions and the inferred rupture speeds differ significantly among different arrays. To understand the spatial uncertainties of the BP analysis, we image four moderate-size (M5~6) aftershocks based on the timing correction derived from the alignment of the initial P-wave of the mainshock. We find that the apparent source locations inferred from BP are systematically biased along the source-array orientation, which can be explained by the uncertainty of the 3D velocity structure deviated from the 1D reference model (e.g. IASP91). We introduced a slowness error term in travel time as a first-order calibration that successfully mitigates the source location discrepancies of different arrays. The calibrated BP results of three arrays are mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s along the down-dip edge of the locked Himalaya thrust zone over ~ 150 km, in agreement with a narrow slip distribution inferred from finite source inversions.

  17. LANL robotics site overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beugelsdijk, T.J.

    1990-11-01

    This paper reports on robotics applications at the Los Alamos National Laboratory. The topics of the paper include the ROBOCAL project to assay all nuclear materials entering and leaving the process floor at the Los Alamos Plutonium Facility, the isotope detector fabrication project, a plutonium dissolution robotic system, a safeguards waste automated measurement instrument, and DNA filter array construction. This report consists of overheads only.

  18. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The energy consumed in manufacturing silicon solar cell modules was calculated for the current process, as well as for 1982 and 1986 projected processes. In addition, energy payback times for the above three sequences are shown. The module manufacturing energy was partitioned two ways. In one way, the silicon reduction, silicon purification, sheet formation, cell fabrication, and encapsulation energies were found. In addition, the facility, equipment, processing material and direct material lost-in-process energies were appropriated in junction formation processes and full module manufacturing sequences. A brief methodology accounting for the energy of silicon wafers lost-in-processing during cell manufacturing is described.

  19. Array automated assembly task, phase 2. Low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Rhee, S. S.; Jones, G. T.; Allison, K. T.

    1978-01-01

    Several modifications instituted in the wafer surface preparation process served to significantly reduce the process cost to 1.55 cents per peak watt in 1975 cents. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects, but with potential equipment modifications this cost effective system could be rendered suitable for applications. Installation of electroless nickel plating system was completed along with an optimization of the wafer plating process. The solder coating and flux removal process verification test was completed. An optimum temperature range of 500-550 C was found to produce uniform solder coating with the restriction that a modified dipping procedure is utilized. Finally, the construction of the spray-on dopant equipment was completed.

  20. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  1. Design for Review - Applying Lessons Learned to Improve the FPGA Review Process

    NASA Technical Reports Server (NTRS)

    Figueiredo, Marco A.; Li, Kenneth E.

    2014-01-01

    Flight Field Programmable Gate Array (FPGA) designs are required to be independently reviewed. This paper provides recommendations to Flight FPGA designers to properly prepare their designs for review in order to facilitate the review process, and reduce the impact of the review time in the overall project schedule.

  2. Low Cost Solar Array Project. Feasibility of the silane process for producing semiconductor-grade silicon. Final report, October 1975-March 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    The commercial production of low-cost semiconductor-grade silicon is an essential requirement of the JPL/DOE (Department of Energy) Low-Cost Solar Array (LSA) Project. A 1000-metric-ton-per-year commercial facility using the Union Carbide Silane Process will produce molten silicon for an estimated price of $7.56/kg (1975 dollars, private financing), meeting the DOE goal of less than $10/kg. Conclusions and technology status are reported for both contract phases, which had the following objectives: (1) establish the feasibility of Union Carbide's Silane Process for commercial application, and (2) develop an integrated process design for an Experimental Process System Development Unit (EPSDU) and a commercial facility,more » and estimate the corresponding commercial plant economic performance. To assemble the facility design, the following work was performed: (a) collection of Union Carbide's applicable background technology; (b) design, assembly, and operation of a small integrated silane-producing Process Development Unit (PDU); (c) analysis, testing, and comparison of two high-temperature methods for converting pure silane to silicon metal; and (d) determination of chemical reaction equilibria and kinetics, and vapor-liquid equilibria for chlorosilanes.« less

  3. Fabrication of long linear arrays of plastic optical fibers with squared ends for the use of code mark printing lithography

    NASA Astrophysics Data System (ADS)

    Horiuchi, Toshiyuki; Watanabe, Jun; Suzuki, Yuta; Iwasaki, Jun-ya

    2017-05-01

    Two dimensional code marks are often used for the production management. In particular, in the production lines of liquid-crystal-display panels and others, data on fabrication processes such as production number and process conditions are written on each substrate or device in detail, and they are used for quality managements. For this reason, lithography system specialized in code mark printing is developed. However, conventional systems using lamp projection exposure or laser scan exposure are very expensive. Therefore, development of a low-cost exposure system using light emitting diodes (LEDs) and optical fibers with squared ends arrayed in a matrix is strongly expected. In the past research, feasibility of such a new exposure system was demonstrated using a handmade system equipped with 100 LEDs with a central wavelength of 405 nm, a 10×10 matrix of optical fibers with 1 mm square ends, and a 10X projection lens. Based on these progresses, a new method for fabricating large-scale arrays of finer fibers with squared ends was developed in this paper. At most 40 plastic optical fibers were arranged in a linear gap of an arraying instrument, and simultaneously squared by heating them on a hotplate at 120°C for 7 min. Fiber sizes were homogeneous within 496+/-4 μm. In addition, average light leak was improved from 34.4 to 21.3% by adopting the new method in place of conventional one by one squaring method. Square matrix arrays necessary for printing code marks will be obtained by piling the newly fabricated linear arrays up.

  4. America Makes: National Additive Manufacturing Innovation Institute (NAMII) Project 1: Nondestructive Evaluation (NDE) of Complex Metallic Additive Manufactured (AM) Structures

    DTIC Science & Technology

    2014-06-01

    layer-by-layer manufacturing of a component by using PBF processes is accompanied by the establishment of a unidirectional heat transfer along the build...direction. Because grain growth during solidification preferably occurs in the opposite direction of heat transfer , the formation of elongated...development and deployment of phased array technology.[69] Phased array ultrasonic (PAUT) sensors use multiple elements instead of a single element

  5. Glass for low-cost photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1980-01-01

    Various aspects of glass encapsulation that are important for the designer of photovoltaic systems are discussed. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the low-cost solar array project goals for arrays: (1) a low degradation rate, (2) high reliability, (3) an efficiency greater than 10 percent, (4) a total array price less than $500/kW, and (5) a production capacity of 500,000 kW/yr. The glass design areas discussed include the types of glass, sources and costs, physical properties, and glass modifications, such as antireflection coatings.

  6. Analysis and evaluation of processes and equipment in tasks 2 and 4 of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1978-01-01

    Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that the specific add-on costs of the Cz-process can be expected to be reduced by about a factor of three by 1982, and about a factor of five by 1986. A format to guide in the accumulation of the data needed for thorough techno-economic analysis of solar cell production processes was developed.

  7. Low cost solar array project production process and equipment task. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.

  8. GPU-Based Real-Time Volumetric Ultrasound Image Reconstruction for a Ring Array

    PubMed Central

    Choe, Jung Woo; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T.

    2014-01-01

    Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection (MIP), processed at a rate of 104 fps. This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software. PMID:23529080

  9. Silicon materials task of the low-cost solar array project. Phase 4: Effects of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Hanes, M. H.; Davis, J. R.; Rohatgi, A.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1981-01-01

    The effects of impurities, various thermochemical processes, and any impurity-process interactions upon the performance of terrestrial solar cells are defined. The results form a basis for silicon producers, wafer manufacturers, and cell fabricators to develop appropriate cost benefit relationships for the use of less pure, less costly solar grade silicon.

  10. Automated array assembly task, phase 1

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1977-01-01

    An assessment of state-of-the-art technologies that are applicable to silicon solar cell and solar cell module fabrication is provided. The assessment consists of a technical feasibility evaluation and a cost projection for high-volume production of silicon solar cell modules. The cost projection was approached from two directions; a design-to-cost analysis assigned cost goals to each major process element in the fabrication scheme, and a cost analysis built up projected costs for alternate technologies for each process element. A technical evaluation was used in combination with the cost analysis to identify a baseline low cost process. A novel approach to metal pattern design based on minimum power loss was developed. These design equations were used as a tool in the evaluation of metallization technologies.

  11. Wake acoustic analysis and image decomposition via beamforming of microphone signal projections on wavelet subspaces

    DOT National Transportation Integrated Search

    2006-05-08

    This paper describes the integration of wavelet analysis and time-domain beamforming : of microphone array output signals for analyzing the acoustic emissions from airplane : generated wake vortices. This integrated process provides visual and quanti...

  12. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  13. Flat-plate solar array progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.; Henry, P. K.

    1984-01-01

    The Flat-Plate Solar Array Project (FSA), sponsored by the U.S. Department of Energy (DOE) and managed by the Jet Propulsion Laboratory (JPL), has achieved progress in a broad range of technical activities since that reported at the Fourth European Communities Conference. A particularly important analysis has been completed recently which confirms the adoption into practice by the U.S. Photovoltaic (PV Industry, of all the low-cost module technology elements proposed at the 16th Project Integration Meeting for a $2.80/Wp (1980 U.S. Dollars) design approach in the fall of 1980. This work presents along with a projection, using the same techniques, for what is believed to be a very credible ribbon-based module design for less that $0.55/Wp (1980 U.S. Dollars). Other areas to be reported upon include low-cost Si feedstock refinement; ribbon growth; process sequence development for cells; environmental isolation; engineering science investigations; and module testing progress.

  14. Hydrogen Epoch of Reinozation Array (HERA) Calibrated FFT Correlator Simulation

    NASA Astrophysics Data System (ADS)

    Salazar, Jeffrey David; Parsons, Aaron

    2018-01-01

    The Hydrogen Epoch of Reionization Array (HERA) project is an astronomical radio interferometer array with a redundant baseline configuration. Interferometer arrays are being used widely in radio astronomy because they have a variety of advantages over single antenna systems. For example, they produce images (visibilities) closely matching that of a large antenna (such as the Arecibo observatory), while both the hardware and maintenance costs are significantly lower. However, this method has some complications; one being the computational cost of correlating data from all of the antennas. A correlator is an electronic device that cross-correlates the data between the individual antennas; these are what radio astronomers call visibilities. HERA, being in its early stages, utilizes a traditional correlator system. The correlator cost scales as N2, where N is the number of antennas in the array. The purpose of a redundant baseline configuration array setup is for the use of a more efficient Fast Fourier Transform (FFT) correlator. FFT correlators scale as Nlog2N. The data acquired from this sort of setup, however, inherits geometric delay and uncalibrated antenna gains. This particular project simulates the process of calibrating signals from astronomical sources. Each signal “received” by an antenna in the simulation is given random antenna gain and geometric delay. The “linsolve” Python module was used to solve for the unknown variables in the simulation (complex gains and delays), which then gave a value for the true visibilities. This first version of the simulation only mimics a one dimensional redundant telescope array detecting a small amount of sources located in the volume above the antenna plane. Future versions, using GPUs, will handle a two dimensional redundant array of telescopes detecting a large amount of sources in the volume above the array.

  15. Fabrication and Testing of Binary-Phase Fourier Gratings for Nonuniform Array Generation

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Crow, Robert W.; Ashley, Paul R.; Nelson, Tom R., Jr.; Parker, Jack H.; Beecher, Elizabeth A.

    2004-01-01

    This effort describes the fabrication and testing of binary-phase Fourier gratings designed to generate an incoherent array of output source points with nonuniform user-defined intensities, symmetric about the zeroth order. Like Dammann fanout gratings, these binary-phase Fourier gratings employ only two phase levels to generate a defined output array. Unlike Dammann fanout gratings, these gratings generate an array of nonuniform, user-defined intensities when projected into the far-field regime. The paper describes the process of design, fabrication, and testing for two different version of the binary-phase grating; one designed for a 12 micron wavelength, referred to as the Long-Wavelength Infrared (LWIR) grating, and one designed for a 5 micron wavelength, referred to as the Mid-Wavelength Infrared Grating (MWIR).

  16. Research on Wide-field Imaging Technologies for Low-frequency Radio Array

    NASA Astrophysics Data System (ADS)

    Lao, B. Q.; An, T.; Chen, X.; Wu, X. C.; Lu, Y.

    2017-09-01

    Wide-field imaging of low-frequency radio telescopes are subject to a number of difficult problems. One particularly pernicious problem is the non-coplanar baseline effect. It will lead to distortion of the final image when the phase of w direction called w-term is ignored. The image degradation effects are amplified for telescopes with the wide field of view. This paper summarizes and analyzes several w-term correction methods and their technical principles. Their advantages and disadvantages have been analyzed after comparing their computational cost and computational complexity. We conduct simulations with two of these methods, faceting and w-projection, based on the configuration of the first-phase Square Kilometre Array (SKA) low frequency array. The resulted images are also compared with the two-dimensional Fourier transform method. The results show that image quality and correctness derived from both faceting and w-projection are better than the two-dimensional Fourier transform method in wide-field imaging. The image quality and run time affected by the number of facets and w steps have been evaluated. The results indicate that the number of facets and w steps must be reasonable. Finally, we analyze the effect of data size on the run time of faceting and w-projection. The results show that faceting and w-projection need to be optimized before the massive amounts of data processing. The research of the present paper initiates the analysis of wide-field imaging techniques and their application in the existing and future low-frequency array, and fosters the application and promotion to much broader fields.

  17. Innovative Ballasted Flat Roof Solar PV Racking System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peek, Richard T.

    2014-12-15

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction ofmore » the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.« less

  18. Vitre-graf Coating on Mullite. Low Cost Silicon Array Project: Large Area Sillicon Sheet Task

    NASA Technical Reports Server (NTRS)

    Rossi, R. C.

    1979-01-01

    The processing parameters of the Vitre-Graf coating for optimal performance and economy when applied to mullite and graphite as substrates were presented. A minor effort was also performed on slip-cast fused silica substractes.

  19. Ion-plating of solar cell arrays encapsulation task: LSA project 32

    NASA Technical Reports Server (NTRS)

    Volkers, J. C.

    1983-01-01

    An ion plating process by which solar cells can be metallized and AR coated, yielding efficiencies equal to or better than state-of-the-art cells, was developed. It was demonstrated that ion plated AR films may be used as an effective encapsulant, offering primary protection for the metallization. It was also shown that ion plated metallization and AR coatings can be consistent with the project cost goals.

  20. Low cost solar array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Technical activities are reported in the design of process, facilities, and equipment for producing silicon at a rate and price comensurate with production goals for low cost solar cell modules. The silane-silicone process has potential for providing high purity poly-silicon on a commercial scale at a price of fourteen dollars per kilogram by 1986, (1980 dollars). Commercial process, economic analysis, process support research and development, and quality control are discussed.

  1. Multi-Sensor Data Fusion Project

    DTIC Science & Technology

    2000-02-28

    seismic network by detecting T phases generated by underground events ( generally earthquakes ) and associating these phases to seismic events. The...between underwater explosions (H), underground sources, mostly earthquake - generated (7), and noise detections (N). The phases classified as H are the only...processing for infrasound sensors is most similar to seismic array processing with the exception that the detections are based on a more sophisticated

  2. Low cost solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of the free space reactor experimental work are summarized. Overall, the objectives were achieved and the unit can be confidently scaled to the EPSDU size based on the experimental work and supporting theoretical analyses. The piping and instrumentation of the fluidized bed reactor was completed.

  3. Low cost solar array project. Task 1: Silicon material, gaseous melt replenishment system

    NASA Technical Reports Server (NTRS)

    Jewett, D. N.; Bates, H. E.; Hill, D. M.

    1979-01-01

    A system to combine silicon formation, by hydrogen reduction of trichlorosilane, with the capability to replenish a crystal growth system is described. A variety of process parameters to allow sizing and specification of gas handling system components was estimated.

  4. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Astrophysics Data System (ADS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-10-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  5. Flat-plate solar array project. Volume 7: Module encapsulation

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.

    1986-01-01

    The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.

  6. Analysis and evalaution in the production process and equipment area of the low-cost solar array project. [including modifying gaseous diffusion and using ion implantation

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    The manufacturing methods for photovoltaic solar energy utilization are assessed. Economic and technical data on the current front junction formation processes of gaseous diffusion and ion implantation are presented. Future proposals, including modifying gaseous diffusion and using ion implantation, to decrease the cost of junction formation are studied. Technology developments in current processes and an economic evaluation of the processes are included.

  7. Development of infrared scene projectors for testing fire-fighter cameras

    NASA Astrophysics Data System (ADS)

    Neira, Jorge E.; Rice, Joseph P.; Amon, Francine K.

    2008-04-01

    We have developed two types of infrared scene projectors for hardware-in-the-loop testing of thermal imaging cameras such as those used by fire-fighters. In one, direct projection, images are projected directly into the camera. In the other, indirect projection, images are projected onto a diffuse screen, which is then viewed by the camera. Both projectors use a digital micromirror array as the spatial light modulator, in the form of a Micromirror Array Projection System (MAPS) engine having resolution of 800 x 600 with mirrors on a 17 micrometer pitch, aluminum-coated mirrors, and a ZnSe protective window. Fire-fighter cameras are often based upon uncooled microbolometer arrays and typically have resolutions of 320 x 240 or lower. For direct projection, we use an argon-arc source, which provides spectral radiance equivalent to a 10,000 Kelvin blackbody over the 7 micrometer to 14 micrometer wavelength range, to illuminate the micromirror array. For indirect projection, an expanded 4 watt CO II laser beam at a wavelength of 10.6 micrometers illuminates the micromirror array and the scene formed by the first-order diffracted light from the array is projected onto a diffuse aluminum screen. In both projectors, a well-calibrated reference camera is used to provide non-uniformity correction and brightness calibration of the projected scenes, and the fire-fighter cameras alternately view the same scenes. In this paper, we compare the two methods for this application and report on our quantitative results. Indirect projection has an advantage of being able to more easily fill the wide field of view of the fire-fighter cameras, which typically is about 50 degrees. Direct projection more efficiently utilizes the available light, which will become important in emerging multispectral and hyperspectral applications.

  8. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The process technology for the manufacture of semiconductor-grade silicon in a large commercial plant by 1986, at a price less than $14 per kilogram of silicon based on 1975 dollars is discussed. The engineering design, installation, checkout, and operation of an Experimental Process System Development unit was discussed. Quality control of scaling-up the process and an economic analysis of product and production costs are discussed.

  9. Processing Cones: A Computational Structure for Image Analysis.

    DTIC Science & Technology

    1981-12-01

    image analysis applications, referred to as a processing cone, is described and sample algorithms are presented. A fundamental characteristic of the structure is its hierarchical organization into two-dimensional arrays of decreasing resolution. In this architecture, a protypical function is defined on a local window of data and applied uniformly to all windows in a parallel manner. Three basic modes of processing are supported in the cone: reduction operations (upward processing), horizontal operations (processing at a single level) and projection operations (downward

  10. Phase 2 of the array automated assembly task for the low cost solar array project

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.; Davis, J. R.; Ostroski, J. W.; Rai-Choudhury, P.; Rohatgi, A.; Seman, E. J.; Stapleton, R. E.

    1979-01-01

    The process sequence for the fabrication of dendritic web silicon into solar panels was modified to include aluminum back surface field formation. Plasma etching was found to be a feasible technique for pre-diffusion cleaning of the web. Several contacting systems were studied. The total plated Pd-Ni system was not compatible with the process sequence; however, the evaporated TiPd-electroplated Cu system was shown stable under life testing. Ultrasonic bonding parameters were determined for various interconnect and contact metals but the yield of the process was not sufficiently high to use for module fabrication at this time. Over 400 solar cells were fabricated according to the modified sequence. No sub-process incompatibility was seen. These cells were used to fabricate four demonstration modules. A cost analysis of the modified process sequence resulted in a selling price of $0.75/peak watt.

  11. Optical phased arrays with evanescently-coupled antennas

    DOEpatents

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  12. Low cost solar array project: Cell and module formation research area. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Meniscus coates tests, back junction formation using a new boron containing liquid, tests of various SiO2 and boron containing liquids, pelletized silicon for replenishment during web growth, and ion implantation compatibility/feasibility study are discussed.

  13. Low cost solar array project: Experimental process system development unit for producing semiconductor-grade silicon using silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design, fabrication, and installation of an experimental process system development unit (EPSDU) were analyzed. Supporting research and development were performed to provide an information data base usable for the EPSDU and for technological design and economical analysis for potential scale-up of the process. Iterative economic analyses were conducted for the estimated product cost for the production of semiconductor grade silicon in a facility capable of producing 1000-MT/Yr.

  14. Flat Plate Solar Array Project: Proceedings of the 20th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1982-01-01

    Progress made by the Flat-Plate Solar Array Project during the period November 1981 to April 1982 is reported. Project analysis and integration, technology research in silicon material, large-area silicon sheet and environmental isolation, cell and module formation, engineering sciences, and module performance and failure analysis are covered.

  15. Compatibility of Common Instructional Models with the DACUM Process

    ERIC Educational Resources Information Center

    Wyrostek, Warren; Downey, Steven

    2017-01-01

    Practitioners use an expansive array of instructional design models. Although many of these models acknowledge the need for analyzing occupational roles, they do not define steps for conducting these analyses. This article reviews prominent models and provides prescriptive guidance for selecting appropriate models given a project's (a) Product…

  16. KSC-2012-6405

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a groundbreaking was held to mark the start of construction on the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. Using ceremonial shovels to mark the site, from left are Michael Le, lead design engineer and construction manager Sue Vingris, Cape Design Engineer Co. project manager Kannan Rengarajan, chief executive officer of Cape Design Engineer Co. Lutfi Mized, president of Cape Design Engineer Co. David Roelandt, construction site superintendent with Cape Design Engineer Co. Marc Seibert, NASA project manager Michael Miller, NASA project manager Peter Aragona, KSC’s Electromagnetic Lab manager Stacy Hopper, KSCs master planning supervisor Dr. Bary Geldzabler, NASA chief scientist and KSC’s Chief Technologist Karen Thompson. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers will begin construction on the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and prepare the site for the operations command center facility. Photo credit: NASA/Charisse Nahser

  17. KSC-2012-6404

    NASA Image and Video Library

    2012-09-20

    CAPE CANAVERAL, Fla. -- At NASA’s Kennedy Space Center in Florida, a groundbreaking was held to mark the start of construction on the Antenna Test Bed Array for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. Holding ceremonial shovels, from left are Michael Le, lead design engineer and construction manager Sue Vingris, Cape Design Engineer Co. project manager Kannan Rengarajan, chief executive officer of Cape Design Engineer Co. Lutfi Mized, president of Cape Design Engineer Co. David Roelandt, construction site superintendent with Cape Design Engineer Co. Marc Seibert, NASA project manager Michael Miller, NASA project manager Peter Aragona, KSC’s Electromagnetic Lab manager Stacy Hopper, KSCs master planning supervisor Dr. Bary Geldzabler, NASA chief scientist and KSC’s Chief Technologist Karen Thompson. The construction site is near the former Vertical Processing Facility, which has been demolished. Workers will begin construction on the pile foundations for the 40-foot-diameter dish antenna arrays and their associated utilities, and prepare the site for the operations command center facility. Photo credit: NASA/Charisse Nahser

  18. EGS hydraulic stimulation monitoring by surface arrays - location accuracy and completeness magnitude: the Basel Deep Heat Mining Project case study

    NASA Astrophysics Data System (ADS)

    Häge, Martin; Blascheck, Patrick; Joswig, Manfred

    2013-01-01

    The potential and limits of monitoring induced seismicity by surface-based mini arrays was evaluated for the hydraulic stimulation of the Basel Deep Heat Mining Project. This project aimed at the exploitation of geothermal heat from a depth of about 4,630 m. As reference for our results, a network of borehole stations by Geothermal Explorers Ltd. provided ground truth information. We utilized array processing, sonogram event detection and outlier-resistant, graphical jackknife location procedures to compensate for the decrease in signal-to-noise ratio at the surface. We could correctly resolve the NNW-SSE striking fault plane by relative master event locations. Statistical analysis of our catalog data resulted in M L 0.36 as completeness magnitude, but with significant day-to-night dependency. To compare to the performance of borehole data with M W 0.9 as completeness magnitude, we applied two methods for converting M L to M W which raised our M C to M W in the range of 0.99-1.13. Further, the b value for the duration of our measurement was calculated to 1.14 (related to M L), respectively 1.66 (related to M W), but changes over time could not be resolved from the error bars.

  19. Earthquake source imaging by high-resolution array analysis at regional distances: the 2010 M7 Haiti earthquake as seen by the Venezuela National Seismic Network

    NASA Astrophysics Data System (ADS)

    Meng, L.; Ampuero, J. P.; Rendon, H.

    2010-12-01

    Back projection of teleseismic waves based on array processing has become a popular technique for earthquake source imaging,in particular to track the areas of the source that generate the strongest high frequency radiation. The technique has been previously applied to study the rupture process of the Sumatra earthquake and the supershear rupture of the Kunlun earthquakes. Here we attempt to image the Haiti earthquake using the data recorded by Venezuela National Seismic Network (VNSN). The network is composed of 22 broad-band stations with an East-West oriented geometry, and is located approximately 10 degrees away from Haiti in the perpendicular direction to the Enriquillo fault strike. This is the first opportunity to exploit the privileged position of the VNSN to study large earthquake ruptures in the Caribbean region. This is also a great opportunity to explore the back projection scheme of the crustal Pn phase at regional distances,which provides unique complementary insights to the teleseismic source inversions. The challenge in the analysis of the 2010 M7.0 Haiti earthquake is its very compact source region, possibly shorter than 30km, which is below the resolution limit of standard back projection techniques based on beamforming. Results of back projection analysis using the teleseismic USarray data reveal little details of the rupture process. To overcome the classical resolution limit we explored the Multiple Signal Classification method (MUSIC), a high-resolution array processing technique based on the signal-noise orthognality in the eigen space of the data covariance, which achieves both enhanced resolution and better ability to resolve closely spaced sources. We experiment with various synthetic earthquake scenarios to test the resolution. We find that MUSIC provides at least 3 times higher resolution than beamforming. We also study the inherent bias due to the interferences of coherent Green’s functions, which leads to a potential quantification of biased uncertainty of the back projection. Preliminary results from the Venezuela data set shows an East to West rupture propagation along the fault with sub-Rayleigh rupture speed, consistent with a compact source with two significant asperities which are confirmed by source time function obtained from Green’s function deconvolution and other source inversion results. These efforts could lead the Venezuela National Seismic Network to play a prominent role in the timely characterization of the rupture process of large earthquakes in the Caribbean, including the future ruptures along the yet unbroken segments of the Enriquillo fault system.

  20. High Aspect Ratio Semiconductor Heterojunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redwing, Joan; Mallouk, Tom; Mayer, Theresa

    2013-05-17

    The project focused on the development of high aspect ratio silicon heterojunction (HARSH) solar cells. The solar cells developed in this study consisted of high density vertical arrays of radial junction silicon microwires/pillars formed on Si substrates. Prior studies have demonstrated that vertical Si wire/pillar arrays enable reduced reflectivity and improved light trapping characteristics compared to planar solar cells. In addition, the radial junction structure offers the possibility of increased carrier collection in solar cells fabricated using material with short carrier diffusion lengths. However, the high junction and surface area of radial junction Si wire/pillar array devices can be problematicmore » and lead to increased diode leakage and enhanced surface recombination. This study investigated the use of amorphous hydrogenated Si in the form of a heterojunction-intrinsic-thin layer (HIT) structure as a junction formation method for these devices. The HIT layer structure has widely been employed to reduce surface recombination in planar crystalline Si solar cells. Consequently, it was anticipated that it would also provide significant benefits to the performance of radial junction Si wire/pillar array devices. The overall goals of the project were to demonstrate a HARSH cell with a HIT-type structure in the radial junction Si wire/pillar array configuration and to develop potentially low cost pathways to fabricate these devices. Our studies demonstrated that the HIT structure lead to significant improvements in the open circuit voltage (V oc>0.5) of radial junction Si pillar array devices compared to devices fabricated using junctions formed by thermal diffusion or low pressure chemical vapor deposition (LPCVD). In addition, our work experimentally demonstrated that the radial junction structure lead to improvements in efficiency compared to comparable planar devices for devices fabricated using heavily doped Si that had reduced carrier diffusion lengths. Furthermore, we made significant advances in employing the bottom-up vapor-liquid-solid (VLS) growth technique for the fabrication of the Si wire arrays. Our work elucidated the effects of growth conditions and substrate pattern geometry on the growth of large area Si microwire arrays grown with SiCl4. In addition, we also developed a process to grow p-type Si nanowire arrays using aluminum as the catalyst metal instead of gold. Finally, our work demonstrated the feasibility of growing vertical arrays of Si wires on non-crystalline glass substrates using polycrystalline Si template layers. The accomplishments demonstrated in this project will pave the way for future advances in radial junction wire array solar cells.« less

  1. Recent development of infrasound monitoring network in Romania

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Popa, Mihaela; Ionescu, Constantin

    2017-04-01

    The second half of 2016 was marked at National Institute for Earth Physics (NIEP) by a significant development of infrasound monitoring infrastructure in Romania. In addition to IPLOR, the 6-element acoustic array installed at Plostina, in the central part of Romania, since 2009, two other four-element arrays were deployed. The first one, BURARI infrasound research array, was deployed in late July 2016, under a joint effort of AFTAC, USA and NIEP, in the northern part of Romania, in Bucovina region. The sites, placed in vicinity of the central elements of BURAR seismic array (over 1.2 km aperture), are equipped with Chaparral Physics Model 21 microbarometers and Reftek RT 130 data loggers. The data, used mainly for research purposes within the scientific collaboration project between NIEP and AFTAC, are available to scientific community. The second one is a PTS portable infrasound array (I67RO) deployed for one year, starting with the end of September 2016, within a collaboration project between NIEP and PTS of the Preparatory Commission for CTBTO. This array is located in the western part of Romania, at Marisel, Cluj County, covering a 0.9 km aperture and being equipped with CEA/DAM MB2005 microbarometers and Reftek RT 130 data loggers. This joint experiment aims to contribute both to advanced understanding of infrasound sources in Central-Europe and to ARISE design study project, as an expansion of the spatial coverage of the European infrasound network. The data recorded by the three infrasound arrays deployed in Romania, during a same time interval (October - December 2016) were processed into detection arrival bulletins applying CEA/DASE PMCC algorithm embedded in DTK-GPMCC (extended CTBTO NDC-in-a-box) and WinPMCC software applications. The results were plotted and analyzed using DTK-DIVA software (extended CTBTO NDC-in-a-box), in order to assess detectability of each station, as well as the capacity of fusing detections into support of infrasound monitoring activity at NIEP. We present infrasound signals generated by an impulsive event (accidental explosion of a train carrying liquid petroleum gas in Hitrino, Bulgaria) recorded on these three arrays. The features calculated for the arrivals detected (backazimuth, arrival time, frequency and celerity) are used to associate signals with event and observe individually array performance.

  2. Reconfigurable signal processor designs for advanced digital array radar systems

    NASA Astrophysics Data System (ADS)

    Suarez, Hernan; Zhang, Yan (Rockee); Yu, Xining

    2017-05-01

    The new challenges originated from Digital Array Radar (DAR) demands a new generation of reconfigurable backend processor in the system. The new FPGA devices can support much higher speed, more bandwidth and processing capabilities for the need of digital Line Replaceable Unit (LRU). This study focuses on using the latest Altera and Xilinx devices in an adaptive beamforming processor. The field reprogrammable RF devices from Analog Devices are used as analog front end transceivers. Different from other existing Software-Defined Radio transceivers on the market, this processor is designed for distributed adaptive beamforming in a networked environment. The following aspects of the novel radar processor will be presented: (1) A new system-on-chip architecture based on Altera's devices and adaptive processing module, especially for the adaptive beamforming and pulse compression, will be introduced, (2) Successful implementation of generation 2 serial RapidIO data links on FPGA, which supports VITA-49 radio packet format for large distributed DAR processing. (3) Demonstration of the feasibility and capabilities of the processor in a Micro-TCA based, SRIO switching backplane to support multichannel beamforming in real-time. (4) Application of this processor in ongoing radar system development projects, including OU's dual-polarized digital array radar, the planned new cylindrical array radars, and future airborne radars.

  3. A user-friendly workflow for analysis of Illumina gene expression bead array data available at the arrayanalysis.org portal.

    PubMed

    Eijssen, Lars M T; Goelela, Varshna S; Kelder, Thomas; Adriaens, Michiel E; Evelo, Chris T; Radonjic, Marijana

    2015-06-30

    Illumina whole-genome expression bead arrays are a widely used platform for transcriptomics. Most of the tools available for the analysis of the resulting data are not easily applicable by less experienced users. ArrayAnalysis.org provides researchers with an easy-to-use and comprehensive interface to the functionality of R and Bioconductor packages for microarray data analysis. As a modular open source project, it allows developers to contribute modules that provide support for additional types of data or extend workflows. To enable data analysis of Illumina bead arrays for a broad user community, we have developed a module for ArrayAnalysis.org that provides a free and user-friendly web interface for quality control and pre-processing for these arrays. This module can be used together with existing modules for statistical and pathway analysis to provide a full workflow for Illumina gene expression data analysis. The module accepts data exported from Illumina's GenomeStudio, and provides the user with quality control plots and normalized data. The outputs are directly linked to the existing statistics module of ArrayAnalysis.org, but can also be downloaded for further downstream analysis in third-party tools. The Illumina bead arrays analysis module is available at http://www.arrayanalysis.org . A user guide, a tutorial demonstrating the analysis of an example dataset, and R scripts are available. The module can be used as a starting point for statistical evaluation and pathway analysis provided on the website or to generate processed input data for a broad range of applications in life sciences research.

  4. A novel method for fabrication of continuous-relief optical elements

    NASA Astrophysics Data System (ADS)

    Guo, Xiaowei; Du, Jinglei; Chen, Mingyong; Ma, Yanqin; Zhu, Jianhua; Peng, Qinjun; Guo, Yongkang; Du, Chunlei

    2005-08-01

    A novel method for the fabrication of continuous micro-optical components is presented in this paper. It employs a computer controlled spatial-light-modulator (SLM) as a switchable projection mask and silver-halide sensitized gelatin (SHSG) as recording material. By etching SHSG with enzyme solution, the micro-optical components with relief modulation can be generated through special processing procedures. The principles of digital SLM-based lithography and enzyme etching SHSG are discussed in detail, and microlens arrays, micro axicon-lens arrays and gratings with good profile were achieved. This method is simple, cheap and the aberration in processing procedures can be in-situ corrected in the step of designing mask, so it is a practical method to fabricate continuous profile for low-volume production.

  5. Polar Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Nagler, R. G.; Schulteis, A. C.

    1979-01-01

    The present and projected benefits of the polar regions were reviewed and then translated into information needs in order to support the array of polar activities anticipated. These needs included measurement sensitivities for polar environmental data (ice/snow, atmosphere, and ocean data for integrated support) and the processing and delivery requirements which determine the effectiveness of environmental services. An assessment was made of how well electromagnetic signals can be converted into polar environmental information. The array of sensor developments in process or proposed were also evaluated as to the spectral diversity, aperture sizes, and swathing capabilities available to provide these measurements from spacecraft, aircraft, or in situ platforms. Global coverage and local coverage densification options were studied in terms of alternative spacecraft trajectories and aircraft flight paths.

  6. "Mini-array" transcriptional analysis of the Listeria monocytogenes lecithinase operon as a class project: A student investigative molecular biology laboratory experience*.

    PubMed

    Christensen, Douglas; Jovic, Marko

    2006-05-01

    This report describes a molecular biotechnology-based laboratory curriculum developed to accompany an undergraduate genetics course. During the course of a semester, students researched the pathogen, developed a research question, designed experiments, and performed transcriptional analysis of a set of genes that confer virulence to the food-borne pathogen, Listeria monocytogenes. Gene fragments were amplified via PCR and utilized in "mini-arrays," a dot-blot-based format suitable for the simultaneous transcriptional analysis of multiple genes. The project provides exposure to a wide range of molecular techniques and can be easily modified for variations in class size. Data are generated at various steps of the process, allowing for student interpretation, troubleshooting, and assessment opportunities. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.

  7. Characterization of X3 Silicon Detectors for the ELISSA Array at ELI-NP

    NASA Astrophysics Data System (ADS)

    Chesnevskaya, S.; Balabanski, D. L.; Choudhury, D.; Cognata, M. La; Constantin, P.; Filipescu, D. M.; Ghita, D. G.; Guardo, G. L.; Lattuada, D.; Matei, C.; Rotaru, A.; Spitaleri, C.; State, A.; Xu, Y.

    2018-01-01

    Position-sensitive silicon strip detectors represent one of the best solutions for the detection of charged particles as they provide good energy and position resolution over a large range of energies. A silicon array coupled with the gamma beams at the ELI-NP facility would allow measuring photodissociation reactions of interest for Big Bang Nucleosynthesis and on heavy nuclei intervening in the p-process. Forty X3 detectors for our ELISSA (ELI-NP Silicon Strip Detectors Array) project have been recently purchased and tested. We investigated several specifications, such as leakage currents, depletion voltage, and detector stability under vacuum. The energy and position resolution, and ballistic deficit were measured and analyzed. This paper presents the main results of our extensive testing. The measured energy resolution for the X3 detectors is better than results published for similar arrays (ANASEN or ORRUBA).

  8. Plasmonic nanopatch array for optical integrated circuit applications.

    PubMed

    Qu, Shi-Wei; Nie, Zai-Ping

    2013-11-08

    Future plasmonic integrated circuits with the capability of extremely high-speed data processing at optical frequencies will be dominated by the efficient optical emission (excitation) from (of) plasmonic waveguides. Towards this goal, plasmonic nanoantennas, currently a hot topic in the field of plasmonics, have potential to bridge the mismatch between the wave vector of free-space photonics and that of the guided plasmonics. To manipulate light at will, plasmonic nanoantenna arrays will definitely be more efficient than isolated nanoantennas. In this article, the concepts of microwave antenna arrays are applied to efficiently convert plasmonic waves in the plasmonic waveguides into free-space optical waves or vice versa. The proposed plasmonic nanoantenna array, with nanopatch antennas and a coupled wedge plasmon waveguide, can also act as an efficient spectrometer to project different wavelengths into different directions, or as a spatial filter to absorb a specific wavelength at a specified incident angle.

  9. Application of GIS technologies to monitor secondary radioactive contamination in the Delegen mountain massif

    NASA Astrophysics Data System (ADS)

    Alipbeki, O.; Kabzhanova, G.; Kurmanova, G.; Alipbekova, Ch.

    2016-06-01

    The territory of the Degelen mountain massif is located within territory of the former Semipalatinsk nuclear test site and it is an area of ecological disaster. Currently there is a process of secondary radioactive contamination that is caused by geodynamic processes activated at the Degelen array, violation of underground hydrological cycles and as a consequence, water seepage into the tunnels. One of the methods of monitoring of geodynamic processes is the modern technology of geographic information systems (GIS), methods of satellite radar interferometry and high accuracy satellite navigation system in conjunction with radioecological methods. This paper discusses on the creation of a GIS-project for the Degelen array, facilitated by quality geospatial analysis of the situation and simulation of the phenomena, in order to maximize an objective assessment of the radiation situation in this protected area.

  10. The Australian SKA Pathfinder: project update and initial operations

    NASA Astrophysics Data System (ADS)

    Schinckel, Antony E. T.; Bock, Douglas C.-J.

    2016-08-01

    The Australian Square Kilometre Array Pathfinder (ASKAP) will be the fastest dedicated cm-wave survey telescope, and will consist of 36 12-meter 3-axis antennas, each with a large chequerboard phased array feed (PAF) receiver operating between 0.7 and 1.8 GHz, and digital beamforming prior to correlation. The large raw data rates involved ( 100 Tb/sec), and the need to do pipeline processing, has led to the antenna incorporating a third axis to fix the parallactic angle with respect to the entire optical system (blockages and phased array feed). It also results in innovative technical solutions to the data transport and processing issues. ASKAP is located at the Murchison Radio-astronomy Observatory (MRO), a new observatory developed for the Square Kilometre Array (SKA), 315 kilometres north-east of Geraldton, Western Australia. The MRO also hosts the SKA low frequency pathfinder instrument, the Murchison Widefield Array and will host the initial low frequency instrument of the SKA, SKA1-Low. Commissioning of ASKAP using six antennas equipped with first-generation PAFs is now complete and installation of second-generation PAFs and digital systems is underway. In this paper we review technical progress and commissioning to date, and refer the reader to relevant technical and scientific publications.

  11. Ocean Remote Sensing Using Ambient Noise

    DTIC Science & Technology

    2015-09-30

    and other adaptive array processing methods. OBJECTIVES Work on this project has focused on noise interferometry – the process by which an...measured at xA and xB. In that context, our objective is to investigate and identify the limitations of noise interferometry for remote sensing...and 6 is ongoing. 1. Demonstration of noise interferometry at 10 km range in a shallow water environment Recently conducted experiments in the

  12. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support research and development for an Experimental Process System Development Unit for producing semiconductor-grade silicon using the slane-to-silicon process are reported. The design activity was completed. About 95% of purchased equipment was received. The draft of the operations manual was about 50% complete and the design of the free-space system continued. The system using silicon power transfer, melting, and shotting on a psuedocontinuous basis was demonstrated.

  13. Modeling energy production of solar thermal systems and wind turbines for installation at corn ethanol plants

    NASA Astrophysics Data System (ADS)

    Ehrke, Elizabeth

    Nearly every aspect of human existence relies on energy in some way. Most of this energy is currently derived from fossil fuel resources. Increasing energy demands coupled with environmental and national security concerns have facilitated the move towards renewable energy sources. Biofuels like corn ethanol are one of the ways the U.S. has significantly reduced petroleum consumption. However, the large energy requirement of corn ethanol limits the net benefit of the fuel. Using renewable energy sources to produce ethanol can greatly improve its economic and environmental benefits. The main purpose of this study was to model the useful energy received from a solar thermal array and a wind turbine at various locations to determine the feasibility of applying these technologies at ethanol plants around the country. The model calculates thermal energy received from a solar collector array and electricity generated by a wind turbine utilizing various input data to characterize the equipment. Project cost and energy rate inputs are used to evaluate the profitability of the solar array or wind turbine. The current state of the wind and solar markets were examined to give an accurate representation of the economics of each industry. Eighteen ethanol plant locations were evaluated for the viability of a solar thermal array and/or wind turbine. All ethanol plant locations have long payback periods for solar thermal arrays, but high natural gas prices significantly reduce this timeframe. Government incentives will be necessary for the economic feasibility of solar thermal arrays. Wind turbines can be very profitable for ethanol plants in the Midwest due to large wind resources. The profitability of wind power is sensitive to regional energy prices. However, government incentives for wind power do not significantly change the economic feasibility of a wind turbine. This model can be used by current or future ethanol facilities to investigate or begin the planning process for a solar thermal array or wind turbine. The model is meant to aide in the planning stages of a renewable energy project, and advanced investigation will be needed to move forward with that project.

  14. GNSS Space-Time Interference Mitigation and Attitude Determination in the Presence of Interference Signals

    PubMed Central

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-01-01

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios. PMID:26016909

  15. GNSS space-time interference mitigation and attitude determination in the presence of interference signals.

    PubMed

    Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard

    2015-05-26

    The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios.

  16. An implantable integrated low-power amplifier-microelectrode array for Brain-Machine Interfaces.

    PubMed

    Patrick, Erin; Sankar, Viswanath; Rowe, William; Sanchez, Justin C; Nishida, Toshikazu

    2010-01-01

    One of the important challenges in designing Brain-Machine Interfaces (BMI) is to build implantable systems that have the ability to reliably process the activity of large ensembles of cortical neurons. In this paper, we report the design, fabrication, and testing of a polyimide-based microelectrode array integrated with a low-power amplifier as part of the Florida Wireless Integrated Recording Electrode (FWIRE) project at the University of Florida developing a fully implantable neural recording system for BMI applications. The electrode array was fabricated using planar micromachining MEMS processes and hybrid packaged with the amplifier die using a flip-chip bonding technique. The system was tested both on bench and in-vivo. Acute and chronic neural recordings were obtained from a rodent for a period of 42 days. The electrode-amplifier performance was analyzed over the chronic recording period with the observation of a noise floor of 4.5 microVrms, and an average signal-to-noise ratio of 3.8.

  17. Artificial Intelligence Based Control Power Optimization on Tailless Aircraft. [ARMD Seedling Fund Phase I

    NASA Technical Reports Server (NTRS)

    Gern, Frank; Vicroy, Dan D.; Mulani, Sameer B.; Chhabra, Rupanshi; Kapania, Rakesh K.; Schetz, Joseph A.; Brown, Derrell; Princen, Norman H.

    2014-01-01

    Traditional methods of control allocation optimization have shown difficulties in exploiting the full potential of controlling large arrays of control devices on innovative air vehicles. Artificial neutral networks are inspired by biological nervous systems and neurocomputing has successfully been applied to a variety of complex optimization problems. This project investigates the potential of applying neurocomputing to the control allocation optimization problem of Hybrid Wing Body (HWB) aircraft concepts to minimize control power, hinge moments, and actuator forces, while keeping system weights within acceptable limits. The main objective of this project is to develop a proof-of-concept process suitable to demonstrate the potential of using neurocomputing for optimizing actuation power for aircraft featuring multiple independently actuated control surfaces. A Nastran aeroservoelastic finite element model is used to generate a learning database of hinge moment and actuation power characteristics for an array of flight conditions and control surface deflections. An artificial neural network incorporating a genetic algorithm then uses this training data to perform control allocation optimization for the investigated aircraft configuration. The phase I project showed that optimization results for the sum of required hinge moments are improved by more than 12% over the best Nastran solution by using the neural network optimization process.

  18. Low cost solar array project silicon materials task. Development of a process for high capacity arc heater production of silicon for solar arrays

    NASA Technical Reports Server (NTRS)

    Reed, W. H.

