Sample records for array results showed

  1. Jet Noise Source Localization Using Linear Phased Array

    NASA Technical Reports Server (NTRS)

    Agboola, Ferni A.; Bridges, James

    2004-01-01

    A study was conducted to further clarify the interpretation and application of linear phased array microphone results, for localizing aeroacoustics sources in aircraft exhaust jet. Two model engine nozzles were tested at varying power cycles with the array setup parallel to the jet axis. The array position was varied as well to determine best location for the array. The results showed that it is possible to resolve jet noise sources with bypass and other components separation. The results also showed that a focused near field image provides more realistic noise source localization at low to mid frequencies.

  2. Fabrication and optically pumped lasing of plasmonic nanolaser with regular ZnO/GaN nanoheterojunction array

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoping; Zhang, Peifeng; Lin, En; Wang, Peng; Mei, Mingwei; Huang, Qiuying; Jiao, Jiao; Zhao, Qing

    2017-09-01

    We present the design and fabrication of a novel regularly arrayed plasmonic nanolasers. This main microstructure of the device is composed of a hexagonal array of n-ZnO/p-GaN nanoheterojunctions fabricated using the micro-fabrication method. Furthermore, the optically pumped lasing in the device is demonstrated. The spectroscopy characterization results of the device show that the surface plasmon excited around the NWs surface can be used to stimulate and strongly compress the optical modes in the NW cavity. This electromagnetic confinement effect is employed to optimize the beam quality and increase the light intensity compared to the laser fabricated with the bare NWs array. The impact of the array arrangement on the coherent combining efficiency of the arrayed nanolasers has been numerically studied. The results show that the arrayed hexagonal nanolasers could improve the combining efficiency compared to the nanolaser with the randomly positioned array. Qualitatively, these calculated results agree well with the experimental results of the laser beam spot mapping. This demonstrates the scope for using such architectures to improve the combination efficiency of the arrayed nanolasers.

  3. Crosstalk analyse of DFB fiber laser hydrophone array based on time division multiplexing

    NASA Astrophysics Data System (ADS)

    Li, Yu; Huang, Junbin; Gu, Hongcan; Tang, Bo; Wu, Jing

    2014-12-01

    In this paper, the crosstalk of a time division multiplexed (TDM) system of distributed feedback (DFB) fiber laser (FL)hydrophones based on optical switch using Phase Generated Carrier (PGC) method was quantitatively analyzed. After mathematical deduction, the relationship among crosstalk, multiplexing scale and extinction ratio of optical switch was given. The simulation results show that to realize a TDM system of DFB fiber laser hydrophones with crosstalk lower than -40dB, the average extinction ratio should be higher than 24.78dB for a 4- channel system, while higher than 28.45dB for an 8- channel system. Two experiments to analyze the array crosstalk to a certain channel in an 8- channel array were conducted in this paper. Firstly, by testing the powers of leak laser to a certain channel from others, the array crosstalk to this channel was obtained according to the equation mathematically deduced in this paper. The result shows the array crosstalk to a certain channel of the 8-channel array was -7.6dB. An experiment of underwater acoustic detection was carried out finally to get the real array crosstalk to this certain channel, and the experimental result shows that the array crosstalk to this channel is -8.8dB, which is close to the calculated result.

  4. Surface-restrained growth of vertically aligned carbon nanotube arrays with excellent thermal transport performance.

    PubMed

    Ping, Linquan; Hou, Peng-Xiang; Liu, Chang; Li, Jincheng; Zhao, Yang; Zhang, Feng; Ma, Chaoqun; Tai, Kaiping; Cong, Hongtao; Cheng, Hui-Ming

    2017-06-22

    A vertically aligned carbon nanotube (VACNT) array is a promising candidate for a high-performance thermal interface material in high-power microprocessors due to its excellent thermal transport property. However, its rough and entangled free tips always cause poor interfacial contact, which results in serious contact resistance dominating the total thermal resistance. Here, we employed a thin carbon cover to restrain the disorderly growth of the free tips of a VACNT array. As a result, all the free tips are seamlessly connected by this thin carbon cover and the top surface of the array is smoothed. This unique structure guarantees the participation of all the carbon nanotubes in the array in the heat transport. Consequently the VACNT array grown on a Cu substrate shows a record low thermal resistance of 0.8 mm 2 K W -1 including the two-sided contact resistances, which is 4 times lower than the best result previously reported. Remarkably, the VACNT array can be easily peeled away from the Cu substrate and act as a thermal pad with excellent flexibility, adhesive ability and heat transport capability. As a result the CNT array with a thin carbon cover shows great potential for use as a high-performance flexible thermal interface material.

  5. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Yushan; Cai, Haoyuan; Chen, Xiaoyi; Li, Changwei; Yang, Cheng-Fu

    2015-01-01

    In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz) and 1.68 (SF5 glass), the nanoparticle arrays would have better refractive index sensitivity (RIS) and figure of merit (FOM). Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  6. Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography.

    PubMed

    Zhao, Xiaoyu; Wen, Jiahong; Zhang, Mengning; Wang, Dunhui; Wang, Yaxin; Chen, Lei; Zhang, Yongjun; Yang, Jinghai; Du, Youwei

    2017-03-01

    An easy-handling and low-cost method is utilized to controllably fabricate nanopattern arrays as the surface-enhanced Raman scattering (SERS) active substrates with high density of SERS-active areas (hot spots). A hybrid silver array of nanocaps and nanotriangles are prepared by combining magnetron sputtering and plasma etching. By adjusting the etching time of polystyrene (PS) colloid spheres array in silver nanobowls, the morphology of the arrays can be easily manipulated to control the formation and distribution of hot spots. The experimental results show that the hybrid nanostructural arrays have large enhancement factor, which is estimated to be seven times larger than that in the array of nanocaps and three times larger than that in the array of nanorings and nanoparticles. According to the results of finite-difference time-domain simulation, the excellent SERS performance of this array is ascribed to the high density of hot spots and enhanced electromagnetic field.

  7. Numerical simulation of terahertz transmission of bilayer metallic meshes with different thickness of substrates

    NASA Astrophysics Data System (ADS)

    Zhang, Gaohui; Zhao, Guozhong; Zhang, Shengbo

    2012-12-01

    The terahertz transmission characteristics of bilayer metallic meshes are studied based on the finite difference time domain method. The bilayer well-shaped grid, the array of complementary square metallic pill and the cross wire-hole array were investigated. The results show that the bilayer well-shaped grid achieves a high-pass of filter function, while the bilayer array of complementary square metallic pill achieves a low-pass of filter function, the bilayer cross wire-hole array achieves a band-pass of filter function. Between two metallic microstructures, the medium need to be deposited. Obviously, medium thicknesses have an influence on the terahertz transmission characteristics of metallic microstructures. Simulation results show that with increasing the thicknesses of the medium the cut-off frequency of high-pass filter and low-pass filter move to low frequency. But the bilayer cross wire-hole array possesses two transmission peaks which display competition effect.

  8. Josephson-junction array in an irrational magnetic field: A superconducting glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halsey, T.C.

    1985-08-26

    A model is used to show that a Josephson junction array in an irrational magnetic field undergoes a glass transition for finite cooling rate. At zero temperature the resultant glassy state possesses a nonzero critical current. The low-temperature behavior of the system can be modeled by a spin-wave theory. The relevance of these results for real experiments on arrays is discussed.

  9. An RF phased array applicator designed for hyperthermia breast cancer treatments

    PubMed Central

    Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V

    2007-01-01

    An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427

  10. Development of an automation technique for the establishment of functional lipid bilayer arrays

    NASA Astrophysics Data System (ADS)

    Hansen, J. S.; Perry, M.; Vogel, J.; Vissing, T.; Hansen, C. R.; Geschke, O.; Emnéus, J.; Nielsen, C. H.

    2009-02-01

    In the present work, a technique for establishing multiple black lipid membranes (BLMs) in arrays of micro structured ethylene tetrafluoroethylene (ETFE) films, and supported by a micro porous material was developed. Rectangular 8 × 8 arrays with apertures having diameters of 301 ± 5 µm were fabricated in ETFE Teflon film by laser ablation using a carbon dioxide laser. Multiple lipid membranes could be formed across the micro structured 8 × 8 array ETFE partitions. Success rates for the establishment of cellulose-supported BLMs across the multiple aperture arrays were above 95%. However, the time course of the membrane thinning process was found to vary considerably between multiple aperture bilayer experiments. An airbrush partition pretreatment technique was developed to increase the reproducibility of the multiple lipid bilayers formation during the time course from the establishment of the lipid membranes to the formation of bilayers. The results showed that multiple lipid bilayers could be reproducible formed across the airbrush-pretreated 8 × 8 rectangular arrays. The ionophoric peptide valinomycin was incorporated into established membrane arrays, resulting in ionic currents that could be effectively blocked by tetraethylammonium. This shows that functional bimolecular lipid membranes were established, and furthermore outlines that the established lipid membrane arrays could host functional membrane-spanning molecules.

  11. Design and development of conformal antenna composite structure

    NASA Astrophysics Data System (ADS)

    Xie, Zonghong; Zhao, Wei; Zhang, Peng; Li, Xiang

    2017-09-01

    In the manufacturing process of the common smart skin antenna, the adhesive covered on the radiating elements of the antenna led to severe deviation of the resonant frequency, which degraded the electromagnetic performance of the antenna. In this paper, a new component called package cover was adopted to prevent the adhesive from covering on the radiating elements of the microstrip antenna array. The package cover and the microstrip antenna array were bonded together as packaged antenna which was then embedded into the composite sandwich structure to develop a new structure called conformal antenna composite structure (CACS). The geometric parameters of the microstrip antenna array and the CACS were optimized by the commercial software CST microwave studio. According to the optimal results, the microstrip antenna array and the CACS were manufactured and tested. The experimental and numerical results of electromagnetic performance showed that the resonant frequency of the CACS was close to that of the microstrip antenna array (with error less than 1%) and the CACS had a higher gain (about 2 dB) than the microstrip antenna array. The package system would increase the electromagnetic radiating energy at the design frequency nearly 66%. The numerical model generated by CST microwave studio in this study could successfully predict the electromagnetic performance of the microstrip antenna array and the CACS with relatively good accuracy. The mechanical analysis results showed that the CACS had better flexural property than the composite sandwich structure without the embedment of packaged antenna. The comparison of the electromagnetic performance for the CACS and the MECSSA showed that the package system was useful and effective.

  12. An Application of Specific Sensors For The Monitoring of NaCl in Soft Cheeses

    NASA Astrophysics Data System (ADS)

    Lvova, Larisa; Mielle, Patrick; Salles, Christian; Denis, Sylvain; Vergoignan, Catherine; Barra, Aurélien; Di Natale, Corrado; Paolesse, Roberto; Temple-Boyer, Pierre; Feron, Gilles

    2011-09-01

    The commercial sensors and prototype ISEs array (Ion Selective Electrodes array) were utilized for NaCl concentration measurements in soft cheeses, in particular in vitro gut process and in commercial Italian mozzarella cheeses. The values obtained from the sensors were compared with HPLC analysis. The results showed the feasibility of the ISE array application to monitor NaCl in soft cheese during the breakdown in the digester. The best results were obtained with the use of ISEs array combining, in particular, Cl- and Na+ detections. The salinity of commercial mozzarella cheese samples and the originally utilized milk type (cow or buffalo) were also satisfactory determined with the developed ISE array.

  13. Array feed synthesis for correction of reflector distortion and Vernier Beamsteering

    NASA Technical Reports Server (NTRS)

    Blank, S. J.; Imbriale, W. A.

    1986-01-01

    An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum choice of planar array feed configuration (i.e., number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.

  14. An experimental SMI adaptive antenna array simulator for weak interfering signals

    NASA Technical Reports Server (NTRS)

    Dilsavor, Ronald S.; Gupta, Inder J.

    1991-01-01

    An experimental sample matrix inversion (SMI) adaptive antenna array for suppressing weak interfering signals is described. The experimental adaptive array uses a modified SMI algorithm to increase the interference suppression. In the modified SMI algorithm, the sample covariance matrix is redefined to reduce the effect of thermal noise on the weights of an adaptive array. This is accomplished by subtracting a fraction of the smallest eigenvalue of the original covariance matrix from its diagonal entries. The test results obtained using the experimental system are compared with theoretical results. The two show a good agreement.

  15. Magnetic characteristics of CoPd and FePd antidot arrays on nanoperforated Al2O3 templates

    NASA Astrophysics Data System (ADS)

    Maximenko, A.; Fedotova, J.; Marszałek, M.; Zarzycki, A.; Zabila, Y.

    2016-02-01

    Hard magnetic antidot arrays show promising results in context of designing of percolated perpendicular media. In this work the technology of magnetic FePd and CoPd antidot arrays fabrication is presented and correlation between surface morphology, structure and magnetic properties is discussed. CoPd and FePd antidot arrays were fabricated by deposition of Co/Pd and Fe/Pd multilayers (MLs) on porous anodic aluminum oxide templates with bowl-shape cell structure with inclined intercellular regions. FePd ordered L10 structure was obtained by successive vacuum annealing at elevated temperatures (530 °C) and confirmed by XRD analysis. Systematic analysis of magnetization curves evidenced perpendicular magnetic anisotropy of CoPd antidot arrays, while FePd antidot arrays revealed isotropic magnetic anisotropy with increased out-of-plane magnetic contribution. MFM images of antidots showed more complicated contrast, with alternating magnetic dots oriented parallel and antiparallel to tip magnetization moment.

  16. Two-phase interdigitated microelectrode arrays for electrokinetic transport of microparticles

    NASA Astrophysics Data System (ADS)

    Bligh, Mathew; Stanley, Kevin G.; Hubbard, Ted; Kujath, Marek

    2008-05-01

    In this paper, we demonstrate long-range particle transport using linear two-phase interdigitated arrays with electrodes of equal size but with asymmetric spacing between them. We report net motion of 6 µm polystyrene spheres in an aqueous electrolyte and characterize the dependence of particle velocity on frequency, potential and phase, and show consistency with previous experiments that involved four-phase arrays producing AC electroosmotic and dielectrophoretic forces. We explore the effect of increasing the asymmetry of the electrode spacing and show that this decreases the performance of the array. We also examine the effect of increasing the overall scale of the array while maintaining geometric proportions and particle size and report that this also decreases the performance. We compare our results to previous analytical theoretical predictions and find general agreement.

  17. Analysis of chromosomal abnormalities by CGH-array in patients with dysmorphic and intellectual disability with normal karyotype

    PubMed Central

    Pratte-Santos, Rodrigo; Ribeiro, Katyanne Heringer; Santos, Thainá Altoe; Cintra, Terezinha Sarquis

    2016-01-01

    ABSTRACT Objective To investigate chromosomal abnormalities by CGH-array in patients with dysmorphic features and intellectual disability with normal conventional karyotype. Methods Retrospective study, carried out from January 2012 to February 2014, analyzing the CGH-array results of 39 patients. Results Twenty-six (66.7%) patients had normal results and 13 (33.3%) showed abnormal results - in that, 6 (15.4%) had pathogenic variants, 6 (15.4%) variants designated as uncertain and 1 (2.5%) non-pathogenic variants. Conclusion The characterization of the genetic profile by CGH-array in patients with intellectual disability and dysmorphic features enabled making etiologic diagnosis, followed by genetic counseling for families and specific treatment. PMID:27074231

  18. A mixed-signal implementation of a polychronous spiking neural network with delay adaptation

    PubMed Central

    Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André

    2014-01-01

    We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits. PMID:24672422

  19. A mixed-signal implementation of a polychronous spiking neural network with delay adaptation.

    PubMed

    Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André

    2014-01-01

    We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits.

  20. An Update on Phased Array Results Obtained on the GE Counter-Rotating Open Rotor Model

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Horvath, Csaba; Envia, Edmane

    2013-01-01

    Beamform maps have been generated from 1) simulated data generated by the LINPROP code and 2) actual experimental phased array data obtained on the GE Counter-rotating open rotor model. The beamform maps show that many of the tones in the experimental data come from their corresponding Mach radius. If the phased array points to the Mach radius associated with a tone then it is likely that the tone is a result of the loading and thickness noise on the blades. In this case, the phased array correctly points to where the noise is coming from and indicates the axial location of the loudest source in the image but not necessarily the correct vertical location. If the phased array does not point to the Mach radius associated with a tone then some mechanism other than loading and thickness noise may control the amplitude of the tone. In this case, the phased array may or may not point to the actual source. If the source is not rotating it is likely that the phased array points to the source. If the source is rotating it is likely that the phased array indicates the axial location of the loudest source but not necessarily the correct vertical location. These results indicate that you have to be careful in how you interpret phased array data obtained on an open rotor since they may show the tones coming from a location other than the source location. With a subsonic tip speed open rotor the tones can come form locations outboard of the blade tips. This has implications regarding noise shielding.

  1. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  2. Continuous needleless electrospinning of magnetic nanofibers from magnetization-induced self-assembling PVA/ferrofluid cone array

    NASA Astrophysics Data System (ADS)

    Wang, Hongjian; Liu, Bin; Huang, Weilong; Lin, Zi; Luo, Jie; Li, Yan; Zhuang, Lin; Wang, Wei; Jiang, Lelun

    2018-04-01

    A novel approach, continuous needleless electrospinning from the tips of magnetization-induced self-assembling PVA/ferrofluid cone array, was proposed to prepare magnetic nanofibers. A PVA/ferrofluid was synthesized, the needleless electrospinning process was observed, and the morphology and magnetic properties of magnetic nanofibers were investigated. The results showed that the PVA/ferrofluid could remain stable and homogeneous for 21 days under the magnetic field gradient (2.2 mT/mm). "Taylor cone" array of PVA/ferrofluid was self-assembled under both the magnetic and electric fields. As the electric voltage reached 25 kV, the jets were emitted from the "Taylor cone" array, resulting in needleless electrospinning of magnetic nanofibers. Magnetic nanofibers were homogeneous and continuous with an average diameter of 73.6 nm. Magnetic nanofibers showed a good magnetic response property and relatively high saturated magnetization (1.71 emu/g), which is expected to be applied in the biomedical field.

  3. The design of H- and V-pol waveguide slot array feeds for a scanned offset dual-polarized reflectarray

    NASA Technical Reports Server (NTRS)

    Zawadzki, Mark; Rengarajan, Sembiam; Hodges, Richard E.

    2005-01-01

    While the design of waveguide slot arrays in not new, this particular design effort shows that very good results can be achieved on a first attempt using established slot array design techniques and commercial software for the waveguide power divider network. The presentation will discuss this design process in detail.

  4. Directions of arrival estimation with planar antenna arrays in the presence of mutual coupling

    NASA Astrophysics Data System (ADS)

    Akkar, Salem; Harabi, Ferid; Gharsallah, Ali

    2013-06-01

    Directions of arrival (DoAs) estimation of multiple sources using an antenna array is a challenging topic in wireless communication. The DoAs estimation accuracy depends not only on the selected technique and algorithm, but also on the geometrical configuration of the antenna array used during the estimation. In this article the robustness of common planar antenna arrays against unaccounted mutual coupling is examined and their DoAs estimation capabilities are compared and analysed through computer simulations using the well-known MUltiple SIgnal Classification (MUSIC) algorithm. Our analysis is based on an electromagnetic concept to calculate an approximation of the impedance matrices that define the mutual coupling matrix (MCM). Furthermore, a CRB analysis is presented and used as an asymptotic performance benchmark of the studied antenna arrays. The impact of the studied antenna arrays geometry on the MCM structure is also investigated. Simulation results show that the UCCA has more robustness against unaccounted mutual coupling and performs better results than both UCA and URA geometries. The performed simulations confirm also that, although the UCCA achieves better performance under complicated scenarios, the URA shows better asymptotic (CRB) behaviour which promises more accuracy on DoAs estimation.

  5. Lightning Mapping With an Array of Fast Antennas

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Wang, Daohong; Takagi, Nobuyuki

    2018-04-01

    Fast Antenna Lightning Mapping Array (FALMA), a low-frequency lightning mapping system comprising an array of fast antennas, was developed and established in Gifu, Japan, during the summer of 2017. Location results of two hybrid flashes and a cloud-to-ground flash comprising 11 return strokes (RSs) are described in detail in this paper. Results show that concurrent branches of stepped leaders can be readily resolved, and K changes and dart leaders with speeds up to 2.4 × 107 m/s are also well imaged. These results demonstrate that FALMA can reconstruct three-dimensional structures of lightning flashes with great details. Location accuracy of FALMA is estimated by comparing the located striking points of successive RSs in cloud-to-ground flashes. Results show that distances between successive RSs are mainly below 25 m, indicating exceptionally high location accuracy of FALMA.

  6. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    PubMed

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays.

  7. Array feed synthesis for correction of reflector distortion and Vernier beamsteering

    NASA Technical Reports Server (NTRS)

    Blank, Stephen J.; Imbriale, William A.

    1988-01-01

    An algorithmic procedure for the synthesis of planar array feeds for paraboloidal reflectors is described which simultaneously provides electronic correction of systematic reflector surface distortions as well as a Vernier electronic beamsteering capability. Simple rules of thumb for the optimum chioce of planar array feed configuration (i.e., the number and type of elements) are derived from a parametric study made using the synthesis procedure. A number of f/D ratios and distortion models were examined that are typical of large paraboloidal reflectors. Numerical results are presented showing that, for the range of distortion models considered, good on-axis gain restoration can be achieved with as few as seven elements. For beamsteering to +/- 1 beamwidth (BW), 19 elements are required. For arrays with either 7 or 19 elements, the results indicate that the use of high-aperture-efficiency elements (e.g., disk-on-rod and short backfire) in the array yields higher system gain than can be obtained with elements having lower aperture efficiency (e.g., open-ended waveguides). With 37 elements, excellent gain and beamsteering performance to +/- 1.5 BW are obtained independent of the assumed effective aperture of the array element. An approximate expression is derived for the focal-plane field distribution of the distorted reflector. Contour plots of the focal-plane fields are also presented for various distortion and beam scan angle cases. The results obtained show the effectiveness of the array feed approach.

  8. Measurements of Infrared and Acoustic Source Distributions in Jet Plumes

    NASA Technical Reports Server (NTRS)

    Agboola, Femi A.; Bridges, James; Saiyed, Naseem

    2004-01-01

    The aim of this investigation was to use the linear phased array (LPA) microphones and infrared (IR) imaging to study the effects of advanced nozzle-mixing techniques on jet noise reduction. Several full-scale engine nozzles were tested at varying power cycles with the linear phased array setup parallel to the jet axis. The array consisted of 16 sparsely distributed microphones. The phased array microphone measurements were taken at a distance of 51.0 ft (15.5 m) from the jet axis, and the results were used to obtain relative overall sound pressure levels from one nozzle design to the other. The IR imaging system was used to acquire real-time dynamic thermal patterns of the exhaust jet from the nozzles tested. The IR camera measured the IR radiation from the nozzle exit to a distance of six fan diameters (X/D(sub FAN) = 6), along the jet plume axis. The images confirmed the expected jet plume mixing intensity, and the phased array results showed the differences in sound pressure level with respect to nozzle configurations. The results show the effects of changes in configurations to the exit nozzles on both the flows mixing patterns and radiant energy dissipation patterns. By comparing the results from these two measurements, a relationship between noise reduction and core/bypass flow mixing is demonstrated.

  9. Numerical study of the properties of optical vortex array laser tweezers.

    PubMed

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-04

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  10. Simulated near-field mapping of ripple pattern supported metal nanoparticles arrays for SERS optimization

    NASA Astrophysics Data System (ADS)

    Arya, Mahima; Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto; Nath, Rabinder; Mitra, Anirban

    2017-11-01

    An analytical model has been developed using a modified Yamaguchi model along with the wavelength dependent plasmon line-width correction. The model has been used to calculate the near-field response of random nanoparticles on the plane surface, elongated and spherical silver nanoparticle arrays supported on ion beam produced ripple patterned templates. The calculated near-field mapping for elongated nanoparticles arrays on the ripple patterned surface shows maximum number of hot-spots with a higher near-field enhancement (NFE) as compared to the spherical nanoparticle arrays and randomly distributed nanoparticles on the plane surface. The results from the simulations show a similar trend for the NFE when compared to the far field reflection spectra. The nature of the wavelength dependent NFE is also found to be in agreement with the observed experimental results from surface enhanced Raman spectroscopy (SERS). The calculated and the measured optical response unambiguously reveal the importance of interparticle gap and ordering, where a high intensity Raman signal is obtained for ordered elongated nanoparticles arrays case as against non-ordered and the aligned configuration of spherical nanoparticles on the rippled surface.

  11. A cross-reactive sensor array for the fluorescence qualitative analysis of heavy metal ions.

    PubMed

    Kang, Huaizhi; Lin, Liping; Rong, Mingcong; Chen, Xi

    2014-11-01

    A cross-reactive sensor array using mercaptopropionic acid modified cadmium telluride (CdTe), glutathione modified CdTe, poly(methacrylic acid) modified silver nanoclusters, bovine serum albumin modified gold nanoclusters, rhodamine derivative and calcein blue as fluorescent indicators has been designed for the detection of seven heavy metal ions (Ag(+), Hg(2+), Pb(2+), Cu(2+), Cr(3+), Mn(2+) and Cd(2+)). The discriminatory capacity of the sensor array to different heavy metal ions in different pH solutions has been tested and the results have been analyzed with linear discriminant analysis. Results showed that the sensor array could be used to qualitatively analyze the selected heavy metal ions. The array performance was also evaluated in the identification of known and unknown samples and the preliminary results suggested the promising practicability of the designed sensor assay. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Syam; Sitha

    2015-06-15

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on themore » 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly.« less

  13. PMN-PT Single-Crystal High-Frequency Kerfless Phased Array

    PubMed Central

    Chen, Ruimin; Cabrera-Munoz, Nestor E.; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K. Kirk

    2015-01-01

    This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at −6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667

  14. Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays

    DOE PAGES

    Deeb, Claire; Guo, Zhi; Yang, Ankun; ...

    2018-01-25

    Excited-state interactions between nanoscale cavities and photoactive molecules are critical in plasmonic nanolasing, although the underlying details are less-resolved. This paper reports direct visualization of the energy-transfer dynamics between two-dimensional arrays of plasmonic gold bowtie nanocavities and dye molecules. Transient absorption microscopy measurements of single bowties within the array surrounded by gain molecules showed fast excited-state quenching (2.6 ± 1 ps) characteristic of individual nanocavities. Upon optical pumping at powers above threshold, lasing action emerged depending on the spacing of the array. By correlating ultrafast microscopy and far-field light emission characteristics, we found that bowtie nanoparticles acted as isolated cavitiesmore » when the diffractive modes of the array did not couple to the plasmonic gap mode. These results demonstrate how ultrafast microscopy can provide insight into energy relaxation pathways and, specifically, how nanocavities in arrays can show single-unit nanolaser properties.« less

  15. Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deeb, Claire; Guo, Zhi; Yang, Ankun

    Excited-state interactions between nanoscale cavities and photoactive molecules are critical in plasmonic nanolasing, although the underlying details are less-resolved. This paper reports direct visualization of the energy-transfer dynamics between two-dimensional arrays of plasmonic gold bowtie nanocavities and dye molecules. Transient absorption microscopy measurements of single bowties within the array surrounded by gain molecules showed fast excited-state quenching (2.6 ± 1 ps) characteristic of individual nanocavities. Upon optical pumping at powers above threshold, lasing action emerged depending on the spacing of the array. By correlating ultrafast microscopy and far-field light emission characteristics, we found that bowtie nanoparticles acted as isolated cavitiesmore » when the diffractive modes of the array did not couple to the plasmonic gap mode. These results demonstrate how ultrafast microscopy can provide insight into energy relaxation pathways and, specifically, how nanocavities in arrays can show single-unit nanolaser properties.« less

  16. Analysis and Modeling of Fullerene Single Electron Transistor Based on Quantum Dot Arrays at Room Temperature

    NASA Astrophysics Data System (ADS)

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Ismail, Razali

    2018-05-01

    The single electron transistor (SET) as a fast electronic device is a candidate for future nanoscale circuits because of its low energy consumption, small size and simplified circuit. It consists of source and drain electrodes with a quantum dot (QD) located between them. Moreover, it operates based on the Coulomb blockade (CB) effect. It occurs when the charging energy is greater than the thermal energy. Consequently, this condition limits SET operation at cryogenic temperatures. Hence, using QD arrays can overcome this temperature limitation in SET which can therefore work at room temperature but QD arrays increase the threshold voltage with is an undesirable effect. In this research, fullerene as a zero-dimensional material with unique properties such as quantum capacitance and high critical temperature has been selected for the material of the QDs. Moreover, the current of a fullerene QD array SET has been modeled and its threshold voltage is also compared with a silicon QD array SET. The results show that the threshold voltage of fullerene SET is lower than the silicon one. Furthermore, the comparison study shows that homogeneous linear QD arrays have a lower CB range and better operation than a ring QD array SET. Moreover, the effect of the number of QDs in a QD array SET is investigated. The result confirms that the number of QDs can directly affect the CB range. Moreover, the desired current can be achieved by controlling the applied gate voltage and island diameters in a QD array SET.

  17. Modeling and simulation for the field emission of carbon nanotubes array

    NASA Astrophysics Data System (ADS)

    Wang, X. Q.; Wang, M.; Ge, H. L.; Chen, Q.; Xu, Y. B.

    2005-12-01

    To optimize the field emission of the infinite carbon nanotubes (CNTs) array on a planar cathode surface, the numerical simulation for the behavior of field emission with finite difference method was proposed. By solving the Laplace equation with computer, the influence of the intertube distance, the anode-cathode distance and the opened/capped CNT on the field emission of CNTs array were taken into account, and the results could accord well with the experiments. The simulated results proved that the field enhancement factor of individual CNT is largest, but the emission current density is little. Due to the enhanced screening of the electric field, the enhancement factor of CNTs array decreases with decreasing the intertube distance. From the simulation the field emission can be optimized when the intertube distance is close to the tube height. The anode-cathode distance hardly influences the field enhancement factor of CNTs array, but can low the threshold voltage by decreasing the anode-cathode distance. Finally, the distribution of potential of the capped CNTs array and the opened CNTs array was simulated, which the results showed that the distribution of potential can be influenced to some extent by the anode-cathode distance, especially at the apex of the capped CNTs array and the brim of the opened CNTs array. The opened CNTs array has larger field enhancement factor and can emit more current than the capped one.

  18. Mutual coupling effects in antenna arrays, volume 1

    NASA Technical Reports Server (NTRS)

    Collin, R. E.

    1986-01-01

    Mutual coupling between rectangular apertures in a finite antenna array, in an infinite ground plane, is analyzed using the vector potential approach. The method of moments is used to solve the equations that result from setting the tangential magnetic fields across each aperture equal. The approximation uses a set of vector potential model functions to solve for equivalent magnetic currents. A computer program was written to carry out this analysis and the resulting currents were used to determine the co- and cross-polarized far zone radiation patterns. Numerical results for various arrays using several modes in the approximation are presented. Results for one and two aperture arrays are compared against published data to check on the agreement of this model with previous work. Computer derived results are also compared against experimental results to test the accuracy of the model. These tests of the accuracy of the program showed that it yields valid data.

  19. A 32-Channel Combined RF and B0 Shim Array for 3T Brain Imaging

    PubMed Central

    Stockmann, Jason P.; Witzel, Thomas; Keil, Boris; Polimeni, Jonathan R.; Mareyam, Azma; LaPierre, Cristen; Setsompop, Kawin; Wald, Lawrence L.

    2016-01-01

    Purpose We add user-controllable direct currents (DC) to the individual elements of a 32-channel radio-frequency (RF) receive array to provide B0 shimming ability while preserving the array’s reception sensitivity and parallel imaging performance. Methods Shim performance using constrained DC current (±2.5A) is simulated for brain arrays ranging from 8 to 128 elements. A 32-channel 3-tesla brain array is realized using inductive chokes to bridge the tuning capacitors on each RF loop. The RF and B0 shimming performance is assessed in bench and imaging measurements. Results The addition of DC currents to the 32-channel RF array is achieved with minimal disruption of the RF performance and/or negative side effects such as conductor heating or mechanical torques. The shimming results agree well with simulations and show performance superior to third-order spherical harmonic (SH) shimming. Imaging tests show the ability to reduce the standard frontal lobe susceptibility-induced fields and improve echo planar imaging geometric distortion. The simulation of 64- and 128-channel brain arrays suggest that even further shimming improvement is possible (equivalent to up to 6th-order SH shim coils). Conclusion Including user-controlled shim currents on the loops of a conventional highly parallel brain array coil is feasible with modest current levels and produces improved B0 shimming performance over standard second-order SH shimming. PMID:25689977

  20. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    PubMed

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  1. Receptor arrays optimized for natural odor statistics.

    PubMed

    Zwicker, David; Murugan, Arvind; Brenner, Michael P

    2016-05-17

    Natural odors typically consist of many molecules at different concentrations. It is unclear how the numerous odorant molecules and their possible mixtures are discriminated by relatively few olfactory receptors. Using an information theoretic model, we show that a receptor array is optimal for this task if it achieves two possibly conflicting goals: (i) Each receptor should respond to half of all odors and (ii) the response of different receptors should be uncorrelated when averaged over odors presented with natural statistics. We use these design principles to predict statistics of the affinities between receptors and odorant molecules for a broad class of odor statistics. We also show that optimal receptor arrays can be tuned to either resolve concentrations well or distinguish mixtures reliably. Finally, we use our results to predict properties of experimentally measured receptor arrays. Our work can thus be used to better understand natural olfaction, and it also suggests ways to improve artificial sensor arrays.

  2. Effects of wind waves on horizontal array performance in shallow-water conditions

    NASA Astrophysics Data System (ADS)

    Zavol'skii, N. A.; Malekhanov, A. I.; Raevskii, M. A.; Smirnov, A. V.

    2017-09-01

    We analyze the influence of statistical effects of the propagation of an acoustic signal excited by a tone source in a shallow-water channel with a rough sea surface on the efficiency of a horizontal phased array. As the array characteristics, we consider the angular function of the array response for a given direction to the source and the coefficient of amplification of the signal-to-noise ratio (array gain). Numerical simulation was conducted in to the winter hydrological conditions of the Barents Sea in a wide range of parameters determining the spatial signal coherence. The results show the main physical effects of the influence of wind waves on the array characteristics and make it possible to quantitatively predict the efficiency of a large horizontal array in realistic shallow-water channels.

  3. Analysis of an integrated 8-channel Tx/Rx body array for use as a body coil in 7-Tesla MRI

    NASA Astrophysics Data System (ADS)

    Orzada, Stephan; Bitz, Andreas K.; Johst, Sören; Gratz, Marcel; Völker, Maximilian N.; Kraff, Oliver; Abuelhaija, Ashraf; Fiedler, Thomas M.; Solbach, Klaus; Quick, Harald H.; Ladd, Mark E.

    2017-06-01

    Object In this work an 8-channel array integrated into the gap between the gradient coil and bore liner of a 7-Tesla whole-body magnet is presented that would allow a workflow closer to that of systems at lower magnetic fields that have a built-in body coil; this integrated coil is compared to a local 8-channel array built from identical elements placed directly on the patient. Materials and Methods SAR efficiency and the homogeneity of the right-rotating B1 field component (B_1^+) are investigated numerically and compared to the local array. Power efficiency measurements are performed in the MRI System. First in vivo gradient echo images are acquired with the integrated array. Results While the remote array shows a slightly better performance in terms of B_1^+ homogeneity, the power efficiency and the SAR efficiency are inferior to those of the local array: the transmit voltage has to be increased by a factor of 3.15 to achieve equal flip angles in a central axial slice. The g-factor calculations show a better parallel imaging g-factor for the local array. The field of view of the integrated array is larger than that of the local array. First in vivo images with the integrated array look subjectively promising. Conclusion Although some RF performance parameters of the integrated array are inferior to a tight-fitting local array, these disadvantages might be compensated by the use of amplifiers with higher power and the use of local receive arrays. In addition, the distant placement provides the potential to include more elements in the array design.

  4. Flat dielectric metasurface lens array for three dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  5. DTO 1118 - Damaged Spektr solar array

    NASA Image and Video Library

    1998-03-04

    S89-E-5190 (25 Jan 1998) --- This Electronic Still Camera (ESC) image shows the Russian Mir Space Station's damaged solar array panel. The solar array panel was damaged as a result of an impact with an unmanned Progress re-supply ship which collided with the Mir on June 25, 1997, causing the Spektr Module to depressurize. This ESC view was taken on January 25, 1998 at 16:56:30 GMT.

  6. A Flexible Base Electrode Array for Intraspinal Microstimulation

    PubMed Central

    Khaled, I.; Elmallah, S.; Cheng, C.; Moussa, W.A.; Mushahwar, V.K.; Elias, A.L.

    2013-01-01

    In this paper, we report the development of a flexible base array of penetrating electrodes which can be used to interface with the spinal cord. A customizable and feasible fabrication protocol is described. The flexible base arrays were fabricated and implanted into surrogate cords which were elongated by 12%. The resulting strains were optically measured across the cord and compared to those associated with two types of electrodes arrays (one without a base and one with a rigid base connecting the electrodes). The deformation behavior of cords implanted with the flexible base arrays resembled the behavior of cords implanted with individual microwires that were not connected through a base. The results of the strain test were used to validate a 2D finite element model. The validated model was used to assess the stresses induced by the electrodes of the 3 types of arrays on the cord, and to examine how various design parameters (thickness, base modulus, etc.) impact the mechanical behavior of the electrode array. Rigid base arrays induced higher stresses on the cord than the flexible base arrays which in turn imposed higher stresses than the individual microwire implants. The developed flexible base array showed improvement over the rigid base array; however, its stiffness needs to be further reduced to emulate the mechanical behavior of individual microwire arrays without a base. PMID:23744656

  7. Torsional Buckling Tests of a Simulated Solar Array

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1996-01-01

    Spacecraft solar arrays are typically large structures supported by long, thin deployable booms. As such, they may be particularly susceptible to abnormal structural behavior induced by mechanical and thermal loading. One example is the Hubble Space Telescope solar arrays which consist of two split tubes fit one inside the other called BiSTEMs. The original solar arrays on the Hubble Space Telescope were found to be severely twisted following deployment and later telemetry data showed the arrays were vibrating during daylight to night and night to daylight transition. The solar array twist however can force the BiSTEM booms to change in cross-section and cause tile solar arrays to react unpredictably to future loading. The solar arrays were redesigned to correct for tile vibration, however, upon redeployment they again twisted. To assess the influence of boom cross-sectional configuration, experiments were conducted on two types of booms, (1)booms with closed cross-sections, and (2) booms with open cross-sections. Both models were subjected to compressive loading and imposed tip deflections. An existing analytical model by Chung and Thornton was used to define the individual load ranges for each model solar array configuration. The load range for the model solar array using closed cross-section booms was 0-120 Newtons and 0-160 Newtons for the model solar array using open cross-section booms. The results indicate the model solar array with closed cross-section booms buckled only in flexure. However, the results of the experiment with open cross-section booms indicate the model solar array buckled only in torsion and with imposed tip deflections the cross section can degrade by rotation of the inner relative to the outer STEM. For tile Hubble Space Telescope solar arrays the results of these experiments indicate the twisting resulted from the initial mechanical loading of the open cross-section booms.

  8. Evaluation of solar cells and arrays for potential solar power satellite applications

    NASA Technical Reports Server (NTRS)

    Almgren, D. W.; Csigi, K.; Gaudet, A. D.

    1978-01-01

    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.

  9. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.

  10. Recent advances in theoretical and numerical studies of wire array Z-pinch in the IAPCM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ning, E-mail: ding-ning@iapcm.ac.cn; Zhang, Yang, E-mail: ding-ning@iapcm.ac.cn; Xiao, Delong, E-mail: ding-ning@iapcm.ac.cn

    2014-12-15

    Fast Z-pinch has produced the most powerful X-ray radiation source in laboratory and also shows the possibility to drive inertial confinement fusion (ICF). Recent advances in wire-array Z-pinch researches at the Institute of Applied Physics and Computational Mathematics are presented in this paper. A typical wire array Z-pinch process has three phases: wire plasma formation and ablation, implosion and the MRT instability development, stagnation and radiation. A mass injection model with azimuthal modulation coefficient is used to describe the wire initiation, and the dynamics of ablated plasmas of wire-array Z-pinches in (r, θ) geometry is numerically studied. In the implosionmore » phase, a two-dimensional(r, z) three temperature radiation MHD code MARED has been developed to investigate the development of the Magneto-Rayleigh-Taylor(MRT) instability. We also analyze the implosion modes of nested wire-array and find that the inner wire-array is hardly affected before the impaction of the outer wire-array. While the plasma accelerated to high speed in the implosion stage stagnates on the axis, abundant x-ray radiation is produced. The energy spectrum of the radiation and the production mechanism are investigated. The computational x-ray pulse shows a reasonable agreement with the experimental result. We also suggest that using alloyed wire-arrays can increase multi-keV K-shell yield by decreasing the opacity of K-shell lines. In addition, we use a detailed circuit model to study the energy coupling between the generator and the Z-pinch implosion. Recently, we are concentrating on the problems of Z-pinch driven ICF, such as dynamic hohlraum and capsule implosions. Our numerical investigations on the interaction of wire-array Z-pinches on foam convertors show qualitative agreements with experimental results on the “Qiangguang I” facility. An integrated two-dimensional simulation of dynamic hohlraum driven capsule implosion provides us the physical insights of wire-array plasma acceleration, shock generation and production, hohlraum formation, radiation ablation and fuel compression.« less

  11. Anomalous light trapping enhancement in a two-dimensional gold nanobowl array with an amorphous silicon coating.

    PubMed

    Yang, Liu; Kou, Pengfei; He, Nan; Dai, Hao; He, Sailing

    2017-06-26

    A facile polymethyl methacrylate-assisted turnover-transfer approach is developed to fabricate uniform hexagonal gold nanobowl arrays. The bare array shows inferior light trapping ability compared to its inverted counterpart (a gold nanospherical shell array). Surprisingly, after being coated with a 60-nm thick amorphous silicon film, an anomalous light trapping enhancement is observed with a significantly enhanced average absorption (82%), while for the inverted nanostructure, the light trapping becomes greatly weakened with an average absorption of only 66%. Systematic experimental and theoretical results show that the main reason for the opposite light trapping behaviors lies in the top amorphous silicon coating, which plays an important role in mediating the excitation of surface plasmon polaritons and the electric field distributions in both nanostructures.

  12. Engineering sciences area and module performance and failure analysis area

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Runkle, L. D.

    1982-01-01

    Photovoltaic-array/power-conditioner interface studies are updated. An experiment conducted to evaluate different operating-point strategies, such as constant voltage and pilot cells, and to determine array energy losses when the array is operated off the maximum power points is described. Initial results over a test period of three and a half weeks showed a 2% energy loss when the array is operated at a fixed voltage. Degraded-array studies conducted at NE RES that used a range of simulated common types of degraded I-V curves are reviewed. The instrumentation installed at the JPL field-test site to obtain the irradiance data was described. Experiments using an optical filter to adjust the spectral irradiance of the large-area pulsed solar simulator (LAPSS) to AM1.5 are described. Residential-array research activity is reviewed. Voltage isolation test results are described. Experiments performed on one type of module to determine the relationship between leakage current and temperature are reviewed. An encapsulated-cell testing approach is explained. The test program, data reduction methods, and initial results of long-duration module testing are described.

  13. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

    PubMed

    Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2012-06-13

    Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.