    1978-01-01

    Silicon tetrachloride and a reductant (sodium) will be injected into an arc heated mixture of hydrogen and argon, yielding silicon and gaseous sodium chloride. Detailed characterization of the Sonicore sodium injection nozzle, using water as the test fluid was completed. Results indicated that flow rates of 45 gph sodium and 50 scfm argon should produce sufficiently small droplet sizes. The design effort was also completed for the test system preparation which was divided into two categories: (1) system components and (2) test system-laboratory integration.

  19. Talamanca Transect and Tremor Array: Ongoing Seismological Investigations in Costa Rica

    NASA Astrophysics Data System (ADS)

    Thorwart, M.; Alvarado, G.; Arroyo, I.; Dinc-Akdogan, N.; Dzierma, Y.; Flueh, E.; Goltz, C.; Gossler, J.; Mora, M.; Rabbel, W.

    2005-12-01

    Under the roof of the collaborative research centre SFB 574, the Central American subduction zone is being investigated in a seismological research project conducted by Costa Rican and German partners. The general goal of the SFB574 project is to study the origin and influence of volatiles and fluids in subduction zones. The seismological subproject serves to defining the structural and seismo-tectonical frame work of these investigations. In early 2005 two seismic arrays have been installed: (a) A teleseismic transsect across the Talamanca mountain range consisting of 20 broadband sensors with about 10 km station spacing. The primary goal of this array is to image crustal structure, the Moho and the structure of the subducted slab and mantle wedge. Variations in Vp/Vs ratio are expected to provide information on fluids at deep lithospheric levels. (b) An array of six 1Hz-borehole seismometers has been permanently installed in 100 m deep boreholes on Nicoya peninsula. The borehole installation is intended to provide a low-noise environment for recording non-volcanic tremor signals. These non-volcanic tremors are hypothetically understood as indicators of episodic fluid release by dehydratisation processes within the subducting slab. In autumn 2005 the field setup will be complemented by an amphibious network of 30 land and 20 ocean bottom seismometers on- and offshore N Costa Rica and S Nicaragua. The poster presents field layout and first results of the combined SFB574 seismological survey. The SFB574 project is funded by the German science foundation (DFG). Support by the GFZ instrument pool is gratefully acknowledged.

  20. Device research task (processing and high-efficiency solar cells)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This task has been expanded since the last 25th Project Integration Meeting (PIM) to include process research in addition to device research. The objective of this task is to assist the Flat-plate Solar Array (FSA) Project in meeting its near- and long-term goals by identifying and implementing research in the areas of device physics, device structures, measurement techniques, material-device interactions, and cell processing. The research efforts of this task are described and reflect the deversity of device research being conducted. All of the contracts being reported are either completed or near completion and culminate the device research efforts of the FSA Project. Optimazation methods and silicon solar cell numerical models, carrier transport and recombination parameters in heavily doped silicon, development and analysis of silicon solar cells of near 20% efficiency, and SiN sub x passivation of silicon surfaces are discussed.

  1. Flat-plate solar array project of the US Department of Energy's National Photovoltaics Program: Ten years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The Flat-Plate Solar Array (FSA) Project, a Government-sponsored photovoltaics project, was initiated in January 1975 (previously named the Low-Cost Silicon Solar Array Project) to stimulate the development of PV systems for widespread use. Its goal then was to develop PV modules with 10% efficiency, a 20-year lifetime, and a selling price of $0.50 per peak watt of generating capacity (1975 dollars). It was recognized that cost reduction of PV solar-cell and module manufacturing was the key achievement needed if PV power systems were to be economically competitive for large-scale terrestrial use.

  2. Comparative efficiency analysis of fiber-array and conventional beam director systems in volume turbulence.

    PubMed

    Vorontsov, Mikhail; Filimonov, Grigory; Ovchinnikov, Vladimir; Polnau, Ernst; Lachinova, Svetlana; Weyrauch, Thomas; Mangano, Joseph

    2016-05-20

    The performance of two prominent laser beam projection system types is analyzed through wave-optics numerical simulations for various atmospheric turbulence conditions, propagation distances, and adaptive optics (AO) mitigation techniques. Comparisons are made between different configurations of both a conventional beam director (BD) using a monolithic-optics-based Cassegrain telescope and a fiber-array BD that uses an array of densely packed fiber collimators. The BD systems considered have equal input power and aperture diameters. The projected laser beam power inside the Airy size disk at the target plane is used as the performance metric. For the fiber-array system, both incoherent and coherent beam combining regimes are considered. We also present preliminary results of side-by-side atmospheric beam projection experiments over a 7-km propagation path using both the AO-enhanced beam projection system with a Cassegrain telescope and the coherent fiber-array BD composed of 21 densely packed fiber collimators. Both wave-optics numerical simulation and experimental results demonstrate that, for similar system architectures and turbulence conditions, coherent fiber-array systems are more efficient in mitigation of atmospheric turbulence effects and generation of a hit spot of the smallest possible size on a remotely located target.

  3. Silver nanowire/polymer composite soft conductive film fabricated by large-area compatible coating for flexible pressure sensor array

    NASA Astrophysics Data System (ADS)

    Chen, Sujie; Li, Siying; Peng, Sai; Huang, Yukun; Zhao, Jiaqing; Tang, Wei; Guo, Xiaojun

    2018-01-01

    Soft conductive films composed of a silver nanowire (AgNW) network, a neutral-pH PEDOT:PSS over-coating layer and a polydimethylsiloxane (PDMS) elastomer substrate are fabricated by large area compatible coating processes. The neutral-pH PEDOT:PSS layer is shown to be able to significantly improve the conductivity, stretchability and air stability of the conductive films. The soft conductive films are patterned using a simple maskless patterning approach to fabricate an 8 × 8 flexible pressure sensor array. It is shown that such soft conductive films can help to improve the sensitivity and reduce the signal crosstalk over the pressure sensor array. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 16JC1400603).

  4. LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER

    NASA Image and Video Library

    2016-09-23

    JOHN CARR, RIGHT, CO-PRINCIPAL INVESTIGATOR FOR NASA'S LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER PROJECT, TALKS WITH GREG LAUE, DIRECTOR OF AEROSPACE PRODUCTS FOR NEXOLVE, MANUFACTURER OF THE THIN-FILM TECHNOLOGY AND A PARTNER IN THE PROJECT.

  5. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1981-01-01

    The effect of solar cell metallization pattern design on solar cell performance and the costs and performance effects of different metallization processes are discussed. Definitive design rules for the front metallization pattern for large area solar cells are presented. Chemical and physical deposition processes for metallization are described and compared. An economic evaluation of the 6 principal metallization options is presented. Instructions for preparing Format A cost data for solar cell manufacturing processes from UPPC forms for input into the SAMIC computer program are presented.

  6. Flat-plate solar-array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are reported. About 95% of purchased equipment is received and will be reshipped to the West Coast location. The Data Collection System is completed. In the area of melting/consolidation, to the system using silicon powder transfer, melting and shotting on a pseudocontinuous basis is demonstrated. It is proposed to continue the very promising fluid bed work.

  7. The automated array assembly task of the low-cost silicon solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Sparks, T. G.; Legge, R.; Saltzman, D. L.

    1980-01-01

    Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques.

  8. A high performance cost-effective digital complex correlator for an X-band polarimetry survey.

    PubMed

    Bergano, Miguel; Rocha, Armando; Cupido, Luís; Barbosa, Domingos; Villela, Thyrso; Boas, José Vilas; Rocha, Graça; Smoot, George F

    2016-01-01

    The detailed knowledge of the Milky Way radio emission is important to characterize galactic foregrounds masking extragalactic and cosmological signals. The update of the global sky models describing radio emissions over a very large spectral band requires high sensitivity experiments capable of observing large sky areas with long integration times. Here, we present the design of a new 10 GHz (X-band) polarimeter digital back-end to map the polarization components of the galactic synchrotron radiation field of the Northern Hemisphere sky. The design follows the digital processing trends in radio astronomy and implements a large bandwidth (1 GHz) digital complex cross-correlator to extract the Stokes parameters of the incoming synchrotron radiation field. The hardware constraints cover the implemented VLSI hardware description language code and the preliminary results. The implementation is based on the simultaneous digitized acquisition of the Cartesian components of the two linear receiver polarization channels. The design strategy involves a double data rate acquisition of the ADC interleaved parallel bus, and field programmable gate array device programming at the register transfer mode. The digital core of the back-end is capable of processing 32 Gbps and is built around an Altera field programmable gate array clocked at 250 MHz, 1 GSps analog to digital converters and a clock generator. The control of the field programmable gate array internal signal delays and a convenient use of its phase locked loops provide the timing requirements to achieve the target bandwidths and sensitivity. This solution is convenient for radio astronomy experiments requiring large bandwidth, high functionality, high volume availability and low cost. Of particular interest, this correlator was developed for the Galactic Emission Mapping project and is suitable for large sky area polarization continuum surveys. The solutions may also be adapted to be used at signal processing subsystem levels for large projects like the square kilometer array testbeds.

  9. Phase 2 of the array automated assembly task for the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Petersen, R. C.

    1980-01-01

    Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work was directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The process was found to be extremely lengthy and cumbersome, and was also found to produce a product virtually identical to that produced by single step electroless nickel plating, as shown by adhesion tests and electrical characteristics of cells under illumination.

  10. Flat-plate solar array project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Callaghan, W.; Mcdonald, R.

    1986-01-01

    In 1975, the U.S. Government contracted the Jet Propulsion Lab. to develop, by 1985, in conjunction with industry, the photovoltaics (PV) module and array technology required for widespread use of photovoltaics as a significant terrestrial energy source. As a result, a project that eventually became known as the Flat Plate Solar Array (FSA) Project was formed to manage an industry, university, and Government team to perform the necessary research and development. The original goals were to achieve widespread commercial use of PV modules and arrays through the development of technology that would allow them to be profitably sold for $1.07/peak watts (1985 dollars). A 10% module conversion efficiency and a 20 year lifetime were also goals. It is intended that the executive summary provide the means by which one can gain a perspective on 11 years of terrestrial photovoltaic research and development conducted by the FSA Project.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, J.C.; Leahy, R.M.

    A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles,more » the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.« less

  12. A hyperspectral image projector for hyperspectral imagers

    NASA Astrophysics Data System (ADS)

    Rice, Joseph P.; Brown, Steven W.; Neira, Jorge E.; Bousquet, Robert R.

    2007-04-01

    We have developed and demonstrated a Hyperspectral Image Projector (HIP) intended for system-level validation testing of hyperspectral imagers, including the instrument and any associated spectral unmixing algorithms. HIP, based on the same digital micromirror arrays used in commercial digital light processing (DLP*) displays, is capable of projecting any combination of many different arbitrarily programmable basis spectra into each image pixel at up to video frame rates. We use a scheme whereby one micromirror array is used to produce light having the spectra of endmembers (i.e. vegetation, water, minerals, etc.), and a second micromirror array, optically in series with the first, projects any combination of these arbitrarily-programmable spectra into the pixels of a 1024 x 768 element spatial image, thereby producing temporally-integrated images having spectrally mixed pixels. HIP goes beyond conventional DLP projectors in that each spatial pixel can have an arbitrary spectrum, not just arbitrary color. As such, the resulting spectral and spatial content of the projected image can simulate realistic scenes that a hyperspectral imager will measure during its use. Also, the spectral radiance of the projected scenes can be measured with a calibrated spectroradiometer, such that the spectral radiance projected into each pixel of the hyperspectral imager can be accurately known. Use of such projected scenes in a controlled laboratory setting would alleviate expensive field testing of instruments, allow better separation of environmental effects from instrument effects, and enable system-level performance testing and validation of hyperspectral imagers as used with analysis algorithms. For example, known mixtures of relevant endmember spectra could be projected into arbitrary spatial pixels in a hyperspectral imager, enabling tests of how well a full system, consisting of the instrument + calibration + analysis algorithm, performs in unmixing (i.e. de-convolving) the spectra in all pixels. We discuss here the performance of a visible prototype HIP. The technology is readily extendable to the ultraviolet and infrared spectral ranges, and the scenes can be static or dynamic.

  13. Compact intra-cavity frequency doubled line beam green laser by a laser diode array pumped

    NASA Astrophysics Data System (ADS)

    Yan, Boxia; Qi, Yan; Wang, Yanwei

    2016-10-01

    Compact, high power, and low-cost green laser light sources are needed in projection-related applications such as digital cinema, rear-projection television, simulators, and command and control stations. We report a LD array directly pumped intracavity SHG Nd:YVO4/PPMgLN laser without lens or waveguide in this letter. A compact 3.12 W green laser was demonstrated by intra-cavity frequency doubled using a PPMgLN bulk crystal by a 19-emitter LD array pumped(single bar), the conversion efficiency from input LD array was 9.2%. A line-beam output suitable for laser projectors was generated, which has the potential to be scalable to small volumes and low costs for laser projection displays.

  14. Fidget with Widgets: CNC Activity Introduces the Flatbed Router

    ERIC Educational Resources Information Center

    Tryon, Daniel V.

    2006-01-01

    The computer numerical control (CNC) flatbed router is a powerful tool and a must-have piece of equipment for any technology education program in which students will produce a product--whether it involves Manufacturing, Materials Processing, or any of the vast array of Project Lead the Way courses. This article describes an activity--producing a…

  15. Environmental Education and Education for Sustainability Projects: Inspiring and Facilitating Implementation

    ERIC Educational Resources Information Center

    Williams, Ashley

    2010-01-01

    Our world is faced with a vast array of environmental catastrophes ranging everywhere from climate change, to air and water pollution, to mass extinction of species which all threaten the environment and human existence. As of now, students are not being informed on the sustainability issues, or engaged in the change process at school. Rote…

  16. Solar Cell Nanotechnology Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Biswajit

    2014-05-07

    The objective of this project is to develop a low cost nonlithographic nanofabrication technology for the fabrication of thin film porous templates as well as uniform arrays of semiconductor nanostructures for the implementation of high efficiency solar cells. Solar cells based on semiconductor nanostructures are expected to have very high energy conversion efficiencies due to the increased absorption coefficients of semiconductor nanostructures. In addition, the thin film porous template can be used for optimum surface texturing of solar cells leading to additional enhancement in energy conversion efficiency. An important requirement for these applications is the ability to synthesize nanostructure arraysmore » of different dimensions with good size control. This project employed nanoporous alumina templates created by the anodization of aluminum thin films deposited on glass substrates for the fabrication of the nanostructures and optimized the process parameters to obtain uniform pore diameters. An additional requirement is uniformity or regularity of the nanostructure arrays. While constant current anodization was observed to provide controlled pore diameters, constant voltage anodization was needed for regularity of the nanostructure arrays. Thus a two-step anodization process was investigated and developed in this project for improving the pore size distribution and pore periodicity of the nanoporous alumina templates. CdTe was selected to be the active material for the nanowires, and the process for the successful synthesis of CdTe nanowires was developed in this project. Two different synthesis approaches were investigated in this project, electrochemical and electrophoretic deposition. While electrochemical synthesis was successfully employed for the synthesis of nanowires inside the pores of the alumina templates, the technique was determined to be non-optimum due to the need of elevated temperature that is detrimental to the structural integrity of the nanoporous alumina templates. In order to eliminate this problem, electrophoretic deposition was selected as the more appropriate technique, which involves the guided deposition of semiconductor nanoparticles in the presence of ultrasonic energy to form the crystalline nanowires. Extensive experimental research was carried out to optimize the process parameters for formation of crystalline nanowires. It was observed that the environmental bath temperature plays a critical role in determining the structural integrity of the nanowires and hence their lengths. Investigation was carried out for the formation of semitransparent ohmic contacts on the nanowires to facilitate photocurrent spectroscopy measurements as well as for solar cell implementation. Formation of such ohmic contacts was found to be challenging and a process involving mechanical and electrochemical polishing was developed to facilitate such contacts. The use of nanoporous alumina templates for the surface texturing of mono- and multi-crystalline solar cells was extensively investigated by electrochemical etching of the silicon through the pores of the nanoporous templates. The processes for template formation as well as etching were optimized and the alumina/silicon interface was investigated using capacitance-voltage characterization. The process developed was found to be viable for improving solar cell performance.« less

  17. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  18. Expanded Owens Valley Solar Array Science and Data Products

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.; Hurford, G. J.; Nita, G. M.; Fleishman, G. D.; McTiernan, J. M.

    2010-05-01

    The Owens Valley Solar Array (OVSA) has been funded for major expansion, to create a university-based facility serving a broad scientific community, to keep the U.S. competitive in the field of solar radio physics. The project, funded by the National Science Foundation through the MRI-Recovery and Reinvestment program, will result in a world-class facility for scientific research at microwave radio frequencies (1-18 GHz) in solar and space weather physics. The project also includes an exciting program of targeted astronomical science. The solar science to be addressed focuses on the magnetic structure of the solar corona, on transient phenomena resulting from magnetic interactions, including the sudden release of energy and subsequent particle acceleration and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelength bands. The New Jersey Institute of Technology (NJIT) will upgrade OVSA from its current complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We will detail the new science addressed by the expanded array, and provide an overview of the expected data products.

  19. Fabrication of high quality aspheric microlens array by dose-modulated lithography and surface thermal reflow

    NASA Astrophysics Data System (ADS)

    Huang, Shengzhou; Li, Mujun; Shen, Lianguan; Qiu, Jinfeng; Zhou, Youquan

    2018-03-01

    A novel fabrication method for high quality aspheric microlens array (MLA) was developed by combining the dose-modulated DMD-based lithography and surface thermal reflow process. In this method, the complex shape of aspheric microlens is pre-modeled via dose modulation in a digital micromirror device (DMD) based maskless projection lithography. And the dose modulation mainly depends on the distribution of exposure dose of photoresist. Then the pre-shaped aspheric microlens is polished by a following non-contact thermal reflow (NCTR) process. Different from the normal process, the reflow process here is investigated to improve the surface quality while keeping the pre-modeled shape unchanged, and thus will avoid the difficulties in generating the aspheric surface during reflow. Fabrication of a designed aspheric MLA with this method was demonstrated in experiments. Results showed that the obtained aspheric MLA was good in both shape accuracy and surface quality. The presented method may be a promising approach in rapidly fabricating high quality aspheric microlens with complex surface.

  20. Automated array assembly task, phase 1

    NASA Technical Reports Server (NTRS)

    Carbajal, B. G.

    1977-01-01

    State-of-the-art technologies applicable to silicon solar cell and solar cell module fabrication were assessed. The assessment consisted of a technical feasibility evaluation and a cost projection for high volume production of solar cell modules. Design equations based on minimum power loss were used as a tool in the evaluation of metallization technologies. A solar cell process sensitivity study using models, computer calculations, and experimental data was used to identify process step variation and cell output variation correlations.

  1. Low cost silicon solar cell array

    NASA Technical Reports Server (NTRS)

    Bartels, F. T. C.

    1974-01-01

    The technological options available for producing low cost silicon solar cell arrays were examined. A project value of approximately $250/sq m and $2/watt is projected, based on mass production capacity demand. Recommendations are included for the most promising cost reduction options.

  2. Analysis and evaluation of process and equipment in tasks 2 and 4 of the Low Cost Solar Array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1978-01-01

    Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that substantial cost reductions can be realized from technical advancements which fall into four categories: an increase in furnace productivity; the reduction of crucible cost through use of the crucible for the equivalent of multiple state-of-the-art crystals; the combined effect of several smaller technical improvements; and a carry over effect of the expected availability of semiconductor grade polysilicon at greatly reduced prices. A format for techno-economic analysis of solar cell production processes was developed, called the University of Pennsylvania Process Characterization (UPPC) format. The accumulated Cz process data are presented.

  3. Camp Blanding Lightning Mapping Array

    NASA Technical Reports Server (NTRS)

    Blakeslee,Richard; Christian, Hugh; Bailey, Jeffrey; Hall, John; Uman, Martin; Jordan, Doug; Krehbiel, Paul; Rison, William; Edens, Harald

    2011-01-01

    A seven station, short base-line Lightning Mapping Array was installed at the Camp Blanding International Center for Lightning Research and Testing (ICLRT) during April 2011. This network will support science investigations of Terrestrial Gamma-Ray Flashes (TGFs) and lightning initiation using rocket triggered lightning at the ICLRT. The network operations and data processing will be carried out through a close collaboration between several organizations, including the NASA Marshall Space Flight Center, University of Alabama in Huntsville, University of Florida, and New Mexico Tech. The deployment was sponsored by the Defense Advanced Research Projects Agency (DARPA). The network does not have real-time data dissemination. Description, status and plans will be discussed.

  4. The ARIANNA Hexagonal Radio Array - performance and prospects

    NASA Astrophysics Data System (ADS)

    Hallgren, Allan

    2016-04-01

    The origin of the highest energy cosmic rays at ˜1020 eV is still unknown. Ultra-high energy neutrinos from the GZK process should provide information on the sources and their properties. A promising and cost effective method for observing GZK-neutrinos is based on detection of Askaryan radio pulses with antennas installed in ice. The ARIANNA project aims at instrumenting a 36*36 km2 large area on the Ross Ice Shelf with an array of radio detection stations. The deployment of a test system for ARIANNA, the Hexagonal Radio Array (HRA), was completed in December 2014. The three first stations were installed in 2012. Solar panels are used to drive the < 10 W stations. The system hibernated at sunset in April and all stations returned to operation in September. The site is essentially free of anthropogenic noise. Simple cuts eliminate background and provides for efficient selection of neutrino events. Prospects for the sensitivity of the full ARIANNA array to the flux of GZK neutrinos are shown.

  5. Performance, size, mass, and cost estimates for projected 1kW EOL Si, InP, and GaAs arrays

    NASA Technical Reports Server (NTRS)

    Slifer, Luther W., Jr.

    1991-01-01

    One method of evaluating the potential of emerging solar cell and array technologies is to compare their projected capabilities in space flight applications to those of established Si solar cells and arrays. Such an application-oriented comparison provides an integrated view of the elemental comparisons of efficiency, radiation resistance, temperature sensitivity, size, mass, and cost in combination. In addition, the assumptions necessary to make the comparisons provide insights helpful toward determining necessary areas of development or evaluation. Finally, as developments and evaluations progress, the results can be used in more precisely defining the overall potential of the new technologies in comparison to existing technologies. The projected capabilities of Si, InP, and GaAs cells and arrays are compared.

  6. A HWIL test facility of infrared imaging laser radar using direct signal injection

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Lu, Wei; Wang, Chunhui; Wang, Qi

    2005-01-01

    Laser radar has been widely used these years and the hardware-in-the-loop (HWIL) testing of laser radar become important because of its low cost and high fidelity compare with On-the-Fly testing and whole digital simulation separately. Scene generation and projection two key technologies of hardware-in-the-loop testing of laser radar and is a complicated problem because the 3D images result from time delay. The scene generation process begins with the definition of the target geometry and reflectivity and range. The real-time 3D scene generation computer is a PC based hardware and the 3D target models were modeled using 3dsMAX. The scene generation software was written in C and OpenGL and is executed to extract the Z-buffer from the bit planes to main memory as range image. These pixels contain each target position x, y, z and its respective intensity and range value. Expensive optical injection technologies of scene projection such as LDP array, VCSEL array, DMD and associated scene generation is ongoing. But the optical scene projection is complicated and always unaffordable. In this paper a cheaper test facility was described that uses direct electronic injection to provide rang images for laser radar testing. The electronic delay and pulse shaping circuits inject the scenes directly into the seeker's signal processing unit.

  7. Next Generation Astronomical Data Processing using Big Data Technologies from the Apache Software Foundation

    NASA Astrophysics Data System (ADS)

    Mattmann, Chris

    2014-04-01

    In this era of exascale instruments for astronomy we must naturally develop next generation capabilities for the unprecedented data volume and velocity that will arrive due to the veracity of these ground-based sensor and observatories. Integrating scientific algorithms stewarded by scientific groups unobtrusively and rapidly; intelligently selecting data movement technologies; making use of cloud computing for storage and processing; and automatically extracting text and metadata and science from any type of file are all needed capabilities in this exciting time. Our group at NASA JPL has promoted the use of open source data management technologies available from the Apache Software Foundation (ASF) in pursuit of constructing next generation data management and processing systems for astronomical instruments including the Expanded Very Large Array (EVLA) in Socorro, NM and the Atacama Large Milimetre/Sub Milimetre Array (ALMA); as well as for the KAT-7 project led by SKA South Africa as a precursor to the full MeerKAT telescope. In addition we are funded currently by the National Science Foundation in the US to work with MIT Haystack Observatory and the University of Cambridge in the UK to construct a Radio Array of Portable Interferometric Devices (RAPID) that will undoubtedly draw from the rich technology advances underway. NASA JPL is investing in a strategic initiative for Big Data that is pulling in these capabilities and technologies for astronomical instruments and also for Earth science remote sensing. In this talk I will describe the above collaborative efforts underway and point to solutions in open source from the Apache Software Foundation that can be deployed and used today and that are already bringing our teams and projects benefits. I will describe how others can take advantage of our experience and point towards future application and contribution of these tools.

  8. Minimal Polynomial Method for Estimating Parameters of Signals Received by an Antenna Array

    NASA Astrophysics Data System (ADS)

    Ermolaev, V. T.; Flaksman, A. G.; Elokhin, A. V.; Kuptsov, V. V.

    2018-01-01

    The effectiveness of the projection minimal polynomial method for solving the problem of determining the number of sources of signals acting on an antenna array (AA) with an arbitrary configuration and their angular directions has been studied. The method proposes estimating the degree of the minimal polynomial of the correlation matrix (CM) of the input process in the AA on the basis of a statistically validated root-mean-square criterion. Special attention is paid to the case of the ultrashort sample of the input process when the number of samples is considerably smaller than the number of AA elements, which is important for multielement AAs. It is shown that the proposed method is more effective in this case than methods based on the AIC (Akaike's Information Criterion) or minimum description length (MDL) criterion.

  9. Design of area array CCD image acquisition and display system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  10. Silicon on ceramic process. Silicon sheet growth development for the large-area silicon sheet task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Zook, J. D.; Heaps, J. D.; Maciolek, R. B.; Koepke, B. G.; Butter, C. D.; Schuldt, S. B.

    1977-01-01

    The technical and economic feasibility of producing solar-cell-quality sheet silicon was investigated. The sheets were made by coating one surface of carbonized ceramic substrates with a thin layer of large-grain polycrystalline silicon from the melt. Significant progress was made in all areas of the program.

  11. Range and egomotion estimation from compound photodetector arrays with parallel optical axis using optical flow techniques.

    PubMed

    Chahl, J S

    2014-01-20

    This paper describes an application for arrays of narrow-field-of-view sensors with parallel optical axes. These devices exhibit some complementary characteristics with respect to conventional perspective projection or angular projection imaging devices. Conventional imaging devices measure rotational egomotion directly by measuring the angular velocity of the projected image. Translational egomotion cannot be measured directly by these devices because the induced image motion depends on the unknown range of the viewed object. On the other hand, a known translational motion generates image velocities which can be used to recover the ranges of objects and hence the three-dimensional (3D) structure of the environment. A new method is presented for computing egomotion and range using the properties of linear arrays of independent narrow-field-of-view optical sensors. An approximate parallel projection can be used to measure translational egomotion in terms of the velocity of the image. On the other hand, a known rotational motion of the paraxial sensor array generates image velocities, which can be used to recover the 3D structure of the environment. Results of tests of an experimental array confirm these properties.

  12. Advanced Laboratory and Field Arrays (ALFA) OWC Phase 1 Test

    DOE Data Explorer

    Bret Bosma

    2016-11-07

    Data from Phase 1 testing of a single ALFA OWC device at the O.H. Hinsdale Wave Research Laboratory (HWRL) at Oregon State University in Fall of 2016. Contains two zip files of raw data, one of project data ("array"), and a diagram of the device with dimensions. A "readme" file in the project data archive under "Docs" helps to explains the project data.

  13. Advanced photovoltaic solar array - Design and performance

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Stella, Paul

    1992-01-01

    This paper reports on the development of an ultralightweight flexible blanket, flatpack, foldout solar array design that can provide 3- to 4-fold improvement on specific power performance of current rigid panel arrays and a factor of two improvement over a first-generation flexible blanket array developed as a forerunner to the Space Station Freedom array. To date a prototype wing has been built with a projected specific power performance of about 138 W/kg at beginning-of-life (BOL) and 93 W/kg end-of-life (EOL) at 12 kW (BOL) for a 10-year geosynchronous (GEO) mission. The prototype wing hardware has been subjected to a series of system-level tests to demonstrate design feasibility. The design of the array is summarized. The major trade studies that led to the selection of the baseline design are discussed. Key system-level and component-level testing are described. Array-level performance projections are presented as a function of existing and advanced solar array component technology for various mission applications.

  14. The NASA Deep Space Network (DSN) Array

    NASA Technical Reports Server (NTRS)

    Gatti, Mark

    2006-01-01

    The DSN Array Project is currently working with Senior Management at both JPL and NASA to develop strategies towards starting a major implementation project. Several studies within NASA are concluding, all of which recommend that any future DSN capability include arraying of antennas to increase performance. Support of Deep Space, Lunar, and CEV (crewed exploration vehicle) missions is possible. High data rate and TDRSS formatting is being investigated. Any future DSN capacity must include Uplink. Current studies ongoing to investigate and develop technologies for uplink arraying; provides advantages in three ways: 1) N2 effect. EIRP grows as N2(-vs-N for a downlink array); 2) Improved architectural options (can separate uplink and downlink); and 3) Potential for more cost effective transmitters for fixed EIRP.

  15. SIMBIOS Project

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; McClain, Charles R.; Busalacchi, Antonio J. (Technical Monitor)

    2001-01-01

    The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRAI) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.

  16. Optimal and adaptive methods of processing hydroacoustic signals (review)

    NASA Astrophysics Data System (ADS)

    Malyshkin, G. S.; Sidel'nikov, G. B.

    2014-09-01

    Different methods of optimal and adaptive processing of hydroacoustic signals for multipath propagation and scattering are considered. Advantages and drawbacks of the classical adaptive (Capon, MUSIC, and Johnson) algorithms and "fast" projection algorithms are analyzed for the case of multipath propagation and scattering of strong signals. The classical optimal approaches to detecting multipath signals are presented. A mechanism of controlled normalization of strong signals is proposed to automatically detect weak signals. The results of simulating the operation of different detection algorithms for a linear equidistant array under multipath propagation and scattering are presented. An automatic detector is analyzed, which is based on classical or fast projection algorithms, which estimates the background proceeding from median filtering or the method of bilateral spatial contrast.

  17. Controllable 3D Display System Based on Frontal Projection Lenticular Screen

    NASA Astrophysics Data System (ADS)

    Feng, Q.; Sang, X.; Yu, X.; Gao, X.; Wang, P.; Li, C.; Zhao, T.

    2014-08-01

    A novel auto-stereoscopic three-dimensional (3D) projection display system based on the frontal projection lenticular screen is demonstrated. It can provide high real 3D experiences and the freedom of interaction. In the demonstrated system, the content can be changed and the dense of viewing points can be freely adjusted according to the viewers' demand. The high dense viewing points can provide smooth motion parallax and larger image depth without blurry. The basic principle of stereoscopic display is described firstly. Then, design architectures including hardware and software are demonstrated. The system consists of a frontal projection lenticular screen, an optimally designed projector-array and a set of multi-channel image processors. The parameters of the frontal projection lenticular screen are based on the demand of viewing such as the viewing distance and the width of view zones. Each projector is arranged on an adjustable platform. The set of multi-channel image processors are made up of six PCs. One of them is used as the main controller, the other five client PCs can process 30 channel signals and transmit them to the projector-array. Then a natural 3D scene will be perceived based on the frontal projection lenticular screen with more than 1.5 m image depth in real time. The control section is presented in detail, including parallax adjustment, system synchronization, distortion correction, etc. Experimental results demonstrate the effectiveness of this novel controllable 3D display system.

  18. Digital Mapping of Buried Pipelines with a Dual Array System

    DOT National Transportation Integrated Search

    2005-03-01

    The project carried out under this agreement, which was informally called the "Dual Array Project" (the term we will use in this report), was part of the research efforts at the Office of Pipeline Safety at U.S. DOT, and was one of seven contracts aw...

  19. Proceedings of the Flat-Plate Solar Array Project Research Forum on Photovoltaic Metallization Systems

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A photovoltaic Metallization Research forum, under the sponsorship of the Flat-Plate Solar Array Project consisted of five sessions, covering: (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques, and (5) future metallization challenges.

  20. Silicon material technology status. [assessment for electronic and photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1983-01-01

    Silicon has been the basic element for the electronic and photovoltaic industries. The use of silicon as the primary element for terrestrial photovoltaic solar arrays is projected to continue. The reasons for this projection are related to the maturity of silicon technology, the ready availability of extremely pure silicon, the performance of silicon solar cells, and the considerable present investment in technology and manufacturing facilities. The technologies for producing semiconductor grade silicon and, to a lesser extent, refined metallurgical grade silicon are considered. It is pointed out that nearly all of the semiconductor grade silicon is produced by processes based on the Siemens deposition reactor, a technology developed 26 years ago. The state-of-the-art for producing silicon by this process is discussed. It is expected that efforts to reduce polysilicon process costs will continue.

  1. Progress of the MAGDAS Project During 2013

    NASA Astrophysics Data System (ADS)

    Maeda, G.; Yoshikawa, A.; Abe, S.

    2013-12-01

    The magnetometer array of the MAGDAS Project is perhaps the largest magnetometer array in the world -- with 71 real time magnetometers deployed around the world. In this presentation we explain the latest status of this array and the latest data release policy. In addition, we describe various MAGDAS activities of this year, such as: (1) the ISWI and MAGDAS School in Africa, (2) the ISWI/MAGDAS presentation by the MAGDAS PI at Graz, Austria, and (3) the maintenance work done in the field for magnetometers.

  2. Artist Concept of Atlantis' new home

    NASA Image and Video Library

    2012-01-18

    CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, workers are constructing 40-foot-diameter dish antenna arrays for the Ka-Band Objects Observation and Monitoring, or Ka-BOOM system. The antennas will be part of the operations command center facility. The construction site is near the former Vertical Processing Facility, which has been demolished. The Ka-BOOM project is one of the final steps in developing the techniques to build a high power, high resolution radar system capable of becoming a Near Earth Object Early Warning System. While also capable of space communication and radio science experiments, developing radar applications is the primary focus of the arrays. Photo credit: NASA/ Ben Smegelsky

  3. Overview - Flat-plate technology. [review of Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1981-01-01

    Progress and continuing plans for the joint NASA/DoE program at the JPL to develop the technologies and industrial processes necessary for mass production of low-cost solar arrays (LSA) which produce electricity from solar cells at a cost of less than $0.70/W are reviewed. Attention is given to plans for a demonstration Si refinement plant capable of yielding 1000 MT/yr, and to a CVD process with chlorosilane, which will yield material at a cost of $21/kg. Ingot and shaped-sheet technologies, using either Czochralski growth and film fed growth methods have yielded AM1 15% efficient cells in an automated process. Encapsulation procedures have been lowered to $14/sq m, and robotics have permitted assembled cell production at a rate of 10 sec/cell. Standards are being defined for module safety features. It is noted that construction of a pilot Si purification plant is essential to achieving the 1986 $0.70/W cost goals.

  4. Performance of CATIROC: ASIC for smart readout of large photomultiplier arrays

    NASA Astrophysics Data System (ADS)

    Blin, S.; Callier, S.; Conforti Di Lorenzo, S.; Dulucq, F.; De La Taille, C.; Martin-Chassard, G.; Seguin-Moreau, N.

    2017-03-01

    CATIROC (Charge And Time Integrated Read Out Chip) is a complete read-out chip manufactured in AustriaMicroSystem (AMS) SiGe 0.35 μm technology, designed to read arrays of 16 photomultipliers (PMTs). It is an upgraded version of PARISROC2 [1] designed in 2010 in the context of the PMm2 (square meter PhotoMultiplier) project [2]. CATIROC is a SoC (System on Chip) that processes analog signals up to the digitization and sparsification to reduce the cost and cable number. The ASIC is composed of 16 independent channels that work in triggerless mode, auto-triggering on the single photo-electron. It provides a charge measurement up to 400 photoelectrons (70 pC) on two scales of 10 bits and a timing information with an accuracy of 200 ps rms. The ASIC was sent for fabrication in February 2015 and then received in September 2015. It is a good candidate for two Chinese projects (LHAASO and JUNO). The architecture and the measurements will be detailed in the paper.

  5. Laser direct-write and crystallization of FeSi II micro-dot array for NIR light-emitting device application

    NASA Astrophysics Data System (ADS)

    Narazaki, Aiko; Kurosaki, Ryozo; Sato, Tadatake; Kawaguchi, Yoshizo; Niino, Hiroyuki

    2007-02-01

    We printed FeSi II micro-dot array on various kinds of substrates utilizing laser-induced forward transfer (LIFT). An amorphous FeSi II was deposited by sputtering on a transparent plate as a source film. A single KrF excimer laser pulse through a mask-projection system was imaged with a small micrometer-sized grid pattern onto a film/plate interface, resulting in the deposition of FeSi II micro-dot array on a facing substrate with a high number density of 10 4 mm -2. FeSi II in the β crystalline phase is a promising eco-friendly semiconductor because of NIR electroluminescence used for optical networking as well as abundant components reserve on the earth and non-toxicity. However, the β-FeSi II film fabrication generally required high-temperature multi-processes which hamper its integration and performance reproducibility. Using the LIFT of micro-dot array, we succeeded in room-temperature preparation of β-FeSi II. Micro-Raman spectroscopy confirmed the β crystalline phase in the micro-dots deposited on an unheated silica glass substrate. Thus, the LIFT is useful for integrating functional micro-dot array accompanied by the crystallization at lower temperatures.

  6. Radio Synthesis Imaging - A High Performance Computing and Communications Project

    NASA Astrophysics Data System (ADS)

    Crutcher, Richard M.

    The National Science Foundation has funded a five-year High Performance Computing and Communications project at the National Center for Supercomputing Applications (NCSA) for the direct implementation of several of the computing recommendations of the Astronomy and Astrophysics Survey Committee (the "Bahcall report"). This paper is a summary of the project goals and a progress report. The project will implement a prototype of the next generation of astronomical telescope systems - remotely located telescopes connected by high-speed networks to very high performance, scalable architecture computers and on-line data archives, which are accessed by astronomers over Gbit/sec networks. Specifically, a data link has been installed between the BIMA millimeter-wave synthesis array at Hat Creek, California and NCSA at Urbana, Illinois for real-time transmission of data to NCSA. Data are automatically archived, and may be browsed and retrieved by astronomers using the NCSA Mosaic software. In addition, an on-line digital library of processed images will be established. BIMA data will be processed on a very high performance distributed computing system, with I/O, user interface, and most of the software system running on the NCSA Convex C3880 supercomputer or Silicon Graphics Onyx workstations connected by HiPPI to the high performance, massively parallel Thinking Machines Corporation CM-5. The very computationally intensive algorithms for calibration and imaging of radio synthesis array observations will be optimized for the CM-5 and new algorithms which utilize the massively parallel architecture will be developed. Code running simultaneously on the distributed computers will communicate using the Data Transport Mechanism developed by NCSA. The project will also use the BLANCA Gbit/s testbed network between Urbana and Madison, Wisconsin to connect an Onyx workstation in the University of Wisconsin Astronomy Department to the NCSA CM-5, for development of long-distance distributed computing. Finally, the project is developing 2D and 3D visualization software as part of the international AIPS++ project. This research and development project is being carried out by a team of experts in radio astronomy, algorithm development for massively parallel architectures, high-speed networking, database management, and Thinking Machines Corporation personnel. The development of this complete software, distributed computing, and data archive and library solution to the radio astronomy computing problem will advance our expertise in high performance computing and communications technology and the application of these techniques to astronomical data processing.

  7. Advanced Photovoltaic Solar Array program status

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul M.

    1989-01-01

    The Advanced Photolvoltaic Solar Array (APSA) Program is discussed. The objective of the program is to demonstrate a producible array system by the end of this decade with a beginning-of-life (BOL) specific power of 130 W/kg at 10 kW as an intermediate milestone toward the ultimate goal of 300 W/kg at 25 kW by the year 2000. The near-term goal represents a significant improvement over existing rigid panel flight arrays (25 to 45 W/kg) and the first-generation flexible blanket NASA/OAST SAFE I array of the early 1980s, which was projected to provide about 60 W/kg BOL. The prototype wing hardware is in the last stages of fabrication and integration. The current status of the program is reported. The array configuration and key design details are shown. Projections are shown for future performance enhancements that may be expected through the use of advanced structural components and solar cells.

  8. Evaluation of selected chemical processes for production of low-cost silicon phase 2. silicon material task, low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Blocher, J. M., Jr.; Browning, M. F.; Rose, E. E.; Thompson, W. B.; Schmitt, W. A.; Fippin, J. S.; Kidd, R. W.; Liu, C. Y.; Kerbler, P. S.; Ackley, W. R.

    1978-01-01

    Progress from October 1, 1977, through December 31, 1977, is reported in the design of the 50 MT/year experimental facility for the preparation of high purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free flowing granular product.

  9. Proceedings of the Flat-plate Solar Array Project Research Forum on the High-speed Growth and Characterization of Crystals for Solar Cells

    NASA Technical Reports Server (NTRS)

    Dumas, K. A. (Editor)

    1984-01-01

    Theoretical and experimental phenomena, applications, and characterization including stress/strain and other problem areas that limit the rate of growth of crystals suitable for processing into efficient, cost-effective solar cells are discussed. Melt spinning, ribbon growth, rapid solidification, laser recrystallization, and ignot growth of silicon and metals are also discussed.

  10. Proceedings of the Flat-plate Solar Array Project Research Forum on High-efficiency Crystalline Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Kachare, R.

    1985-01-01

    The high-efficiency crystalline silicon solar cells research forum addressed high-efficiency concepts, surface-interface effects, bulk effects, modeling and device processing. The topics were arranged into six interactive sessions, which focused on the state-of-the-art of device structures, identification of barriers to achieve high-efficiency cells and potential ways to overcome these barriers.

  11. Adaptive Sampling in Autonomous Marine Sensor Networks

    DTIC Science & Technology

    2006-06-01

    Analog Processing Section A high-performance preamplifier with low noise characteristics is vital to obtaining quality sonar data. The preamplifier ...research assistantships through the Generic Ocean Array Technology Sonar (GOATS) project, contract N00014-97-1-0202 and contract N00014-05-G-0106 Delivery...Formation Behavior ..................................... 60 5 An AUV Intelligent Sensor for Real-Time Adaptive Sensing 63 5.1 A Logical Sonar Sensor

  12. AGILIS: Agile Guided Interferometer for Longbaseline Imaging Synthesis. Demonstration and concepts of reconfigurable optical imaging interferometers

    NASA Astrophysics Data System (ADS)

    Woillez, Julien; Lai, Olivier; Perrin, Guy; Reynaud, François; Baril, Marc; Dong, Yue; Fédou, Pierre

    2017-06-01

    Context. In comparison to the radio and sub-millimetric domains, imaging with optical interferometry is still in its infancy. Due to the limited number of telescopes in existing arrays, image generation is a demanding process that relies on time-consuming reconfiguration of the interferometer array and super-synthesis. Aims: Using single mode optical fibres for the coherent transport of light from the collecting telescopes to the focal plane, a new generation of interferometers optimized for imaging can be designed. Methods: To support this claim, we report on the successful completion of the `OHANA Iki project: an end-to-end, on-sky demonstration of a two-telescope interferometer, built around near-infrared single mode fibres, carried out as part of the `OHANA project. Results: Having demonstrated that coherent transport by single-mode fibres is feasible, we explore the concepts, performances, and limitations of a new imaging facility with single mode fibres at its heart: Agile Guided Interferometer for Longbaseline Imaging Synthesis (AGILIS). Conclusions: AGILIS has the potential of becoming a next generation facility or a precursor to a much larger project like the Planet Formation Imager (PFI).

  13. Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays

    DTIC Science & Technology

    2010-02-28

    Final Project Report Contract/Grant Title: Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays...factor (HFF) micromirror array (MMA) has been proposed, fabricated and tested. Optical-phased-array (OPA) beam steering based on the HFF MMA has also...electrically tuned to multiple 2. 1. Background High-fill-factor (HFF) micromirror arrays (MMAs) can form optical phased arrays (OPAs) for laser beam

  14. Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments

    NASA Technical Reports Server (NTRS)

    Boca, Andreea (Principal Investigator); Stella, Paul; Kerestes, Christopher; Sharps, Paul

    2017-01-01

    This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2).

  15. Alphabus Solar Array- Versatile and Powerful Solar Arrays for Tomorrow's Commercial Telecom Satellites

    NASA Astrophysics Data System (ADS)

    Pfefferkorn, T.; Oxynos, C.; Greff, P.; Gerlach, L.

    2008-09-01

    After the successful series of Eurostar 3000 and Spacebus 4000 satellites and due to the demand of satellite operators for even larger and more powerful satellites, ESA decided to co-fund the development of a new satellite platform which covers the market segment beyond the upper limits of both satellite families.The new satellite bus family Alphabus is developed in the frame of ARTES 8 project by a joint project team of ASTRIUM and TAS, whereas the solar array is developed by ASTRIUM GmbH.The main approaches in this design phase for the Alphabus solar array were to find a standardized and scaleable design to production and to use qualification heritage from former projects, especially Eurostar 3000, as far as possible. The main challenges for the solar array design and test philosophy were the usage of lateral deployment and related sequential deployment and the bus voltage of 102,5V and related ESD precautions.This paper provides an overview of the different configurations, their main design features and performance parameters. In addition it summarizes the development and verification approach and shows the actual qualification status.

  16. Detection of very long period solar free oscillations in ambient seismic array noise

    NASA Astrophysics Data System (ADS)

    Caton, R.; Pavlis, G. L.; Thomson, D. J.; Vernon, F.

    2017-12-01

    For nearly two decades long-period seismologists have been aware that the Earth's free oscillations are in a constant state of excitement, even in the absence of large earthquakes. This phenomenon is now called the "Earth's hum," and much research has been done to determine what generates this hum. Here we examine a hypothesis first put forward by Thomson et al. in 2007 that a portion of the hum's energy comes from the sun. They hypothesized that solar free oscillations couple into the solid Earth, likely through electromagnetic processes, and produce signals that are observable in the frequency domain. If this is true, then at least some measurement of helioseismic oscillations may be possible using relatively cheap, ground-based instruments rather than spacecraft. In this project we attempt to improve upon previous studies by producing spectra from seismic arrays, rather than a single station. We use data from two arrays: The Homestake Mine 3D array in Lead, SD, and the Pinyon Flats array, which has seismometers in boreholes drilled into bedrock. Both have exceptionally low noise levels at ultra long periods and show easily visible earth tides on horizontal component data filtered to below the microseism band. In the Homestake data, below 500 μHz we have found evidence of what we suggest may be closely spaced solar g-mode lines. Such modes are produced by a density inversion at the top of the solar core. There is no sign of these modes in the Pinyon Flats data, but we find this is likely due to the signal-to-noise ratio of those data, which is significantly lower than Homestake. Significance tests of bands below 500 μHz indicate with probability levels as high as 40σ that these lines are not the result of random processes. Critical examination of our processing steps for sources of bias indicate that the observed line structure is not a processing artifact.

  17. The economic payoff for a state-of-the-art high-efficiency flat-plate crystalline silicon solar cell technology

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.; Callaghan, W. T.

    1987-01-01

    In 1986 during the flat-plate solar array project, silicon solar cells 4.0 sq cm in area were fabricated at the Jet Propulsion Laboratory (JPL) with a conversion efficiency of 20.1 percent (AM1.5-global). Sixteen cells were processed with efficiencies measuring 19.5 percent (AM1.5 global) or better. These cells were produced using refined versions of conventional processing methods, aside from certain advanced techniques that bring about a significant reduction in a major mechanism (surface recombination) that limits cell efficiency. Wacker Siltronic p-type float-zone 0.18-ohm-cm wafers were used. Conversion efficiencies in this range have previously been reported by other researchers, but generally on much smaller (0.5 vs. 4.0 cm) devices which have undergone sophisticated and costly processing steps. An economic analysis is presented of the potential payoffs for this approach, using the Solar Array Manufacturing Industry Costing Standards (SAMICS) methodology. The process sequence used and the assumptions made for capturing the economies of scale are presented.

  18. Outlook for Detecting Gravitational Waves with Pulsars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Though the recent discovery of GW150914 is a thrilling success in the field of gravitational-wave astronomy, LIGO is only one tool the scientific community is using to hunt for these elusive signals. After 10 years of unsuccessful searching, how likely is it that pulsar-timing-array projects will make their own first detection soon?Frequency ranges for gravitational waves produced by different astrophysical sources. Pulsar timing arrays such as the EPTA and IPTA are used to detect low-frequency gravitational waves generated by the stochastic background and supermassive black hole binaries. [Christopher Moore, Robert Cole and Christopher Berry]Supermassive BackgroundGround-based laser interferometers like LIGO are ideal for probing ripples in space-time caused by the merger of stellar-mass black holes; these mergers cause chirps in the frequency range of tens to thousands of hertz. But how do we pick up the extremely low-frequency, nanohertz background signal caused by the orbits of pairs of supermassive black holes? For that, we need pulsar timing arrays.Pulsar timing arrays are sets of pulsars whose signals are analyzed to look for correlations in the pulse arrival time. As the space-time between us and a pulsar is stretched and then compressed by a passing gravitational wave, the pulsars pulses should arrive a little late and then a little early. Comparing these timing residuals in an array of pulsars could theoretically allow for the detection of the gravitational waves causing them.Globally, there are currently four pulsar timing array projects actively searching for this signal, with a fifth planned for the future. Now a team of scientists led by Stephen Taylor (NASA-JPL/Caltech) has estimated the likelihood that these projects will successfully detect gravitational waves in the future.Probability for SuccessExpected detection probability of the gravitational-wave background as a function of observing time, for five different pulsar timing arrays. Optimistic and conservative assumptions are made for merger rates (blue and red lines, respectively) and environmental conditions (solid and dashed lines, respectively). [Taylor et al. 2016]Taylor and collaborators statistically analyzed the detection probability for each of the projects as a function of their observing time, based on the projects estimated sensitivities and both conservative and optimistic assumptions about merger rates and environmental influences.First the bad news: based on the authors estimates, small arrays which contain only a few pulsars that each have minimal timing noise will not be likely to detect gravitational waves within the next two decades. These arrays are more useful for setting upper limits on the amplitude of the gravitational-wave background.On the other hand, large pulsar timing arrays have far more promising detection probabilities. These include the Parkes Pulsar Timing Array, the European Pulsar Timing Array, andNANOGrav which each targettens ofpulsars,withthe intent toadd more in the future as well as the International Pulsar Timing Array, which combines the efforts of all three of these projects. There is an 80% chance that, within the next decade, these projects will successfully detect the gravitational-wave background created by orbiting supermassive black holes.Based on this study, the outlook for these large arrays remains optimistic even in non-ideal conditions (such as if supermassive-black-hole merger rates are lower than we thought). So, though we may still have to wait a few years, the possibility of probing an otherwise inaccessible range of frequencies continues to make pulsar timing arrays a promising avenue of study for gravitational waves.CitationS. R. Taylor et al 2016 ApJ 819 L6. doi:10.3847/2041-8205/819/1/L6

  19. Centralized operations and maintenance planning at the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Lopez, Bernhard; Whyborn, Nicholas D.; Guniat, Serge; Hernandez, Octavio; Gairing, Stefan

    2016-07-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) is a joint project between astronomical organizations in Europe, North America, and East Asia, in collaboration with the Republic of Chile. ALMA consists of 54 twelve-meter antennas and 12 seven-meter antennas operating as an aperture synthesis array in the (sub)millimeter wavelength range. Since the inauguration of the observatory back in March 2013 there has been a continuous effort to establish solid operations processes for effective and efficient management of technical and administrative tasks on site. Here a key aspect had been the centralized maintenance and operations planning: input is collected from science stakeholders, the computerized maintenance management system (CMMS) and from the technical teams spread around the world, then this information is analyzed and consolidated based on the established maintenance strategy, the observatory long-term plan and the short-term priorities definitions. This paper presents the high-level process that has been developed for the planning and scheduling of planned- and unplanned maintenance tasks, and for site operations like the telescope array reconfiguration campaigns. We focus on the centralized planning approach by presenting its genesis, its current implementation for the observatory operations including related planning products, and we explore the necessary next steps in order to fully achieve a comprehensive centralized planning approach for ALMA in steady-state operations.

  20. Artificial intelligence for the CTA Observatory scheduler

    NASA Astrophysics Data System (ADS)

    Colomé, Josep; Colomer, Pau; Campreciós, Jordi; Coiffard, Thierry; de Oña, Emma; Pedaletti, Giovanna; Torres, Diego F.; Garcia-Piquer, Alvaro

    2014-08-01

    The Cherenkov Telescope Array (CTA) project will be the next generation ground-based very high energy gamma-ray instrument. The success of the precursor projects (i.e., HESS, MAGIC, VERITAS) motivated the construction of this large infrastructure that is included in the roadmap of the ESFRI projects since 2008. CTA is planned to start the construction phase in 2015 and will consist of two arrays of Cherenkov telescopes operated as a proposal-driven open observatory. Two sites are foreseen at the southern and northern hemispheres. The CTA observatory will handle several observation modes and will have to operate tens of telescopes with a highly efficient and reliable control. Thus, the CTA planning tool is a key element in the control layer for the optimization of the observatory time. The main purpose of the scheduler for CTA is the allocation of multiple tasks to one single array or to multiple sub-arrays of telescopes, while maximizing the scientific return of the facility and minimizing the operational costs. The scheduler considers long- and short-term varying conditions to optimize the prioritization of tasks. A short-term scheduler provides the system with the capability to adapt, in almost real-time, the selected task to the varying execution constraints (i.e., Targets of Opportunity, health or status of the system components, environment conditions). The scheduling procedure ensures that long-term planning decisions are correctly transferred to the short-term prioritization process for a suitable selection of the next task to execute on the array. In this contribution we present the constraints to CTA task scheduling that helped classifying it as a Flexible Job-Shop Problem case and finding its optimal solution based on Artificial Intelligence techniques. We describe the scheduler prototype that uses a Guarded Discrete Stochastic Neural Network (GDSN), for an easy representation of the possible long- and short-term planning solutions, and Constraint Propagation techniques. A simulation platform, an analysis tool and different test case scenarios for CTA were developed to test the performance of the scheduler and are also described.

  1. Head Mounted Display with a Roof Mirror Array Fold

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor)

    2014-01-01

    The present invention includes a head mounted display (HMD) worn by a user. The HMD includes a display projecting an image through an optical lens. The HMD also includes a one-dimensional retro reflective array receiving the image through the optical lens at a first angle with respect to the display and deflecting the image at a second angle different than the first angle with respect to the display. The one-dimensional retro reflective array reflects the image in order to project the image onto an eye of the user.

  2. Development of a Process for a High Capacity Arc Heater Production of Silicon for Solar Arrays

    NASA Technical Reports Server (NTRS)

    Reed, W. H.

    1979-01-01

    A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant (sodium) are injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection were developed. Included in this report are: test system preparation; testing; injection techniques; kinetics; reaction demonstration; conclusions; and the project status.

  3. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1983-01-01

    A study of potentially useful low cost encapsulation materials for the Flat-Plate Solar Array project is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations included studies of aging and degradation of candidate encapsulation materials, continued identification of primers for durable bonding of module interfaces, continued evaluation of soil resistant treatments for the sunlit surface of the module and testing of corrosion protective coatings for use low cost mild steel substrates.

  4. Low-cost silicon solar array project environmental hail model for assessing risk to solar collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C.

    1977-01-01

    The probability of solar arrays being struck by hailstones of various sizes as a function of geographic location and service life was assessed. The study complements parallel studies of solar array sensitivity to hail damage, the final objective being an estimate of the most cost effective level for solar array hail protection.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Robert

    Under this grant, three significant software packages were developed or improved, all with the goal of improving the ease-of-use of HPC libraries. The first component is a Python package, named DistArray (originally named Odin), that provides a high-level interface to distributed array computing. This interface is based on the popular and widely used NumPy package and is integrated with the IPython project for enhanced interactive parallel distributed computing. The second Python package is the Distributed Array Protocol (DAP) that enables separate distributed array libraries to share arrays efficiently without copying or sending messages. If a distributed array library supports themore » DAP, it is then automatically able to communicate with any other library that also supports the protocol. This protocol allows DistArray to communicate with the Trilinos library via PyTrilinos, which was also enhanced during this project. A third package, PyTrilinos, was extended to support distributed structured arrays (in addition to the unstructured arrays of its original design), allow more flexible distributed arrays (i.e., the restriction to double precision data was lifted), and implement the DAP. DAP support includes both exporting the protocol so that external packages can use distributed Trilinos data structures, and importing the protocol so that PyTrilinos can work with distributed data from external packages.« less

  6. SIMBIOS Project 1999 Annual Report

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Fargion, Giulietta S.

    1999-01-01

    The purpose of this technical memorandum is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.

  7. An alternative method of fabricating sub-micron resolution masks using excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Hayden, C. J.; Eijkel, J. C. T.; Dalton, C.

    2004-06-01

    In the work presented here, an excimer laser micromachining system has been used successfully to fabricate high-resolution projection and contact masks. The contact masks were subsequently used to produce chrome-gold circular ac electro-osmotic pump (cACEOP) microelectrode arrays on glass substrates, using a conventional contact photolithography process. The contact masks were produced rapidly (~15 min each) and were found to be accurate to sub-micron resolution, demonstrating an alternative route for mask fabrication. Laser machined masks were also used in a laser-projection system, demonstrating that such fabrication techniques are also suited to projection lithography. The work addresses a need for quick reproduction of high-resolution contact masks, given their rapid degradation when compared to non-contact masks.

  8. SIMBIOS Project 1998 Annual Report

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Fargion, Giulietta, S.

    1999-01-01

    The purpose of this series of technical reports is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Ocean Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant to substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issues by an operational project.

  9. Low cost silicon solar array project silicon materials task

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. Preliminary technical evaluations and economic projections indicate not only that this process appears to be feasible, but that it also has the advantages of rapid, high capacity production of good quality molten silicon at a nominal cost.

  10. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  11. Silicon-on-ceramic process: Silicon sheet growth and device development for the large-area silicon sheet task of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Whitehead, A. B.; Zook, J. D.; Grung, B. L.; Heaps, J. D.; Schmit, F.; Schuldt, S. B.; Chapman, P. W.

    1981-01-01

    The technical feasibility of producing solar cell quality sheet silicon to meet the DOE 1986 cost goal of 70 cents/watt was investigated. The silicon on ceramic approach is to coat a low cost ceramic substrate with large grain polycrystalline silicon by unidirectional solidification of molten silicon. Results and accomplishments are summarized.

  12. Towards a Tropical Pacific Observing System for 2020 and Beyond.

    NASA Astrophysics Data System (ADS)

    Hill, K. L.; Kessler, W. S.; Smith, N.

    2016-02-01

    The international TPOS 2020 Project arose out of a review workshop in January 2014, following challenges sustaining TAO-TRITON array in 2012, with the aim of rethinking the tropical Pacific arrays in light of new scientific understanding and new ocean technology since its original design in the 1980s-90s. Observing and understanding ENSO remains a fundamental motivation, extending to biogeochemical phenomena, to processes on smaller scales that rectify into the low frequency, and, to the interaction of the coupled boundary layers of the upper ocean and lower atmosphere. Our primary customers remain the operational prediction centers and we will design an array to support research into physical processes, especially those not well represented in current-generation models. Current-generation forecast systems (data assimilation and the model physics) do not make effective-enough use of observations, thus the modeling centers are well-represented in the TPOS 2020 structure and our sampling is targeted to where the forecasts systems need guidance for improvement While we advocate evolution of the present arrays, the long climate records built up at mooring sites, repeated ship surveys, and island stations are fundamental to detecting and diagnosing both natural climate variability and detecting climate change signatures. Task teams have been established in specific topic areas. These will report in mid-2016, when a plan for the revised arrays will be presented to the agencies and governments, for completion of the evolution by 2020.This presentation will discuss the motivation, guiding principles, and potential changes of direction for the tropical Pacific observing system.

  13. The ALPACA Project

    NASA Astrophysics Data System (ADS)

    Takita, Masato

    2017-06-01

    We have started up the ALPACA (Andes Large area PArticle detector for Cosmic ray physics and Astronomy) project. The ALPACA experiment is composed of an 83,000 m2 air shower array and a 5,400 m2 underground muon detector array to make wide field-of-view high-sensitivity observations of high-energy cosmic rays/cosmic gamma rays on the Cerro Estuqueria highland, 4,740 m above sea level around Mount Chacaltaya, Bolivia. We briefly report on the design concept of the new project and its physics targets.

  14. Monitoring hydrofrac-induced seismicity by surface arrays - the DHM-Project Basel case study

    NASA Astrophysics Data System (ADS)

    Blascheck, P.; Häge, M.; Joswig, M.

    2012-04-01

    The method "nanoseismic monitoring" was applied during the hydraulic stimulation at the Deep-Heat-Mining-Project (DHM-Project) Basel. Two small arrays in a distance of 2.1 km and 4.8 km to the borehole recorded continuously for two days. During this time more than 2500 seismic events were detected. The method of the surface monitoring of induced seismicity was compared to the reference which the hydrofrac monitoring presented. The latter was conducted by a network of borehole seismometers by Geothermal Explorers Limited. Array processing provides a outlier resistant, graphical jack-knifing localization method which resulted in a average deviation towards the reference of 850 m. Additionally, by applying the relative localization master-event method, the NNW-SSE strike direction of the reference was confirmed. It was shown that, in order to successfully estimate the magnitude of completeness as well as the b-value at the event rate and detection sensibility present, 3 h segments of data are sufficient. This is supported by two segment out of over 13 h of evaluated data. These segments were chosen so that they represent a time during the high seismic noise during normal working hours in daytime as well as the minimum anthropogenic noise at night. The low signal-to-noise ratio was compensated by the application of a sonogram event detection as well as a coincidence analysis within each array. Sonograms allow by autoadaptive, non-linear filtering to enhance signals whose amplitudes are just above noise level. For these events the magnitude was determined by the master-event method, allowing to compute the magnitude of completeness by the entire-magnitude-range method provided by the ZMAP toolbox. Additionally, the b-values were determined and compared to the reference values. An introduction to the method of "nanoseismic monitoring" will be given as well as the comparison to reference data in the Basel case study.

  15. Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The results for Task 3 of the Low Cost Solar Array Project are presented. Task 3 is directed toward the development of a cost effective encapsulating system for photovoltaic modules using silicon based materials. The technical approach of the contract effort is divided into four special tasks: (1) technology review; (2) generation of concepts for screening and processing silicon encapsulation systems; (3) assessment of encapsulation concepts; and (4) evaluation of encapsulation concepts. The candidate silicon materials are reviewed. The silicon and modified silicon resins were chosen on the basis of similarity to materials with known weatherability, cost, initial tangential modulus, accelerated dirt pick-up test results and the ratio of the content of organic phenyl substitution of methyl substitution on the backbone of the silicon resin.

  16. Evaluation of whole genome amplified DNA to decrease material expenditure and increase quality.

    PubMed

    Bækvad-Hansen, Marie; Bybjerg-Grauholm, Jonas; Poulsen, Jesper B; Hansen, Christine S; Hougaard, David M; Hollegaard, Mads V

    2017-06-01

    The overall aim of this study is to evaluate whole genome amplification of DNA extracted from dried blood spot samples. We wish to explore ways of optimizing the amplification process, while decreasing the amount of input material and inherently the cost. Our primary focus of optimization is on the amount of input material, the amplification reaction volume, the number of replicates and amplification time and temperature. Increasing the quality of the amplified DNA and the subsequent results of array genotyping is a secondary aim of this project. This study is based on DNA extracted from dried blood spot samples. The extracted DNA was subsequently whole genome amplified using the REPLIg kit and genotyped on the PsychArray BeadChip (assessing > 570,000 SNPs genome wide). We used Genome Studio to evaluate the quality of the genotype data by call rates and log R ratios. The whole genome amplification process is robust and does not vary between replicates. Altering amplification time, temperature or number of replicates did not affect our results. We found that spot size i.e. amount of input material could be reduced without compromising the quality of the array genotyping data. We also showed that whole genome amplification reaction volumes can be reduced by a factor of 4, without compromising the DNA quality. Whole genome amplified DNA samples from dried blood spots is well suited for array genotyping and produces robust and reliable genotype data. However, the amplification process introduces additional noise to the data, making detection of structural variants such as copy number variants difficult. With this study, we explore ways of optimizing the amplification protocol in order to reduce noise and increase data quality. We found, that the amplification process was very robust, and that changes in amplification time or temperature did not alter the genotyping calls or quality of the array data. Adding additional replicates of each sample also lead to insignificant changes in the array data. Thus, the amount of noise introduced by the amplification process was consistent regardless of changes made to the amplification protocol. We also explored ways of decreasing material expenditure by reducing the spot size or the amplification reaction volume. The reduction did not affect the quality of the genotyping data.

  17. Supporting Current Energy Conversion Projects through Numerical Modeling

    NASA Astrophysics Data System (ADS)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  18. Expanding Coherent Array Processing to Larger Apertures Using Empirical Matched Field Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringdal, F; Harris, D B; Kvaerna, T

    2009-07-23

    We have adapted matched field processing, a method developed in underwater acoustics to detect and locate targets, to classify transient seismic signals arising from mining explosions. Matched field processing, as we apply it, is an empirical technique, using observations of historic events to calibrate the amplitude and phase structure of wavefields incident upon an array aperture for particular repeating sources. The objective of this project is to determine how broadly applicable the method is and to understand the phenomena that control its performance. We obtained our original results in distinguishing events from ten mines in the Khibiny and Olenegorsk miningmore » districts of the Kola Peninsula, for which we had exceptional ground truth information. In a cross-validation test, some 98.2% of 549 explosions were correctly classified by originating mine using just the Pn observations (2.5-12.5 Hz) on the ARCES array at ranges from 350-410 kilometers. These results were achieved despite the fact that the mines are as closely spaced as 3 kilometers. Such classification performance is significantly better than predicted by the Rayleigh limit. Scattering phenomena account for the increased resolution, as we make clear in an analysis of the information carrying capacity of Pn under two alternative propagation scenarios: free-space propagation and propagation with realistic (actually measured) spatial covariance structure. The increase in information capacity over a wide band is captured by the matched field calibrations and used to separate explosions from very closely-spaced sources. In part, the improvement occurs because the calibrations enable coherent processing at frequencies above those normally considered coherent. We are investigating whether similar results can be expected in different regions, with apertures of increasing scale and for diffuse seismicity. We verified similar performance with the closely-spaced Zapolyarni mines, though discovered that it may be necessary to divide event populations from a single mine into identifiable subpopulations. For this purpose, we perform cluster analysis using matched field statistics calculated on pairs of individual events as a distance metric. In our initial work, calibrations were derived from ensembles of events ranging in number to more than 100. We are considering the performance now of matched field calibrations derived with many fewer events (even, as mentioned, individual events). Since these are high-variance estimates, we are testing the use of cross-channel, multitaper, spectral estimation methods to reduce the variance of calibrations and detection statistics derived from single-event observations. To test the applicability of the technique in a different tectonic region, we have obtained four years of continuous data from 4 Kazakh arrays and are extracting large numbers of event segments. Our initial results using 132 mining explosions recorded by the Makanchi array are similar to those obtained in the European Arctic. Matched field processing clearly separates the explosions from three closely-spaced mines located approximately 400 kilometers from the array, again using waveforms in a band (6-10 Hz) normally considered incoherent for this array. Having reproduced ARCES-type performance with another small aperture array, we have two additional objectives for matched field processing. We will attempt to extend matched field processing to larger apertures: a 200 km aperture (the KNET) and, if data permit, to an aperture comprised of several Kazakh arrays. We also will investigate the potential of developing matched field processing to roughly locate and classify natural seismicity, which is more diffuse than the concentrated sources of mining explosions that we have investigated to date.« less

  19. High-Performance, Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.

  20. Concentrator enhanced solar arrays design study

    NASA Technical Reports Server (NTRS)

    Lott, D. R.

    1978-01-01

    The analysis and preliminary design of a 25 kW concentrator enhanced lightweight flexible solar array are presented. The study was organized into five major tasks: (1) assessment and specification of design requirements; (2) mechanical design; (3) electric design; (4) concentrator design; and (5) cost projection. The tasks were conducted in an iterative manner so as to best derive a baseline design selection. The objectives of the study are discussed and comparative configurations and mass data on the SEP (Solar Electric Propulsion) array design, concentrator design options and configuration/mass data on the selected concentrator enhanced solar array baseline design are presented. Design requirements supporting design analysis and detailed baseline design data are discussed. The results of the cost projection analysis and new technology are also discussed.

  1. Synthesis Study of a 6-Element Non-Uniform Array with Tilted Elements for CLARREO Project

    NASA Technical Reports Server (NTRS)

    Jamnejad, Vahraz; Hoorfar, Ahmad

    2012-01-01

    This paper presents the results of a preliminary study of the gain/pattern properties of a 6-element Radio Occultation (RO) array for the proposed CLARREO (Climate Absolute Radiance and Refractivity Observatory (CLARREO) Project. CLARREO is one of the 4 highest priority missions recommended in the National Research Council Earth Science Decadal Survey.

  2. Wide-bandwidth high-resolution search for extraterrestrial intelligence

    NASA Technical Reports Server (NTRS)

    Horowitz, Paul

    1995-01-01

    Research was accomplished during the third year of the grant on: BETA architecture, an FFT array, a feature extractor, the Pentium array and workstation, and a radio astronomy spectrometer. The BETA (this SETI project) system architecture has been evolving generally in the direction of greater robustness against terrestrial interference. The new design adds a powerful state-memory feature, multiple simultaneous thresholds, and the ability to integrate multiple spectra in a flexible state-machine architecture. The FFT array is reported with regards to its hardware verification, array production, and control. The feature extractor is responsible for maintaining a moving baseline, recognizing large spectral peaks, following the progress of previously identified interesting spectral regions, and blocking signals from regions previously identified as containing interference. The Pentium array consists of 21 Pentium-based PC motherboards, each with 16 MByte of RAM and an Ethernet interface. Each motherboard receives and processes the data from a feature extractor/correlator board set, passing on the results of a first analysis to the central Unix workstation (through which each is also booted). The radio astronomy spectrometer is a technological spinoff from SETI work. It is proposed to be a combined spectrometer and power-accumulator, for use at Arecibo Observatory to search for neutral hydrogen emission from condensations of neutral hydrogen at high redshift (z = 5).

  3. Mountainous Ecosystem Sensor Array (MESA): a mesh sensor network for climate change research in remote mountainous environments

    NASA Astrophysics Data System (ADS)

    Robinson, P. W.; Neal, D.; Frome, D.; Kavanagh, K.; Davis, A.; Gessler, P. E.; Hess, H.; Holden, Z. A.; Link, T. E.; Newingham, B. A.; Smith, A. M.

    2013-12-01

    Developing sensor networks robust enough to perform unattended in the world's remote regions is critical since these regions serve as important benchmarks that lack anthropogenic influence. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. The MESA (Mountainous Ecosystem Sensor Array) project has faced these challenges and developed a wireless mesh sensor network across a 660 m topoclimatic gradient in a wilderness area in central Idaho. This sensor array uses advances in sensing, networking, and power supply technologies to provide near real-time synchronized data covering a suite of biophysical parameters used in ecosystem process models. The 76 sensors in the network monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, and leaf wetness at synchronized time intervals ranging from two minutes to two hours and spatial scales from a few meters to two kilometers. We present our novel methods of placing sensors and network nodes above, below, and throughout the forest canopy without using meteorological towers. In addition, we explain our decision to use different forms of power (wind and solar) and the equipment we use to control and integrate power harvesting. Further, we describe our use of the network to sense and quantify its own power use. Using examples of environmental data from the project, we discuss how these data may be used to increase our understanding of the effects of climate change on ecosystem processes in mountainous environments. MESA sensor locations across a 700 m topoclimatic gradient at the University of Idaho Taylor Wilderness Research Station.

  4. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Wolf, M.; Goldman, H.

    1981-01-01

    The attributes of the various metallization processes were investigated. It is shown that several metallization process sequences will lead to adequate metallization for large area, high performance solar cells at a metallization add on price in the range of $6. to 12. m squared, or 4 to $.8/W(peak), assuming 15% efficiency. Conduction layer formation by thick film silver or by tin or tin/lead solder leads to metallization add-on prices significantly above the $6. to 12/m squared range c.) The wet chemical processes of electroless and electrolytic plating for strike/barrier layer and conduction layer formation, respectively, seem to be most cost effective.

  5. Feasibility study, software design, layout and simulation of a two-dimensional Fast Fourier Transform machine for use in optical array interferometry

    NASA Technical Reports Server (NTRS)

    Boriakoff, Valentin

    1994-01-01

    The goal of this project was the feasibility study of a particular architecture of a digital signal processing machine operating in real time which could do in a pipeline fashion the computation of the fast Fourier transform (FFT) of a time-domain sampled complex digital data stream. The particular architecture makes use of simple identical processors (called inner product processors) in a linear organization called a systolic array. Through computer simulation the new architecture to compute the FFT with systolic arrays was proved to be viable, and computed the FFT correctly and with the predicted particulars of operation. Integrated circuits to compute the operations expected of the vital node of the systolic architecture were proven feasible, and even with a 2 micron VLSI technology can execute the required operations in the required time. Actual construction of the integrated circuits was successful in one variant (fixed point) and unsuccessful in the other (floating point).

  6. Design, fabrication, and delivery of a charge injection device as a stellar tracking device

    NASA Technical Reports Server (NTRS)

    Burke, H. K.; Michon, G. J.; Tomlinson, H. W.; Vogelsong, T. L.; Grafinger, A.; Wilson, R.

    1979-01-01

    Six 128 x 128 CID imagers fabricated on bulk silicon and with thin polysilicon upper-level electrodes were tested in a star tracking mode. Noise and spectral response were measured as a function of temperature over the range of +25 C to -40 C. Noise at 0 C and below was less than 40 rms carriers/pixel for all devices at an effective noise bandwidth of 150 Hz. Quantum yield for all devices averaged 40% from 0.4 to 1.0 microns with no measurable temperature dependence. Extrapolating from these performance parameters to those of a large (400 x 400) array and accounting for design and processing improvements, indicates that the larger array would show a further improvement in noise performance -- on the order of 25 carriers. A preliminary evaluation of the projected performance of the 400 x 400 array and a representative set of star sensor requirements indicates that the CID has excellent potential as a stellar tracking device.

  7. Markovian properties of wind turbine wakes within a 3x3 array

    NASA Astrophysics Data System (ADS)

    Melius, Matthew; Tutkun, Murat; Cal, Raúl Bayoán

    2012-11-01

    Wind turbine arrays have proven to be significant sources of renewable energy. Accurate projections of energy production is difficult to achieve because the wake of a wind turbine is highly intermittent and turbulent. Seeking to further the understanding of the downstream propagation of wind turbine wakes, a stochastic analysis of experimentally obtained turbulent flow data behind a wind turbine was performed. A 3x3 wind turbine array was constructed in the test section of a recirculating wind tunnel where X-wire anemometers were used to collect point velocity statistics. In this work, mathematics of the theory of Markovian processes are applied to obtain a statistical description of longitudinal velocity increments inside the turbine wake using conditional probability density functions. Our results indicate an existence of Markovian properties at scales on the order of the Taylor microscale, λ, which has also been observed and documented in different turbulent flows. This leads to characterization of the multi-point description of the wind turbine wakes using the most recent states of the flow.

  8. Flight Plasma Diagnostics for High-Power, Solar-Electric Deep-Space Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Lee; De Soria-Santacruz Pich, Maria; Conroy, David; Lobbia, Robert; Huang, Wensheng; Choi, Maria; Sekerak, Michael J.

    2018-01-01

    NASA's Asteroid Redirect Robotic Mission (ARRM) project plans included a set of plasma and space environment instruments, the Plasma Diagnostic Package (PDP), to fulfill ARRM requirements for technology extensibility to future missions. The PDP objectives were divided into the classes of 1) Plasma thruster dynamics, 2) Solar array-specific environmental effects, 3) Plasma environmental spacecraft effects, and 4) Energetic particle spacecraft environment. A reference design approach and interface requirements for ARRM's PDP was generated by the PDP team at JPL and GRC. The reference design consisted of redundant single-string avionics located on the ARRM spacecraft bus as well as solar array, driving and processing signals from multiple copies of several types of plasma, effects, and environments sensors distributed over the spacecraft and array. The reference design sensor types were derived in part from sensors previously developed for USAF Research Laboratory (AFRL) plasma effects campaigns such as those aboard TacSat-2 in 2007 and AEHF-2 in 2012.

  9. Design and fabrication of microstrip antenna arrays

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A microstrip array project was conducted to demonstrate the feasibility of designing and fabricating simple, low cost, low sidelobe phased arrays with circular disk microstrip radiating elements. Design data were presented for microstrip elements and arrays including the effects of the protective covers, the mutual interaction between elements, and stripline feed network design. Low cost multilayer laminate fabrication techniques were also investigated. Utilizing this design data two C-band low sidelobe arrays were fabricated and tested: an eight-element linear and a sixty-four element planar array. These arrays incorporated stripline Butler matrix feed networks to produce a low sidelobe broadside beam.

  10. TIGRESS: TRIUMF-ISAC gamma-ray escape-suppressed spectrometer

    NASA Astrophysics Data System (ADS)

    Svensson, C. E.; Amaudruz, P.; Andreoiu, C.; Andreyev, A.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D.; Boston, A. J.; Chakrawarthy, R. S.; Chen, A. A.; Churchman, R.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hackman, G.; Hyland, B.; Jones, B.; Kanungo, R.; Maharaj, R.; Martin, J. P.; Morris, D.; Morton, A. C.; Pearson, C. J.; Phillips, A. A.; Ressler, J. J.; Roy, R.; Sarazin, F.; Schumaker, M. A.; Scraggs, H. C.; Smith, M. B.; Starinsky, N.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.

    2005-10-01

    The TRIUMF-ISAC gamma-ray escape-suppressed spectrometer (TIGRESS) is a new γ-ray detector array being developed for use at TRIUMF's Isotope Separator and Accelerator (ISAC) radioactive ion beam facility. TIGRESS will comprise 12 32-fold segmented clover-type HPGe detectors coupled with 20-fold segmented modular Compton suppression shields and custom digital signal processing electronics. This paper provides an overview of the TIGRESS project and progress in its development to date.

  11. Self-Cohering Airborne Distributed Array

    DTIC Science & Technology

    1988-06-01

    F19628-84- C -0080 ft. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT JTASK JWORK UNIT Hanscom APE MA 01731-5000...algorithms under consideration (including the newly developed algorithms). The algorithms are classified both according to the type c -f processing and...4.1 RADIO CAMERA DATA FORMAT AND PROCEDURES (FROM C -23) The range trace delivered by each antenna element is stonred as a rc’w of coimplex number-s

  12. ALFA MHK Biological Monitoring Stationary deployment

    DOE Data Explorer

    Horne, John

    2016-10-01

    Acoustic backscatter data from a WBAT operating at 70kHz deployed at PMEC-SETS from April to September of 2016. 180 pings were collected at 1Hz every two hours, as part of the Advanced Laboratory and Field Arrays (ALFA) for Marine Energy project. Data was subject to preliminary processing (noise removal, a threshold of -75dB was applied, surface turbulence and data below 0.5m from the bottom was removed).

  13. The Expanded Owens Valley Solar Array

    NASA Astrophysics Data System (ADS)

    Gary, Dale E.; Hurford, G. J.; Nita, G. M.; White, S. M.; Tun, S. D.; Fleishman, G. D.; McTiernan, J. M.

    2011-05-01

    The Expanded Owens Valley Solar Array (EOVSA) is now under construction near Big Pine, CA as a solar-dedicated microwave imaging array operating in the frequency range 1-18 GHz. The solar science to be addressed focuses on the 3D structure of the solar corona (magnetic field, temperature and density), on the sudden release of energy and subsequent particle acceleration, transport and heating, and on space weather phenomena. The project will support the scientific community by providing open data access and software tools for analysis of the data, to exploit synergies with on-going solar research in other wavelengths. The New Jersey Institute of Technology (NJIT) is expanding OVSA from its previous complement of 7 antennas to a total of 15 by adding 8 new antennas, and will reinvest in the existing infrastructure by replacing the existing control systems, signal transmission, and signal processing with modern, far more capable and reliable systems based on new technology developed for the Frequency Agile Solar Radiotelescope (FASR). The project will be completed in time to provide solar-dedicated observations during the upcoming solar maximum in 2013 and beyond. We provide an update on current status and our preparations for exploiting the data through modeling and data analysis tools. This research is supported by NSF grants AST-0908344, and AGS-0961867 and NASA grant NNX10AF27G to New Jersey Institute of Technology.

  14. APSA - A new generation of photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, P. M.; Kurland, R. M.

    1989-01-01

    This paper provides details on the Advanced Photovoltaic Solar Array (APSA) wing design, fabrication, and testing. The impact of array size change on performance and mechanical characteristics is discussed. Projections for future performance enhancements that may be expected through the use of advanced solar cells presently under development are examined.

  15. Outlook for coastal plain forests: a subregional report from the Southern Forest Futures Project

    Treesearch

    Kier Klepzig; Richard Shelfer; Zanethia Choice

    2014-01-01

    The U.S. Coastal Plain consists of seven sections: the Northern Atlantic, Eastern Atlantic, Peninsular Florida, Southern Gulf, Middle Gulf-East, Middle Gulf-West, and Western Gulf. It covers a large area, consists of a diverse array of habitats, and supports a diverse array of uses. This report presents forecasts from the Southern Forest Futures Project that are...

  16. LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER

    NASA Image and Video Library

    2016-09-23

    JOHN CARR, CO-PRINCIPAL INVESTIGATOR FOR NASA'S LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER PROJECT, KNEELS TO SHOW HOW ONE OF THE THIN-FILM SIDES OR "PETALS" IN WHICH PHOTO-VOLTAIC CELLS ARE EMBEDDED, IS FOLDED AND STOWED BEFORE LAUNCH. LOOKING ON DURING A DEMONSTRATION AFTER TESTING AT NEXOLVE, ARE LES JOHNSON, LEFT, ALSO CO-PRINCIPAL INVESTIGATOR, AND DARREN BOYD, RIGHT, THE RADIO FREQUENCY LEAD FOR THE PROJECT.

  17. Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma

    DTIC Science & Technology

    2015-09-01

    Mesothelioma; Glycan Array; Immunoprofiles; Robotic Arrayer 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT: UU 18. NUMBER OF PAGES 19 19a...PROJECT SUMMARY: General Comments: This project involved novel technology in which biochemically synthesized glycans were robotically printed on glass...include 386 glycans and the platform was known as the PGA-400. (Figure 1) A standard robotic technology for printing a large range of

  18. The Effects of Linear Microphone Array Changes on Computed Sound Exposure Level Footprints

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Wilson, Mark R.

    1997-01-01

    Airport land planning commissions often are faced with determining how much area around an airport is affected by the sound exposure levels (SELS) associated with helicopter operations. This paper presents a study of the effects changing the size and composition of a microphone array has on the computed SEL contour (ground footprint) areas used by such commissions. Descent flight acoustic data measured by a fifteen microphone array were reprocessed for five different combinations of microphones within this array. This resulted in data for six different arrays for which SEL contours were computed. The fifteen microphone array was defined as the 'baseline' array since it contained the greatest amount of data. The computations used a newly developed technique, the Acoustic Re-propagation Technique (ART), which uses parts of the NASA noise prediction program ROTONET. After the areas of the SEL contours were calculated the differences between the areas were determined. The area differences for the six arrays are presented that show a five and a three microphone array (with spacing typical of that required by the FAA FAR Part 36 noise certification procedure) compare well with the fifteen microphone array. All data were obtained from a database resulting from a joint project conducted by NASA and U.S. Army researchers at Langley and Ames Research Centers. A brief description of the joint project test design, microphone array set-up, and data reduction methodology associated with the database are discussed.

  19. Development of optics with micro-LED arrays for improved opto-electronic neural stimulation

    NASA Astrophysics Data System (ADS)

    Chaudet, Lionel; Neil, Mark; Degenaar, Patrick; Mehran, Kamyar; Berlinguer-Palmini, Rolando; Corbet, Brian; Maaskant, Pleun; Rogerson, David; Lanigan, Peter; Bamberg, Ernst; Roska, Botond

    2013-03-01

    The breakthrough discovery of a nanoscale optically gated ion channel protein, Channelrhodopsin 2 (ChR2), and its combination with a genetically expressed ion pump, Halorhodopsin, allowed the direct stimulation and inhibition of individual action potentials with light alone. This work reports developments of ultra-bright elec­ tronically controlled optical array sources with enhanced light gated ion channels and pumps for use in systems to further our understanding of both brain and visual function. This work is undertaken as part of the European project, OptoNeuro. Micro-LED arrays permit spatio-temporal control of neuron stimulation on sub-millisecond timescales. However they are disadvantaged by their broad spatial light emission distribution and low fill factor. We present the design and implementation of a projection and micro-optics system for use with a micro-LED array consisting of a 16x16 matrix of 25 μm diameter micro-LEDs with 150 μm centre-to-centre spacing and an emission spectrum centred at 470 nm overlapping the peak sensitivity of ChR2 and its testing on biological samples. The projection system images the micro-LED array onto micro-optics to improve the fill-factor from ~2% to more than 78% by capturing a larger fraction of the LED emission and directing it correctly to the sample plane. This approach allows low fill factor arrays to be used effectively, which in turn has benefits in terms of thermal management and electrical drive from CMOS backplane electronics. The entire projection system is integrated into a microscope prototype to provide stimulation spots at the same size as the neuron cell body (μ10 pm).

  20. Analysis and Evaluation of Processes and Equipment in Tasks 2 and 4 of the Low-cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1979-01-01

    To facilitate the task of objectively comparing competing process options, a methodology was needed for the quantitative evaluation of their relative cost effectiveness. Such a methodology was developed and is described, together with three examples for its application. The criterion for the evaluation is the cost of the energy produced by the system. The method permits the evaluation of competing design options for subsystems, based on the differences in cost and efficiency of the subsystems, assuming comparable reliability and service life, or of competing manufacturing process options for such subsystems, which include solar cells or modules. This process option analysis is based on differences in cost, yield, and conversion efficiency contribution of the process steps considered.

  1. An Array Library for Microsoft SQL Server with Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Dobos, L.; Szalay, A. S.; Blakeley, J.; Falck, B.; Budavári, T.; Csabai, I.

    2012-09-01

    Today's scientific simulations produce output on the 10-100 TB scale. This unprecedented amount of data requires data handling techniques that are beyond what is used for ordinary files. Relational database systems have been successfully used to store and process scientific data, but the new requirements constantly generate new challenges. Moving terabytes of data among servers on a timely basis is a tough problem, even with the newest high-throughput networks. Thus, moving the computations as close to the data as possible and minimizing the client-server overhead are absolutely necessary. At least data subsetting and preprocessing have to be done inside the server process. Out of the box commercial database systems perform very well in scientific applications from the prospective of data storage optimization, data retrieval, and memory management but lack basic functionality like handling scientific data structures or enabling advanced math inside the database server. The most important gap in Microsoft SQL Server is the lack of a native array data type. Fortunately, the technology exists to extend the database server with custom-written code that enables us to address these problems. We present the prototype of a custom-built extension to Microsoft SQL Server that adds array handling functionality to the database system. With our Array Library, fix-sized arrays of all basic numeric data types can be created and manipulated efficiently. Also, the library is designed to be able to be seamlessly integrated with the most common math libraries, such as BLAS, LAPACK, FFTW, etc. With the help of these libraries, complex operations, such as matrix inversions or Fourier transformations, can be done on-the-fly, from SQL code, inside the database server process. We are currently testing the prototype with two different scientific data sets: The Indra cosmological simulation will use it to store particle and density data from N-body simulations, and the Milky Way Laboratory project will use it to store galaxy simulation data.

  2. Performance of 3-Component Nodes in the IRIS Community Wavefield Demonstration Experiment

    NASA Astrophysics Data System (ADS)

    Sweet, J. R.; Anderson, K. R.; Woodward, R.

    2017-12-01

    In June 2016, a field crew of 50 students, faculty, industry personnel, and IRIS staff deployed a total of 390 stations as part of a community seismic experiment above an active seismic lineament in north-central Oklahoma. The goals of the experiment were to test new instrumentation and deployment strategies that record the full seismic wavefield, and to advance understanding of earthquake source processes and regional lithospheric structure. The crew deployed 363 3-component, 5Hz Generation 2 Fairfield Z-Land nodes along three seismic lines and in a seven-layer nested gradiometer array. The seismic lines spanned a region 13 km long by 5 km wide. A broadband, 18 station "Golay 3x6" array with an aperture of approximately 5 km was deployed around the gradiometer and seismic lines to collect waveform data from local and regional events. In addition, 9 infrasound stations were deployed in order to capture and identify acoustic events that might be recorded by the seismic array. The variety and geometry of instrumentation deployed was intended to capture the full seismic wavefield generated by the local and regional seismicity beneath the array and the surrounding region. Additional details on the instrumentation and how it was deployed can be found by visiting our website www.iris.edu/wavefields. We present a detailed analysis of noise across the array—including station performance, as well as noise from nearby sources (wind turbines, automobiles, etc.). We report a clear reduction in noise for buried 3-component nodes compared to co-located surface nodes (see Figure). Using the IRIS DMC's ISPAQ client, we present a variety of metrics to evaluate the network's performance. We also present highlights from student projects at the recently-held IRIS advanced data processing short course, which focused on analyzing the wavefield dataset using array processing techniques.

  3. Platinum nanowire microelectrode arrays for neurostimulation applications: Fabrication, characterization, and in-vitro retinal cell stimulation

    NASA Astrophysics Data System (ADS)

    Whalen, John J., III

    Implantable electrical neurostimulating devices are being developed for a number of applications, including artificial vision through retinal stimulation. The epiretinal prosthesis will use a two-dimensional array microelectrodes to address individual cells of the retina. MEMS fabrication processes can produce arrays of microelectrodes with these dimensions, but there are two critical issues that they cannot satisfy. One, the stimulating electrodes are the only part of the implanted electrical device that penetrate through the water impermeable package, and must do so without sacrificing hermeticity. Two, As electrode size decreases, the current density (A cm-2 ) increases, due to increased electrochemical impedance. This reduces the amount of charge that can be safely injected into the tissue. To date, MEMS processing method, cannot produce electrode arrays with good, prolonged hermetic properties. Similarly, MEMS approaches do not account for the increased impedance caused by decreased surface area. For these reasons there is a strong motivation for the development of a water-impermeable, substrate-penetrating electrode array with low electrochemical impedance. This thesis presents a stimulating electrode array fabricated from platinum nanowires using a modified electrochemical template synthesis approach. Nanowires are electrochemically deposited from ammonium hexachloroplatinate solution into lithographically patterned nanoporous anodic alumina templates to produce microarrays of platinum nanowires. The platinum nanowires penetrating through the ceramic aluminum oxide template serve as parallel electrical conduits through the water impermeable, electrically insulating substrate. Electrode impedance can be adjusted by either controlling the nanowire hydrous platinum oxide content or by partially etching the alumina template to expose additional surface area. A stepwise approach to this project was taken. First, the electrochemistry of ammonium hexachloroplatinate solution was characterized, and physical properties of electrodeposited thin films were correlated to deposition conditions used. Second, platinum nanowires were fabricated and their properties characterized, using similar deposition conditions. Third, the feasibility of fabricating platinum nanowire stimulating electrode arrays with a variety of surface structures was demonstrated. Fourth, the enhanced charge transfer characteristics of these structures were demonstrated using electrochemical techniques. Finally, retinal cell stimulation was demonstrated using electrodes from platinum nanowire arrays.