  14. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  15. Measurement of Phased Array Point Spread Functions for Use with Beamforming

    NASA Technical Reports Server (NTRS)

    Bahr, Chris; Zawodny, Nikolas S.; Bertolucci, Brandon; Woolwine, Kyle; Liu, Fei; Li, Juan; Sheplak, Mark; Cattafesta, Louis

    2011-01-01

    Microphone arrays can be used to localize and estimate the strengths of acoustic sources present in a region of interest. However, the array measurement of a region, or beam map, is not an accurate representation of the acoustic field in that region. The true acoustic field is convolved with the array s sampling response, or point spread function (PSF). Many techniques exist to remove the PSF's effect on the beam map via deconvolution. Currently these methods use a theoretical estimate of the array point spread function and perhaps account for installation offsets via determination of the microphone locations. This methodology fails to account for any reflections or scattering in the measurement setup and still requires both microphone magnitude and phase calibration, as well as a separate shear layer correction in an open-jet facility. The research presented seeks to investigate direct measurement of the array's PSF using a non-intrusive acoustic point source generated by a pulsed laser system. Experimental PSFs of the array are computed for different conditions to evaluate features such as shift-invariance, shear layers and model presence. Results show that experimental measurements trend with theory with regard to source offset. The source shows expected behavior due to shear layer refraction when observed in a flow, and application of a measured PSF to NACA 0012 aeroacoustic trailing-edge noise data shows a promising alternative to a classic shear layer correction method.

  16. Channel length scaling behavior in transistors based on individual versus dense arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Brady, Gerald J.; Jinkins, Katherine R.; Arnold, Michael S.

    2017-09-01

    Recent advances in the solution-phase sorting and assembly of semiconducting single-walled carbon nanotubes (SWCNTs) have enabled significant gains in the performance of field-effect transistors (FETs) constructed from dense arrays of aligned SWCNTs. However, the channel length (LCH) downscaling behaviors of these arrays, which contain some organizational disorder (i.e., rotational misalignment and non-uniform pitch), have not yet been studied in detail below LCH of 100 nm. This study compares the behaviors of individualized SWCNTs with arrays of aligned, solution-cast SWCNTs in FETs with LCH ranging from 30 to 240 nm. The on-state conductance of both individual and array SWCNTs rises with decreasing LCH. Nearly ballistic transport is observed for LCH < 40 nm in both cases, reaching a conductance of 0.82 Go per SWCNT in arrays, where Go = 2e2/h is the quantum conductance. In the off-state, the off-current and subthreshold swing of the individual SWCNTs remain nearly invariant with decreasing LCH whereas array SWCNT FETs suffer from increasing off-state current and deteriorating subthreshold swing for LCH below 100 nm. We analyze array disorder using atomic force microscopy, which shows that crossing SWCNTs that arise from misoriented alignment raise SWCNTs off of the substrate for large portions of the channel when LCH is small. Electrostatics modeling analysis indicates that these raised SWCNTs are a likely contributor to the deteriorating off-current and subthreshold characteristics of arrays. These results demonstrate that improved inter-SWCNT pitch uniformity and alignment with minimal inter-SWCNT interactions will be necessary in order for solution processed SWCNT arrays to reach subthreshold performance on par with isolated SWCNTs. These results are also promising because they show that arrays of solution-processed SWCNTs can nearly reach ballistic conductance in the on-state despite imperfections in pitch and alignment.

  17. Icon arrays help younger children's proportional reasoning.

    PubMed

    Ruggeri, Azzurra; Vagharchakian, Laurianne; Xu, Fei

    2018-06-01

    We investigated the effects of two context variables, presentation format (icon arrays or numerical frequencies) and time limitation (limited or unlimited time), on the proportional reasoning abilities of children aged 7 and 10 years, as well as adults. Participants had to select, between two sets of tokens, the one that offered the highest likelihood of drawing a gold token, that is, the set of elements with the greater proportion of gold tokens. Results show that participants performed better in the unlimited time condition. Moreover, besides a general developmental improvement in accuracy, our results show that younger children performed better when proportions were presented as icon arrays, whereas older children and adults were similarly accurate in the two presentation format conditions. Statement of contribution What is already known on this subject? There is a developmental improvement in proportional reasoning accuracy. Icon arrays facilitate reasoning in adults with low numeracy. What does this study add? Participants were more accurate when they were given more time to make the proportional judgement. Younger children's proportional reasoning was more accurate when they were presented with icon arrays. Proportional reasoning abilities correlate with working memory, approximate number system, and subitizing skills. © 2018 The British Psychological Society.

  18. Optical properties of electrically connected plasmonic nanoantenna dimer arrays

    NASA Astrophysics Data System (ADS)

    Zimmerman, Darin T.; Borst, Benjamin D.; Carrick, Cassandra J.; Lent, Joseph M.; Wambold, Raymond A.; Weisel, Gary J.; Willis, Brian G.

    2018-02-01

    We fabricate electrically connected gold nanoantenna arrays of homodimers and heterodimers on silica substrates and present a systematic study of their optical properties. Electrically connected arrays of plasmonic nanoantennas make possible the realization of novel photonic devices, including optical sensors and rectifiers. Although the plasmonic response of unconnected arrays has been studied extensively, the present study shows that the inclusion of nanowire connections modifies the device response significantly. After presenting experimental measurements of optical extinction for unconnected dimer arrays, we compare these to measurements of dimers that are interconnected by gold nanowire "busbars." The connected devices show the familiar dipole response associated with the unconnected dimers but also show a second localized surface plasmon resonance (LSPR) that we refer to as the "coupled-busbar mode." Our experimental study also demonstrates that the placement of the nanowire along the antenna modifies the LSPR. Using finite-difference time-domain simulations, we confirm the experimental results and investigate the variation of dimer gap and spacing. Changing the dimer gap in connected devices has a significantly smaller effect on the dipole response than it does in unconnected devices. On the other hand, both LSPR modes respond strongly to changing the spacing between devices in the direction along the interconnecting wires. We also give results for the variation of E-field strength in the dimer gap, which will be important for any working sensor or rectenna device.

  19. Reliability analysis method of a solar array by using fault tree analysis and fuzzy reasoning Petri net

    NASA Astrophysics Data System (ADS)

    Wu, Jianing; Yan, Shaoze; Xie, Liyang

    2011-12-01

    To address the impact of solar array anomalies, it is important to perform analysis of the solar array reliability. This paper establishes the fault tree analysis (FTA) and fuzzy reasoning Petri net (FRPN) models of a solar array mechanical system and analyzes reliability to find mechanisms of the solar array fault. The index final truth degree (FTD) and cosine matching function (CMF) are employed to resolve the issue of how to evaluate the importance and influence of different faults. So an improvement reliability analysis method is developed by means of the sorting of FTD and CMF. An example is analyzed using the proposed method. The analysis results show that harsh thermal environment and impact caused by particles in space are the most vital causes of the solar array fault. Furthermore, other fault modes and the corresponding improvement methods are discussed. The results reported in this paper could be useful for the spacecraft designers, particularly, in the process of redesigning the solar array and scheduling its reliability growth plan.

  20. A micro-machined source transducer for a parametric array in air.

    PubMed

    Lee, Haksue; Kang, Daesil; Moon, Wonkyu

    2009-04-01

    Parametric array applications in air, such as highly directional parametric loudspeaker systems, usually rely on large radiators to generate the high-intensity primary beams required for nonlinear interactions. However, a conventional transducer, as a primary wave projector, requires a great deal of electrical power because its electroacoustic efficiency is very low due to the large characteristic mechanical impedance in air. The feasibility of a micro-machined ultrasonic transducer as an efficient finite-amplitude wave projector was studied. A piezoelectric micro-machined ultrasonic transducer array consisting of lead zirconate titanate uni-morph elements was designed and fabricated for this purpose. Theoretical and experimental evaluations showed that a micro-machined ultrasonic transducer array can be used as an efficient source transducer for a parametric array in air. The beam patterns and propagation curves of the difference frequency wave and the primary wave generated by the micro-machined ultrasonic transducer array were measured. Although the theoretical results were based on ideal parametric array models, the theoretical data explained the experimental results reasonably well. These experiments demonstrated the potential of micro-machined primary wave projector.

  1. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    NASA Astrophysics Data System (ADS)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-12-01

    In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn2O3, Co3O4 and Cr2O3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  2. Site Partitioning for Redundant Arrays of Distributed Disks

    NASA Technical Reports Server (NTRS)

    Mourad, Antoine N.; Fuchs, W. Kent; Saab, Daniel G.

    1996-01-01

    Redundant arrays of distributed disks (RADD) can be used in a distributed computing system or database system to provide recovery in the presence of disk crashes and temporary and permanent failures of single sites. In this paper, we look at the problem of partitioning the sites of a distributed storage system into redundant arrays in such a way that the communication costs for maintaining the parity information are minimized. We show that the partitioning problem is NP-hard. We then propose and evaluate several heuristic algorithms for finding approximate solutions. Simulation results show that significant reduction in remote parity update costs can be achieved by optimizing the site partitioning scheme.

  3. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics.

    PubMed

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-10-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.

  4. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    PubMed Central

    Wang, Gongming; Li, Dehui; Cheng, Hung-Chieh; Li, Yongjia; Chen, Chih-Yen; Yin, Anxiang; Zhao, Zipeng; Lin, Zhaoyang; Wu, Hao; He, Qiyuan; Ding, Mengning; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2015-01-01

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems. PMID:26601297

  5. Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics

    DOE PAGES

    Wang, Gongming; Li, Dehui; Cheng, Hung -Chieh; ...

    2015-10-02

    Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays because of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that themore » resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. Furthermore, the ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.« less

  6. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    PubMed

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Two-dimensional photonic crystal arrays for polymer:fullerene solar cells.

    PubMed

    Nam, Sungho; Han, Jiyoung; Do, Young Rag; Kim, Hwajeong; Yim, Sanggyu; Kim, Youngkyoo

    2011-11-18

    We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (J(SC)) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower J(SC) value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.

  8. Nonlinear Blind Compensation for Array Signal Processing Application

    PubMed Central

    Ma, Hong; Jin, Jiang; Zhang, Hua

    2018-01-01

    Recently, nonlinear blind compensation technique has attracted growing attention in array signal processing application. However, due to the nonlinear distortion stemming from array receiver which consists of multi-channel radio frequency (RF) front-ends, it is too difficult to estimate the parameters of array signal accurately. A novel nonlinear blind compensation algorithm aims at the nonlinearity mitigation of array receiver and its spurious-free dynamic range (SFDR) improvement, which will be more precise to estimate the parameters of target signals such as their two-dimensional directions of arrival (2-D DOAs). Herein, the suggested method is designed as follows: the nonlinear model parameters of any channel of RF front-end are extracted to synchronously compensate the nonlinear distortion of the entire receiver. Furthermore, a verification experiment on the array signal from a uniform circular array (UCA) is adopted to testify the validity of our approach. The real-world experimental results show that the SFDR of the receiver is enhanced, leading to a significant improvement of the 2-D DOAs estimation performance for weak target signals. And these results demonstrate that our nonlinear blind compensation algorithm is effective to estimate the parameters of weak array signal in concomitance with strong jammers. PMID:29690571

  9. Magnesium-dependent association and folding of oligonucleosomes reconstituted with ubiquitinated H2A.

    PubMed

    Jason, L J; Moore, S C; Ausio, J; Lindsey, G

    2001-05-04

    The MgCl2-induced folding of defined 12-mer nucleosomal arrays, in which ubiquitinated histone H2A (uH2A) replaced H2A, was analyzed by quantitative agarose gel electrophoresis and analytical centrifugation. Both types of analysis showed that uH2A arrays attained a degree of compaction similar to that of control arrays in 2 mM MgCl2. These results indicate that attachment of ubiquitin to H2A has little effect on the ability of nucleosomal arrays to form higher order folded structures in the ionic conditions tested. In contrast, uH2A arrays were found to oligomerize at lower MgCl2 concentrations than control nucleosomal arrays, suggesting that histone ubiquitination may play a role in nucleosomal fiber association.

  10. Research on illumination uniformity of high-power LED array light source

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolong; Wei, Xueye; Zhang, Ou; Zhang, Xinwei

    2018-06-01

    Uniform illumination is one of the most important problem that must be solved in the application of high-power LED array. A numerical optimization algorithm, is applied to obtain the best LED array typesetting so that the light intensity of the target surface is evenly distributed. An evaluation function is set up through the standard deviation of the illuminance function, then the particle swarm optimization algorithm is utilized to optimize different arrays. Furthermore, the light intensity distribution is obtained by optical ray tracing method. Finally, a hybrid array is designed and the optical ray tracing method is applied to simulate the array. The simulation results, which is consistent with the traditional theoretical calculation, show that the algorithm introduced in this paper is reasonable and effective.

  11. Energy spectrum and arrival direction of primary cosmic rays of energy above 10 to the 18th power eV

    NASA Technical Reports Server (NTRS)

    Teshima, M.; Nagano, M.; Hayashida, N.; He, C. X.; Honda, M.; Ishikawa, F.; Kamata, K.; Matsubara, Y.; Mori, M.; Ohoka, H.

    1985-01-01

    The observation of ultra high energy cosmic rays with 20 sq km array has started at Akeno. The preliminary results on energy spectrum and arrival direction of energies above 10 to the 18th eV are prsented with data accumulated for four years with the 1 sq km array, for two years with the 4 sq km array and for a half year with the new array. The energy spectrum is consistent with the previous experiments showing the flattening above 10 to the 18.5 eV.

  12. Graded bit patterned magnetic arrays fabricated via angled low-energy He ion irradiation.

    PubMed

    Chang, L V; Nasruallah, A; Ruchhoeft, P; Khizroev, S; Litvinov, D

    2012-07-11

    A bit patterned magnetic array based on Co/Pd magnetic multilayers with a binary perpendicular magnetic anisotropy distribution was fabricated. The binary anisotropy distribution was attained through angled helium ion irradiation of a bit edge using hydrogen silsesquioxane (HSQ) resist as an ion stopping layer to protect the rest of the bit. The viability of this technique was explored numerically and evaluated through magnetic measurements of the prepared bit patterned magnetic array. The resulting graded bit patterned magnetic array showed a 35% reduction in coercivity and a 9% narrowing of the standard deviation of the switching field.

  13. Conditions for synchronization in Josephson-junction arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernikov, A.A.; Schmidt, G.

    An effective perturbation theoretical method has been developed to study the dynamics of Josephson Junction series arrays. It is shown that the inclusion of Junction capacitances, often ignored, has a significant impact on synchronization. Comparison of analytic with computational results over a wide range of parameters shows excellent agreement.

  14. Mechanical response of spiral interconnect arrays for highly stretchable electronics

    NASA Astrophysics Data System (ADS)

    Qaiser, N.; Khan, S. M.; Nour, M.; Rehman, M. U.; Rojas, J. P.; Hussain, M. M.

    2017-11-01

    A spiral interconnect array is a commonly used architecture for stretchable electronics, which accommodates large deformations during stretching. Here, we show the effect of different geometrical morphologies on the deformation behavior of the spiral island network. We use numerical modeling to calculate the stresses and strains in the spiral interconnects under the prescribed displacement of 1000 μm. Our result shows that spiral arm elongation depends on the angular position of that particular spiral in the array. We also introduce the concept of a unit-cell, which fairly replicates the deformation mechanism for full complex hexagon, diamond, and square shaped arrays. The spiral interconnects which are axially connected between displaced and fixed islands attain higher stretchability and thus experience the maximum deformations. We perform tensile testing of 3D printed replica and find that experimental observations corroborate with theoretical study.

  15. Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays.

    PubMed

    Visser, D; Choudhury, B Dev; Krasovska, I; Anand, S

    2017-05-29

    Si nanopillar (NP) arrays are investigated as refractive index sensors in the visible/NIR wavelength range, suitable for Si photodetector responsivity. The NP arrays are fabricated by nanoimprint lithography and dry etching, and coated with thin dielectric layers. The reflectivity peaks obtained by finite-difference time-domain (FDTD) simulations show a linear shift with coating layer thickness. At 730 nm wavelength, sensitivities of ~0.3 and ~0.9 nm/nm of SiO 2 and Si 3 N 4 , respectively, are obtained; and the optical thicknesses of the deposited surface coatings are determined by comparing the experimental and simulated data. The results show that NP arrays can be used for sensing surface bio-layers. The proposed method could be useful to determine the optical thickness of surface coatings, conformal and non-conformal, in NP-based optical devices.

  16. Process-morphology scaling relations quantify self-organization in capillary densified nanofiber arrays.

    PubMed

    Kaiser, Ashley L; Stein, Itai Y; Cui, Kehang; Wardle, Brian L

    2018-02-07

    Capillary-mediated densification is an inexpensive and versatile approach to tune the application-specific properties and packing morphology of bulk nanofiber (NF) arrays, such as aligned carbon nanotubes. While NF length governs elasto-capillary self-assembly, the geometry of cellular patterns formed by capillary densified NFs cannot be precisely predicted by existing theories. This originates from the recently quantified orders of magnitude lower than expected NF array effective axial elastic modulus (E), and here we show via parametric experimentation and modeling that E determines the width, area, and wall thickness of the resulting cellular pattern. Both experiments and models show that further tuning of the cellular pattern is possible by altering the NF-substrate adhesion strength, which could enable the broad use of this facile approach to predictably pattern NF arrays for high value applications.

  17. Integrated Parallel Reception, Excitation, and Shimming (iPRES)

    PubMed Central

    Han, Hui; Song, Allen W.; Truong, Trong-Kha

    2013-01-01

    Purpose To develop a new concept for a hardware platform that enables integrated parallel reception, excitation, and shimming (iPRES). Theory This concept uses a single coil array rather than separate arrays for parallel excitation/reception and B0 shimming. It relies on a novel design that allows a radiofrequency current (for excitation/reception) and a direct current (for B0 shimming) to coexist independently in the same coil. Methods Proof-of-concept B0 shimming experiments were performed with a two-coil array in a phantom, whereas B0 shimming simulations were performed with a 48-coil array in the human brain. Results Our experiments show that individually optimized direct currents applied in each coil can reduce the B0 root-mean-square error by 62–81% and minimize distortions in echo-planar images. The simulations show that dynamic shimming with the 48-coil iPRES array can reduce the B0 root-mean-square error in the prefrontal and temporal regions by 66–79% as compared to static 2nd-order spherical harmonic shimming and by 12–23% as compared to dynamic shimming with a 48-coil conventional shim array. Conclusion Our results demonstrate the feasibility of the iPRES concept to perform parallel excitation/reception and B0 shimming with a unified coil system as well as its promise for in vivo applications. PMID:23629974

  18. A High-Sensitivity Flexible Eddy Current Array Sensor for Crack Monitoring of Welded Structures under Varying Environment.

    PubMed

    Chen, Tao; He, Yuting; Du, Jinqiang

    2018-06-01

    This paper develops a high-sensitivity flexible eddy current array (HS-FECA) sensor for crack monitoring of welded structures under varying environment. Firstly, effects of stress, temperature and crack on output signals of the traditional flexible eddy current array (FECA) sensor were investigated by experiments that show both stress and temperature have great influences on the crack monitoring performance of the sensor. A 3-D finite element model was established using Comsol AC/DC module to analyze the perturbation effects of crack on eddy currents and output signals of the sensor, which showed perturbation effect of cracks on eddy currents is reduced by the current loop when crack propagates. Then, the HS-FECA sensor was proposed to boost the sensitivity to cracks. Simulation results show that perturbation effect of cracks on eddy currents excited by the HS-FECA sensor gradually grows stronger when the crack propagates, resulting in much higher sensitivity to cracks. Experimental result further shows that the sensitivity of the new sensor is at least 19 times that of the original one. In addition, both stress and temperature variations have little effect on signals of the new sensor.

  19. Sensors based on visible collective resonances of plasmonic lattices

    NASA Astrophysics Data System (ADS)

    Sadeghi, Seyed M.; Wing, Waylin J.; Campbell, Quinn

    2016-09-01

    We show arrays of large gold nanodisks on glass substrates can support strong optical features with narrow spectral widths associated with their collective plasmonic-lattice modes. Our results show that these modes can offer significant sensitivity to the refractive index of the environment, far more than those of individual nanodisks. We show the visible collective modes supported by such arrays can distinctively detect a monolayer of biotin with high resolution. We use donor (CdSe/ZnS) and acceptor (CuInS/ZnS) quantum dots to investigate the field properties of these arrays after deposition of a thick layer of a silicon. We demonstrate a distinct increase of emission of CuInS/ZnS quantum dots, indicating the possibility of enhancement of energy transfer between these two types of quantum dots.

  20. The performance of Geiger mode avalanche photo-diodes in free space laser communication links

    NASA Astrophysics Data System (ADS)

    Farrell, Thomas C.

    2018-05-01

    Geiger mode avalanche photo-diode (APD) arrays, when used as detectors in laser communication (lasercom) receivers, promise better performance at lower signal levels than APDs operated in the linear mode. In this paper, we describe the basic operation of the Geiger mode APD array as a lasercom detector, concentrating on aspects relevant to the link design engineer (rather than, for example, describing the details of the physics of the basic device operation itself). Equations are developed that describe the effects of defocus and hold-off time on the relation between the number of photons detected by the array and the output of photo-electron counts. We show how to incorporate these equations into a link budget. The resulting predictions are validated by comparison against simulation results. Finally, we compare the performance of linear mode APD based receivers and Geiger mode APD array based receivers. Results show the Geiger mode receivers yield better performance, in terms of probability of bit error, at lower signal levels, except on links where there is an exceptionally large amount of background noise. Under those conditions, not surprisingly, the hold-off time degrades performance.

  1. The Effects of Linear Microphone Array Changes on Computed Sound Exposure Level Footprints

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Wilson, Mark R.

    1997-01-01

    Airport land planning commissions often are faced with determining how much area around an airport is affected by the sound exposure levels (SELS) associated with helicopter operations. This paper presents a study of the effects changing the size and composition of a microphone array has on the computed SEL contour (ground footprint) areas used by such commissions. Descent flight acoustic data measured by a fifteen microphone array were reprocessed for five different combinations of microphones within this array. This resulted in data for six different arrays for which SEL contours were computed. The fifteen microphone array was defined as the 'baseline' array since it contained the greatest amount of data. The computations used a newly developed technique, the Acoustic Re-propagation Technique (ART), which uses parts of the NASA noise prediction program ROTONET. After the areas of the SEL contours were calculated the differences between the areas were determined. The area differences for the six arrays are presented that show a five and a three microphone array (with spacing typical of that required by the FAA FAR Part 36 noise certification procedure) compare well with the fifteen microphone array. All data were obtained from a database resulting from a joint project conducted by NASA and U.S. Army researchers at Langley and Ames Research Centers. A brief description of the joint project test design, microphone array set-up, and data reduction methodology associated with the database are discussed.

  2. CRSP, numerical results for an electrical resistivity array to detect underground cavities

    NASA Astrophysics Data System (ADS)

    Amini, Amin; Ramazi, Hamidreza

    2017-03-01

    This paper is devoted to the application of the Combined Resistivity Sounding and Profiling electrode configuration (CRSP) to detect underground cavities. Electrical resistivity surveying is among the most favorite geophysical methods due to its nondestructive and economical properties in a wide range of geosciences. Several types of the electrode arrays are applied to detect different certain objectives. In one hand, the electrode array plays an important role in determination of output resolution and depth of investigations in all resistivity surveys. On the other hand, they have their own merits and demerits in terms of depth of investigations, signal strength, and sensitivity to resistivity variations. In this article several synthetic models, simulating different conditions of cavity occurrence, were used to examine the responses of some conventional electrode arrays and also CRSP array. The results showed that CRSP electrode configuration can detect the desired objectives with a higher resolution rather than some other types of arrays. Also a field case study was discussed in which electrical resistivity approach was conducted in Abshenasan expressway (Tehran, Iran) U-turn bridge site for detecting potential cavities and/or filling loose materials. The results led to detect an aqueduct tunnel passing beneath the study area.

  3. Equivalent circuit-based analysis of CMUT cell dynamics in arrays.

    PubMed

    Oguz, H K; Atalar, Abdullah; Köymen, Hayrettin

    2013-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model.

  4. Ferromagnetic resonance response of electron-beam patterned arrays of ferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Jung, Sukkoo; Watkins, Byron; Feller, Jeffrey; Ketterson, John; Chandrasekhar, Venkat

    2001-03-01

    We report on the fabrication and the dynamic magnetic properties of periodic permalloy dot arrays. Electron-beam lithography and e-gun evaporation have been used to make the arrays with the aspect ratio of 2 (dot diameter : 40 nm, height : 80 nm) and periods of 100 - 200 nm. The magnetic properties of the arrays and their interactions have been investigated by ferromagnetic resonance (FMR), magnetic force microscopy (MFM), and SQUID magnetometry. The measured FMR data show that the position and magnitude of resonant absorption peaks strongly depend on the angle between magnetic field and the lattice structure. The results of dot arrays with various kinds of structural parameters will be presented. Supported by Army Research Office, DAAD19-99-1-0334/P001

  5. A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners.

    PubMed

    Niu, Weifen; Kong, Hao; Wang, He; Zhang, Yantu; Zhang, Sichun; Zhang, Xinrong

    2012-01-01

    In this paper, we report a chemiluminescence (CL) sensor array based on catalytic nanomaterials for the discrimination of ten sweeteners, including five natural sugars and five artificial sweeteners. The CL response patterns ("fingerprints") can be obtained for a given compound on the nanomaterial array and then identified through linear discriminant analysis (LDA). Moreover, each pure sweetener was quantified based on the emission intensities of selected sensor elements. The linear ranges for these sweeteners lie within 0.05-100 mM, but vary with the type of sweetener. The applicability of this array to real-life samples was demonstrated by applying it to various beverages, and the results showed that the sensor array possesses excellent discrimination power and reversibility.

  6. Design of a patterned nanostructure array using a nanosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Yoshida, Yutaka; Ohnishi, Ko; Matsuo, Yasutaka; Watanabe, Seiichi

    2018-04-01

    For design the patterned nanostructure array (PNSA) on material surface using a nanosecond pulsed laser, we investigated the influence of phase shift between scattered lights on silicon (Si) substrate using 30-nm-wide gold lines (GLs) spacings. At a spacing of 5,871 nm, ten nanodot (ND) arrays were formed at intervals of 533 nm by nanosecond pulsed laser. The results show that the formation of the PNSA was affected by the resonance of scattered light. We conclude that ND arrays were formed with a spacing of Λ = nλ. And we have designed PNSA comprising two ND arrays on the substrate. The PNSA with dimensions of 1,600 nm × 1,600 nm was prepared using GLs.

  7. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

  8. Broadband acoustic phased array with subwavelength active tube array

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Yan; Yang, Zhang-Zhao; Zhu, Yi-Fan; Zou, Xin-Ye; Cheng, Jian-Chun

    2018-02-01

    Acoustic metasurfaces provide a way to manipulate wavefronts at anomalous reflection or refraction angles through subwavelength structures. Here, based on the generalized Snell's refraction law for acoustic metasurfaces and the classical acoustic phased array (PA) theory, a broadband acoustic PA with a subwavelength active tube array has been proposed to form a special acoustic beam and to determine the directivity characteristics of the acoustic source. Theoretical analysis shows that the dispersionless wavefront manipulation can be realized by the gradient model of the active tube array, and a wide working frequency band can be obtained in practical applications from the simulated and experimental results. The numerical results of forming a special acoustic beam and establishing an acoustic focus model with an arbitrary focal position are consistent with the theoretical predictions. The experimental results agree well with the simulated results in the model of forming the acoustic beam of 45 ° . By combining acoustic metamaterials and conventional acoustic PA, the model of the active tube array paves a way to design a composite acoustic PA with high radiation efficiency and system robustness without the need for any complex circuit control system. This design concept is expected to be used in the design of ultrasonic therapy devices and high-efficiency transducers.

  9. InGaAs focal plane arrays for low-light-level SWIR imaging

    NASA Astrophysics Data System (ADS)

    MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Jim; Patel, Falgun; Follman, David; Manzo, Juan; Getty, Jonathan

    2011-06-01

    Aerius Photonics will present their latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. Aerius will present imaging in both 1280x1024 and 640x512 formats. Aerius will present characterization of the FPA including dark current measurements. Aerius will also show the results of development of SWIR FPAs for high temperaures, including imagery and dark current data. Finally, Aerius will show results of using the SWIR camera with Aerius' SWIR illuminators using VCSEL technology.

  10. Multi-Element CZT Array for Nuclear Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Kwak, S.-W.; Lee, A.-R.; Shin, J.-K.; Park, U.-R.; Park, S.; Kim, Y.; Chung, H.

    2016-12-01

    Due to its electronic properties, a cadmium zinc telluride (CZT) detector has been used as a hand-held portable nuclear measurement instrument. However, a CZT detector has low detection efficiency because of a limitation of its single crystal growth. To address its low efficiency, we have constructed a portable four-CZT array based gamma-ray spectrometer consisting of a CZT array, electronics for signal processing and software. Its performance has been characterized in terms of energy resolution and detection efficiency using radioactive sources and nuclear materials. Experimental results showed that the detection efficiency of the four-CZT array based gamma-ray spectrometer was much higher than that of a single CZT detector in the array. The FWHMs of the CZT array were 9, 18, and 21 keV at 185.7, 662, and 1,332 keV, respectively. Some gamma-rays in a range of 100 keV to 200 keV were not clear in a single crystal detector while those from the CZT array system were observed to be clear. The energy resolution of the CZT array system was only slightely worse than those of the single CZT detectors. By combining several single crystals and summing signals from each single detector at a digital electronic circuit, the detection efficiency of a CZT array system increased without degradation of its energy resolution. The technique outlined in this paper shows a very promising method for designing a CZT-based gamma-ray spectroscopy that overcomes the fundamental limitations of a small volume CZT detector.

  11. Development of transducer arrays for ultrasound-computer tomography

    NASA Astrophysics Data System (ADS)

    Stotzka, Rainer; Gobel, Georg; Schlote-Holubek, Klaus

    2003-05-01

    Ultrasound computer-tomography (USCT) is a novel ultrasound imaging method capable of producing volume images with both high spatial and temporal resolution. Several thousand ultrasound transducers are arranged in a cylindrical array around a tank containing the object to be examined coupled by water. Every single transducer is small enough to emit an almost spherical sound-wave. While one transducer is transmitting, all others receive simultaneously. Our experimental setup, using only a few transducers simulating a ring-shaped geometry, showed even nylon threads (0.1 mm) with an image quality superior to clinical in-use ultrasound scanners. In order to build a complete circular array several thousand transducers, with cylindrical sound field characteristics, are needed. Since such transducer arrays are hardly available and expensive, we developed inexpensive transducer arrays consisting of 8 elements. Each array is based on a plate of lead titanate zirconate ceramics (PZT) sawn into 8 elements of 0.3 mm width, 3.8 mm height and 0.5 mm pitch. Each element has a mean frequency of 3.8 MHz and can be triggered separately. The main challenge was the development of production steps with reproducible results. Our transducer arrays show only small variances in the sound field characteristics which are strongly required for ultrasound tomography.

  12. Chronic In Vivo Stability Assessment of Carbon Fiber Microelectrode Arrays

    PubMed Central

    Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.

    2016-01-01

    Objective Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks. PMID:27705958

  13. Chronic in vivo stability assessment of carbon fiber microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Patel, Paras R.; Zhang, Huanan; Robbins, Matthew T.; Nofar, Justin B.; Marshall, Shaun P.; Kobylarek, Michael J.; Kozai, Takashi D. Y.; Kotov, Nicholas A.; Chestek, Cynthia A.

    2016-12-01

    Objective. Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Approach. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Main results. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. Significance. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.

  14. Investigation of multichannel phased array performance for fetal MR imaging on 1.5T clinical MR system

    PubMed Central

    Li, Ye; Pang, Yong; Vigneron, Daniel; Glenn, Orit; Xu, Duan; Zhang, Xiaoliang

    2011-01-01

    Fetal MRI on 1.5T clinical scanner has been increasingly becoming a powerful imaging tool for studying fetal brain abnormalities in vivo. Due to limited availability of dedicated fetal phased arrays, commercial torso or cardiac phased arrays are routinely used for fetal scans, which are unable to provide optimized SNR and parallel imaging performance with a small number coil elements, and insufficient coverage and filling factor. This poses a demand for the investigation and development of dedicated and efficient radiofrequency (RF) hardware to improve fetal imaging. In this work, an investigational approach to simulate the performance of multichannel flexible phased arrays is proposed to find a better solution to fetal MR imaging. A 32 channel fetal array is presented to increase coil sensitivity, coverage and parallel imaging performance. The electromagnetic field distribution of each element of the fetal array is numerically simulated by using finite-difference time-domain (FDTD) method. The array performance, including B1 coverage, parallel reconstructed images and artifact power, is then theoretically calculated and compared with the torso array. Study results show that the proposed array is capable of increasing B1 field strength as well as sensitivity homogeneity in the entire area of uterus. This would ensure high quality imaging regardless of the location of the fetus in the uterus. In addition, the paralleling imaging performance of the proposed fetal array is validated by using artifact power comparison with torso array. These results demonstrate the feasibility of the 32 channel flexible array for fetal MR imaging at 1.5T. PMID:22408747

  15. International Space Station 2A Array Modal Analysis

    NASA Technical Reports Server (NTRS)

    Laible, Michael; Fitzpatrick, Kristin; Grygier, Michael

    2012-01-01

    On December 9th 2009, the International Space Station (ISS) 2A solar array mast experienced prolonged longeron shadowing during a Soyuz undocking. Analytical reconstruction of induced thermal and dynamic structural loads showed an exceedance of the mast buckling limit. Possible structural damage to the solar array mast could have occurred during this event. A Low fidelity video survey of the 2A mast showed no obvious damage of the mast longerons or battens. The decision was made to conduct an on-orbit dynamic test of the 2A array on December 18th, 2009. The test included thruster pluming on the array while photogrammetry data was recorded. The test was similar to other Dedicated Thruster Firings (DTFs) that were performed to measure structural frequency and damping of a solar array. Results of the DTF indicated lower frequency mast modes than model predictions, thus leading to speculation of mast damage. A detailed nonlinear analysis was performed on the 2A array model to assess possible solutions to modal differences. The setup of the parametric nonlinear trade study included the use of a detailed array model and the reduced mass and stiffness matrices of the entire ISS being applied to the array interface. The study revealed that the array attachment structure is nonlinear and thus was the source of error in the model prediction of mast modes. In addition, a detailed study was performed to determine mast mode sensitivity to mast longeron damage. This sensitivity study was performed to assess if the ISS program has sufficient instrumentation for mast damage detection.

  16. Detection of doublecortin domain-containing 2 (DCDC2), a new candidate tumor suppressor gene of hepatocellular carcinoma, by triple combination array analysis

    PubMed Central

    2013-01-01

    Background To detect genes correlated with hepatocellular carcinoma (HCC), we developed a triple combination array consisting of methylation array, gene expression array and single nucleotide polymorphism (SNP) array analysis. Methods A surgical specimen obtained from a 68-year-old female HCC patient was analyzed by triple combination array, which identified doublecortin domain-containing 2 (DCDC2) as a candidate tumor suppressor gene of HCC. Subsequently, samples from 48 HCC patients were evaluated for their DCDC2 methylation and expression status using methylation specific PCR (MSP) and semi-quantitative reverse transcriptase (RT) PCR, respectively. Then, we investigated the relationship between clinicopathological factors and methylation status of DCDC2. Results DCDC2 was revealed to be hypermethylated (methylation value 0.846, range 0–1.0) in cancer tissue, compared with adjacent normal tissue (0.212) by methylation array in the 68-year-old female patient. Expression array showed decreased expression of DCDC2 in cancerous tissue. SNP array showed that the copy number of chromosome 6p22.1, in which DCDC2 resides, was normal. MSP revealed hypermethylation of the promoter region of DCDC2 in 41 of the tumor samples. DCDC2 expression was significantly decreased in the cases with methylation (P = 0.048). Furthermore, the methylated cases revealed worse prognosis for overall survival than unmethylated cases (P = 0.048). Conclusions The present study indicates that triple combination array is an effective method to detect novel genes related to HCC. We propose that DCDC2 is a tumor suppressor gene of HCC. PMID:24034596

  17. Comparison and validation of acoustic response models for wind noise reduction pipe arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marty, Julien; Denis, Stéphane; Gabrielson, Thomas

    The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models andmore » the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. Lastly, this study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.« less

  18. Peptide Nucleic Acid Array for Detection of Point Mutations in Hepatitis B Virus Associated with Antiviral Resistance ▿ †

    PubMed Central

    Jang, Hyunjung; Kim, Jihyun; Choi, Jae-jin; Son, Yeojin; Park, Heekyung

    2010-01-01

    The detection of antiviral-resistant hepatitis B virus (HBV) mutations is important for monitoring the response to treatment and for effective treatment decisions. We have developed an array using peptide nucleic acid (PNA) probes to detect point mutations in HBV associated with antiviral resistance. PNA probes were designed to detect mutations associated with resistance to lamivudine, adefovir, and entecavir. The PNA array assay was sensitive enough to detect 102 copies/ml. The PNA array assay was able to detect mutants present in more than 5% of the virus population when the total HBV DNA concentration was greater than 104 copies/ml. We analyzed a total of 68 clinical samples by this assay and validated its usefulness by comparing results to those of the sequencing method. The PNA array correctly identified viral mutants and has high concordance (98.3%) with direct sequencing in detecting antiviral-resistant mutations. Our results showed that the PNA array is a rapid, sensitive, and easily applicable assay for the detection of antiviral-resistant mutation in HBV. Thus, the PNA array is a useful and powerful diagnostic tool for the detection of point mutations or polymorphisms. PMID:20573874

  19. Comparison and validation of acoustic response models for wind noise reduction pipe arrays

    DOE PAGES

    Marty, Julien; Denis, Stéphane; Gabrielson, Thomas; ...

    2017-02-13

    The detection capability of the infrasound component of the International Monitoring System (IMS) is tightly linked to the performance of its wind noise reduction systems. The wind noise reduction solution implemented at all IMS infrasound measurement systems consists of a spatial distribution of air inlets connected to the infrasound sensor through a network of pipes. This system, usually referred to as “pipe array,” has proven its efficiency in operational conditions. The objective of this paper is to present the results of the comparison and validation of three distinct acoustic response models for pipe arrays. The characteristics of the models andmore » the results obtained for a defined set of pipe array configurations are described. A field experiment using a newly developed infrasound generator, dedicated to the validation of these models, is then presented. The comparison between the modeled and empirical acoustic responses shows that two of the three models can be confidently used to estimate pipe array acoustic responses. Lastly, this study paves the way to the deconvolution of IMS infrasound data from pipe array responses and to the optimization of pipe array design to IMS applications.« less

  20. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    PubMed

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  1. 1.55 µm high speed low chirp electroabsorption modulated laser arrays based on SAG scheme.

    PubMed

    Cheng, Yuanbing; Wang, Qi Jie; Pan, Jiaoqing

    2014-12-15

    We demonstrate a cost-effective 1.55 µm low chirp 4 × 25 Gbit/s electroabsorption modulated laser (EML) array with 0.8 nm channel spacing by varying ridge width of the lasers and using selective area growth (SAG) integration scheme. The devices for all the 4 channels within the EML array show uniform threshold currents around 18 mA and high SMSRs over 45 dB. The output optical power of each channel is about 9 mW at an injection current of 100 mA. The typical chirp value of single EML measured by a fiber resonance method varied from 2.2 to -4 as the bias voltage was increased from 0 V to 2.5 V. These results show that the EML array is a suitable light source for 100 Gbit/s optical transmissions.

  2. Enhancement in photo-electrochemical efficiency by reducing recombination rate in branched TiO2 nanotube array on functionalizing with ZnO micro crystals

    NASA Astrophysics Data System (ADS)

    Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad

    2018-06-01

    In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.

  3. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  4. Kilopixel X-Ray Microcalorimeter Arrays for Astrophysics: Device Performance and Uniformity

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; hide

    2012-01-01

    We are developing kilopixel arrays of TES microcalorimeters to enable high-resolution x-ray imaging spectrometers for future x-ray observatories and laboratory astrophysics experiments. Our current array design was targeted as a prototype for the X-ray Microcalorimeter Spectrometer proposed for the International X-ray Observatory, which calls for a 40×40-pixel core array of 300 micron devices with 2.5 eV energy resolution (at 6 keV). Here we present device characterization of our 32×32 arrays, including x-ray spectral performance of individual pixels within the array. We present our results in light of the understanding that our Mo/Au TESs act as weak superconducting links, causing the TES critical current (I(sub c)) and transition shape to oscillate with applied magnetic field (B). We show I(sub c)(B) measurements and discuss the uniformity of these measurements across the array, as well as implications regarding the uniformity of device noise and response. In addition, we are working to reduce pixel-to-pixel electrical and thermal crosstalk; we present recent test results from an array that has microstrip wiring and an angle-evaporated copper backside heatsinking layer, which provides copper coverage on the four sidewalls of the silicon wells beneath each pixel.

  5. Kilopixel X-Ray Microcalorimeter Arrays for Astrophysics: Device Performance and Uniformity

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, F. M.

    2011-01-01

    We are developing kilo-pixel arrays of TES microcalorimeters to enable high-resolution X-ray imaging spectrometers for future X-ray observatories and laboratory astrophysics experiments. Our current array design was targeted as a prototype for the X-ray Microcalorimeter Spectrometer proposed for the International X-ray Observatory, which calls for a 40x40-pixel core array of 300 micron devices with 2.5 e V energy resolution (at 6 keV). Here we present device characterization of our 32x32 arrays, including X-ray spectral performance of individual pixels within the array. We present our results in light of the understanding that our Mo/Au TESs act as weak superconducting links, causing the TES critical current (Ic) and transition shape to oscillate with applied magnetic field (B). We show Ic(B) measurements and discuss the uniformity of these measurements across the array, as well as implications regarding the uniformity of device noise and response. In addition, we are working to reduce pixel-to-pixel electrical and thermal crosstalk; we present recent test results from an array that has microstrip wiring and an angle-evaporated Cu backside heatsinking layer, which provides Cu coverage on the four sidewalls of the silicon wells beneath each pixel.

  6. Calculation of the force acting on a micro-sized particle with optical vortex array laser beam tweezers

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-03-01

    Optical vortices possess several special properties, including carrying optical angular momentum (OAM) and exhibiting zero intensity. Vortex array laser beams have attracts many interests due to its special mesh field distributions, which show great potential in the application of multiple optical traps and dark optical traps. Previously study developed an Ince-Gaussian Mode (IGM)-based vortex array laser beam1. This study develops a simulation model based on the discrete dipole approximation (DDA) method for calculating the resultant force acting on a micro-sized spherical dielectric particle that situated at the beam waist of the IGM-based vortex array laser beams1.

  7. High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM

    NASA Astrophysics Data System (ADS)

    Liao, Yi; Austin, Ed; Nash, Philip J.; Kingsley, Stuart A.; Richardson, David J.

    2013-09-01

    A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre-optic sensor array systems. This architecture employs a distributed erbium-doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources.

  8. Highly Uniform 150 mm Diameter Multichroic Polarimeter Array Deployed for CMB Detection

    NASA Technical Reports Server (NTRS)

    Ho, Shuay-Pwu Patty; Austermann, Jason; Beall, James A.; Choi, Steve K.; Cothard, Nicholas F.; Crowley, Kevin; Datta, Rahul; Devlin, Mark J.; Duff, Shannon M.; Wollack, Edward J.

    2016-01-01

    The Advanced Atacama Cosmology Telescope Polarimeter is an upgraded receiver for the Atacama Cosmology Telescope, which has begun making measurements of the small angular scale polarization anisotropies in the Cosmic Microwave Background using the first of four new multichroic superconducting detector arrays. Here, we review all details of the optimization and characterization of this first array, which features 2012 AlMn transition edge sensor bolometers operating at 150 and 230 GHz. We present critical temperatures, thermal conductivities,saturation powers, time constants, and sensitivities for the array. The results show high uniformity across the 150 mm wafer and good performance in the field.

  9. A selective array activation method for the generation of a focused source considering listening position.

    PubMed

    Song, Min-Ho; Choi, Jung-Woo; Kim, Yang-Hann

    2012-02-01

    A focused source can provide an auditory illusion of a virtual source placed between the loudspeaker array and the listener. When a focused source is generated by time-reversed acoustic focusing solution, its use as a virtual source is limited due to artifacts caused by convergent waves traveling towards the focusing point. This paper proposes an array activation method to reduce the artifacts for a selected listening point inside an array of arbitrary shape. Results show that energy of convergent waves can be reduced up to 60 dB for a large region including the selected listening point. © 2012 Acoustical Society of America

  10. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals.