  4. SDF1 Reduces Interneuron Leading Process Branching through Dual Regulation of Actin and Microtubules

    PubMed Central

    Lysko, Daniel E.; Putt, Mary

    2014-01-01

    Normal cerebral cortical function requires a highly ordered balance between projection neurons and interneurons. During development these two neuronal populations migrate from distinct progenitor zones to form the cerebral cortex, with interneurons originating in the more distant ganglionic eminences. Moreover, deficits in interneurons have been linked to a variety of neurodevelopmental disorders underscoring the importance of understanding interneuron development and function. We, and others, have identified SDF1 signaling as one important modulator of interneuron migration speed and leading process branching behavior in mice, although how SDF1 signaling impacts these behaviors remains unknown. We previously found SDF1 inhibited leading process branching while increasing the rate of migration. We have now mechanistically linked SDF1 modulation of leading process branching behavior to a dual regulation of both actin and microtubule organization. We find SDF1 consolidates actin at the leading process tip by de-repressing calpain protease and increasing proteolysis of branched-actin-supporting cortactin. Additionally, SDF1 stabilizes the microtubule array in the leading process through activation of the microtubule-associated protein doublecortin (DCX). DCX stabilizes the microtubule array by bundling microtubules within the leading process, reducing branching. These data provide mechanistic insight into the regulation of interneuron leading process dynamics during neuronal migration in mice and provides insight into how cortactin and DCX, a known human neuronal migration disorder gene, participate in this process. PMID:24695713

  5. SKS splitting results in central Italy and Dinaric region inside the AlpArray-CASE project

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Prevolnik, S.; Pondrelli, S.; Molinari, I.; Stipcevic, J.; Kissling, E.; Šipka, V.; Herak, M.

    2017-12-01

    In the framework of the AlpArray project (AlpArray Seismic Network, 2015), the complementary "Central Adriatic Seismic Experiment" (CASE; AlpArray Seismic Network, 2016) was established as collaboration between ETH Zürich, University of Zagreb, INGV and Republic Hydrometeorological Service of Republic of Srpska. The CASE project consists of 9 temporary stations, installed in October 2016, located in Bosnia and Herzegovina, Croatia and Italy. Temporary broadband seismic stations, with the permanent stations present in the region shared by the Croatian Seismological Service and INGV, make an almost continuous transect cutting the Central-Southern Appenines, the central Adriatic region, central External Dinarides and finishing at the eastern margin of the Internal Dinarides. The presence of the the Apenninic and Dinarides slabs, verging in opposite directions and plunging along the opposite sides of the Adriatic plate, make this area a peculiar spot to understand the complex dynamic of the region. Various tomographic images (e.g. Bijwaard and Spakman, 2000; Piromallo and Morelli, 2003) shows not continuous slabs under the Appenines and the Dinarides, suggesting the presence of slab-gaps right beneath the region covered by the CASE experiment. Here we present the preliminary results of the SKS splitting analysis performed on the data recorded by the temporary and permanent seismic stations included in the CASE project. The new results, in combination with previous interpretation, will provide clues about how Northern and Southern Apennines are connected at depth, how the slab rollback of the Apennines thrust belt acted and if and how the Apennines are in relation with the Dinaric region. Together with the measurements from previous studies and from the AlpArray project, our new data will support the mapping of the seismic anisotropy deformation pattern from Western Alps to Pannonian region.

  6. A novel optical freezing array for the examination of cooling rate dependence in heterogeneous ice nucleation

    NASA Astrophysics Data System (ADS)

    Budke, Carsten; Dreischmeier, Katharina; Koop, Thomas

    2014-05-01

    Homogeneous ice nucleation is a stochastic process, implying that it is not only temperature but also time dependent. For heterogeneous ice nucleation it is still under debate whether there is a significant time dependence or not. In case of minor time dependence it is probably sufficient to use a singular or slightly modified singular approach, which mainly supposes temperature dependence and just small stochastic variations. We contribute to this discussion using a novel optical freezing array termed BINARY (Bielefeld Ice Nucleation ARraY). The setup consists of an array of microliter-sized droplets on a Peltier cooling stage. The droplets are separated from each other with a polydimethylsiloxane (PDMS) spacer to prevent a Bergeron-Findeisen process, in which the first freezing droplets grow at the expense of the remaining liquid ones due to their vapor pressure differences. An automatic detection of nucleation events is realized optically by the change in brightness during freezing. Different types of ice nucleating agents were tested with the presented setup, e. g. pollen and clay mineral dust. Exemplarily, cooling rate dependent measurements are shown for the heterogeneous ice nucleation induced by Snomax®. The authors gratefully acknowledge funding by the German Research Foundation (DFG) through the project BIOCLOUDS (KO 2944/1-1) and through the research unit INUIT (FOR 1525) under KO 2944/2-1. We particularly thank our INUIT partners for fruitful collaboration and sharing of ideas and IN samples.

  7. MODIS Validation, Data Merger and Other Activities Accomplished by the SIMBIOS Project: 2002-2003

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; McClain, Charles R.

    2003-01-01

    The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, satellite data processing, and data product validation. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report focuses on the SIMBIOS Project s efforts in support of the Moderate-Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra platform (similar evaluations of MODIS/Aqua are underway). This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.

  8. Design and fabrication of optical homogenizer with micro structure by injection molding process

    NASA Astrophysics Data System (ADS)

    Chen, C.-C. A.; Chang, S.-W.; Weng, C.-J.

    2008-08-01

    This paper is to design and fabricate an optical homogenizer with hybrid design of collimator, toroidal lens array, and projection lens for beam shaping of Gaussian beam into uniform cylindrical beam. TracePro software was used to design the geometry of homogenizer and simulation of injection molding was preceded by Moldflow MPI to evaluate the mold design for injection molding process. The optical homogenizer is a cylindrical part with thickness 8.03 mm and diameter 5 mm. The micro structure of toroidal array has groove height designed from 12 μm to 99 μm. An electrical injection molding machine and PMMA (n= 1.4747) were selected to perform the experiment. Experimental results show that the optics homogenizer has achieved the transfer ratio of grooves (TRG) as 88.98% and also the optical uniformity as 68% with optical efficiency as 91.88%. Future study focuses on development of an optical homogenizer for LED light source.

  9. Imaging with New Classic and Vision at the NPOI

    NASA Astrophysics Data System (ADS)

    Jorgensen, Anders

    2018-04-01

    The Navy Precision Optical Interferometer (NPOI) is unique among interferometric observatories for its ability to position telescopes in an equally-spaced array configuration. This configuration is optimal for interferometric imaging because it allows the use of bootstrapping to track fringes on long baselines with signal-to-noise ratio less than one. When combined with coherent integration techniques this can produce visibilities with acceptable SNR on baselines long enough to resolve features on the surfaces of stars. The stellar surface imaging project at NPOI combines the bootstrapping array configuration of the NPOI array, real-time fringe tracking, baseline- and wavelength bootstrapping with Earth rotation to provide dense coverage in the UV plane at a wide range of spatial frequencies. In this presentation, we provide an overview of the project and an update of the latest status and results from the project.

  10. Use of Geodetic Surveys of Leveling Lines and Dry Tilt Arrays to Study Faults and Volcanoes in Undergraduate Field Geophysics Classes

    NASA Astrophysics Data System (ADS)

    Polet, J.; Alvarez, K.; Elizondo, K.

    2017-12-01

    In the early 1980's and 1990's numerous leveling lines and dry tilt arrays were installed throughout Central and Southern California by United States Geological Survey scientists and other researchers (e.g. Sylvester, 1985). These lines or triangular arrays of geodetic monuments commonly straddle faults or have been installed close to volcanic areas, where significant motion is expected over relatively short time periods. Over the past year, we have incorporated geodetic surveys of these arrays as part of our field exercises in undergraduate and graduate level classes on topics such as shallow subsurface geophysics and field geophysics. In some cases, the monuments themselves first had to be located based on only limited information, testing students' Brunton use and map reading skills. Monuments were then surveyed using total stations and global navigation satellite system (GNSS) receivers, using a variety of experimental procedures. The surveys were documented with tables, photos, maps and graphs in field reports, as well as in wiki pages created by student groups for a geophysics field class this June. The measurements were processed by the students and compared with similar data from surveys conducted soon after installation of the arrays, to analyze the deformation that occurred over the last few decades. The different geodetic techniques were also compared and an error analysis was conducted. The analysis and processing of these data challenged and enhanced students' quantitative literacy and technology skills. The final geodetic measurements are being incorporated into several senior and MSc thesis projects. Further surveys are planned for additional classes, in topics that could include seismology, geodesy, volcanology and global geophysics. We are also considering additional technologies, such as structure from motion (SfM) photogrammetry.

  11. Mechanically latchable tiltable platform for forming micromirrors and micromirror arrays

    DOEpatents

    Garcia, Ernest J [Albuquerque, NM; Polosky, Marc A [Tijeras, NM; Sleefe, Gerard E [Cedar Crest, NM

    2006-12-12

    A microelectromechanical (MEM) apparatus is disclosed which includes a platform that can be electrostatically tilted from being parallel to a substrate on which the platform to being tilted at an angle of 1 20 degrees with respect to the substrate. Once the platform has been tilted to a maximum angle of tilt, the platform can be locked in position using an electrostatically-operable latching mechanism which engages a tab protruding below the platform. The platform has a light-reflective upper surface which can be optionally coated to provide an enhanced reflectivity and form a micromirror. An array of such micromirrors can be formed on a common substrate for applications including optical switching (e.g. for fiber optic communications), optical information processing, image projection displays or non-volatile optical memories.

  12. System engineering and science projects: lessons from MeerKAT

    NASA Astrophysics Data System (ADS)

    Kapp, Francois

    2016-08-01

    The Square Kilometre Array (SKA) is a large science project planning to commence construction of the world's largest Radio Telescope after 2018. MeerKAT is one of the precursor projects to the SKA, based on the same site that will host the SKA Mid array in the central Karoo area of South Africa. From the perspective of signal processing hardware development, we analyse the challenges that MeerKAT encountered and extrapolate them to SKA in order to prepare the System Engineering and Project Management methods that could contribute to a successful completion of SKA. Using the MeerKAT Digitiser, Correlator/Beamformer and Time and Frequency Reference Systems as an example, we will trace the risk profile and subtle differences in engineering approaches of these systems over time and show the effects of varying levels of System Engineering rigour on the evolution of their risk profiles. It will be shown that the most rigorous application of System Engineering discipline resulted in the most substantial reduction in risk over time. Since the challenges faced by SKA are not limited to that of MeerKAT, we also look into how that translates to a system development where there is substantial complexity in both the created system as well as the creating system. Since the SKA will be designed and constructed by consortia made up from the ten member countries, there are many additional complexities to the organisation creating the system - a challenge the MeerKAT project did not encounter. Factors outside of engineering, for instance procurement models and political interests, also play a more significant role, and add to the project risks of SKA when compared to MeerKAT.

  13. Brazilian Decimetric Array (BDA) project - Phase II

    NASA Astrophysics Data System (ADS)

    Faria, C.; Stephany, S.; Sawant, H. S.; Cecatto, J. R.; Fernandes, F. C. R.

    2010-02-01

    The configuration of the second phase of the Brazilian Decimetric Array (BDA), installed at Cachoeira Paulista, Brazil (Longitude 45° 0‧ 20″ W and Latitude 22° 41‧ 19″ S), is a T-shaped array where 21 antennas are being added to existing 5 antennas of the first phase. In the third phase, in each arm of the T array, four more antennas will be added and baselines will be increased to 2.5 × 1.25 km in east-west and south directions, respectively. The antennas will be equally spaced at the distances of 250 meters from the central antenna of the T-array. Also, the frequency range will be increased to 1.2-1.7, 2.8 and 5.6 GHz. The Second phase of the BDA should be operational by the middle of 2010 and will operate in the frequency range of (1.2-1.7) GHz for solar and non solar observations. Here, we present the characteristics of the second phase of the BDA project, details of the array configuration, the u-v coverage, the synthesized beam obtained for the proposed configuration.

  14. Plenoptic projection fluorescence tomography.

    PubMed

    Iglesias, Ignacio; Ripoll, Jorge

    2014-09-22

    A new method to obtain the three-dimensional localization of fluorochrome distributions in micrometric samples is presented. It uses a microlens array coupled to the image port of a standard microscope to obtain tomographic data by a filtered back-projection algorithm. Scanning of the microlens array is proposed to obtain a dense data set for reconstruction. Simulation and experimental results are shown and the implications of this approach in fast 3D imaging are discussed.

  15. Application of Seismic Array Processing to Tsunami Early Warning

    NASA Astrophysics Data System (ADS)

    An, C.; Meng, L.

    2015-12-01

    Tsunami wave predictions of the current tsunami warning systems rely on accurate earthquake source inversions of wave height data. They are of limited effectiveness for the near-field areas since the tsunami waves arrive before data are collected. Recent seismic and tsunami disasters have revealed the need for early warning to protect near-source coastal populations. In this work we developed the basis for a tsunami warning system based on rapid earthquake source characterisation through regional seismic array back-projections. We explored rapid earthquake source imaging using onshore dense seismic arrays located at regional distances on the order of 1000 km, which provides faster source images than conventional teleseismic back-projections. We implement this method in a simulated real-time environment, and analysed the 2011 Tohoku earthquake rupture with two clusters of Hi-net stations in Kyushu and Northern Hokkaido, and the 2014 Iquique event with the Earthscope USArray Transportable Array. The results yield reasonable estimates of rupture area, which is approximated by an ellipse and leads to the construction of simple slip models based on empirical scaling of the rupture area, seismic moment and average slip. The slip model is then used as the input of the tsunami simulation package COMCOT to predict the tsunami waves. In the example of the Tohoku event, the earthquake source model can be acquired within 6 minutes from the start of rupture and the simulation of tsunami waves takes less than 2 min, which could facilitate a timely tsunami warning. The predicted arrival time and wave amplitude reasonably fit observations. Based on this method, we propose to develop an automatic warning mechanism that provides rapid near-field warning for areas of high tsunami risk. The initial focus will be Japan, Pacific Northwest and Alaska, where dense seismic networks with the capability of real-time data telemetry and open data accessibility, such as the Japanese HiNet (>800 instruments) and the Earthscope USArray Transportable Array (~400 instruments), are established.

  16. Proposed biomimetic molecular sensor array for astrobiology applications

    NASA Astrophysics Data System (ADS)

    Cullen, D. C.; Grant, W. D.; Piletsky, S.; Sims, M. R.

    2001-08-01

    A key objective of future astrobiology lander missions, e.g. to Mars and Europa, is the detection of biomarkers - molecules whose presence indicates the existence of either current or extinct life. To address limitations of current analytical methods for biomarker detection, we describe the methodology of a new project for demonstration of a robust molecular-recognition sensor array for astrobiology biomarkers. The sensor array will be realised by assembling components that have been demonstrated individually in previous or current research projects. The major components are (1) robust artificial molecular receptors comprised of molecular imprinted polymer (MIP) recognition systems and (2) a sensor array comprised of both optical and electrochemical sensor elements. These components will be integrated together using ink-jet printing technology coupled with in situ photo-polymerisation of MIPs. For demonstration, four model biomarkers are chosen as targets and represent various classes of potential biomarkers. Objectives of the proposed work include (1) demonstration of practical proof-of-concept, (2) identify areas for further development and (3) provide performance and design data for follow-up projects leading to astrobiology missions.

  17. Laser diode arrays for naval reconnaissance

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Crosby, Frank J.; Petee, Danny A.; Suiter, Harold R.; Witherspoon, Ned H.

    2003-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) Project has demonstrated a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). Historically, optical aerial detection of minefields has primarily been limited to daytime operations but LDAs promise compact and efficient lighting to allow for enhanced reconnaissance operations for future mine detection systems. When combined with high-resolution intensified imaging systems, LDAs can illuminate otherwise unseen areas. Future wavelength options will open the way for active multispectral imaging with LDAs. The Coastal Systems Station working for the Office of Naval Research on the ALRT project has designed, developed, integrated, and tested both prototype and commercial arrays from a Cessna airborne platform. Detailed test results show the ability to detect several targets of interest in a variety of background conditions. Initial testing of the prototype arrays, reported on last year, was completed and further investigations of the commercial versions were performed. Polarization-state detection studies were performed, and advantageous properties of the source-target-sensor geometry noted. Current project plans are to expand the field-of-view coverage for Naval exercises in the summer of 2003. This paper describes the test collection, data library products, array information, on-going test analysis results, and future planned testing of the LDAs.

  18. Design of a portable noninvasive photoacoustic glucose monitoring system integrated laser diode excitation with annular array detection

    NASA Astrophysics Data System (ADS)

    Zeng, Lvming; Liu, Guodong; Yang, Diwu; Ren, Zhong; Huang, Zhen

    2008-12-01

    A near-infrared photoacoustic glucose monitoring system, which is integrated dual-wavelength pulsed laser diode excitation with eight-element planar annular array detection technique, is designed and fabricated during this study. It has the characteristics of nonivasive, inexpensive, portable, accurate location, and high signal-to-noise ratio. In the system, the exciting source is based on two laser diodes with wavelengths of 905 nm and 1550 nm, respectively, with optical pulse energy of 20 μJ and 6 μJ. The laser beam is optically focused and jointly projected to a confocal point with a diameter of 0.7 mm approximately. A 7.5 MHz 8-element annular array transducer with a hollow structure is machined to capture photoacoustic signal in backward mode. The captured signals excitated from blood glucose are processed with a synthetic focusing algorithm to obtain high signal-to-noise ratio and accurate location over a range of axial detection depth. The custom-made transducer with equal area elements is coaxially collimated with the laser source to improve the photoacoustic excite/receive efficiency. In the paper, we introduce the photoacoustic theory, receive/process technique, and design method of the portable noninvasive photoacoustic glucose monitoring system, which can potentially be developed as a powerful diagnosis and treatment tool for diabetes mellitus.

  19. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  20. Sweetwater, Texas Large N Experiment

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.

    2015-12-01

    From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.

  1. Observation management challenges of the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Bridger, Alan; Williams, Stewart J.; Nicol, Mark; Klaassen, Pamela; Thompson, Roger S.; Knapic, Cristina; Jerse, Giovanna; Orlati, Andrea; Messina, Marco; Valame, Snehal

    2016-07-01

    The Square Kilometre Array (SKA) will be the world's most advanced radio telescope, designed to explore some of the biggest questions in astronomy today, such as the epoch of re-ionization, the nature of gravity and the origins of cosmic magnetism. SKA1, the first phase of SKA construction, is currently being designed by a large team of experts world-wide. SKA1 comprises two telescopes: a 200-element dish interferometer in South Africa and a 130000-element dipole antenna aperture array in Australia. To enable the ground-breaking science of the SKA an advanced Observation Management system is required to support both the needs of the astronomical community users and the SKA Observatory staff. This system will ensure that the SKA realises its scientiffc aims and achieves optimal scientific throughput. This paper provides an overview of the design of the system that will accept proposals from SKA users, and result in the execution of the scripts that will obtain science data, taking in the stages of detailed preparation, planning and scheduling of the observations and onwards tracking. It describes the unique challenges of the differing requirements of two telescopes, one of which is very much a software telescope, including the need to schedule the data processing as well as the acquisition, and to react to both internally and externally discovered transient events. The scheduling of multiple parallel sub-array use is covered, along with the need to handle commensal observing - using the same data stream to satisfy the science goals of more than one project simultaneously. An international team from academia and industry, drawing on expertise and experience from previous telescope projects, the virtual observatory and comparable problems in industry, has been assembled to design the solution to this challenging but exciting problem.

  2. Improving back projection imaging with a novel physics-based aftershock calibration approach: A case study of the 2015 Gorkha earthquake

    NASA Astrophysics Data System (ADS)

    Meng, Lingsen; Zhang, Ailin; Yagi, Yuji

    2016-01-01

    The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9000 people was the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process was imaged by teleseismic back projections (BP) of seismograms recorded by three, large regional networks in Australia, North America, and Europe. The source images of all three arrays reveal a unilateral eastward rupture; however, the propagation directions and speeds differ significantly between the arrays. To understand the spatial uncertainties of the BP analyses, we analyze four moderate size aftershocks recorded by all three arrays exactly as had been conducted for the main shock. The apparent source locations inferred from BPs are systematically biased from the catalog locations, as a result of a slowness error caused by three-dimensional Earth structures. We introduce a physics-based slowness correction that successfully mitigates the source location discrepancies among the arrays. Our calibrated BPs are found to be mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s, localized in a relatively narrow and deep swath along the downdip edge of the locked Himalayan thrust zone. We find that the 2015 Gorkha earthquake was a localized rupture that failed to break the entire Himalayan décollement to the surface, which can be regarded as an intermediate event during the interseismic period of larger Himalayan ruptures that break the whole seismogenic zone width. Thus, our physics-based slowness correction is an important technical improvement of BP, mitigating spatial uncertainties and improving the robustness of single and multiarray studies.

  3. Project Cyclops: a Design Study of a System for Detecting Extraterrestrial Intelligent Life

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The requirements in hardware, manpower, time and funding to conduct a realistic effort aimed at detecting the existence of extraterrestrial intelligent life are examined. The methods used are limited to present or near term future state-of-the-art techniques. Subjects discussed include: (1) possible methods of contact, (2) communication by electromagnetic waves, (3) antenna array and system facilities, (4) antenna elements, (5) signal processing, (6) search strategy, and (7) radio and radar astronomy.

  4. Specification and Design Methodologies for High-Speed Fault-Tolerant Array Algorithms and Structures for VLSI.

    DTIC Science & Technology

    1987-06-01

    evaluation and chip layout planning for VLSI digital systems. A high-level applicative (functional) language, implemented at UCLA, allows combining of...operating system. 2.1 Introduction The complexity of VLSI requires the application of CAD tools at all levels of the design process. In order to be...effective, these tools must be adaptive to the specific design. In this project we studied a design method based on the use of applicative languages

  5. Low Angle Silicon Sheet Growth. Large Area Silicon Sheet Task Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The results of a program to demonstrate the feasibility of a low angle silicon ribbon growth process are described. Twenty-six experimental runs were performed. Ribbons were grown at pull rates from 5 to 68 cm/min. Ribbon lengths up to 74 cm were grown while widths varied from 5 to 25 mm. Thicknesses varied from 0.6 to 2.5 mm, with typical values of about 1 mm.

  6. System engineering of the Atacama Large Millimeter/submillimeter Array

    NASA Astrophysics Data System (ADS)

    Bhatia, Ravinder; Marti, Javier; Sugimoto, Masahiro; Sramek, Richard; Miccolis, Maurizio; Morita, Koh-Ichiro; Arancibia, Demián.; Araya, Andrea; Asayama, Shin'ichiro; Barkats, Denis; Brito, Rodrigo; Brundage, William; Grammer, Wes; Haupt, Christoph; Kurlandczyk, Herve; Mizuno, Norikazu; Napier, Peter; Pizarro, Eduardo; Saini, Kamaljeet; Stahlman, Gretchen; Verzichelli, Gianluca; Whyborn, Nick; Yagoubov, Pavel

    2012-09-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) will be composed of 66 high precision antennae located at 5000 meters altitude in northern Chile. This paper will present the methodology, tools and processes adopted to system engineer a project of high technical complexity, by system engineering teams that are remotely located and from different cultures, and in accordance with a demanding schedule and within tight financial constraints. The technical and organizational complexity of ALMA requires a disciplined approach to the definition, implementation and verification of the ALMA requirements. During the development phase, System Engineering chairs all technical reviews and facilitates the resolution of technical conflicts. We have developed analysis tools to analyze the system performance, incorporating key parameters that contribute to the ultimate performance, and are modeled using best estimates and/or measured values obtained during test campaigns. Strict tracking and control of the technical budgets ensures that the different parts of the system can operate together as a whole within ALMA boundary conditions. System Engineering is responsible for acceptances of the thousands of hardware items delivered to Chile, and also supports the software acceptance process. In addition, System Engineering leads the troubleshooting efforts during testing phases of the construction project. Finally, the team is conducting System level verification and diagnostics activities to assess the overall performance of the observatory. This paper will also share lessons learned from these system engineering and verification approaches.

  7. Efficient processing of two-dimensional arrays with C or C++

    USGS Publications Warehouse

    Donato, David I.

    2017-07-20

    Because fast and efficient serial processing of raster-graphic images and other two-dimensional arrays is a requirement in land-change modeling and other applications, the effects of 10 factors on the runtimes for processing two-dimensional arrays with C and C++ are evaluated in a comparative factorial study. This study’s factors include the choice among three C or C++ source-code techniques for array processing; the choice of Microsoft Windows 7 or a Linux operating system; the choice of 4-byte or 8-byte array elements and indexes; and the choice of 32-bit or 64-bit memory addressing. This study demonstrates how programmer choices can reduce runtimes by 75 percent or more, even after compiler optimizations. Ten points of practical advice for faster processing of two-dimensional arrays are offered to C and C++ programmers. Further study and the development of a C and C++ software test suite are recommended.Key words: array processing, C, C++, compiler, computational speed, land-change modeling, raster-graphic image, two-dimensional array, software efficiency

  8. Primary mapping and stratigraphic data and field methods for the Snowmastodon Project

    USGS Publications Warehouse

    Lucking, Carol; Johnson, Kirk R.; Pigati, Jeffery S.; Miller, Ian

    2012-01-01

    During the Snowmastodon Project, many different people collected data for a wide array of purposes under a variety of conditions. Early in the process and in an attempt to provide project-wide consistency, Kirk Johnson appointed Carol Lucking as the project’s data manager both in the field and the lab. She was responsible for using GIS to create maps on an ongoing basis throughout the project. Jeff Pigati agreed to measure stratigraphic sections and coordinate the collection of various nonvertebrate samples to make sure that all resulting data could be plotted on common diagrams. Kirk Johnson was onsite for the entire project and measured the basin margin stratigraphy on a daily basis as it was destroyed by the digging teams. In the fall of 2010, we treated the upper part of the site (which included discrete excavations for the mammoth, deer, and bison skeletons) as an archaeological excavation and the lower part of the site (which contained isolated mastodon, ground sloth, and bison bones) as a construction salvage site.

  9. Software use cases to elicit the software requirements analysis within the ASTRI project

    NASA Astrophysics Data System (ADS)

    Conforti, Vito; Antolini, Elisa; Bonnoli, Giacomo; Bruno, Pietro; Bulgarelli, Andrea; Capalbi, Milvia; Fioretti, Valentina; Fugazza, Dino; Gardiol, Daniele; Grillo, Alessandro; Leto, Giuseppe; Lombardi, Saverio; Lucarelli, Fabrizio; Maccarone, Maria Concetta; Malaguti, Giuseppe; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Schwarz, Joseph; Scuderi, Salvatore; Tanci, Claudio; Tosti, Gino; Trifoglio, Massimo; Vercellone, Stefano; Zanmar Sanchez, Ricardo

    2016-07-01

    The Italian National Institute for Astrophysics (INAF) is leading the Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI) project whose main purpose is the realization of small size telescopes (SST) for the Cherenkov Telescope Array (CTA). The first goal of the ASTRI project has been the development and operation of an innovative end-to-end telescope prototype using a dual-mirror optical configuration (SST-2M) equipped with a camera based on silicon photo-multipliers and very fast read-out electronics. The ASTRI SST-2M prototype has been installed in Italy at the INAF "M.G. Fracastoro" Astronomical Station located at Serra La Nave, on Mount Etna, Sicily. This prototype will be used to test several mechanical, optical, control hardware and software solutions which will be used in the ASTRI mini-array, comprising nine telescopes proposed to be placed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort led by INAF and carried out by Italy, Brazil and South-Africa. We present here the use cases, through UML (Unified Modeling Language) diagrams and text details, that describe the functional requirements of the software that will manage the ASTRI SST-2M prototype, and the lessons learned thanks to these activities. We intend to adopt the same approach for the Mini Array Software System that will manage the ASTRI miniarray operations. Use cases are of importance for the whole software life cycle; in particular they provide valuable support to the validation and verification activities. Following the iterative development approach, which breaks down the software development into smaller chunks, we have analysed the requirements, developed, and then tested the code in repeated cycles. The use case technique allowed us to formalize the problem through user stories that describe how the user procedurally interacts with the software system. Through the use cases we improved the communication among team members, fostered common agreement about system requirements, defined the normal and alternative course of events, understood better the business process, and defined the system test to ensure that the delivered software works properly. We present a summary of the ASTRI SST-2M prototype use cases, and how the lessons learned can be exploited for the ASTRI mini-array proposed for the CTA Observatory.

  10. Phased Array Mirror Extendible Large Aperture (PAMELA) Optics Adjustment

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Scientists at Marshall's Adaptive Optics Lab demonstrate the Wave Front Sensor alignment using the Phased Array Mirror Extendible Large Aperture (PAMELA) optics adjustment. The primary objective of the PAMELA project is to develop methods for aligning and controlling adaptive optics segmented mirror systems. These systems can be used to acquire or project light energy. The Next Generation Space Telescope is an example of an energy acquisition system that will employ segmented mirrors. Light projection systems can also be used for power beaming and orbital debris removal. All segmented optical systems must be adjusted to provide maximum performance. PAMELA is an on going project that NASA is utilizing to investigate various methods for maximizing system performance.

  11. The research on multi-projection correction based on color coding grid array

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu

    2017-10-01

    There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.

  12. Micromolded thick PZT sol gel composite structures for ultrasound transducer devices operating at high frequencies

    NASA Astrophysics Data System (ADS)

    Pang, Guofeng

    The objective of this work has been to design and develop a micromolding technique useful for batch fabrication to microfabricate 3D ceramic structures for device purposes using a sol gel composite processing technique and deep photolithography (UV LIGA). These structures may be the elements of ultrasound transducers, the structures associated with electronic packaging, or microstructures for microfluidic applications. To demonstrate the technique, the project has focused on the design and fabrication of annular and linear arrays for high frequency (>20 MHz) ultrasound imaging applications, particularly where an electronically steered imaging modality is employed. Other typical micromolded structures have been demonstrated to show the potential for micromolding. The transferability of the technique for industrial purposes is proposed. Using a sol gel composite process, the critical components in this technique are mold making, mold filling, material-processing, demolding, top electrode and essential material characterization. Two types of molds have been created using UV LIGA and/or electroplating. A purely organic mold made of Su-8 epoxy based photo-resist has shown tremendous performance for micromolding. The transducer packaging process has also been designed and evaluated at the laboratory level. A Su-8 micro bridge and bond pad has been used for wire bonding purposes. A 5-element annular array transducer has been fabricated by this technique and fully packaged. The micromolded piezoceramic structures have been characterized. The pulse echo performance of each element and the focusing performance of 5 elements of a packaged transducer array have been evaluated using a coaxial cable and a cable delay system.

  13. Low cost solar array project production process and equipment task: A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Several major modifications were made to the design presented at the PDR. The frame was deleted in favor of a "frameless" design which will provide a substantially improved cell packing factor. Potential shaded cell damage resulting from operation into a short circuit can be eliminated by a change in the cell series/parallel electrical interconnect configuration. The baseline process sequence defined for the MEPSON was refined and equipment design and specification work was completed. SAMICS cost analysis work accelerated, format A's were prepared and computer simulations completed. Design work on the automated cell interconnect station was focused on bond technique selection experiments.

  14. Fine Collimator Grids Using Silicon Metering Structure

    NASA Technical Reports Server (NTRS)

    Eberhard, Carol

    1998-01-01

    The project Fine Collimator Grids Using Silicon Metering Structure was managed by Dr. Carol Eberhard of the Electromagnetic Systems & Technology Department (Space & Technology Division) of TRW who also wrote this final report. The KOH chemical etching of the silicon wafers was primarily done by Dr. Simon Prussin of the Electrical Engineering Department of UCLA at the laboratory on campus. Moshe Sergant of the Superconductor Electronics Technology Department (Electronics Systems & Technology Division) of TRW and Dr. Prussin were instrumental in developing the low temperature silicon etching processes. Moshe Sergant and George G. Pinneo of the Microelectronics Production Department (Electronics Systems & Technology Division) of TRW were instrumental in developing the processes for filling the slots etched in the silicon wafers with metal-filled materials. Their work was carried out in the laboratories at the Space Park facility. Moshe Sergant is also responsible for the impressive array of Scanning Electron Microscope images with which the various processes were monitored. Many others also contributed their time and expertise to the project. I wish to thank them all.

  15. Exploring the performance of large-N radio astronomical arrays

    NASA Astrophysics Data System (ADS)

    Lonsdale, Colin J.; Doeleman, Sheperd S.; Cappallo, Roger J.; Hewitt, Jacqueline N.; Whitney, Alan R.

    2000-07-01

    New radio telescope arrays are currently being contemplated which may be built using hundreds, or even thousands, of relatively small antennas. These include the One Hectare Telescope of the SETI Institute and UC Berkeley, the LOFAR telescope planned for the New Mexico desert surrounding the VLA, and possibly the ambitious international Square Kilometer Array (SKA) project. Recent and continuing advances in signal transmission and processing technology make it realistic to consider full cross-correlation of signals from such a large number of antennas, permitting the synthesis of an aperture with much greater fidelity than in the past. In principle, many advantages in instrumental performance are gained by this 'large-N' approach to the design, most of which require the development of new algorithms. Because new instruments of this type are expected to outstrip the performance of current instruments by wide margins, much of their scientific productivity is likely to come from the study of objects which are currently unknown. For this reason, instrumental flexibility is of special importance in design studies. A research effort has begun at Haystack Observatory to explore large-N performance benefits, and to determine what array design properties and data reduction algorithms are required to achieve them. The approach to these problems, involving a sophisticated data simulator, algorithm development, and exploration of array configuration parameter space, will be described, and progress to date will be summarized.

  16. Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1983-11-15

    A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

  17. Operation and performance of the EEE network array for the detection of cosmic rays

    NASA Astrophysics Data System (ADS)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccia, E.; Corvaglia, A.; De Gruttola, D.; De Pasquale, S.; Di Giovanni, A.; D'Incecco, M.; Dreucci, M.; Fabbri, F. L.; Fattibene, E.; Ferraro, A.; Frolov, V.; Galeotti, P.; Garbini, M.; Gemme, G.; Gnesi, I.; Grazzi, S.; Gustavino, C.; Hatzifotiadou, D.; La Rocca, P.; Licciulli, F.; Maggiora, A.; Maragoto Rodriguez, O.; Maron, G.; Martelli, B.; Mazziotta, M. N.; Miozzi, S.; Nania, R.; Noferini, F.; Nozzoli, F.; Panareo, M.; Panetta, M. P.; Paoletti, R.; Park, W.; Perasso, L.; Pilo, F.; Piragino, G.; Riggi, F.; Righini, G. C.; Sartorelli, G.; Scapparone, E.; Schioppa, M.; Scribano, A.; Selvi, M.; Serci, S.; Siddi, E.; Squarcia, S.; Stori, L.; Taiuti, M.; Terreni, G.; Visnyei, O. B.; Vistoli, M. C.; Votano, L.; Williams, M. C. S.; Zani, S.; Zichichi, A.; Zuyeuski, R.

    2017-02-01

    The EEE (Extreme Energy Events) Project is an experiment for the detection of cosmic ray muons by means of a sparse array of telescopes, each made of three Multigap Resistive Plate Chambers (MRPC), distributed over all the Italian territory and at CERN. The main scientific goals of the Project are the investigation of the properties of the local muon flux, the detection of Extensive Air Showers (EAS) and the search for long-distance correlations between far telescopes. The Project is also characterized by a strong educational and outreach aspect since the telescopes are managed by teams of students and teachers who had previously constructed them at CERN. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array, which currently consists of more than 50 telescopes, is also presented by showing the most recent physics results.

  18. DALiuGE: A graph execution framework for harnessing the astronomical data deluge

    NASA Astrophysics Data System (ADS)

    Wu, C.; Tobar, R.; Vinsen, K.; Wicenec, A.; Pallot, D.; Lao, B.; Wang, R.; An, T.; Boulton, M.; Cooper, I.; Dodson, R.; Dolensky, M.; Mei, Y.; Wang, F.

    2017-07-01

    The Data Activated Liu Graph Engine - DALiuGE- is an execution framework for processing large astronomical datasets at a scale required by the Square Kilometre Array Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipelines consisting of both datasets and algorithmic components and an implementation run-time to execute such pipelines on distributed resources. By mapping the logical view of a pipeline to its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing them to collectively optimise large-scale data processing solutions in a coherent manner. The execution in DALiuGE is data-activated, where each individual data item autonomously triggers the processing on itself. Such decentralisation also makes the execution framework very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the world. DALiuGE has been used in production for reducing interferometry datasets from the Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph; and is being developed as the execution framework prototype for the Science Data Processor (SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a technical overview of DALiuGE and discusses case studies from the CHILES and MUSER projects that use DALiuGE to execute production pipelines. In a companion paper, we provide in-depth analysis of DALiuGE's scalability to very large numbers of tasks on two supercomputing facilities.

  19. Final Technical Report, City of Brockton Solar Brightfield: Deploying a Solar Array on a Brockton Brownfield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribeiro, Lori

    The City of Brockton, Massachusetts sought to install New England’s largest solar array at a remediated brownfield site on Grove Street. The 425-kilowatt solar photovoltaic array – or “Brightfield” – was installed in an urban park setting along with interpretive displays to maximize the educational opportunities. The “Brightfield” project included 1,395 310-Watt solar panels connected in “strings” that span the otherwise unusable 3.7-acre site. The project demonstrated that it is both technically and economically feasible to install utility scale solar photovoltaics on a capped landfill site. The US Department of Energy conceived the Brightfields program in 2000, and Brockton’s Brightfieldmore » is the largest such installation nationwide. Brockton’s project demonstrated that while it was both technically and economically feasible to perform such a project, the implementation was extremely challenging due to the state policy barriers, difficulty obtaining grant funding, and level of sophistication required to perform the financing and secure required state approvals. This demonstration project can be used as a model for other communities that wish to implement “Brownfields to Brightfields” projects; 2) implementing utility scale solar creates economies of scale that can help to decrease costs of photovoltaics; 3) the project is an aesthetic, environmental, educational and economic asset for the City of Brockton.« less

  20. Microwave Readout Techniques for Very Large Arrays of Nuclear Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullom, Joel

    During this project, we transformed the use of microwave readout techniques for nuclear sensors from a speculative idea to reality. The core of the project consisted of the development of a set of microwave electronics able to generate and process large numbers of microwave tones. The tones can be used to probe a circuit containing a series of electrical resonances whose frequency locations and widths depend on the state of a network of sensors, with one sensor per resonance. The amplitude and phase of the tones emerging from the circuit are processed by the same electronics and are reduced tomore » the sensor signals after two demodulation steps. This approach allows a large number of sensors to be interrogated using a single pair of coaxial cables. We successfully developed hardware, firmware, and software to complete a scalable implementation of these microwave control electronics and demonstrated their use in two areas. First, we showed that the electronics can be used at room temperature to read out a network of diverse sensor types relevant to safeguards or process monitoring. Second, we showed that the electronics can be used to measure large numbers of ultrasensitive cryogenic sensors such as gamma-ray microcalorimeters. In particular, we demonstrated the undegraded readout of up to 128 channels and established a path to even higher multiplexing factors. These results have transformed the prospects for gamma-ray spectrometers based on cryogenic microcalorimeter arrays by enabling spectrometers whose collecting areas and count rates can be competitive with high purity germanium but with 10x better spectral resolution.« less

  1. Imaging a Fault Boundary System Using Controlled-Source Data Recorded on a Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Paschall, O. C.; Chen, T.; Snelson, C. M.; Ralston, M. D.; Rowe, C. A.

    2016-12-01

    The Source Physics Experiment (SPE) is a series of chemical explosions conducted in southern Nevada with an objective of improving nuclear explosion monitoring. Five chemical explosions have occurred thus far in granite, the most recent being SPE-5 on April 26, 2016. The SPE series will improve our understanding of seismic wave propagation (primarily S-waves) due to explosions, and allow better discrimination of background seismicity such as earthquakes and explosions. The Large-N portion of the project consists of 996 receiver stations. Half of the stations were vertical component and the other half were three-component geophones. All receivers were deployed for 30 days and recorded the SPE-5 shot, earthquakes, noise, and an additional controlled-source: a large weight-drop, which is a 13,000 kg modified industrial pile driver. In this study, we undertake reflection processing of waveforms from the weight-drop, as recorded by a line of sensors extracted from the Large-N array. The profile is 1.2 km in length with 25 m station spacing and 100 m shot point spacing. This profile crosses the Boundary Fault that separates granite body and an alluvium basin, a strong acoustic impedance boundary that scatters seismic energy into S-waves and coda. The data were processed with traditional seismic reflection processing methods that include filtering, deconvolution, and stacking. The stack will be used to extract the location of the splays of the Boundary Fault and provide geologic constraints to the modeling and simulation teams within the SPE project.

  2. Decision making and senior management: the implementation of change projects covering clinical management in SUS hospitals.

    PubMed

    Pacheco, José Márcio da Cunha; Gomes, Romeu

    2016-08-01

    This paper analyses the decision making process for senior management in public hospitals that are a part of the National Health Service in Brazil (hereafter SUS) in relation to projects aimed at changing clinical management. The methodological design of this study is qualitative in nature taking a hermeneutics-dialectics perspective in terms of results. Hospital directors noted that clinical management projects changed the state of hospitals through: improving their organizations, mobilizing their staff in order to increase a sense of order and systemizing actions and available resources. Technical rationality was the principal basis used in the decision making process for managers. Due to the reality of many hospitals having fragmented organizations, this fact impeded the use of aspects related to rationality, such as economic and financial factors in the decision making process. The incremental model and general politics also play a role in this area. We concluded that the decision making process embraces a large array of factors including rational aspects such as the use of management techniques and the ability to analyze, interpret and summarize. It also incorporates subjective elements such as how to select values and dealing with people's working experiences. We recognized that management problems are wide in scope, ambiguous, complex and do not come with a lot of structure in practice.

  3. Cost study of solar cell space power systems

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1972-01-01

    Historical costs for solar cell space power systems were evaluated. The study covered thirteen missions that represented a broad cross section of flight projects over the past decade. Fully burdened costs in terms of 1971 dollars are presented for the system and the solar array. The costs correlate reasonably well with array area and do not increase in proportion to array area. The trends for array costs support the contention that solar cell and module standardization reduce costs.

  4. A miniature electronic nose system based on an MWNT-polymer microsensor array and a low-power signal-processing chip.

    PubMed

    Chiu, Shih-Wen; Wu, Hsiang-Chiu; Chou, Ting-I; Chen, Hsin; Tang, Kea-Tiong

    2014-06-01

    This article introduces a power-efficient, miniature electronic nose (e-nose) system. The e-nose system primarily comprises two self-developed chips, a multiple-walled carbon nanotube (MWNT)-polymer based microsensor array, and a low-power signal-processing chip. The microsensor array was fabricated on a silicon wafer by using standard photolithography technology. The microsensor array comprised eight interdigitated electrodes surrounded by SU-8 "walls," which restrained the material-solvent liquid in a defined area of 650 × 760 μm(2). To achieve a reliable sensor-manufacturing process, we used a two-layer deposition method, coating the MWNTs and polymer film as the first and second layers, respectively. The low-power signal-processing chip included array data acquisition circuits and a signal-processing core. The MWNT-polymer microsensor array can directly connect with array data acquisition circuits, which comprise sensor interface circuitry and an analog-to-digital converter; the signal-processing core consists of memory and a microprocessor. The core executes the program, classifying the odor data received from the array data acquisition circuits. The low-power signal-processing chip was designed and fabricated using the Taiwan Semiconductor Manufacturing Company 0.18-μm 1P6M standard complementary metal oxide semiconductor process. The chip consumes only 1.05 mW of power at supply voltages of 1 and 1.8 V for the array data acquisition circuits and the signal-processing core, respectively. The miniature e-nose system, which used a microsensor array, a low-power signal-processing chip, and an embedded k-nearest-neighbor-based pattern recognition algorithm, was developed as a prototype that successfully recognized the complex odors of tincture, sorghum wine, sake, whisky, and vodka.

  5. An Active K-Band Receive Slot Array for Mobile Satellite Communications

    NASA Technical Reports Server (NTRS)

    Tulintseff, A. N.; Lee, K. A.; Sukamto, L. M.; Chew, W.

    1994-01-01

    An active receive slot array has been developed for operation in the downlink frequency band, 19.914-20.064 GHz, of NASA's Advanced Communication Technology Satellite (ACTS) for the ACTS Mobile Terminal (AMT) project.

  6. Technology Development for AGIS (Advanced Gamma-ray Imaging System).

    NASA Astrophysics Data System (ADS)

    Krennrich, Frank

    2008-04-01

    Next-generation arrays of atmospheric Cherenkov telescopes are at the conceptual planning stage and each could consist of on the order of 100 telescopes. The two currently-discussed projects AGIS in the US and CTA in Europe, have the potential to achieve an order of magnitude better sensitivity for Very High Energy (VHE) gamma-ray observations over state-to-the-art observatories. These projects require a substantial increase in scale from existing 4-telescope arrays such as VERITAS and HESS. The optimization of a large array requires exploring cost reduction and research and development for the individual elements while maximizing their performance as an array. In this context, the technology development program for AGIS will be discussed. This includes developing new optical designs, evaluating new types of photodetectors, developing fast trigger systems, integrating fast digitizers into highly-pixilated cameras, and reliability engineering of the individual components.

  7. Silicon material task. Part 3: Low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Roques, R. A.; Coldwell, D. M.

    1977-01-01

    The feasibility of a process for carbon reduction of low impurity silica in a plasma heat source was investigated to produce low-cost solar-grade silicon. Theoretical aspects of the reaction chemistry were studied with the aid of a computer program using iterative free energy minimization. These calculations indicate a threshold temperature exists at 2400 K below which no silicon is formed. The computer simulation technique of molecular dynamics was used to study the quenching of product species.

  8. Scanning Shack-Hartmann wavefront sensor

    NASA Astrophysics Data System (ADS)

    Molebny, Vasyl V.