    PubMed

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-25

    We present a method to synthesize CuO nanorod array/TiO 2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO 2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO 2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO 2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO 2 . In this work, a solar cell with the structure FTO/CuO nanoarray/TiO 2 /Al is successfully fabricated, which exhibits an open-circuit voltage (V oc ) of 0.20 V and short-circuit current density (J sc ) of 0.026 mA cm -2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO 2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO 2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO 2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO 2 . This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO 2 heterojunction solar cells.

  11. Solution-processed all-oxide bulk heterojunction solar cells based on CuO nanaorod array and TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Fan; Qiao, Qiquan; Bahrami, Behzad; Chen, Ke; Pathak, Rajesh; Tong, Yanhua; Li, Xiaoyi; Zhang, Tiansheng; Jian, Ronghua

    2018-05-01

    We present a method to synthesize CuO nanorod array/TiO2 nanocrystals bulk heterojunction (BHJ) on fluorine-tin-oxide (FTO) glass, in which single-crystalline p-type semiconductor of the CuO nanorod array is grown on the FTO glass by hydrothermal reaction and the n-type semiconductor of the TiO2 precursor is filled into the CuO nanorods to form well-organized nano-interpenetrating BHJ after air annealing. The interface charge transfer in CuO nanorod array/TiO2 heterojunction is studied by Kelvin probe force microscopy (KPFM). KPFM results demonstrate that the CuO nanorod array/TiO2 heterojunction can realize the transfer of photo-generated electrons from the CuO nanorod array to TiO2. In this work, a solar cell with the structure FTO/CuO nanoarray/TiO2/Al is successfully fabricated, which exhibits an open-circuit voltage (V oc) of 0.20 V and short-circuit current density (J sc) of 0.026 mA cm‑2 under AM 1.5 illumination. KPFM studies indicate that the very low performance is caused by an undesirable interface charge transfer. The interfacial surface potential (SP) shows that the electron concentration in the CuO nanorod array changes considerably after illumination due to increased photo-generated electrons, but the change in the electron concentration in TiO2 is much less than in CuO, which indicates that the injection efficiency of the photo-generated electrons from CuO to TiO2 is not satisfactory, resulting in an undesirable J sc in the solar cell. The interface photovoltage from the KPFM measurement shows that the low V oc results from the small interfacial SP difference between CuO and TiO2 because the low injected electron concentration cannot raise the Fermi level significantly in TiO2. This conclusion agrees with the measured work function results under illumination. Hence, improvement of the interfacial electron injection is primary for the CuO nanorod array/TiO2 heterojunction solar cells.

  12. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media

    PubMed Central

    Chen, Zhen; Dorfman, Kevin D.

    2013-01-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such “tilted” post arrays is superior to the standard “un-tilted” approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the “free path”, i.e., the average distance of ballistic trajectories of point sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. PMID:23868490

  13. A novel ULA-based geometry for improving AOA estimation

    NASA Astrophysics Data System (ADS)

    Shirvani-Moghaddam, Shahriar; Akbari, Farida

    2011-12-01

    Due to relatively simple implementation, Uniform Linear Array (ULA) is a popular geometry for array signal processing. Despite this advantage, it does not have a uniform performance in all directions and Angle of Arrival (AOA) estimation performance degrades considerably in the angles close to endfire. In this article, a new configuration is proposed which can solve this problem. Proposed Array (PA) configuration adds two elements to the ULA in top and bottom of the array axis. By extending signal model of the ULA to the new proposed ULA-based array, AOA estimation performance has been compared in terms of angular accuracy and resolution threshold through two well-known AOA estimation algorithms, MUSIC and MVDR. In both algorithms, Root Mean Square Error (RMSE) of the detected angles descends as the input Signal to Noise Ratio (SNR) increases. Simulation results show that the proposed array geometry introduces uniform accurate performance and higher resolution in middle angles as well as border ones. The PA also presents less RMSE than the ULA in endfire directions. Therefore, the proposed array offers better performance for the border angles with almost the same array size and simplicity in both MUSIC and MVDR algorithms with respect to the conventional ULA. In addition, AOA estimation performance of the PA geometry is compared with two well-known 2D-array geometries: L-shape and V-shape, and acceptable results are obtained with equivalent or lower complexity.

  14. Investigation on transmission and reflection characteristics of plasma array to 6 GHz high-power microwave

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Yang, Zhongcun; Wan, Jianing; Liu, Hao

    2016-10-01

    For the safety of electronic equipment, a double-layer barrier of cylindrical plasma array was designed, and its protective performance to high-power microwave (HPM) were analyzed and the protective performance experiment was conducted. Combining the density distribution characteristic of the discharge plasma, the shielding effectiveness of the double-layer plasma on 6GHz HPM pulse was studied. The experiment results indicate that the protective effectiveness of two layers plasma array is better than that of one layer. Two layers plasma array can make the peak electric field of transmission waveform less than interference threshold of electronic equipment to achieve better protection effectiveness. Transmission attenuation of one layer and two layers plasma array to HPM can reach -6.6066dB and -24.9357dB. The results also show that for the existence of multiple reflection, even the plasma electron density is not high enough, it can realize a strong attenuation. The experiment results in this paper are of great significance in protecting against HPM and electromagnetic pulse.

  15. IMRT plan verification with EBT2 and EBT3 films compared to PTW 2D-ARRAY seven29

    NASA Astrophysics Data System (ADS)

    Hanušová, Tereza; Horáková, Ivana; Koniarová, Irena

    2017-11-01

    The aim of this study was to compare dosimetry with Gafchromic EBT2 and EBT3 films to the ion chamber array PTW seven29 in terms of their performance in clinical IMRT plan verification. A methodology for film processing and calibration was developed. Calibration curves were obtained in MATLAB and in FilmQA Pro. The best calibration curve was then used to calibrate EBT2 and EBT3 films for IMRT plan verification measurements. Films were placed in several coronal planes into an RW3 slab phantom and irradiated with a clinical IMRT plan for prostate and lymph nodes using 18 MV photon beams. Individual fields were tested and irradiated with gantry at 0°. Results were evaluated using gamma analysis with 3%/3 mm criteria in OmniPro I'mRT version 1.7. The same measurements were performed with the ion chamber array PTW seven29 in RW3 slabs (different depths) and in the OCTAVIUS II phantom (isocenter depth only; both original and nominal gantry angles). Results were evaluated in PTW VeriSoft version 3.1 using the same criteria. Altogether, 45 IMRT planes were tested with film and 25 planes with the PTW 2D-ARRAY seven29. Film measuerements showed different results than ion chamber matrix measurements. With PTW 2D-ARRAY seven29, worse results were obtained when the detector was placed into the OCTAVIUS phantom than into the RW3 slab phantom, and the worst pass rates were seen for rotational measurements. EBT2 films showed inconsistent results and could differ significantly for different planes in one field. EBT3 films seemed to give the best results of all the tested configurations.

  16. Buried Man-made Structure Imaging using 2-D Resistivity Inversion

    NASA Astrophysics Data System (ADS)

    Anderson Bery, Andy; Nordiana, M. M.; El Hidayah Ismail, Noer; Jinmin, M.; Nur Amalina, M. K. A.

    2018-04-01

    This study is carried out with the objective to determine the suitable resistivity inversion method for buried man-made structure (bunker). This study was carried out with two stages. The first stage is suitable array determination using 2-D computerized modeling method. One suitable array is used for the infield resistivity survey to determine the dimension and location of the target. The 2-D resistivity inversion results showed that robust inversion method is suitable to resolve the top and bottom part of the buried bunker as target. In addition, the dimension of the buried bunker is successfully determined with height of 7 m and length of 20 m. The location of this target is located at -10 m until 10 m of the infield resistivity survey line. The 2-D resistivity inversion results obtained in this study showed that the parameters selection is important in order to give the optimum results. These parameters are array type, survey geometry and inversion method used in data processing.

  17. Phased Array Ultrasound: Initial Development of PAUT Inspection of Self-Reacting Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Rairigh, Ryan

    2008-01-01

    This slide presentation reviews the development of Phased Array Ultrasound (PAUT) as a non-destructive examination method for Self Reacting Friction Stir Welds (SR-FSW). PAUT is the only NDE method which has been shown to detect detrimental levels of Residual Oxide Defect (ROD), which can result in significant decrease in weld strength. The presentation reviews the PAUT process, and shows the results in comparison with x-ray radiography.

  18. Photovoltaic Plasma Interaction Test 2

    NASA Technical Reports Server (NTRS)

    Kaufman, Bradford A.; Chrulski, Daniel; Myers, Roger M.

    1996-01-01

    The International Space Station (ISS) program is developing a plasma contactor to mitigate the harmful effects of charge collection on the station's large photovoltaic arrays. The purpose of the present test was to examine the effects of charge collection on the solar array electrical circuit and to verify the effectiveness of the plasma contactor. The results showed that the plasma contactor was able to eliminate structure arcing for any array output voltage. However, the current requirements of the plasma contactor were higher than those for prior testing and predicted by analysis. Three possible causes for this excess current demand are discussed. The most likely appeared to be a high local pressure on or very near the surface of the array as a result of vacuum tank conditions. Therefore, in actual space conditions, the plasma contactor should work as predicted.

  19. A finite element-boundary integral method for cavities in a circular cylinder

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.

    1992-01-01

    Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. However, due to a lack of rigorous mathematical models for conformal antenna arrays, antenna designers resort to measurement and planar antenna concepts for designing non-planar conformal antennas. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We extend this formulation to conformal arrays on large metallic cylinders. In this report, we develop the mathematical formulation. In particular, we discuss the shape functions, the resulting finite elements and the boundary integral equations, and the solution of the conformal finite element-boundary integral system. Some validation results are presented and we further show how this formulation can be applied with minimal computational and memory resources.

  20. Optimal Chunking of Large Multidimensional Arrays for Data Warehousing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otoo, Ekow J; Otoo, Ekow J.; Rotem, Doron

    2008-02-15

    Very large multidimensional arrays are commonly used in data intensive scientific computations as well as on-line analytical processingapplications referred to as MOLAP. The storage organization of such arrays on disks is done by partitioning the large global array into fixed size sub-arrays called chunks or tiles that form the units of data transfer between disk and memory. Typical queries involve the retrieval of sub-arrays in a manner that access all chunks that overlap the query results. An important metric of the storage efficiency is the expected number of chunks retrieved over all such queries. The question that immediately arises is"whatmore » shapes of array chunks give the minimum expected number of chunks over a query workload?" The problem of optimal chunking was first introduced by Sarawagi and Stonebraker who gave an approximate solution. In this paper we develop exact mathematical models of the problem and provide exact solutions using steepest descent and geometric programming methods. Experimental results, using synthetic and real life workloads, show that our solutions are consistently within than 2.0percent of the true number of chunks retrieved for any number of dimensions. In contrast, the approximate solution of Sarawagi and Stonebraker can deviate considerably from the true result with increasing number of dimensions and also may lead to suboptimal chunk shapes.« less

  1. Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.

    PubMed

    Kang, Dongyel; Kupinski, Matthew A

    2011-06-20

    We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.

  2. Distributed acoustic sensing system based on continuous wide-band ultra-weak fiber Bragg grating array

    NASA Astrophysics Data System (ADS)

    Tang, Jianguan; Li, Liang; Guo, Huiyong; Yu, Haihu; Wen, Hongqiao; Yang, Minghong

    2017-04-01

    A distributed acoustic sensing system (DAS) with low-coherence ASE and Michelson interferometer based on continuous width-band ultra-weak fiber Bragg grating (UW-FBG) array is proposed and experimentally demonstrated. The experimental result shows that the proposed system has better performance in detecting acoustic waves than the conventional hydrophone.

  3. Superconducting Quantum Interference Device Array Based High Frequency Direction Finding on an Airborne Platform

    DTIC Science & Technology

    is performed using the MUSIC algorithm on the signals received on the non-uniform phased array, and the ESPRIT algorithm is used on the signals...received on the non-colocated vector sensor. The simulation results show that the MUSIC algorithm using 2D Bi-SQUIDs is able to differentiate two signals

  4. [Comparative results of preimplantation genetic screening by array comparative genomic hybridization and new-generation sequencing].

    PubMed

    Aleksandrova, N V; Shubina, E S; Ekimov, A N; Kodyleva, T A; Mukosey, I S; Makarova, N P; Kulakova, E V; Levkov, L A; Barkov, I Yu; Trofimov, D Yu; Sukhikh, G T

    2017-01-01

    Aneuploidies as quantitative chromosome abnormalities are a main cause of failed development of morphologically normal embryos, implantation failures, and early reproductive losses. Preimplantation genetic screening (PGS) allows a preselection of embryos with a normal karyotype, thus increasing the implantation rate and reducing the frequency of early pregnancy loss after IVF. Modern PGS technologies are based on a genome-wide analysis of the embryo. The first pilot study in Russia was performed to assess the possibility of using semiconductor new-generation sequencing (NGS) as a PGS method. NGS data were collected for 38 biopsied embryos and compared with the data from array comparative genomic hybridization (array-CGH). The concordance between the NGS and array-CGH data was 94.8%. Two samples showed the karyotype 47,XXY by array-CGH and a normal karyotype by NGS. The discrepancies may be explained by loss of efficiency of array-CGH amplicon labeling.

  5. High frame-rate computational ghost imaging system using an optical fiber phased array and a low-pixel APD array.

    PubMed

    Liu, Chunbo; Chen, Jingqiu; Liu, Jiaxin; Han, Xiang'e

    2018-04-16

    To obtain a high imaging frame rate, a computational ghost imaging system scheme is proposed based on optical fiber phased array (OFPA). Through high-speed electro-optic modulators, the randomly modulated OFPA can provide much faster speckle projection, which can be precomputed according to the geometry of the fiber array and the known phases for modulation. Receiving the signal light with a low-pixel APD array can effectively decrease the requirement on sampling quantity and computation complexity owing to the reduced data dimensionality while avoiding the image aliasing due to the spatial periodicity of the speckles. The results of analysis and simulation show that the frame rate of the proposed imaging system can be significantly improved compared with traditional systems.

  6. THz radiation from two electron-beams interaction within a bi-grating and a sub-wavelength holes array composite sandwich structure.

    PubMed

    Zhang, Yaxin; Zhou, Y; Dong, L

    2013-09-23

    Two electron-beams' interaction in a sandwich structure composed of a bi-grating and a sub-wavelength holes array is suggested to generate THz radiation in this paper. It shows that this system takes advantage of both bi-grating and sub-wavelength holes array structures. The results demonstrate that surface waves on a bi-grating can couple with mimicking surface plasmons of a sub-wavelength holes array so that the wave-coupling is strong and the field intensity is high in this structure. Moreover, compared with the interaction in the bi-grating structure and sub-wavelength holes array structure, respectively, it shows that in this composite system the two electron-beams' interaction is more efficient and the modulation depth and radiation intensity have been enhanced significantly. The modulation depth and efficiency can reach 22% and 4%, respectively, and the starting current density is only 12 A/cm². This radiation system may provide good opportunities for development of multi-electron beam-driven THz radiation sources.

  7. Coda-wave and ambient noise interferometry using an offset vertical array at Iwanuma site, northeast Japan

    NASA Astrophysics Data System (ADS)

    Minami, K.; Yamamoto, M.; Nishimura, T.; Nakahara, H.; Shiomi, K.

    2013-12-01

    Seismic interferometry using vertical borehole arrays is a powerful tool to estimate the shallow subsurface structure and its time lapse changes. However, the wave fields surrounding borehole arrays are non-isotropic due to the existence of ground surface and non-uniform distribution of sources, and do not meet the requirements of the seismic interferometry in a strict sense. In this study, to examine differences between wave fields of coda waves and ambient noise, and to estimate their effects on the results of seismic interferometry, we conducted a temporal seismic experiment using zero-offset and offset vertical arrays. We installed two 3-components seismometers (hereafter called Surface1 and Surface2) at the ground surface in the vicinity of NIED Iwanuma site (Miyagi Pref., Japan). Surface1 is placed just above the Hi-net downhole seismometer whose depth is 101 m, and Surface2 is placed 70 m away from Surface1. To extract the wave propagation between these 3 seismometers, we compute the cross-correlation functions (CCFs) of coda-wave and ambient noise for each pair of the zero-offset vertical (Hi-net-Surface1), finite-offset vertical (Hi-net-Surface2), and horizontal (Surface1-Surface2) arrays. We use the frequency bands of 4-8, 8-16 Hz in the CCF computation. The characteristics of obtained CCFs are summarized as follows; (1) in all frequency bands, the peak lag times of CCFs from coda waves are almost the same between the vertical and offset-vertical arrays irrespective of different inter-station distance, and those for the horizontal array are around 0 s. (2) the peak lag times of CCFs from ambient noise show slight differences, that is, those obtained from the vertical array are earlier than those from the offset-vertical array, and those from the horizontal array are around 0.05 s. (3) the peak lag times of CCFs for the vertical array obtained from ambient noise analyses are earlier than those from the coda-wave analyses. These results indicate that wave fields of coda-wave are mainly composed of vertically propagating waves, while those of ambient noise are composed of both vertically and horizontally propagating waves. To explain these characteristics of the CCFs obtained from different wave fields, we conducted a numerical simulation of interferometry based on the concept of stationary phase. Here, we assume isotropic upward incidence of SV-wave into a homogeneous half-space, and compute CCFs for the zero-offset and finite-offset vertical arrays by taking into account the reflection and conversion of P-SV waves at the free surface. Due to the effectively non-isotropic wave field, the simulated CCF for the zero-offset vertical array shows slight delay in peak lag time and its amplitudes decrease in the acausal part. On the other hand, the simulated CCF for finite-offset vertical array shows amplitude decrease and no peak lag time shift. These results are consistent with the difference in peak lag times obtained from coda-wave and ambient noise analyses. Our observations and theoretical consideration suggest that the careful consideration of wave fields is important in the application of seismic interferometry to borehole array data.

  8. Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization

    NASA Astrophysics Data System (ADS)

    Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin

    2007-12-01

    High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.

  9. Optimization study on the magnetic field of superconducting Halbach Array magnet

    NASA Astrophysics Data System (ADS)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  10. Developing Barbed Microtip-Based Electrode Arrays for Biopotential Measurement

    PubMed Central

    Hsu, Li-Sheng; Tung, Shu-Wei; Kuo, Che-Hsi; Yang, Yao-Joe

    2014-01-01

    This study involved fabricating barbed microtip-based electrode arrays by using silicon wet etching. KOH anisotropic wet etching was employed to form a standard pyramidal microtip array and HF/HNO3 isotropic etching was used to fabricate barbs on these microtips. To improve the electrical conductance between the tip array on the front side of the wafer and the electrical contact on the back side, a through-silicon via was created during the wet etching process. The experimental results show that the forces required to detach the barbed microtip arrays from human skin, a polydimethylsiloxane (PDMS) polymer, and a polyvinylchloride (PVC) film were larger compared with those required to detach microtip arrays that lacked barbs. The impedances of the skin-electrode interface were measured and the performance levels of the proposed dry electrode were characterized. Electrode prototypes that employed the proposed tip arrays were implemented. Electroencephalogram (EEG) and electrocardiography (ECG) recordings using these electrode prototypes were also demonstrated. PMID:25014098

  11. Design and Fabrication of an Experimental Microheater Array Powder Sintering Printer

    NASA Astrophysics Data System (ADS)

    Holt, Nicholas; Zhou, Wenchao

    2018-03-01

    Microheater array powder sintering (MAPS) is a novel additive manufacturing process that uses an array of microheaters to selectively sinter powder particles. MAPS shows great promise as a new method of printing flexible electronics by enabling digital curing of conductive inks on a variety of substrates. For MAPS to work effectively, a microscale air gap needs to be maintained between the heater array and the conductive ink. In this article, we present an experimental MAPS printer with air gap control for printing conductive circuits. First, we discuss design aspects necessary to implement MAPS. An analysis is performed to validate that the design can maintain the desired air gap between the microheaters and the sintering layer, which consists of a silver nanoparticle ink. The printer is tested by printing conductive lines on a flexible plastic substrate with silver nanoparticle ink. Results show MAPS performs on par with or better than the existing fabrication methods for printed electronics in terms of both the print quality (conductivity of the printed line) and print speed, which shows MAPS' great promise as a competitive new method for digital production of printed electronics.

  12. Source Identification and Location Techniques

    NASA Technical Reports Server (NTRS)

    Weir, Donald; Bridges, James; Agboola, Femi; Dougherty, Robert

    2001-01-01

    Mr. Weir presented source location results obtained from an engine test as part of the Engine Validation of Noise Reduction Concepts program. Two types of microphone arrays were used in this program to determine the jet noise source distribution for the exhaust from a 4.3 bypass ratio turbofan engine. One was a linear array of 16 microphones located on a 25 ft. sideline and the other was a 103 microphone 3-D "cage" array in the near field of the jet. Data were obtained from a baseline nozzle and from numerous nozzle configuration using chevrons and/or tabs to reduce the jet noise. Mr. Weir presented data from two configurations: the baseline nozzle and a nozzle configuration with chevrons on both the core and bypass nozzles. This chevron configuration had achieved a jet noise reduction of 4 EPNdB in small scale tests conducted at the Glenn Research Center. IR imaging showed that the chevrons produced significant improvements in mixing and greatly reduced the length of the jet potential core. Comparison of source location data from the 1-D phased array showed a shift of the noise sources towards the nozzle and clear reductions of the sources due to the noise reduction devices. Data from the 3-D array showed a single source at a frequency of 125 Hz. located several diameters downstream from the nozzle exit. At 250 and 400 Hz., multiple sources, periodically spaced, appeared to exist downstream of the nozzle. The trend of source location moving toward the nozzle exit with increasing frequency was also observed. The 3-D array data also showed a reduction in source strength with the addition of chevrons. The overall trend of source location with frequency was compared for the two arrays and with classical experience. Similar trends were observed. Although overall trends with frequency and addition of suppression devices were consistent between the data from the 1-D and the 3-D arrays, a comparison of the details of the inferred source locations did show differences. A flight test is planned to determine if the hardware tested statically will achieve similar reductions in flight.

  13. Identifying equivalent sound sources from aeroacoustic simulations using a numerical phased array

    NASA Astrophysics Data System (ADS)

    Pignier, Nicolas J.; O'Reilly, Ciarán J.; Boij, Susann

    2017-04-01

    An application of phased array methods to numerical data is presented, aimed at identifying equivalent flow sound sources from aeroacoustic simulations. Based on phased array data extracted from compressible flow simulations, sound source strengths are computed on a set of points in the source region using phased array techniques assuming monopole propagation. Two phased array techniques are used to compute the source strengths: an approach using a Moore-Penrose pseudo-inverse and a beamforming approach using dual linear programming (dual-LP) deconvolution. The first approach gives a model of correlated sources for the acoustic field generated from the flow expressed in a matrix of cross- and auto-power spectral values, whereas the second approach results in a model of uncorrelated sources expressed in a vector of auto-power spectral values. The accuracy of the equivalent source model is estimated by computing the acoustic spectrum at a far-field observer. The approach is tested first on an analytical case with known point sources. It is then applied to the example of the flow around a submerged air inlet. The far-field spectra obtained from the source models for two different flow conditions are in good agreement with the spectra obtained with a Ffowcs Williams-Hawkings integral, showing the accuracy of the source model from the observer's standpoint. Various configurations for the phased array and for the sources are used. The dual-LP beamforming approach shows better robustness to changes in the number of probes and sources than the pseudo-inverse approach. The good results obtained with this simulation case demonstrate the potential of the phased array approach as a modelling tool for aeroacoustic simulations.

  14. SU-F-T-270: A Technique for Modeling a Diode Array Into the TPS for Lung SBRT Patient Specific QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curley, C; Leventouri, T; Ouhib, Z

    2016-06-15

    Purpose: To accurately match the treatment planning system (TPS) with the measurement environment, where quality assurance (QA) devices are used to collect data, for lung Stereotactic Body Radiation Therapy (SBRT) patient specific QA. Incorporation of heterogeneities is also studied. Methods: Dual energy computerized tomography (DECT) and single energy computerized tomography (SECT) were used to model phantoms incorporating a 2-D diode array into the TPS. A water-equivalent and a heterogeneous phantom (simulating the thoracic region of a patient) were studied. Monte Carlo and pencil beam planar dose distributions were compared to measured distributions. Composite and individual fields were analyzed for normallymore » incident and planned gantry angle deliveries. γ- analysis was used with criteria 3% 3mm, 2% 2mm, and 1% 1mm. Results: The Monte Carlo calculations for the DECT resulted in improved agreements with the diode array for 46.4% of the fields at 3% 3mm, 85.7% at 2% 2mm, and 92.9% at 1% 1mm.For the SECT, the Monte Carlo calculations gave no agreement for the same γ-analysis criteria. Pencil beam calculations resulted in lower agreements with the diode array in the TPS. The DECT showed improvements for 14.3% of the fields at 3% 3mm and 2% 2mm, and 28.6% at 1% 1mm.In SECT comparisons, 7.1% of the fields at 3% 3mm, 10.7% at 2% 2mm, and 17.9% at 1% 1mm showed improved agreements with the diode array. Conclusion: This study demonstrates that modeling the diode array in the TPS is viable using DECT with Monte Carlo for patient specific lung SBRT QA. As recommended by task groups (e.g. TG 65, TG 101, TG 244) of the American Association of Physicists in Medicine (AAPM), pencil beam algorithms should be avoided in the presence of heterogeneous materials, including a diode array.« less

  15. Fabrication of polymeric nano-batteries array using anodic aluminum oxide templates.

    PubMed

    Zhao, Qiang; Cui, Xiaoli; Chen, Ling; Liu, Ling; Sun, Zhenkun; Jiang, Zhiyu

    2009-02-01

    Rechargeable nano-batteries were fabricated in the array pores of anodic aluminum oxide (AAO) template, combining template method and electrochemical method. The battery consisted of electropolymerized PPy electrode, porous TiO2 separator, and chemically polymerized PAn electrode was fabricated in the array pores of two-step anodizing aluminum oxide (AAO) membrane, based on three-step assembling method. It performs typical electrochemical battery behavior with good charge-discharge ability, and presents a capacity of 25 nAs. AFM results show the hexagonal array of nano-batteries' top side. The nano-battery may be a promising device for the development of Micro-Electro-Mechanical Systems (MEMS), and Nano-Electro-Mechanical Systems (NEMS).

  16. The effect of urea on microstructures of Ni{sub 3}S{sub 2} on nickel foam and its hydrogen evolution reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinlong, Lv, E-mail: ljltsinghua@126.com; State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084; Tongxiang, Liang, E-mail: txliang@mail.tsinghua.edu.cn

    The effects of urea concentration on microstructures of Ni{sub 3}S{sub 2}formed on nickel foam and its hydrogen evolution reaction were investigated. The Ni{sub 3}S{sub 2} nanosheets with porous structure were formed on nickel foam during hydrothermal process due to low urea concentration. While high urea concentration facilitated the forming of Ni{sub 3}S{sub 2} nanotube arrays. The resulting Ni{sub 3}S{sub 2} nanotube arrays exhibited higher catalytic activity than Ni3S2nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction. - Graphical abstract: The resulting Ni{sub 3}S{submore » 2} nanotube arrays exhibited higher catalytic activity than Ni{sub 3}S{sub 2} nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction and hydrogen evolution. - Highlights: • Urea promoted to forming more Ni{sub 3}S{sub 2} nanotube arrays on nickel foam. • Ni{sub 3}S{sub 2} nanotube arrays showed higher catalytic activity in alkaline solution. • Ni{sub 3}S{sub 2} nanotube arrays promoted electron transport and reaction during the HER.« less

  17. Volumetric Real-Time Imaging Using a CMUT Ring Array

    PubMed Central

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.

    2012-01-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods—flash, classic phased array (CPA), and synthetic phased array (SPA)—were used in the study. For SPA imaging, two techniques to improve the image quality—Hadamard coding and aperture weighting—were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming. PMID:22718870

  18. Volumetric real-time imaging using a CMUT ring array.

    PubMed

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  19. Development of a Flexible Broadband Rayleigh Waves Comb Transducer with Nonequidistant Comb Interval for Defect Detection of Thick-Walled Pipelines

    PubMed Central

    He, Cunfu; Yan, Lyu; Zhang, Haijun

    2018-01-01

    It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the −3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ−3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth. PMID:29498636

  20. Development of a Flexible Broadband Rayleigh Waves Comb Transducer with Nonequidistant Comb Interval for Defect Detection of Thick-Walled Pipelines.

    PubMed

    Zhao, Huamin; He, Cunfu; Yan, Lyu; Zhang, Haijun

    2018-03-02

    It is necessary to develop a transducer that can quickly detect the inner and outer wall defects of thick-walled pipes, in order to ensure the safety of such pipes. In this paper, a flexible broadband Rayleigh-waves comb transducer based on PZT (lead zirconate titanate) for defect detection of thick-walled pipes is studied. The multiple resonant coupling theory is used to expand the transducer broadband and the FEA (Finite Element Analysis) method is used to optimize transducer array element parameters. Optimization results show that the best array element parameters of the transducer are when the transducer array element length is 30 mm, the thickness is 1.2 mm, the width of one end of is 1.5 mm, and the other end is 3 mm. Based on the optimization results, such a transducer was fabricated and its performance was tested. The test results were consistent with the finite-element simulation results, and the -3 dB bandwidth of the transducer reached 417 kHz. Transducer directivity test results show that the Θ -3dB beam width was equal to 10 °, to meet the defect detection requirements. Finally, defects of thick-walled pipes were detected using the transducer. The results showed that the transducer could detect the inner and outer wall defects of thick-walled pipes within the bandwidth.

  1. Comparison of different sets of array configurations for multichannel 2D ERT acquisition

    NASA Astrophysics Data System (ADS)

    Martorana, R.; Capizzi, P.; D'Alessandro, A.; Luzio, D.

    2017-02-01

    Traditional electrode arrays such Wenner-Schlumberger or dipole-dipole are still widely used thanks to their well-known properties but the array configurations are generally not optimized for multi-channel resistivity measures. Synthetic datasets relating to four different arrays, dipole-dipole (DD), pole-dipole (PD), Wenner-Schlumberger (WS) and a modified version of multiple gradient (MG), have been made for a systematic comparison between 2D resistivity models and their inverted images. Different sets of array configurations generated from simple combinations of geometric parameters (potential dipole lengths and dipole separation factors) were tested with synthetic and field data sets, even considering the influence of errors and the acquisition velocity. The purpose is to establish array configurations capable to provide reliable results but, at the same time, not involving excessive survey costs, even linked to the acquiring time and therefore to the number of current dipoles used. For DD, PD and WS arrays a progression of different datasets were considered increasing the number of current dipoles trying to get about the same amount of measures. A multi-coverage MG array configuration is proposed by increasing the lateral coverage and so the number of current dipoles. Noise simulating errors both on the electrode positions and on the electric potential was added. The array configurations have been tested on field data acquired in the landfill site of Bellolampo (Palermo, Italy), to detect and locate the leachate plumes and to identify the HDPE bottom of the landfill. The inversion results were compared using a quantitative analysis of data misfit, relative model resolution and model misfit. The results show that the trends of the first two parameters are linked on the array configuration and that a cumulative analysis of these parameters can help to choose the best array configuration in order to obtain a good resolution and reliability of a survey, according to generally short acquisition times.

  2. An Array-Based Analysis of MicroRNA Expression Comparing Matched Frozen and Formalin-Fixed Paraffin-Embedded Human Tissue Samples

    PubMed Central

    Zhang, Xiao; Chen, Jiamin; Radcliffe, Tom; LeBrun, Dave P.; Tron, Victor A.; Feilotter, Harriet

    2008-01-01

    MicroRNAs (miRNAs) are small, noncoding RNAs that suppress gene expression at the posttranscriptional level via an antisense RNA-RNA interaction. miRNAs used for array-based profiling are generally purified from either snap-frozen or fresh samples. Because tissues found in most pathology departments are available only in formalin-fixed and paraffin-embedded (FFPE) states, we sought to evaluate miRNA derived from FFPE samples for microarray analysis. In this study, miRNAs extracted from matched snap-frozen and FFPE samples were profiled using the Agilent miRNA array platform (Agilent, Santa Clara, CA). Each miRNA sample was hybridized to arrays containing probes interrogating 470 human miRNAs. Seven cases were compared in either duplicate or triplicate. Intrachip and interchip analyses demonstrated that the processes of miRNA extraction, labeling, and hybridization from both frozen and FFPE samples are highly reproducible and add little variation to the results; technical replicates showed high correlations with one another (Kendall tau, 0.722 to 0.853; Spearman rank correlation coefficient, 0.891 to 0.954). Our results showed consistent high correlations between matched frozen and FFPE samples (Kendall tau, 0.669 to 0.815; Spearman rank correlation coefficient, 0.847 to 0.948), supporting the use of FFPE-derived miRNAs for array-based, gene expression profiling. PMID:18832457

  3. Mild Intellectual Disability Associated with a Progeny of Father-Daughter Incest: Genetic and Environmental Considerations

    ERIC Educational Resources Information Center

    Ansermet, Francois; Lespinasse, James; Gimelli, Stefania; Bena, Frederique; Paoloni-Giacobino, Ariane

    2010-01-01

    We report the case of a 34-year-old female resulting from a father-daughter sexual abuse and presenting a phenotype of mild intellectual disability with minor dysmorphic features. Karyotyping showed a normal 46, XX constitution. Array-based comparative genomic hybridization (array-CGH) revealed a heterozygote 320kb 6p22.3 microdeletion in the…

  4. Effects of Stream Turbine Array Configuration on Current Energy Extraction Near an Island

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Lin, B.; Lin, J.

    2014-12-01

    Enhanced tidal currents close to an island appear to present the potential for power extraction. In this research, a three-dimensional numerical model is employed to predict the tidal current energy extraction potential from turbine arrays near an island. One of the significant challenges is to determine an optimal configuration of turbine array. This paper presents a detailed work to investigate the combined influences of topographic features and array configuration on the performance of power generation. Three single row arrays and three multiple-row arrays, with turbines being arranged in a staggered manner, are examined. It has been found that a single row array with a relatively small spacing between two turbines could achieve good efficiency due to the blockage effects, whereas a larger lateral spacing gives a better performance for multi-row arrays. The reason is that the bypass flow in a staggered layout would results in shadowing effect on downstream turbines. Model results also show that the wake influence can be minimized by increasing not only the longitudinal spacing, but also the lateral spacing. The tidal current flows are shown to have been affected by the inclusion of turbines, with less fluctuant wave in a tidal cycle. The extents of the observed impacts are not only within the turbine array field, but also moving around the island and propagating to the far-field. This study can be used to provide the reference information of the commercial-scale farms for tidal energy development. Keywords: Tidal currents; Array configuration; Energy extraction; Hydrodynamic process

  5. Evaluation of cooling performance of impinging jet array over various dimpled surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Min; Kim, Kwang-Yong

    2016-04-01

    Various configurations of an impinging jet-dimple array cooling system were evaluated in terms of their heat transfer and pressure drop performances. The steady incompressible laminar flow and heat transfer in the cooling system were analyzed using three-dimensional Navier-Stokes equations. The obtained numerical results were validated by a comparison with experimental data for the local Nusselt number distribution. The area-averaged Nusselt number on the projected area and the pressure drop through the system were selected as the performance parameters. Among the four tested configurations—inline concave, staggered concave, inline convex, and staggered convex—the staggered convex impinging jet-dimple array showed the best heat transfer performance whereas the staggered-concave configuration showed the lowest pressure drop. A parametric study with two geometric variables, i.e., the height of dimple and the diameter of dimple, was also conducted for the staggered-convex impinging jet-dimple array. As a result, the best heat transfer and pressure drop performances were achieved when the ratio of the height of dimple to the diameter of jet was 0.8. And, the increase in the ratio of the diameter of dimple to the diameter of jet yielded monotonous increase in the heat transfer performance.

  6. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    DOE PAGES

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; ...

    2015-01-15

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, themore » Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process.« less

  7. Broadband optical absorption by tunable Mie resonances in silicon nanocone arrays

    PubMed Central

    Wang, Z. Y.; Zhang, R. J.; Wang, S. Y.; Lu, M.; Chen, X.; Zheng, Y. X.; Chen, L. Y.; Ye, Z.; Wang, C. Z.; Ho, K. M.

    2015-01-01

    Nanostructure arrays such as nanowire, nanopillar, and nanocone arrays have been proposed to be promising antireflection structures for photovoltaic applications due to their great light trapping ability. In this paper, the optical properties of Si nanopillar and nanocone arrays in visible and infrared region were studied by both theoretical calculations and experiments. The results show that the Mie resonance can be continuously tuned across a wide range of wavelength by varying the diameter of the nanopillars. However, Si nanopillar array with uniform diameter exhibits only discrete resonance mode, thus can't achieve a high broadband absorption. On the other hand, the Mie resonance wavelength in a Si nanocone array can vary continuously as the diameters of the cross sections increase from the apex to the base. Therefore Si nanocone arrays can strongly interact with the incident light in the broadband spectrum and the absorbance by Si nanocone arrays is higher than 95% over the wavelength from 300 to 2000 nm. In addition to the Mie resonance, the broadband optical absorption of Si nanocone arrays is also affected by Wood-Rayleigh anomaly effect and metal impurities introduced in the fabrication process. PMID:25589290

  8. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    PubMed

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Removing Background Noise with Phased Array Signal Processing

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Stephens, David

    2015-01-01

    Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.

  10. CFD Analysis of a Finite Linear Array of Savonius Wind Turbines

    NASA Astrophysics Data System (ADS)

    Belkacem, Belabes; Paraschivoiu, Marius

    2016-09-01

    Vertical axis wind turbines such as Savonius rotors have been shown to be suitable for low wind speeds normally associated with wind resources in all corners of the world. However, the efficiency of the rotor is low. This paper presents results of Computational Fluid Dynamics (CFD) simulations for an array of Savonius rotors that show a significant increase in efficiency. It looks at identifying the effect on the energy yield of a number of turbines placed in a linear array. Results from this investigation suggest that an increase in the energy yield could be achieved which can reach almost two times than the conventional Savonius wind turbine in the case of an array of 11turbines with a distance of 1.4R in between them. The effect of different TSR values and different wind inlet speeds on the farm has been studied for both a synchronous and asynchronous wind farm.

  11. Localized surface plasmon resonance properties of Ag nanorod arrays on graphene-coated Au substrate

    NASA Astrophysics Data System (ADS)

    Mu, Haiwei; Lv, Jingwei; Liu, Chao; Sun, Tao; Chu, Paul K.; Zhang, Jingping

    2017-11-01

    Localized surface plasmon resonance (LSPR) on silver nanorod (SNR) arrays deposited on a graphene-coated Au substrate is investigated by the discrete dipole approximation (DDA) method. The resonance peaks in the extinction spectra of the SNR/graphene/Au structure show significantly different profiles as SNR height, and refractive index of the surrounding medium are varied gradually. Numerical simulation reveals that the shifts in the resonance peaks arise from hybridization of multiple plasmon modes as a result of coupling between the SNR arrays and graphene-coated Au substrate. Moreover, the LSPR modes blue-shifts from 800 nm to 700 nm when the thickness of the graphene layer in the metal nanoparticle (NP) - graphene hybrid nanostructure increases from 1 nm to 5 nm, which attribute to charge transfer between the graphene layer and SNR arrays. The results provide insights into metal NP-graphene hybrid nanostructures which have potential applications in plasmonics.

  12. Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition

    PubMed Central

    Huang, Ruomeng; Benjamin, Sophie L.; Gurnani, Chitra; Wang, Yudong; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. (Kees)

    2016-01-01

    Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the <1 1 0> orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition. PMID:27283116

  13. Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates.

    PubMed

    Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M

    2015-11-17

    The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.

  14. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  15. Comparison of characteristics and downstream uniformity of linear-field and cross-field atmospheric pressure plasma jet array in He

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Fang, Zhi; Liu, Feng; Zhou, Renwu; Zhou, Ruoyu

    2018-06-01

    Using an atmospheric pressure plasma jet array is an effective way for expanding the treatment area of a single jet, and generating arrays with well downstream uniformity is of great interest for its applications. In this paper, a plasma jet array in helium is generated in a linear-field jet array with a ring-ring electrode structure excited by alternating current. The characteristics and downstream uniformity of the array and their dependence on the applied voltage and gas flow rate are investigated through optical, electrical, and Schlieren diagnostics. The results are compared with those of our reported work of a cross-field jet array with a needle-ring electrode structure. The results show that the linear-field jet array can generate relatively large-scale plasma with better uniformity and longer plumes than the cross-field case. The divergences observed in gas channels and the plasma plume trajectories are much less than those of the cross-field one. The deflection angle of lateral plumes is less than 6°, which is independent of the gas flow rate and applied voltage. The maximum downstream plumes of 23 mm can be obtained at 7 kV peak applied voltage and 4 l/min gas flow rate. The better uniformity of linear-field jet arrays is due to the effective suppression of hydrodynamic and electrical interactions among the jets in the arrays with a more uniform electric field distribution. The hydrodynamic interaction induced by the gas heating in the linear-field jet array is less than that of the cross-field one. The more uniform electric field distribution in the linear-field jet arrays can reduce the divergence of the propagation trajectories of the plasma plumes. It will generate less residual charge between the adjacent discharges and thus can reduce the accumulation effect of Coulomb force between the plasma plumes. The reported results can help design controllable and scalable plasma jet arrays with well uniformity for material surface and biomedical treatments.

  16. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au; Tao, Zhikuo

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high lightmore » trapping within amorphous silicon layer.« less

  17. Carbon Nanotube Electrode Arrays For Enhanced Chemical and Biological Sensing

    NASA Technical Reports Server (NTRS)

    Han, Jie

    2003-01-01

    Applications of carbon nanotubes for ultra-sensitive electrical sensing of chemical and biological species have been a major focus in NASA Ames Center for Nanotechnology. Great progress has been made toward controlled growth and chemical functionalization of vertically aligned carbon nanotube arrays and integration into micro-fabricated chip devices. Carbon nanotube electrode arrays devices have been used for sub-attomole detection of DNA molecules. Interdigitated carbon nanotubes arrays devices have been applied to sub ppb (part per billion) level chemical sensing for many molecules at room temperature. Stability and reliability have also been addressed in our device development. These results show order of magnitude improvement in device performance, size and power consumption as compared to micro devices, promising applications of carbon nanotube electrode arrays for clinical molecular diagnostics, personal medical testing and monitoring, and environmental monitoring.

  18. Coherent and incoherent combination of Gaussian beams employing lens array distributed on the spherical chamber.

    PubMed

    Huang, Zhihua; Wei, Xiaofeng; Li, Mingzhong; Wang, Jianjun; Lin, Honghuan; Xu, Dangpeng; Deng, Ying; Zhang, Rui

    2012-04-01

    Coherent and incoherent combination of Gaussian beams employing a lens array distributed on the spherical chamber is theoretically analyzed. The output field of each source in the array is coupled through an individual optical system whose local optical axis coincides with the radial direction of the chamber. The resulting intensity profile near the origin is derived. The intensity profile and power in the bucket on the target for rectangular and hexagonal arrangement are numerically calculated. The influences of the center-to-center separation and the ring number of the focusing lens array are given. The synthetic intensity profile of incoherent combination changes little for a lens array scale much smaller than the chamber size. In contrast, the synthetic intensity profile of coherent combination shows an interference pattern with a sharp central peak and sidelobes.

  19. Evaluation of concentrated space solar arrays using computer modeling. [for spacecraft propulsion and power supplies

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.

    1979-01-01

    A general approach is developed for predicting the power output of a concentrator enhanced photovoltaic space array. A ray trace routine determines the concentrator intensity arriving at each solar cell. An iterative calculation determines the cell's operating temperature since cell temperature and cell efficiency are functions of one another. The end result of the iterative calculation is that the individual cell's power output is determined as a function of temperature and intensity. Circuit output is predicted by combining the individual cell outputs using the single diode model of a solar cell. Concentrated array characteristics such as uniformity of intensity and operating temperature at various points across the array are examined using computer modeling techniques. An illustrative example is given showing how the output of an array can be enhanced using solar concentration techniques.

  20. Light propagation in nanorod arrays

    NASA Astrophysics Data System (ADS)

    Rahachou, A. I.; Zozoulenko, I. V.

    2007-03-01

    We study the propagation of TM- and TE-polarized light in two-dimensional arrays of silver nanorods of various diameters in a gelatin background. We calculate the transmittance, reflectance and absorption of arranged and disordered nanorod arrays and compare the exact numerical results with the predictions of the Maxwell-Garnett effective-medium theory. We show that interactions between nanorods, multipole contributions and formations of photonic gaps affect strongly the transmittance spectra that cannot be accounted for in terms of the conventional effective-medium theory. We also demonstrate and explain the degradation of the transmittance in arrays with randomly located rods as well as the weak influence of their fluctuating diameter. For TM modes we outline the importance of the skin effect, which causes the full reflection of the incoming light. We then illustrate the possibility of using periodic arrays of nanorods as high-quality polarizers.

  1. Dynamical analysis of surface-insulated planar wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Li, Yang; Sheng, Liang; Hei, Dongwei; Li, Xingwen; Zhang, Jinhai; Li, Mo; Qiu, Aici

    2018-05-01

    The ablation and implosion dynamics of planar wire array Z-pinches with and without surface insulation are compared and discussed in this paper. This paper first presents a phenomenological model named the ablation and cascade snowplow implosion (ACSI) model, which accounts for the ablation and implosion phases of a planar wire array Z-pinch in a single simulation. The comparison between experimental data and simulation results shows that the ACSI model could give a fairly good description about the dynamical characteristics of planar wire array Z-pinches. Surface insulation introduces notable differences in the ablation phase of planar wire array Z-pinches. The ablation phase is divided into two stages: insulation layer ablation and tungsten wire ablation. The two-stage ablation process of insulated wires is simulated in the ACSI model by updating the formulas describing the ablation process.

  2. Tissue Damage, Temperature, and pH Induced by Different Electrode Arrays on Potato Pieces (Solanum tuberosum L.).

    PubMed

    González, Maraelys Morales; Aguilar, Claudia Hernández; Pacheco, Flavio Arturo Domínguez; Cabrales, Luis Enrique Bergues; Reyes, Juan Bory; Nava, Juan José Godina; Ambrosio, Paulo Eduardo; Domiguez, Dany Sanchez; Sierra González, Victoriano Gustavo; Pupo, Ana Elisa Bergues; Ciria, Héctor Manuel Camué; Alemán, Elizabeth Issac; García, Francisco Monier; Rivas, Clara Berenguer; Reina, Evelyn Chacón

    2018-01-01

    One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato ( Solanum tuberosum L., var. Mondial) depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor.

  3. DYZ1 arrays show sequence variation between the monozygotic males

    PubMed Central

    2014-01-01

    Background Monozygotic twins (MZT) are an important resource for genetical studies in the context of normal and diseased genomes. In the present study we used DYZ1, a satellite fraction present in the form of tandem arrays on the long arm of the human Y chromosome, as a tool to uncover sequence variations between the monozygotic males. Results We detected copy number variation, frequent insertions and deletions within the sequences of DYZ1 arrays amongst all the three sets of twins used in the present study. MZT1b showed loss of 35 bp compared to that in 1a, whereas 2a showed loss of 31 bp compared to that in 2b. Similarly, 3b showed 10 bp insertion compared to that in 3a. MZT1a germline DNA showed loss of 5 bp and 1b blood DNA showed loss of 26 bp compared to that of 1a blood and 1b germline DNA, respectively. Of the 69 restriction sites detected in DYZ1 arrays, MboII, BsrI, TspEI and TaqI enzymes showed frequent loss and or gain amongst all the 3 pairs studied. MZT1 pair showed loss/gain of VspI, BsrDI, AgsI, PleI, TspDTI, TspEI, TfiI and TaqI restriction sites in both blood and germline DNA. All the three sets of MZT showed differences in the number of DYZ1 copies. FISH signals reflected somatic mosaicism of the DYZ1 copies across the cells. Conclusions DYZ1 showed both sequence and copy number variation between the MZT males. Sequence variation was also noticed between germline and blood DNA samples of the same individual as we observed at least in one set of sample. The result suggests that DYZ1 faithfully records all the genetical changes occurring after the twining which may be ascribed to the environmental factors. PMID:24495361

  4. Comparison of photoemission characteristics between square and circular wire array GaAs photocathodes.

    PubMed

    Deng, Wenjuan; Peng, Xincun; Zou, Jijun; Wang, Weilu; Liu, Yun; Zhang, Tao; Zhang, Yijun; Zhang, Daoli

    2017-11-10

    Two types of negative electron affinity gallium arsenide (GaAs) wire array photocathodes were fabricated by reactive ion etching and inductively coupled plasma etching of bulk GaAs material. High density GaAs wire arrays with high periodicity and good morphology were verified using scanning electron microscopy, and photoluminescence spectra confirmed the wire arrays had good crystalline quality. Reflection spectra showed that circular GaAs wire arrays had superior light trapping compared with square ones. However, after Cs/O activation, the square GaAs wire array photocathodes showed enhanced spectral response. The integral sensitivity of the square wire array photocathodes was approximately 2.8 times that of the circular arrays.

  5. Phased-array vector velocity estimation using transverse oscillations.

    PubMed

    Pihl, Michael J; Marcher, Jonne; Jensen, Jorgen A

    2012-12-01

    A method for estimating the 2-D vector velocity of blood using a phased-array transducer is presented. The approach is based on the transverse oscillation (TO) method. The purposes of this work are to expand the TO method to a phased-array geometry and to broaden the potential clinical applicability of the method. A phased-array transducer has a smaller footprint and a larger field of view than a linear array, and is therefore more suited for, e.g., cardiac imaging. The method relies on suitable TO fields, and a beamforming strategy employing diverging TO beams is proposed. The implementation of the TO method using a phased-array transducer for vector velocity estimation is evaluated through simulation and flow-rig measurements are acquired using an experimental scanner. The vast number of calculations needed to perform flow simulations makes the optimization of the TO fields a cumbersome process. Therefore, three performance metrics are proposed. They are calculated based on the complex TO spectrum of the combined TO fields. It is hypothesized that the performance metrics are related to the performance of the velocity estimates. The simulations show that the squared correlation values range from 0.79 to 0.92, indicating a correlation between the performance metrics of the TO spectrum and the velocity estimates. Because these performance metrics are much more readily computed, the TO fields can be optimized faster for improved velocity estimation of both simulations and measurements. For simulations of a parabolic flow at a depth of 10 cm, a relative (to the peak velocity) bias and standard deviation of 4% and 8%, respectively, are obtained. Overall, the simulations show that the TO method implemented on a phased-array transducer is robust with relative standard deviations around 10% in most cases. The flow-rig measurements show similar results. At a depth of 9.5 cm using 32 emissions per estimate, the relative standard deviation is 9% and the relative bias is -9%. At the center of the vessel, the velocity magnitude is estimated to be 0.25 ± 0.023 m/s, compared with an expected peak velocity magnitude of 0.25 m/s, and the beam-to-flow angle is calculated to be 89.3° ± 0.77°, compared with an expected angle value between 89° and 90°. For steering angles up to ±20° degrees, the relative standard deviation is less than 20%. The results also show that a 64-element transducer implementation is feasible, but with a poorer performance compared with a 128-element transducer. The simulation and experimental results demonstrate that the TO method is suitable for use in conjunction with a phased-array transducer, and that 2-D vector velocity estimation is possible down to a depth of 15 cm.

  6. Transdermal Delivery of siRNA through Microneedle Array

    NASA Astrophysics Data System (ADS)

    Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao

    2016-02-01

    Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.

  7. Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling

    NASA Astrophysics Data System (ADS)

    Tian, Chang-Hai; Zhang, Xi-Yun; Wang, Zhen-Hua; Liu, Zong-Hua

    2017-06-01

    Chimera states have been studied in 1D arrays, and a variety of different chimera states have been found using different models. Research has recently been extended to 2D arrays but only to phase models of them. Here, we extend it to a nonphase model of 2D arrays of neurons and focus on the influence of nonlocal coupling. Using extensive numerical simulations, we find, surprisingly, that this system can show most types of previously observed chimera states, in contrast to previous models, where only one or a few types of chimera states can be observed in each model. We also find that this model can show some special chimera-like patterns such as gridding and multicolumn patterns, which were previously observed only in phase models. Further, we present an effective approach, i.e., removing some of the coupling links, to generate heterogeneous coupling, which results in diverse chimera-like patterns and even induces transformations from one chimera-like pattern to another.

  8. Coherence of beam arrays propagating in the turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Charnotskii, Mikhail

    2010-04-01

    We analyze some recent publications addressing propagation of the partially coherent polarized beams and beam arrays in the turbulent atmosphere. We show that the published results are limited to the scalar propagation model, and are not particular to the beam polarization. Therefore these results are equally relevant for the scalar beam pairs and arrays discriminated by some parameters such as small frequency shift, time delay or geometry, but not necessary the polarization. We use the virtual incoherent source model to derive the general form of the mutual coherence function of the two Schell-type beams. We discuss some physical stochastic models that result in the creation of the Schell-type beams and beam arrays. New classes of the uniformly, nonuniformly and nonlocally coherent beam pairs emerge naturally from this analysis. Rigorous, Markov approximation-based, propagation model provides relatively simple analytic results for the second-order moments of the optical field of the partially-coherent individual beams and beam pairs. We examine the changes of the beam mutual coherence in the process of the free-space propagation and propagation through the turbulent atmosphere.

  9. Recent Results of the Telescope Array Experiment

    NASA Astrophysics Data System (ADS)

    Ivanov, Dmitri

    2015-04-01

    The Telescope Array (TA) is the largest cosmic ray experiment in the northern hemisphere and covers 10 PeV to 100 EeV range. TA is a hybrid detector that uses air fluorescence detectors combined with a ground array. TA consists of 507 plastic scintillation counters on a 1.2km square grid, overlooked by 3 fluorescence detector stations, and measures cosmic rays above 1 EeV. TA has collected 6.5 years of data. Results from the TA low energy extension (TALE), which sees cosmic rays down to 10 PeV, will also be shown. This contribution will consist of three parts. First, we will present the cosmic ray energy spectrum measured over 4 decades in energy. Next, we will discuss the latest results of the measurements of cosmic ray mass composition by the TA fluorescence detectors. Finally, we will show the latest results of the TA anisotropy measurements at the highest energies, where we have seen a concentration of events, called the ``hotspot,'' centered in the Ursa Major. For the Telescope Array Collaboration. Done...processed 1261 records...10:46:59 Beginning APS data extraction...10:47:48

  10. Effect of Nanohole Spacing on the Self-Imaging Phenomenon Created by the Three-Dimensional Propagation of Light through Periodic Nanohole Arrays

    PubMed Central

    Chowdhury, Mustafa H.; Lindquist, Nathan C.; Lesuffleur, Antoine; Oh, Sang-Hyun; Lakowicz, Joseph R.; Ray, Krishanu

    2013-01-01

    We present a detailed study of the inter-nanohole distance that governs the self-imaging phenomenon created by the three-dimensional propagation of light through periodic nanohole arrays on plasmonic substrates. We used scanning near-field optical microscopy (SNOM) to map the light intensity distributions at various heights above 10×10 nanohole arrays of varying pitch sizes on silver films. Our results suggest the inter-hole spacing has to be greater than the wavelength of the incident light to create the self-imaging phenomenon. We also present Finite-Difference Time-Domain (FDTD) calculations which show qualitative corroboration of our experimental results. Both our experimental and FDTD results show that the self-imaging phenomenon is more pronounced for structures with larger pitch sizes. We believe this self-imaging phenomenon is related to the Talbot imaging effect that has also been modified by a plasmonic component and can potentially be used to provide the basis for a new class of optical microscopes. PMID:24416456

  11. Fabrication and Characterization of Vertically Aligned ZnO Nanorod Arrays via Inverted Monolayer Colloidal Crystals Mask

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Ding, Taotao; Qi, Zhiqiang; Zhang, Wei; Zhang, Jun; Xu, Juan; Chen, Jingwen; Dai, Jiangnan; Chen, Changqing

    2018-04-01

    The periodically ordered ZnO nanorod (NR) arrays have been successfully synthesized via a hydrothermal approach on the silicon substrates by templating of the TiO2 ring deriving from the polystyrene (PS) nanosphere monolayer colloidal crystals (MCC). With the inverted MCC mask, sol-gel-derived ZnO seeds could serve as the periodic nucleation positions for the site-specific growth of ZnO NRs. The large-scale patterned arrays of single ZnO NR with good side-orientation can be readily produced. According to the experimental results, the as-integrated ZnO NR arrays showed an excellent crystal quality and optical property, very suitable for optoelectronic applications such as stimulated emitters and ZnO photonic crystal devices.

  12. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen

    2014-07-01

    A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.

  13. Invariant submanifold for series arrays of Josephson junctions.

    PubMed

    Marvel, Seth A; Strogatz, Steven H

    2009-03-01

    We study the nonlinear dynamics of series arrays of Josephson junctions in the large-N limit, where N is the number of junctions in the array. The junctions are assumed to be identical, overdamped, driven by a constant bias current, and globally coupled through a common load. Previous simulations of such arrays revealed that their dynamics are remarkably simple, hinting at the presence of some hidden symmetry or other structure. These observations were later explained by the discovery of N-3 constants of motion, the choice of which confines the resulting flow in phase space to a low-dimensional invariant manifold. Here we show that the dimensionality can be reduced further by restricting attention to a special family of states recently identified by Ott and Antonsen. In geometric terms, the Ott-Antonsen ansatz corresponds to an invariant submanifold of dimension one less than that found earlier. We derive and analyze the flow on this submanifold for two special cases: an array with purely resistive loading and another with resistive-inductive-capacitive loading. Our results recover (and in some instances improve) earlier findings based on linearization arguments.

  14. Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS

    NASA Astrophysics Data System (ADS)

    Dronov, Alexey; Gavrilin, Ilya; Kirilenko, Elena; Dronova, Daria; Gavrilov, Sergey

    2018-03-01

    High resolution Scanning Auger Electron Spectroscopy (AES) and Time-of-Flight Secondary Ion Mass-Spectrometry (ToF SIMS) were used to investigate structure and elemental composition variation of both across an array of TiO2 nanotubes (NTs) and single tube of an array. The TiO2 NT array was grown by anodic oxidation of Ti foil in fluorine-containing ethylene glycol electrolyte. It was found that the studied anodic TiO2 nanotubes have a layered structure with rather sharp interfaces. The differences in AES depth profiling results of a single tube with the focused primary electron beam (point analysis) and over an area of 75 μm in diameter of a nanotube array with the defocused primary electron beam are discussed. Depth profiling by ToF SIMS was carried out over approximately the same size of a nanotube array to determine possible ionic fragments in the structure. The analysis results show that the combination of both mentioned methods is useful for a detailed analysis of nanostructures with complex morphology and multi-layered nature.

  15. Coronal plasma development in wire-array z-pinches made of twisted-pairs

    NASA Astrophysics Data System (ADS)

    Hoyt, C. L.; Greenly, J. B.; Gourdain, P. A.; Knapp, P. F.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.; Kusse, B. R.

    2009-11-01

    We have investigated coronal and core plasma development in wire array z-pinches in which single fine wires are replaced by twisted-pairs (``cable'') on the 1 MA, 100 ns rise time COBRA pulsed power generator. X-ray radiography, employed to investigate dense wire core expansion, showed periodic axial nonuniformity and evidence for shock waves developing where the individual wire plasmas collide. Laser shadowgraphy images indicated that the axial instability properties of the coronal plasma are substantially modified from ordinary wire arrays. Cable mass per unit length, material and the twist wavelength were varied in order to study their effects upon the instability wavelength. Implosion uniformity and bright-spot formation, as well as magnetic topology evolution, have also been investigated using self-emission imaging, x-ray diagnostics and small B-dot probes, respectively. Results from the cable-array z-pinches will be compared with results from ordinary wire-array z-pinches. This research was supported by the SSAA program of the National Nuclear Security Administration under DOE Cooperative agreement DE-FC03-02NA00057.

  16. Gain assisted coherent control of microwave pulse in a one dimensional array of artificial atoms

    NASA Astrophysics Data System (ADS)

    Waqas, Mohsin; Ayaz, M. Q.; Waseem, M.; Qamar, Sajid; Qamar, Shahid

    2018-06-01

    We study the coherent propagation of a microwave pulse through a one-dimensional array of artificial atoms. The scheme is based upon gain assisted propagation of the pulse using two-photon Raman transition in a three-level superconducting artificial atoms (SAAs) coupled to a microwave transmission line. Our results show that the group velocity can be significantly reduced by increasing the Rabi frequency of the pump fields which in turn can lead to an efficient storage of the pulse inside a 1D array of SAAs. Further, the intensity of the transmitted pulse increases with the number of artificial atoms owing to the gain associated with the two-photon Raman transition. Our results also show that the window width decreases for both scattering and negligible scattering cases with the increase in the number of SAAs. The fidelity of the system also remains high even after the passage of the pulse through a large number of SAAs.

  17. Conductance based characterization of structure and hopping site density in 2D molecule-nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    McCold, Cliff E.; Fu, Qiang; Howe, Jane Y.; Hihath, Joshua

    2015-09-01

    Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems.Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems. Electronic supplementary information (ESI) available: Temperature dependent measurements, activation energies, particle size distributions, void density-polydispersity relation, and DLS data. See DOI: 10.1039/c5nr04460j

  18. Direct measurements of the pressure distribution along the contact area during droplet impact

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Vinh; Matsumoto, Kiyoshi; Shimoyama, Isao

    2016-11-01

    We report direct measurements of the pressure distribution on the contact area during the impact of a droplet on a micropillar array. The measurements were realized using an array of MEMS-based force sensors fabricated underneath the micropillars. We show that immediately after the droplet hits the surface, the pressure becomes maximum at the center of the contact area and this maximum pressure value is more than 10 times larger than the dynamic pressure. This result emphasizes the effect of water-hammer-type pressure during the early stage of the impact. Furthermore, our measurement results demonstrate that the critical pressure associated with Cassie-Wenzel transition agrees well with the maximum capillary pressure of the micropillar array.

  19. Design considerations for high-altitude, long-endurance, microwave-powered aircraft. M.S. Thesis - George Washington Univ., Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Q.

    1985-01-01

    The sizing and performance analyses have been conducted in the design of long-endurance, high-altitude airplanes. These airplanes receive power either continuously beamed from a phased array transmitter or intermittently beamed from a dish transmitter. Results are presented for the cases of flight in zero wind speed and nonzero wind speed. Sensitivity studies indicate that the vehicle size is relatively insensitive to changes in the transmitter size. Cost estimates were made using models that excluded the airplane cost. Using a reference payload, results obtained from array and dish configurations were compared. Comparisons showed savings in cost as well as smaller vehicle sizes when an array transmitter was used.

  20. Hierarchical NiCo2 S4 Nanotube@NiCo2 S4 Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors.

    PubMed

    Chen, Haichao; Chen, Si; Shao, Hongyan; Li, Chao; Fan, Meiqiang; Chen, Da; Tian, Guanglei; Shu, Kangying

    2016-01-01

    Hierarchical NiCo2 S4 nanotube@NiCo2 S4 nanosheet arrays on Ni foam have been successfully synthesized. Owing to the unique hierarchical structure, enhanced capacitive performance can be attained. A specific capacitance up to 4.38 F cm(-2) is attained at 5 mA cm(-2) , which is much higher than the specific capacitance values of NiCo2 O4 nanosheet arrays, NiCo2 S4 nanosheet arrays and NiCo2 S4 nanotube arrays on Ni foam. The hierarchical NiCo2 S4 nanostructure shows superior cycling stability; after 5000 cycles, the specific capacitance still maintains 3.5 F cm(-2) . In addition, through the morphology and crystal structure measurement after cycling stability test, it is found that the NiCo2 S4 electroactive materials are gradually corroded; however, the NiCo2 S4 phase can still be well-maintained. Our results show that hierarchical NiCo2 S4 nanostructures are suitable electroactive materials for high performance supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Comparative Chemometric Analysis for Classification of Acids and Bases via a Colorimetric Sensor Array.

    PubMed

    Kangas, Michael J; Burks, Raychelle M; Atwater, Jordyn; Lukowicz, Rachel M; Garver, Billy; Holmes, Andrea E

    2018-02-01

    With the increasing availability of digital imaging devices, colorimetric sensor arrays are rapidly becoming a simple, yet effective tool for the identification and quantification of various analytes. Colorimetric arrays utilize colorimetric data from many colorimetric sensors, with the multidimensional nature of the resulting data necessitating the use of chemometric analysis. Herein, an 8 sensor colorimetric array was used to analyze select acid and basic samples (0.5 - 10 M) to determine which chemometric methods are best suited for classification quantification of analytes within clusters. PCA, HCA, and LDA were used to visualize the data set. All three methods showed well-separated clusters for each of the acid or base analytes and moderate separation between analyte concentrations, indicating that the sensor array can be used to identify and quantify samples. Furthermore, PCA could be used to determine which sensors showed the most effective analyte identification. LDA, KNN, and HQI were used for identification of analyte and concentration. HQI and KNN could be used to correctly identify the analytes in all cases, while LDA correctly identified 95 of 96 analytes correctly. Additional studies demonstrated that controlling for solvent and image effects was unnecessary for all chemometric methods utilized in this study.

  2. Fabrication and Performance of Endoscopic Ultrasound Radial Arrays Based on PMN-PT Single Crystal/Epoxy 1-3 Composite

    PubMed Central

    Zhou, Dan; Cheung, Kwok Fung; Chen, Yan; Lau, Sien Ting; Zhou, Qifa; Shung, K. Kirk; Luo, Hao Su; Dai, Jiyan; Chan, Helen Lai Wa

    2011-01-01

    In this paper, 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystal/epoxy 1–3 composite was used as the active material of the endoscopic ultrasonic radial array transducer, because this composite exhibited ultrahigh electromechanical coupling coefficient (kt = 0.81%), very low mechanical quality factor (Qm = 11) and relatively low acoustic impedance (Zt = 12 MRayls). A 6.91 MHz PMN-PT/epoxy 1–3 composite radial array transducer with 64 elements was tested in a pulse-echo response measurement. The −6-dB bandwidth of the composite array transducer was 102%, which was ~30% larger than that of traditional lead zirconate titanate array transducer. The two-way insertion loss was found to be −32.3 dB. The obtained results show that this broadband array transducer is promising for acquiring high-resolution endoscopic ultrasonic images in many clinical applications. PMID:21342833

  3. Direction-of-arrival estimation for a uniform circular acoustic vector-sensor array mounted around a cylindrical baffle

    NASA Astrophysics Data System (ADS)

    Yang, DeSen; Zhu, ZhongRui

    2012-12-01

    This work investigates the direction-of-arrival (DOA) estimation for a uniform circular acoustic Vector-Sensor Array (UCAVSA) mounted around a cylindrical baffle. The total pressure field and the total particle velocity field near the surface of the cylindrical baffle are analyzed theoretically by applying the method of spatial Fourier transform. Then the so-called modal vector-sensor array signal processing algorithm, which is based on the decomposed wavefield representations, for the UCAVSA mounted around the cylindrical baffle is proposed. Simulation and experimental results show that the UCAVSA mounted around the cylindrical baffle has distinct advantages over the same manifold of traditional uniform circular pressure-sensor array (UCPSA). It is pointed out that the acoustic Vector-Sensor (AVS) could be used under the condition of the cylindrical baffle and that the UCAVSA mounted around the cylindrical baffle could also combine the anti-noise performance of the AVS with spatial resolution performance of array system by means of modal vector-sensor array signal processing algorithms.

  4. Geometrical optimization of the transmission and dispersion properties of arrayed waveguide gratings using two stigmatic point mountings.

    PubMed

    Muñoz, P; Pastor, D; Capmany, J; Martínez, A

    2003-09-22

    In this paper, the procedure to optimize flat-top Arrayed Waveguide Grating (AWG) devices in terms of transmission and dispersion properties is presented. The systematic procedure consists on the stigmatization and minimization of the Light Path Function (LPF) used in classic planar spectrograph theory. The resulting geometry arrangement for the Arrayed Waveguides (AW) and the Output Waveguides (OW) is not the classical Rowland mounting, but an arbitrary geometry arrangement. Simulation using previous published enhanced modeling show how this geometry reduces the passband ripple, asymmetry and dispersion, in a design example.

  5. Visible diffraction from quasi-crystalline arrays of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Butler, Timothy P.; Butt, Haider; Wilkinson, Timothy D.; Amaratunga, Gehan A. J.

    2015-08-01

    Large area arrays of vertically-aligned carbon nanotubes (VACNTs) are patterned in a quasi-crystalline Penrose tile arrangement through electron beam lithography definition of Ni catalyst dots and subsequent nanotube growth by plasma-enhanced chemical vapour deposition. When illuminated with a 532 nm laser beam high-quality and remarkable diffraction patterns are seen. The diffraction is well matched to theoretical calculations which assume apertures to be present at the location of the VACNTs for transmitted light. The results show that VACNTs act as diffractive elements in reflection and can be used as spatially phased arrays for producing tailored diffraction patterns.

  6. A New Individually Addressable Micro-LED Array for Photogenetic Neural Stimulation.

    PubMed

    McGovern, B; Berlinguer Palmini, R; Grossman, N; Drakakis, E; Poher, V; Neil, M A A; Degenaar, P

    2010-12-01

    Here, we demonstrate the use of a micro light emitting diode (LED) array as a powerful tool for complex spatiotemporal control of photosensitized neurons. The array can generate arbitrary, 2-D, excitation patterns with millisecond and micrometer resolution. In particular, we describe an active matrix control address system to allow simultaneous control of 256 individual micro LEDs. We present the system optically integrated into a microscope environment and patch clamp electrophysiology. The results show that the emitters have sufficient radiance at the required wavelength to stimulate neurons expressing channelrhodopsin-2 (ChR2).

  7. Effects of the canopy created velocity inflection in the wake development in a large wind turbine array

    NASA Astrophysics Data System (ADS)

    Agafonova, Oxana; Avramenko, Anna; Chaudhari, Ashvinkumar; Hellsten, Antti

    2016-09-01

    Large Eddy Simulations (LES) are carried out using OpenFOAM to investigate the canopy created velocity inflection in the wake development of a large wind turbine array. Simulations are performed for two cases with and without forest separately. Results of the simulations are further compared to clearly show the changes in the wake and turbulence structure due to the forest. Moreover, the actual mechanical shaft power produced by a single turbine in the array is calculated for both cases. Aerodynamic efficiency and power losses due to the forest are discussed as well.

  8. Differently ordered TiO2 nanoarrays regulated by solvent polarity, and their photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Hu, Wenyuan; Dong, Faqin; Zhang, Jing; Liu, Mingxue; He, Huichao; Wu, Yadong; Yang, Dingming; Deng, Hongquan

    2018-06-01

    Special TiO2 arrays with exposed facets were prepared in different solvents by low- temperature solvothermal synthesis. The morphology, phase and photocatalytic performance influenced by the various solvent polarities were characterized using field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra and electrochemical testing. The results show that differences of solvent polarity are the main force driving differences in array growth; therefore, anatase TiO2 arrays with different crystal facets can be synthesized by tuning solvent polarity. TiO2 arrays prepared in cyclohexane are the best at oxidizing methyl orange through photocatalysis, followed by arrays prepared in toluene and ethanol. Arrays prepared in toluene are the best at reducing Cr(VI) photocatalytically, followed by those prepared in cyclohexane and ethanol. These differences in photocatalytic power are due to the ratio among the different crystal facets that are exposed, which affects the migration behavior of the photogenerated electrons and holes. In addition, the probable growth mechanisms of self-assembled ordered TiO2 arrays in different solvents are described.

  9. Investigation of ablation of thin foil aluminum ribbon array at 1.5 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Fan, E-mail: yefan1931@126.com; Li, Zhenghong; Chen, Faxin

    We present experimental studies of initiation and ablation of a thin foil aluminum ribbon array at the 1.5 MA current level. In contrast to the previous work, we employ ribbon arrays with different ribbon gap parameters to investigate how this affects plasma initiation and foil ablation. Gated narrowband ultraviolet imaging indicated that the current was disorderly distributed at early period of discharge. But later on, it became axially stable and azimuthally symmetrical even for load with a gap as small as 0.1 mm. Using magnetic field probes installed inside and outside the array, we also observed that precursor current at positionsmore » with a distance of less than 2.7 mm to the central axis for 4-mm-radius arrays decreased when ribbon gap became small. Results of 0.2 mm gap ribbon array showed an evidence that ribbons can be merged. These observations imply that thin foil ribbon arrays may have potential applications in z-pinch experiments on large scale pulsed power facilities.« less

  10. Color filter array pattern identification using variance of color difference image

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Jun; Jeon, Jong Ju; Eom, Il Kyu

    2017-07-01

    A color filter array is placed on the image sensor of a digital camera to acquire color images. Each pixel uses only one color, since the image sensor can measure only one color per pixel. Therefore, empty pixels are filled using an interpolation process called demosaicing. The original and the interpolated pixels have different statistical characteristics. If the image is modified by manipulation or forgery, the color filter array pattern is altered. This pattern change can be a clue for image forgery detection. However, most forgery detection algorithms have the disadvantage of assuming the color filter array pattern. We present an identification method of the color filter array pattern. Initially, the local mean is eliminated to remove the background effect. Subsequently, the color difference block is constructed to emphasize the difference between the original pixel and the interpolated pixel. The variance measure of the color difference image is proposed as a means of estimating the color filter array configuration. The experimental results show that the proposed method is effective in identifying the color filter array pattern. Compared with conventional methods, our method provides superior performance.

  11. Vibration energy harvesting using a piezoelectric circular diaphragm array.

    PubMed

    Wang, Wei; Yang, Tongqing; Chen, Xurui; Yao, Xi

    2012-09-01

    This paper presents a method for harvesting electric energy from mechanical vibration using a mechanically excited piezoelectric circular membrane array. The piezoelectric circular diaphragm array consists of four plates with series and parallel connection, and the electrical characteristics of the array are examined under dynamic conditions. With an optimal load resistor of 160 kΩ, an output power of 28 mW was generated from the array in series connection at 150 Hz under a prestress of 0.8 N and a vibration acceleration of 9.8 m/s(2), whereas a maximal output power of 27 mW can be obtained from the array in parallel connection through a resistive load of 11 kΩ under the same frequency, prestress, and acceleration conditions. The results show that using a piezoelectric circular diaphragm array can significantly increase the output of energy compared with the use of a single plate. By choosing an appropriate connection pattern (series or parallel connections) among the plates, the equivalent impedance of the energy harvesting devices can be tailored to meet the matched load of different applications for maximal power output.

  12. Do rewardless orchids show a positive relationship between phenotypic diversity and reproductive success?

    PubMed

    Smithson, Ann; Juillet, Nicolas; Macnair, Mark R; Gigord, Luc D B

    2007-02-01

    Among rewardless orchids, pollinator sampling behavior has been suggested to drive a positive relationship between population phenotypic variability and absolute reproductive success, and hence population fitness. We tested this hypothesis by constructing experimental arrays using the rewardless orchid Dactylorhiza sambucina, which is dimorphic for corolla color. We found no evidence that polymorphic arrays had higher mean reproductive success than monomorphic arrays for pollinia removal, pollen deposition, or fruit set. For pollinia removal, monomorphic yellow arrays had significantly greater reproductive success, and monomorphic red the least. A tendency for yellow arrays to have higher pollen deposition was also found. We argue that differential population fitness was most likely to reflect differential numbers of pollinators attracted to arrays, through preferential long-distance attraction to arrays with yellow inflorescences. Correlative studies of absolute reproductive success in 52 populations of D. sambucina supported our experimental results. To our knowledge this is the first study to suggest that attraction of a greater number of pollinators to rewardless orchids may be of greater functional importance to population fitness, and thus ecology and conservation, than are the behavioral sequences of individual pollinators.

  13. A bio-inspired structural health monitoring system based on ambient vibration

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Kang; Kiremidjian, Anne; Lei, Chi-Yang

    2010-11-01

    A structural health monitoring (SHM) system based on naïve Bayesian (NB) damage classification and DNA-like expression data was developed in this research. Adapted from the deoxyribonucleic acid (DNA) array concept in molecular biology, the proposed structural health monitoring system is constructed utilizing a double-tier regression process to extract the expression array from the structural time history recorded during external excitations. The extracted array is symbolized as the various genes of the structure from the viewpoint of molecular biology and reflects the possible damage conditions prevalent in the structure. A scaled down, six-story steel building mounted on the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark. The structural response at different damage levels and locations under ambient vibration was collected to support the database for the proposed SHM system. To improve the precision of detection in practical applications, the system was enhanced by an optimization process using the likelihood selection method. The obtained array representing the DNA array of the health condition of the structure was first evaluated and ranked. A total of 12 groups of expression arrays were regenerated from a combination of four damage conditions. To keep the length of the array unchanged, the best 16 coefficients from every expression array were selected to form the optimized SHM system. Test results from the ambient vibrations showed that the detection accuracy of the structural damage could be greatly enhanced by the optimized expression array, when compared to the original system. Practical verification also demonstrated that a rapid and reliable result could be given by the final system within 1 min. The proposed system implements the idea of transplanting the DNA array concept from molecular biology into the field of SHM.

  14. Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate.

    PubMed

    Jamal, Mamun; Hasan, Maksudul; Mathewson, Alan; Razeeb, Kafil M

    2013-02-15

    Enzyme free electrochemical sensor platform based on a vertically aligned nickel nanowire array (NiNAE) and Pt coated nickel nanowire array (Pt/NiNAE) have been developed to detect glutamate. Morphological characterisation of Ni electrodes was carried out using scanning and transmission electron microscopy combined with energy dispersive X-ray (SEM-EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and amperometry were used to evaluate the catalytic activity of the NiNAE and the Pt/NiNAE for glutamate. It has been found that both NiNAE and Pt/NiNAE electrodes showed remarkably enhanced electrocatalytic activity towards glutamate compared to planar Ni electrodes, and showed higher catalytic activity when compared to other metallic nanostructure electrodes such as gold nanowire array electrodes (AuNAE) and Pt coated gold nanowire array electrode (Pt/AuNAE). The sensitivity of NiNAE and Pt/NiNAE has been found to be 65 and 96 μA mM(-1) cm(-2), respectively, which is approximately 6 to 9 times higher than the state of the art glutamate sensor. Under optimal detection conditions, the as prepared sensors exhibited linear behaviour for glutamate detection in the concentration up to 8mM for both NiNAE and Pt/NiNAE with a limit of detection of 68 and 83 μM, respectively. Experimental results show that the vertically aligned ordered nickel nanowire array electrode (NiNAE) has significant promise for fabricating cost effective, enzyme-less, sensitive, stable and selective sensor platform. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Ag nanoparticle-filled TiO2 nanotube arrays prepared by anodization and electrophoretic deposition for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Sugri Nbelayim, Pascal; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2017-03-01

    A layer of TiO2 nanotube (TNT) arrays with a thickness of 13 μm is synthesized by a two-step anodic oxidation from Ti metal foil. Surface charged Ag nanoparticles (NPs) are prepared by chemical reduction. After a pretreatment of the TNT arrays by acetone vapor, Ag NP filled TNT arrays can be achieved by electrophoretic deposition (EPD). Effects of the applied voltage during EPD such as DC-AC difference, frequency and waveform are investigated by quantitative analysis using atomic absorption spectroscopy. The results show that the best EPD condition is using DC 2 V + AC 4 V and a square wave of 1 Hz as the applied voltage. Back illuminated dye-sensitized solar cells are fabricated from TNT arrays with and without Ag NPs. The efficiency increased from 3.70% to 5.01% by the deposition of Ag NPs.

  16. Tissue Damage, Temperature, and pH Induced by Different Electrode Arrays on Potato Pieces (Solanum tuberosum L.)

    PubMed Central

    González, Maraelys Morales; Aguilar, Claudia Hernández; Pacheco, Flavio Arturo Domínguez; Cabrales, Luis Enrique Bergues; Reyes, Juan Bory; Nava, Juan José Godina; Ambrosio, Paulo Eduardo; Domiguez, Dany Sanchez; Sierra González, Victoriano Gustavo; Pupo, Ana Elisa Bergues; Ciria, Héctor Manuel Camué; Alemán, Elizabeth Issac; García, Francisco Monier; Rivas, Clara Berenguer; Reina, Evelyn Chacón

    2018-01-01

    One of the most challenging problems of electrochemical therapy is the design and selection of suitable electrode array for cancer. The aim is to determine how two-dimensional spatial patterns of tissue damage, temperature, and pH induced in pieces of potato (Solanum tuberosum L., var. Mondial) depend on electrode array with circular, elliptical, parabolic, and hyperbolic shape. The results show the similarity between the shapes of spatial patterns of tissue damage and electric field intensity, which, like temperature and pH take the same shape of electrode array. The adequate selection of suitable electrodes array requires an integrated analysis that involves, in a unified way, relevant information about the electrochemical process, which is essential to perform more efficiently way the therapeutic planning and the personalized therapy for patients with a cancerous tumor. PMID:29725584

  17. Precise DOA Estimation Using SAGE Algorithm with a Cylindrical Array

    NASA Astrophysics Data System (ADS)

    Takanashi, Masaki; Nishimura, Toshihiko; Ogawa, Yasutaka; Ohgane, Takeo

    A uniform circular array (UCA) is a well-known array configuration which can accomplish estimation of 360° field of view with identical accuracy. However, a UCA cannot estimate coherent signals because we cannot apply the SSP owing to the structure of UCA. Although a variety of studies on UCA in coherent multipath environments have been done, it is impossible to estimate the DOA of coherent signals with different incident polar angles. Then, we have proposed Root-MUSIC algorithm with a cylindrical array. However, the estimation performance is degraded when incident signals arrive with close polar angles. To solve this problem, in the letter, we propose to use SAGE algorithm with a cylindrical array. Here, we adopt a CLA Root-MUSIC for the initial estimation and decompose two-dimensional search to double one-dimensional search to reduce the calculation load. The results show that the proposal achieves high resolution with low complexity.

  18. Magnetic and plasmonic properties in noncompensated Fe-Sn codoped In2O3 nanodot arrays

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Nan; Jiang, Feng-Xian; Yan, Li-Juan; Xu, Xiao-Hong

    2018-05-01

    The noncompensated Fe-Sn codoped In2O3 nanodot arrays with the Sn concentration of 0.02, 0.05, 0.1, 0.15 and 0.2 were deposited on Al2O3 (0 0 0 1) substrates using laser molecular beam epitaxy with the aid of anodic aluminium oxide templates. The structural and compositional results reveal that the nanodot arrays show the single phase cubic In2O3 structure and Sn and Fe dopant ions substitute In3+ sites of the In2O3 lattice with a tetravalence (Sn4+) and a mixed-valence (Fe2+/Fe3+), respectively. All the nanodot arrays exhibit the obvious room temperature ferromagnetic behavior and the localized surface plasmon resonance (LSPR) band. Moreover, the ferromagnetism and the LSPR absorption peak can be tuned by the Sn concentration or sizes of nanodot arrays.

  19. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.

    PubMed

    Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin

    2008-05-28

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.

  20. Cooperative resonances in light scattering from two-dimensional atomic arrays

    NASA Astrophysics Data System (ADS)

    Shahmoon, Ephraim; Wild, Dominik; Lukin, Mikhail; Yelin, Susanne

    2017-04-01

    We consider light scattering off a two-dimensional (2D) dipolar array and show how it can be tailored by properly choosing the lattice constant of the order of the incident wavelength. In particular, we demonstrate that such arrays can shape the emission pattern from an individual quantum emitter into a well-defined, collimated beam, and operate as a nearly perfect mirror for a wide range of incident angles and frequencies. These results can be understood in terms of the cooperative resonances of the surface modes supported by the 2D array. Experimental realizations are discussed, using ultracold arrays of trapped atoms and excitons in 2D semiconductor materials, as well as potential applications ranging from atomically thin metasurfaces to single photon nonlinear optics and nanomechanics. We acknowledge the financial support of the NSF and the MIT-Harvard Center for Ultracold Atoms.

  1. Recording and assessment of evoked potentials with electrode arrays.

    PubMed

    Miljković, N; Malešević, N; Kojić, V; Bijelić, G; Keller, T; Popović, D B

    2015-09-01

    In order to optimize procedure for the assessment of evoked potentials and to provide visualization of the flow of action potentials along the motor systems, we introduced array electrodes for stimulation and recording and developed software for the analysis of the recordings. The system uses a stimulator connected to an electrode array for the generation of evoked potentials, an electrode array connected to the amplifier, A/D converter and computer for the recording of evoked potentials, and a dedicated software application. The method has been tested for the assessment of the H-reflex on the triceps surae muscle in six healthy humans. The electrode array with 16 pads was positioned over the posterior aspect of the thigh, while the recording electrode array with 16 pads was positioned over the triceps surae muscle. The stimulator activated all the pads of the stimulation electrode array asynchronously, while the signals were recorded continuously at all the recording sites. The results are topography maps (spatial distribution of evoked potentials) and matrices (spatial visualization of nerve excitability). The software allows the automatic selection of the lowest stimulation intensity to achieve maximal H-reflex amplitude and selection of the recording/stimulation pads according to predefined criteria. The analysis of results shows that the method provides rich information compared with the conventional recording of the H-reflex with regard the spatial distribution.

  2. Tactile surface classification for limbed robots using a pressure sensitive robot skin.

    PubMed

    Shill, Jacob J; Collins, Emmanuel G; Coyle, Eric; Clark, Jonathan

    2015-02-02

    This paper describes an approach to terrain identification based on pressure images generated through direct surface contact using a robot skin constructed around a high-resolution pressure sensing array. Terrain signatures for classification are formulated from the magnitude frequency responses of the pressure images. The initial experimental results for statically obtained images show that the approach yields classification accuracies [Formula: see text]. The methodology is extended to accommodate the dynamic pressure images anticipated when a robot is walking or running. Experiments with a one-legged hopping robot yield similar identification accuracies [Formula: see text]. In addition, the accuracies are independent with respect to changing robot dynamics (i.e., when using different leg gaits). The paper further shows that the high-resolution capabilities of the sensor enables similarly textured surfaces to be distinguished. A correcting filter is developed to accommodate for failures or faults that inevitably occur within the sensing array with continued use. Experimental results show using the correcting filter can extend the effective operational lifespan of a high-resolution sensing array over 6x in the presence of sensor damage. The results presented suggest this methodology can be extended to autonomous field robots, providing a robot with crucial information about the environment that can be used to aid stable and efficient mobility over rough and varying terrains.

  3. Sorting white blood cells in microfabricated arrays

    NASA Astrophysics Data System (ADS)

    Castelino, Judith Andrea Rose

    Fractionating white cells in microfabricated arrays presents the potential for detecting cells with abnormal adhesive or deformation properties. A possible application is separating nucleated fetal red blood cells from maternal blood. Since fetal cells are nucleated, it is possible to extract genetic information about the fetus from them. Separating fetal cells from maternal blood would provide a low cost noninvasive prenatal diagnosis for genetic defects, which is not currently available. We present results showing that fetal cells penetrate further into our microfabricated arrays than adult cells, and that it is possible to enrich the fetal cell fraction using the arrays. We discuss modifications to the array which would result in further enrichment. Fetal cells are less adhesive and more deformable than adult white cells. To determine which properties limit penetration, we compared the penetration of granulocytes and lymphocytes in arrays with different etch depths, constriction size, constriction frequency, and with different amounts of metabolic activity. The penetration of lymphocytes and granulocytes into constrained and unconstrained arrays differed qualitatively. In constrained arrays, the cells were activated by repeated shearing, and the number of cells stuck as a function of distance fell superexponentially. In unconstrained arrays the number of cells stuck fell slower than an exponential. We attribute this result to different subpopulations of cells with different sticking parameters. We determined that penetration in unconstrained arrays was limited by metabolic processes, and that when metabolic activity was reduced penetration was limited by deformability. Fetal cells also contain a different form of hemoglobin with a higher oxygen affinity than adult hemoglobin. Deoxygenated cells are paramagnetic and are attracted to high magnetic field gradients. We describe a device which can separate cells using 10 μm magnetic wires to deflect the paramagnetic cells. We present preliminary results from a test system that separates paramagnetic beads from latex beads. The separation is limited by our ability to produce the high field gradients which are necessary to separate cells according to their hemoglobin content, and we present estimates of the magnetic gradients we achieved.