    2004-09-01

    Criss-crossing of focal images is the cause of a narrow dynamic range in Shack-Hartmann sensors. Practically, aberration range wider than +/-3 diopters can not be measured. A method has been proposed for ophthalmologic applications using a rarefied lenslet array through which a wave front is projected with the successive step-by-step changing of the global tilt. The data acquired in each step are accumulated and processed. In experimental setup, a doubled dynamic range was achieved with four steps of wave front tilting.

  9. Silicon Based Mid Infrared SiGeSn Heterostructure Emitters and Detectors

    DTIC Science & Technology

    2016-05-16

    have investigated the surface plasmon enhancement of the GeSn p-i-n photodiode using gold metal nanostructures. We have conducted numerical...simulation of the plasmonic structure of 2D nano-hole array to tune the surface plasmon resonance into the absorption range of the GeSn active layer. Such a...diode can indeed be enhanced with the plasmonic structure on top. Within the time span of this project, we have completed one iteration of the process

  10. Components, Assembly and Electrochemical Properties of Three-Dimensional Battery Architectures

    DTIC Science & Technology

    2016-03-01

    batteries is directed at our project on 3-D lithium - ion batteries where improvements in materials and fabrication methods are expected to facilitate...reporting period, we focused on new materials and electrode array fabrication processes for 3-D lithium - ion batteries and made substantial progress. In...to facilitate the assembly of a full 3-D lithium - ion battery system. a Pattern silicon dioxide etch I I I I I mask b DRIE etch silicon posts c I I

  11. Earthquake Monitoring with the MyShake Global Smartphone Seismic Network

    NASA Astrophysics Data System (ADS)

    Inbal, A.; Kong, Q.; Allen, R. M.; Savran, W. H.

    2017-12-01

    Smartphone arrays have the potential for significantly improving seismic monitoring in sparsely instrumented urban areas. This approach benefits from the dense spatial coverage of users, as well as from communication and computational capabilities built into smartphones, which facilitate big seismic data transfer and analysis. Advantages in data acquisition with smartphones trade-off with factors such as the low-quality sensors installed in phones, high noise levels, and strong network heterogeneity, all of which limit effective seismic monitoring. Here we utilize network and array-processing schemes to asses event detectability with the MyShake global smartphone network. We examine the benefits of using this network in either triggered or continuous modes of operation. A global database of ground motions measured on stationary phones triggered by M2-6 events is used to establish detection probabilities. We find that the probability of detecting an M=3 event with a single phone located <10 km from the epicenter exceeds 70%. Due to the sensor's self-noise, smaller magnitude events at short epicentral distances are very difficult to detect. To increase the signal-to-noise ratio, we employ array back-projection techniques on continuous data recorded by thousands of phones. In this class of methods, the array is used as a spatial filter that suppresses signals emitted from shallow noise sources. Filtered traces are stacked to further enhance seismic signals from deep sources. We benchmark our technique against traditional location algorithms using recordings from California, a region with large MyShake user database. We find that locations derived from back-projection images of M 3 events recorded by >20 nearby phones closely match the regional catalog locations. We use simulated broadband seismic data to examine how location uncertainties vary with user distribution and noise levels. To this end, we have developed an empirical noise model for the metropolitan Los-Angeles (LA) area. We find that densities larger than 100 stationary phones/km2 are required to accurately locate M 2 events in the LA basin. Given the projected MyShake user distribution, that condition may be met within the next few years.

  12. Imaging of Heterogeneous Structure beneath the Metropolitan Tokyo Area

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Sakai, S.; Kurashimo, E.; Kato, A.; Hagiwara, H.; Kasahara, K.; Tanada, T.; Obara, K.; Hirata, N.

    2009-12-01

    Beneath the metropolitan Tokyo area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. The Dai-Dai-Toku Project revealed the geometry of the upper surface of PSP, and estimated a rupture process and a ground motion of the 1923 Kanto earthquake [Sato et al., 2005]. Hagiwara et al. (2006) estimated the velocity structure of Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the metropolitan Tokyo area including those due to an intra-slab M7+ earthquake. So, we have carried out a 5-year project since 2007, the Special Project for Earthquake Disaster Mitigation in the Metropolitan Tokyo area. Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) of PSP is very important to attain this issue. The core item of this project is the dense seismic array observation in metropolitan area, which is called the MeSO-net (Metropolitan Seismic Observation network). In order to obtain the high resolution images of a velocity structure, it is requested to construct a seismic network with a spacing of 2-5 km. The total number of seismic stations of the MeSO-net will be about 400 and will be deployed in 4 years. We deployed the 178 seismic stations, which construct 5 seismic arrays such as Tsukuba-Fujisawa (TF) array etc., by 2008, and we are now deploying the 45 seismic stations in this year. The MeSO-net data are quasi-real-time transferred to the data center at ERI [Kasahara et al., 2007; Nakagawa et al., 2007]. In this study, we applied the tomography to image the heterogeneous structure under the metropolitan Tokyo area. We selected events from the catalogue by Hagiwara et al. (2006) and merged the new event data observed by MeSO-net with these data. Around the Kanto region there are several seismic explorations using active sources were carried out [Sato et al., 2005; Oikawa et al., 2007]. Since these data may improve the velocity structure in shallower part, we added the arrival time data of these explorations into the dataset. Then, we applied the double-difference tomography method [Zhang and Thurber, 2003] to this dataset and estimated the fine-scale velocity structure. The initial velocity structure is the same in Hagiwara et al. (2006), and the VP/VS ratio is set to 1.73 for all grid nodes. The TF array passes directory above Tokyo and is parallel to Boso peninsula. The depth section of P-wave velocity structure along the TF array clearly shows that thin low-velocity layer which overlies high-velocity layer subducts towards northeast. This low-velocity layer corresponds to the oceanic crust of the subducting PSP. The increase of MeSO-net stations and event data may improve images of heterogeneous structure and contribute the purpose of this special project. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.

  13. The application of Fresnel zone plate based projection in optofluidic microscopy.

    PubMed

    Wu, Jigang; Cui, Xiquan; Lee, Lap Man; Yang, Changhuei

    2008-09-29

    Optofluidic microscopy (OFM) is a novel technique for low-cost, high-resolution on-chip microscopy imaging. In this paper we report the use of the Fresnel zone plate (FZP) based projection in OFM as a cost-effective and compact means for projecting the transmission through an OFM's aperture array onto a sensor grid. We demonstrate this approach by employing a FZP (diameter = 255 microm, focal length = 800 microm) that has been patterned onto a glass slide to project the transmission from an array of apertures (diameter = 1 microm, separation = 10 microm) onto a CMOS sensor. We are able to resolve the contributions from 44 apertures on the sensor under the illumination from a HeNe laser (wavelength = 633 nm). The imaging quality of the FZP determines the effective field-of-view (related to the number of resolvable transmissions from apertures) but not the image resolution of such an OFM system--a key distinction from conventional microscope systems. We demonstrate the capability of the integrated system by flowing the protist Euglena gracilis across the aperture array microfluidically and performing OFM imaging of the samples.

  14. The ASTRI/CTA mini-array software system

    NASA Astrophysics Data System (ADS)

    Tosti, Gino; Schwarz, Joseph; Antonelli, Lucio Angelo; Trifoglio, Massimo; Catalano, Osvaldo; Maccarone, Maria Concetta; Leto, Giuseppe; Gianotti, Fulvio; Canestrari, Rodolfo; Giro, Enrico; Fiorini, Mauro; La Palombara, Nicola; Pareschi, Giovanni; Stringhetti, Luca; Vercellone, Stefano; Conforti, Vito; Tanci, Claudio; Bruno, Pietro; Grillo, Alessandro; Testa, Vincenzo; di Paola, Andrea; Gallozzi, Stefano

    2014-07-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. The main goals of the ASTRI project are the realization of an end-to-end prototype of a Small Size Telescope (SST) for the Cherenkov Telescope Array (CTA) in a dual- mirror configuration (SST-2M) and, subsequently, of a mini-array comprising seven SST-2M telescopes. The mini-array will be placed at the final CTA Southern Site, which will be part of the CTA seed array, around which the whole CTA observatory will be developed. The Mini-Array Software System (MASS) will provide a comprehensive set of tools to prepare an observing proposal, to perform the observations specified therein (monitoring and controlling all the hardware components of each telescope), to analyze the acquired data online and to store/retrieve all the data products to/from the archive. Here we present the main features of the MASS and its first version, to be tested on the ASTRI SST-2M prototype that will be installed at the INAF observing station located at Serra La Nave on Mount Etna in Sicily.

  15. Projection-based estimation and nonuniformity correction of sensitivity profiles in phased-array surface coils.

    PubMed

    Yun, Sungdae; Kyriakos, Walid E; Chung, Jun-Young; Han, Yeji; Yoo, Seung-Schik; Park, Hyunwook

    2007-03-01

    To develop a novel approach for calculating the accurate sensitivity profiles of phased-array coils, resulting in correction of nonuniform intensity in parallel MRI. The proposed intensity-correction method estimates the accurate sensitivity profile of each channel of the phased-array coil. The sensitivity profile is estimated by fitting a nonlinear curve to every projection view through the imaged object. The nonlinear curve-fitting efficiently obtains the low-frequency sensitivity profile by eliminating the high-frequency image contents. Filtered back-projection (FBP) is then used to compute the estimates of the sensitivity profile of each channel. The method was applied to both phantom and brain images acquired from the phased-array coil. Intensity-corrected images from the proposed method had more uniform intensity than those obtained by the commonly used sum-of-squares (SOS) approach. With the use of the proposed correction method, the intensity variation was reduced to 6.1% from 13.1% of the SOS. When the proposed approach was applied to the computation of the sensitivity maps during sensitivity encoding (SENSE) reconstruction, it outperformed the SOS approach in terms of the reconstructed image uniformity. The proposed method is more effective at correcting the intensity nonuniformity of phased-array surface-coil images than the conventional SOS method. In addition, the method was shown to be resilient to noise and was successfully applied for image reconstruction in parallel imaging.

  16. Tensor sufficient dimension reduction

    PubMed Central

    Zhong, Wenxuan; Xing, Xin; Suslick, Kenneth

    2015-01-01

    Tensor is a multiway array. With the rapid development of science and technology in the past decades, large amount of tensor observations are routinely collected, processed, and stored in many scientific researches and commercial activities nowadays. The colorimetric sensor array (CSA) data is such an example. Driven by the need to address data analysis challenges that arise in CSA data, we propose a tensor dimension reduction model, a model assuming the nonlinear dependence between a response and a projection of all the tensor predictors. The tensor dimension reduction models are estimated in a sequential iterative fashion. The proposed method is applied to a CSA data collected for 150 pathogenic bacteria coming from 10 bacterial species and 14 bacteria from one control species. Empirical performance demonstrates that our proposed method can greatly improve the sensitivity and specificity of the CSA technique. PMID:26594304

  17. Calibrating the orientation between a microlens array and a sensor based on projective geometry

    NASA Astrophysics Data System (ADS)

    Su, Lijuan; Yan, Qiangqiang; Cao, Jun; Yuan, Yan

    2016-07-01

    We demonstrate a method for calibrating a microlens array (MLA) with a sensor component by building a plenoptic camera with a conventional prime lens. This calibration method includes a geometric model, a setup to adjust the distance (L) between the prime lens and the MLA, a calibration procedure for determining the subimage centers, and an optimization algorithm. The geometric model introduces nine unknown parameters regarding the centers of the microlenses and their images, whereas the distance adjustment setup provides an initial guess for the distance L. The simulation results verify the effectiveness and accuracy of the proposed method. The experimental results demonstrate the calibration process can be performed with a commercial prime lens and the proposed method can be used to quantitatively evaluate whether a MLA and a sensor is assembled properly for plenoptic systems.

  18. Autonomous microexplosives subsurface tracing system final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engler, Bruce Phillip; Nogan, John; Melof, Brian Matthew

    The objective of the autonomous micro-explosive subsurface tracing system is to image the location and geometry of hydraulically induced fractures in subsurface petroleum reservoirs. This system is based on the insertion of a swarm of autonomous micro-explosive packages during the fracturing process, with subsequent triggering of the energetic material to create an array of micro-seismic sources that can be detected and analyzed using existing seismic receiver arrays and analysis software. The project included investigations of energetic mixtures, triggering systems, package size and shape, and seismic output. Given the current absence of any technology capable of such high resolution mapping ofmore » subsurface structures, this technology has the potential for major impact on petroleum industry, which spends approximately $1 billion dollar per year on hydraulic fracturing operations in the United States alone.« less

  19. Phased Array Radar Network Experiment for Severe Weather

    NASA Astrophysics Data System (ADS)

    Ushio, T.; Kikuchi, H.; Mega, T.; Yoshikawa, E.; Mizutani, F.; Takahashi, N.

    2017-12-01

    Phased Array Weather Radar (PAWR) was firstly developed in 2012 by Osaka University and Toshiba under a grant of NICT using the Digital Beamforming Technique, and showed a impressive thunderstorm behavior with 30 second resolution. After that development, second PAWR was installed in Kobe city about 60 km away from the first PAWR site, and Tokyo Metropolitan University, Osaka Univeristy, Toshiba and the Osaka Local Government started a new project to develop the Osaka Urban Demonstration Network. The main sensor of the Osaka Network is a 2-node Phased Array Radar Network and lightning location system. Data products that are created both in local high performance computer and Toshiba Computer Cloud, include single and multi-radar data, vector wind, quantitative precipitation estimation, VIL, nowcasting, lightning location and analysis. Each radar node is calibarated by the baloon measurement and through the comparison with the GPM (Global Precipitation Measurement)/ DPR (Dual Frequency Space borne Radar) within 1 dB. The attenuated radar reflectivities obtained by the Phased Array Radar Network at X band are corrected based on the bayesian scheme proposed in Shimamura et al. [2016]. The obtained high resolution (every 30 seconds/ 100 elevation angles) 3D reflectivity and rain rate fields are used to nowcast the surface rain rate up to 30 minutes ahead. These new products are transferred to Osaka Local Government in operational mode and evaluated by several section in Osaka Prefecture. Furthermore, a new Phased Array Radar with polarimetric function has been developed in 2017, and will be operated in the fiscal year of 2017. In this presentation, Phased Array Radar, network architecuture, processing algorithm, evalution of the social experiment and first Multi-Prameter Phased Array Radar experiment are presented.

  20. MARE-l in Milan: Status and Perspectives

    NASA Technical Reports Server (NTRS)

    Ferri, E.; Arnaboldi, C.; Ceruti, G.; Faverzani, M.; Gatti, C.; Giachero, A.; Gotti, C.; Kilbourne, C.; Kraft-Bermuth, S.; Nucciotti, A.; hide

    2012-01-01

    The international project MARE (Microcalorimeter Array for a Rhenium Experiment) aims at the direct and calorimetric measurement of the electron neutrino mass with sub-eV sensitivity. Although the baseline of the MARE project consists in a large array of rhenium based thermal detectors, a different option for the isotope is also being considered. The different option is Ho-163. The potential of using Re-187 for a calorimetric neutrino mass experiment has been already demonstrated. On the contrary, no calorimetric spectrum of Ho-163 has been so far measured with the precision required to set a useful limit on the neutrino mass. The first phase of the project (MARE-1) is a collection of activities with the aim of sorting out both the best isotope and the most suited detector technology to be used for the final experiment. One of the MARE-1 activities is carried out in Milan by the group of Milano-Bicocca in collaboration with NASA/GSFC and Wisconsin groups. The Milan MARE-l arrays are based on semiconductor thermistors, provided by the NASA/GSFC group, with dielectric silver perrhenate absorbers, AgReO4. The experiment, which is presently being assembled, is designed to host up to 8 arrays.

  1. Low cost silicon solar array project large area silicon sheet task: Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.

    1977-01-01

    Growth configurations were developed which produced crystals having low residual stress levels. The properties of a 106 mm diameter round crucible were evaluated and it was found that this design had greatly enhanced temperature fluctuations arising from convection in the melt. Thermal modeling efforts were directed to developing finite element models of the 106 mm round crucible and an elongated susceptor/crucible configuration. Also, the thermal model for the heat loss modes from the dendritic web was examined for guidance in reducing the thermal stress in the web. An economic analysis was prepared to evaluate the silicon web process in relation to price goals.

  2. Investigation of test methods, material properties, and processes for solar cell encapsulants. Encapsulation task of the low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    1977-01-01

    During this quarter, flat-plate solar collector systems were considered and six basic construction elements were identified: outer coatings, superstrates, pottants, substrates, undercoats, and adhesives. Materials surveys were then initiated to discover either generic classes or/and specific products to function as each construction element. Cost data included in the surveys permit ready evaluation of each material. Silicones, fluorocarbons, glass, and acrylic polymers have the highest inherent weatherability of materials studied to date. Only acrylics, however, combine low costs, environmental resistance, and potential processability. This class will receive particular emphasis.

  3. A review of the silicon material task

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1984-01-01

    The Silicon Material Task of the Flat-Plate Solar Array Project was assigned the objective of developing the technology for low-cost processes for producing polysilicon suitable for terrestrial solar-cell applications. The Task program comprised sections for process developments for semiconductor-grade and solar-cell-grade products. To provide information for deciding upon process designs, extensive investigations of the effects of impurities on material properties and the performance of cells were conducted. The silane process of the Union Carbide Corporation was carried through several stages of technical and engineering development; a pilot plant was the culmination of this effort. The work to establish silane fluidized-bed technology for a low-cost process is continuing. The advantages of the use of dichlorosilane is a siemens-type were shown by Hemlock Semiconductor Corporation. The development of other processes is described.

  4. A review of the silicon material task

    NASA Astrophysics Data System (ADS)

    Lutwack, R.

    1984-02-01

    The Silicon Material Task of the Flat-Plate Solar Array Project was assigned the objective of developing the technology for low-cost processes for producing polysilicon suitable for terrestrial solar-cell applications. The Task program comprised sections for process developments for semiconductor-grade and solar-cell-grade products. To provide information for deciding upon process designs, extensive investigations of the effects of impurities on material properties and the performance of cells were conducted. The silane process of the Union Carbide Corporation was carried through several stages of technical and engineering development; a pilot plant was the culmination of this effort. The work to establish silane fluidized-bed technology for a low-cost process is continuing. The advantages of the use of dichlorosilane is a siemens-type were shown by Hemlock Semiconductor Corporation. The development of other processes is described.

  5. MCT Detectors and ROICS for Various Format MWIR and LWIR Arrays

    DTIC Science & Technology

    2009-10-01

    ABSTRACT Silicon ROICs for MCT LWIR (4x288, 6x576) and MWIR (128x128) diode matrix arrays were designed, manufactured and tested. MCT layers...of polysilicon and two metallization levels. MCT Detectors and ROICs for Various Format MWIR and LWIR Arrays RTO-MP-SET-151 7 - 1...Format MWIR and LWIR Arrays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f

  6. Development of the solar array deployment and drive system for the XTE spacecraft

    NASA Technical Reports Server (NTRS)

    Farley, Rodger; Ngo, Son

    1995-01-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  7. Evaluation of second-generation sequencing of 19 dilated cardiomyopathy genes for clinical applications.

    PubMed

    Gowrisankar, Sivakumar; Lerner-Ellis, Jordan P; Cox, Stephanie; White, Emily T; Manion, Megan; LeVan, Kevin; Liu, Jonathan; Farwell, Lisa M; Iartchouk, Oleg; Rehm, Heidi L; Funke, Birgit H

    2010-11-01

    Medical sequencing for diseases with locus and allelic heterogeneities has been limited by the high cost and low throughput of traditional sequencing technologies. "Second-generation" sequencing (SGS) technologies allow the parallel processing of a large number of genes and, therefore, offer great promise for medical sequencing; however, their use in clinical laboratories is still in its infancy. Our laboratory offers clinical resequencing for dilated cardiomyopathy (DCM) using an array-based platform that interrogates 19 of more than 30 genes known to cause DCM. We explored both the feasibility and cost effectiveness of using PCR amplification followed by SGS technology for sequencing these 19 genes in a set of five samples enriched for known sequence alterations (109 unique substitutions and 27 insertions and deletions). While the analytical sensitivity for substitutions was comparable to that of the DCM array (98%), SGS technology performed better than the DCM array for insertions and deletions (90.6% versus 58%). Overall, SGS performed substantially better than did the current array-based testing platform; however, the operational cost and projected turnaround time do not meet our current standards. Therefore, efficient capture methods and/or sample pooling strategies that shorten the turnaround time and decrease reagent and labor costs are needed before implementing this platform into routine clinical applications.

  8. Target detection and localization in shallow water: an experimental demonstration of the acoustic barrier problem at the laboratory scale.

    PubMed

    Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme

    2011-01-01

    This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.

  9. Identifying regions of strong scattering at the core-mantle boundary from analysis of PKKP precursor energy

    USGS Publications Warehouse

    Rost, S.; Earle, P.S.

    2010-01-01

    We detect seismic scattering from the core-mantle boundary related to the phase PKKP (PK. KP) in data from small aperture seismic arrays in India and Canada. The detection of these scattered waves in data from small aperture arrays is new and allows a better characterization of the fine-scale structure of the deep Earth especially in the southern hemisphere. Their slowness vector is determined from array processing allowing location of the heterogeneities at the core-mantle boundary using back-projection techniques through 1D Earth models. We identify strong scattering at the core-mantle boundary (CMB) beneath the Caribbean, Patagonia and the Antarctic Peninsula as well as beneath southern Africa. An analysis of the scattering regions relative to sources and receivers indicates that these regions represent areas of increased scattering likely due to increased heterogeneities close to the CMB. The 1. Hz array data used in this study is most sensitive to heterogeneity with scale lengths of about 10. km. Given the small size of the scatterers, a chemical origin of the heterogeneities is likely. By comparing the location of the fine-scale heterogeneity to geodynamical models and tomographic images, we identify different scattering mechanisms in regions related to subduction (Caribbean and Patagonia) and dense thermo chemical piles (Southern Africa). ?? 2010 Elsevier B.V.

  10. Genetic algorithm with maximum-minimum crossover (GA-MMC) applied in optimization of radiation pattern control of phased-array radars for rocket tracking systems.

    PubMed

    Silva, Leonardo W T; Barros, Vitor F; Silva, Sandro G

    2014-08-18

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence.

  11. Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) Applied in Optimization of Radiation Pattern Control of Phased-Array Radars for Rocket Tracking Systems

    PubMed Central

    Silva, Leonardo W. T.; Barros, Vitor F.; Silva, Sandro G.

    2014-01-01

    In launching operations, Rocket Tracking Systems (RTS) process the trajectory data obtained by radar sensors. In order to improve functionality and maintenance, radars can be upgraded by replacing antennas with parabolic reflectors (PRs) with phased arrays (PAs). These arrays enable the electronic control of the radiation pattern by adjusting the signal supplied to each radiating element. However, in projects of phased array radars (PARs), the modeling of the problem is subject to various combinations of excitation signals producing a complex optimization problem. In this case, it is possible to calculate the problem solutions with optimization methods such as genetic algorithms (GAs). For this, the Genetic Algorithm with Maximum-Minimum Crossover (GA-MMC) method was developed to control the radiation pattern of PAs. The GA-MMC uses a reconfigurable algorithm with multiple objectives, differentiated coding and a new crossover genetic operator. This operator has a different approach from the conventional one, because it performs the crossover of the fittest individuals with the least fit individuals in order to enhance the genetic diversity. Thus, GA-MMC was successful in more than 90% of the tests for each application, increased the fitness of the final population by more than 20% and reduced the premature convergence. PMID:25196013

  12. Design and Flood Control Assessment of 5MWp Fishing and Photovoltaic Power Project in Xinghua City

    NASA Astrophysics Data System (ADS)

    Guo, Liuchao; Hu, Xiaodong; Su, Yuyan; Wu, Peipei; Weng, Songgan

    2017-12-01

    In order to reduce coal consumption in Jiangsu Province and develop new energy sources, considering on the distribution of geology, solar energy resources, traffic and grid connection in Xinghua City, the aim is to determine the configuration of photovoltaic modules and photovoltaic array tracking mode, design photovoltaic array and layout scheme. But the project is a wading project, it is built in Dong Tan Lake polder I115, it needs scientific and reasonable evaluation to the effect of Dong Tan Lake’s flood storage and discharge. The results can provide guidance for similar engineering’s design.

  13. Big-Data Perspective to Operating an SKA-Type Synthesis Array Radio Telescope

    NASA Astrophysics Data System (ADS)

    Shanmugha Sundaram, GA

    2015-08-01

    Of the two forerunner sites, viz. Australia and South Africa, where pioneering advancements to state-of-the-art in synthesis array radio astronomy instrumentation are being attempted in the form of pathfinders to the Square Kilometer Array (SKA), for its eventual deployment, a diversity of site-dependent topology and design metrics exists. Towards addressing some of the fundamental mysteries in physics at the micro- and macro-cosm levels, that form the Key Science Projects (KSPs) for the SKA, and interfacing them to an optimally designed array conguration, a critical evaluation of their radio imaging capabilities and metrics becomes paramount. Here, the various KSPs and instrument design specifications are discussed, for relative merits and adaptability to either site, from invoking well-founded and established array-design and optimization principles designed into a customized software tool. Since the problem of array design is one that encompasses variables on several scales such as separation distances between the radio interferometric pair (termed the baseline), factors such as redundancy, flux and phase calibration, bandwidth, integration time, clock synchronization for the correlation process at the detector, and many other ambient-defined parameters, there is a significant component of big data involved in the complex visibilities that are to be Fourier transformed from the spatial to the radio-sky domain (to generate a radio sky map) using vast computational infrastructure, with robust data connectivity and data handling facilities to support this. A crucial requirement exists to make the general public aware of the implications of such a massive scale scientific and technological venture, which shall be the focus of this presentation.

  14. SiPM detectors for the ASTRI project in the framework of the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Billotta, Sergio; Marano, Davide; Bonanno, Giovanni; Belluso, Massimiliano; Grillo, Alessandro; Garozzo, Salvatore; Romeo, Giuseppe; Timpanaro, Maria Cristina; Maccarone, Maria Concetta C.; Catalano, Osvaldo; La Rosa, Giovanni; Sottile, Giuseppe; Impiombato, Domenico; Gargano, Carmelo; Giarrusso, Salavtore

    2014-07-01

    The Cherenkov Telescope Array (CTA) is a worldwide new generation project aimed at realizing an array of a hundred ground based gamma-ray telescopes. ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is the Italian project whose primary target is the development of an end-to-end prototype, named ASTRI SST-2M, of the CTA small size class of telescopes devoted to investigation of the highest energy region, from 1 to 100 TeV. Next target is the implementation of an ASTRI/CTA mini-array based on seven identical telescopes. Silicon Photo-Multipliers (SiPMs) are the semiconductor photosensor devices designated to constitute the camera detection system at the focal plane of the ASTRI telescopes. SiPM photosensors are suitable for the detection of the Cherenkov flashes, since they are very fast and sensitive to the light in the 300-700nm wavelength spectrum. Their drawbacks compared to the traditional photomultiplier tubes are high dark count rates, after-pulsing and optical cross-talk contributions, and intrinsic gains strongly dependent on temperature. Nonetheless, for a single pixel, the dark count rate is well below the Night Sky Background, the effects of cross-talk and afterpulses are typically lower than 20%, and the gain can be kept stable against temperature variations by means of adequate bias voltage compensation strategies. This work presents and discusses some experimental results from a large set of measurements performed on the SiPM sensors to be used for the ASTRI SST-2M prototype camera and on recently developed detectors demonstrating outstanding performance for the future evolution of the project in the ASTRI/CTA mini-array.

  15. Simulation based evaluation of the designs of the Advanced Gamma-ray Imageing System (AGIS)

    NASA Astrophysics Data System (ADS)

    Bugaev, Slava; Buckley, James; Digel, Seth; Funk, Stephen; Konopelko, Alex; Krawczynski, Henric; Lebohec, Steohan; Maier, Gernot; Vassiliev, Vladimir

    2009-05-01

    The AGIS project under design study, is a large array of imaging atmospheric Cherenkov telescopes for gamma-rays astronomy between 40GeV and 100 TeV. In this paper we present the ongoing simulation effort to model the considered design approaches as a function of the main parameters such as array geometry, telescope optics and camera design in such a way the gamma ray observation capabilities can be optimized against the overall project cost.

  16. A model for the distributed storage and processing of large arrays

    NASA Technical Reports Server (NTRS)

    Mehrota, P.; Pratt, T. W.

    1983-01-01

    A conceptual model for parallel computations on large arrays is developed. The model provides a set of language concepts appropriate for processing arrays which are generally too large to fit in the primary memories of a multiprocessor system. The semantic model is used to represent arrays on a concurrent architecture in such a way that the performance realities inherent in the distributed storage and processing can be adequately represented. An implementation of the large array concept as an Ada package is also described.

  17. Fiber Laser Arrays

    DTIC Science & Technology

    2006-05-03

    AFRL-DE-PS- AFRL-DE-PS- TR-2006-1059 TR-2006-1059 FIBER LASER ARRAYS Thomas B. Simpson L-3 Communications-Jaycor 3394...LEANNE J HENRY, Lt Col, USAF L. BRUCE SIMPSON, SES Chief, High Power Solid State Laser Branch Director, Directed Energy Directorate...SUBTITLE Fiber Laser Arrays 5c. PROGRAM ELEMENT NUMBER 62605F 5d. PROJECT NUMBER 4866 5e. TASK NUMBER LR 6. AUTHOR(S) Thomas B. Simpson

  18. Photovoltaic module encapsulation design and materials selection, volume 1

    NASA Technical Reports Server (NTRS)

    Cuddihy, E.; Carroll, W.; Coulbert, C.; Gupta, A.; Liang, R. H.

    1982-01-01

    Encapsulation material system requirements, material selection criteria, and the status and properties of encapsulation materials and processes available are presented. Technical and economic goals established for photovoltaic modules and encapsulation systems and their status are described. Available encapsulation technology and data are presented to facilitate design and material selection for silicon flat plate photovoltaic modules, using the best materials available and processes optimized for specific power applications and geographic sites. The operational and environmental loads that encapsulation system functional requirements and candidate design concepts and materials that are identified to have the best potential to meet the cost and performance goals for the flat plate solar array project are described. Available data on encapsulant material properties, fabrication processing, and module life and durability characteristics are presented.

  19. Postoptimality Analysis in the Selection of Technology Portfolios

    NASA Technical Reports Server (NTRS)

    Adumitroaie, Virgil; Shelton, Kacie; Elfes, Alberto; Weisbin, Charles R.

    2006-01-01

    This slide presentation reviews a process of postoptimally analysing the selection of technology portfolios. The rationale for the analysis stems from the need for consistent, transparent and auditable decision making processes and tools. The methodology is used to assure that project investments are selected through an optimization of net mission value. The main intent of the analysis is to gauge the degree of confidence in the optimal solution and to provide the decision maker with an array of viable selection alternatives which take into account input uncertainties and possibly satisfy non-technical constraints. A few examples of the analysis are reviewed. The goal of the postoptimality study is to enhance and improve the decision-making process by providing additional qualifications and substitutes to the optimal solution.

  20. Near- and far-field infrasound monitoring in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Campus, Paola; Marchetti, Emanuele; Le Pichon, Alexis; Wallenstein, Nicolau; Ripepe, Maurizio; Kallel, Mohamed; Mialle, Pierrick

    2013-04-01

    The Mediterranean area is characterized by a number of very interesting sources of infrasound signals and offers a promising playground for the development of a deeper understanding of such sources and of the associated propagation models. The progress in the construction and certification of infrasound arrays belonging to the International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) in the vicinity of this area has been complemented, in the last decade, by the construction of infrasound arrays established by several European research groups. The University of Florence (UniFi) plays a crucial role for the detection of infrasound signals in the Mediterranean area, having deployed since several years two infrasound arrays on Stromboli and Etna volcanoes, and, more recently, three infrasound arrays in the Alpine area of NW Italy and one infrasound array on the Apennines (Mount Amiata), designed and established in the framework of the ARISE Project. The IMS infrasound arrays IS42 (Graciosa, Azores, Portugal) and IS48 (Kesra, Tunisia) recorded, since the time of their certification, a number of far-field events which can be correlated with some near-field records of the infrasound arrays belonging to UniFi. An analysis of the results and potentialities of infrasound source's detections in near and far-field realized by IS42, IS48 and UniFi arrays in the Mediterranean area, with special focus on volcanic events is presented. The combined results deriving from the analysis of data recorded by the Unifi arrays and by the IS42 and IS48 arrays, in collaboration with the Department of Analyse et Surveillance (CEA/DASE), will generate a synergy which will certainly contribute to the progress of the ARISE Project.

  1. Design and implementation of a reconfigurable mixed-signal SoC based on field programmable analog arrays

    NASA Astrophysics Data System (ADS)

    Liu, Lintao; Gao, Yuhan; Deng, Jun

    2017-11-01

    This work presents a reconfigurable mixed-signal system-on-chip (SoC), which integrates switched-capacitor-based field programmable analog arrays (FPAA), analog-to-digital converter (ADC), digital-to-analog converter, digital down converter , digital up converter, 32-bit reduced instruction-set computer central processing unit (CPU) and other digital IPs on a single chip with 0.18 μm CMOS technology. The FPAA intellectual property could be reconfigured as different function circuits, such as gain amplifier, divider, sine generator, and so on. This single-chip integrated mixed-signal system is a complete modern signal processing system, occupying a die area of 7 × 8 mm 2 and consuming 719 mW with a clock frequency of 150 MHz for CPU and 200 MHz for ADC/DAC. This SoC chip can help customers to shorten design cycles, save board area, reduce the system power consumption and depress the system integration risk, which would afford a big prospect of application for wireless communication. Project supported by the National High Technology and Development Program of China (No. 2012AA012303).

  2. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1979-01-01

    Analyses of slicing processes and junction formation processes are presented. A simple method for evaluation of the relative economic merits of competing process options with respect to the cost of energy produced by the system is described. An energy consumption analysis was developed and applied to determine the energy consumption in the solar module fabrication process sequence, from the mining of the SiO2 to shipping. The analysis shows that, in current technology practice, inordinate energy use in the purification step, and large wastage of the invested energy through losses, particularly poor conversion in slicing, as well as inadequate yields throughout. The cell process energy expenditures already show a downward trend based on increased throughput rates. The large improvement, however, depends on the introduction of a more efficient purification process and of acceptable ribbon growing techniques.

  3. Additive Manufacturing and 3D Printing in NASA: An Overview of Current Projects and Future Initiatives for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.

    2014-01-01

    NASA, including each Mission Directorate, is investing in, experimenting with, and/or utilizing AM across a broad spectrum of applications and projects; Centers have created and are continuing to create partnerships with industry, other Government Agencies, other Centers, and Universities; In-house additive manufacturing capability enables rapid iteration of the entire design, development and testing process, increasing innovation and reducing risk and cost to projects; For deep space exploration, AM offers significant reduction to logistics costs and risk by providing ability to create on demand; There are challenges: Overwhelming message from recent JANNAF AM for Propulsion Applications TIM was "certification."; NASA will continue to work with our partners to address this and other challenges to advance the state of the art in AM and incorporate these capabilities into an array of applications from aerospace to science missions to deep space exploration.

  4. Downsampling Photodetector Array with Windowing

    NASA Technical Reports Server (NTRS)

    Patawaran, Ferze D.; Farr, William H.; Nguyen, Danh H.; Quirk, Kevin J.; Sahasrabudhe, Adit

    2012-01-01

    In a photon counting detector array, each pixel in the array produces an electrical pulse when an incident photon on that pixel is detected. Detection and demodulation of an optical communication signal that modulated the intensity of the optical signal requires counting the number of photon arrivals over a given interval. As the size of photon counting photodetector arrays increases, parallel processing of all the pixels exceeds the resources available in current application-specific integrated circuit (ASIC) and gate array (GA) technology; the desire for a high fill factor in avalanche photodiode (APD) detector arrays also precludes this. Through the use of downsampling and windowing portions of the detector array, the processing is distributed between the ASIC and GA. This allows demodulation of the optical communication signal incident on a large photon counting detector array, as well as providing architecture amenable to algorithmic changes. The detector array readout ASIC functions as a parallel-to-serial converter, serializing the photodetector array output for subsequent processing. Additional downsampling functionality for each pixel is added to this ASIC. Due to the large number of pixels in the array, the readout time of the entire photodetector is greater than the time between photon arrivals; therefore, a downsampling pre-processing step is done in order to increase the time allowed for the readout to occur. Each pixel drives a small counter that is incremented at every detected photon arrival or, equivalently, the charge in a storage capacitor is incremented. At the end of a user-configurable counting period (calculated independently from the ASIC), the counters are sampled and cleared. This downsampled photon count information is then sent one counter word at a time to the GA. For a large array, processing even the downsampled pixel counts exceeds the capabilities of the GA. Windowing of the array, whereby several subsets of pixels are designated for processing, is used to further reduce the computational requirements. The grouping of the designated pixel frame as the photon count information is sent one word at a time to the GA, the aggregation of the pixels in a window can be achieved by selecting only the designated pixel counts from the serial stream of photon counts, thereby obviating the need to store the entire frame of pixel count in the gate array. The pixel count se quence from each window can then be processed, forming lower-rate pixel statistics for each window. By having this processing occur in the GA rather than in the ASIC, future changes to the processing algorithm can be readily implemented. The high-bandwidth requirements of a photon counting array combined with the properties of the optical modulation being detected by the array present a unique problem that has not been addressed by current CCD or CMOS sensor array solutions.

  5. Silicon materials task of the low cost solar array project. Phase 3: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4).

  6. The Cherenkov Telescope Array: Exploring the Very-high-energy Sky from ESO's Paranal Site

    NASA Astrophysics Data System (ADS)

    Hofmann, W.

    2017-06-01

    The Cherenkov Telescope Array (CTA) is a next-generation observatory for ground-based very-high-energy gamma-ray astronomy, using the imaging atmospheric Cherenkov technique to detect and reconstruct gamma-ray induced air showers. The CTA project is planning to deploy 19 telescopes on its northern La Palma site, and 99 telescopes on its southern site at Paranal, covering the 20 GeV to 300 TeV energy domain and offering vastly improved performance compared to currently operating Cherenkov telescopes. The combination of three different telescope sizes (23-, 12- and 4-metre) allows cost-effective coverage of the wide energy range. CTA will be operated as a user facility, dividing observation time between a guest observer programme and large Key Science Projects (KSPs), and the data will be made public after a one-year proprietary period. The history of the project, the implementation of the arrays, and some of the major science goals and KSPs, are briefly summarised.

  7. National Academy of Sciences Recommends Continued Support of ALMA Project

    NASA Astrophysics Data System (ADS)

    2000-05-01

    A distinguished panel of scientists today announced their support for the continued funding of the Atacama Large Millimeter Array (ALMA) Project at a press conference given by the National Academy of Sciences. The ALMA Project is an international partnership between U.S. and European astronomy organizations to build a complete imaging telescope that will produce astronomical images at millimeter and submillimeter wavelengths. The U.S. partner is the National Science Foundation, through Associated Universities, Inc., (AUI), led by Dr. Riccardo Giacconi, and the National Radio Astronomy Observatory (NRAO). "We are delighted at this show of continued support from our peers in the scientific community," said Dr. Robert Brown, ALMA U.S. Project Director and Deputy Director of NRAO. "The endorsement adds momentum to the recent strides we've made toward the building of this important telescope." In 1998, the National Research Council, the working arm of the National Academy of Sciences, charged the Astronomy and Astrophysics Survey Committee to "survey the field of space- and ground-based astronomy and astrophysics" and to "recommend priorities for the most important new initiatives of the decade 2000-2010." In a report released today, the committee wrote that it "re-affirms the recommendations of the 1991 Astronomy and Astrophysics Survey Committee by endorsing the completion of . . . the Millimeter Array (MMA, now part of the Atacama Large Millimeter Array)." In the 1991 report "The Decade of Discovery," a previous committee chose the Millimeter Array as one of the most important projects of the decade 1990-2000. Early last year, the National Science Foundation signed a Memorandum of Understanding with a consortium of European organizations that effectively merged the MMA Project with the European Large Southern Array project. The combined project was christened the Atacama Large Millimeter Array. ALMA, expected to consist of 64 antennas with 12-meter diameter dishes, will be built at a high-altitude, extremely dry mountain site in Chile's Atacama desert. The array is scheduled to be completed sometime in this decade. Millimeter-wave astronomy studies the universe in the spectral region where most of its energy lies, between the long-wavelength radio waves and the shorter-wavelength infrared waves. In this realm, ALMA will study the structure of the early universe and the evolution of galaxies; gather crucial data on the formation of stars, protoplanetary disks, and planets; and provide new insights on the familiar objects of our own solar system. "Most of the photons in the Universe lie in the millimeter wavelength regime; among existing or planned instruments only ALMA can image the sources of these photons with the crispness required to understand the events of galaxy, star and planet formation which launched them into space," said NRAO's Dr. Alwyn Wootten, U.S. ALMA Project Scientist. ALMA is an international partnership between the United States (National Science Foundation) and Europe. European participants include the European Southern Observatory, the Centre National de la Recherche Scientifique (France), the Max-Planck Gesellschaft (Germany), the Netherlands Foundation for Research in Astronomy, the United Kingdom Particle Physics and Astronomy Research Council, the Oficina de Ciencia Y Tecnologia/Instituto Geografico Nacional (Spain), and the Swedish Natural Science Research Council. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  8. Materials Development for Auxiliary Components for Large Compact Mo/Au TES Arrays

    NASA Technical Reports Server (NTRS)

    Finkbeiner, F. m.; Chervenak, J. A.; Bandler, S. R.; Brekosky, R.; Brown, A. D.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; hide

    2007-01-01

    We describe our current fabrication process for arrays of superconducting transition edge sensor microcalorimeters, which incorporates superconducting Mo/Au bilayers and micromachined silicon structures. We focus on materials and integration methods for array heatsinking with our bilayer and micromachining processes. The thin superconducting molybdenum bottom layer strongly influences the superconducting behavior and overall film characteristics of our molybdenum/gold transition-edge sensors (TES). Concurrent with our successful TES microcalorimeter array development, we have started to investigate the thin film properties of molybdenum monolayers within a given phase space of several important process parameters. The monolayers are sputtered or electron-beam deposited exclusively on LPCVD silicon nitride coated silicon wafers. In our current bilayer process, molybdenum is electron-beam deposited at high wafer temperatures in excess of 500 degrees C. Identifying process parameters that yield high quality bilayers at a significantly lower temperature will increase options for incorporating process-sensitive auxiliary array components (AAC) such as array heat sinking and electrical interconnects into our overall device process. We are currently developing two competing technical approaches for heat sinking large compact TES microcalorimeter arrays. Our efforts to improve array heat sinking and mitigate thermal cross-talk between pixels include copper backside deposition on completed device chips and copper-filled micro-trenches surface-machined into wafers. In addition, we fabricated prototypes of copper through-wafer microvias as a potential way to read out the arrays. We present an overview on the results of our molybdenum monolayer study and its implications concerning our device fabrication. We discuss the design, fabrication process, and recent test results of our AAC development.

  9. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  10. Progressing Deployment of Solar Photovoltaic Installations in the United States

    NASA Astrophysics Data System (ADS)

    Kwan, Calvin Lee

    2011-07-01

    This dissertation evaluates the likelihood of solar PV playing a larger role in national and state level renewable energy portfolios. I examine the feasibility of large-scale solar PV arrays on college campuses, the financials associated with large-scale solar PV arrays and finally, the influence of environmental, economic, social and political variables on the distribution of residential solar PV arrays in the United States. Chapter two investigates the challenges and feasibility of college campuses adopting a net-zero energy policy. Using energy consumption data, local solar insolation data and projected campus growth, I present a method to identify the minimum sized solar PV array that is required for the City College campus of the Los Angeles Community College District to achieve net-zero energy status. I document how current energy demand can be reduced using strategic demand side management, with remaining energy demand being met using a solar PV array. Chapter three focuses on the financial feasibility of large-scale solar PV arrays, using the proposed City College campus array as an example. I document that even after demand side energy management initiatives and financial incentives, large-scale solar PV arrays continue to have ROIs greater than 25 years. I find that traditional financial evaluation methods are not suitable for environmental projects such as solar PV installations as externalities are not taken into account and therefore calls for development of alternative financial valuation methods. Chapter four investigates the influence of environmental, social, economic and political variables on the distribution of residential solar PV arrays across the United States using ZIP code level data from the 2000 US Census. Using data from the National Renewable Energy Laboratory's Open PV project, I document where residential solar PVs are currently located. A zero-inflated negative binomial model was run to evaluate the influence of selected variables. Using the same model, predicted residential solar PV shares were generated and illustrated using GIS software. The results of this model indicate that solar insolation, state energy deregulation and cost of electricity are statistically significant factors positively correlated with the adoption of residential solar PV arrays. With this information, policymakers at the towns and cities level can establish effective solar PV promoting policies and regulations for their respective locations.

  11. Microphone Array

    NASA Astrophysics Data System (ADS)

    Bader, Rolf

    This chapter deals with microphone arrays. It is arranged according to the different methods available to proceed through the different problems and through the different mathematical methods. After discussing general properties of different array types, such as plane arrays, spherical arrays, or scanning arrays, it proceeds to the signal processing tools that are most used in speech processing. In the third section, backpropagating methods based on the Helmholtz-Kirchhoff integral are discussed, which result in spatial radiation patterns of vibrating bodies or air.

  12. Multiple-Array Detection, Association and Location of Infrasound and Seismo-Acoustic Events - Utilization of Ground Truth Information

    DTIC Science & Technology

    2010-09-01

    MULTIPLE-ARRAY DETECTION, ASSOCIATION AND LOCATION OF INFRASOUND AND SEISMO-ACOUSTIC EVENTS – UTILIZATION OF GROUND TRUTH INFORMATION Stephen J...and infrasound data from seismo-acoustic arrays and apply the methodology to regional networks for validation with ground truth information. In the...initial year of the project automated techniques for detecting, associating and locating infrasound signals were developed. Recently, the location

  13. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, N.M.; Markle, D.A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.