  4. Forward modeling to investigate inversion artifacts resulting from time-lapse electrical resistivity tomography during rainfall simulations

    NASA Astrophysics Data System (ADS)

    Carey, Austin M.; Paige, Ginger B.; Carr, Bradley J.; Dogan, Mine

    2017-10-01

    Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events.

  5. In vitro cyto-biocompatibility study of thin-film transistors substrates using an organotypic culture method.

    PubMed

    Leclerc, Eric; Duval, Jean-Luc; Egles, Christophe; Ihida, Satoshi; Toshiyoshi, Hiroshi; Tixier-Mita, Agnès

    2017-01-01

    Thin-Film-Transistors Liquid-Crystal Display has become a standard in the field of displays. However, the structure of these devices presents interest not only in that field, but also for biomedical applications. One of the key components, called here TFT substrate, is a glass substrate with a dense and large array of thousands of transparent micro-electrodes that can be considered as a large scale multi-electrode array(s). Multi-electrode array(s) are widely used for in vitro electrical investigations on neurons and brain, allowing excitation, registration, and recording of their activity. However, the range of application of conventional multi-electrode array(s) is usually limited to some tens of cells in a homogeneous cell culture, because of a small area, small number and a low density of the micro-electrodes. TFT substrates do not have these limitations and the authors are currently studying the possibility to use TFT substrates as new tools for in vitro electrical investigation on tissues and organoids. In this respect, experiments to determine the cyto-biocompatibility of TFT substrates with tissues were conducted and are presented in this study. The investigation was performed using an organotypic culture method with explants of brain and liver tissues of chick embryos. The results in term of morphology, cell migration, cell density and adhesion were compared with the results from Thermanox ® , a conventional plastic for cell culture, and with polydimethylsiloxane, a hydrophobic silicone. The results with TFT substrates showed similar results as for the Thermanox ® , despite the TFT hydrophobicity. TFT substrates have a weak cell adhesion and promote cell migration similarly to Thermanox ® . It could be concluded that the TFT substrates are cyto-biocompatible with the two studied organs.

  6. Response effects in the perception of conjunctions of colour and form.

    PubMed

    Chmiel, N

    1989-01-01

    Two experiments addressed the question whether visual search for a target defined by a conjunction of colour and form requires a central, serial, attentional process, but detection of a single feature, such as colour, is preattentive, as proposed by the feature-integration theory of attention. Experiment 1 investigated conjunction and feature search using small array sizes of up to five elements, under conditions which precluded eye-movements, in contrast to previous studies. The results were consistent with the theory. Conjunction search showed the effect of adding distractors to the display, the slopes of the curves relating RT to array size were in the approximate ratio of 2:1, consistent with a central, serial search process, exhaustive for absence responses and self-terminating for presence responses. Feature search showed no significant effect of distractors for presence responses. Experiment 2 manipulated the response requirements in conjunction search, using vocal response in a GO-NO GO procedure, in contrast to Experiment 1, which used key-press responses in a YES-NO procedure. Strikingly, presence-response RT was not affected significantly by the number of distractors in the array. The slope relating RT to array size was 3.92. The absence RT slope was 30.56, producing a slope ratio of approximately 8:1. There was no interaction of errors with array size and the presence and absence conditions, implying that RT-error trade-offs did not produce this slope ratio. This result suggests that feature-integration theory is at least incomplete.

  7. Imaging Arrays With Improved Transmit Power Capability

    PubMed Central

    Zipparo, Michael J.; Bing, Kristin F.; Nightingale, Kathy R.

    2010-01-01

    Bonded multilayer ceramics and composites incorporating low-loss piezoceramics have been applied to arrays for ultrasound imaging to improve acoustic transmit power levels and to reduce internal heating. Commercially available hard PZT from multiple vendors has been characterized for microstructure, ability to be processed, and electroacoustic properties. Multilayers using the best materials demonstrate the tradeoffs compared with the softer PZT5-H typically used for imaging arrays. Three-layer PZT4 composites exhibit an effective dielectric constant that is three times that of single layer PZT5H, a 50% higher mechanical Q, a 30% lower acoustic impedance, and only a 10% lower coupling coefficient. Application of low-loss multilayers to linear phased and large curved arrays results in equivalent or better element performance. A 3-layer PZT4 composite array achieved the same transmit intensity at 40% lower transmit voltage and with a 35% lower face temperature increase than the PZT-5 control. Although B-mode images show similar quality, acoustic radiation force impulse (ARFI) images show increased displacement for a given drive voltage. An increased failure rate for the multilayers following extended operation indicates that further development of the bond process will be necessary. In conclusion, bonded multilayer ceramics and composites allow additional design freedom to optimize arrays and improve the overall performance for increased acoustic output while maintaining image quality. PMID:20875996

  8. Integrated parallel reception, excitation, and shimming (iPRES).

    PubMed

    Han, Hui; Song, Allen W; Truong, Trong-Kha

    2013-07-01

    To develop a new concept for a hardware platform that enables integrated parallel reception, excitation, and shimming. This concept uses a single coil array rather than separate arrays for parallel excitation/reception and B0 shimming. It relies on a novel design that allows a radiofrequency current (for excitation/reception) and a direct current (for B0 shimming) to coexist independently in the same coil. Proof-of-concept B0 shimming experiments were performed with a two-coil array in a phantom, whereas B0 shimming simulations were performed with a 48-coil array in the human brain. Our experiments show that individually optimized direct currents applied in each coil can reduce the B0 root-mean-square error by 62-81% and minimize distortions in echo-planar images. The simulations show that dynamic shimming with the 48-coil integrated parallel reception, excitation, and shimming array can reduce the B0 root-mean-square error in the prefrontal and temporal regions by 66-79% as compared with static second-order spherical harmonic shimming and by 12-23% as compared with dynamic shimming with a 48-coil conventional shim array. Our results demonstrate the feasibility of the integrated parallel reception, excitation, and shimming concept to perform parallel excitation/reception and B0 shimming with a unified coil system as well as its promise for in vivo applications. Copyright © 2013 Wiley Periodicals, Inc.

  9. The effects of correlated noise in phased-array observations of radio sources

    NASA Technical Reports Server (NTRS)

    Dewey, Rachel J.

    1994-01-01

    Arrays of radio telescopes are now routinely used to provide increased signal-to-noise when observing faint point sources. However, calculation of the achievable sensitivity is complicated if there are sources in the field of view other than the target source. These additional sources not only increase the system temperatures of the individual antennas, but may also contribute significant 'correlated noise' to the effective system temperature of the array. This problem has been of particular interest in the context of tracking spacecraft in the vicinity of radio-bright planets (e.g., Galileo at Jupiter), but it has broader astronomical relevance as well. This paper presents a general formulation of the problem, for the case of a point-like target source in the presence of an additional radio source of arbitrary brightness distribution. We re-derive the well known result that, in the absence of any background sources, a phased array of N indentical antennas is a factor of N more sensitive than a single antenna. We also show that an unphased array of N identical antennas is, on average, no more sensitive than a single antenna if the signals from the individual antennas are combined prior to detection. In the case where a background source is present we show that the effects of correlated noise are highly geometry dependent, and for some astronomical observations may cause significant fluctuations in the array's effective system temperature.

  10. Vertical directivities of seismic arrays on the ground surface

    NASA Astrophysics Data System (ADS)

    Shiraishi, H.; Asanuma, H.

    2012-12-01

    Microtremor survey method (MSM) is a technique to estimate subsurface velocity structures by inverting phase velocities of the surface waves in the microtremors. We can explorer the S-wave velocity structures at significantly lower expenses by the MSM than the conventional geophysical techniques because of its passive nature. Coherent waves across an array are identified in the MSM, and, therefore, all the existing velocity inversion methods have been deduced under an implicit assumption of horizontal velocity structure. However, it is expected that the development of the 3D inversion theory would drastically enhance applicability and reliability of the MSM. We, hence, investigated the characteristics of vertical directivities of the arrays deployed on the ground surface as an initial step for deriving the 3D MSM. We have firstly examined the response of an elemental two sensor array to which plane waves propagates from the deep crust with a certain angle of incident, and then examined the characteristics of several types of arrays, including triangular and circular arrays to clarify the characteristics of practical arrays. Real part of the complex coherence function, which has been derived to evaluate coherence of the Rayleigh wave between sensors for plane waves (Shiraishi et al., 2006), has been applied for this investigation. Our results showed that the directivity varies according to a parameter kr ( k : wave number, r : separation of the sensors ). A vertical directivity of two sensor array at kr = π shows a rotationally-symmetrical shape (Figure (a)). In contrast, an equilateral triangle array has a conspicuous directivity toward the vertical direction (cf. Figure (b)). This divergence suggests that the shape of the vertical directivity significantly depend on the geometry, and a sharp directivity toward just beneath the array can be realized by designing the vertical directivity. We concluded from this study that 3D MSM is feasible and further study to investigate measurement and processing theories will be made by the authors. An example of the vertical directivity at kr=π. Red circles represent the sensors.

  11. SU-E-T-111: Development of Proton Dosimetry System Using Fiber-Optic Cerenkov Radiation Sensor Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, J; Kim, M; Shin, D

    2014-06-01

    Purpose: We had developed and evaluated a new dosimetric system for proton therapy using array of fiber-optic Cerenkov radiation sensor (FOCRS) which can measure a percent depth dose (PDD) instantly. In this study, the Bragg peaks and spread out Bragg peak (SOBP) of the proton beams measured by FOCRS array were compared with those measured by an ion chamber. Methods and Method: We fabricated an optical fiber array of FOCRS in a handmade phantom which is composed of poly-methyl methacrylate (PMMA). There are 75 holes of 1mm diameter inside the phantom which is designed to be exposed in direction ofmore » beam when it is emerged in water phantom. The proton beam irradiation was carried out using IBA cyclotron PROTEUS 235 at national cancer center in Korea and a commercial data acquisition system was used to digitize the analog signal. Results: The measured Bragg peak and SOBP for the proton ranges of 7∼ 20 cm were well matched with the result from ion chamber. The comparison results show that the depth of proton beam ranges and the width of SOBP measured by array of FOCRS are comparable with the measurement from multi-layer ion chamber (MLIC) although there are some uncertainty in the measurement of FOCRS array for some specific beam ranges. Conclusion: The newly developed FOCRS array based dosimetric system for proton therapy can efficiently reduce the time and effort needed for proton beam range measurement compared to the conventional method and has the potential to be used for the proton pencil beam application.« less

  12. Frequency control using a complex effective reflectivity in laterally coupled semiconductor laser arrays.

    PubMed

    Griffel, G; Marshall, W K; Gravé, I; Yariv, A; Nabiev, R

    1991-08-01

    Frequency selectivity of a novel type of multielement, multisection laterally coupled semiconductor laser array is studied using the round-trip method. It is found that such a structure should lead to a strong frequency selectivity owing to a periodic dependency of the threshold gain on the frequency. A gain-guided two-coupledcavity device was fabricated. The experimental results show excellent agreement with the theoretical prediction.

  13. Electrokinetic Microactuator Arrays for Control of Vehicles

    DTIC Science & Technology

    2002-08-01

    programmable logic array (PLA) content in each unit cell....................46 Chapter 4 4.1 Schematic showing electroosmotic flow induced by an...control situations involved in propulsion systems, spanning from con- trol of mixing in advanced gas turbine combustors, to active control of surge and... electroosmotic flow, shown schematically in Fig. 4.1, results when an electric field is applied to a liquid electrolyte in contact with a charged solid

  14. The Development and Fabrication of an Implantable, Multiplexed, Semiconductor Multielectrode Array.

    DTIC Science & Technology

    1983-12-01

    ILt D. C. Denton . Their individual and collective efforts in designing, fabricating, and testing an implantable array resulted in a semiconductor device... contaminating sodium ions were attracted by the electrical field developed by the JFET pinch-off voltage. These sodium ions produced leakage paths...34 was implanted in a biological specimen (dog) by Hensley and Denton (Ref 5). Summary of Current Knowledge Hensley and Denton showed the feasibility

  15. Stress field forming of sector array transducers for vibro-acoustography.

    PubMed

    Silva, Glauber T; Chen, Shigao; Frery, Alejandro C; Greenleaf, James F; Fatemi, Mostafa

    2005-11-01

    This paper presents a study of the stress field forming of sector array transducers for vibro-acoustography applications. The system point-spread function (PSF) is given in terms of the dynamic radiation stress exerted on a point target by a dual ultrasound beam with slightly different frequencies. The radiation stress is calculated by assuming that the resulting ultrasound beam is a plane wave. The stress is proportional to the product of the velocity potential of each incident ultrasound beam. The beamforming and stress field forming of sector array transducers are analyzed through linear acoustics. An expression for the velocity potential produced by sector array transducers is derived. The vibro-acoustography PSF is evaluated numerically. A comparison between the PSF of a sector array and a confocal transducers is presented. The compared characteristics of the PSF are sidelobe levels, transverse, and in-depth spatial resolution. Indeed, one motivation to study sector transducers is the fact the depth-of-field of these transducers should be smaller than that of same size confocal transducers. An experimental setup was used to validate the theoretical PSF of sector array transducers. Results show that the measured PSF is in good agreement with the theoretical predications. Vibro-acoustography images of a breast-phantom by both transducers are presented and discussed.

  16. Analysis of mismatch and shading effects in a photovoltaic array using different technologies

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Muñoz, Y.; Ibáñez, F.; Ospino, A.

    2014-06-01

    In this paper, we analyze the performance of a photovoltaic array implemented in the Universidad Politécnica de Valencia which consists of modules of different technologies and power, connected in series, in order to quantify the energy losses due to mismatch and the effect of the shadows. To do this, the performance of the modules was measured in operation under ambient conditions with field measurement equipment (AMPROBE Solar Analyzer, Solar - 4000), which allows the extrapolation of measures to standard conditions STC. For the data validation, measures under controlled conditions were taken to some modules in the flash test laboratory of the Institute of Energy Technology ITE of Valencia in Spain. Subsequently the array curves measured were validated with a photovoltaic array model developed in MATLAB-Simulink for the same conditions and technologies. The results of this particular array are lost up to 20% of the energy supplied due to the modules mismatch. The study shows the curves and the energy loss due to shadows modules. This result opens scenarios for conceivable modifications to the PV field configurations today, chosen during the design stage and unchangeable during the operating stage; and gives greater importance to the energy loss by mismatch in the PV array.

  17. Substrate morphology induced self-organization into carbon nanotube arrays, ropes, and agglomerates.

    PubMed

    Huang, Jia-Qi; Zhang, Qiang; Xu, Guang-Hui; Qian, Wei-Zhong; Wei, Fei

    2008-10-29

    In this paper, hydrophobic carbon nanotube (CNT) arrays, ropes, and agglomerates were synthesized through self-organization on quartz substrates with different micro-structures under the same growth condition. On a flat substrate, a uniform woven structure was formed which resulted in a synchronous growth into an array. When the substrate with 10 µm round concaves distributed on the surface was adopted, the woven structure was sporadic and a CNT cluster was grown in the concave. With further growth, CNT ropes were self-organized. Subsequently, when the substrate consisting of irregular ∼100 nm gaps was used, the initial woven structure was high density, thus resulting in the formation of CNT agglomerates. Study results showed that CNT arrays grown on the flat substrate were of the highest purity and had a contact angle of 153.8 ± 0.9°. Thus, the self-organization behavior among CNTs was in situ modulated by different substrate morphology without further treatments. This provides us with an additional understanding of the self-organization of CNTs during growth, as well as strategies for the controllable synthesis of CNTs with fixed properties.

  18. Damage imaging using Lamb waves for SHM applications

    NASA Astrophysics Data System (ADS)

    Stepinski, Tadeusz; Ambroziński, Łukasz; Uhl, Tadeusz

    2015-03-01

    2-D ultrasonic arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for the inspection of plate-like structures using Lamb waves (LW). Contrary to the classical linear phased arrays (PAs) the 2D arrays enable unequivocal defect localization and they are even capable of mode selectivity of the received LWs . Recently, it has been shown that multistatic synthetic focusing (SF) algorithms applied for 2D arrays are much more effective than the classical phase array mode commonly used in NDT. The multistatic SF assumes multiple transmissions of elements in a transmitting aperture and off-line processing of the data acquired by a receiving aperture. In the simplest implementation of the technique, only a single multiplexed input and a number of output channels are required, which results in significant hardware simplification compared with the PA systems. On the one hand implementation of the multistatic SF to 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process. On the other hand, it enables designing sparse arrays with performance similar to that of the fully populated dense arrays. In this paper we present a general systematic approach to the design and optimization of imaging systems based on the 2D array operating in the multistatic mode. We start from presenting principles of the SF schemes applied to LW imaging. Then, we outline the coarray concept and demonstrate how it can be used for reducing number of elements of the 2D arrays. Finally, efficient tools for the investigation and experimental verification of the designed 2D array prototypes are presented. The first step in the investigation is theoretical evaluation performed using frequency-dependent structure transfer function (STF), which enables approximate simulation of an array excited with a tone-burst in a dispersive medium. Finally, we show how scanning laser vibrometer, sensing waves in multiple points corresponding to the locations of the 2D receiving array elements, can be used as a tool for rapid experimental verification of the developed topologies. The presented methods are discussed in terms of the beampatterns and sparse versions of the fully populated array topologies are be presented. The effect of apodization applied to the array elements is also investigated. Both simulated and experimental results are included.

  19. The Design of Distributed Micro Grid Energy Storage System

    NASA Astrophysics Data System (ADS)

    Liang, Ya-feng; Wang, Yan-ping

    2018-03-01

    Distributed micro-grid runs in island mode, the energy storage system is the core to maintain the micro-grid stable operation. For the problems that it is poor to adjust at work and easy to cause the volatility of micro-grid caused by the existing energy storage structure of fixed connection. In this paper, an array type energy storage structure is proposed, and the array type energy storage system structure and working principle are analyzed. Finally, the array type energy storage structure model is established based on MATLAB, the simulation results show that the array type energy storage system has great flexibility, which can maximize the utilization of energy storage system, guarantee the reliable operation of distributed micro-grid and achieve the function of peak clipping and valley filling.

  20. Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.

    PubMed

    Chen, Bingan; Zhong, Guofang; Oppenheimer, Pola Goldberg; Zhang, Can; Tornatzky, Hans; Esconjauregui, Santiago; Hofmann, Stephan; Robertson, John

    2015-02-18

    We have systematically studied the macroscopic adhesive properties of vertically aligned nanotube arrays with various packing density and roughness. Using a tensile setup in shear and normal adhesion, we find that there exists a maximum packing density for nanotube arrays to have adhesive properties. Too highly packed tubes do not offer intertube space for tube bending and side-wall contact to surfaces, thus exhibiting no adhesive properties. Likewise, we also show that the surface roughness of the arrays strongly influences the adhesion properties and the reusability of the tubes. Increasing the surface roughness of the array strengthens the adhesion in the normal direction, but weakens it in the shear direction. Altogether, these results allow progress toward mimicking the gecko's vertical mobility.

  1. Harmful Gas Recognition Exploiting a CTL Sensor Array

    PubMed Central

    Wang, Qihui; Xie, Lijun; Zhu, Bo; Zheng, Yao; Cao, Shihua

    2013-01-01

    In this paper, a novel cataluminescence (CTL)-based sensor array consisting of nine types of catalytic materials is developed for the recognition of several harmful gases, namely carbon monoxide, acetone, chloroform and toluene. First, the experimental setup is constructed by using sensing nanomaterials, a heating plate, a pneumatic pump, a gas flow meter, a digital temperature device, a camera and a BPCL Ultra Weak Chemiluminescence Analyzer. Then, unique CTL patterns for the four types of harmful gas are obtained from the sensor array. The harmful gases are successful recognized by the PCA method. The optimal conditions are also investigated. Finally, experimental results show high sensitivity, long-term stability and good linearity of the sensor array, which combined with simplicity, make our system a promising application in this field. PMID:24113681

  2. Terahertz absorber based on Fano-like resonance of inverted quadrangular frustum pyramid metal grooves and sensor application

    NASA Astrophysics Data System (ADS)

    Yu, Yingying; Sun, Bo

    2018-07-01

    We investigate the multi-resonance coupling of inverted quadrangular frustum pyramid (IQFP) groove metal arrays at terahertz frequencies. The surface plasmon resonance (SPR) and groove resonance are induced, resulting in resonance coupling. The dipole of the groove resonance drives the quadrupole of the SPR and creates a sharp Fano-like resonance. The effects of geometry parameters including the width (at the bottom) and height are analyzed in detail. The results show that with the decrease in the sidewall slope of the groove, the confinement of the groove region on the electromagnetic field decreases, thereby increasing the resonance coupling. The Fano-like resonance is enhanced. The sensitivity and quality factor are discussed. The results show that the Fano-like resonance has high sensitivity and quality factor. With the increase in the sidewall slope of the groove, the sensitivity increases, and the quality factor decreases. The results show that the Fano-like resonance of IQFP groove metal arrays has a significant potential for biological monitoring and sensing.

  3. Ultrasound imaging based on nonlinear pressure field properties

    NASA Astrophysics Data System (ADS)

    Bouakaz, Ayache; Frinking, Peter J. A.; de Jong, Nico

    2000-07-01

    Ultrasound image quality has experienced a significant improvement over the past years with the utilization of harmonic frequencies. This brings the need to understand the physical processes involved in the propagation of finite amplitude sound beams, and the issues for redesigning and optimizing the phased array transducers. New arrays with higher imaging performances are essential for tissue imaging and contrast imaging as well. This study presents measurements and simulations on a 4.6 MHz square transducer. The numerical scheme used solves the KZK equation in the time domain. Comparison of measured and computed data showed good agreement for low and high excitation levels. In a similar way, a numerical simulation was performed on a linear array with five elements. The simulation showed that the second harmonic beam is narrower than the fundamental with less energy in the near field. In addition, the grating lobes are significantly lower. Accordingly, selective harmonic imaging shows less near field artifacts and will lower the clutter, resulting in much cleaner images.

  4. Examining reference frame interaction in spatial memory using a distribution analysis.

    PubMed

    Street, Whitney N; Wang, Ranxiao Frances

    2016-02-01

    Previous research showed competition among reference frames in spatial attention and language. The present studies developed a new distribution analysis to examine reference frame interactions in spatial memory. Participants viewed virtual arrays of colored pegs and were instructed to remember them either from their own perspective or from the perspective aligned with the rectangular floor. Then they made judgments of relative directions from their respective encoding orientation. Those taking the floor-axis perspective showed systematic bias in the signed errors toward their egocentric perspective, while those taking their own perspective showed no systematic bias, both for random and symmetrical object arrays. The bias toward the egocentric perspective was observed when learning a real symmetric regular object array with strong environmental cues for the aligned axis. These results indicate automatic processing of the self reference while taking the floor-axis perspective but not vice versa, and suggest that research on spatial memory needs to consider the implications of competition effects in reference frame use.

  5. Global Futures: a multithreaded execution model for Global Arrays-based applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavarría-Miranda, Daniel; Krishnamoorthy, Sriram; Vishnu, Abhinav

    2012-05-31

    We present Global Futures (GF), an execution model extension to Global Arrays, which is based on a PGAS-compatible Active Message-based paradigm. We describe the design and implementation of Global Futures and illustrate its use in a computational chemistry application benchmark (Hartree-Fock matrix construction using the Self-Consistent Field method). Our results show how we used GF to increase the scalability of the Hartree-Fock matrix build to up to 6,144 cores of an Infiniband cluster. We also show how GF's multithreaded execution has comparable performance to the traditional process-based SPMD model.

  6. Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology.

    PubMed

    Xie, Dan; Zhang, Honghai; Shu, Xiayun; Xiao, Junfeng

    2012-07-02

    The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.

  7. Airborne laser-diode-array illuminator assessment for the night vision's airborne mine-detection arid test

    NASA Astrophysics Data System (ADS)

    Stetson, Suzanne; Weber, Hadley; Crosby, Frank J.; Tinsley, Kenneth; Kloess, Edmund; Nevis, Andrew J.; Holloway, John H., Jr.; Witherspoon, Ned H.

    2004-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) project has developed and tested a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). The Coastal System Station"s ALRT project, under funding from the Office of Naval Research (ONR), has been designing, developing, integrating, and testing commercial arrays using a Cessna airborne platform over the last several years. This has led to the development of the Airborne Laser Diode Array Illuminator wide field-of-view (ALDAI-W) imaging test bed system. The ALRT project tested ALDAI-W at the Army"s Night Vision Lab"s Airborne Mine Detection Arid Test. By participating in Night Vision"s test, ALRT was able to collect initial prototype nighttime operational data using ALDAI-W, showing impressive results and pioneering the way for final test bed demonstration conducted in September 2003. This paper describes the ALDAI-W Arid Test and results, along with processing steps used to generate imagery.

  8. Compact microwave imaging system to measure spatial distribution of plasma density

    NASA Astrophysics Data System (ADS)

    Ito, H.; Oba, R.; Yugami, N.; Nishida, Y.

    2004-10-01

    We have developed an advanced microwave interferometric system operating in the K band (18-27 GHz) with the use of a fan-shaped microwave based on a heterodyne detection system for measuring the spatial distribution of the plasma density. In order to make a simple, low-cost, and compact microwave interferometer with better spatial resolution, a microwave scattering technique by a microstrip antenna array is employed. Experimental results show that the imaging system with the microstrip antenna array can have finer spatial resolution than one with the diode antenna array and reconstruct a good spatially resolved image of the finite size dielectric phantoms placed between the horn antenna and the micro strip antenna array. The precise two-dimensional electron density distribution of the cylindrical plasma produced by an electron cyclotron resonance has been observed. As a result, the present imaging system is more suitable for a two- or three-dimensional display of the objects or stationary plasmas and it is possible to realize a compact microwave imaging system.

  9. Packaging and testing of multi-wavelength DFB laser array using REC technology

    NASA Astrophysics Data System (ADS)

    Ni, Yi; Kong, Xuan; Gu, Xiaofeng; Chen, Xiangfei; Zheng, Guanghui; Luan, Jia

    2014-02-01

    Packaging of distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this paper, DFB laser arrays of 4-channel @1310 nm and 8-channel @1550 nm are packaged. Our experimental results show that both these laser arrays have uniform wavelength spacing and larger than 35 dB average Side Mode Suppression Ratio (SMSR). When I=35 mA, we obtain the total output power of 1 mW for 4-channel @1310 nm, and 227 μw for 8-channel @1550 nm respectively. The high frequency characteristics of the packaged chips are also obtained, and the requirements for 4×10 G or even 8×10 G systems can be reached. Our results demonstrate the practical and low cost performance of REC technology and indicate its potential in the future fiber-to-the-home (FTTH) application.

  10. Dynamics of water condensation over arrays of hydrophilic patches

    NASA Astrophysics Data System (ADS)

    Seco-Gudiña, R.; Guadarrama-Cetina, J.; González-Viñas, W.

    2017-04-01

    We report experimental results of drop-wise condensation on a wettability patterned substrate. It consists of a 2-d array of hydrophilic patches/spots on a macroscopically hydrophobic surface. We show that in this kind of system, there is not a relevant humidity sink, but the scale and the closeness of the different patches/spots affect the mechanisms which are important during the experiment. These results may provide clues to obtain higher dew yields in arid or semi-arid regions as a way to obtain potable water.

  11. Low-frequency vibration isolation in sandwich plates by piezoelectric shunting arrays

    NASA Astrophysics Data System (ADS)

    Chen, Shengbing; Wang, Gang; Song, Yubao

    2016-12-01

    Piezoelectric shunting arrays are proposed to isolate low-frequency vibrations transmitted in sandwich plates. The performance is characterized through application of finite element method. The numerical result shows that a complete band gap, whose width is about 20 Hz, is produced in the desired low-frequency ranges. The band gap is induced by local resonances of the shunting circuits, whose location is strongly related to the inductance, while the resistance can broaden the band gap to some extent. Vibration experiments are conducted on a 1200 × 1000 × 15 mm aluminum honeycomb plate with two arrays of 5 × 5 shunted piezoelectric patches bonded on the surface panels. Significant attenuation is found in the experimental results, which agree well with the theoretical predictions. Consequently, the proposed idea is feasible and effective.

  12. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding.

    PubMed

    Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen

    2017-04-15

    We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.

  13. Adjustment of Turbulent Boundary-Layer Flow to Idealized Urban Surfaces: A Large-Eddy Simulation Study

    NASA Astrophysics Data System (ADS)

    Cheng, Wai-Chi; Porté-Agel, Fernando

    2015-05-01

    Large-eddy simulations (LES) are performed to simulate the atmospheric boundary-layer (ABL) flow through idealized urban canopies represented by uniform arrays of cubes in order to better understand atmospheric flow over rural-to-urban surface transitions. The LES framework is first validated with wind-tunnel experimental data. Good agreement between the simulation results and the experimental data are found for the vertical and spanwise profiles of the mean velocities and velocity standard deviations at different streamwise locations. Next, the model is used to simulate ABL flows over surface transitions from a flat homogeneous terrain to aligned and staggered arrays of cubes with height . For both configurations, five different frontal area densities , equal to 0.028, 0.063, 0.111, 0.174 and 0.250, are considered. Within the arrays, the flow is found to adjust quickly and shows similar structure to the wake of the cubes after the second row of cubes. An internal boundary layer is identified above the cube arrays and found to have a similar depth in all different cases. At a downstream location where the flow immediately above the cube array is already adjusted to the surface, the spatially-averaged velocity is found to have a logarithmic profile in the vertical. The values of the displacement height are found to be quite insensitive to the canopy layout (aligned vs. staggered) and increase roughly from to as increases from 0.028 to 0.25. Relatively larger values of the aerodynamic roughness length are obtained for the staggered arrays, compared with the aligned cases, and a maximum value of is found at for both configurations. By explicitly calculating the drag exerted by the cubes on the flow and the drag coefficients of the cubes using our LES results, and comparing the results with existing theoretical expressions, we show that the larger values of for the staggered arrays are related to the relatively larger drag coefficients of the cubes for that configuration compared with the aligned one. The effective mixing length within and above different cube arrays is also calculated and a local maximum of within the canopy is found in all the cases, with values ranging from to . These patterns of are different from those used in existing urban canopy models.

  14. Highly Directive Array Aperture

    DTIC Science & Technology

    2013-02-13

    generally to sonar arrays with acoustic discontinuities, and, more particularly, to increasing the directivity gain of a sonar array aperture by...sought by sonar designers. [0005] The following patents and publication show various types of acoustic arrays with coatings and discontinuities that...discloses a sonar array uses multiple acoustically transparent layers. One layer is a linear array of acoustic sensors that is substantially

  15. Aluminum-based one- and two-dimensional micro fin array structures: high-throughput fabrication and heat transfer testing

    NASA Astrophysics Data System (ADS)

    Primeaux, Philip A.; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W. J.; KC, Pratik; Moore, Arden L.

    2017-02-01

    Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µm were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications.

  16. Assessment of a directional microphone array for hearing-impaired listeners.

    PubMed

    Soede, W; Bilsen, F A; Berkhout, A J

    1993-08-01

    Hearing-impaired listeners often have great difficulty understanding speech in surroundings with background noise or reverberation. Based on array techniques, two microphone prototypes (broadside and endfire) have been developed with strongly directional characteristics [Soede et al., "Development of a new directional hearing instrument based on array technology," J. Acoust. Soc. Am. 94, 785-798 (1993)]. Physical measurements show that the arrays attenuate reverberant sound by 6 dB (free-field) and can improve the signal-to-noise ratio by 7 dB in a diffuse noise field (measured with a KEMAR manikin). For the clinical assessment of these microphones an experimental setup was made in a sound-insulated listening room with one loudspeaker in front of the listener simulating the partner in a discussion and eight loudspeakers placed on the edges of a cube producing a diffuse background noise. The hearing-impaired subject wearing his own (familiar) hearing aid is placed in the center of the cube. The speech-reception threshold in noise for simple Dutch sentences was determined with a normal single omnidirectional microphone and with one of the microphone arrays. The results of monaural listening tests with hearing impaired subjects show that in comparison with an omnidirectional hearing-aid microphone the broadside and endfire microphone array gives a mean improvement of the speech reception threshold in noise of 7.0 dB (26 subjects) and 6.8 dB (27 subjects), respectively. Binaural listening with two endfire microphone arrays gives a binaural improvement which is comparable to the binaural improvement obtained by listening with two normal ears or two conventional hearing aids.

  17. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array

    PubMed Central

    Cui, Xiwang; Yan, Yong; Guo, Miao; Han, Xiaojuan; Hu, Yonghui

    2016-01-01

    Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%. PMID:27869765

  18. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    NASA Astrophysics Data System (ADS)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the largest potential changes in wave height. The SNL-SWAN model simulations for various WEC devices provide the basis for a solid model understanding, giving the confidence necessary for future WEC evaluations.

  19. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo.

    PubMed

    Zhang, Jing; Liu, Xiaojun; Xu, Wenjing; Luo, Wenhan; Li, Ming; Chu, Fangbing; Xu, Lu; Cao, Anyuan; Guan, Jisong; Tang, Shiming; Duan, Xiaojie

    2018-05-09

    Recent developments of transparent electrode arrays provide a unique capability for simultaneous optical and electrical interrogation of neural circuits in the brain. However, none of these electrode arrays possess the stretchability highly desired for interfacing with mechanically active neural systems, such as the brain under injury, the spinal cord, and the peripheral nervous system (PNS). Here, we report a stretchable transparent electrode array from carbon nanotube (CNT) web-like thin films that retains excellent electrochemical performance and broad-band optical transparency under stretching and is highly durable under cyclic stretching deformation. We show that the CNT electrodes record well-defined neuronal response signals with negligible light-induced artifacts from cortical surfaces under optogenetic stimulation. Simultaneous two-photon calcium imaging through the transparent CNT electrodes from cortical surfaces of GCaMP-expressing mice with epilepsy shows individual activated neurons in brain regions from which the concurrent electrical recording is taken, thus providing complementary cellular information in addition to the high-temporal-resolution electrical recording. Notably, the studies on rats show that the CNT electrodes remain operational during and after brain contusion that involves the rapid deformation of both the electrode array and brain tissue. This enables real-time, continuous electrophysiological monitoring of cortical activity under traumatic brain injury. These results highlight the potential application of the stretchable transparent CNT electrode arrays in combining electrical and optical modalities to study neural circuits, especially under mechanically active conditions, which could potentially provide important new insights into the local circuit dynamics of the spinal cord and PNS as well as the mechanism underlying traumatic injuries of the nervous system.

  20. Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer

    NASA Astrophysics Data System (ADS)

    Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles

    2012-11-01

    For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).

  1. Transparent, Conductive Coatings Developed for Arc-Proof Solar Arrays

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Transparent, conductive thin-film coatings have many potential applications where a surface must be able to dissipate electrical charges without sacrificing its optical properties. Such applications include automotive and aircraft windows, heat mirrors, optoelectronic devices, gas sensors, and solar cell array surfaces for space applications. Many spacecraft missions require that solar cell array surfaces dissipate charges in order to avoid damage such as electronic upsets, formation of pinholes in the protective coatings on solar array blankets, and contamination due to deposition of sputtered products. In tests at the NASA Lewis Research Center, mixed thin-films of sputter-deposited indium tin oxide (ITO) and magnesium fluoride (MgF2) that could be tailored to the desired sheet resistivity, showed transmittance values of greater than 90 percent. The samples evaluated were composed of mixed, thin-film ITO/MgF2 coatings, with a nominal thickness of 650 angstroms, deposited onto glass substrates. Preliminary results indicated that these coatings were durable to vacuum ultraviolet radiation and atomic oxygen. These coatings show promise for use on solar array surfaces in polar low-Earth-orbit environments, where a sheet resistivity of less than 10(exp 8)/square is required, and in geosynchronous orbit environments, where a resistivity of less than 10(exp 9)/square is required.

  2. Sometimes area counts more than number.

    PubMed

    Hurewitz, Felicia; Gelman, Rochel; Schnitzer, Brian

    2006-12-19

    Using an interference paradigm, we show across three experiments that adults' order judgments of numbers, sizes, or combined area of dots in pairs of arrays occur spontaneously and automatically, but at different speeds and levels of accuracy. Experiment 1 used circles whose sizes varied between but not within arrays. Variation in circle size interfered with judgments of which array had more circles. Experiment 2 used displays in which circle size varied within and between arrays. Between-array differences in the amount of "circle stuff" (area occupied by circles) interfered with judgments of number. Experiment 3 examined whether variation in number also interferes with judgments of area. Interference between discrete and continuous stimulus dimensions occurred in both directions, although it was stronger from the continuous to the discrete than vice versa. These results bear on interpretations of studies with infants and preschoolers wherein subjects respond on the basis of continuous quantity rather than discrete quantity. In light of our results with adults, these findings do not license the conclusion that young children cannot represent discrete quantity. Absent data on attentional hierarchies and speed of processing, it is premature to conclude that infant and child quantity processes are fundamentally different from that of adults.

  3. Subarray-based FDA radar to counteract deceptive ECM signals

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed; Wang, Wen-Qin; Yuan, Zhao; Mohamed, Suhad; Bin, Tang

    2016-12-01

    In recent years, the frequency diverse array (FDA) radar concept has attracted extensive attention, as it may benefit from a small frequency increment, compared to the carrier frequency across the array elements and thereby achieve an array factor that is a function of the angle, the time, and the range which is superior to the conventional phase array radar (PAR). However, limited effort on the subject of FDA in electronic countermeasure scenarios, especially in the presence of mainbeam deceptive jamming, has been published. Basic FDA is not desirable for anti-jamming applications, due to the range-angle coupling response of targets. In this paper, a novel method based on subarrayed FDA signal processing is proposed to counteract deceptive ECM signals. We divide the FDA array into multiple subarrays, each of which employs a distinct frequency increment. As a result, in the subarray-based FDA, the desired target can be distinguished at subarray level in joint range-angle-Doppler domain by utilizing the fact that the jammer generates false targets with the same ranges to each subarray without reparations. The performance assessment shows that the proposed solution is effective for deceptive ECM targets suppression. The effectiveness is verified by simulation results.

  4. Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization.

    PubMed

    Ni, Jiahua; Frandsen, Christine J; Noh, Kunbae; Johnston, Gary W; He, Guo; Tang, Tingting; Jin, Sungho

    2013-04-01

    Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. High-fidelity and low-latency mobile fronthaul based on segment-wise TDM and MIMO-interleaved arraying.

    PubMed

    Li, Longsheng; Bi, Meihua; Miao, Xin; Fu, Yan; Hu, Weisheng

    2018-01-22

    In this paper, we firstly demonstrate an advanced arraying scheme in the TDM-based analog mobile fronthaul system to enhance the signal fidelity, in which the segment of the antenna carrier signal (AxC) with an appropriate length is served as the granularity for TDM aggregation. Without introducing extra processing, the entire system can be realized by simple DSP. The theoretical analysis is presented to verify the feasibility of this scheme, and to evaluate its effectiveness, the experiment with ~7-GHz bandwidth and 20 8 × 8 MIMO group signals are conducted. Results show that the segment-wise TDM is completely compatible with the MIMO-interleaved arraying, which is employed in an existing TDM scheme to improve the bandwidth efficiency. Moreover, compared to the existing TDM schemes, our scheme can not only satisfy the latency requirement of 5G but also significantly reduce the multiplexed signal bandwidth, hence providing higher signal fidelity in the bandwidth-limited fronthaul system. The experimental result of EVM verifies that 256-QAM is supportable using the segment-wise TDM arraying with only 250-ns latency, while with the ordinary TDM arraying, only 64-QAM is bearable.

  6. High Frequency Ultrasound Array Designed for Ultrasound Guided Breast Biopsy

    PubMed Central

    Cummins, Thomas; Eliahoo, Payam; Shung, K. Kirk

    2016-01-01

    This paper describes the development of a miniaturized high frequency linear array that can be integrated within a core biopsy needle to improve tissue sampling accuracy during breast cancer biopsy procedures. The 64 element linear array has an element width of 14 μm, kerf width of 6 μm, element length of 1 mm and element thickness of 24 μm. The 2–2 array composite was fabricated using deep reactive ion etching of PMN-PT single crystal material. The array composite fabrication process as well as a novel high density electrical interconnect solution are presented and discussed. Array performance measurements show that the array had a center frequency and fractional bandwidth (−6 dB) of 59.1 MHz and 29.4%, respectively. Insertion loss and adjacent element cross talk at the center frequency were −41.0 dB and −23.7 dB, respectively. A B-mode image of a tungsten wire target phantom was captured using a synthetic aperture imaging system and the imaging test results demonstrate axial and lateral resolutions of 33.2 μm and 115.6 um, respectively. PMID:27046895

  7. Manipulation of a two-photon state in a χ(2)-modulated nonlinear waveguide array

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Xu, P.; Lu, L. L.; Zhu, S. N.

    2014-10-01

    We propose to engineer the quantum state in a high-dimensional Hilbert space by taking advantage of a χ(2)-modulated nonlinear waveguide array. By varying the pump condition and the waveguide array length, the momentum correlation between the signal and idler photons can be manipulated, exhibiting bunching, antibunching, and the evolution between these two states, which are characterized by the Schmidt number. We find the Schmidt number is dependent on a structure parameter, namely the ratio of the array length and the number of channels pumped. By designing the linear profile waveguide array, the degree of spatial entanglement shows a periodic relationship with the slope of linear profile, during which a high degree of position-bunching state is suggested. The two-photon self-focusing effect is disclosed when the χ(2) modulation in the waveguide array contains a parabolic profile, which can be designed for efficient coupling between a waveguide array and fibers. These results shed light on a feasible way to achieve desirable quantum state on a single waveguide chip by a compact engineering of χ(2) and also suggest a degree of freedom for quantum walk and other related applications.

  8. Array-scale performance of TES X-ray Calorimeters Suitable for Constellation-X

    NASA Technical Reports Server (NTRS)

    Kilbourne, C. A.; Bandler, S. R.; Brown, A. D.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Smith, S. J.; hide

    2008-01-01

    Having developed a transition-edge-sensor (TES) calorimeter design that enables high spectral resolution in high fill-factor arrays, we now present array-scale results from 32-pixel arrays of identical closely packed TES pixels. Each pixel in such an array contains a Mo/Au bilayer with a transition temperature of 0.1 K and an electroplated Au or Au/Bi xray absorber. The pixels in an array have highly uniform physical characteristics and performance. The arrays are easy to operate due to the range of bias voltages and heatsink temperatures over which solution better than 3 eV at 6 keV can be obtained. Resolution better than 3 eV has also been obtained with 2x8 time-division SQUID multiplexing. We will present the detector characteristics and show spectra acquired through the read-out chain from the multiplexer electronics through the demultiplexer software to real-time signal processing. We are working towards demonstrating this performance over the range of count rates expected in the observing program of the Constellation-X observatory. We mill discuss the impact of increased counting rate on spectral resolution, including the effects of crosstalk and optimal-filtering dead time.

  9. Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array.

    PubMed

    Wang, Qi; Wang, Yingmin; Zhu, Guolei

    2016-12-30

    The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective.

  10. Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array

    PubMed Central

    Wang, Qi; Wang, Yingmin; Zhu, Guolei

    2016-01-01

    The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective. PMID:28042828

  11. The application of structural reliability techniques to plume impingement loading of the Space Station Freedom Photovoltaic Array

    NASA Technical Reports Server (NTRS)

    Yunis, Isam S.; Carney, Kelly S.

    1993-01-01

    A new aerospace application of structural reliability techniques is presented, where the applied forces depend on many probabilistic variables. This application is the plume impingement loading of the Space Station Freedom Photovoltaic Arrays. When the space shuttle berths with Space Station Freedom it must brake and maneuver towards the berthing point using its primary jets. The jet exhaust, or plume, may cause high loads on the photovoltaic arrays. The many parameters governing this problem are highly uncertain and random. An approach, using techniques from structural reliability, as opposed to the accepted deterministic methods, is presented which assesses the probability of failure of the array mast due to plume impingement loading. A Monte Carlo simulation of the berthing approach is used to determine the probability distribution of the loading. A probability distribution is also determined for the strength of the array. Structural reliability techniques are then used to assess the array mast design. These techniques are found to be superior to the standard deterministic dynamic transient analysis, for this class of problem. The results show that the probability of failure of the current array mast design, during its 15 year life, is minute.