  14. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, Natale M.; Markle, David A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.

  15. Cost study of solar cell space power systems.

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1972-01-01

    A study of historical costs for solar cell space power systems was made by a NASA ad hoc study group. The study covered thirteen missions that represented a broad cross-section of flight projects over the past decade. Fully burdened costs in terms of 1971 dollars are presented for the system and the solar array. The costs correlate reasonably well with array area and do not increase in proportion to array area. The trends for array costs support the contention that solar cell and module standardization would reduce costs.

  16. Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays

    NASA Technical Reports Server (NTRS)

    Cai, Jianhong

    2015-01-01

    Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.

  17. The Power of Engaging Citizen Scientists for Scientific Progress

    PubMed Central

    Garbarino, Jeanne; Mason, Christopher E.

    2016-01-01

    Citizen science has become a powerful force for scientific inquiry, providing researchers with access to a vast array of data points while connecting nonscientists to the authentic process of science. This citizen-researcher relationship creates an incredible synergy, allowing for the creation, execution, and analysis of research projects that would otherwise prove impossible in traditional research settings, namely due to the scope of needed human or financial resources (or both). However, citizen-science projects are not without their challenges. For instance, as projects are scaled up, there is concern regarding the rigor and usability of data collected by citizens who are not formally trained in research science. While these concerns are legitimate, we have seen examples of highly successful citizen-science projects from multiple scientific disciplines that have enhanced our collective understanding of science, such as how RNA molecules fold or determining the microbial metagenomic snapshot of an entire public transportation system. These and other emerging citizen-science projects show how improved protocols for reliable, large-scale science can realize both an improvement of scientific understanding for the general public and novel views of the world around us. PMID:27047581

  18. The Use of a Microcomputer Based Array Processor for Real Time Laser Velocimeter Data Processing

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1990-01-01

    The application of an array processor to laser velocimeter data processing is presented. The hardware is described along with the method of parallel programming required by the array processor. A portion of the data processing program is described in detail. The increase in computational speed of a microcomputer equipped with an array processor is illustrated by comparative testing with a minicomputer.

  19. Flat-plate solar array project. Volume 8: Project analysis and integration

    NASA Technical Reports Server (NTRS)

    Mcguire, P.; Henry, P.

    1986-01-01

    Project Analysis and Integration (PA&I) performed planning and integration activities to support management of the various Flat-Plate Solar Array (FSA) Project R&D activities. Technical and economic goals were established by PA&I for each R&D task within the project to coordinate the thrust toward the National Photovoltaic Program goals. A sophisticated computer modeling capability was developed to assess technical progress toward meeting the economic goals. These models included a manufacturing facility simulation, a photovoltaic power station simulation and a decision aid model incorporating uncertainty. This family of analysis tools was used to track the progress of the technology and to explore the effects of alternative technical paths. Numerous studies conducted by PA&I signaled the achievement of milestones or were the foundation of major FSA project and national program decisions. The most important PA&I activities during the project history are summarized. The PA&I planning function is discussed and how it relates to project direction and important analytical models developed by PA&I for its analytical and assessment activities are reviewed.

  20. Design and simulation of a novel high-efficiency cooling heat-sink structure using fluid-thermodynamics

    NASA Astrophysics Data System (ADS)

    Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma

    2015-10-01

    A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).

  1. Low cost solar array project silicon materials task. Development of a process for high capacity arc heater production of silicon for solar arrays

    NASA Technical Reports Server (NTRS)

    Fey, M. G.

    1981-01-01

    The experimental verification system for the production of silicon via the arc heater-sodium reduction of SiCl4 was designed, fabricated, installed, and operated. Each of the attendant subsystems was checked out and operated to insure performance requirements. These subsystems included: the arc heaters/reactor, cooling water system, gas system, power system, Control & Instrumentation system, Na injection system, SiCl4 injection system, effluent disposal system and gas burnoff system. Prior to introducing the reactants (Na and SiCl4) to the arc heater/reactor, a series of gas only-power tests was conducted to establish the operating parameters of the three arc heaters of the system. Following the successful completion of the gas only-power tests and the readiness tests of the sodium and SiCl4 injection systems, a shakedown test of the complete experimental verification system was conducted.

  2. Nanophotonic projection system.

    PubMed

    Aflatouni, Firooz; Abiri, Behrooz; Rekhi, Angad; Hajimiri, Ali

    2015-08-10

    Low-power integrated projection technology can play a key role in development of low-cost mobile devices with built-in high-resolution projectors. Low-cost 3D imaging and holography systems are also among applications of such a technology. In this paper, an integrated projection system based on a two-dimensional optical phased array with fast beam steering capability is reported. Forward biased p-i-n phase modulators with 200MHz bandwidth are used per each array element for rapid phase control. An optimization algorithm is implemented to compensate for the phase dependent attenuation of the p-i-n modulators. Using rapid vector scanning technique, images were formed and recorded within a single snapshot of the IR camera.

  3. Laser beam projection with adaptive array of fiber collimators. II. Analysis of atmospheric compensation efficiency.

    PubMed

    Lachinova, Svetlana L; Vorontsov, Mikhail A

    2008-08-01

    We analyze the potential efficiency of laser beam projection onto a remote object in atmosphere with incoherent and coherent phase-locked conformal-beam director systems composed of an adaptive array of fiber collimators. Adaptive optics compensation of turbulence-induced phase aberrations in these systems is performed at each fiber collimator. Our analysis is based on a derived expression for the atmospheric-averaged value of the mean square residual phase error as well as direct numerical simulations. Operation of both conformal-beam projection systems is compared for various adaptive system configurations characterized by the number of fiber collimators, the adaptive compensation resolution, and atmospheric turbulence conditions.

  4. ArrayBridge: Interweaving declarative array processing with high-performance computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Haoyuan; Floratos, Sofoklis; Blanas, Spyros

    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aimsmore » to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.« less

  5. Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans.

    PubMed

    Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart

    2017-04-24

    High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.

  6. Microtremor Array Measurement Survey and Strong Ground Motion Observation Activities of The MarDiM (SATREPS) Project

    NASA Astrophysics Data System (ADS)

    Ozgur Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Aksahin, Bengi; Arslan, Safa; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2015-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul and Tekirdag province at about 81 sites on October 2013 and September 2014. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A2) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A2) consist of three servo type accelerometers for two horizontal and one vertical component combined with 24 bit AD converter. In the presentation current achievements and activities of research group, preliminary results of microtremor array measurement surveys and recorded data by the newly installed stations will be introduced.

  7. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 2-

    NASA Astrophysics Data System (ADS)

    Citak, Seckin; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Arslan, Safa; Aksahin, Bengi; Hatayama, Ken; Ohori, Michihiro; Hori, Muneo

    2016-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 109 sites on October 2013, September 2014 and 2015. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A) consist of three servo type accelerometers for two horizontal and one vertical component combined with 24 bit AD converter. In the presentation current achievements and activities of research group, preliminary results of microtremor array measurement surveys and recorded data by the newly installed stations will be introduced.

  8. Microtremor Array Measurement Survey and Strong Ground Motion observation activities of The SATREPS, MarDiM project -Part 3-

    NASA Astrophysics Data System (ADS)

    Citak, Seckin; Safa Arslan, Mehmet; Karagoz, Ozlem; Chimoto, Kosuke; Ozel, Oguz; Yamanaka, Hiroaki; Behiye Aksahin, Bengi; Hatayama, Ken; Sahin, Abdurrahman; Ohori, Michihiro; Safak, Erdal; Hori, Muneo

    2017-04-01

    Since 1939, devastating earthquakes with magnitude greater than seven ruptured North Anatolian Fault (NAF) westward, starting from 1939 Erzincan (Ms=7.9) at the eastern Turkey and including the latest 1999 Izmit-Golcuk (Ms=7.4) and the Duzce (Ms=7.2) earthquakes in the eastern Marmara region, Turkey. On the other hand, the west of the Sea of Marmara an Mw7.4 earthquake ruptured the NAF' s Ganos segment in 1912. The only un-ruptured segments of the NAF in the last century are within the Sea of Marmara, and are identified as a "seismic gap" zone that its rupture may cause a devastating earthquake. In order to unravel the seismic risks of the Marmara region a comprehensive multidisciplinary research project The MarDiM project "Earthquake And Tsunami Disaster Mitigation in The Marmara Region and Disaster Education in Turkey", has already been started since 2003. The project is conducted in the framework of "Science and Technology Research Partnership for Sustainable Development (SATREPS)" sponsored by Japan Science and Technology Agency (JST) and Japan International Cooperation Agency (JICA). One of the main research field of the project is "Seismic characterization and damage prediction" which aims to improve the prediction accuracy of the estimation of the damages induced by strong ground motions and tsunamis based on reliable source parameters, detailed deep and shallow velocity structure and building data. As for detailed deep and shallow velocity structure microtremor array measurement surveys were conducted in Zeytinburnu district of Istanbul, Tekirdag, Canakkale and Edirne provinces at about 140 sites on October 2013, September 2014, 2015 and 2016. Also in September 2014, 11 accelerometer units were installed mainly in public buildings in both Zeytinburnu and Tekirdag area and are currently in operation. Each accelerometer unit compose of a Network Sensor (CV-374A) by Tokyo Sokushin, post processing PC for data storage and power supply unit. The Network Sensor (CV-374A) consist of three servo type accelerometers for two horizontal and one vertical component combined with 24 bit AD converter. In the presentation current achievements and activities of research group, preliminary results of microtremor array measurement surveys and recorded data by the newly installed stations will be introduced.

  9. Southwest U.S. Seismo-Acoustic Network: An Autonomous Data Aggregation, Detection, Localization and Ground-Truth Bulletin for the Infrasound Community

    NASA Astrophysics Data System (ADS)

    Jones, K. R.; Arrowsmith, S.

    2013-12-01

    The Southwest U.S. Seismo-Acoustic Network (SUSSAN) is a collaborative project designed to produce infrasound event detection bulletins for the infrasound community for research purposes. We are aggregating a large, unique, near real-time data set with available ground truth information from seismo-acoustic arrays across New Mexico, Utah, Nevada, California, Texas and Hawaii. The data are processed in near real-time (~ every 20 minutes) with detections being made on individual arrays and locations determined for networks of arrays. The detection and location data are then combined with any available ground truth information and compiled into a bulletin that will be released to the general public directly and eventually through the IRIS infrasound event bulletin. We use the open source Earthworm seismic data aggregation software to acquire waveform data either directly from the station operator or via the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC), if available. The data are processed using InfraMonitor, a powerful infrasound event detection and localization software program developed by Stephen Arrowsmith at Los Alamos National Laboratory (LANL). Our goal with this program is to provide the infrasound community with an event database that can be used collaboratively to study various natural and man-made sources. We encourage participation in this program directly or by making infrasound array data available through the IRIS DMC or other means. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. R&A 5317326

  10. Infrasound and Seismic Recordings of Rocket Launches from Kennedy Space Center, 2016-2017

    NASA Astrophysics Data System (ADS)

    McNutt, S. R.; Thompson, G.; Brown, R. G.; Braunmiller, J.; Farrell, A. K.; Mehta, C.

    2017-12-01

    We installed a temporary 3-station seismic-infrasound network at Kennedy Space Center (KSC) in February 2016 to test sensor calibrations and train students in field deployment and data acquisitions techniques. Each station featured a single broadband 3-component seismometer and a 3-element infrasound array. In May 2016 the network was scaled back to a single station due to other projects competing for equipment. To date 8 rocket launches have been recorded by the infrasound array, as well as 2 static tests, 1 aborted launch and 1 rocket explosion (see next abstract). Of the rocket launches recorded 4 were SpaceX Falcon-9, 2 were ULA Atlas-5 and 2 were ULA Delta-IV. A question we attempt to answer is whether the rocket engine type and launch trajectory can be estimated with appropriate travel-time, amplitude-ratio and spectral techniques. For example, there is a clear Doppler shift in seismic and infrasound spectrograms from all launches, with lower frequencies occurring later in the recorded signal as the rocket accelerates away from the array. Another question of interest is whether there are relationships between jet noise frequency, thrust and/or nozzle velocity. Infrasound data may help answer these questions. We are now in the process of deploying a permanent seismic and infrasound array at the Astronaut Beach House. 10 more rocket launches are schedule before AGU. NASA is also conducting a series of 33 sonic booms over KSC beginning on Aug 21st. Launches and other events at KSC have provided rich sources of signals that are useful to characterize and gain insight into physical processes and wave generation from man-made sources.

  11. Development and Characterization of a Dither-Based Super-Resolution Reconstruction Method for Fiber Imaging Arrays

    NASA Astrophysics Data System (ADS)

    Languirand, Eric Robert

    Chemical imaging is an important tool for providing insight into function, role, and spatial distribution of analytes. This thesis describes the use of imaging fiber bundles (IFB) for super-resolution reconstruction using surface enhanced Raman scattering (SERS) showing improvement in resolution with arrayed bundles for the first time. Additionally this thesis describes characteristics of the IFB with regards to cross-talk as a function of aperture size. The first part of this thesis characterizes the IFB for both tapered and untapered bundles in terms of cross-talk. Cross-talk is defined as the amount of light leaking from a central fiber element in the imaging fiber bundle to surrounding fiber elements. To make this measurement ubiquitous for all imaging bundles, quantum dots were employed. Untapered and tapered IFB possess cross-talk of 2% or less, with fiber elements down to 32nm. The second part of this thesis employs a super resolution reconstruction algorithm using projection onto convex sets for resolution improvement. When using IFB arrays, the point spread function (PSF) of the array can be known accurately if the fiber elements over fill the pixel detector array. Therefore, the use of the known PSF compared to a general blurring kernel was evaluated. Relative increases in resolution of 12% and 2% at the 95% confidence level are found, when compared to a reference image, for the general blurring kernel and PSF, respectively. The third part of this thesis shows for the first time the use of SERS with a dithered IFB array coupled with super-resolution reconstruction. The resolution improvement across a step-edge is shown to be approximately 20% when compared to a reference image. This provides an additional means of increasing the resolution of fiber bundles beyond that of just tapering. Furthermore, this provides a new avenue for nanoscale imaging using these bundles. Lastly, synthetic data with varying degrees of signal-to-noise (S/N) were employed to explore the relationship S/N has with the reconstruction process. It is generally shown that increasing the number images used in the reconstruction process and increasing the S/N will improve the reconstruction providing larger increases in resolution.

  12. Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.

    PubMed

    Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A

    2007-09-03

    We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.

  13. Xatcobeo: Small Mechanisms for CubeSat Satellites - Antenna and Solar Array Deployment

    NASA Technical Reports Server (NTRS)

    EncinasPlaza, Jose Miguel; VilanVilan, Jose Antonio; AquadoAgelet, Fernando; BrandiaranMancheno, Javier; LopezEstevez, Miguel; MartinezFernandez, Cesar; SarmientoAres, Fany

    2010-01-01

    The Xatcobeo project, which includes the mechanisms dealt with here, is principally a university project to design and construct a CubeSat 1U-type satellite. This work describes the design and operational features of the system for antenna storage and deployment, and the design and simulations of the solar array deployment system. It explains the various problems faced and solutions adopted, with a view to providing valid data for any other applications that could find them useful, be they of a similar nature or not.

  14. A summary report on the Flat-Plate Solar Array Project Workshop on Transparent Conducting Polymers

    NASA Technical Reports Server (NTRS)

    Kachare, R.; Moacanin, J.

    1985-01-01

    The proceedings and technical discussions of a workshop on Transparent Conducting Polymers (TCP) for solar cell applications are reported. This is in support of the Device Research Task of the Flat-Flate Solar Array Project. The workshop took place on January 11 and 12, 1985, in Santa Barbara, California. Participants included university and industry researchers. The discussions focused on the electronic and optical properties of TCP, and on experimental issues and problems that should be addressed for high-efficiency solar cell application.

  15. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  16. System for determining position of normal shock in supersonic flow

    NASA Technical Reports Server (NTRS)

    Iverson, Jr., Donald G. (Inventor); Daiber, Troy D. (Inventor)

    1991-01-01

    Light from a plurality of light emitting diodes is transmitted through optical cables (12) to a lens system. The lenses (56, 58) expand and collimate the light and project it in a sheet (16) across the supersonic inlet of an aircraft power plant perpendicular to incoming airflow. A normal shock bends a portion of the sheet of light (16). A linear array of a multiplicity of optical fiber ends collects discrete samples of light. The samples are processed and compared to a predetermined profile to determine the shock location.

  17. A methodological proposal for the development of an HPC-based antenna array scheduler

    NASA Astrophysics Data System (ADS)

    Bonvallet, Roberto; Hoffstadt, Arturo; Herrera, Diego; López, Daniela; Gregorio, Rodrigo; Almuna, Manuel; Hiriart, Rafael; Solar, Mauricio

    2010-07-01

    As new astronomy projects choose interferometry to improve angular resolution and to minimize costs, preparing and optimizing schedules for an antenna array becomes an increasingly critical task. This problem shares similarities with the job-shop problem, which is known to be a NP-hard problem, making a complete approach infeasible. In the case of ALMA, 18000 projects per season are expected, and the best schedule must be found in the order of minutes. The problem imposes severe difficulties: the large domain of observation projects to be taken into account; a complex objective function, composed of several abstract, environmental, and hardware constraints; the number of restrictions imposed and the dynamic nature of the problem, as weather is an ever-changing variable. A solution can benefit from the use of High-Performance Computing for the final implementation to be deployed, but also for the development process. Our research group proposes the use of both metaheuristic search and statistical learning algorithms, in order to create schedules in a reasonable time. How these techniques will be applied is yet to be determined as part of the ongoing research. Several algorithms need to be implemented, tested and evaluated by the team. This work presents the methodology proposed to lead the development of the scheduler. The basic functionality is encapsulated into software components implemented on parallel architectures. These components expose a domain-level interface to the researchers, enabling then to develop early prototypes for evaluating and comparing their proposed techniques.

  18. Defense Industrial Base Assessment: U.S. Integrated Circuit Design and Fabrication Capability

    DTIC Science & Technology

    2009-05-01

    in the U.S for the period 2003-2006, with projections to 2011.6 The resulting draft OTE survey was field tested for accuracy and usability with a...custom application specific integrated circuits (ASICs) to field programmable gate arrays (FPGAs). Companies of all sizes can manufacture these IC...able to design one-time Electronically Programmable Gate Arrays (EPGAs) while nine are able to design Field Programmable Gate Arrays (FPGAs). Eight

  19. Lessons from Cotton: Research Projects Following Development of a Community-based Genotyping Array

    USDA-ARS?s Scientific Manuscript database

    High-throughput, cost-effective genotyping arrays provide a standardized resource for plant breeding communities that can be used for a wide range of applications at a suitable pace for integrating pertinent information into breeding programs. Traditionally, crop research communities will target dev...

  20. Status of the MARE experiment in Milan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferri, E.; Arnaboldi, C.; Ceruti, G.

    2009-12-16

    An international collaboration has grown around the project of Microcalorimeter Arrays for a Rhenium Experiment (MARE) for a direct and calorimetric measurement of the electron antineutrino mass with sub-electronvolt sensitivity.MARE is divided into two phases. The first phase (MARE-1) consists of two independent experiments using the presently available detector technology to reach a sensitivity of m{sub v}{<=}2eV/c{sup 2}. The goal of the second phase (MARE-2) is to achieve a sub-electronvolt sensitivity on the neutrino mass.The Milan MARE-1 experiment is based on arrays of silicon implanted microcalorimeters, produced by NASA/GSFC, with dielectric silver perrhenate absorbers, AgReO{sub 4}. We present here themore » status of MARE-1 in Milan which is starting data taking with 2 arrays (72 detectors). In this configuration a sensitivity of about 5 eV can be achieved in two years. We describe in details the experimental setup which is designed to host up to 8 arrays (288 detectors). With 8 arrays, two years of measurement would improve the sensitivity to about 3 eV. This talk reports on the activity of the group for the MARE project in Milan.« less

  1. The first educational interferometer in Mexico (FEYMANS): A novel project

    NASA Astrophysics Data System (ADS)

    Villicana Pedraza, Ilhuiyolitzin; Guesten, Rolf; Saucedo Morales, Julio Cesar; Carreto, Francisco; Valdes Estrada, Erik; Wendolyn Blanco Cardenas, Monica; Rodríguez Garza, Carolina B.; Pech Castillo, Gerardo A.; Ángel Vaquerizo, Juan

    2016-07-01

    An interferometer is composed of several radio telescopes (dishes) separated by a defined distance and used in synchrony. This kind of array produces a superior angular resolution, better than the resolution achieved by a single dish of the same combined area. In this work we propose the First Educational Youth Mexican Array North South, FEYMANS. It consists of an educational interferometer with initially four dishes. This array harvests Mexico's geography by locating each dish at the periphery of the country; creating new scientific links of provincial populations with the capital. The FEYMANS project focus in high school students and their projects on physics, chemistry and astronomy as a final project. Also, it can be used for bachelor theses. The initial and central dish-node is planed to be in Mexico City. After its construction, the efforts will focus to build subsequent nodes, on the Northwest region, Northeast, or Southeast. Region Northwest will give service to Baja California, Sonora and Chihuahua states. Region Northeast will cover Coahuila, Nuevo Leon and Tamaulipas. Finally, region Southeast will give access to Yucatan, Quintana Roo, Campeche, Tabasco and Chiapas. This project has been conceived by young professional astronomers and Mexican experts that will operate each node. Also, we have the technical support of the "Max Planck Institute fuer Radioastronomy in Bonn Germany" and the educational model of the "PARTNeR" project in Spain. This interferometer will be financed by Mexico's Federal Congress and by Mexico City's Legislative Assembly (ALDF).

  2. Design and Fabrication Highlights Enabling a 2 mm, 128 Element Bolometer Array for GISMO

    NASA Technical Reports Server (NTRS)

    Allen, Christine; Benford, Dominic; Miller, Timothy; Staguhn, Johannes; Wollack, Edward; Moseley, Harvey

    2007-01-01

    The Backshort-Under-Grid (BUG) superconducting bolometer array architecture is intended to be highly versatile, operating in a large range of wavelengths and background conditions. We have undertaken a three-year program to develop key technologies and processes required to build kilopixel arrays. To validate the basic array design and to demonstrate its applicability for future kilopixel arrays, we have chosen to demonstrate a 128 element bolometer array optimized for 2 mm wavelength using a newly built Goddard instrument, GISMO (Goddard /RAM Superconducting 2-millimeter Observer). The arrays are fabricated using batch wafer processing developed and optimized for high pixel yield, low noise, and high uniformity. The molybdenum-gold superconducting transition edge sensors are fabricated using batch sputter deposition and are patterned using dry etch techniques developed at Goddard. With a detector pitch of 2 mm 8x16 array for GISMO occupies nearly one half of the processing area of a 100 mm silicon-on-insulator starting wafer. Two such arrays are produced from a single wafer along with witness samples for process characterization. To provide thermal isolation for the detector elements, at the end of the process over 90% of the silicon must be removed using deep reactive ion etching techniques. The electrical connections for each bolometer element are patterned on the top edge of the square grid supporting the array. The design considerations unique to GISMO, key fabrication challenges, and laboratory experimental results will be presented.

  3. An in-house manual for building APEX projects using ArcAPEX

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Policy Environmental eXtender (APEX) provides the foundation for water quality and natural resource analysis across a wide array of USDA initiatives, projects and programs. The model has been utilized in both the national Conservation Effects Assessment Project (CEAP) analysis and ...

  4. Open Source Seismic Software in NOAA's Next Generation Tsunami Warning System

    NASA Astrophysics Data System (ADS)

    Hellman, S. B.; Baker, B. I.; Hagerty, M. T.; Leifer, J. M.; Lisowski, S.; Thies, D. A.; Donnelly, B. K.; Griffith, F. P.

    2014-12-01

    The Tsunami Information technology Modernization (TIM) is a project spearheaded by National Oceanic and Atmospheric Administration to update the United States' Tsunami Warning System software currently employed at the Pacific Tsunami Warning Center (Eva Beach, Hawaii) and the National Tsunami Warning Center (Palmer, Alaska). This entirely open source software project will integrate various seismic processing utilities with the National Weather Service Weather Forecast Office's core software, AWIPS2. For the real-time and near real-time seismic processing aspect of this project, NOAA has elected to integrate the open source portions of GFZ's SeisComP 3 (SC3) processing system into AWIPS2. To provide for better tsunami threat assessments we are developing open source tools for magnitude estimations (e.g., moment magnitude, energy magnitude, surface wave magnitude), detection of slow earthquakes with the Theta discriminant, moment tensor inversions (e.g. W-phase and teleseismic body waves), finite fault inversions, and array processing. With our reliance on common data formats such as QuakeML and seismic community standard messaging systems, all new facilities introduced into AWIPS2 and SC3 will be available as stand-alone tools or could be easily integrated into other real time seismic monitoring systems such as Earthworm, Antelope, etc. Additionally, we have developed a template based design paradigm so that the developer or scientist can efficiently create upgrades, replacements, and/or new metrics to the seismic data processing with only a cursory knowledge of the underlying SC3.

  5. Chapter 12 - Mapping wildland fuel across large regions for the LANDFIRE Prototype Project

    Treesearch

    Robert E. Keane; Tracey Frescino; Matthew C. Reeves; Jennifer L. Long

    2006-01-01

    The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, required that the entire array of wildland fuel characteristics be mapped to provide fire and landscape managers with consistent baseline geo-spatial information to plan projects for hazardous fuel mitigation and to improve public and firefighter safety. Fuel...

  6. Web application to access U.S. Army Corps of Engineers Civil Works and Restoration Projects information for the Rio Grande Basin, southern Colorado, New Mexico, and Texas

    USGS Publications Warehouse

    Archuleta, Christy-Ann M.; Eames, Deanna R.

    2009-01-01

    The Rio Grande Civil Works and Restoration Projects Web Application, developed by the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers (USACE) Albuquerque District, is designed to provide publicly available information through the Internet about civil works and restoration projects in the Rio Grande Basin. Since 1942, USACE Albuquerque District responsibilities have included building facilities for the U.S. Army and U.S. Air Force, providing flood protection, supplying water for power and public recreation, participating in fire remediation, protecting and restoring wetlands and other natural resources, and supporting other government agencies with engineering, contracting, and project management services. In the process of conducting this vast array of engineering work, the need arose for easily tracking the locations of and providing information about projects to stakeholders and the public. This fact sheet introduces a Web application developed to enable users to visualize locations and search for information about USACE (and some other Federal, State, and local) projects in the Rio Grande Basin in southern Colorado, New Mexico, and Texas.

  7. Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon

    DOE PAGES

    Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; ...

    2015-01-01

    A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmore » characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.« less

  8. Efficient receiver tuning using differential evolution strategies

    NASA Astrophysics Data System (ADS)

    Wheeler, Caleb H.; Toland, Trevor G.

    2016-08-01

    Differential evolution (DE) is a powerful and computationally inexpensive optimization strategy that can be used to search an entire parameter space or to converge quickly on a solution. The Kilopixel Array Pathfinder Project (KAPPa) is a heterodyne receiver system delivering 5 GHz of instantaneous bandwidth in the tuning range of 645-695 GHz. The fully automated KAPPa receiver test system finds optimal receiver tuning using performance feedback and DE. We present an adaptation of DE for use in rapid receiver characterization. The KAPPa DE algorithm is written in Python 2.7 and is fully integrated with the KAPPa instrument control, data processing, and visualization code. KAPPa develops the technologies needed to realize heterodyne focal plane arrays containing 1000 pixels. Finding optimal receiver tuning by investigating large parameter spaces is one of many challenges facing the characterization phase of KAPPa. This is a difficult task via by-hand techniques. Characterizing or tuning in an automated fashion without need for human intervention is desirable for future large scale arrays. While many optimization strategies exist, DE is ideal for time and performance constraints because it can be set to converge to a solution rapidly with minimal computational overhead. We discuss how DE is utilized in the KAPPa system and discuss its performance and look toward the future of 1000 pixel array receivers and consider how the KAPPa DE system might be applied.

  9. Charge coupled devices

    NASA Technical Reports Server (NTRS)

    Walker, J. W.; Hornbeck, L. J.; Stubbs, D. P.

    1977-01-01

    The results are presented of a program to design, fabricate, and test CCD arrays suitable for operation in an electron-bombarded mode. These intensified charge coupled devices have potential application to astronomy as photon-counting arrays. The objectives of this program were to deliver arrays of 250 lines of 400 pixels each and some associated electronics. Some arrays were delivered on tube-compatible headers and some were delivered after incorporation in vacuum tubes. Delivery of these devices required considerable improvements to be made in the processing associated with intensified operation. These improvements resulted in a high yield in the thinning process, reproducible results in the accumulation process, elimination of a dark current source in the accumulation process, solution of a number of header related problems, and the identification of a remaining major source of dark current. Two systematic failure modes were identified and protective measures established. The effects of tube processing on the arrays in the delivered ICCDs were determined and are reported along with the characterization data on the arrays.

  10. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  11. Analysis and evaluation in the production process and equipment area of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1982-01-01

    It was found that the Solarex metallization design and process selection should be modified to yield substantially higher output of the 10 cm x 10 cm cells, while the Westinghouse design is extremely close to the optimum. In addition, further attention to the Solarex pn junction and base high/low junction formation processes could be beneficial. For the future efficiency improvement, it was found that refinement of the various minority carrier lifetime measurement methods is needed, as well as considerably increased sophistication in the interpretation of the results of these methods. In addition, it was determined that further experimental investigation of the Auger lifetime is needed, to conclusively determine the Auger coefficients for the direct Auger recombination at high majority carrier concentrations.

  12. Low cost solar array project. Cell and module formation research area. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock.

  13. Microwave power transmitting phased array antenna research project

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1978-01-01

    An initial design study and the development results of an S band RF power transmitting phased array antenna experiment system are presented. The array was to be designed, constructed and instrumented to permit wireless power transmission technology evaluation measurements. The planned measurements were to provide data relative to the achievable performance in the state of the art of flexible surface, retrodirective arrays, as a step in technically evaluating the satellite power system concept for importing to earth, via microwave beams, the nearly continuous solar power available in geosynchronous orbit. Details of the microwave power transmitting phased array design, instrumentation approaches, system block diagrams, and measured component and breadboard characteristics achieved are presented.

  14. IRIS Toxicological Review of tert-Butyl Alcohol (tert-Butanol) ...

    EPA Pesticide Factsheets

    In August 2013, EPA released the draft literature searches and associated search strategies, evidence tables, and exposure response arrays for TBA to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA was interested in comments on the following: Draft literature search strategies The approach for identifying studies The screening process for selecting pertinent studies The resulting list of pertinent studies Preliminary evidence tables The process for selecting studies to include in evidence tables The quality of the studies in the evidence tables The literature search strategy, which describes the processes for identifying scientific literature, contains the studies that EPA considered and selected to include in the evidence tables. The preliminary evidence tables and exposure-response arrays present the key study data in a standardized format. The evidence tables summarize the available critical scientific literature. The exposure-response figures provide a graphical representation of the responses at different levels of exposure for each study in the evidence table. EPA is undertaking a new health assessment for t-butyl alcohol (TBA) for the Integrated Risk Information System (IRIS). The outcome of this project will be a Toxicological Review and IRIS and IRIS Summary of TBA that will be entered on the IRIS database. IRIS is an EPA da

  15. Design and engineering of photosynthetic light-harvesting and electron transfer using length, time, and energy scales.

    PubMed

    Noy, Dror; Moser, Christopher C; Dutton, P Leslie

    2006-02-01

    Decades of research on the physical processes and chemical reaction-pathways in photosynthetic enzymes have resulted in an extensive database of kinetic information. Recently, this database has been augmented by a variety of high and medium resolution crystal structures of key photosynthetic enzymes that now include the two photosystems (PSI and PSII) of oxygenic photosynthetic organisms. Here, we examine the currently available structural and functional information from an engineer's point of view with the long-term goal of reproducing the key features of natural photosystems in de novo designed and custom-built molecular solar energy conversion devices. We find that the basic physics of the transfer processes, namely, the time constraints imposed by the rates of incoming photon flux and the various decay processes allow for a large degree of tolerance in the engineering parameters. Moreover, we find that the requirements to guarantee energy and electron transfer rates that yield high efficiency in natural photosystems are largely met by control of distance between chromophores and redox cofactors. Thus, for projected de novo designed constructions, the control of spatial organization of cofactor molecules within a dense array is initially given priority. Nevertheless, constructions accommodating dense arrays of different cofactors, some well within 1 nm from each other, still presents a significant challenge for protein design.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgardt, D.R.; Carter, S.; Maxson, M.

    The objective of this project is to design and develop an Intelligent Event Identification System, or ISEIS, which will be a prototype for routine event identification of small explosions and earthquakes and to serve as a tool for discrimination research. The first part of this study gives an overview of the system design and the results of a preliminary evaluation of the system on events in Scandinavia and the Soviet Union. The system was designed to be highly modular to allow the easy incorporation of new discriminants and/or discrimination processes. Because the main objective of the system is the identificationmore » of small events, most of the initial ISEIS prototype discriminants utilize regional seismic data recorded by the regional arrays, NORESS and ARCESS. However, ISEIS can easily process other regional array data (e.g., from GERESS and FINESA), as well as data from three-component single stations, as more of this data becomes available. The second part of this study is entitled Intelligent Event Identification System: User's Manual, and gives a detailed description of all the processing interfaces of ISEIS. The third part of this study is entitled Intelligent Event Identification System: Software Maintenance Manual, which describes the ISEIS software from the programmer's perspective and provides information for maintenance and modification of the software modules in the system.« less

  17. 76 FR 8724 - First Light Hydro Generating Company; Notice of Application Accepted for Filing, Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2485-059] First Light Hydro..., Federal Energy Regulatory Commission, 888 First Street, NE., Washington, DC 20426. Commenters can submit... photovoltaic solar array will provide power to Northfield Mountain Visitor's Center. The solar array would be...

  18. The MARIACHI Project: Mixed Apparatus for Radio Investigation of Atmospheric Cosmic Rays of High Ionization

    NASA Astrophysics Data System (ADS)

    Inglis, M. D.; Takai, H.; Warasia, R.; Sundermier, J.

    2005-12-01

    Extreme Energy Cosmic Rays are nuclei that have been accelerated to kinetic energies in excess of 1020 eV. Where do they come from? How are they produced? Are they survivors of the early universe? Are they remnants of supernovas? MARIACHI, a unique collaboration between scientists, physics teachers and students, is an innovative technique that allows us to detect and study them. The Experiment MARIACHI is a unique research experiment that seeks the detection of extreme energy cosmic rays (EECRs), with E >1020 eV. It is an exciting project with many aspects: Research: It investigates an unconventional way of detecting EECRs based upon a method successfully used to detect meteors entering the upper atmosphere. The method was developed by planetary astronomers listening to radio signals reflected off the ionization trail. MARIACHI seeks to listen to TV signals reflected off the ionization trail of an EECR. The unique experiment topology will also permit the study of meteors, exotic forms of lightning, and atmospheric science. Computing and Technology: It uses radio detection stations, along with mini shower arrays hooked up to GPS clocks. Teachers and students build the arrays. It implements the Internet and the GRID as means of communication, data transfer, data processing, and for hosting a public educational outreach web site. Outreach and Education: It is an open research project with the active participation of a wide audience of astronomers, physicists, college professors, high school teachers and students. Groups representing high schools, community colleges and universities all collaborate in the project. The excitement of a real experiment motivates the science and technology classroom, and incorporates several high school physical science topics along with material from other disciplines such as astronomy, electronics, radio, optics.

  19. A programmable computational image sensor for high-speed vision

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Shi, Cong; Long, Xitian; Wu, Nanjian

    2013-08-01

    In this paper we present a programmable computational image sensor for high-speed vision. This computational image sensor contains four main blocks: an image pixel array, a massively parallel processing element (PE) array, a row processor (RP) array and a RISC core. The pixel-parallel PE is responsible for transferring, storing and processing image raw data in a SIMD fashion with its own programming language. The RPs are one dimensional array of simplified RISC cores, it can carry out complex arithmetic and logic operations. The PE array and RP array can finish great amount of computation with few instruction cycles and therefore satisfy the low- and middle-level high-speed image processing requirement. The RISC core controls the whole system operation and finishes some high-level image processing algorithms. We utilize a simplified AHB bus as the system bus to connect our major components. Programming language and corresponding tool chain for this computational image sensor are also developed.

  20. Designing, Developing and Implementing WWW-Based Distance Learning.

    ERIC Educational Resources Information Center

    Riley, Peter C.

    The rapid advancement of communication technologies is resulting in a wide array of design and development choices for distance learning projects. The 58th Special Operations Wing at Kirtland Air Force Base, New Mexico, is developing a prototype distance learning project designed to serve geographically separated learner populations. Project staff…

  1. LOW COST ORGANIC GAS SENSORS ON PLASTIC FOR DISTRIBUTED ENVIRONMENTAL MONITORING

    EPA Science Inventory

    This project focused on the development of low-cost arrayed organic sensors for environmental monitoring applications. All of the major goals of the original project have been achieved in the 3-year period of this grant.

    In Year 1 of the project, we successfully deve...

  2. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  3. Phenological Parameters Estimation Tool

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney D.; Ross, Kenton W.; Spruce, Joseph P.; Smoot, James C.; Ryan, Robert E.; Gasser, Gerald E.; Prados, Donald L.; Vaughan, Ronald D.

    2010-01-01

    The Phenological Parameters Estimation Tool (PPET) is a set of algorithms implemented in MATLAB that estimates key vegetative phenological parameters. For a given year, the PPET software package takes in temporally processed vegetation index data (3D spatio-temporal arrays) generated by the time series product tool (TSPT) and outputs spatial grids (2D arrays) of vegetation phenological parameters. As a precursor to PPET, the TSPT uses quality information for each pixel of each date to remove bad or suspect data, and then interpolates and digitally fills data voids in the time series to produce a continuous, smoothed vegetation index product. During processing, the TSPT displays NDVI (Normalized Difference Vegetation Index) time series plots and images from the temporally processed pixels. Both the TSPT and PPET currently use moderate resolution imaging spectroradiometer (MODIS) satellite multispectral data as a default, but each software package is modifiable and could be used with any high-temporal-rate remote sensing data collection system that is capable of producing vegetation indices. Raw MODIS data from the Aqua and Terra satellites is processed using the TSPT to generate a filtered time series data product. The PPET then uses the TSPT output to generate phenological parameters for desired locations. PPET output data tiles are mosaicked into a Conterminous United States (CONUS) data layer using ERDAS IMAGINE, or equivalent software package. Mosaics of the vegetation phenology data products are then reprojected to the desired map projection using ERDAS IMAGINE

  4. NANOCI-Nanotechnology Based Cochlear Implant With Gapless Interface to Auditory Neurons.

    PubMed

    Senn, Pascal; Roccio, Marta; Hahnewald, Stefan; Frick, Claudia; Kwiatkowska, Monika; Ishikawa, Masaaki; Bako, Peter; Li, Hao; Edin, Fredrik; Liu, Wei; Rask-Andersen, Helge; Pyykkö, Ilmari; Zou, Jing; Mannerström, Marika; Keppner, Herbert; Homsy, Alexandra; Laux, Edith; Llera, Miguel; Lellouche, Jean-Paul; Ostrovsky, Stella; Banin, Ehud; Gedanken, Aharon; Perkas, Nina; Wank, Ute; Wiesmüller, Karl-Heinz; Mistrík, Pavel; Benav, Heval; Garnham, Carolyn; Jolly, Claude; Gander, Filippo; Ulrich, Peter; Müller, Marcus; Löwenheim, Hubert

    2017-09-01

    : Cochlear implants (CI) restore functional hearing in the majority of deaf patients. Despite the tremendous success of these devices, some limitations remain. The bottleneck for optimal electrical stimulation with CI is caused by the anatomical gap between the electrode array and the auditory neurons in the inner ear. As a consequence, current devices are limited through 1) low frequency resolution, hence sub-optimal sound quality and 2), large stimulation currents, hence high energy consumption (responsible for significant battery costs and for impeding the development of fully implantable systems). A recently completed, multinational and interdisciplinary project called NANOCI aimed at overcoming current limitations by creating a gapless interface between auditory nerve fibers and the cochlear implant electrode array. This ambitious goal was achieved in vivo by neurotrophin-induced attraction of neurites through an intracochlear gel-nanomatrix onto a modified nanoCI electrode array located in the scala tympani of deafened guinea pigs. Functionally, the gapless interface led to lower stimulation thresholds and a larger dynamic range in vivo, and to reduced stimulation energy requirement (up to fivefold) in an in vitro model using auditory neurons cultured on multi-electrode arrays. In conclusion, the NANOCI project yielded proof of concept that a gapless interface between auditory neurons and cochlear implant electrode arrays is feasible. These findings may be of relevance for the development of future CI systems with better sound quality and performance and lower energy consumption. The present overview/review paper summarizes the NANOCI project history and highlights achievements of the individual work packages.

  5. Radar Array Processing of Experimental Data Via the Scan-MUSIC Algorithm

    DTIC Science & Technology

    2004-06-01

    Radar Array Processing of Experimental Data Via the Scan- MUSIC Algorithm by Canh Ly ARL-TR-3135 June 2004...Processing of Experimental Data Via the Scan- MUSIC Algorithm Canh Ly Sensors and Electron Devices Directorate, ARL...NUMBER 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Radar Array Processing of Experimental Data Via the Scan- MUSIC Algorithm 5c. PROGRAM ELEMENT NUMBER 5d

  6. Expanded Very Large Array Nova Project Observations of the Classical Nova V1723 Aquilae

    NASA Astrophysics Data System (ADS)

    Krauss, Miriam I.; Chomiuk, Laura; Rupen, Michael; Roy, Nirupam; Mioduszewski, Amy J.; Sokoloski, J. L.; Nelson, Thomas; Mukai, Koji; Bode, M. F.; Eyres, S. P. S.; O'Brien, T. J.

    2011-09-01

    We present radio light curves and spectra of the classical nova V1723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of V1723 Aql span 1-37 GHz in frequency, and we report on data from 14 to 175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of V1723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.

  7. Expanded Very Large Array Nova Project Observations of the Classical NovaV1723 Aquilae

    NASA Technical Reports Server (NTRS)

    Krauss, Miriam I.; Chomiuk, Laura; Rupen, Michael; Roy, Nirupam; Mioduszewski, Amy J.; Sokoloski, J. L.; Nelson, Thomas; Mukai, Koji; Bode, M. F.; Eyres, S. P. S.; hide

    2011-01-01

    We present radio light curves and spectra of the classical nova VI723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of VI723 Aql span 1-37 GHz in frequency, and we report on data from 14 to 175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of VI723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.

  8. A Multiple Use MF/HF Radio Array for Radio Research, Development, and Education

    DTIC Science & Technology

    2016-04-27

    reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: A Multiple Use MF/HF Radio Array for Radio Research , Development...inspiring high school and university- level student projects. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers ...references, in the following categories: (b) Papers published in non-peer-reviewed journals (N/A for none) An MF/HF antenna array for radio and radar imaging

  9. The High-Level Interface Definitions in the ASTRI/CTA Mini Array Software System (MASS)

    NASA Astrophysics Data System (ADS)

    Conforti, V.; Tosti, G.; Schwarz, J.; Bruno, P.; Cefal‘A, M.; Paola, A. D.; Gianotti, F.; Grillo, A.; Russo, F.; Tanci, C.; Testa, V.; Antonelli, L. A.; Canestrari, R.; Catalano, O.; Fiorini, M.; Gallozzi, S.; Giro, E.; Palombara, N. L.; Leto, G.; Maccarone, M. C.; Pareschi, G.; Stringhetti, L.; Trifoglio, M.; Vercellone, S.; Astri Collaboration; Cta Consortium

    2015-09-01

    ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project funded by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype, named ASTRI SST-2M, of a Small Size Dual-Mirror Telescope for the Cherenkov Telescope Array, CTA. A second goal of the project is the realization of the ASTRI/CTA mini-array, which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The ASTRI Mini Array Software System (MASS) is designed to support the ASTRI/CTA mini-array operations. MASS is being built on top of the ALMA Common Software (ACS) framework, which provides support for the implementation of distributed data acquisition and control systems, and functionality for log and alarm management, message driven communication and hardware devices management. The first version of the MASS system, which will comply with the CTA requirements and guidelines, will be tested on the ASTRI SST-2M prototype. In this contribution we present the interface definitions of the MASS high level components in charge of the ASTRI SST-2M observation scheduling, telescope control and monitoring, and data taking. Particular emphasis is given to their potential reuse for the ASTRI/CTA mini-array.

  10. Frequency domain and full waveform time domain inversion of ground based magnetometer, electrometer and incoherent scattering radar arrays to image strongly heterogenous 3-D Earth structure, ionospheric structure, and to predict the intensity of GICs in the power grid

    NASA Astrophysics Data System (ADS)

    Schultz, A.; Imamura, N.; Bonner, L. R., IV; Cosgrove, R. B.