  12. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    PubMed Central

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-01-01

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303

  13. Calibration of a fluxgate magnetometer array and its application in magnetic object localization

    NASA Astrophysics Data System (ADS)

    Pang, Hongfeng; Luo, Shitu; Zhang, Qi; Li, Ji; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2013-07-01

    The magnetometer array is effective for magnetic object detection and localization. Calibration is important to improve the accuracy of the magnetometer array. A magnetic sensor array built with four three-axis DM-050 fluxgate magnetometers is designed, which is connected by a cross aluminum frame. In order to improve the accuracy of the magnetometer array, a calibration process is presented. The calibration process includes magnetometer calibration, coordinate transformation and misalignment calibration. The calibration system consists of a magnetic sensor array, a GSM-19T proton magnetometer, a two-dimensional nonmagnetic rotation platform, a 12 V-dc portable power device and two portable computers. After magnetometer calibration, the RMS error has been decreased from an original value of 125.559 nT to a final value of 1.711 nT (a factor of 74). After alignment, the RMS error of misalignment has been decreased from 1322.3 to 6.0 nT (a factor of 220). Then, the calibrated array deployed on the nonmagnetic rotation platform is used for ferromagnetic object localization. Experimental results show that the estimated errors of X, Y and Z axes are -0.049 m, 0.008 m and 0.025 m, respectively. Thus, the magnetometer array is effective for magnetic object detection and localization in three dimensions.

  14. Optical design of microlens array for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Rongzhu; Lai, Liping

    2016-10-01

    The optical crosstalk between the pixel units can influence the image quality of CMOS image sensor. In the meantime, the duty ratio of CMOS is low because of its pixel structure. These two factors cause the low detection sensitivity of CMOS. In order to reduce the optical crosstalk and improve the fill factor of CMOS image sensor, a microlens array has been designed and integrated with CMOS. The initial parameters of the microlens array have been calculated according to the structure of a CMOS. Then the parameters have been optimized by using ZEMAX and the microlens arrays with different substrate thicknesses have been compared. The results show that in order to obtain the best imaging quality, when the effect of optical crosstalk for CMOS is the minimum, the best distance between microlens array and CMOS is about 19.3 μm. When incident light successively passes through microlens array and the distance, obtaining the minimum facula is around 0.347 um in the active area. In addition, when the incident angle of the light is 0o 22o, the microlens array has obvious inhibitory effect on the optical crosstalk. And the anti-crosstalk distance between microlens array and CMOS is 0 μm 162 μm.

  15. Zonal wavefront sensor with reduced number of rows in the detector array.

    PubMed

    Boruah, Bosanta R; Das, Abhijit

    2011-07-10

    In this paper, we describe a zonal wavefront sensor in which the photodetector array can have a smaller number of rows. The test wavefront is incident on a two-dimensional array of diffraction gratings followed by a single focusing lens. The periodicity and the orientation of the grating rulings of each grating can be chosen such that the +1 order beam from the gratings forms an array of focal spots in the detector plane. We show that by using a square array of zones, it is possible to generate an array of +1 order focal spots having a smaller number of rows, thus reducing the height of the required detector array. The phase profile of the test wavefront can be estimated by measuring the displacements of the +1 order focal spots for the test wavefront relative to the +1 order focal spots for a plane reference wavefront. The narrower width of the photodetector array can offer several advantages, such as a faster frame rate of the wavefront sensor, a reduced amount of cross talk between the nearby detector zones, and a decrease in the maximum thermal noise. We also present experimental results of a proof-of-concept experimental arrangement using the proposed wavefront sensing scheme. © 2011 Optical Society of America

  16. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.

    PubMed

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-24

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.

  17. Range-azimuth decouple beamforming for frequency diverse array with Costas-sequence modulated frequency offsets

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Wen-Qin; Shao, Huaizong

    2016-12-01

    Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the standard FDA in focusing the transmit energy, especially in the range dimension.

  18. Synthesis of concentric circular antenna arrays using dragonfly algorithm

    NASA Astrophysics Data System (ADS)

    Babayigit, B.

    2018-05-01

    Due to the strong non-linear relationship between the array factor and the array elements, concentric circular antenna array (CCAA) synthesis problem is challenging. Nature-inspired optimisation techniques have been playing an important role in solving array synthesis problems. Dragonfly algorithm (DA) is a novel nature-inspired optimisation technique which is based on the static and dynamic swarming behaviours of dragonflies in nature. This paper presents the design of CCAAs to get low sidelobes using DA. The effectiveness of the proposed DA is investigated in two different (with and without centre element) cases of two three-ring (having 4-, 6-, 8-element or 8-, 10-, 12-element) CCAA design. The radiation pattern of each design cases is obtained by finding optimal excitation weights of the array elements using DA. Simulation results show that the proposed algorithm outperforms the other state-of-the-art techniques (symbiotic organisms search, biogeography-based optimisation, sequential quadratic programming, opposition-based gravitational search algorithm, cat swarm optimisation, firefly algorithm, evolutionary programming) for all design cases. DA can be a promising technique for electromagnetic problems.

  19. Nanofork for single cells adhesion measurement via ESEM-nanomanipulator system.

    PubMed

    Ahmad, Mohd Ridzuan; Nakajima, Masahiro; Kojima, Masaru; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2012-03-01

    In this paper, single cells adhesion force was measured using a nanofork. The nanofork was used to pick up a single cell on a line array substrate inside an environmental scanning electron microscope (ESEM). The line array substrate was used to provide small gaps between the single cells and the substrate. Therefore, the nanofork could be inserted through these gaps in order to successfully pick up a single cell. Adhesion force was measured during the cell pick-up process from the deflection of the cantilever beam. The nanofork was fabricated using focused ion beam (FIB) etching process while the line array substrate was fabricated using nanoimprinting technology. As to investigate the effect of contact area on the strength of the adhesion force, two sizes of gap distance of line array substrate were used, i.e., 1 μm and 2 μm. Results showed that cells attached on the 1 μm gap line array substrate required more force to be released as compared to the cells attached on the 1 μm gap line array substrate.

  20. Fast fabrication of long TiO2 nanotube array with high photoelectrochemical property on flexible stainless steel.

    PubMed

    Tao, Jie; Wu, Tao; Gao, Peng

    2012-03-01

    Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.

  1. On-line monitoring system of PV array based on internet of things technology

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  2. Fiber-optic hydrophone array for acoustic surveillance in the littoral

    NASA Astrophysics Data System (ADS)

    Hill, David; Nash, Phillip

    2005-05-01

    We describe a fibre-optic hydrophone array system architecture that can be tailored to meet the underwater acoustic surveillance requirements of the military, counter terrorist and customs authorities in protecting ports and harbours, offshore production facilities or coastal approaches. Physically the fibre-optic hydrophone array is in the form of a lightweight cable, enabling rapid deployment from a small vessel. Based upon an optical architecture of time and wavelength multiplexed interferometric hydrophones, the array is comprised of a series of hydrophone sub-arrays. Using multiple sub-arrays, extended perimeters many tens of kilometres in length can be monitored. Interrogated via a long (~50km) optical fibre data link, the acoustic date is processed using the latest open architecture sonar processing platform, ensuring that acoustic targets below, on and above the surface are detected, tracked and classified. Results obtained from an at sea trial of a 96-channel hydrophone array are given, showing the passive detection and tracking of a diver, small surface craft and big ocean going ships beyond the horizon. Furthermore, we describe how the OptaMarine fibre-optic hydrophone array fits into an integrated multi-layered approach to port and harbour security consisting of active sonar for diver detection and hull imaging, as well as thermal imaging and CCTV for surface monitoring. Finally, we briefly describe a complimentary land perimeter intruder detection system consisting of an array of fibre optic accelerometers.

  3. Comparisons between wave directional spectra from SAR and pressure sensor arrays

    NASA Technical Reports Server (NTRS)

    Pawka, S. S.; Inman, D. L.; Hsiao, S. V.; Shemdin, O. H.

    1980-01-01

    Simultaneous directional wave measurements were made at Torrey Pines Beach, California, by a synthetic aperture radar (SAR) and a linear array of pressure sensors. The measurements were conducted during the West Coast Experiment in March 1977. Quantitative comparisons of the normalized directional spectra from the two systems were made for wave periods of 6.9-17.0 s. The comparison results were variable but generally showed good agreement of the primary mode of the normalized directional energy. An attempt was made to quantify the physical criteria for good wave imaging in the SAR. A frequency band analysis of wave parameters such as band energy, slope, and orbital velocity did not show good correlation with the directional comparisons. It is noted that absolute values of the wave height spectrum cannot be derived from the SAR images yet and, consequently, no comparisons of absolute energy levels with corresponding array measurements were intended.

  4. Pacemakers in large arrays of oscillators with nonlocal coupling

    NASA Astrophysics Data System (ADS)

    Jaramillo, Gabriela; Scheel, Arnd

    2016-02-01

    We model pacemaker effects of an algebraically localized heterogeneity in a 1 dimensional array of oscillators with nonlocal coupling. We assume the oscillators obey simple phase dynamics and that the array is large enough so that it can be approximated by a continuous nonlocal evolution equation. We concentrate on the case of heterogeneities with positive average and show that steady solutions to the nonlocal problem exist. In particular, we show that these heterogeneities act as a wave source. This effect is not possible in 3 dimensional systems, such as the complex Ginzburg-Landau equation, where the wavenumber of weak sources decays at infinity. To obtain our results we use a series of isomorphisms to relate the nonlocal problem to the viscous eikonal equation. We then use Fredholm properties of the Laplace operator in Kondratiev spaces to obtain solutions to the eikonal equation, and by extension to the nonlocal problem.

  5. Digital holographic characterization of liquid microlenses array fabricated in electrode-less configuration

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Vespini, V.; Grilli, S.; Paturzo, M.; Finizio, A.; De Nicola, S.; Ferraro, P.

    2009-06-01

    We show how thin liquid film on polar dielectric substrate can form an array of liquid micro-lenses. The effect is driven by the pyroelectric effect leading to a new concept in electro-wetting (EW). EW is a viable method for actuation of liquids in microfluidic systems and requires the design and fabrication of complex electrodes for suitable actuation of liquids. When compared to conventional electrowetting devices, the pyroelectric effect allowed to have an electrode-less and circuitless configuration. In our case the surface electric charge induced by the thermal stimulus is able to pattern selectively the surface wettability according to geometry of the ferroelectric domains micro-engineered into the lithium niobate crystal. We show that different geometries of liquid microlenses can be obtained showing also a tuneability of the focal lenses down to 1.6 mm. Thousand of liquid microlenses, each with 100 μm diameter, can be formed and actuated. Also different geometries such as hemi-cylindrical and toroidal liquid structures can be easily obtained. By means of a digital holography method, an accurate characterization of the micro-lenses curvature is performed and presented. The preliminary results concerning the imaging capability of the micro-lens array are also reported. Microlens array can find application in medical stereo-endoscopy, imaging, telecommunication and optical data storage too.

  6. Research on Wide-field Imaging Technologies for Low-frequency Radio Array

    NASA Astrophysics Data System (ADS)

    Lao, B. Q.; An, T.; Chen, X.; Wu, X. C.; Lu, Y.

    2017-09-01

    Wide-field imaging of low-frequency radio telescopes are subject to a number of difficult problems. One particularly pernicious problem is the non-coplanar baseline effect. It will lead to distortion of the final image when the phase of w direction called w-term is ignored. The image degradation effects are amplified for telescopes with the wide field of view. This paper summarizes and analyzes several w-term correction methods and their technical principles. Their advantages and disadvantages have been analyzed after comparing their computational cost and computational complexity. We conduct simulations with two of these methods, faceting and w-projection, based on the configuration of the first-phase Square Kilometre Array (SKA) low frequency array. The resulted images are also compared with the two-dimensional Fourier transform method. The results show that image quality and correctness derived from both faceting and w-projection are better than the two-dimensional Fourier transform method in wide-field imaging. The image quality and run time affected by the number of facets and w steps have been evaluated. The results indicate that the number of facets and w steps must be reasonable. Finally, we analyze the effect of data size on the run time of faceting and w-projection. The results show that faceting and w-projection need to be optimized before the massive amounts of data processing. The research of the present paper initiates the analysis of wide-field imaging techniques and their application in the existing and future low-frequency array, and fosters the application and promotion to much broader fields.

  7. Sweetwater, Texas Large N Experiment

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Barklage, M.; Hollis, D.; Spriggs, N.; Gridley, J. M.; Parker, T.

    2015-12-01

    From 7 March to 30 April 2014, NodalSeismic, Nanometrics, and IRIS PASSCAL conducted a collaborative, spatially-dense seismic survey with several thousand nodal short-period geophones complemented by a backbone array of broadband sensors near Sweetwater, Texas. This pilot project demonstrates the efficacy of industry and academic partnerships, and leveraged a larger, commercial 3D survey to collect passive source seismic recordings to image the subsurface. This innovative deployment of a large-N mixed-mode array allows industry to explore array geometries and investigate the value of broadband recordings, while affording academics a dense wavefield imaging capability and an operational model for high volume instrument deployment. The broadband array consists of 25 continuously-recording stations from IRIS PASSCAL and Nanometrics, with an array design that maximized recording of horizontal-traveling seismic energy for surface wave analysis over the primary target area with sufficient offset for imaging objectives at depth. In addition, 2639 FairfieldNodal Zland nodes from NodalSeismic were deployed in three sub-arrays: the outlier, backbone, and active source arrays. The backbone array consisted of 292 nodes that covered the entire survey area, while the outlier array consisted of 25 continuously-recording nodes distributed at a ~3 km distance away from the survey perimeter. Both the backbone and outlier array provide valuable constraints for the passive source portion of the analysis. This project serves as a learning platform to develop best practices in the support of large-N arrays with joint industry and academic expertise. Here we investigate lessons learned from a facility perspective, and present examples of data from the various sensors and array geometries. We will explore first-order results from local and teleseismic earthquakes, and show visualizations of the data across the array. Data are archived at the IRIS DMC under stations codes XB and 1B.

  8. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring

    PubMed Central

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-01-01

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring. PMID:27322278

  9. Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring.

    PubMed

    Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun

    2016-06-17

    A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.

  10. High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting.

    PubMed

    Feng, Liang-Liang; Yu, Guangtao; Wu, Yuanyuan; Li, Guo-Dong; Li, Hui; Sun, Yuanhui; Asefa, Tewodros; Chen, Wei; Zou, Xiaoxin

    2015-11-11

    Elaborate design of highly active and stable catalysts from Earth-abundant elements has great potential to produce materials that can replace the noble-metal-based catalysts commonly used in a range of useful (electro)chemical processes. Here we report, for the first time, a synthetic method that leads to in situ growth of {2̅10} high-index faceted Ni3S2 nanosheet arrays on nickel foam (NF). We show that the resulting material, denoted Ni3S2/NF, can serve as a highly active, binder-free, bifunctional electrocatalyst for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Ni3S2/NF is found to give ∼100% Faradaic yield toward both HER and OER and to show remarkable catalytic stability (for >200 h). Experimental results and theoretical calculations indicate that Ni3S2/NF's excellent catalytic activity is mainly due to the synergistic catalytic effects produced in it by its nanosheet arrays and exposed {2̅10} high-index facets.

  11. Pitch variable liquid lens array using electrowetting

    NASA Astrophysics Data System (ADS)

    Kim, YooKwang; Lee, Jin Su; Kim, Junoh; Won, Yong Hyub

    2017-02-01

    These days micro lens array is used in various fields such as fiber coupling, laser collimation, imaging and sensor system and beam homogenizer, etc. One of important thing in using micro lens array is, choice of its pitch. Especially imaging systems like integral imaging or light-field camera, pitch of micro lens array defines the system property and thus it could limit the variability of the system. There are already researches about lens array using liquid, and droplet control by electrowetting. This paper reports the result of combining them, the liquid lens array that could vary its pitch by electrowetting. Since lens array is a repeated system, realization of a small part of lens array is enough to show its property. The lens array is composed of nine (3 by 3) liquid droplets on flat surface. On substrate, 11 line electrodes are patterned along vertical and horizontal direction respectively. The width of line electrodes is 300um and interval is 200um. Each droplet is positioned to contain three electrode lines for both of vertical and horizontal direction. So there is one remaining electrode line in each of outermost side for both direction. In original state the voltage is applied to inner electrodes. When voltage of outermost electrodes are turned on, eight outermost droplets move to outer side, thereby increasing pitch of lens array. The original pitch was 1.5mm and it increased to 2.5mm after electrodes of voltage applied is changed.

  12. SU-E-T-460: Impact of the LINAC Repetition Rate On a High-Resolution Liquid Ionization Chamber Array for Patient-Specific QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S; Driewer, J; Zheng, D

    2015-06-15

    Purpose: The purpose of this study is to investigate the LINAC repetition-rate (dose-rate) dependence of OCTAVIUS 1000SRS liquid ionization chamber (LIC) array for patient specific QA of SRT plans delivered with flattening-filter-free (FFF) beams. Methods: 1) The repetition-rate dependence of 1000SRS was measured in a phantom constructed with 5-cm solid water above and below the array for build-up and backscatter. A 0.3cc calibrated ion chamber was also placed along the central axis 2.3cm below the center chamber of the array for normalizing LINAC output fluctuation. The signals from the center chamber of the array under different repetition rates in themore » range of 400–2400 MU/min for 6xFFF and 10xFFF beams on a Varian TrueBeamSTx LINAC, normalized by the independent chamber readings, were analyzed for the array response dependence on repetition rates. 2) Twelve Step-and-shoot IMRS QA plans (6xFFF and 10xFFF) were delivered to the array under different repetition rates for analysis and comparison. 3) The absolute doses measured by the center chamber were compared to measurements using an independent ionization chamber with the identical setup, taken as the gold standard. 4) The correction factors based on the actual delivery repetition rate were applied to the measurements, and the results were compared again to the gold standard. Results: 1) The 1000SRS array exhibited repetition-rate dependence for FFF beams, up to 5% for 6xFFF and 10% for 10xFFF; 2) The array showed clinically-acceptable repetition-rate dependence for regular flattened beams; 3) This repetition-rate dependence significantly affected the measurement accuracy, thereby affecting IMRS QA results; 4) By applying an empirical repetition-rate correction, the corrected measurements agreed better with the gold standard ion chamber measurements. Conclusion: OCTAVIUS 1000SRS LIC array exhibited considerable repetition-rate dependence for FFF beams, which will affect the accuracy of the absolute QA measurements, especially for IMRS plans with the step-and-shoot technique.« less

  13. Evaluation of the MTF for a-Si:H imaging arrays

    NASA Astrophysics Data System (ADS)

    Yorkston, John; Antonuk, Larry E.; Seraji, N.; Huang, Weidong; Siewerdsen, Jeffrey H.; El-Mohri, Youcef

    1994-05-01

    Hydrogenated amorphous silicon imaging arrays are being developed for numerous applications in medical imaging. Diagnostic and megavoltage images have previously been reported and a number of the intrinsic properties of the arrays have been investigated. This paper reports on the first attempt to characterize the intrinsic spatial resolution of the imaging pixels on a 450 micrometers pitch, n-i-p imaging array fabricated at Xerox P.A.R.C. The pre- sampled modulation transfer function was measured by scanning a approximately 25 micrometers wide slit of visible wavelength light across a pixel in both the DATA and FET directions. The results show that the response of the pixel in these orthogonal directions is well described by a simple model that accounts for asymmetries in the pixel response due to geometric aspects of the pixel design.

  14. Domain wall energy landscapes in amorphous magnetic films with asymmetric arrays of holes

    NASA Astrophysics Data System (ADS)

    Alija, A.; Pérez-Junquera, A.; Rodríguez-Rodríguez, G.; Vélez, M.; Marconi, V. I.; Kolton, A. B.; Anguita, J. V.; Alameda, J. M.; Parrondo, J. M. R.; Martín, J. I.

    2009-02-01

    Arrays of asymmetric holes have been defined in amorphous Co-Si films by e-beam lithography in order to study domain wall motion across the array subject to the asymmetric pinning potential created by the holes. Experimental results on Kerr effect magnetooptical measurements and hysteresis loops are compared with micromagnetic simulations in films with arrays of triangular holes. These show that the potential asymmetry favours forward wall propagation for flat walls but, if the wall contains a kink, net backward wall propagation is preferred at low fields, in agreement with minor loop experiments. The difference between the fields needed for forward and backward flat wall propagation increases as the size of the triangular holes is reduced, becoming maximum for 1 µm triangles, which is the characteristic length scale set by domain wall width.

  15. Fast photoacoustic imaging system based on 320-element linear transducer array.

    PubMed

    Yin, Bangzheng; Xing, Da; Wang, Yi; Zeng, Yaguang; Tan, Yi; Chen, Qun

    2004-04-07

    A fast photoacoustic (PA) imaging system, based on a 320-transducer linear array, was developed and tested on a tissue phantom. To reconstruct a test tomographic image, 64 time-domain PA signals were acquired from a tissue phantom with embedded light-absorption targets. A signal acquisition was accomplished by utilizing 11 phase-controlled sub-arrays, each consisting of four transducers. The results show that the system can rapidly map the optical absorption of a tissue phantom and effectively detect the embedded light-absorbing target. By utilizing the multi-element linear transducer array and phase-controlled imaging algorithm, we thus can acquire PA tomography more efficiently, compared to other existing technology and algorithms. The methodology and equipment thus provide a rapid and reliable approach to PA imaging that may have potential applications in noninvasive imaging and clinic diagnosis.

  16. Standard, Random, and Optimum Array conversions from Two-Pole resistance data

    DOE PAGES

    Rucker, D. F.; Glaser, Danney R.

    2014-09-01

    We present an array evaluation of standard and nonstandard arrays over a hydrogeological target. We develop the arrays by linearly combining data from the pole-pole (or 2-pole) array. The first test shows that reconstructed resistances for the standard Schlumberger and dipoledipole arrays are equivalent or superior to the measured arrays in terms of noise, especially at large geometric factors. The inverse models for the standard arrays also confirm what others have presented in terms of target resolvability, namely the dipole-dipole array has the highest resolution. In the second test, we reconstruct random electrode combinations from the 2-pole data segregated intomore » inner, outer, and overlapping dipoles. The resistance data and inverse models from these randomized arrays show those with inner dipoles to be superior in terms of noise and resolution and that overlapping dipoles can cause model instability and low resolution. Finally, we use the 2-pole data to create an optimized array that maximizes the model resolution matrix for a given electrode geometry. The optimized array produces the highest resolution and target detail. Thus, the tests demonstrate that high quality data and high model resolution can be achieved by acquiring field data from the pole-pole array.« less

  17. Structural control of ultra-fine CoPt nanodot arrays via electrodeposition process

    NASA Astrophysics Data System (ADS)

    Wodarz, Siggi; Hasegawa, Takashi; Ishio, Shunji; Homma, Takayuki

    2017-05-01

    CoPt nanodot arrays were fabricated by combining electrodeposition and electron beam lithography (EBL) for the use of bit-patterned media (BPM). To achieve precise control of deposition uniformity and coercivity of the CoPt nanodot arrays, their crystal structure and magnetic properties were controlled by controlling the diffusion state of metal ions from the initial deposition stage with the application of bath agitation. Following bath agitation, the composition gradient of the CoPt alloy with thickness was mitigated to have a near-ideal alloy composition of Co:Pt =80:20, which induces epitaxial-like growth from Ru substrate, thus resulting in the improvement of the crystal orientation of the hcp (002) structure from its initial deposition stages. Furthermore, the cross-sectional transmission electron microscope (TEM) analysis of the nanodots deposited with bath agitation showed CoPt growth along its c-axis oriented in the perpendicular direction, having uniform lattice fringes on the hcp (002) plane from the Ru underlayer interface, which is a significant factor to induce perpendicular magnetic anisotropy. Magnetic characterization of the CoPt nanodot arrays showed increase in the perpendicular coercivity and squareness of the hysteresis loops from 2.0 kOe and 0.64 (without agitation) to 4.0 kOe and 0.87 with bath agitation. Based on the detailed characterization of nanodot arrays, the precise crystal structure control of the nanodot arrays with ultra-high recording density by electrochemical process was successfully demonstrated.

  18. Development of a low cost high precision three-layer 3D artificial compound eye.

    PubMed

    Zhang, Hao; Li, Lei; McCray, David L; Scheiding, Sebastian; Naples, Neil J; Gebhardt, Andreas; Risse, Stefan; Eberhardt, Ramona; Tünnermann, Andreas; Yi, Allen Y

    2013-09-23

    Artificial compound eyes are typically designed on planar substrates due to the limits of current imaging devices and available manufacturing processes. In this study, a high precision, low cost, three-layer 3D artificial compound eye consisting of a 3D microlens array, a freeform lens array, and a field lens array was constructed to mimic an apposition compound eye on a curved substrate. The freeform microlens array was manufactured on a curved substrate to alter incident light beams and steer their respective images onto a flat image plane. The optical design was performed using ZEMAX. The optical simulation shows that the artificial compound eye can form multiple images with aberrations below 11 μm; adequate for many imaging applications. Both the freeform lens array and the field lens array were manufactured using microinjection molding process to reduce cost. Aluminum mold inserts were diamond machined by the slow tool servo method. The performance of the compound eye was tested using a home-built optical setup. The images captured demonstrate that the proposed structures can successfully steer images from a curved surface onto a planar photoreceptor. Experimental results show that the compound eye in this research has a field of view of 87°. In addition, images formed by multiple channels were found to be evenly distributed on the flat photoreceptor. Additionally, overlapping views of the adjacent channels allow higher resolution images to be re-constructed from multiple 3D images taken simultaneously.

  19. Qualitative assessment of gene expression in affymetrix genechip arrays

    NASA Astrophysics Data System (ADS)

    Nagarajan, Radhakrishnan; Upreti, Meenakshi

    2007-01-01

    Affymetrix Genechip microarrays are used widely to determine the simultaneous expression of genes in a given biological paradigm. Probes on the Genechip array are atomic entities which by definition are randomly distributed across the array and in turn govern the gene expression. In the present study, we make several interesting observations. We show that there is considerable correlation between the probe intensities across the array which defy the independence assumption. While the mechanism behind such correlations is unclear, we show that scaling behavior and the profiles of perfect match (PM) as well as mismatch (MM) probes are similar and immune-to-background subtraction. We believe that the observed correlations are possibly an outcome of inherent non-stationarities or patchiness in the array devoid of biological significance. This is demonstrated by inspecting their scaling behavior and profiles of the PM and MM probe intensities obtained from publicly available Genechip arrays from three eukaryotic genomes, namely: Drosophila melanogaster (fruit fly), Homo sapiens (humans) and Mus musculus (house mouse) across distinct biological paradigms and across laboratories, with and without background subtraction. The fluctuation functions were estimated using detrended fluctuation analysis (DFA) with fourth-order polynomial detrending. The results presented in this study provide new insights into correlation signatures of PM and MM probe intensities and suggests the choice of DFA as a tool for qualitative assessment of Affymetrix Genechip microarrays prior to their analysis. A more detailed investigation is necessary in order to understand the source of these correlations.

  20. Ising model of cardiac thin filament activation with nearest-neighbor cooperative interactions

    NASA Technical Reports Server (NTRS)

    Rice, John Jeremy; Stolovitzky, Gustavo; Tu, Yuhai; de Tombe, Pieter P.; Bers, D. M. (Principal Investigator)

    2003-01-01

    We have developed a model of cardiac thin filament activation using an Ising model approach from equilibrium statistical physics. This model explicitly represents nearest-neighbor interactions between 26 troponin/tropomyosin units along a one-dimensional array that represents the cardiac thin filament. With transition rates chosen to match experimental data, the results show that the resulting force-pCa (F-pCa) relations are similar to Hill functions with asymmetries, as seen in experimental data. Specifically, Hill plots showing (log(F/(1-F)) vs. log [Ca]) reveal a steeper slope below the half activation point (Ca(50)) compared with above. Parameter variation studies show interplay of parameters that affect the apparent cooperativity and asymmetry in the F-pCa relations. The model also predicts that Ca binding is uncooperative for low [Ca], becomes steeper near Ca(50), and becomes uncooperative again at higher [Ca]. The steepness near Ca(50) mirrors the steep F-pCa as a result of thermodynamic considerations. The model also predicts that the correlation between troponin/tropomyosin units along the one-dimensional array quickly decays at high and low [Ca], but near Ca(50), high correlation occurs across the whole array. This work provides a simple model that can account for the steepness and shape of F-pCa relations that other models fail to reproduce.

  1. Comparison of four commercial devices for RapidArc and sliding window IMRT QA

    PubMed Central

    Chandraraj, Varatharaj; Manickam, Ravikumar; Esquivel, Carlos; Supe, Sanjay S.; Papanikolaou, Nikos

    2011-01-01

    For intensity‐modulated radiation therapy, evaluation of the measured dose against the treatment planning calculated dose is essential in the context of patient‐specific quality assurance. The complexity of volumetric arc radiotherapy delivery attributed to its dynamic and synchronization nature require new methods and potentially new tools for the quality assurance of such techniques. In the present study, we evaluated and compared the dosimetric performance of EDR2 film and three other commercially available quality assurance devices: IBA I'MatriXX array, PTW Seven29 array and the Delta 4 array. The evaluation of these dosimetric systems was performed for RapidArc and IMRT deliveries using a Varian NovalisTX linear accelerator. The plans were generated using the Varian Eclipse treatment planning system. Our results showed that all four QA techniques yield equivalent results. All patient QAs passed our institutional clinical criteria of gamma index based on a 3% dose difference and 3 mm distance to agreement. In addition, the Bland‐Altman analysis was performed which showed that all the calculated gamma values of all three QA devices were within 5% from those of the film. The results showed that the four QA systems used in this patient‐specific IMRT QA analysis are equivalent. We concluded that the dosimetric systems under investigation can be used interchangeably for routine patient specific QA. PACS numbers: 87.55.Qr, 87.56.Fc

  2. Customizable PCR-microplate array for differential identification of multiple pathogens

    PubMed Central

    Woubit, Abdela; Yehualaeshet, Teshome; Roberts, Sherrelle; Graham, Martha; Kim, Moonil; Samuel, Temesgen

    2014-01-01

    Customizable PCR-microplate arrays were developed for the rapid identification of Francisella tularensis subsp. tularensis, Salmonella Typhi, Shigella dysenteriae, Yersinia pestis, Vibrio cholerae Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Saintpaul, Francisella tularensis subsp. novicida, Vibrio parahaemolyticus, and Yersinia pseudotuberculosis. Previously, we identified highly specific primers targeting each of the pathogens above. Here, we report the development of customizable PCR-microplate arrays for simultaneous identification of the pathogens using the primers. A mixed aliquot of genomic DNA from 38 different strains was used to validate three PCR-microplate array formats. Identical PCR conditions were used to run all the samples on the three formats. Results show specific amplifications on all the three custom plates. In a preliminary test to evaluate the sensitivity of these assays in laboratory-inoculated samples, detection limits as low as 9 cfu/g/ml S. Typhimurium were obtained from beef hot dog, and 78 cfu/ml from milk. Such microplate arrays could serve as valuable tools for initial identification or secondary confirmation of these pathogens. PMID:24215700

  3. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch.

    PubMed

    Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui

    2016-06-09

    Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.

  4. Lipid Multilayer Grating Arrays Integrated by Nanointaglio for Vapor Sensing by an Optical Nose

    PubMed Central

    Lowry, Troy W.; Prommapan, Plengchart; Rainer, Quinn; Van Winkle, David; Lenhert, Steven

    2015-01-01

    Lipid multilayer gratings are recently invented nanomechanical sensor elements that are capable of transducing molecular binding to fluid lipid multilayers into optical signals in a label free manner due to shape changes in the lipid nanostructures. Here, we show that nanointaglio is suitable for the integration of chemically different lipid multilayer gratings into a sensor array capable of distinguishing vapors by means of an optical nose. Sensor arrays composed of six different lipid formulations are integrated onto a surface and their optical response to three different vapors (water, ethanol and acetone) in air as well as pH under water is monitored as a function of time. Principal component analysis of the array response results in distinct clustering indicating the suitability of the arrays for distinguishing these analytes. Importantly, the nanointaglio process used here is capable of producing lipid gratings out of different materials with sufficiently uniform heights for the fabrication of an optical nose. PMID:26308001

  5. Near-resonance scattering from arrays of artificial fish swimbladders.

    PubMed

    Nero, R W; Feuillade, C; Thompson, C H; Love, R H

    2007-01-01

    The air-filled swimbladders of fish resonate like damped air bubbles, and are very efficient acoustic scatterers at low to mid frequencies (typically <20 kHz). Scattering experiments were performed on an artificial "fish school" constructed from polyethylene bubbles. A mathematical model, developed to describe near-resonance backscattering from schooling fish [J. Acoust. Soc. Am. 99, 196-208 (1996)], was used to analyze the physical behavior for three different arrays of these bubbles. The measurements gave excellent agreement with the model, showing that coupled-resonance and interference effects cause the frequency response of tightly packed arrays, with spacing corresponding to the order of a body length for fish, to differ significantly from those of more dispersed arrays. As the array spacing is increased to the equivalent of several body lengths, these effects rapidly diminish. The results of this comparison demonstrate that, at low to mid frequencies, coupled resonance and interference effects are likely in schooling fish, and need to be considered in applications of underwater acoustic methods to the study of fish populations.

  6. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis.

    PubMed

    Shekhar, Shashank; Stokes, Paul; Khondaker, Saiful I

    2011-03-22

    We report ultrahigh density assembly of aligned single-walled carbon nanotube (SWNT) two-dimensional arrays via AC dielectrophoresis using high-quality surfactant-free and stable SWNT solutions. After optimization of frequency and trapping time, we can reproducibly control the linear density of the SWNT between prefabricated electrodes from 0.5 SWNT/μm to more than 30 SWNT/μm by tuning the concentration of the nanotubes in the solution. Our maximum density of 30 SWNT/μm is the highest for aligned arrays via any solution processing technique reported so far. Further increase of SWNT concentration results in a dense array with multiple layers. We discuss how the orientation and density of the nanotubes vary with concentrations and channel lengths. Electrical measurement data show that the densely packed aligned arrays have low sheet resistances. Selective removal of metallic SWNTs via controlled electrical breakdown produced field-effect transistors with high current on-off ratio. Ultrahigh density alignment reported here will have important implications in fabricating high-quality devices for digital and analog electronics.

  7. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; moremore » intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.« less

  8. A novel attack method about double-random-phase-encoding-based image hiding method

    NASA Astrophysics Data System (ADS)

    Xu, Hongsheng; Xiao, Zhijun; Zhu, Xianchen

    2018-03-01

    By using optical image processing techniques, a novel text encryption and hiding method applied by double-random phase-encoding technique is proposed in the paper. The first step is that the secret message is transformed into a 2-dimension array. The higher bits of the elements in the array are used to fill with the bit stream of the secret text, while the lower bits are stored specific values. Then, the transformed array is encoded by double random phase encoding technique. Last, the encoded array is embedded on a public host image to obtain the image embedded with hidden text. The performance of the proposed technique is tested via analytical modeling and test data stream. Experimental results show that the secret text can be recovered either accurately or almost accurately, while maintaining the quality of the host image embedded with hidden data by properly selecting the method of transforming the secret text into an array and the superimposition coefficient.

  9. Phospholipid arrays on porous polymer coatings generated by micro-contact spotting

    PubMed Central

    de Freitas, Monica; Tröster, Lea-Marie; Jochum, Tobias; Levkin, Pavel A; Hirtz, Michael; Fuchs, Harald

    2017-01-01

    Nanoporous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) is used as a 3D mesh for spotting lipid arrays. Its porous structure is an ideal matrix for lipid ink to infiltrate, resulting in higher fluorescent signal intensity as compared to similar arrays on strictly 2D substrates like glass. The embedded lipid arrays show high stability against washing steps, while still being accessible for protein and antibody binding. To characterize binding to polymer-embedded lipids we have applied Streptavidin as well as biologically important biotinylated androgen receptor binding onto 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE) and anti-DNP IgE recognition of 2,4-dinitrophenyl[1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[6-[(2,4-dinitrophenyl)amino]hexanoyl] (DNP)] antigen. This approach adds lipid arrays to the range of HEMA polymer applications and makes this solid substrate a very attractive platform for a variety of bio-applications. PMID:28487815

  10. Location of high-frequency P wave microseismic noise in the Pacific Ocean using multiple small aperture arrays

    DOE PAGES

    Pyle, Moira L.; Koper, Keith D.; Euler, Garrett G.; ...

    2015-04-20

    We investigate source locations of P-wave microseisms within a narrow frequency band (0.67–1.33 Hz) that is significantly higher than the classic microseism band (~0.05–0.3 Hz). Employing a backprojection method, we analyze data recorded during January 2010 from five International Monitoring System arrays that border the Pacific Ocean. We develop a ranking scheme that allows us to combine beam power from multiple arrays to obtain robust locations of the microseisms. Some individual arrays exhibit a strong regional component, but results from the combination of all arrays show high-frequency P wave energy emanating from the North Pacific basin, in general agreement withmore » previous observations in the double-frequency (DF) microseism band (~0.1–0.3 Hz). This suggests that the North Pacific source of ambient P noise covers a broad range of frequencies and that the wave-wave interaction model is likely valid at shorter periods.« less

  11. One-dimensional ferromagnetic array compound [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate)

    NASA Astrophysics Data System (ADS)

    Honda, Zentaro; Nomoto, Naoyuki; Fujihara, Takashi; Hagiwara, Masayuki; Kida, Takanori; Sawada, Yuya; Fukuda, Takeshi; Kamata, Norihiko

    2018-06-01

    We report on the syntheses, crystal structure, and magnetic properties of the transition metal coordination polymer [Co3(SBA)2(OH)2(H2O)2]n, (SBA = 4-sulfobenzoate) in which CoO6 octahedra are linked through their edges, forming one-dimensional (1D) Co(II) arrays running along the crystal a-axis. These arrays are further perpendicularly bridged by SBA ligand to construct a three-dimensional framework. Its magnetic properties have been investigated, and ferromagnetic interactions within the arrays have been found. From heat capacity measurements, we have found that this compound exhibits a three-dimensional ferromagnetic phase transition at TC = 1.54 K, and the specific heat just above TC shows a Schottky anomaly which originates from an energy gap caused by uniaxial magnetic anisotropy. These results suggest that [Co3(SBA)2(OH)2(H2O)2]n consists of weakly coupled 1D ferromagnetic Ising arrays.

  12. Wave field synthesis of a virtual source located in proximity to a loudspeaker array.

    PubMed

    Lee, Jung-Min; Choi, Jung-Woo; Kim, Yang-Hann

    2013-09-01

    For the derivation of 2.5-dimensional operator in wave field synthesis, a virtual source is assumed to be positioned far from a loudspeaker array. However, such far-field approximation inevitably results in a reproduction error when the virtual source is placed adjacent to an array. In this paper, a method is proposed to generate a virtual source close to and behind a continuous line array of loudspeakers. A driving function is derived by reducing a surface integral (Rayleigh integral) to a line integral based on the near-field assumption. The solution is then combined with the far-field formula of wave field synthesis by introducing a weighting function that can adjust the near- and far-field contribution of each driving function. This enables production of a virtual source anywhere in relation to the array. Simulations show the proposed method can reduce the reproduction error to below -18 dB, regardless of the virtual source position.

  13. Grating lobe elimination in steerable parametric loudspeaker.

    PubMed

    Shi, Chuang; Gan, Woon-Seng

    2011-02-01

    In the past two decades, the majority of research on the parametric loudspeaker has concentrated on the nonlinear modeling of acoustic propagation and pre-processing techniques to reduce nonlinear distortion in sound reproduction. There are, however, very few studies on directivity control of the parametric loudspeaker. In this paper, we propose an equivalent circular Gaussian source array that approximates the directivity characteristics of the linear ultrasonic transducer array. By using this approximation, the directivity of the sound beam from the parametric loudspeaker can be predicted by the product directivity principle. New theoretical results, which are verified through measurements, are presented to show the effectiveness of the delay-and-sum beamsteering structure for the parametric loudspeaker. Unlike the conventional loudspeaker array, where the spacing between array elements must be less than half the wavelength to avoid spatial aliasing, the parametric loudspeaker can take advantage of grating lobe elimination to extend the spacing of ultrasonic transducer array to more than 1.5 wavelengths in a typical application.

  14. Geophysical character of the intraplate Wabash Fault System from the Wabash EarthScope FlexArray

    NASA Astrophysics Data System (ADS)

    Conder, J. A.; Zhu, L.; Wood, J. D.

    2017-12-01

    The Wabash Seismic Array was an EarthScope funded FlexArray deployment across the Wabash Fault System. The Wabash system is long known for oil and gas production. The fault system is often characterized as an intraplate seismic zone as it has produced several earthquakes above M4 in the last 50 years and potentially several above M7 in the Holocene. While earthquakes are far less numerous in the Wabash system than in the nearby New Madrid seismic zone, the seismic moment is nearly twice that of New Madrid over the past 50 years. The array consisted of 45 broadband instruments deployed across the axis to study the larger structure and 3 smaller phased arrays of 9 short-period instruments each to get a better sense of the local seismic output of smaller events. First results from the northern phased array indicate that seismicity in the Wabash behaves markedly differently than in New Madrid, with a low b-value around 0.7. Receiver functions show a 50 km thick crust beneath the system, thickening somewhat to the west. A variable-depth, positive-amplitude conversion in the deep crust gives evidence for a rift pillow at the base of the system within a dense lowermost crustal layer. Low Vs and a moderate negative amplitude conversion in the mid crust suggest a possible weak zone that could localize deformation. Shear wave splitting shows fast directions consistent with absolute plate motion across the system. Split times drop in magnitude to 0.5-0.7 seconds within the valley while in the 1-1.5 second range outside the valley. This magnitude decrease suggests a change in mantle signature beneath the fault system, possibly resulting from a small degree of local flow in the asthenosphere either along axis (as may occur with a thinned lithosphere) or by vertical flow (e.g., from delamination or dripping). We are building a 2D tomographic model across the region, relying primarily on teleseismic body waves. The tomography will undoubtedly show variations in crustal structure that will give additional context to the receiver function results. Possibly more importantly, the lithospheric structure will discriminate between hypotheses of mantle flow required to give the observed shear wave splitting signature.

  15. Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.

  16. Laser beam shaping design based on micromirror array

    NASA Astrophysics Data System (ADS)

    Fang, Han; Su, Bida; Liu, Jiaguo; Fan, Xiaoli; Jing, Wang

    2017-10-01

    In the practical application of the laser, it is necessary to use the laser beam shaping technology to shape the output beam of laser device to the uniform light intensity distribution. The shaping divergent optical system of compound eye integrator way is composed of beam expanding mirror group and lens array. Its working principle is to expand the output laser to a certain size of caliber, and then divide the beam with lens array into multiple sub beam, where the lens unit of lens array can control the divergence angle of sub beam through the design of focal length, with mutual superposition of the sub beam in far field, to make up for the nonuniformity of beam, so that the radiant exitance on the radiated surface may become uniform. In this paper, we use a reflective microlens array to realize the laser beam shaping. By through of the practical optical path model established, the ray tracing is carried out and the simulation results for single-mode Gaussian beam with noise circumstance is provided. The analysis results show that the laser beam shaping under different inputs can be effectively realized by use of microlens array. All the energy is within the signal window, with a high energy efficiency of more than 90%; The measured surface has a better uniformity, and the uniformity is better than 99.5% at 150m.

  17. From immobilized cells to motile cells on a bed-of-nails: effects of vertical nanowire array density on cell behaviour

    PubMed Central

    Persson, Henrik; Li, Zhen; Tegenfeldt, Jonas O.; Oredsson, Stina; Prinz, Christelle N.