    2016-12-01

    Ground-based magnetometer and electrometer arrays provide the means to probe the structure of the Earth's interior, the interactions of space weather with the ionosphere, and to anticipate the intensity of geomagnetically induced currents (GICs) in power grids. We present a local-to-continental scale view of a heterogeneous 3-D crust and mantle as determined from magnetotelluric (MT) observations across arrays of ground-based electric and magnetic field sensors. MT impedance tensors describe the relationship between electric and magnetic fields at a given site, thus implicitly they contain all known information on the 3-D electrical resistivity structure beneath and surrounding that site. By using multivariate transfer functions to project real-time magnetic observatory network data to areas surrounding electric power grids, and by projecting those magnetic fields through MT impedance tensors, the projected magnetic field can be transformed into predictions of electric fields along the path of the transmission lines, an essential element of predicting the intensity of GICs in the grid. Finally, we explore GICs, i.e. Earth-ionosphere coupling directly in the time-domain. We consider the fully coupled EM system, where we allow for a non-stationary ionospheric source field of arbitrary complexity above a 3-D Earth. We solve the simultaneous inverse problem for 3-D Earth conductivity and source field structure directly in the time domain. In the present work, we apply this method to magnetotelluric data obtained from a synchronously operating array of 25 MT stations that collected continuous MT waveform data in the interior of Alaska during the autumn and winter of 2015 under the footprint of the Poker Flat (Alaska) Incoherent Scattering Radar (PFISR). PFISR data yield functionals of the ionospheric electric field and ionospheric conductivity that constrain the MT source field. We show that in this region conventional robust MT processing methods struggle to produce reliable MT response functions at periods much greater than about 2,000 s, a consequence, we believe, of the complexity of the ionospheric source fields in this high latitude setting. This provides impetus for direct waveform inversion methods that dispense with typical parametric assumptions made about the MT source fields.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnison, Shaughn; Livers-Douglas, Amanda; Barajas-Olalde, Cesar

    The scalable, automated, semipermanent seismic array (SASSA) project led and managed by the Energy & Environmental Research Center (EERC) was designed as a 3-year proof-of-concept study to evaluate and demonstrate an innovative application of the seismic method. The concept was to use a sparse surface array of 96 nodal seismic sensors paired with a single, remotely operated active seismic source at a fixed location to monitor for CO 2 saturation changes in a subsurface reservoir by processing the data for time-lapse changes at individual, strategically chosen reservoir reflection points. The combination of autonomous equipment and modern processing algorithms was usedmore » to apply the seismic method in a manner different from the normal paradigm of collecting a spatially dense data set to produce an image. It was used instead to monitor individual, strategically chosen reservoir reflection points for detectable signal character changes that could be attributed to the passing of a CO 2 saturation front or, possibly, changes in reservoir pressure. Data collection occurred over the course of 1 year at an oil field undergoing CO 2 injection for enhanced oil recovery (EOR) and focused on four overlapping “five-spot” EOR injector–producer patterns. Selection, procurement, configuration, installation, and testing of project equipment and collection of five baseline data sets were completed in advance of CO 2 injection within the study area. Weekly remote data collection produced 41 incremental time-lapse records for each of the 96 nodes. Validation was provided by two methods: 1) a conventional 2-D seismic line acquired through the center of the study area before injection started and again after the project ended and processed in a time-lapse manner and 2) by CO 2 saturation maps created from reservoir simulations based on injection and production history matching. Interpreted results were encouraging but mixed, with indications of changes likely due to the presence of CO 2 on some node reflection points where and when effects would be expected and noneffects where no CO 2 was expected, while results at some locations where simulation outputs suggested CO 2 should be present were ambiguous. Acquisition noise impacted interpretation of data at several locations. Many lessons learned were generated by the study to inform and improve results on a follow-up study. The ultimate aim of the project was to evaluate whether deployment of a SASSA technology can provide a useful and cost-effective monitoring solution for future CO 2 injection projects. The answer appears to be affirmative, with the expectation that lessons learned applied to future iterations, together with technology advances, will likely result in significant improvements.« less

  12. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    NASA Technical Reports Server (NTRS)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  13. A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.

    PubMed

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  14. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    PubMed Central

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  15. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays.

    PubMed

    Lutton, Rebecca E M; Larrañeta, Eneko; Kearney, Mary-Carmel; Boyd, Peter; Woolfson, A David; Donnelly, Ryan F

    2015-10-15

    A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14×14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays

    PubMed Central

    Lutton, Rebecca E.M.; Larrañeta, Eneko; Kearney, Mary-Carmel; Boyd, Peter; Woolfson, A.David; Donnelly, Ryan F.

    2015-01-01

    A novel manufacturing process for fabricating microneedle arrays (MN) has been designed and evaluated. The prototype is able to successfully produce 14 × 14 MN arrays and is easily capable of scale-up, enabling the transition from laboratory to industry and subsequent commercialisation. The method requires the custom design of metal MN master templates to produce silicone MN moulds using an injection moulding process. The MN arrays produced using this novel method was compared with centrifugation, the traditional method of producing aqueous hydrogel-forming MN arrays. The results proved that there was negligible difference between either methods, with each producing MN arrays with comparable quality. Both types of MN arrays can be successfully inserted in a skin simulant. In both cases the insertion depth was approximately 60% of the needle length and the height reduction after insertion was in both cases approximately 3%. PMID:26302858

  17. Substrate comprising a nanometer-scale projection array

    DOEpatents

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Connor, Stephen T; Yu, Zongfu; Fan, Shanhui; Burkhard, George

    2012-11-27

    A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.

  18. The 19th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1981-01-01

    The Flat-Plate Solar Array Project is described. Project analysis and integration is discussed. Technology research in silicon material, large-area silicon sheet and environmental isolation; cell and module formation; engineering sciences, and module performance and failure analysis. It includes a report on, and copies of visual presentations made at, the 19th Project Integration Meeting held at Pasadena, California, on November 11, 1981.

  19. Investigating dynamical complexity in the time series of the upgraded ENIGMA magnetometer array using various entropy measures

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Daglis, Ioannis A.; Papadimitriou, Constantinos; Melis, Nikolaos; Giannakis, Omiros; Kontoes, Charalampos

    2016-04-01

    The HellENIc GeoMagnetic Array (ENIGMA) is a network of 3 ground-based magnetometer stations in the areas of Trikala, Attiki and Lakonia in Greece that provides measurements for the study of geomagnetic pulsations, resulting from the solar wind - magnetosphere coupling. ENIGMA magnetometer array enables effective remote sensing of geospace dynamics and the study of space weather effects on the ground (i.e., Geomagnetically Induced Currents - GIC). ENIGMA contributes data to SuperMAG, a worldwide collaboration of organizations and national agencies that currently operate more than 300 ground-based magnetometers. ENIGMA is currently extended and upgraded receiving financial support through the national funding KRIPIS project and European Commission's BEYOND project. In particular, the REGPOT project BEYOND is an FP7 project that aims to maintain and expand the existing state-of-the-art interdisciplinary research potential, by Building a Centre of Excellence for Earth Observation based monitoring of Natural Disasters in south-eastern Europe, with a prospect to increase its access range to the wider Mediterranean region through the integrated cooperation with twining organizations. This study explores the applicability and effectiveness of a variety of computable entropy measures to the ENIGMA time series in order to investigate dynamical complexity between pre-storm activity and magnetic storms.

  20. Risk Reduction for Use of Complex Devices in Space Projects

    NASA Technical Reports Server (NTRS)

    Berg, Melanie; Poivey, Christian; Friendlich, Mark; Petrick, Dave; LaBel, Kenneth; Stansberry, Scott

    2007-01-01

    We present guidel!nes to reduce risk to an acceptable level when using complex devices in space applications. Application to Virtex 4 Field Programmable Gate Array (FPGA) on Express Logistic Carrier (ELC) project is presented.

  1. Array signal processing in the NASA Deep Space Network

    NASA Technical Reports Server (NTRS)

    Pham, Timothy T.; Jongeling, Andre P.

    2004-01-01

    In this paper, we will describe the benefits of arraying and past as well as expected future use of this application. The signal processing aspects of array system are described. Field measurements via actual tracking spacecraft are also presented.

  2. Development of a monolithic ferrite memory array

    NASA Technical Reports Server (NTRS)

    Heckler, C. H., Jr.; Bhiwandker, N. C.

    1972-01-01

    The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.

  3. Dynamic application of microprojection arrays to skin induces circulating protein extravasation for enhanced biomarker capture and detection.

    PubMed

    Coffey, Jacob W; Meliga, Stefano C; Corrie, Simon R; Kendall, Mark A F

    2016-04-01

    Surface modified microprojection arrays are a needle-free alternative to capture circulating biomarkers from the skin in vivo for diagnosis. The concentration and turnover of biomarkers in the interstitial fluid, however, may limit the amount of biomarker that can be accessed by microprojection arrays and ultimately their capture efficiency. Here we report that microprojection array insertion induces protein extravasation from blood vessels and increases the concentration of biomarkers in skin, which can synergistically improve biomarker capture. Regions of blood vessels in skin were identified in the upper dermis and subcutaneous tissue by multi-photon microscopy. Insertion of microprojection array designs with varying projection length (40-190 μm), density (5000-20,408 proj.cm(-2)) and array size (4-36 mm(2)) did not affect the degree of extravasation. Furthermore, the location of extravasated protein did not correlate with projection penetration to these highly vascularised regions, suggesting extravasation was not caused by direct puncture of blood vessels. Biomarker extravasation was also induced by dynamic application of flat control surfaces, and varied with the impact velocity, further supporting this conclusion. The extravasated protein distribution correlated well with regions of high mechanical stress generated during insertion, quantified by finite element models. Using this approach to induce extravasation prior to microprojection array-based biomarker capture, anti-influenza IgG was captured within a 2 min application time, demonstrating that extravasation can lead to rapid biomarker sampling and significantly improved microprojection array capture efficiency. These results have broad implications for the development of transdermal devices that deliver to and sample from the skin. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. Method for automatic detection of wheezing in lung sounds.

    PubMed

    Riella, R J; Nohama, P; Maia, J M

    2009-07-01

    The present report describes the development of a technique for automatic wheezing recognition in digitally recorded lung sounds. This method is based on the extraction and processing of spectral information from the respiratory cycle and the use of these data for user feedback and automatic recognition. The respiratory cycle is first pre-processed, in order to normalize its spectral information, and its spectrogram is then computed. After this procedure, the spectrogram image is processed by a two-dimensional convolution filter and a half-threshold in order to increase the contrast and isolate its highest amplitude components, respectively. Thus, in order to generate more compressed data to automatic recognition, the spectral projection from the processed spectrogram is computed and stored as an array. The higher magnitude values of the array and its respective spectral values are then located and used as inputs to a multi-layer perceptron artificial neural network, which results an automatic indication about the presence of wheezes. For validation of the methodology, lung sounds recorded from three different repositories were used. The results show that the proposed technique achieves 84.82% accuracy in the detection of wheezing for an isolated respiratory cycle and 92.86% accuracy for the detection of wheezes when detection is carried out using groups of respiratory cycles obtained from the same person. Also, the system presents the original recorded sound and the post-processed spectrogram image for the user to draw his own conclusions from the data.

  5. Fabricating interlocking support walls, with an adjustable backshort, in a TES bolometer array for far-infrared astronomy

    NASA Astrophysics Data System (ADS)

    Miller, Timothy M.; Abrahams, John H.; Allen, Christine A.

    2006-04-01

    We report a fabrication process for deep etching silicon to different depths with a single masking layer, using standard masking and exposure techniques. Using this technique, we have incorporated a deep notch in the support walls of a transition-edge-sensor (TES) bolometer array during the detector back-etch, while simultaneously creating a cavity behind the detector. The notches serve to receive the support beams of a separate component, the Backshort-Under-Grid (BUG), an array of adjustable height quarter-wave backshorts that fill the cavities behind each pixel in the detector array. The backshort spacing, set prior to securing to the detector array, can be controlled from 25 to 300 μm by adjusting only a few process steps. In addition to backshort spacing, the interlocking beams and notches provide positioning and structural support for the ˜1 mm pitch, 8×8 array. This process is being incorporated into developing a TES bolometer array with an adjustable backshort for use in far-infrared astronomy. The masking technique and machining process used to fabricate the interlocking walls will be discussed.

  6. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  7. SERT D spacecraft study. [project planning and objectives

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The SERT D (Space Electric Rocket Test - D) study defines a possible spacecraft project that would demonstrate the use of electric ion thrusters for long-term (5 yr) station keeping and attitude control of a synchronous orbit satellite. Other mission objectives included in the study were: station walking to satellite rendezvous and inspection, use of low cost attitude sensing system, use of an advanced solar array orientation and slip ring system, and an ion thruster integrated directly with a solar array power source. The SERT D spacecraft, if launched, will become SERT 3 the third space electric thruster test.

  8. Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.

    2012-01-01

    The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.

  9. Mitigating artifacts in back-projection source imaging with implications for frequency-dependent properties of the Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Meng, Lingsen; Ampuero, Jean-Paul; Luo, Yingdi; Wu, Wenbo; Ni, Sidao

    2012-12-01

    Comparing teleseismic array back-projection source images of the 2011 Tohoku-Oki earthquake with results from static and kinematic finite source inversions has revealed little overlap between the regions of high- and low-frequency slip. Motivated by this interesting observation, back-projection studies extended to intermediate frequencies, down to about 0.1 Hz, have suggested that a progressive transition of rupture properties as a function of frequency is observable. Here, by adapting the concept of array response function to non-stationary signals, we demonstrate that the "swimming artifact", a systematic drift resulting from signal non-stationarity, induces significant bias on beamforming back-projection at low frequencies. We introduce a "reference window strategy" into the multitaper-MUSIC back-projection technique and significantly mitigate the "swimming artifact" at high frequencies (1 s to 4 s). At lower frequencies, this modification yields notable, but significantly smaller, artifacts than time-domain stacking. We perform extensive synthetic tests that include a 3D regional velocity model for Japan. We analyze the recordings of the Tohoku-Oki earthquake at the USArray and at the European array at periods from 1 s to 16 s. The migration of the source location as a function of period, regardless of the back-projection methods, has characteristics that are consistent with the expected effect of the "swimming artifact". In particular, the apparent up-dip migration as a function of frequency obtained with the USArray can be explained by the "swimming artifact". This indicates that the most substantial frequency-dependence of the Tohoku-Oki earthquake source occurs at periods longer than 16 s. Thus, low-frequency back-projection needs to be further tested and validated in order to contribute to the characterization of frequency-dependent rupture properties.

  10. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models

    EPA Science Inventory

    The second phase of the MicroArray Quality Control (MAQC-II) project evaluated common practices for developing and validating microarray-based models aimed at predicting toxicological and clinical endpoints. Thirty-six teams developed classifiers for 13 endpoints - some easy, som...

  11. Solar lunar power

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1994-01-01

    Current and projected technology is assessed for photovoltaic power for a lunar base. The following topics are discussed: requirements for power during the lunar day and night; solar cell efficiencies, specific power, temperature sensitivity, and availability; storage options for the lunar night; array and system integration; the potential for in situ production of photovoltaic arrays and storage medium.

  12. Study of one- and two-dimensional filtering and deconvolution algorithms for a streaming array computer

    NASA Technical Reports Server (NTRS)

    Ioup, G. E.

    1985-01-01

    Appendix 5 of the Study of One- and Two-Dimensional Filtering and Deconvolution Algorithms for a Streaming Array Computer includes a resume of the professional background of the Principal Investigator on the project, lists of this publications and research papers, graduate thesis supervised, and grants received.

  13. The Missouri Ozark Forest Ecosystem Project: past, present, and future

    Treesearch

    Brian L. Brookshire; Randy Jensen; Daniel C. Dey

    1997-01-01

    In 1989, the Missouri Department of Conservation initiated a research project to examine the impacts of forest management practices on multiple ecosystem components. The Missouri Ozark Forest Ecosystem Project (MOFEP) is a landscape experiment comparing the impacts of even-aged management, uneven-aged management, and no harvesting on a wide array of ecosystem...

  14. MIRAGE: developments in IRSP systems, RIIC design, emitter fabrication, and performance

    NASA Astrophysics Data System (ADS)

    Bryant, Paul; Oleson, Jim; James, Jay; McHugh, Steve; Lannon, John; Vellenga, David; Goodwin, Scott; Huffman, Alan; Solomon, Steve; Goldsmith, George C., II

    2005-05-01

    SBIR's family of MIRAGE infrared scene projection systems is undergoing significant growth and expansion. The first two lots of production IR emitters have completed fabrication at Microelectronics Center of North Carolina/Research and Development Institute (MCNC-RDI), and the next round(s) of emitter production has begun. These latest emitter arrays support programs such as Large Format Resistive Array (LFRA), Optimized Array for Space-based Infrared Simulation (OASIS), MIRAGE 1.5, and MIRAGE II. We present the latest performance data on emitters fabricated at MCNC-RDI, plus integrated system performance on recently completed IRSP systems. Teamed with FLIR Systems/Indigo Operations, SBIR and the Tri-Services IRSP Working Group have completed development of the CMOS Read-In Integrated Circuit (RIIC) portion of the Wide Format Resistive Array (WFRA) program-to extend LFRA performance to a 768 x 1536 "wide screen" projection configuration. WFRA RIIC architecture and performance is presented. Finally, we summarize development of the LFRA Digital Emitter Engine (DEE) and OASIS cryogenic package assemblies, the next-generation Command & Control Electronics (C&CE).

  15. Evidence for an elastic projection mechanism in the chameleon tongue.

    PubMed Central

    de Groot, Jurriaan H.; van Leeuwen, Johan L.

    2004-01-01

    To capture prey, chameleons ballistically project their tongues as far as 1.5 body lengths with accelerations of up to 500 m s(-2). At the core of a chameleon's tongue is a cylindrical tongue skeleton surrounded by the accelerator muscle. Previously, the cylindrical accelerator muscle was assumed to power tongue projection directly during the actual fast projection of the tongue. However, high-speed recordings of Chamaeleo melleri and C. pardalis reveal that peak powers of 3000 W kg(-1) are necessary to generate the observed accelerations, which exceed the accelerator muscle's capacity by at least five- to 10-fold. Extrinsic structures might power projection via the tongue skeleton. High-speed fluoroscopy suggests that they contribute less than 10% of the required peak instantaneous power. Thus, the projection power must be generated predominantly within the tongue, and an energy-storage-and-release mechanism must be at work. The key structure in the projection mechanism is probably a cylindrical connective-tissue layer, which surrounds the entoglossal process and was previously suggested to act as lubricating tissue. This tissue layer comprises at least 10 sheaths that envelop the entoglossal process. The outer portion connects anteriorly to the accelerator muscle and the inner portion to the retractor structures. The sheaths contain helical arrays of collagen fibres. Prior to projection, the sheaths are longitudinally loaded by the combined radial contraction and hydrostatic lengthening of the accelerator muscle, at an estimated mean power of 144 W kg(-1) in C. melleri. Tongue projection is triggered as the accelerator muscle and the loaded portions of the sheaths start to slide over the tip of the entoglossal process. The springs relax radially while pushing off the rounded tip of the entoglossal process, making the elastic energy stored in the helical fibres available for a simultaneous forward acceleration of the tongue pad, accelerator muscle and retractor structures. The energy release continues as the multilayered spring slides over the tip of the smooth and lubricated entoglossal process. This sliding-spring theory predicts that the sheaths deliver most of the instantaneous power required for tongue projection. The release power of the sliding tubular springs exceeds the work rate of the accelerator muscle by at least a factor of 10 because the elastic-energy release occurs much faster than the loading process. Thus, we have identified a unique catapult mechanism that is very different from standard engineering designs. Our morphological and kinematic observations, as well as the available literature data, are consistent with the proposed mechanism of tongue projection, although experimental tests of the sheath strain and the lubrication of the entoglossal process are currently beyond our technical scope. PMID:15209111

  16. Evidence for an elastic projection mechanism in the chameleon tongue.

    PubMed

    de Groot, Jurriaan H; van Leeuwen, Johan L

    2004-04-07

    To capture prey, chameleons ballistically project their tongues as far as 1.5 body lengths with accelerations of up to 500 m s(-2). At the core of a chameleon's tongue is a cylindrical tongue skeleton surrounded by the accelerator muscle. Previously, the cylindrical accelerator muscle was assumed to power tongue projection directly during the actual fast projection of the tongue. However, high-speed recordings of Chamaeleo melleri and C. pardalis reveal that peak powers of 3000 W kg(-1) are necessary to generate the observed accelerations, which exceed the accelerator muscle's capacity by at least five- to 10-fold. Extrinsic structures might power projection via the tongue skeleton. High-speed fluoroscopy suggests that they contribute less than 10% of the required peak instantaneous power. Thus, the projection power must be generated predominantly within the tongue, and an energy-storage-and-release mechanism must be at work. The key structure in the projection mechanism is probably a cylindrical connective-tissue layer, which surrounds the entoglossal process and was previously suggested to act as lubricating tissue. This tissue layer comprises at least 10 sheaths that envelop the entoglossal process. The outer portion connects anteriorly to the accelerator muscle and the inner portion to the retractor structures. The sheaths contain helical arrays of collagen fibres. Prior to projection, the sheaths are longitudinally loaded by the combined radial contraction and hydrostatic lengthening of the accelerator muscle, at an estimated mean power of 144 W kg(-1) in C. melleri. Tongue projection is triggered as the accelerator muscle and the loaded portions of the sheaths start to slide over the tip of the entoglossal process. The springs relax radially while pushing off the rounded tip of the entoglossal process, making the elastic energy stored in the helical fibres available for a simultaneous forward acceleration of the tongue pad, accelerator muscle and retractor structures. The energy release continues as the multilayered spring slides over the tip of the smooth and lubricated entoglossal process. This sliding-spring theory predicts that the sheaths deliver most of the instantaneous power required for tongue projection. The release power of the sliding tubular springs exceeds the work rate of the accelerator muscle by at least a factor of 10 because the elastic-energy release occurs much faster than the loading process. Thus, we have identified a unique catapult mechanism that is very different from standard engineering designs. Our morphological and kinematic observations, as well as the available literature data, are consistent with the proposed mechanism of tongue projection, although experimental tests of the sheath strain and the lubrication of the entoglossal process are currently beyond our technical scope.

  17. The Air Force concentrating photovoltaic array program

    NASA Technical Reports Server (NTRS)

    Geis, Jack W.

    1987-01-01

    A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed.

  18. ALMA Array Operations Group process overview

    NASA Astrophysics Data System (ADS)

    Barrios, Emilio; Alarcon, Hector

    2016-07-01

    ALMA Science operations activities in Chile are responsibility of the Department of Science Operations, which consists of three groups, the Array Operations Group (AOG), the Program Management Group (PMG) and the Data Management Group (DMG). The AOG includes the Array Operators and have the mission to provide support for science observations, operating safely and efficiently the array. The poster describes the AOG process, management and operational tools.

  19. Strong-Field Emission From High Aspect Ratio Si Emitter Arrays

    NASA Astrophysics Data System (ADS)

    Keathley, Phillip; Swanwick, Michael; Sell, Alexander; Putnam, William; Guerrera, Stephen; Velásquez-García, Luis; Kärtner, Franz

    2013-03-01

    We discuss photoelectron emission from an arrays of high aspect ratio, sharp Si emitters both experimentally and theoretically. The structures are prepared from highly doped single-crystal silicon having a pencil-like shape with end radii of curvature of around 10 nm. The tips were illuminated at a grazing incidence of roughly 84deg.with a laser pulse having a center wavelength of 800 nm, and a pulse duration of 35 fs from a regenerative amplifier system. Native oxide coated Si tips were characterized using a time of flight (TOF) electron energy spectrometer. An annealing process was observed, resulting in a red shift of the energy spectra along with an increased electron yield. Total current yield from samples having the oxide stripped were also studied. Apeak total emission of 0.68 pC/bunch, corresponding to around 1.5x103 electrons/tip/pulse was observed at a DC bias of 70 V. Both spectral and current characterization results are consistent with a stong-field photoemission process at the surface of the tip apex. This work was funded by Defense Advanced Research Projects Agency (DARPA)/Microsystems Technology Office and the Space and Naval Warfare Systems Center (SPAWAR) under contract N66001-11-1-4192.

  20. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    NASA Astrophysics Data System (ADS)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  1. Array Automated Assembly Task for the Low Cost Solar Array Project, Phase 2

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.; Rai-Choudhury, P.; Seman, E. J.; Rohatgi, A.; Davis, J. R.; Ostroski, J.; Stapleton, R. W.

    1979-01-01

    Using silk screened evaporated and sputtered Al as the metal source, the formation of Al back surface fields was studied. The most satisfactory results were those obtained with the sputtered A1 and in which open circuit voltages (V sub oc) of 0.585 v (12 ohm cm FZ silicon) were achieved. The ultrasonic interconnect process is discussed. The process is shown to be satisfactory, but increased pull-strength may be obtained if some form of sintering is carried out on the metallized contacts. Plasma etching is shown to be feasible as a replacement for wet chemical cleaning prior to diffusion. Initial results on cells prepared by using electroless Pd/Ni plus either electroplated Ag or Cu show slightly poor performance than cells with the baseline evaporated Ti/Pd/Ag system. A mask designed for the 1.6 x 7.0 cm and 2.0 x 7.0 cm cells is described. This mask has a lower area coverage and total lower resistive loss than the previous mask design. It is also shown that the cell width should not exceed 2.0 - 3.0 cm for optimum efficiency.

  2. Sustaining a Moored Ocean Observing System in the Tropical Pacific: The Evolution of the TAO Array

    NASA Astrophysics Data System (ADS)

    Grissom, K.; Kessler, W. S.; McArthur, S.

    2016-12-01

    The Tropical Atmosphere Ocean (TAO) array has been a major observational component of El Niño Southern Oscillation (ENSO) research and operational climate forecasting since its conception in 1984. Developed by NOAA's Pacific Marine Environmental Laboratory (PMEL) in response to the poorly-observed 1982-1983 El Niño, the moored buoy array was completed in 1994 and transitioned from PMEL to NOAA's National Data Buoy Center (NDBC) in 2005. During this transition, the TAO Refresh project was initiated to address equipment obsolescence and the need for more real-time data. Completed in 2011, the "TAO Refresh" array has new capabilities and added value. Then in 2012, federal resource shortfalls threatened the future sustainability of this array. The resulting limited maintenance caused a decline in real-time data, yet it also served as the impetus to focus international attention on the demands of sustaining an observing system capable of monitoring the tropical ocean-atmosphere interaction. To continue collecting observations at historical levels, NOAA and partners needed an alternate strategy, and to this end conceived the international TPOS 2020 project, the Tropical Pacific Observing System for 2020. At more than 30 years, the TAO array stands as one of the longest sustained in-situ ocean observing networks in the world and provides a rare long-term record of a dominant climate signal. Here we review the evolution of the TAO array, from its development at PMEL, to its transition and modernization at NDBC, and provide a preview of its future as a key element of the Tropical Pacific Observing System.

  3. Multibeam Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Popovic, Zoya; Romisch, Stefania; Rondineau, Sebastien

    2004-01-01

    In this study, a new architecture for Ka-band multi-beam arrays was developed and demonstrated experimentally. The goal of the investigation was to demonstrate a new architecture that has the potential of reducing the cost as compared to standard expensive phased array technology. The goals of this specific part of the project, as stated in the yearly statement of work in the original proposal are: 1. Investigate bounds on performance of multi-beam lens arrays in terms of beamwidths, volume (size), isolation between beams, number of simultaneous beams, etc. 2. Design a small-scale array to demonstrate the principle. The array will be designed for operation around 3OGHz (Ka-band), with two 10-degree beamwidth beams. 3. Investigate most appropriate way to accomplish fine-tuning of the beam pointing within 5 degrees around the main beam pointing angle.

  4. Engineering Technical Support Center Annual Report Fiscal Year 2016

    EPA Science Inventory

    This report highlights significant projects that the ETSC supported in fiscal year 2016. These projects have addressed an array of environmental scenarios, including, but not limited to remote mining contamination, expansive landfill waste, cumulative impacts from multiple contam...

  5. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  6. Status of the Direct Data Distribution (D(exp 3)) Experiment

    NASA Technical Reports Server (NTRS)

    Wald, Lawrence

    2001-01-01

    NASA Glenn Research Center's Direct Data Distribution (D3) project will demonstrate an advanced, high-performance communications system that transmits information from an advanced technology payload carried by a NASA spacecraft in low Earth orbit (LEO) to a small receiving terminal on Earth. The space-based communications package will utilize a solid-state, K-band phased-array antenna that electronically steers the radiated energy beam toward a low-cost, tracking ground terminal, thereby providing agile, vibration-free, electronic steering at reduced size and weight with increased reliability. The array-based link will also demonstrate new digital processing technology that will allow the transmission of substantially increased amounts of latency-tolerant data collected from the LEO spacecraft directly to NASA field centers, principal investigators, or into the commercial terrestrial communications network. The technologies demonstrated by D3 will facilitate NASA's transition from using Government-owned communication assets to using commercial communication services. The hardware for D3 will incorporate advanced technology components developed under the High Rate Data Delivery (HRDD) Thrust Area of NASA's Office of Aerospace Technology Space Base Program at Glenn's Communications Technology Division. The flight segment components will include the electrically steerable phased-array antenna, which is being built by the Raytheon System Corporation and utilizes monolithic microwave integrated circuit (MMIC) technology operating at 19.05 GHz; and the digital encoder/modulator chipset, which uses four-channel orthogonal frequency division multiplexing (OFDM). The encoder/modulator will use a chipset developed by SICOM, Inc., which is both bandwidth and power efficient. The ground segment components will include a low-cost, open-loop tracking ground terminal incorporating a cryoreceiver to minimize terminal size without compromising receiver capability. The project is planning to hold a critical design review in the second quarter of fiscal year 2002.

  7. Wavefront sensing and adaptive control in phased array of fiber collimators

    NASA Astrophysics Data System (ADS)

    Lachinova, Svetlana L.; Vorontsov, Mikhail A.

    2011-03-01

    A new wavefront control approach for mitigation of atmospheric turbulence-induced wavefront phase aberrations in coherent fiber-array-based laser beam projection systems is introduced and analyzed. This approach is based on integration of wavefront sensing capabilities directly into the fiber-array transmitter aperture. In the coherent fiber array considered, we assume that each fiber collimator (subaperture) of the array is capable of precompensation of local (onsubaperture) wavefront phase tip and tilt aberrations using controllable rapid displacement of the tip of the delivery fiber at the collimating lens focal plane. In the technique proposed, this tip and tilt phase aberration control is based on maximization of the optical power received through the same fiber collimator using the stochastic parallel gradient descent (SPGD) technique. The coordinates of the fiber tip after the local tip and tilt aberrations are mitigated correspond to the coordinates of the focal-spot centroid of the optical wave backscattered off the target. Similar to a conventional Shack-Hartmann wavefront sensor, phase function over the entire fiber-array aperture can then be retrieved using the coordinates obtained. The piston phases that are required for coherent combining (phase locking) of the outgoing beams at the target plane can be further calculated from the reconstructed wavefront phase. Results of analysis and numerical simulations are presented. Performance of adaptive precompensation of phase aberrations in this laser beam projection system type is compared for various system configurations characterized by the number of fiber collimators and atmospheric turbulence conditions. The wavefront control concept presented can be effectively applied for long-range laser beam projection scenarios for which the time delay related with the double-pass laser beam propagation to the target and back is compared or even exceeds the characteristic time of the atmospheric turbulence change - scenarios when conventional target-in-the-loop phase-locking techniques fail.

  8. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.

    1978-01-01

    The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.

  9. Low cost solar array project cell and module formation research area: Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Liquid diffusion masks and liquid applied dopants to replace the CVD Silox masking and gaseous diffusion operations specified for forming junctions in the Westinghouse baseline process sequence for producing solar cells from dendritic web silicon were investigated. The baseline diffusion masking and drive processes were compared with those involving direct liquid applications to the dendritic web silicon strips. Attempts were made to control the number of variables by subjecting dendritic web strips cut from a single web crystal to both types of operations. Data generated reinforced earlier conclusions that efficiency levels at least as high as those achieved with the baseline back junction formation process can be achieved using liquid diffusion masks and liquid dopants. The deliveries of dendritic web sheet material and solar cells specified by the current contract were made as scheduled.

  10. Comparing an FPGA to a Cell for an Image Processing Application

    NASA Astrophysics Data System (ADS)

    Rakvic, Ryan N.; Ngo, Hau; Broussard, Randy P.; Ives, Robert W.

    2010-12-01

    Modern advancements in configurable hardware, most notably Field-Programmable Gate Arrays (FPGAs), have provided an exciting opportunity to discover the parallel nature of modern image processing algorithms. On the other hand, PlayStation3 (PS3) game consoles contain a multicore heterogeneous processor known as the Cell, which is designed to perform complex image processing algorithms at a high performance. In this research project, our aim is to study the differences in performance of a modern image processing algorithm on these two hardware platforms. In particular, Iris Recognition Systems have recently become an attractive identification method because of their extremely high accuracy. Iris matching, a repeatedly executed portion of a modern iris recognition algorithm, is parallelized on an FPGA system and a Cell processor. We demonstrate a 2.5 times speedup of the parallelized algorithm on the FPGA system when compared to a Cell processor-based version.

  11. Laser-zone growth in a Ribbon-To-Ribbon, RTR, process silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Gurtler, R. W.; Baghdadi, A.

    1977-01-01

    A ribbon-to-ribbon process was used for routine growth of samples for analysis and fabrication into solar cells. One lot of solar cells was completely evaluated: ribbon solar cell efficiencies averaged 9.23% with a highest efficiency of 11.7%. Spherical reflectors have demonstrated significant improvements in laser silicon coupling efficiencies. Material analyses were performed including silicon photovoltage and open circuit photovoltage diffusion length measurements, crystal morphology studies, modulus of rupture measurements, and annealing/gettering studies. An initial economic analysis was performed indicating that ribbon-to-ribbon add-on costs of $.10/watt might be expected in the early 1980's.

  12. Slicing of Silicon into Sheet Material. Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Fleming, J. R.; Holden, S. C.; Wolfson, R. G.

    1979-01-01

    The use of multiblade slurry sawing to produce silicon wafers from ingots was investigated. The commercially available state of the art process was improved by 20% in terms of area of silicon wafers produced from an ingot. The process was improved 34% on an experimental basis. Economic analyses presented show that further improvements are necessary to approach the desired wafer costs, mostly reduction in expendable materials costs. Tests which indicate that such reduction is possible are included, although demonstration of such reduction was not completed. A new, large capacity saw was designed and tested. Performance comparable with current equipment (in terms of number of wafers/cm) was demonstrated.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, M.; Barnes, J.

    The phased field development of the Lion and Panthere fields, offshore the Ivory Coast, includes a small floating production, storage, and offloading (FPSO) tanker with minimal processing capability as an early oil production system (EPS). For the long-term production scheme, the FPSO will be replaced by a converted jack up mobile offshore production system (MOPS) with full process equipment. The development also includes guyed-caisson well platforms, pipeline export for natural gas to fuel an onshore power plant, and a floating storage and offloading (FSO) tanker for oil export. Pipeline export for oil is a future possibility. This array of innovativemore » strategies and techniques seldom has been brought together in a single project. The paper describes the development plan, early oil, jack up MOPS, and transport and installation.« less

  14. Low cost silicon solar array project. Task 1: Establishment of the feasibility of a process capable of low cost, high volume production of silane, SiH4

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Mui, J. Y. P.

    1976-01-01

    The kinetics of the redistribution of dichlorosilane and trichlorosilane vapor over a tertiary amine ion exchange resin catalyst were investigated. The hydrogenation of SiCl4 to form HSiCl3 and the direct synthesis of H2SiCl2 from HCl gas and metallurgical silicon metal were also studied. The purification of SiH4 using activated carbon adsorbent was studied along with a process for storing SiH4 absorbed on carbon. The latter makes possible a higher volumetric efficiency than compressed gas storage. A mini-plant designed to produce ten pounds per day of SiH4 is described.

  15. Heat exchanger-ingot casting/slicing process, phase 1: Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1977-01-01

    A controlled growth, heat-flow and cool-down process is described that yielded silicon with a high degree of single crystallinity. Even when the seed melted out, very large grains formed. Solar cell samples made from cast material yielded conversion efficiency of over 9%. Representative characterizations of grown silicon demonstrated a dislocation density of less than 100/sq cm and a minority carrier diffusion length of 31 micron. The source of silicon carbide in silicon ingots was identified to be from graphite retainers in contact with silica crucibles. Higher growth rates were achieved with the use of a graphite plug at the bottom of the silica crucible.

  16. Robustness of a compact endfire personal audio system against scattering effects (L).

    PubMed

    Tu, Zhen; Lu, Jing; Qiu, Xiaojun

    2016-10-01

    Compact loudspeaker arrays have wide potential applications as portable personal audio systems that can project sound energy to specified regions. It is meaningful to investigate the scattering effects on the array performance since the scattering of the users' heads is inevitable in practice. A five-channel compact endfire array is established and the regularized acoustic contrast control method is evaluated for the scenarios of one moving listener and one listener fixed in the bright zone while another listener moves along the evaluation region. Both simulations and experiments verify that the scattering has limited influence on the directivity of the endfire array.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinke, Rainer B.; Goodzeit, Carl L.; Ball, Millicent J.

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive methodmore » that involves use of iron shielding.« less

  18. BeadArray Expression Analysis Using Bioconductor

    PubMed Central

    Ritchie, Matthew E.; Dunning, Mark J.; Smith, Mike L.; Shi, Wei; Lynch, Andy G.

    2011-01-01

    Illumina whole-genome expression BeadArrays are a popular choice in gene profiling studies. Aside from the vendor-provided software tools for analyzing BeadArray expression data (GenomeStudio/BeadStudio), there exists a comprehensive set of open-source analysis tools in the Bioconductor project, many of which have been tailored to exploit the unique properties of this platform. In this article, we explore a number of these software packages and demonstrate how to perform a complete analysis of BeadArray data in various formats. The key steps of importing data, performing quality assessments, preprocessing, and annotation in the common setting of assessing differential expression in designed experiments will be covered. PMID:22144879

  19. SIMBIOS Project

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; McClain, Charles R.

    2002-01-01

    The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project. The SIMBIOS Science Team Principal Investigators' (PIs) original contributions to this report are in chapters four and above. The purpose of these contributions is to describe the current research status of the SIMBIOS-NRA-96 funded research. The contributions are published as submitted, with the exception of minor edits to correct obvious grammatical or clerical errors.

  20. Project Hyreus: Mars Sample Return Mission Utilizing in Situ Propellant Production

    NASA Technical Reports Server (NTRS)

    Bruckner, A. P.; Thill, Brian; Abrego, Anita; Koch, Amber; Kruse, Ross; Nicholson, Heather; Nill, Laurie; Schubert, Heidi; Schug, Eric; Smith, Brian

    1993-01-01

    Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.

  1. Project Hyreus: Mars sample return mission utilizing in situ propellant production

    NASA Technical Reports Server (NTRS)

    Abrego, Anita; Bair, Chris; Hink, Anthony; Kim, Jae; Koch, Amber; Kruse, Ross; Ngo, Dung; Nicholson, Heather; Nill, Laurie; Perras, Craig

    1993-01-01

    Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.

  2. Multipoint photonic doppler velocimetry using optical lens elements

    DOEpatents

    Frogget, Brent Copely; Romero, Vincent Todd

    2014-04-29

    A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.

  3. Detecting Moho Boundary under Taiwan with Wide-angle Data by Ray-tracing Method - The TAIGER Project

    NASA Astrophysics Data System (ADS)

    Kuo, Y. N.; Wang, C.; Okaya, D. A.

    2009-12-01

    Taiwan is located at the converging boundary of the Eurasian plate and the Philippine Sea plate, and is one of the most rapidly uplifting orogeny in the world. The geological structure is relatively complicated. There exist several models of tectonic collisions from the thin-skinned thrust, the lithospheric collision, to uplifting by buoyancy. The shape of Moho should be a key factor to evaluate these models. In this study, we try to detect the Moho beneath Taiwan using the newly collected wide-angle data from the Taiwan Integrated Geodynamic Research (TAIGER) project. The results could be of help to set up some constrains for the Taiwan tectonics. The TAIGER project is a collaboration between America and Taiwan. The land stations collected two parts of data (land and marine) generated by active sources. The land part was carried out in 2008/2~3, which created 6 kinds of data from explosion sources including: 1) 3 E-W wide-angle reflections of Texans arrays; 2) 2 N-S seismometer arrays; 3) the seismic networks of Central Weather Bureau(CWB) and Institute of Earth Science(IES) over the island; 4) a short array of RT130; 5) 2 short period OBS arrays in the Taiwan Strait; 6) 2 temporary seismic arrays in Fujan, mainland China. The marine part was carried out in 2009/4~6, which provided 4 kinds of data from air-gun sources including: 1) 4 wide-angle refractions of E-W RT130 arrays; 2) 2 N-S seismometer arrays; 3) the CWB network; 4) the broad band array in Taiwan for Seismology(BATS). In this study, we focus on analyzing the wide-angle data, which contain land explosion data, onshore-offshore data, OBS data and mainland data, especially concentrate on the line in the southern Taiwan (Transect T4). We make a summary of the TAIGER project and show several plots of real data and arrivals. A 2D E-W velocity model was constructed from the mainland side to the ocean side about 600 km long using the ray-tracing method with layer-striping technique. The preliminary results are: 1) the distribution of Moho depth is basically getting deeper from the west to the east, but becoming shallower rapidly in the area of Coast Range; 2) the crust thickens to the range of 40 km in the mountain area; 3) the Moho depth is shallower than 30 km in the Peikang High and deeper than 32 km at the coast line of Fujan, no crust bulge in the Taiwan Strait; 4) the structures derived from PmP phase and Pn phase from land explosions and onshore-offshore air-gun shots are highly consistent.

  4. Measurements and modeling of CO 2 concentration and isotopes to improve process-level understanding of Arctic and boreal carbon cycling. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeling, Ralph F.

    The major goal of this project was to improve understanding of processes that control the exchanges of CO 2 between the atmosphere and the land biosphere on decadal and longer time scales. The approach involves measuring the changes in atmospheric CO 2 concentration and the isotopes of CO 2 ( 13C/ 12C and 18O/ 16O) at background stations and uses these and other datasets to challenge and improve numerical models of the earth system. The project particularly emphasized the use of these data to improve understanding of changes occurring in boreal and arctic ecosystems over the past 50 years andmore » to seek from these data improved understanding of large-scale processes impacting carbon cycling, such as the responses to warming, CO 2 fertilization, and disturbance. The project also led to advances in the understanding of changes in water-use efficiency of land ecosystems globally based on trends in 13C/ 12C. The core element of this project was providing partial support for continuing measurements of CO 2 concentrations and isotopes from the Scripps CO 2 program, initiated by C. D. Keeling in the 1960s. The measurements included analysis of flasks collected at an array of ten stations distributed from the Arctic to the Antarctic. The project also supported modeling studies and interpretive work to help understand the origins of the large ~50% increase in the amplitude of the atmospheric CO 2 cycle detected at high northern latitudes between 1960 and present and to understand the long-term trend in carbon 13C/ 12C of CO 2. The seasonal cycle work was advanced through collaborations with colleagues at MPI Jena and Imperial College« less

  5. Solar 2 Green Energy, Arts & Education Center. Final Scientific/Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paquette, Jamie C; Collins, Christopher J

    The Solar 2 Green Energy, Arts and Education Center is an 8,000 sq.ft. demonstration project that will be constructed to Platinum LEED certification and will be the first carbon-neutral, net-zero energy use public building in New York City, giving it local and national appeal. Employing green building features and holistic engineering practices throughout its international award-winning design, Solar 2 will be powered by a 90kW photovoltaic (PV) array in conjunction with a geothermal heating and cooling system and a high efficient design that seeks to reduce the overall energy load of the building. Solar 2 will replace our current 500more » sq.ft. prototype facility - known as Solar 1 - as the educational and cultural centerpiece of a five-block public greenway on the East River in Stuyvesant Cove Park, located along two acres of public riverfront on a newly reclaimed, former brownfield in lower Manhattan. Designed as a public-use complex for year-round environmental education exhibits and onsite activities for all ages and backgrounds, Solar 2 will demonstrate energy-efficiency technologies and sustainable environmental practices available now to all urban residents, eco-tourists, teachers, and students alike. Showcasing one of Solar 2's most striking design elements is the PV roof array with a cafe and river vistas for miles of New York City's skylines. Capping the building as a solar-powered landmark, and visible from the FDR Drive, the PV array is also designed to provide visitors below a view of the solar roof when standing outside, as well as directly underneath it. Recognized by an international jury of architects, civil engineers and urban designers by the Swiss-based Holcim Foundation, the Solar 2 design was awarded the prestigious Holcim North American 2008 Gold Award for Sustainable Construction for innovative, future-oriented and tangible sustainable construction projects, selected from more than 1900 entries. Funding from the Department of Energy was provided to assist with the ongoing design work of Solar 2, including architecture, engineering and the development of construction specifications. The work performed during the project period brought this process as far along as it could go pending the raising of funds to begin construction of the building. Once those funds are secured, we will finalize any additional details needed before beginning the bidding process and then moving into construction. DOE's funding was extremely valuable in helping Solar One determine the feasibility of a net-zero construction on the site and allowed for the design to project to meet the high standards necessary for LEED Platinum status.« less

  6. Reticle stage based linear dosimeter

    DOEpatents

    Berger, Kurt W [Livermore, CA

    2007-03-27

    A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

  7. Reticle stage based linear dosimeter

    DOEpatents

    Berger, Kurt W.

    2005-06-14

    A detector to measure EUV intensity employs a linear array of photodiodes. The detector is particularly suited for photolithography systems that includes: (i) a ringfield camera; (ii) a source of radiation; (iii) a condenser for processing radiation from the source of radiation to produce a ringfield illumination field for illuminating a mask; (iv) a reticle that is positioned at the ringfield camera's object plane and from which a reticle image in the form of an intensity profile is reflected into the entrance pupil of the ringfield camera, wherein the reticle moves in a direction that is transverse to the length of the ringfield illumination field that illuminates the reticle; (v) detector for measuring the entire intensity along the length of the ringfield illumination field that is projected onto the reticle; and (vi) a wafer onto which the reticle imaged is projected from the ringfield camera.

  8. Critical technology limits to silicon material and sheet production

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1982-01-01

    Earlier studies have indicated that expenditures related to the preparation of high-purity silicon and its conversion to silicon sheet represent from 40 to 52 percent of the cost of the entire panel. The present investigation is concerned with the elements which were selected for study in connection with the Flat-Plate Solar Array (FSA) Project. The first of two technologies which are being developed within the FSA Project involves the conversion of metallurgical-grade silicon through a silane purification process to silicon particles. The second is concerned with the conversion of trichlorosilane to dichlorosilane, and the subsequent production of silicon using modified rod reactors of the Siemens type. With respect to silicon sheet preparation, efforts have been focused both on the preparation of ingots, followed by wafering, and the direct crystallization of molten silicon into a ribbon or film.

  9. University of Michigan lecture archiving and related activities of the U-M ATLAS Collaboratory Project

    NASA Astrophysics Data System (ADS)

    Herr, J.; Bhatnagar, T.; Goldfarb, S.; Irrer, J.; McKee, S.; Neal, H. A.

    2008-07-01

    Large scientific collaborations as well as universities have a growing need for multimedia archiving of meetings and courses. Collaborations need to disseminate training and news to their wide-ranging members, and universities seek to provide their students with more useful studying tools. The University of Michigan ATLAS Collaboratory Project has been involved in the recording and archiving of multimedia lectures since 1999. Our software and hardware architecture has been used to record events for CERN, ATLAS, many units inside the University of Michigan, Fermilab, the American Physical Society and the International Conference on Systems Biology at Harvard. Until 2006 our group functioned primarily as a tiny research/development team with special commitments to the archiving of certain ATLAS events. In 2006 we formed the MScribe project, using a larger scale, and highly automated recording system to record and archive eight University courses in a wide array of subjects. Several robotic carts are wheeled around campus by unskilled student helpers to automatically capture and post to the Web audio, video, slides and chalkboard images. The advances the MScribe project has made in automation of these processes, including a robotic camera operator and automated video processing, are now being used to record ATLAS Collaboration events, making them available more quickly than before and enabling the recording of more events.

  10. Silicon materials task of the low cost solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R., Jr.; Blais, P. D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M. H.; Mccormick, J. R.

    1977-01-01

    The object of phase 2 of this program is to investigate and define the effects of various processes, contaminants and process-contaminant interactions in the performance of terrestrial solar cells. The major effort this quarter was in the areas of crystal growth and thermal processing, comparison of impurity effects in low and high resistivity silicon, modeling the behavior of p-type ingots containing Mo, and C and, quantitative analysis of bulk lifetime and junction degradation effects in contaminated solar cells. The performance of solar cells fabricated on silicon web crystals grown from melts containing about 10 to the 18th power/cu cm of Cr, Mn, Fe, Ni, Ti, and V, respectively were measured. Deep level spectroscopy of metal-contaminated ingots was employed to determine the level and density of recombination centers due to Ti, V, Ni, and Cr.

  11. Laser-zone Growth in a Ribbon-to-ribbon (RTR) Process Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Baghdadi, A.; Gurtler, R. W.; Legge, R.; Sopori, B.; Rice, M. J.; Ellis, R. J.

    1979-01-01

    A technique for growing limited-length ribbons continually was demonstrated. This Rigid Edge technique can be used to recrystallize about 95% of the polyribbon feedstock. A major advantage of this method is that only a single, constant length silicon ribbon is handled throughout the entire process sequence; this may be accomplished using cassettes similar to those presently in use for processing Czochralski waters. Thus a transition from Cz to ribbon technology can be smoothly affected. The maximum size being considered, 3 inches x 24 inches, is half a square foot, and will generate 6 watts for 12% efficiency at 1 sun. Silicon dioxide has been demonstrated as an effective, practical diffusion barrier for use during the polyribbon formation.

  12. Silicon Materials Task of the Low Cost Solar Array Project, Phase 3. Effect of Impurities and Processing on Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.

  13. The data array, a tool to interface the user to a large data base

    NASA Technical Reports Server (NTRS)

    Foster, G. H.

    1974-01-01

    Aspects of the processing of spacecraft data is considered. Use of the data array in a large address space as an intermediate form in data processing for a large scientific data base is advocated. Techniques for efficient indexing in data arrays are reviewed and the data array method for mapping an arbitrary structure onto linear address space is shown. A compromise between the two forms is given. The impact of the data array on the user interface are considered along with implementation.

  14. FMC/TFM experimental comparisons

    NASA Astrophysics Data System (ADS)

    Spencer, Roger; Sunderman, Ruth; Todorov, Evgueni

    2018-04-01

    Ultrasonic full matrix capture/total focusing method (FMC/TFM) technology has progressed significantly over the past few years and has seen increased use in industry. The technology has the potential to provide better detection and measurement capabilities for weld flaws, as well as, many other applications including additive manufacturing. This project looked at the effectiveness of FMC/TFM for detection and sizing of both planar and volumetric flaw types. FMC/TFM experimental data was collected and processed using multiple combinations of probe types and wave propagation modes. The data was then compared to typical ultrasonic phased-array results, as well as FMC/TFM inspection simulations.

  15. Laser-zone growth in a Ribbon-To-Ribbon (RTR) process, silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Gurtler, R. W.; Baghdadi, A.

    1976-01-01

    The objective of this research is to fully investigate the Ribbon-To-Ribbon (R-T-R) approach to silicon ribbon growth. Initial work has concentrated on modification and characterization of an existing R-T-R apparatus. In addition, equipment for auxiliary heating of the melt is being evaluated and acquired. Modification of the remote viewing system and mechanical staging are nearly complete. Characterization of the laser and other components is in progress and several auxiliary heating techniques are being investigated.

  16. Modeling Array Stations in SIG-VISA

    NASA Astrophysics Data System (ADS)

    Ding, N.; Moore, D.; Russell, S.

    2013-12-01

    We add support for array stations to SIG-VISA, a system for nuclear monitoring using probabilistic inference on seismic signals. Array stations comprise a large portion of the IMS network; they can provide increased sensitivity and more accurate directional information compared to single-component stations. Our existing model assumed that signals were independent at each station, which is false when lots of stations are close together, as in an array. The new model removes that assumption by jointly modeling signals across array elements. This is done by extending our existing Gaussian process (GP) regression models, also known as kriging, from a 3-dimensional single-component space of events to a 6-dimensional space of station-event pairs. For each array and each event attribute (including coda decay, coda height, amplitude transfer and travel time), we model the joint distribution across array elements using a Gaussian process that learns the correlation lengthscale across the array, thereby incorporating information of array stations into the probabilistic inference framework. To evaluate the effectiveness of our model, we perform ';probabilistic beamforming' on new events using our GP model, i.e., we compute the event azimuth having highest posterior probability under the model, conditioned on the signals at array elements. We compare the results from our probabilistic inference model to the beamforming currently performed by IMS station processing.

  17. SCAMP: Rapid Focused Sonic Boom Waypoint Flight Planning Methods, Execution, and Results

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Cliatt, Larry J., II; Delaney, Michael M., Jr.; Plotkin, Kenneth J.; Maglieri, Domenic J.; Brown, Jacob C.

    2012-01-01

    Successful execution of the flight phase of the Superboom Caustic Analysis and Measurement Project (SCAMP) required accurate placement of focused sonic booms on an array of prepositioned ground sensors. While the array was spread over a 10,000-ft-long area, this is a relatively small region when considering the speed of a supersonic aircraft and sonic boom ray path variability due to shifting atmospheric conditions and aircraft trajectories. Another requirement of the project was to determine the proper position for a microphone-equipped motorized glider to intercept the sonic boom caustic, adding critical timing to the constraints. Variability in several inputs to these calculations caused some shifts of the focus away from the optimal location. Reports of the sonic booms heard by persons positioned amongst the array were used to shift the focus closer to the optimal location for subsequent passes. This paper describes the methods and computations used to place the focused sonic boom on the SCAMP array and gives recommendations for their accurate placement by future quiet supersonic aircraft. For the SCAMP flights, 67% of the foci were placed on the ground array with measured positions within a few thousand feet of computed positions. Among those foci with large caustic elevation angles, 96% of foci were placed on the array, and measured positions were within a few hundred feet of computed positions. The motorized glider captured sonic booms on 59% of the passes when the instrumentation was operating properly.

  18. Analysis and experimental demonstration of conformal adaptive phase-locked fiber array for laser communications and beam projection applications

    NASA Astrophysics Data System (ADS)

    Liu, Ling

    The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.

  19. Distributed Research Center for Analysis of Regional Climatic Changes and Their Impacts on Environment

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. I.; Okladnikov, I.; Gordov, E. P.; Proussevitch, A. A.; Titov, A. G.

    2016-12-01

    Presented is a collaborative project carrying out by joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center, University of New Hampshire, USA. Its main objective is development of a hardware and software prototype of Distributed Research Center (DRC) for monitoring and projecting of regional climatic and and their impacts on the environment over the Northern extratropical areas. In the framework of the project new approaches to "cloud" processing and analysis of large geospatial datasets (big geospatial data) are being developed. It will be deployed on technical platforms of both institutions and applied in research of climate change and its consequences. Datasets available at NCEI and IMCES include multidimensional arrays of climatic, environmental, demographic, and socio-economic characteristics. The project is aimed at solving several major research and engineering tasks: 1) structure analysis of huge heterogeneous climate and environmental geospatial datasets used in the project, their preprocessing and unification; 2) development of a new distributed storage and processing model based on a "shared nothing" paradigm; 3) development of a dedicated database of metadata describing geospatial datasets used in the project; 4) development of a dedicated geoportal and a high-end graphical frontend providing intuitive user interface, internet-accessible online tools for analysis of geospatial data and web services for interoperability with other geoprocessing software packages. DRC will operate as a single access point to distributed archives of spatial data and online tools for their processing. Flexible modular computational engine running verified data processing routines will provide solid results of geospatial data analysis. "Cloud" data analysis and visualization approach will guarantee access to the DRC online tools and data from all over the world. Additionally, exporting of data processing results through WMS and WFS services will be used to provide their interoperability. Financial support of this activity by the RF Ministry of Education and Science under Agreement 14.613.21.0037 (RFMEFI61315X0037) and by the Iola Hubbard Climate Change Endowment is acknowledged.

  20. Report on Operations of the Air Force Geophysics Laboratory Infrared Array Spectrometer

    DTIC Science & Technology

    1993-01-25

    AIR FORCE GEOPHYSICS LABORATORY INFRARED ARRAY... LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND HANSCOM AIR FORCE BASE, MA 01731-3010 93-27655IEEE|EIIE1ENI This technical report has...ACKNOWLEDGMENT We are grateful to the Air Force Office of Scientific Research , especially Henry Radowski. for their financial corn- mitment to this project.

  1. Dynamic Adaptive Neural Network Arrays: A Neuromorphic Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Disney, Adam; Reynolds, John

    2015-01-01

    Dynamic Adaptive Neural Network Array (DANNA) is a neuromorphic hardware implementation. It differs from most other neuromorphic projects in that it allows for programmability of structure, and it is trained or designed using evolutionary optimization. This paper describes the DANNA structure, how DANNA is trained using evolutionary optimization, and an application of DANNA to a very simple classification task.

  2. CMOS-micromachined, two-dimenisional transistor arrays for neural recording and stimulation.

    PubMed

    Lin, J S; Chang, S R; Chang, C H; Lu, S C; Chen, H

    2007-01-01

    In-plane microelectrode arrays have proven to be useful tools for studying the connectivities and the functions of neural tissues. However, seldom microelectrode arrays are monolithically-integrated with signal-processing circuits, without which the maximum number of electrodes is limited by the compromise with routing complexity and interferences. This paper proposes a CMOS-compatible, two-dimensional array of oxide-semiconductor field-effect transistors(OSFETs), capable of both recording and stimulating neuronal activities. The fabrication of the OSFETs not only requires simply die-level, post-CMOS micromachining process, but also retains metal layers for monolithic integration with signal-processing circuits. A CMOS microsystem containing the OSFET arrays and gain-programmable recording circuits has been fabricated and tested. The preliminary testing results are presented and discussed.

  3. Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array.

    PubMed

    Wang, Qi; Wang, Yingmin; Zhu, Guolei

    2016-12-30

    The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective.

  4. Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array

    PubMed Central

    Wang, Qi; Wang, Yingmin; Zhu, Guolei

    2016-01-01

    The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective. PMID:28042828

  5. User's guide to image processing applications of the NOAA satellite HRPT/AVHRR data. Part 1: Introduction to the satellite system and its applications. Part 2: Processing and analysis of AVHRR imagery

    NASA Technical Reports Server (NTRS)

    Huh, Oscar Karl; Leibowitz, Scott G.; Dirosa, Donald; Hill, John M.

    1986-01-01

    The use of NOAA Advanced Very High Resolution Radar/High Resolution Picture Transmission (AVHRR/HRPT) imagery for earth resource applications is provided for the applications scientist for use within the various Earth science, resource, and agricultural disciplines. A guide to processing NOAA AVHRR data using the hardware and software systems integrated for this NASA project is provided. The processing steps from raw data on computer compatible tapes (1B data format) through usable qualitative and quantitative products for applications are given. The manual is divided into two parts. The first section describes the NOAA satellite system, its sensors, and the theoretical basis for using these data for environmental applications. Part 2 is a hands-on description of how to use a specific image processing system, the International Imaging Systems, Inc. (I2S) Model 75 Array Processor and S575 software, to process these data.

  6. Instrumentation for single-dish observations with The Greenland Telescope

    NASA Astrophysics Data System (ADS)

    Grimes, Paul K.; Asada, K.; Blundell, R.; Burgos, R.; Chang, H.-H.; Chen, M. T.; Goldie, D.; Groppi, C.; Han, C. C.; Ho, P. T. P.; Huang, Y. D.; Inoue, M.; Kubo, D.; Koch, P.; Leech, J.; de Lera Acedo, E.; Martin-Cocher, P.; Nishioka, H.; Nakamura, M.; Matsushita, S.; Paine, S. N.; Patel, N.; Raffin, P.; Snow, W.; Sridharan, T. K.; Srinivasan, R.; Thomas, C. N.; Tong, E.; Wang, M.-J.; Wheeler, C.; Withington, S.; Yassin, G.; Zeng, L.-Z.

    2014-07-01

    The Greenland Telescope project will deploy and operate a 12m sub-millimeter telescope at the highest point of the Greenland i e sheet. The Greenland Telescope project is a joint venture between the Smithsonian As- trophysical Observatory (SAO) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA). In this paper we discuss the concepts, specifications, and science goals of the instruments being developed for single-dish observations with the Greenland Telescope, and the coupling optics required to couple both them and the mm-VLBI receivers to antenna. The project will outfit the ALMA North America prototype antenna for Arctic operations and deploy it to Summit Station,1 a NSF operated Arctic station at 3,100m above MSL on the Greenland I e Sheet. This site is exceptionally dry, and promises to be an excellent site for sub-millimeter astronomical observations. The main science goal of the Greenland Telescope is to carry out millimeter VLBI observations alongside other telescopes in Europe and the Americas, with the aim of resolving the event horizon of the super-massive black hole at the enter of M87. The Greenland Telescope will also be outfitted for single-dish observations from the millimeter-wave to Tera-hertz bands. In this paper we will discuss the proposed instruments that are currently in development for the Greenland Telescope - 350 GHz and 650 GHz heterodyne array receivers; 1.4 THz HEB array receivers and a W-band bolometric spectrometer. SAO is leading the development of two heterodyne array instruments for the Greenland Telescope, a 48- pixel, 325-375 GHz SIS array receiver, and a 4 pixel, 1.4 THz HEB array receiver. A key science goal for these instruments is the mapping of ortho and para H2D+ in old protostellar ores, as well as general mapping of CO and other transitions in molecular louds. An 8-pixel prototype module for the 350 GHz array is currently being built for laboratory and operational testing on the Greenland Telescope. Arizona State University are developing a 650 GHz 256 pixel SIS array receiver based on the KAPPa SIS mixer array technology and ASIAA are developing 1.4 THz HEB single pixel and array receivers. The University of Cambridge and SAO are collaborating on the development of the CAMbridge Emission Line Surveyor (CAMELS), a W-band `on- hip' spectrometer instrument with a spectral resolution of R ~ 3000. CAMELS will consist of two pairs of horn antennas, feeding super conducting niobium nitride filter banks read by tantalum based Kinetic Inductance Detectors.

  7. Dual-mode lensless imaging device for digital enzyme linked immunosorbent assay

    NASA Astrophysics Data System (ADS)

    Sasagawa, Kiyotaka; Kim, Soo Heyon; Miyazawa, Kazuya; Takehara, Hironari; Noda, Toshihiko; Tokuda, Takashi; Iino, Ryota; Noji, Hiroyuki; Ohta, Jun

    2014-03-01

    Digital enzyme linked immunosorbent assay (ELISA) is an ultra-sensitive technology for detecting biomarkers and viruses etc. As a conventional ELISA technique, a target molecule is bonded to an antibody with an enzyme by antigen-antibody reaction. In this technology, a femto-liter droplet chamber array is used as reaction chambers. Due to its small volume, the concentration of fluorescent product by single enzyme can be sufficient for detection by a fluorescent microscopy. In this work, we demonstrate a miniaturized lensless imaging device for digital ELISA by using a custom image sensor. The pixel array of the sensor is coated with a 20 μm-thick yellow filter to eliminate excitation light at 470 nm and covered by a fiber optic plate (FOP) to protect the sensor without resolution degradation. The droplet chamber array formed on a 50μm-thick glass plate is directly placed on the FOP. In the digital ELISA, microbeads coated with antibody are loaded into the droplet chamber array, and the ratio of the fluorescent to the non-fluorescent chambers with the microbeads are observed. In the fluorescence imaging, the spatial resolution is degraded by the spreading through the glass plate because the fluorescence is irradiated omnidirectionally. This degradation is compensated by image processing and the resolution of ~35 μm was achieved. In the bright field imaging, the projected images of the beads with collimated illumination are observed. By varying the incident angle and image composition, microbeads were successfully imaged.

  8. Experimental study using Nearfield Acoustical Holography of sound transmission fuselage sidewall structures

    NASA Technical Reports Server (NTRS)

    Maynard, J. D.

    1983-01-01

    This project involves the development of the Nearfield Acoustic Holography (NAH) technique (in particular its extension from single frequency to wideband noise measurement) and its application in a detailed study of the noise radiation characteristics of several samples of aircraft sidewall panels. With the extensive amount of information provided by the NAH technique, the properties of the sound field radiated by the panels may be correlated with their structure, mounting, and excitation (single frequency or wideband, spatially correlated or uncorrelated, structure-borne). The work accomplished at the beginning of this grant period included: (1) Calibration of the 256 microphone array and test of its accuracy. (2) extension of the facility to permit measurements on wideband noise sources. The extensions incuded the addition of high-speed data acquisition hardware and an array processor, and the development of new software. (3) Installation of motion picture graphics for correlating panel motion with structure, mounting, radiation, etc. (4) Development of new holographic data processing techniques.

  9. Data Acquisition Visualization Development for the MAJORANA DEMONSTRATOR

    NASA Astrophysics Data System (ADS)

    Wendlandt, Laura; Howe, Mark; Wilkerson, John; Majorana Collaboration

    2013-10-01

    The MAJORANA Project is building an array of germanium detectors with very low backgrounds in order to search for neutrinoless double-beta decay, a rare process that, if detected, would give us information about neutrinos. This decay would prove that neutrinos are their own anti-particles, would show that lepton number is not conserved, and would help determine absolute neutrino mass. An object-oriented, data acquisition software program known as ORCA (Object-oriented Real-time Control and Acquisition) will be used to collect data from the array. This paper describes the implementation of computer visualizations for detector calibrations, as well as tools for more general computer modeling in ORCA. Specifically, it details software that converts a CAD file to OpenGL, which can be used in ORCA. This paper also contains information about using a barium-133 source to take measurements from various locations around the detector, to better understand how data varies with detector crystal orientation. Work made possible by National Science Foundation Award OCI-1155614.

  10. Fabrication of a Polymer Micro Needle Array by Mask-Dragging X-Ray Lithography and Alignment X-Ray Lithography

    NASA Astrophysics Data System (ADS)

    Li, Yi-Gui; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu

    2011-03-01

    Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost.

  11. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, Jr., Charles L.; Ericson, Milton Nance; Bobrek, Miljko

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEETmore » 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.« less

  12. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion.

    PubMed

    Gwon, Tae Mok; Min, Kyou Sik; Kim, Jin Ho; Oh, Seung Ha; Lee, Ho Sun; Park, Min-Hyun; Kim, Sung June

    2015-04-01

    An atraumatic cochlear electrode array has become indispensable to high-performance cochlear implants such as electric acoustic stimulation (EAS), wherein the preservation of residual hearing is significant. For an atraumatic implantation, we propose and demonstrate a new improved design of a cochlear electrode array based on liquid crystal polymer (LCP), which can be fabricated by precise batch processes and a thermal lamination process, in contrast to conventional wire-based cochlear electrode arrays. Using a thin-film process of LCP-film-mounted silicon wafer and thermal press lamination, we devise a multi-layered structure with variable layers of LCP films to achieve a sufficient degree of basal rigidity and a flexible tip. A peripheral blind via and self-aligned silicone elastomer molding process can reduce the width of the array. Measuring the insertion and extraction forces in a human scala tympani model, we investigate five human temporal bone insertion trials and record electrically evoked auditory brainstem responses (EABR) acutely in a guinea pig model. The diameters of the finalized electrode arrays are 0.3 mm (tip) and 0.75 mm (base). The insertion force with a displacement of 8 mm from a round window and the maximum extraction force are 2.4 mN and 34.0 mN, respectively. The electrode arrays can be inserted from 360° to 630° without trauma at the basal turn. The EABR data confirm the efficacy of the array. A new design of LCP-based cochlear electrode array for atraumatic implantation is fabricated. Verification indicates that foretells the development of an atraumatic cochlear electrode array and clinical implant.

  13. Array servo scanning micro EDM of 3D micro cavities

    NASA Astrophysics Data System (ADS)

    Tong, Hao; Li, Yong; Yi, Futing

    2011-05-01

    Micro electro discharge machining (Micro EDM) is a non-traditional processing technology with the special advantages of low set-up cost and few cutting force in machining any conductive materials regardless of their hardness. As well known, die-sinking EDM is unsuitable for machining the complex 3D micro cavity less than 1mm due to the high-priced fabrication of 3D microelectrode itself and its serous wear during EDM process. In our former study, a servo scanning 3D micro-EDM (3D SSMEDM) method was put forward, and our experiments showed it was available to fabricate complex 3D micro-cavities. In this study, in order to improve machining efficiency and consistency accuracy for array 3D micro-cavities, an array-servo-scanning 3D micro EDM (3D ASSMEDM) method is presented considering the complementary advantages of the 3D SSMEDM and the array micro electrodes with simple cross-section. During 3D ASSMEDM process, the array cavities designed by CAD / CAM system can be batch-manufactured by servo scanning layer by layer using array-rod-like micro tool electrodes, and the axial wear of the array electrodes is compensated in real time by keeping discharge gap. To verify the effectiveness of the 3D ASSMEDM, the array-triangle-micro cavities (side length 630 μm) are batch-manufactured on P-doped silicon by applying the array-micro-electrodes with square-cross-section fabricated by LIGA process. Our exploratory experiment shows that the 3D ASSMEDM provides a feasible approach for the batch-manufacture of 3D array-micro-cavities of conductive materials.

  14. Photonic Doppler velocimetry lens array probe incorporating stereo imaging

    DOEpatents

    Malone, Robert M.; Kaufman, Morris I.

    2015-09-01

    A probe including a multiple lens array is disclosed to measure velocity distribution of a moving surface along many lines of sight. Laser light, directed to the moving surface is reflected back from the surface and is Doppler shifted, collected into the array, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to the multiple lens array. Numerous fibers in a fiber array project numerous rays to establish many measurement points at numerous different locations. One or more lens groups may be replaced with imaging lenses so a stereo image of the moving surface can be recorded. Imaging a portion of the surface during initial travel can determine whether the surface is breaking up.

  15. Electrothermal actuators fabricated in four-level planarized surface-miromachined polycrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comtois, J.H.; Michalicek, A.; Barron, C.C.

    1997-11-01

    This paper presents the results of tests performed on a variety of electrochemical microactuators and arrays of these actuators fabricated in the SUMMiT process at the U.S. Department of Energy`s Sandia National Laboratories. These results are intended to aid designers of thermally actuated mechanisms, and they apply to similar actuators made in other polysilicon MEMS processes such as the MUMPS process. Measurements include force and deflection versus input power, maximum operating frequency, effects of long term operation, and ideal actuator and array geometries for different applications` force requirements. Also, different methods of arraying these actuators together are compared. It ismore » found that a method using rotary joints, enabled by the advanced features of the SUMMiT fabrication process, is the most efficient array design. The design and operation of a thermally actuated stepper motor is explained to illustrate a useful application of these arrays.« less

  16. High frame-rate computational ghost imaging system using an optical fiber phased array and a low-pixel APD array.

    PubMed

    Liu, Chunbo; Chen, Jingqiu; Liu, Jiaxin; Han, Xiang'e

    2018-04-16

    To obtain a high imaging frame rate, a computational ghost imaging system scheme is proposed based on optical fiber phased array (OFPA). Through high-speed electro-optic modulators, the randomly modulated OFPA can provide much faster speckle projection, which can be precomputed according to the geometry of the fiber array and the known phases for modulation. Receiving the signal light with a low-pixel APD array can effectively decrease the requirement on sampling quantity and computation complexity owing to the reduced data dimensionality while avoiding the image aliasing due to the spatial periodicity of the speckles. The results of analysis and simulation show that the frame rate of the proposed imaging system can be significantly improved compared with traditional systems.

  17. Optimizing Satellite Communications With Adaptive and Phased Array Antennas

    NASA Technical Reports Server (NTRS)

    Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan

    2004-01-01

    A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.

  18. Design and grayscale fabrication of beamfanners in a silicon substrate

    NASA Astrophysics Data System (ADS)

    Ellis, Arthur Cecil

    2001-11-01

    This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design specifications for optical testing, but 5- micron IR illumination of the 1-4 and 1-2 beamfanners yielded no convincing results of beam splitting in the detector plane 340 microns from the surface of the beamfanner array.

  19. Some design considerations for a synthetic aperture optical telescope array

    NASA Astrophysics Data System (ADS)

    Scott, P. W.

    1984-01-01

    Several design considerations inherent in the configuration of phased array transmission of multiwavelength laser beams are discussed. Attention is focused on the U.S.A.F. phased array (PHASAR) demonstration project, where problems have been encountered in dividing the beam(s), controlling the optical path differences between subapertures, and expanding individual beams.A piston-driven path length adjustment mechanism has been selected, along with an active control system and proven components for stability maintenance. The necessity of developing broadband, high reflectivity low phase shift coatings for the system mirrors is stressed.

  20. Alicudi project

    NASA Astrophysics Data System (ADS)

    Arcidiacono, V.; Corsi, S.; Iliceto, A.; Previ, A.; Taschini, A.

    Design features and goals of the photovoltaic array power system for Alicudi Island hamlets are described. The array will have two 40 kWe sections, a 3 kAh battery system, an inverter to assure three-phase, ac current, a data acquisition system, and a 60 kVA diesel back-up system. The semi-arid conic volcanic island has terraces and a slope ideally suited to installation of the array. A computer simulation was developed to optimize the output and load profile matching using historical insolation data. A block diagram is provided of the electricity distribution network.

  1. VizieR Online Data Catalog: 8 Fermi GRB afterglows follow-up (Singer+, 2015)

    NASA Astrophysics Data System (ADS)

    Singer, L. P.; Kasliwal, M. M.; Cenko, S. B.; Perley, D. A.; Anderson, G. E.; Anupama, G. C.; Arcavi, I.; Bhalerao, V.; Bue, B. D.; Cao, Y.; Connaughton, V.; Corsi, A.; Cucchiara, A.; Fender, R. P.; Fox, D. B.; Gehrels, N.; Goldstein, A.; Gorosabel, J.; Horesh, A.; Hurley, K.; Johansson, J.; Kann, D. A.; Kouveliotou, C.; Huang, K.; Kulkarni, S. R.; Masci, F.; Nugent, P.; Rau, A.; Rebbapragada, U. D.; Staley, T. D.; Svinkin, D.; Thone, C. C.; de Ugarte Postigo, A.; Urata, Y.; Weinstein, A.

    2015-10-01

    In this work, we present the GBM-iPTF (intermediate Palomar Transient Factory) afterglows from the first 13 months of this project. Follow-up observations include R-band photometry from the P48, multicolor photometry from the P60, spectroscopy (acquired with the P200, Keck, Gemini, APO, Magellan, Very Large Telescope (VLT), and GTC), and radio observations with the Very Large Array (VLA), the Combined Array for Research in Millimeter-wave Astronomy (CARMA), the Australia Telescope Compact Array (ATCA), and the Arcminute Microkelvin Imager (AMI). (3 data files).

  2. Powering the future - a new generation of high-performance solar arrays

    NASA Astrophysics Data System (ADS)

    Geyer, Freddy; Caswell, Doug; Signorini, Carla

    2007-08-01

    Funded by ESA's Advanced Research in Telecommunication (ARTES) programme, Thales Alenia Space has developed a new generation of high-power ultra-lightweight solar arrays for telecommunications satellites. Thanks to close cooperation with its industrial partners in Europe, the company has generically qualified a solar array io meet market needs. Indeed, three flight projects were already using the new design as qualification was completed. In addition, the excellent mechanical and thermal behaviour of the new panel structure are contributing to other missions such as Pleïades and LISA Pathfinder.

  3. Digital Radiography and Computed Tomography Project -- Fully Integrated Linear Detector ArrayStatus Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Roney; Robert Seifert; Bob Pink

    2011-09-01

    The field-portable Digital Radiography and Computed Tomography (DRCT) x-ray inspection systems developed for the Project Manager for NonStockpile Chemical Materiel (PMNSCM) over the past 13 years have used linear diode detector arrays from two manufacturers; Thomson and Thales. These two manufacturers no longer produce this type of detector. In the interest of insuring the long term viability of the portable DRCT single munitions inspection systems and to improve the imaging capabilities, this project has been investigating improved, commercially available detectors. During FY-10, detectors were evaluated and one in particular, manufactured by Detection Technologies (DT), Inc, was acquired for possible integrationmore » into the DRCT systems. The remainder of this report describes the work performed in FY-11 to complete evaluations and fully integrate the detector onto a representative DRCT platform.« less

  4. Brightness field distributions of microlens arrays using micro molding.

    PubMed

    Cheng, Hsin-Chung; Huang, Chiung-Fang; Lin, Yi; Shen, Yung-Kang

    2010-12-20

    This study describes the brightness field distributions of microlens arrays fabricated by micro injection molding (μIM) and micro injection-compression molding (μICM). The process for fabricating microlens arrays used room-temperature imprint lithography, photoresist reflow, electroforming, μIM, μICM, and optical properties measurement. Analytical results indicate that the brightness field distribution of the molded microlens arrays generated by μICM is better than those made using μIM. Our results further demonstrate that mold temperature is the most important processing parameter for brightness field distribution of molded microlens arrays made by μIM or μICM.

  5. SPIDER: Next Generation Chip Scale Imaging Sensor Update

    NASA Astrophysics Data System (ADS)

    Duncan, A.; Kendrick, R.; Ogden, C.; Wuchenich, D.; Thurman, S.; Su, T.; Lai, W.; Chun, J.; Li, S.; Liu, G.; Yoo, S. J. B.

    2016-09-01

    The Lockheed Martin Advanced Technology Center (LM ATC) and the University of California at Davis (UC Davis) are developing an electro-optical (EO) imaging sensor called SPIDER (Segmented Planar Imaging Detector for Electro-optical Reconnaissance) that seeks to provide a 10x to 100x size, weight, and power (SWaP) reduction alternative to the traditional bulky optical telescope and focal-plane detector array. The substantial reductions in SWaP would reduce cost and/or provide higher resolution by enabling a larger-aperture imager in a constrained volume. Our SPIDER imager replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies that samples the object being imaged in the Fourier domain (i.e., spatial frequency domain), and then reconstructs an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., complementary metal-oxide-semiconductor (CMOS) fabrication). The standard EO payload integration and test process that involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication, which substantially reduces associated schedule and cost. This paper provides an overview of performance data on the second-generation PIC for SPIDER developed under the Defense Advanced Research Projects Agency (DARPA)'s SPIDER Zoom research funding. We also update the design description of the SPIDER Zoom imaging sensor and the second-generation PIC (high- and low resolution versions).

  6. Comparison of Computational and Experimental Microphone Array Results for an 18%-Scale Aircraft Model

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Humphreys, William M.; Khorrami, Mehdi R.; Fares, Ehab; Casalino, Damiano; Ravetta, Patricio A.

    2015-01-01

    An 18%-scale, semi-span model is used as a platform for examining the efficacy of microphone array processing using synthetic data from numerical simulations. Two hybrid RANS/LES codes coupled with Ffowcs Williams-Hawkings solvers are used to calculate 97 microphone signals at the locations of an array employed in the NASA LaRC 14x22 tunnel. Conventional, DAMAS, and CLEAN-SC array processing is applied in an identical fashion to the experimental and computational results for three different configurations involving deploying and retracting the main landing gear and a part span flap. Despite the short time records of the numerical signals, the beamform maps are able to isolate the noise sources, and the appearance of the DAMAS synthetic array maps is generally better than those from the experimental data. The experimental CLEAN-SC maps are similar in quality to those from the simulations indicating that CLEAN-SC may have less sensitivity to background noise. The spectrum obtained from DAMAS processing of synthetic array data is nearly identical to the spectrum of the center microphone of the array, indicating that for this problem array processing of synthetic data does not improve spectral comparisons with experiment. However, the beamform maps do provide an additional means of comparison that can reveal differences that cannot be ascertained from spectra alone.

  7. Proceedings of the Third Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, Craig R. (Compiler)

    1989-01-01

    This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.

  8. Condenser for photolithography system

    DOEpatents

    Sweatt, William C.

    2004-03-02

    A condenser for a photolithography system, in which a mask image from a mask is projected onto a wafer through a camera having an entrance pupil, includes a source of propagating radiation, a first mirror illuminated by the radiation, a mirror array illuminated by the radiation reflected from said first mirror, and a second mirror illuminated by the radiation reflected from the array. The mirror array includes a plurality of micromirrors. Each of the micromirrors is selectively actuatable independently of each other. The first mirror and the second mirror are disposed such that the source is imaged onto a plane of the mask and the mirror array is imaged into the entrance pupil of the camera.

  9. Project PARAS: Phased array radio astronomy from space

    NASA Technical Reports Server (NTRS)

    Nuss, Kenneth; Hoffmann, Christopher; Dungan, Michael; Madden, Michael; Bendakhlia, Monia

    1992-01-01

    An orbiting radio telescope is proposed which, when operated in a very long baseline interferometry (VLBI) scheme, would allow higher than currently available angular resolution and dynamic range in the maps and the ability to observe rapidly changing astronomical sources. Using passive phased array technology, the proposed design consists of 656 hexagonal modules forming a 150-m diameter antenna dish. Each observatory module is largely autonomous, having its own photovoltaic power supply and low-noise receiver and processor for phase shifting. The signals received by the modules are channeled via fiber optics to the central control computer in the central bus module. After processing and multiplexing, the data are transmitted to telemetry stations on the ground. The truss frame supporting each observatory panel is a novel hybrid structure consisting of a bottom graphite/epoxy tubular triangle and rigidized inflatable Kevlar tubes connecting the top observatory panel and the bottom triangle. Attitude control and station keeping functions will be performed by a system of momentum wheels in the bus and four propulsion modules located at the compass points on the periphery of the observatory dish. Each propulsion module has four monopropellant thrusters and four hydrazine arcjets, the latter supported by either a photovoltaic array or a radioisotope thermoelectric generator. The total mass of the spacecraft is about 20,500 kg.

  10. Mechanical Coupling of Smooth Muscle Cells Using Microengineered Substrates and Local Stimulation

    NASA Astrophysics Data System (ADS)

    Copeland, Craig; Hunter, David; Tung, Leslie; Chen, Christopher; Reich, Daniel

    2013-03-01

    Mechanical stresses directly affect many cellular processes, including signal transduction, growth, differentiation, and survival. Cells can themselves generate such stresses by activating myosin to contract the actin cytoskeleton, which in turn can regulate both cell-substrate and cell-cell interactions. We are studying mechanical forces at cell-cell and cell-substrate interactions using arrays of selectively patterned flexible PDMS microposts combined with the ability to apply local chemical stimulation. Micropipette ``spritzing'', a laminar flow technique, uses glass micropipettes mounted on a microscope stage to deliver drugs to controlled regions within a cellular construct while cell traction forces are recorded via the micropost array. The pipettes are controlled by micromanipulators allowing for rapid and precise movement across the array and the ability to treat multiple constructs within a sample. This technique allows for observing the propagation of a chemically induced mechanical stimulus through cell-cell and cell-substrate interactions. We have used this system to administer the acto-myosin inhibitors Blebbistatin and Y-27632 to single cells and observed the subsequent decrease in cell traction forces. Experiments using trypsin-EDTA have shown this system to be capable of single cell manipulation through removal of one cell within a pair configuration while leaving the other cell unaffected. This project is supported in part by NIH grant HL090747

  11. A Channelization-Based DOA Estimation Method for Wideband Signals

    PubMed Central

    Guo, Rui; Zhang, Yue; Lin, Qianqiang; Chen, Zengping

    2016-01-01

    In this paper, we propose a novel direction of arrival (DOA) estimation method for wideband signals with sensor arrays. The proposed method splits the wideband array output into multiple frequency sub-channels and estimates the signal parameters using a digital channelization receiver. Based on the output sub-channels, a channelization-based incoherent signal subspace method (Channelization-ISM) and a channelization-based test of orthogonality of projected subspaces method (Channelization-TOPS) are proposed. Channelization-ISM applies narrowband signal subspace methods on each sub-channel independently. Then the arithmetic mean or geometric mean of the estimated DOAs from each sub-channel gives the final result. Channelization-TOPS measures the orthogonality between the signal and the noise subspaces of the output sub-channels to estimate DOAs. The proposed channelization-based method isolates signals in different bandwidths reasonably and improves the output SNR. It outperforms the conventional ISM and TOPS methods on estimation accuracy and dynamic range, especially in real environments. Besides, the parallel processing architecture makes it easy to implement on hardware. A wideband digital array radar (DAR) using direct wideband radio frequency (RF) digitization is presented. Experiments carried out in a microwave anechoic chamber with the wideband DAR are presented to demonstrate the performance. The results verify the effectiveness of the proposed method. PMID:27384566

  12. Ocean array alters view of Atlantic conveyor

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine

    2018-02-01

    Oceanographers have put a stethoscope on the coursing circulatory system of the Atlantic Ocean, and they have found a skittish pulse that's surprisingly strong in the waters east of Greenland—discoveries that should improve climate models. The powerful currents known as the Atlantic meridional overturning circulation (AMOC) are an engine in Earth's climate. The AMOC's shallower limbs—which include the Gulf Stream—move warm water from the tropics northward, warming Western Europe. In the north, the waters cool and sink, forming deeper limbs that transport the cold water back south—and sequester anthropogenic carbon in the process. Last week, at the American Geophysical Union's Ocean Sciences meeting, scientists presented the first data from an array of instruments moored in the subpolar North Atlantic, a $35 million, seven-nation project known as the Overturning in the Subpolar North Atlantic Program (OSNAP). Since 2004, researchers have gathered data from another array, at 26°N, stretching from Florida to Africa. But OSNAP is the first to monitor the circulation farther north, where a critical aspect of the overturning occurs. The observations reveal unexpected eddies and strong variability in the AMOC currents. They also show that the currents east of Greenland contribute the most to the total AMOC flow. Climate models, on the other hand, have emphasized the currents west of Greenland in the Labrador Sea.

  13. Breadboard linear array scan imager using LSI solid-state technology

    NASA Technical Reports Server (NTRS)

    Tracy, R. A.; Brennan, J. A.; Frankel, D. G.; Noll, R. E.

    1976-01-01

    The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained.

  14. Integrating Scientific Array Processing into Standard SQL

    NASA Astrophysics Data System (ADS)

    Misev, Dimitar; Bachhuber, Johannes; Baumann, Peter

    2014-05-01

    We live in a time that is dominated by data. Data storage is cheap and more applications than ever accrue vast amounts of data. Storing the emerging multidimensional data sets efficiently, however, and allowing them to be queried by their inherent structure, is a challenge many databases have to face today. Despite the fact that multidimensional array data is almost always linked to additional, non-array information, array databases have mostly developed separately from relational systems, resulting in a disparity between the two database categories. The current SQL standard and SQL DBMS supports arrays - and in an extension also multidimensional arrays - but does so in a very rudimentary and inefficient way. This poster demonstrates the practicality of an SQL extension for array processing, implemented in a proof-of-concept multi-faceted system that manages a federation of array and relational database systems, providing transparent, efficient and scalable access to the heterogeneous data in them.

  15. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M.

    2006-01-01

    Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. The full rank equations are solved with a new robust iterative method. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.

  16. Parallel processing in a host plus multiple array processor system for radar

    NASA Technical Reports Server (NTRS)

    Barkan, B. Z.

    1983-01-01

    Host plus multiple array processor architecture is demonstrated to yield a modular, fast, and cost-effective system for radar processing. Software methodology for programming such a system is developed. Parallel processing with pipelined data flow among the host, array processors, and discs is implemented. Theoretical analysis of performance is made and experimentally verified. The broad class of problems to which the architecture and methodology can be applied is indicated.

  17. High-performance, flexible, deployable array development for space applications

    NASA Technical Reports Server (NTRS)

    Gehling, Russell N.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Flexible, deployable arrays are an attractive alternative to conventional solar arrays for near-term and future space power applications, particularly due to their potential for high specific power and low storage volume. Combined with low-cost flexible thin-film photovoltaics, these arrays have the potential to become an enabling or an enhancing technology for many missions. In order to expedite the acceptance of thin-film photovoltaics for space applications, however, parallel development of flexible photovoltaics and the corresponding deployable structure is essential. Many innovative technologies must be incorporated in these arrays to ensure a significant performance increase over conventional technologies. For example, innovative mechanisms which employ shape memory alloys for storage latches, deployment mechanisms, and array positioning gimbals can be incorporated into flexible array design with significant improvement in the areas of cost, weight, and reliability. This paper discusses recent activities at Martin Marietta regarding the development of flexible, deployable solar array technology. Particular emphasis is placed on the novel use of shape memory alloys for lightweight deployment elements to improve the overall specific power of the array. Array performance projections with flexible thin-film copper-indium-diselenide (CIS) are presented, and government-sponsored solar array programs recently initiated at Martin Marietta through NASA and Air Force Phillips Laboratory are discussed.

  18. SAR processing on the MPP

    NASA Technical Reports Server (NTRS)

    Batcher, K. E.; Eddey, E. E.; Faiss, R. O.; Gilmore, P. A.

    1981-01-01

    The processing of synthetic aperture radar (SAR) signals using the massively parallel processor (MPP) is discussed. The fast Fourier transform convolution procedures employed in the algorithms are described. The MPP architecture comprises an array unit (ARU) which processes arrays of data; an array control unit which controls the operation of the ARU and performs scalar arithmetic; a program and data management unit which controls the flow of data; and a unique staging memory (SM) which buffers and permutes data. The ARU contains a 128 by 128 array of bit-serial processing elements (PE). Two-by-four surarrays of PE's are packaged in a custom VLSI HCMOS chip. The staging memory is a large multidimensional-access memory which buffers and permutes data flowing with the system. Efficient SAR processing is achieved via ARU communication paths and SM data manipulation. Real time processing capability can be realized via a multiple ARU, multiple SM configuration.

  19. An Overview of LANL's New Hurricane Lightning Project (Invited)

    NASA Astrophysics Data System (ADS)

    Jeffery, C. A.; Shao, X.; Reisner, J.; Kao, C. J.; Brockwell, M.; Chylek, P.; Fierro, A.; Galassi, M.; Godinez, H. C.; Guimond, S.; Hamlin, T.; Henderson, B. G.; Ho, C.; Holden, D.; Light, T. E.; O'Connor, N.; Suszcynsky, D. M.

    2009-12-01

    For the last two years, Los Alamos National Laboratory has sponsored an internal hurricane lightning project with four main goals: (1) To develop and deploy a new dual VLF/VHF lightning mapping array in the Mississippi River Delta south of New Orleans. (2) To develop a new hurricane forecast capability with fully prognostic cloud electrification and lightning discharge physics, based on a model framework developed at Oklahoma University. (3) To develop a new data assimilation approach for ingesting LANL lightning data into our forecast model that exploits the phenomenological relationship between lightning occurrence and intense convection. (4) To demonstrate that the assimilation of lightning data from the new LANL Gulf array into the hurricane forecast model improves the prediction of rapid intensification (RI), when RI is driven by eyewall adjustment (axisymmetrization) triggered by intense convective events (hot towers). In this talk, I present an overview of LANL's new hurricane lighting project, and the progress we have made to-date in achieving the project's four main goals.

  20. Active implant for optoacoustic natural sound enhancement

    NASA Astrophysics Data System (ADS)

    Mohrdiek, S.; Fretz, M.; Jose James, R.; Spinola Durante, G.; Burch, T.; Kral, A.; Rettenmaier, A.; Milani, R.; Putkonen, M.; Noell, W.; Ortsiefer, M.; Daly, A.; Vinciguerra, V.; Garnham, C.; Shah, D.

    2017-02-01

    This paper summarizes the results of an EU project called ACTION: ACTive Implant for Optoacoustic Natural sound enhancement. The project is based on a recent discovery that relatively low levels of pulsed infrared laser light are capable of triggering activity in hair cells of the partially hearing (hearing impaired) cochlea and vestibule. The aim here is the development of a self-contained, smart, highly miniaturized system to provide optoacoustic stimuli directly from an array of miniature light sources in the cochlea. Optoacoustic compound action potentials (oaCAP) are generated by the light source fully inserted into the unmodified cochlea. Previously, the same could only be achieved with external light sources connected to a fiber optic light guide. This feat is achieved by integrating custom made VCSEL arrays at a wavelength of about 1550 nm onto small flexible substrates. The laser light is collimated by a specially designed silicon-based ultra-thin lens (165 um thick) to get the energy density required for the generation of oaCAP signals. A dramatic miniaturization of the packaging technology is also required. A long term biocompatible and hermetic sapphire housing with a size of less than a 1 cubic millimeter and miniature Pt/PtIr feedthroughs is developed, using a low temperature laser assisted process for sealing. A biofouling thin film protection layer is developed to avoid fibrinogen and cell growth on the system.

Top