    2015-01-01

    The field of vertical nanowire array-based applications in cell biology is growing rapidly and an increasing number of applications are being explored. These applications almost invariably rely on the physical properties of the nanowire arrays, creating a need for a better understanding of how their physical properties affect cell behaviour. Here, we investigate the effects of nanowire density on cell migration, division and morphology for murine fibroblasts. Our results show that few nanowires are sufficient to immobilize cells, while a high nanowire spatial density enables a ”bed-of-nails” regime, where cells reside on top of the nanowires and are fully motile. The presence of nanowires decreases the cell proliferation rate, even in the “bed-of-nails” regime. We show that the cell morphology strongly depends on the nanowire density. Cells cultured on low (0.1 μm−2) and medium (1 μm−2) density substrates exhibit an increased number of multi-nucleated cells and micronuclei. These were not observed in cells cultured on high nanowire density substrates (4 μm−2). The results offer important guidelines to minimize cell-function perturbations on nanowire arrays. Moreover, these findings offer the possibility to tune cell proliferation and migration independently by adjusting the nanowire density, which may have applications in drug testing. PMID:26691936

  18. Alignment of sensor arrays in optical instruments using a geometric approach.

    PubMed

    Sawyer, Travis W

    2018-02-01

    Alignment of sensor arrays in optical instruments is critical to maximize the instrument's performance. While many commercial systems use standardized mounting threads for alignment, custom systems require specialized equipment and alignment procedures. These alignment procedures can be time-consuming, dependent on operator experience, and have low repeatability. Furthermore, each alignment solution must be considered on a case-by-case basis, leading to additional time and resource cost. Here I present a method to align a sensor array using geometric analysis. By imaging a grid pattern of dots, I show that it is possible to calculate the misalignment for a sensor in five degrees of freedom simultaneously. I first test the approach by simulating different cases of misalignment using Zemax before applying the method to experimentally acquired data of sensor misalignment for an echelle spectrograph. The results show that the algorithm effectively quantifies misalignment in five degrees of freedom for an F/5 imaging system, accurate to within ±0.87  deg in rotation and ±0.86  μm in translation. Furthermore, the results suggest that the method can also be applied to non-imaging systems with a small penalty to precision. This general approach can potentially improve the alignment of sensor arrays in custom instruments by offering an accurate, quantitative approach to calculating misalignment in five degrees of freedom simultaneously.

  19. P-Doped NiCo2S4 nanotubes as battery-type electrodes for high-performance asymmetric supercapacitors.

    PubMed

    Lin, Jinghuang; Wang, Yiheng; Zheng, Xiaohang; Liang, Haoyan; Jia, Henan; Qi, Junlei; Cao, Jian; Tu, Jinchun; Fei, Weidong; Feng, Jicai

    2018-06-19

    NiCo2S4 is a promising electrode material for supercapacitors, due to its rich redox reactions and intrinsically high conductivity. Unfortunately, in most cases, NiCo2S4-based electrodes often suffer from low specific capacitance, low rate capability and fast capacitance fading. Herein, we have rationally designed P-doped NiCo2S4 nanotube arrays to improve the electrochemical performance through a phosphidation reaction. Characterization results demonstrate that the P element is successfully doped into NiCo2S4 nanotube arrays. Electrochemical results demonstrate that P-doped NiCo2S4 nanotube arrays exhibit better electrochemical performance than pristine NiCo2S4, e.g. higher specific capacitance (8.03 F cm-2 at 2 mA cm-2), good cycling stability (87.5% capacitance retention after 5000 cycles), and lower charge transfer resistance. More importantly, we also assemble an asymmetric supercapacitor using P-doped NiCo2S4 nanotube arrays and activated carbon on carbon cloth, which delivers a maximum energy density of 42.1 W h kg-1 at a power density of 750 W kg-1. These results demonstrate that the as-fabricated P-doped NiCo2S4 nanotube arrays on carbon cloth show great potential as a battery-type electrode for high-performance supercapacitors.

  20. Modeling and measurement of electrostatic micromirror array fabricated with single-layer polysilicon micromachining technology

    NASA Astrophysics Data System (ADS)

    Min, Young-Hoon; Kim, Yong-Kweon

    1998-09-01

    A silicon based micro mirror array is a highly efficient component for use in optical applications as adaptive optical systems and optical correlators. Many types of micro mirror or micro mirror array have been studied and proposed in order to obtain the optimal performance according to their own purposes. A micro mirror array designed, fabricated and tested in this paper consists of 5 X 5 single layer polysilicon-based, electrostatically driven actuators. The micro mirror array for the optical phase modulation is made by using only two masks and can be driven independently by 25 channel circuits. About 6 (pi) phase modulation is obtained in He-Ne laser ((lambda) equals 633 nm) with 67% fill-factor. In this paper, the deflection characteristics of the actuators in controllable range were studied. The experimental results show that the deflection characteristics is much dependent upon a residual stress in flexure, the initial curvature of mirror due to stress gradient and an electrostatic force acted on other element except for mirror itself. The modeling results agree well with the experimental results. Also, it is important to fabricate a flat mirror that is not initially curved because the curved mirror brings a bad performance in optical use. Therefore, a new method to obtain the flat mirror by using the gold metallization in spite of the residual stress unbalance is proposed in this paper.

  1. Simulating pad-electrodes with high-definition arrays in transcranial electric stimulation

    NASA Astrophysics Data System (ADS)

    Kempe, René; Huang, Yu; Parra, Lucas C.

    2014-04-01

    Objective. Research studies on transcranial electric stimulation, including direct current, often use a computational model to provide guidance on the placing of sponge-electrode pads. However, the expertise and computational resources needed for finite element modeling (FEM) make modeling impractical in a clinical setting. Our objective is to make the exploration of different electrode configurations accessible to practitioners. We provide an efficient tool to estimate current distributions for arbitrary pad configurations while obviating the need for complex simulation software. Approach. To efficiently estimate current distributions for arbitrary pad configurations we propose to simulate pads with an array of high-definition (HD) electrodes and use an efficient linear superposition to then quickly evaluate different electrode configurations. Main results. Numerical results on ten different pad configurations on a normal individual show that electric field intensity simulated with the sampled array deviates from the solutions with pads by only 5% and the locations of peak magnitude fields have a 94% overlap when using a dense array of 336 electrodes. Significance. Computationally intensive FEM modeling of the HD array needs to be performed only once, perhaps on a set of standard heads that can be made available to multiple users. The present results confirm that by using these models one can now quickly and accurately explore and select pad-electrode montages to match a particular clinical need.

  2. The Space Station Photovoltaic Panels Plasma Interaction Test Program: Test plan and results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1989-01-01

    The Plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  3. The Space Station photovoltaic panels plasma interaction test program - Test plan and results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1990-01-01

    The plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  4. Comparison of X-ray Radiation Process in Single and Nested Wire Array Implosions

    NASA Astrophysics Data System (ADS)

    Li, Z. H.; Xu, Z. P.; Yang, J. L.; Xu, R. K.; Guo, C.; Grabovsky, E. V.; Oleynic, G. M.; Smirnov, V. P.

    2006-01-01

    In order to understanding the difference between tungsten single-wire-array and tungsten nested-wire-array Z-pinches, we have measured the x-ray power, the temporal-spatial distributions of x-ray radiation from each of the two loads. The measurements were performed with 0.1mm spatial and 1 ns temporal resolutions at 2.5- and 3.5-MA currents. The experimental conditions, including wire material, number of wires, wire-array length, electrode design, and implosion time, remained unchanged from shot to shot. Analysis of the radiation power profiles suggests that the nested-wire-array radiate slightly less x-ray energy in relatively shorter time interval than the single wire-array, leading to a much greater x-ray power in nested-wire-array implosion. The temporal-spatial distributions of x-ray power show that in both cases, plasmas formed by wire-array ablation radiate not simultaneously along load axis. For nested-wire-array Z-pinch, plasmas near the anode begin to radiate in 2ns later than that near the cathode. As a contrast, the temporal divergence of radiation among different plasma zones of single-wire-array Z-pinch along Z-axis is more than 6ns. Measurements of the x-ray emissions from small segments of pinch (2mm length along axis) indicate that local radiation power profiles almost do not vary for the two loads. Photographs taken by X-ray framing camera give a same description about the radiation process of pinch. One may expect that, as a result of this study, if the single-wire-array can be redesigned so ingeniously that the x-rays are emitted at the same time all over the pinch zone, the radiation power of single wire array Z-pinch may be much greater than what have been achieved.

  5. Frequency domain phase-shifted confocal microscopy (FDPCM) with array detection

    NASA Astrophysics Data System (ADS)

    Ge, Baoliang; Huang, Yujia; Fang, Yue; Kuang, Cuifang; Xiu, Peng; Liu, Xu

    2017-09-01

    We proposed a novel method to reconstruct images taken by array detected confocal microscopy without prior knowledge about its detector distribution. The proposed frequency domain phase-shifted confocal microscopy (FDPCM) shifts the image from each detection channel to its corresponding place by substituting the phase information in Fourier domain. Theoretical analysis shows that our method could approach the resolution nearly twofold of wide-field microscopy. Simulation and experiment results are also shown to verify the applicability and effectiveness of our method. Compared to Airyscan, our method holds the advantage of simplicity and convenience to be applied to array detectors with different structure, which makes FDPCM have great potential in the application of biomedical observation in the future.

  6. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-05

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%.

  7. Directed self-organization of single DNA molecules in a nanoslit via embedded nanopit arrays

    PubMed Central

    Reisner, Walter; Larsen, Niels B.; Flyvbjerg, Henrik; Tegenfeldt, Jonas O.; Kristensen, Anders

    2009-01-01

    We show that arrays of nanopit structures etched in a nanoslit can control the positioning and conformation of single DNA molecules in nanofluidic devices. By adjusting the spacing, organization and placement of the nanopits it is possible to immobilize DNA at predetermined regions of a device without additional chemical modification and achieve a high degree of control over local DNA conformation. DNA can be extended between two nanopits and in closely spaced arrays will self-assemble into “connect-the-dots” conformations consisting of locally pinned segments joined by fluctuating linkers. These results have broad implications for nanotechnology fields that require methods for the nanoscale positioning and manipulation of DNA. PMID:19122138

  8. Fully integrated micro-separator with soft-magnetic micro-pillar arrays for filtrating lymphocytes.

    PubMed

    Dong, Tao; Su, Qianhua; Yang, Zhaochu; Karlsen, Frank; Jakobsen, Henrik; Egeland, Eirik Bentzen; Hjelseth, Snorre

    2010-01-01

    A fully integrated micro-separator with soft-magnetic micro-pillar arrays has been developed, which merely employs one independent Lab-On-Chip to realize the lymphocytes isolation from the human whole blood. The simulation, fabrication and experiment are executed to realize this novel microseparator. The simulation results show that, the soft-magnetic micro-pillars array can amplify and redistribute the electromagnetic field generated by the microcoils. The tests certify desirable separation efficiency can be realized using this new separator at low current. No extra cooling system is required for such a micro-separator. This micro-separator can also be used to separate other target cells or particles with the same principle.

  9. Co/Au multisegmented nanowires: a 3D array of magnetostatically coupled nanopillars

    NASA Astrophysics Data System (ADS)

    Bran, C.; Ivanov, Yu P.; Kosel, J.; Chubykalo-Fesenko, O.; Vazquez, M.

    2017-03-01

    Arrays of multisegmented Co/Au nanowires with designed segment lengths and diameters have been prepared by electrodeposition into aluminum oxide templates. The high quality of the Co/Au interface and the crystallographic structure of Co segments have determined by high-resolution transmission electron microscopy. Magnetic hysteresis loop measurements show larger coercivity and squareness of multisegmented nanowires as compared to single segment Co nanowires. The complementary micromagnetic simulations are in good agreement with the experimental results, confirming that the magnetic behavior is defined mainly by magnetostatic coupling between different segments. The proposed structure constitutes an innovative route towards a 3D array of synchronized magnetic nano-oscillators with large potential in nanoelectronics.

  10. A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia

    PubMed Central

    Saleh, Khaldon Y; Smith, Nadine Barrie

    2005-01-01

    Background Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. Methods In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. Results To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. Conclusion A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this array. The final prototype overcame also the problem of generating grating lobes at unwanted locations by tapering the array elements. PMID:15963237

  11. Wind loads on flat plate photovoltaic array fields

    NASA Technical Reports Server (NTRS)

    Miller, R. D.; Zimmerman, D. K.

    1981-01-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads. The arrays located at the outer boundary of an array field have a protective influence on the interior arrays of the field. A significant decrease of the array wind loads were recorded in the wind tunnel test on array panels located behind a fence and/or interior to the array field compared to the arrays on the boundary and unprotected from the wind. The magnitude of this decrease was the same whether caused by a fence or upwind arrays.

  12. Colorization-Based RGB-White Color Interpolation using Color Filter Array with Randomly Sampled Pattern

    PubMed Central

    Oh, Paul; Lee, Sukho; Kang, Moon Gi

    2017-01-01

    Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method. PMID:28657602

  13. Colorization-Based RGB-White Color Interpolation using Color Filter Array with Randomly Sampled Pattern.

    PubMed

    Oh, Paul; Lee, Sukho; Kang, Moon Gi

    2017-06-28

    Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method.

  14. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yi-Mu, E-mail: ymlee@nuu.edu.t; Yang, Hsi-Wen

    2011-03-15

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possessmore » highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.« less

  15. Wafer-scale plasmonic and photonic crystal sensors

    NASA Astrophysics Data System (ADS)

    George, M. C.; Liu, J.-N.; Farhang, A.; Williamson, B.; Black, M.; Wangensteen, T.; Fraser, J.; Petrova, R.; Cunningham, B. T.

    2015-08-01

    200 mm diameter wafer-scale fabrication, metrology, and optical modeling results are reviewed for surface plasmon resonance (SPR) sensors based on 2-D metallic nano-dome and nano-hole arrays (NHA's) as well as 1-D photonic crystal sensors based on a leaky-waveguide mode resonance effect, with potential applications in label free sensing, surface enhanced Raman spectroscopy (SERS), and surface-enhanced fluorescence spectroscopy (SEFS). Potential markets include micro-arrays for medical diagnostics, forensic testing, environmental monitoring, and food safety. 1-D and 2-D nanostructures were fabricated on glass, fused silica, and silicon wafers using optical lithography and semiconductor processing techniques. Wafer-scale optical metrology results are compared to FDTD modeling and presented along with application-based performance results, including label-free plasmonic and photonic crystal sensing of both surface binding kinetics and bulk refractive index changes. In addition, SEFS and SERS results are presented for 1-D photonic crystal and 2-D metallic nano-array structures. Normal incidence transmittance results for a 550 nm pitch NHA showed good bulk refractive index sensitivity, however an intensity-based design with 665 nm pitch was chosen for use as a compact, label-free sensor at both 650 and 632.8 nm wavelengths. The optimized NHA sensor gives an SPR shift of about 480 nm per refractive index unit when detecting a series of 0-40% glucose solutions, but according to modeling shows about 10 times greater surface sensitivity when operating at 532 nm. Narrow-band photonic crystal resonance sensors showed quality factors over 200, with reasonable wafer-uniformity in terms of both resonance position and peak height.

  16. Design and Fabrication of Aspheric Microlens Array for Optical Read-Only-Memory Card System

    NASA Astrophysics Data System (ADS)

    Kim, Hongmin; Jeong, Gibong; Kim, Young‑Joo; Kang, Shinill

    2006-08-01

    An optical head based on the Talbot effect with an aspheric microlens array for an optical read-only-memory (ROM) card system was designed and fabricated. The mathematical expression for the wavefield diffracted by a periodic microlens array showed that the amplitude distribution at the Talbot plane from the focal plane of the microlens array was identically equal to that at the focal plane. To use a reflow microlens array as a master pattern of an ultraviolet-imprinted (UV-imprinted) microlens array, the reflow microlens was defined as having an aspheric shape. To obtain optical probes with good optical qualities, a microlens array with the minimum spherical aberration was designed by ray tracing. The reflow condition was optimized to realize the master pattern of a microlens with a designed aspheric shape. The intensity distribution of the optical probes at the Talbot plane from the focal plane showed a diffraction-limited shape.

  17. Toward single-chirality carbon nanotube device arrays.

    PubMed

    Vijayaraghavan, Aravind; Hennrich, Frank; Stürzl, Ninette; Engel, Michael; Ganzhorn, Marc; Oron-Carl, Matti; Marquardt, Christoph W; Dehm, Simone; Lebedkin, Sergei; Kappes, Manfred M; Krupke, Ralph

    2010-05-25

    The large-scale integration of devices consisting of individual single-walled carbon nanotubes (SWCNT), all of the same chirality, is a critical step toward their electronic, optoelectronic, and electromechanical application. Here, the authors realize two related goals, the first of which is the fabrication of high-density, single-chirality SWCNT device arrays by dielectrophoretic assembly from monodisperse SWCNT solution obtained by polymer-mediated sorting. Such arrays are ideal for correlating measurements using various techniques across multiple identical devices, which is the second goal. The arrays are characterized by voltage-contrast scanning electron microscopy, electron transport, photoluminescence (PL), and Raman spectroscopy and show identical signatures as expected for single-chirality SWCNTs. In the assembled nanotubes, a large D peak in Raman spectra, a large dark-exciton peak in PL spectra as well as lowered conductance and slow switching in electron transport are all shown to be correlated to each other. By comparison to control samples, we conclude that these are the result of scattering from electronic and not structural defects resulting from the polymer wrapping, similar to what has been predicted for DNA wrapping.

  18. Synthesis and characterization of beta-Ga2O3 nanorod array clumps by chemical vapor deposition.

    PubMed

    Shi, Feng; Wei, Xiaofeng

    2012-11-01

    beta-Ga2O3 nanorod array clumps were successfully synthesized on Si (111) substrates by chemical vapor deposition. The composition, microstructure, morphology, and light-emitting property of these clumps were characterized by X-ray diffraction, Fourier transform infrared spectrophotometry, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence. The results demonstrate that the sample synthesized at 1050 degrees C for 15 min was composed of monoclinic beta-Ga2O3 nanorod array clumps, where each single nanorod was about 300 nm in diameter with some nano-droplets on its tip. These results reveal that the growth mechanism agrees with the vapor-liquid-solid (VLS) process. The photoluminescence spectrum shows that the Ga2O3 nanorods have a blue emission at 438 nm, which may be attributed to defects, such as oxygen vacancies and gallium-oxygen vacancy pairs. Defect-energy aggregation confinement growth theory was proposed to explain the growth mechanism of Ga2O3 nanorod array clumps collaborated with the VLS mechanism.

  19. (Bio)Sensing Using Nanoparticle Arrays: On the Effect of Analyte Transport on Sensitivity.

    PubMed

    Lynn, N Scott; Homola, Jiří

    2016-12-20

    There has recently been an extensive amount of work regarding the development of optical, electrical, and mechanical (bio)sensors employing planar arrays of surface-bound nanoparticles. The sensor output for these systems is dependent on the rate at which analyte is transported to, and interacts with, each nanoparticle in the array. There has so far been little discussion on the relationship between the design parameters of an array and the interplay of convection, diffusion, and reaction. Moreover, current methods providing such information require extensive computational simulation. Here we demonstrate that the rate of analyte transport to a nanoparticle array can be quantified analytically. We show that such rates are bound by both the rate to a single NP and that to a planar surface (having equivalent size as the array), with the specific rate determined by the fill fraction: the ratio between the total surface area used for biomolecular capture with respect to the entire sensing area. We characterize analyte transport to arrays with respect to changes in numerous parameters relevant to experiment, including variation of the nanoparticle shape and size, packing density, flow conditions, and analyte diffusivity. We also explore how analyte capture is dependent on the kinetic parameters related to an affinity-based biosensor, and furthermore, we classify the conditions under which the array might be diffusion- or reaction-limited. The results obtained herein are applicable toward the design and optimization of all (bio)sensors based on nanoparticle arrays.

  20. Fabrication of ordered metallic glass nanotube arrays for label-free biosensing with diffractive reflectance.

    PubMed

    Chen, Wei-Ting; Li, Shao-Sian; Chu, Jinn P; Feng, Kuei Chih; Chen, Jem-Kun

    2018-04-15

    In this study, a photoresist template with well-defined contact hole array was fabricated, to which radio frequency magnetron sputtering process was then applied to deposit an alloyed Zr 55 Cu 30 Al 10 Ni 5 target, and finally resulted in ordered metallic glass nanotube (MGNT) arrays after removal of the photoresist template. The thickness of the MGNT walls increased from 98 to 126nm upon increasing the deposition time from 225 to 675s. The wall thickness of the MGNT arrays also increased while the dimensions of MGNT reduced under the same deposition condition. The MGNT could be filled with biomacromolecules to change the effective refractive index. The air fraction of the medium layer were evaluated through static water contact angle measurements and, thereby, the effective refractive indices the transverse magnetic (TM) and transverse electric (TE) polarized modes were calculated. A standard biotin-streptavidin affinity model was tested using the MGNT arrays and the fundamental response of the system was investigated. Results show that filling the MGNT with streptavidin altered the effective refractive index of the layer, the angle of reflectance and color changes identified by an L*a*b* color space and color circle on an a*b* chromaticity diagram. The limit of detection (LOD) of the MGNT arrays for detection of streptavidin was estimated as 25nM, with a detection time of 10min. Thus, the MGNT arrays may be used as a versatile platform for high-sensitive label-free optical biosensing. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Methods for determining infrasound phase velocity direction with an array of line sensors.

    PubMed

    Walker, Kristoffer T; Zumberge, Mark A; Hedlin, Michael A H; Shearer, Peter M

    2008-10-01

    Infrasound arrays typically consist of several microbarometers separated by distances that provide predictable signal time separations, forming the basis for processing techniques that estimate the phase velocity direction. The directional resolution depends on the noise level and is proportional to the number of these point sensors; additional sensors help attenuate noise and improve direction resolution. An alternative approach is to form an array of directional line sensors, each of which emulates a line of many microphones that instantaneously integrate pressure change. The instrument response is a function of the orientation of the line with respect to the signal wavefront. Real data recorded at the Piñon Flat Observatory in southern California and synthetic data show that this spectral property can be exploited with multiple line sensors to determine the phase velocity direction with a precision comparable to a larger aperture array of microbarometers. Three types of instrument-response-dependent beamforming and an array deconvolution technique are evaluated. The results imply that an array of five radial line sensors, with equal azimuthal separation and an aperture that depends on the frequency band of interest, provides directional resolution while requiring less space compared to an equally effective array of five microbarometers with rosette wind filters.

  2. Improved intra-array and interarray normalization of peptide microarray phosphorylation for phosphorylome and kinome profiling by rational selection of relevant spots

    PubMed Central

    Scholma, Jetse; Fuhler, Gwenny M.; Joore, Jos; Hulsman, Marc; Schivo, Stefano; List, Alan F.; Reinders, Marcel J. T.; Peppelenbosch, Maikel P.; Post, Janine N.

    2016-01-01

    Massive parallel analysis using array technology has become the mainstay for analysis of genomes and transcriptomes. Analogously, the predominance of phosphorylation as a regulator of cellular metabolism has fostered the development of peptide arrays of kinase consensus substrates that allow the charting of cellular phosphorylation events (often called kinome profiling). However, whereas the bioinformatical framework for expression array analysis is well-developed, no advanced analysis tools are yet available for kinome profiling. Especially intra-array and interarray normalization of peptide array phosphorylation remain problematic, due to the absence of “housekeeping” kinases and the obvious fallacy of the assumption that different experimental conditions should exhibit equal amounts of kinase activity. Here we describe the development of analysis tools that reliably quantify phosphorylation of peptide arrays and that allow normalization of the signals obtained. We provide a method for intraslide gradient correction and spot quality control. We describe a novel interarray normalization procedure, named repetitive signal enhancement, RSE, which provides a mathematical approach to limit the false negative results occuring with the use of other normalization procedures. Using in silico and biological experiments we show that employing such protocols yields superior insight into cellular physiology as compared to classical analysis tools for kinome profiling. PMID:27225531

  3. Color waveguide transparent screen using lens array holographic optical element

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong

    2017-11-01

    A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.

  4. Mission-Oriented Sensor Arrays and UAVs - a Case Study on Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Figueira, N. M.; Freire, I. L.; Trindade, O.; Simões, E.

    2015-08-01

    This paper presents a new concept of UAV mission design in geomatics, applied to the generation of thematic maps for a multitude of civilian and military applications. We discuss the architecture of Mission-Oriented Sensors Arrays (MOSA), proposed in Figueira et Al. (2013), aimed at splitting and decoupling the mission-oriented part of the system (non safety-critical hardware and software) from the aircraft control systems (safety-critical). As a case study, we present an environmental monitoring application for the automatic generation of thematic maps to track gunshot activity in conservation areas. The MOSA modeled for this application integrates information from a thermal camera and an on-the-ground microphone array. The use of microphone arrays technology is of particular interest in this paper. These arrays allow estimation of the direction-of-arrival (DOA) of the incoming sound waves. Information about events of interest is obtained by the fusion of the data provided by the microphone array, captured by the UAV, fused with information from the termal image processing. Preliminary results show the feasibility of the on-the-ground sound processing array and the simulation of the main processing module, to be embedded into an UAV in a future work. The main contributions of this paper are the proposed MOSA system, including concepts, models and architecture.

  5. Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.

    PubMed

    Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun

    2018-05-08

    Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.

  6. SAR Reduction in 7T C-Spine Imaging Using a “Dark Modes” Transmit Array Strategy

    PubMed Central

    Eryaman, Yigitcan; Guerin, Bastien; Keil, Boris; Mareyam, Azma; Herraiz, Joaquin L.; Kosior, Robert K.; Martin, Adrian; Torrado-Carvajal, Angel; Malpica, Norberto; Hernandez-Tamames, Juan A.; Schiavi, Emanuele; Adalsteinsson, Elfar; Wald, Lawrence L.

    2016-01-01

    Purpose Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a “dark mode”) to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. Methods We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1+ patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. Results For B1+ shimming in the spine, the addition of dipole elements did not significantly alter the B1+ spatial pattern but reduced local SAR by 36%. Conclusion The dipole elements provide a sufficiently complimentary B1+ and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR. PMID:24753012

  7. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    PubMed

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  8. Enhanced processing in arrays of optimally tuned nonlinear biomimetic sensors: A coupling-mediated Ringelmann effect and its dynamical mitigation

    NASA Astrophysics Data System (ADS)

    Nikitin, Alexander P.; Bulsara, Adi R.; Stocks, Nigel G.

    2017-03-01

    Inspired by recent results on self-tunability in the outer hair cells of the mammalian cochlea, we describe an array of magnetic sensors where each individual sensor can self-tune to an optimal operating regime. The self-tuning gives the array its "biomimetic" features. We show that the overall performance of the array can, as expected, be improved by increasing the number of sensors but, however, coupling between sensors reduces the overall performance even though the individual sensors in the system could see an improvement. We quantify the similarity of this phenomenon to the Ringelmann effect that was formulated 103 years ago to account for productivity losses in human and animal groups. We propose a global feedback scheme that can be used to greatly mitigate the performance degradation that would, normally, stem from the Ringelmann effect.

  9. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks.

    PubMed

    Li, Z P; Xu, Z M; Qu, X P; Wang, S B; Peng, J; Mei, L H

    2017-03-03

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  10. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  11. Periodically striped films produced from super-aligned carbon nanotube arrays.

    PubMed

    Liu, Kai; Sun, Yinghui; Liu, Peng; Wang, Jiaping; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2009-08-19

    We report a novel way to draw films from super-aligned carbon nanotube arrays at large drawing angles. The obtained super-aligned carbon nanotube films have a periodically striped configuration with alternating thinner and thicker film sections, and the width of the stripes is equal to the height of the original arrays. Compared with ordinary uniform films, the striped films provide a better platform for understanding the mechanism of spinning films from arrays because carbon nanotube junctions are easily observed and identified at the boundary of the stripes. Further studies show that the carbon nanotube junctions are bottleneck positions for thermal conduction and mechanical strength of the film, but do not limit its electrical conduction. These films can be utilized as striped and high-degree polarized light emission sources. Our results will be valuable for new applications and future large-scale production of tunable super-aligned carbon nanotube films.

  12. Wettability and friction coefficient of micro-magnet arrayed surface

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Liao, Sijie; Wang, Xiaolei

    2012-01-01

    Surface coating is an important part of surface engineering and it has been successfully used in many applications to improve the performance of surfaces. In this paper, magnetic arrayed films with different thicknesses were fabricated on the surface of 316 stainless steel disks. Controllable colloid - ferrofluids (FF) was chosen as lubricant, which can be adsorbed on the magnetic surface. The wettability of the micro-magnet arrayed surface was evaluated by measuring the contract angle of FF drops on surface. Tribological experiments were carried out to investigate the effects of magnetic film thickness on frictional properties when lubricated by FF under plane contact condition. It was found that the magnetic arrayed surface with thicker magnetic films presented larger contract angle. The frictional test results showed that samples with thicker magnetic films could reduce friction and wear more efficiently at higher sliding velocity under the lubrication of FF.

  13. A novel alternating current multiple array electrothermal micropump for lab-on-a-chip applications.

    PubMed

    Salari, A; Navi, M; Dalton, C

    2015-01-01

    The AC electrothermal technique is very promising for biofluid micropumping, due to its ability to pump high conductivity fluids. However, compared to electroosmotic micropumps, a lack of high fluid flow is a disadvantage. In this paper, a novel AC multiple array electrothermal (MAET) micropump, utilizing multiple microelectrode arrays placed on the side-walls of the fluidic channel of the micropump, is introduced. Asymmetric coplanar microelectrodes are placed on all sides of the microfluidic channel, and are actuated in different phases: one, two opposing, two adjacent, three, or all sides at the same time. Micropumps with different combinations of side electrodes and cross sections are numerically investigated in this paper. The effect of the governing parameters with respect to thermal, fluidic, and electrical properties are studied and discussed. To verify the simulations, the AC MAET concept was then fabricated and experimentally tested. The resulted fluid flow achieved by the experiments showed good agreement with the corresponding simulations. The number of side electrode arrays and the actuation patterns were also found to greatly influence the micropump performance. This study shows that the new multiple array electrothermal micropump design can be used in a wide range of applications such as drug delivery and lab-on-a-chip, where high flow rate and high precision micropumping devices for high conductivity fluids are needed.

  14. Study of the characteristics of reconfigurable plasma antenna array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alias, Nur Salihah; Dagang, Ahmad Nazri; Ali, Mohd Tarmizi

    This paper presents a design and simulation of a reconfigurable array of plasma antenna. The plasma column is used as radiating elements instead of metal to create an antenna. The advantages of the plasma antenna over the conventional antenna are its possible to change the operating parameters, such as the working pressure, input power, radius of the discharge tube, resonant frequency, and length of the plasma column. In addition, plasma antenna can be reconfigurable with respect to shape, frequency and radiation parameters in a very short time. The plasma discharge tube was designed with a length of 200 mm, the radiusmore » of the plasma column was 2.5 mm and the coupling sleeve was connected to the SMA as the ground. This simulation was performed by using the simulation software Computer Simulation Technology (CST). The frequency is set in the range of 1 GHz to 10 GHz. The performance of the designed antenna was analyzed in term of return loss, gain and radiation pattern. For reconfigurable plasma antenna array, it shows that the gain is increase when the number of antenna element is increase. The combination of the discharge tube and metal rod as an antenna array has been done, and the result shows that an array with the plasma element can achieve higher gain.« less

  15. [Near infrared spectroscopy system structure with MOEMS scanning mirror array].

    PubMed

    Luo, Biao; Wen, Zhi-Yu; Wen, Zhong-Quan; Chen, Li; Qian, Rong-Rong

    2011-11-01

    A method which uses MOEMS mirror array optical structure to reduce the high cost of infrared spectrometer is given in the present paper. This method resolved the problem that MOEMS mirror array can not be used in simple infrared spectrometer because the problem of imaging irregularity in infrared spectroscopy and a new structure for spectral imaging was designed. According to the requirements of imaging spot, this method used optical design software ZEMAX and standard-specific aberrations of the optimization algorithm, designed and optimized the optical structure. It works from 900 to 1 400 nm. The results of design analysis showed that with the light source slit width of 50 microm, the spectrophotometric system is superior to the theoretical resolution of 6 nm, and the size of the available spot is 0.042 mm x 0.08 mm. Verification examples show that the design meets the requirements of the imaging regularity, and can be used for MOEMS mirror reflectance scan. And it was also verified that the use of a new MOEMS mirror array spectrometer model is feasible. Finally, analyze the relationship between the location of the detector and the maximum deflection angle of micro-mirror was analyzed.

  16. Quantum correlation of path-entangled two-photon states in waveguide arrays with defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Yiling; Xu, Lei; Han, Bin

    We study the quantum correlation of path-entangled states of two photons in coupled one-dimensional waveguide arrays with lattice defects. Both off-diagonal and diagonal defects are considered, which show different effects on the quantum correlation of path-entangled two-photon states. Two-photon bunching or anti-bunching effects can be observed and controlled. The two photons are found to have a tendency to bunch at the side lobes with a repulsive off-diagonal defect, and the path-entanglement of the input two-photon state can be preserved during the propagation. We also found that defect modes may play an important role on the two-photon correlation of path-entangled statesmore » in the waveguide arrays. Due to the quantum interference effect, intriguing evolution dynamics of the two-photon correlation matrix elements with oscillation frequencies being either twice of or the same as that of a classical light wave, depending on the position of the correlation matrix element, is observed. Our results show that it is possible to manipulate the two-photon correlation properties of path-entangled states in waveguide arrays with lattice defects.« less

  17. Reference Model MHK Turbine Array Optimization Study within a Generic River System.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Erick; Barco Mugg, Janet; James, Scott

    2011-12-01

    Increasing interest in marine hydrokinetic (MHK) energy has spurred to significant research on optimal placement of emerging technologies to maximize energy conversion and minimize potential effects on the environment. However, these devices will be deployed as an array in order to reduce the cost of energy and little work has been done to understand the impact these arrays will have on the flow dynamics, sediment-bed transport and benthic habitats and how best to optimize these arrays for both performance and environmental considerations. An "MHK-friendly" routine has been developed and implemented by Sandia National Laboratories (SNL) into the flow, sediment dynamicsmore » and water-quality code, SNL-EFDC. This routine has been verified and validated against three separate sets of experimental data. With SNL-EFDC, water quality and array optimization studies can be carried out to optimize an MHK array in a resource and study its effects on the environment. The present study examines the effect streamwise and spanwise spacing has on the array performance. Various hypothetical MHK array configurations are simulated within a trapezoidal river channel. Results show a non-linear increase in array-power efficiency as turbine spacing is increased in each direction, which matches the trends seen experimentally. While the sediment transport routines were not used in these simulations, the flow acceleration seen around the MHK arrays has the potential to significantly affect the sediment transport characteristics and benthic habitat of a resource. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd« less

  18. Ultrasound therapy transducers with space-filling non-periodic arrays.

    PubMed

    Raju, Balasundar I; Hall, Christopher S; Seip, Ralf

    2011-05-01

    Ultrasound transducers designed for therapeutic purposes such as tissue ablation, histotripsy, or drug delivery require large apertures for adequate spatial localization while providing sufficient power and steerability without the presence of secondary grating lobes. In addition, it is highly preferred to minimize the total number of channels and to maintain simplicity in electrical matching network design. To this end, we propose array designs that are both space-filling and non-periodic in the placement of the elements. Such array designs can be generated using the mathematical concept of non-periodic or aperiodic tiling (tessellation) and can lead to reduced grating lobes while maintaining full surface area coverage to deliver maximum power. For illustration, we designed two 2-D space-filling therapeutic arrays with 128 elements arranged on a spherical shell. One was based on the two-shape Penrose rhombus tiling, and the other was based on a single rectangular shape arranged non-periodically. The steerability performance of these arrays was studied using acoustic field simulations. For comparison, we also studied two other arrays, one with circular elements distributed randomly, and the other a periodic array with square elements. Results showed that the two space-filling non-periodic arrays were able to steer to treat a volume of 16 x 16 x 20 mm while ensuring that the grating lobes were under -10 dB compared with the main lobe. The rectangular non-periodic array was able to generate two and half times higher power than the random circles array. The rectangular array was then fabricated by patterning the array using laser scribing methods and its steerability performance was validated using hydrophone measurements. This work demonstrates that the concept of space-filling aperiodic/non-periodic tiling can be used to generate therapy arrays that are able to provide higher power for the same total transducer area compared with random arrays while maintaining acceptable grating lobe levels.

  19. Ultrasonic Phased Array Compressive Imaging in Time and Frequency Domain: Simulation, Experimental Verification and Real Application

    PubMed Central

    Bai, Zhiliang; Chen, Shili; Jia, Lecheng; Zeng, Zhoumo

    2018-01-01

    Embracing the fact that one can recover certain signals and images from far fewer measurements than traditional methods use, compressive sensing (CS) provides solutions to huge amounts of data collection in phased array-based material characterization. This article describes how a CS framework can be utilized to effectively compress ultrasonic phased array images in time and frequency domains. By projecting the image onto its Discrete Cosine transform domain, a novel scheme was implemented to verify the potentiality of CS for data reduction, as well as to explore its reconstruction accuracy. The results from CIVA simulations indicate that both time and frequency domain CS can accurately reconstruct array images using samples less than the minimum requirements of the Nyquist theorem. For experimental verification of three types of artificial flaws, although a considerable data reduction can be achieved with defects clearly preserved, it is currently impossible to break Nyquist limitation in the time domain. Fortunately, qualified recovery in the frequency domain makes it happen, meaning a real breakthrough for phased array image reconstruction. As a case study, the proposed CS procedure is applied to the inspection of an engine cylinder cavity containing different pit defects and the results show that orthogonal matching pursuit (OMP)-based CS guarantees the performance for real application. PMID:29738452

  20. Laser diode arrays for naval reconnaissance

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Crosby, Frank J.; Petee, Danny A.; Suiter, Harold R.; Witherspoon, Ned H.

    2003-09-01

    The Airborne Littoral Reconnaissance Technologies (ALRT) Project has demonstrated a nighttime operational minefield detection capability using commercial off-the-shelf high-power Laser Diode Arrays (LDAs). Historically, optical aerial detection of minefields has primarily been limited to daytime operations but LDAs promise compact and efficient lighting to allow for enhanced reconnaissance operations for future mine detection systems. When combined with high-resolution intensified imaging systems, LDAs can illuminate otherwise unseen areas. Future wavelength options will open the way for active multispectral imaging with LDAs. The Coastal Systems Station working for the Office of Naval Research on the ALRT project has designed, developed, integrated, and tested both prototype and commercial arrays from a Cessna airborne platform. Detailed test results show the ability to detect several targets of interest in a variety of background conditions. Initial testing of the prototype arrays, reported on last year, was completed and further investigations of the commercial versions were performed. Polarization-state detection studies were performed, and advantageous properties of the source-target-sensor geometry noted. Current project plans are to expand the field-of-view coverage for Naval exercises in the summer of 2003. This paper describes the test collection, data library products, array information, on-going test analysis results, and future planned testing of the LDAs.

  1. Rotational displacement skills in rhesus macaques (Macaca mulatta).

    PubMed

    Hughes, Kelly D; Santos, Laurie R

    2012-11-01

    Rotational displacement tasks, in which participants must track an object at a hiding location within an array while the array rotates, exhibit a puzzling developmental pattern in humans. Human children take an unusually long time to master this task and tend to solve rotational problems through the use of nongeometric features or landmarks as opposed to other kinds of spatial cues. We investigated whether these developmental characteristics are unique to humans by testing rotational displacement skills in a monkey species, the rhesus macaque (Macaca mulatta), using a looking-time method. Monkeys first saw food hidden in two differently colored boxes within an array. The array was then rotated 180° and the boxes reopened to reveal the food in an expected or unexpected location. Our first two experiments explored the developmental time-course of performance on this rotational displacement task. We found that adult macaques looked longer at the unexpected event, but such performance was not mirrored in younger-aged macaques. In a third study, we systematically varied featural information and visible access to the array to investigate which strategies adult macaques used in solving rotational displacements. Our results show that adult macaques need both sets of information to solve the task. Taken together, these results suggest both similarities and differences in mechanisms by which human and nonhuman primates develop this spatial skill.

  2. Performance parameters of a liquid filled ionization chamber array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppe, B.; Stelljes, T. S.; Looe, H. K.

    2013-08-15

    Purpose: In this work, the properties of the two-dimensional liquid filled ionization chamber array Octavius 1000SRS (PTW-Freiburg, Germany) for use in clinical photon-beam dosimetry are investigated.Methods: Measurements were carried out at an Elekta Synergy and Siemens Primus accelerator. For measurements of stability, linearity, and saturation effects of the 1000SRS array a Semiflex 31013 ionization chamber (PTW-Freiburg, Germany) was used as a reference. The effective point of measurement was determined by TPR measurements of the array in comparison with a Roos chamber (type 31004, PTW-Freiburg, Germany). The response of the array with varying field size and depth of measurement was evaluatedmore » using a Semiflex 31010 ionization chamber as a reference. Output factor measurements were carried out with a Semiflex 31010 ionization chamber, a diode (type 60012, PTW-Freiburg, Germany), and the detector array under investigation. The dose response function for a single detector of the array was determined by measuring 1 cm wide slit-beam dose profiles and comparing them against diode-measured profiles. Theoretical aspects of the low pass properties and of the sampling frequency of the detector array were evaluated. Dose profiles measured with the array and the diode detector were compared, and an intensity modulated radiation therapy (IMRT) field was verified using the Gamma-Index method and the visualization of line dose profiles.Results: The array showed a short and long term stability better than 0.1% and 0.2%, respectively. Fluctuations in linearity were found to be within ±0.2% for the vendor specified dose range. Saturation effects were found to be similar to those reported in other studies for liquid-filled ionization chambers. The detector's relative response varied with field size and depth of measurement, showing a small energy dependence accounting for maximum signal deviations of ±2.6% from the reference condition for the setup used. The σ-values of the Gaussian dose response function for a single detector of the array were found to be (0.72 ± 0.25) mm at 6 MV and (0.74 ± 0.25) mm at 15 MV and the corresponding low pass cutoff frequencies are 0.22 and 0.21 mm{sup −1}, respectively. For the inner 5 × 5 cm{sup 2} region and the outer 11 × 11 cm{sup 2} region of the array the Nyquist theorem is fulfilled for maximum sampling frequencies of 0.2 and 0.1 mm{sup −1}, respectively. An IMRT field verification with a Gamma-Index analysis yielded a passing rate of 95.2% for a 3 mm/3% criterion with a TPS calculation as reference.Conclusions: This study shows the applicability of the Octavius 1000SRS in modern dosimetry. Output factor and dose profile measurements illustrated the applicability of the array in small field and stereotactic dosimetry. The high spatial resolution ensures adequate measurements of dose profiles in regular and intensity modulated photon-beam fields.« less

  3. Multiplexing of miniaturized planar antibody arrays for serum protein profiling--a biomarker discovery in SLE nephritis.

    PubMed

    Petersson, Linn; Dexlin-Mellby, Linda; Bengtsson, Anders A; Sturfelt, Gunnar; Borrebaeck, Carl A K; Wingren, Christer

    2014-06-07

    In the quest to decipher disease-associated biomarkers, miniaturized and multiplexed antibody arrays may play a central role in generating protein expression profiles, or protein maps, of crude serum samples. In this conceptual study, we explored a novel, 4-times larger pen design, enabling us to, in a unique manner, simultaneously print 48 different reagents (antibodies) as individual 78.5 μm(2) (10 μm in diameter) sized spots at a density of 38,000 spots cm(-2) using dip-pen nanolithography technology. The antibody array set-up was interfaced with a high-resolution fluorescent-based scanner for sensitive sensing. The performance and applicability of this novel 48-plex recombinant antibody array platform design was demonstrated in a first clinical application targeting SLE nephritis, a severe chronic autoimmune connective tissue disorder, as the model disease. To this end, crude, directly biotinylated serum samples were targeted. The results showed that the miniaturized and multiplexed array platform displayed adequate performance, and that SLE-associated serum biomarker panels reflecting the disease process could be deciphered, outlining the use of miniaturized antibody arrays for disease proteomics and biomarker discovery.

  4. Study of the formation, stability, and X-ray emission of the Z-pinch formed during implosion of fiber arrays at the Angara-5-1 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.

    Results from experimental studies on the implosion of arrays made of kapron fibers coated with different metals (Al, In, Sn, and Bi) are presented. It is shown that the power, total energy, and spectrum of radiation emitted by the imploding array depend on the number of metallized fibers and the mass of the metal layer deposited on them but are independent of the metal characteristics (density, atomic number, etc.). Analysis of frame X-ray images shows that the Z-pinches formed in the implosion of metallized kapron fiber arrays are more stable than those formed in wire arrays and that MHD perturbationsmore » in them develop at a slower growth rate. Due to the lower rate of plasma production from kapron fibers, the plasma formed at the periphery of the array forms a layer that plays the role of a hohlraum wall partially trapping soft X-ray emission of the Z-pinch formed in the implosion of the material of the deposited metal layer. The closure of the anode aperture doubles the energy of radiation emitted in the radial direction.« less

  5. Evaluation of the 2013 Southeast Asian Haze on Solar Generation Performance

    PubMed Central

    Maghami, Mohammadreza; Hizam, Hashim; Gomes, Chandima; Hajighorbani, Shahrooz; Rezaei, Nima

    2015-01-01

    Pollution in Southeast Asia is a major public energy problem and the cause of energy losses. A significant problem with respect to this type of pollution is that it decreases energy yield. In this study, two types of photovoltaic (PV) solar arrays were used to evaluate the effect of air pollution. The performance of two types of solar arrays were analysed in this research, namely, two units of a 1 kWp tracking flat photovoltaic (TFP) and two units of a 1 kWp fixed flat photovoltaic arrays (FFP). Data analysis was conducted on 2,190 samples at 30 min intervals from 01st June 2013, when both arrays were washed, until 30th June 2013. The performance was evaluated by using environmental data (irradiation, temperature, dust thickness, and air pollution index), power output, and energy yield. Multiple regression models were predicted in view of the environmental data and PV array output. Results showed that the fixed flat system was more affected by air pollution than the tracking flat plate. The contribution of this work is that it considers two types of photovoltaic arrays under the Southeast Asian pollution 2013. PMID:26275303

  6. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface.

    PubMed

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-03-02

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length ( L ), interval ( S ), and height ( H ) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure.

  7. Wettability and Contact Time on a Biomimetic Superhydrophobic Surface

    PubMed Central

    Liang, Yunhong; Peng, Jian; Li, Xiujuan; Huang, Jubin; Qiu, Rongxian; Zhang, Zhihui; Ren, Luquan

    2017-01-01

    Inspired by the array microstructure of natural superhydrophobic surfaces (lotus leaf and cicada wing), an array microstructure was successfully constructed by high speed wire electrical discharge machining (HS-WEDM) on the surfaces of a 7075 aluminum alloy without any chemical treatment. The artificial surfaces had a high apparent contact angle of 153° ± 1° with a contact angle hysteresis less than 5° and showed a good superhydrophobic property. Wettability, contact time, and the corresponding superhydrophobic mechanism of artificial superhydrophobic surface were investigated. The results indicated that the micro-scale array microstructure was an important factor for the superhydrophobic surface, while different array microstructures exhibited different effects on the wettability and contact time of the artificial superhydrophobic surface. The length (L), interval (S), and height (H) of the array microstructure are the main influential factors on the wettability and contact time. The order of importance of these factors is H > S > L for increasing the apparent contact angle and reducing the contact time. The method, using HS-WEDM to fabricate superhydrophobic surface, is simple, low-cost, and environmentally friendly and can easily control the wettability and contact time on the artificial surfaces by changing the array microstructure. PMID:28772613

  8. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    PubMed

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  9. Investigation of standing wave formation in a human skull for a clinical prototype of a large-aperture, transcranial MR-guided Focused Ultrasound (MRgFUS) phased array: An experimental and simulation study

    PubMed Central

    Song, Junho; Pulkkinen, Aki; Huang, Yuexi; Hynynen, Kullervo

    2014-01-01

    Standing wave formation in an ex vivo human skull was investigated using a clinical prototype of a 30 cm diameter with 15 cm radius of curvature, low frequency (230 kHz), hemispherical transcranial Magnetic Resonance guided Focused Ultrasound (MRgFUS) phased-array. Experimental and simulation studies were conducted with changing aperture size and f-number configurations of the phased array, and qualitatively and quantitatively examined the acoustic pressure variation at the focus due to standing waves. The results demonstrated that the nodes and anti-nodes of standing wave produced by the small aperture array were clearly seen at approximately every 3 mm. The effect of the standing wave became more pronounced as the focus was moved closer to skull base. However, a sharp focus was seen for the full array, and there was no such standing wave pattern in the acoustic plane or near the skull base. This study showed that the fluctuation pressure amplitude would be greatly reduced by using a large-scale, hemispherical phased array with a low f-number. PMID:22049360

  10. Microtubule and cellulose microfibril orientation during plant cell and organ growth.

    PubMed

    Chan, J

    2012-07-01

    In this review, I ask the question of what is the relationship between growth and the orientations of microtubules and cellulose microfibrils in plant cells. This should be a relatively simple question to answer considering that text books commonly describe microtubules and cellulose microfibrils as hoops that drive expansion perpendicular to their orientation. However, recent live imaging techniques, which allow microtubules and cellulose synthase dynamics to be imaged simultaneously with cell elongation, show that cells can elongate with nonperpendicular microtubule arrays. In this review, I look at the significance of these different microtubule arrangements for growth and cell wall architecture and how these resultant walls differ from those derived from perpendicular arrays. I also discuss how these divergent arrays in stems may be important for coordinating growth between the different cell layers. This role reveals some general features of microtubule alignment that can be used to predict the growth status of organs. In conclusion, nonperpendicular arrays demonstrate alternative ways of cell elongation that do not require hooped arrays of microtubules and cellulose microfibrils. Such nonperpendicular arrays may be required for optimal growth and strengthening of tissues. © 2011 The Author Journal of Microscopy © 2011 Royal Microscopical Society.

  11. Efficient Analysis of Systems Biology Markup Language Models of Cellular Populations Using Arrays.

    PubMed

    Watanabe, Leandro; Myers, Chris J

    2016-08-19

    The Systems Biology Markup Language (SBML) has been widely used for modeling biological systems. Although SBML has been successful in representing a wide variety of biochemical models, the core standard lacks the structure for representing large complex regular systems in a standard way, such as whole-cell and cellular population models. These models require a large number of variables to represent certain aspects of these types of models, such as the chromosome in the whole-cell model and the many identical cell models in a cellular population. While SBML core is not designed to handle these types of models efficiently, the proposed SBML arrays package can represent such regular structures more easily. However, in order to take full advantage of the package, analysis needs to be aware of the arrays structure. When expanding the array constructs within a model, some of the advantages of using arrays are lost. This paper describes a more efficient way to simulate arrayed models. To illustrate the proposed method, this paper uses a population of repressilator and genetic toggle switch circuits as examples. Results show that there are memory benefits using this approach with a modest cost in runtime.

  12. Application of X-Y Separable 2-D Array Beamforming for Increased Frame Rate and Energy Efficiency in Handheld Devices

    PubMed Central

    Owen, Kevin; Fuller, Michael I.; Hossack, John A.

    2015-01-01

    Two-dimensional arrays present significant beamforming computational challenges because of their high channel count and data rate. These challenges are even more stringent when incorporating a 2-D transducer array into a battery-powered hand-held device, placing significant demands on power efficiency. Previous work in sonar and ultrasound indicates that 2-D array beamforming can be decomposed into two separable line-array beamforming operations. This has been used in conjunction with frequency-domain phase-based focusing to achieve fast volume imaging. In this paper, we analyze the imaging and computational performance of approximate near-field separable beamforming for high-quality delay-and-sum (DAS) beamforming and for a low-cost, phaserotation-only beamforming method known as direct-sampled in-phase quadrature (DSIQ) beamforming. We show that when high-quality time-delay interpolation is used, separable DAS focusing introduces no noticeable imaging degradation under practical conditions. Similar results for DSIQ focusing are observed. In addition, a slight modification to the DSIQ focusing method greatly increases imaging contrast, making it comparable to that of DAS, despite having a wider main lobe and higher side lobes resulting from the limitations of phase-only time-delay interpolation. Compared with non-separable 2-D imaging, up to a 20-fold increase in frame rate is possible with the separable method. When implemented on a smart-phone-oriented processor to focus data from a 60 × 60 channel array using a 40 × 40 aperture, the frame rate per C-mode volume slice increases from 16 to 255 Hz for DAS, and from 11 to 193 Hz for DSIQ. Energy usage per frame is similarly reduced from 75 to 4.8 mJ/ frame for DAS, and from 107 to 6.3 mJ/frame for DSIQ. We also show that the separable method outperforms 2-D FFT-based focusing by a factor of 1.64 at these data sizes. This data indicates that with the optimal design choices, separable 2-D beamforming can significantly improve frame rate and battery life for hand-held devices with 2-D arrays. PMID:22828829

  13. The local surface plasmon resonance property and refractive index sensitivity of metal elliptical nano-ring arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Weihua, E-mail: linwh-whu@hotmail.com; Wang, Qian; Dong, Anhua

    2014-11-15

    In this paper, we systematically investigate the optical property and refractive index sensitivity (RIS) of metal elliptical nano-ring (MENR) arranged in rectangle lattice by finite-difference time-domain method. Eight kinds of considered MENRs are divided into three classes, namely fixed at the same outer size, at the same inner size, and at the same middle size. All MENR arrays show a bonding mode local surface plasmon resonance (LSPR) peak in the near-infrared region under longitudinal and transverse polarizations, and lattice diffraction enhanced LSPR peaks emerge, when the LSPR peak wavelength (LSPRPW) matches the effective lattice constant of the array. The LSPRPWmore » is determined by the charge moving path length, the parallel and cross interactions induced by the stable distributed charges, and the moving charges inter-attraction. High RIS can be achieved by small particle distance arrays composed of MENRs with big inner size and small ring-width. On the other hand, for a MENR array, the comprehensive RIS (including RIS and figure of merit) under transverse polarization is superior to that under longitudinal polarization. Furthermore, on condition that compared arrays are fixed at the same lattice constant, the phenomenon that the RIS of big ring-width MENR arrays may be higher than that of small ring-width MENR arrays only appears in the case of compared arrays with relatively small lattice constant and composed of MENRs fixed at the same inner size simultaneously. Meanwhile, the LSPRPW of the former MENR arrays is also larger than that of the latter MENR arrays. Our systematic results may help experimentalists work with this type of systems.« less

  14. Long-term monitoring of Sgr A* at 7 mm with VERA and KaVA

    NASA Astrophysics Data System (ADS)

    Akiyama, K.; Kino, M.; Sohn, B.; Lee, S.; Trippe, S.; Honma, M.

    2014-05-01

    We present the results of radio monitoring observations of Sgr A* at 7 mm (i.e. 43 GHz) with the VLBI Exploration of Radio Astrometry (VERA), which is a VLBI array in Japan. VERA provides angular resolution on millisecond scales, resolving structures within 100 Schwarzschild radii of Sgr A* , similar to the Very Large Baseline Array (VLBA). We performed multi-epoch observations of Sgr A* in 2005 - 2008, and started monitoring it again with VERA from 2013 January to trace the current G2 encounter event. Our preliminary results in 2013 show that Sgr A* on mas scales has been in an ordinary state as of August 2013, although some fraction of the G2 cloud already passed the pericenter of Sgr A* in April 2013. We will continue monitoring Sgr A* with VERA and the newly developed KaVA (KVN and VERA Array).

  15. Saturated virtual fluorescence emission difference microscopy based on detector array

    NASA Astrophysics Data System (ADS)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  16. Atomic oxygen degradation of Intelsat 4-type solar array interconnects: Laboratory investigations

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Cross, J. B.; Hoffbauer, M. A.; Kirkendahl, T. D.

    1991-01-01

    A Hughes 506 type communication satellite belonging to the Intelsat organization was marooned in low Earth orbit on March 14, 1990, following failure of the Titan third stage to separate properly. The satellite, Intelsat VI, was designed for service in geosynchronous orbit and contains several material configurations which are susceptible to attack by atomic oxygen. Analysis showed the silver foil interconnects in the satellite photovoltaic array to be the key materials issue because the silver is exposed directly to the atomic oxygen ram flux. The results are reported of atomic oxygen degradation testing of Intelsat VI type silver foil interconnects both as virgin material and in a configured solar cell element. Test results indicate that more than 80 pct. of the original thickness of silver in the Intelsat VI solar array interconnects should remain after completion of the proposed Space Shuttle rescue and/or reboost mission.

  17. Sound absorption enhancement of nonwoven felt by using coupled membrane - sonic crystal inclusion

    NASA Astrophysics Data System (ADS)

    Fitriani, M. C.; Yahya, I.; Harjana; Ubaidillah; Aditya, F.; Siregar, Y.; Moeliono, M.; Sulaksono, S.

    2016-11-01

    The experimental results from laboratory test on the sound absorption performance of nonwoven felt with an array thin tubes and sonic crystal inclusions reported in this paper. The nonwoven felt sample was produced by a local company with 15 mm in its thickness and 900 gsm. The 6.4 mm diameter plastic straw was used to construct the thin tubes array while the sonic crystal is arranged in a 4 × 4 lattice crystal formation. It made from a PVC cylinder with 17 mm and 50 mm in diameter and length respectively. All cylinders have two holes positioned on 10 mm and 25 mm from the base. The results show that both treatments, array of thin tube and sonic crystal inclusions are effectively increased the sound absorption coefficient of the nonwoven felt significantly especially in the low frequency range starting from 200Hz.

  18. Parameter optimization for transitions between memory states in small arrays of Josephson junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rezac, Jacob D.; Imam, Neena; Braiman, Yehuda

    Coupled arrays of Josephson junctions possess multiple stable zero voltage states. Such states can store information and consequently can be utilized for cryogenic memory applications. Basic memory operations can be implemented by sending a pulse to one of the junctions and studying transitions between the states. In order to be suitable for memory operations, such transitions between the states have to be fast and energy efficient. Here in this article we employed simulated annealing, a stochastic optimization algorithm, to study parameter optimization of array parameters which minimizes times and energies of transitions between specifically chosen states that can be utilizedmore » for memory operations (Read, Write, and Reset). Simulation results show that such transitions occur with access times on the order of 10–100 ps and access energies on the order of 10 -19–5×10 -18 J. Numerical simulations are validated with approximate analytical results.« less

  19. Polymer (PDMS-Fe3O4) magneto-dielectric substrate for a MIMO antenna array

    NASA Astrophysics Data System (ADS)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Kamarudin, Muhammad Ramlee

    2016-01-01

    This paper presents the design of a 2 × 4 multiple-input multiple-output (MIMO) antenna array fabricated on a nanocomposite magneto-dielectric polymer substrate. The 10-nm iron oxide (Fe3O4) nanoparticles and polydimethylsiloxane (PDMS) composite is used as substrate to enhance the performance of a MIMO antenna array. The measured results showed up to 40.8 % enhancement in terms of bandwidth, 9.95 dB gain, and 57 % of radiation efficiency. Furthermore, it is found that the proposed magneto-dielectric (PDMS-Fe3O4) composite substrate provides excellent MIMO parameters such as correlation coefficient, diversity gain, and mutual coupling. The prototype of the proposed antenna is transparent, flexible, lightweight, and resistant against dust and corrosion. Measured results indicate that the proposed antenna is suitable for WLAN and ultra-wideband biomedical applications within frequency range of 5.33-7.70 GHz.

  20. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays

    PubMed Central

    Hejazian, Majid

    2016-01-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis. PMID:27478527

  1. An Orientation Measurement Method Based on Hall-effect Sensors for Permanent Magnet Spherical Actuators with 3D Magnet Array

    PubMed Central

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-01-01

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators. PMID:25342000

  2. See Also:Mechanics of Cohesive-frictional MaterialsCopyright © 2004 John Wiley & Sons, Ltd.Get Sample Copy

  3. Recommend to Your Librarian
  4. E-MailPrint
  1. Examination of mechanisms underlying enhanced memory performance in action video game players: a pilot study

    PubMed Central

    Li, Xianchun; Cheng, Xiaojun; Li, Jiaying; Pan, Yafeng; Hu, Yi; Ku, Yixuan

    2015-01-01

    Previous studies have shown enhanced memory performance resulting from extensive action video game playing. The mechanisms underlying the cognitive benefit were investigated in the current study. We presented two types of retro-cues, with variable intervals to memory array (Task 1) or test array (Task 2), during the retention interval in a change detection task. In Task 1, action video game players demonstrated steady performance while non-action video game players showed decreased performance as cues occurred later, indicating their performance difference increased as the cue-to-memory-array intervals became longer. In Task 2, both participant groups increased their performance at similar rates as cues presented later, implying the performance difference in two groups were irrespective of the test-array-to-cue intervals. These findings suggested that memory benefit from game plays is not attributable to the higher ability of overcoming interference from the test array, but to the interactions between the two processes of protection from decay and resistance from interference, or from alternative hypotheses. Implications for future studies were discussed. PMID:26136720

  2. Polarization-selective optical resonance with extremely narrow linewidth in Si dimers array for application in ultra-sensitive refractive sensing

    NASA Astrophysics Data System (ADS)

    Fu, Dong; Zhang, Zuyin; Li, Jian; Wu, Haoyue; Wang, Wenbo; Wei, Xin

    2017-05-01

    By exploiting the radiative coupling between the electromagnetic field scattered by individual Si dimer and the collective wave diffracted (Rayleigh Anomalies) in the plane of Si dimers array, optical resonance with extremely narrow linewidth is achieved, accompanied with dramatic enhancement of electric field in the gap of the dimer. We analyze the optical properties of Si dimers array by decomposing it into three fundamental sub-systems. Theoretical investigation employing the coupled dipole approximation is complemented with numerical simulations. The result shows that polarization angle has significant influence on the orientation of the field scattered by individual Si dimer, which determines the efficiency of radiative coupling and further impacts on the electric field enhancement. Moreover, we explore the feasibility of application in refractive sensing. It is shown that the figure of merit value for the proposed system of Si dimers array is as high as 306. The Si dimers array that takes advantage of multiple coupling creates new possibility to implement field-enhanced spectroscopy and refractive sensing with ultra-high sensitivity.

  3. Improved Homogeneity of the Transmit Field by Simultaneous Transmission with Phased Array and Volume Coil

    PubMed Central

    Avdievich, Nikolai I.; Oh, Suk-Hoon; Hetherington, Hoby P.; Collins, Christopher M.

    2010-01-01

    Purpose To improve the homogeneity of transmit volume coils at high magnetic fields (≥ 4 T). Due to RF field/ tissue interactions at high fields, 4–8 T, the transmit profile from head-sized volume coils shows a distinctive pattern with relatively strong RF magnetic field B1 in the center of the brain. Materials and Methods In contrast to conventional volume coils at high field strengths, surface coil phased arrays can provide increased RF field strength peripherally. In theory, simultaneous transmission from these two devices could produce a more homogeneous transmission field. To minimize interactions between the phased array and the volume coil, counter rotating current (CRC) surface coils consisting of two parallel rings carrying opposite currents were used for the phased array. Results Numerical simulations and experimental data demonstrate that substantial improvements in transmit field homogeneity can be obtained. Conclusion We have demonstrated the feasibility of using simultaneous transmission with human head-sized volume coils and CRC phased arrays to improve homogeneity of the transmit RF B1 field for high-field MRI systems. PMID:20677280

  4. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  5. Examination of mechanisms underlying enhanced memory performance in action video game players: a pilot study.

    PubMed

    Li, Xianchun; Cheng, Xiaojun; Li, Jiaying; Pan, Yafeng; Hu, Yi; Ku, Yixuan

    2015-01-01

    Previous studies have shown enhanced memory performance resulting from extensive action video game playing. The mechanisms underlying the cognitive benefit were investigated in the current study. We presented two types of retro-cues, with variable intervals to memory array (Task 1) or test array (Task 2), during the retention interval in a change detection task. In Task 1, action video game players demonstrated steady performance while non-action video game players showed decreased performance as cues occurred later, indicating their performance difference increased as the cue-to-memory-array intervals became longer. In Task 2, both participant groups increased their performance at similar rates as cues presented later, implying the performance difference in two groups were irrespective of the test-array-to-cue intervals. These findings suggested that memory benefit from game plays is not attributable to the higher ability of overcoming interference from the test array, but to the interactions between the two processes of protection from decay and resistance from interference, or from alternative hypotheses. Implications for future studies were discussed.

  6. Automated analysis of siRNA screens of cells infected by hepatitis C and dengue viruses based on immunofluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl

    2008-03-01

    We present an image analysis approach as part of a high-throughput microscopy siRNA-based screening system using cell arrays for the identification of cellular genes involved in hepatitis C and dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in the neighborhood of segmented cell nuclei, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment and single images. In particular, we propose a novel approach for the localization of regions of transfected cells within cell array images, which combines model-based circle fitting and grid fitting. By this scheme we integrate information from single cell array images and knowledge from the complete cell arrays. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behaviour of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.

  7. Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers.

    PubMed

    Hu, Chang-Hong; Xu, Xiao-Chen; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk

    2006-02-01

    A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signals are digitized, delayed, and summed through a real-time digital beamformer, which is implemented using a field programmable gate array (FPGA). Using fractional delay filters, fine delays as small as 2 ns can be implemented. A frame rate of 30 frames per second is achieved. Wire phantom (20 microm tungsten) images were obtained and -6 dB axial and lateral widths were measured. The results showed that, using a 30 MHz, 48-element array with a pitch of 100 microm produced a -6 dB width of 68 microm in the axial and 370 microm in the lateral direction at 6.4 mm range. Images from an excised rabbit eye sample also were acquired, and fine anatomical structures, such as the cornea and lens, were resolved.

  8. Interaction of a shock wave with an array of particles and effect of particles on the shock wave weakening

    NASA Astrophysics Data System (ADS)

    Bulat, P. V.; Ilyina, T. E.; Volkov, K. N.; Silnikov, M. V.; Chernyshov, M. V.

    2017-06-01

    Two-phase systems that involve gas-particle or gas-droplet flows are widely used in aerospace and power engineering. The problems of weakening and suppression of detonation during saturation of a gas or liquid flow with the array of solid particles are considered. The tasks, associated with the formation of particles arrays, dust lifting behind a travelling shock wave, ignition of particles in high-speed and high-temperature gas flows are adjoined to safety of space flight. The mathematical models of shock wave interaction with the array of solid particles are discussed, and numerical methods are briefly described. The numerical simulations of interaction between sub- and supersonic flows and an array of particles being in motionless state at the initial time are performed. Calculations are carried out taking into account the influence that the particles cause on the flow of carrier gas. The results obtained show that inert particles significantly weaken the shock waves up to their suppression, which can be used to enhance the explosion safety of spacecrafts.

  9. High-resolution extraction of particle size via Fourier Ptychography

    NASA Astrophysics Data System (ADS)

    Li, Shengfu; Zhao, Yu; Chen, Guanghua; Luo, Zhenxiong; Ye, Yan

    2017-11-01

    This paper proposes a method which can extract the particle size information with a resolution beyond λ/NA. This is achieved by applying Fourier Ptychographic (FP) ideas to the present problem. In a typical FP imaging platform, a 2D LED array is used as light sources for angle-varied illuminations, a series of low-resolution images was taken by a full sequential scan of the array of LEDs. Here, we demonstrate the particle size information is extracted by turning on each single LED on a circle. The simulated results show that the proposed method can reduce the total number of images, without loss of reliability in the results.

  10. Conformational Change of Bacteriorhodopsin Quantitatively Monitored by Microcantilever Sensors

    PubMed Central

    Braun, Thomas; Backmann, Natalija; Vögtli, Manuel; Bietsch, Alexander; Engel, Andreas; Lang, Hans-Peter; Gerber, Christoph; Hegner, Martin

    2006-01-01

    Bacteriorhodopsin proteoliposomes were used as a model system to explore the applicability of micromechanical cantilever arrays to detect conformational changes in membrane protein patches. The three main results of our study concern: 1), reliable functionalization of micromechanical cantilever arrays with proteoliposomes using ink jet spotting; 2), successful detection of the prosthetic retinal removal (bleaching) from the bacteriorhodopsin protein by measuring the induced nanomechanical surface stress change; and 3), the quantitative response thereof, which depends linearly on the amount of removed retinal. Our results show this technique to be a potential tool to measure membrane protein-based receptor-ligand interactions and conformational changes. PMID:16443650

  11. Cochlear pathology following reimplantation of a multichannel scala tympani electrode array in the macaque.

    PubMed

    Shepherd, R K; Clark, G M; Xu, S A; Pyman, B C

    1995-03-01

    The histopathologic consequence of removing and reimplanting intracochlear electrode arrays on residual auditory nerve fibers is an important issue when evaluating the safety of cochlear prostheses. The authors have examined this issue by implanting multichannel intracochlear electrodes in macaque monkeys. Macaques were selected because of the similarity of the surgical technique used to insert electrodes into the cochlea compared to that in humans, in particular the ability to insert the arrays into the upper basal turn. Five macaques were bilaterally implanted with the Melbourne/Cochlear banded electrode array. Following a minimum implant period of 5 months, the electrode array on one side of each animal was removed and another immediately implanted. The animals were sacrificed a minimum of 5 months following the reinsertion procedure, and the cochleas prepared for histopathologic analysis. Long-term implantation of the electrode resulted in a relatively mild tissue response within the cochlea. Results also showed that inner and outer hair cell survival, although significantly reduced adjacent to the array, was normal in 8 of the 10 cochleas apicalward. Moreover, the electrode reinsertion procedure did not appear to adversely affect this apical hair cell population. Significant new bone formation was frequently observed in both control and reimplanted cochleas close to the electrode fenestration site and was associated with trauma to the endosteum and/or the introduction of bone chips into the cochlea at the time of surgery. Electrode insertion trauma, involving the osseous spiral lamina or basilar membrane, was more commonly observed in reimplanted cochleas. This damage was usually restricted to the lower basal turn and resulted in a more extensive ganglion cell loss. Finally, in a number of cochleas part of the electrode array was located within the scala media or scala vestibuli. These electrodes did not appear to evoke a more extensive tissue response or result in more extensive neural degeneration compared with electrodes located within the scala tympani. In conclusion, the present study has shown that the reimplantation of a multichannel scala, tympani electrode array can be achieved with minimal damage to the majority of cochlear structures. Increased insertion trauma, resulting in new bone formation and spiral ganglion cell loss, can occur in the lower basal turn in cases where the electrode entry point is difficult to identify due to proliferation of granulation and fibrous tissue.

  12. Real-time Implementation of a Dual-Mode Ultrasound Array System: In Vivo Results

    PubMed Central

    Casper, Andrew J.; Liu, Dalong; Ballard, John R.; Ebbini, Emad S.

    2013-01-01

    A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array and modular multi-channel transmitter/receiver. It is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays (FPGA) and graphical processing units (GPU) is used to enable real-time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small and large animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA’s ability to form anatomically-correct images with sufficient contrast in an extended field of view (FOV) around its geometric center. In addition, high frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during HIFU exposures with 45 – 50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its fnumber and bandwidth with well behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound. PMID:23708766

  13. Real-time implementation of a dual-mode ultrasound array system: in vivo results.

    PubMed

    Casper, Andrew J; Liu, Dalong; Ballard, John R; Ebbini, Emad S

    2013-10-01

    A real-time dual-mode ultrasound array (DMUA) system for imaging and therapy is described. The system utilizes a concave (40-mm radius of curvature) 3.5 MHz, 32 element array, and modular multichannel transmitter/receiver. The system is capable of operating in a variety of imaging and therapy modes (on transmit) and continuous receive on all array elements even during high-power operation. A signal chain consisting of field-programmable gate arrays and graphical processing units is used to enable real time, software-defined beamforming and image formation. Imaging data, from quality assurance phantoms as well as in vivo small- and large-animal models, are presented and discussed. Corresponding images obtained using a temporally-synchronized and spatially-aligned diagnostic probe confirm the DMUA's ability to form anatomically-correct images with sufficient contrast in an extended field of view around its geometric center. In addition, high-frame rate DMUA data also demonstrate the feasibility of detection and localization of echo changes indicative of cavitation and/or tissue boiling during high-intensity focused ultrasound exposures with 45-50 dB dynamic range. The results also show that the axial and lateral resolution of the DMUA are consistent with its f(number) and bandwidth with well-behaved speckle cell characteristics. These results point the way to a theranostic DMUA system capable of quantitative imaging of tissue property changes with high specificity to lesion formation using focused ultrasound.

  14. S-Wave Velocity Structure of the Taiwan Chelungpu Fault Drilling Project (TCDP) Site Using Microtremor Array Measurements

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Feng; Huang, Huey-Chu

    2015-10-01

    The Taiwan Chelungpu Fault Drilling Project (TCDP) drilled a 2-km-deep hole 2.4 km east of the surface rupture of the 1999 Chi-Chi earthquake ( M w 7.6), near the town of Dakeng. Geophysical well logs at the TCDP site were run over depths ranging from 500 to 1,900 m to obtain the physical properties of the fault zones and adjacent damage zones. These data provide good reference material for examining the validity of velocity structures using microtremor array measurement; therefore, we conduct array measurements for a total of four arrays at two sites near the TCDP drilling sites. The phase velocities at frequencies of 0.2-5 Hz are calculated using the frequency-wavenumber ( f- k) spectrum method. Then the S-wave velocity structures are estimated by employing surface wave inversion techniques. The S-wave velocity from the differential inversion technique gradually increases from 1.52 to 2.22 km/s at depths between 585 and 1,710 m. This result is similar to those from the velocity logs, which range from 1.4 km/s at a depth of 597 m to 2.98 km/s at a depth of 1,705 m. The stochastic inversion results are similar to those from the seismic reflection methods and the lithostratigraphy of TCDP-A borehole, comparatively. These results show that microtremor array measurement provides a good tool for estimating deep S-wave velocity structure.

  15. Insertion characteristics and placement of the Mid-Scala electrode array in human temporal bones using detailed cone beam computed tomography.

    PubMed

    Dietz, Aarno; Gazibegovic, Dzemal; Tervaniemi, Jyrki; Vartiainen, Veli-Matti; Löppönen, Heikki

    2016-12-01

    The aim of this study was to evaluate the insertion results and placement of the new Advanced Bionics HiFocus Mid-Scala (HFms) electrode array, inserted through the round window membrane, in eight fresh human temporal bones using cone beam computed tomography (CBCT). Pre- and post-insertion CBCT scans were registered to create a 3D reconstruction of the cochlea with the array inserted. With an image fusion technique both the bony edges of the cochlea and the electrode array in situ could accurately be determined, thus enabling to identify the exact position of the electrode array within the scala tympani. Vertical and horizontal scalar location was measured at four points along the cochlea base at an angular insertion depth of 90°, 180° and 270° and at electrode 16, the most basal electrode. Smooth insertion through the round window membrane was possible in all temporal bones. The imaging results showed that there were no dislocations from the scala tympani into the scala vestibule. The HFms electrode was positioned in the middle of the scala along the whole electrode array in three out of the eight bones and in 62 % of the individual locations measured along the base of the cochlea. In only one cochlea a close proximity of the electrode with the basilar membrane was observed, indicating possible contact with the basilar membrane. The results and assessments presented in this study appear to be highly accurate. Although a further validation including histopathology is needed, the image fusion technique described in this study represents currently the most accurate method for intracochlear electrode assessment obtainable with CBCT.

  16. Investigations of a Combustor Using a 9-Point Swirl-Venturi Fuel Injector: Recent Experimental Results

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Heath, Christopher M.; Anderson, Robert C.; Tacina, Kathleen M.

    2012-01-01

    This paper explores recent results obtained during testing in an optically-accessible, JP8-fueled, flame tube combustor using baseline Lean Direct Injection (LDI) research hardware. The baseline LDI geometry has nine fuel/air mixers arranged in a 3 x 3 array. Results from this nine-element array include images of fuel and OH speciation via Planar Laser-Induced Fluorescence (PLIF), which describe fuel spray pattern and reaction zones. Preliminary combustion temperatures derived from Stokes/Anti-Stokes Spontaneous Raman Spectroscopy are also presented. Other results using chemiluminescence from major combustion radicals such as CH* and C2* serve to identify the primary reaction zone, while OH PLIF shows the extent of reaction further downstream. Air and fuel velocities and fuel drop size results are also reported.

  17. Increase in the energy density of the pinch plasma in 3D implosion of quasi-spherical wire arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, V. V., E-mail: alexvv@triniti.ru; Gasilov, V. A.; Grabovski, E. V.

    Results are presented from experimental studies of the characteristics of the soft X-ray (SXR) source formed in the implosion of quasi-spherical arrays made of tungsten wires and metalized kapron fibers. The experiments were carried out at the Angara-5-1 facility at currents of up to 3 MA. Analysis of the spatial distribution of hard X-ray emission with photon energies above 20 keV in the pinch images taken during the implosion of quasi-spherical tungsten wire arrays (QTWAs) showed that a compact quasi-spherical plasma object symmetric with respect to the array axis formed in the central region of the array. Using a diffractionmore » grazing incidence spectrograph, spectra of SXR emission with wavelengths of 20–400 Å from the central, axial, and peripheral regions of the emission source were measured with spatial resolutions along the array radius and height in the implosion of QTWAs. It is shown that the emission spectra of the SXR sources formed under the implosion of quasi-spherical and cylindrical tungsten wire arrays at currents of up to 3 MA have a maximum in the wavelength range of 50–150 Å. It is found that, during the implosion of a QTWA with a profiled linear mass, a redistribution of energy in the emission spectrum takes place, which indicates that, during 3D implosion, the energy of longitudinal motion of the array material additionally contributes to the radiation energy. It is also found that, at close masses of the arrays and close values of the current in the range of 2.4{sup −3} MA, the average energy density in the emission source formed during the implosion of a quasi-spherical wire array is larger by a factor of 7 than in the source formed during the implosion of a cylindrical wire array. The experimental data were compared with results of 3D simulations of plasma dynamics and radiation generation during the implosion of quasi-spherical wire arrays with a profiled mass by using the MARPLE-3D radiative magnetohydrodynamic code, developed at the Keldysh Institute of Applied Mathematics, Russian Academy of Sciences.« less

  18. Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment

    NASA Astrophysics Data System (ADS)

    Pitarka, A.

    2014-12-01

    Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  19. A novel genotoxin-specific qPCR array based on the metabolically competent human HepaRG™ cell line as a rapid and reliable tool for improved in vitro hazard assessment.

    PubMed

    Ates, Gamze; Mertens, Birgit; Heymans, Anja; Verschaeve, Luc; Milushev, Dimiter; Vanparys, Philippe; Roosens, Nancy H C; De Keersmaecker, Sigrid C J; Rogiers, Vera; Doktorova, Tatyana Y

    2018-04-01

    Although the value of the regulatory accepted batteries for in vitro genotoxicity testing is recognized, they result in a high number of false positives. This has a major impact on society and industries developing novel compounds for pharmaceutical, chemical, and consumer products, as afflicted compounds have to be (prematurely) abandoned or further tested on animals. Using the metabolically competent human HepaRG ™ cell line and toxicogenomics approaches, we have developed an upgraded, innovative, and proprietary gene classifier. This gene classifier is based on transcriptomic changes induced by 12 genotoxic and 12 non-genotoxic reference compounds tested at sub-cytotoxic concentrations, i.e., IC10 concentrations as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The resulting gene classifier was translated into an easy-to-handle qPCR array that, as shown by pathway analysis, covers several different cellular processes related to genotoxicity. To further assess the predictivity of the tool, a set of 5 known positive and 5 known negative test compounds for genotoxicity was evaluated. In addition, 2 compounds with debatable genotoxicity data were tested to explore how the qPCR array would classify these. With an accuracy of 100%, when equivocal results were considered positive, the results showed that combining HepaRG ™ cells with a genotoxin-specific qPCR array can improve (geno)toxicological hazard assessment. In addition, the developed qPCR array was able to provide additional information on compounds for which so far debatable genotoxicity data are available. The results indicate that the new in vitro tool can improve human safety assessment of chemicals in general by basing predictions on mechanistic toxicogenomics information.

  20. Fabrication of spherical microlens array by combining lapping on silicon wafer and rapid surface molding

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohua; Zhou, Tianfeng; Zhang, Lin; Zhou, Wenchen; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.

    2018-07-01

    Silicon is a promising mold material for compression molding because of its properties of hardness and abrasion resistance. Silicon wafers with carbide-bonded graphene coating and micro-patterns were evaluated as molds for the fabrication of microlens arrays. This study presents an efficient but flexible manufacturing method for microlens arrays that combines a lapping method and a rapid molding procedure. Unlike conventional processes for microstructures on silicon wafers, such as diamond machining and photolithography, this research demonstrates a unique approach by employing precision steel balls and diamond slurries to create microlenses with accurate geometry. The feasibility of this method was demonstrated by the fabrication of several microlens arrays with different aperture sizes and pitches on silicon molds. The geometrical accuracy and surface roughness of the microlens arrays were measured using an optical profiler. The measurement results indicated good agreement with the optical profile of the design. The silicon molds were then used to copy the microstructures onto polymer substrates. The uniformity and quality of the samples molded through rapid surface molding were also assessed and statistically quantified. To further evaluate the optical functionality of the molded microlens arrays, the focal lengths of the microlens arrays were measured using a simple optical setup. The measurements showed that the microlens arrays molded in this research were compatible with conventional manufacturing methods. This research demonstrated an alternative low-cost and efficient method for microstructure fabrication on silicon wafers, together with the follow-up optical molding processes.

  1. A force sensor using nanowire arrays to understand biofilm formation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sahoo, Prasana K.; Cavalli, Alessandro; Pelegati, Vitor B.; Murillo, Duber M.; Souza, Alessandra A.; Cesar, Carlos L.; Bakkers, Erik P. A. M.; Cotta, Monica A.

    2016-03-01

    Understanding the cellular signaling and function at the nano-bio interface can pave the way towards developing next-generation smart diagnostic tools. From this perspective, limited reports detail so far the cellular and subcellular forces exerted by bacterial cells during the interaction with abiotic materials. Nanowire arrays with high aspect ratio have been used to detect such small forces. In this regard, live force measurements were performed ex-vivo during the interaction of Xylella fastidiosa bacterial cells with InP nanowire arrays. The influence of nanowire array topography and surface chemistry on the response and motion of bacterial cells was studied in detail. The nanowire arrays were also functionalized with different cell adhesive promoters, such as amines and XadA1, an afimbrial protein of X.fastidiosa. By employing the well-defined InP nanowire arrays platform, and single cell confocal imaging system, we were able to trace the bacterial growth pattern, and show that their initial attachment locations are strongly influenced by the surface chemistry and nanoscale surface topography. In addition, we measure the cellular forces down to few nanonewton range using these nanowire arrays. In case of nanowire functionalized with XadA1, the force exerted by vertically and horizontally attached single bacteria on the nanowire is in average 14% and 26% higher than for the pristine array, respectively. These results provide an excellent basis for live-cell force measurements as well as unravel the range of forces involved during the early stages of bacterial adhesion and biofilm formation.

  2. Computational Study of the Blood Flow in Three Types of 3D Hollow Fiber Membrane Bundles

    PubMed Central

    Zhang, Jiafeng; Chen, Xiaobing; Ding, Jun; Fraser, Katharine H.; Ertan Taskin, M.; Griffith, Bartley P.; Wu, Zhongjun J.

    2013-01-01

    The goal of this study is to develop a computational fluid dynamics (CFD) modeling approach to better estimate the blood flow dynamics in the bundles of the hollow fiber membrane based medical devices (i.e., blood oxygenators, artificial lungs, and hemodialyzers). Three representative types of arrays, square, diagonal, and random with the porosity value of 0.55, were studied. In addition, a 3D array with the same porosity was studied. The flow fields between the individual fibers in these arrays at selected Reynolds numbers (Re) were simulated with CFD modeling. Hemolysis is not significant in the fiber bundles but the platelet activation may be essential. For each type of array, the average wall shear stress is linearly proportional to the Re. For the same Re but different arrays, the average wall shear stress also exhibits a linear dependency on the pressure difference across arrays, while Darcy′s law prescribes a power-law relationship, therefore, underestimating the shear stress level. For the same Re, the average wall shear stress of the diagonal array is approximately 3.1, 1.8, and 2.0 times larger than that of the square, random, and 3D arrays, respectively. A coefficient C is suggested to correlate the CFD predicted data with the analytical solution, and C is 1.16, 1.51, and 2.05 for the square, random, and diagonal arrays in this paper, respectively. It is worth noting that C is strongly dependent on the array geometrical properties, whereas it is weakly dependent on the flow field. Additionally, the 3D fiber bundle simulation results show that the three-dimensional effect is not negligible. Specifically, velocity and shear stress distribution can vary significantly along the fiber axial direction. PMID:24141394

  3. Statistical Investigation of the Effect of Process Parameters on the Shear Strength of Metal Adhesive Joints

    NASA Astrophysics Data System (ADS)

    Rajkumar, Goribidanur Rangappa; Krishna, Munishamaih; Narasimhamurthy, Hebbale Narayanrao; Keshavamurthy, Yalanabhalli Channegowda

    2017-06-01

    The objective of the work was to optimize sheet metal joining parameters such as adhesive material, adhesive thickness, adhesive overlap length and surface roughness for single lap joint of aluminium sheet shear strength using robust design. An orthogonal array, main effect plot, signal-to-noise ratio and analysis of variance were employed to investigate the shear strength of the joints. The statistical result shows vinyl ester is best candidate among other two polymers viz. epoxy and polyester due to its low viscosity value compared to other two polymers. The experiment results shows that the adhesive thickness 0.6 mm, overlap length 50 mm and surface roughness 2.12 µm for obtained maximum shear strength of Al sheet joints. The ANOVA result shows one of the most significant factors is overlap length which affect joint strength in addition to adhesive thickness, adhesive material, and surface roughness. A confirmation test was carried out as the optimal combination of parameters will not match with the any of the experiments in the orthogonal array.

  4. Measurements of the radiation dose to LDEF by means of passive dosimetry

    NASA Astrophysics Data System (ADS)

    Blake, J. B.; Imamoto, S. S.

    1992-06-01

    A very simple experiment was fielded on LDEF to measure the energetic radiation dose by means of passive dosimetry. It consisted of two identical packets of 16 LiF thermoluminescent dosimeters (TLD) arranged in planar arrays. One array was placed on the leading edge of the spacecraft, the other on the trailing edge. These arrays were installed in opaque packets of 1 mil Al foil and Kapton tape mounted behind an Al plate of 30 mils thickness. The nominal energy thresholds were 14 MeV for protons and 650 keV for electrons. In addition to the flight arrays, two control arrays were prepared which were kept with the flight arrays as long as possible during experimental integration and then stored in the lab. The flight and control arrays were read out alternating in groups of four; it was found that the control dose was negligible. The flight and control detectors were exposed to a 55 MeV proton beam in order to provide a recalibration of the detectors. It was found that the post-flight and pre-flight calibrations were in good agreement. A comparison of results with the prediction shows that the measured dose was a factor of 4 to 5 low. It is possible that there was in-flight annealing of the TLDs as a result of the long mission and perhaps temperature excursions of the sensors. The East-West effect was larger than expected. The ratio of 1.65 is approximately what was expected for the protons alone. Electrons should reduce the dose ratio since electrons add equally to the leading and trailing edge dose. A possible explanation is that the electron dose was negligible compared to the proton dose.

  5. Measurements of the radiation dose to LDEF by means of passive dosimetry

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Imamoto, S. S.

    1992-01-01

    A very simple experiment was fielded on LDEF to measure the energetic radiation dose by means of passive dosimetry. It consisted of two identical packets of 16 LiF thermoluminescent dosimeters (TLD) arranged in planar arrays. One array was placed on the leading edge of the spacecraft, the other on the trailing edge. These arrays were installed in opaque packets of 1 mil Al foil and Kapton tape mounted behind an Al plate of 30 mils thickness. The nominal energy thresholds were 14 MeV for protons and 650 keV for electrons. In addition to the flight arrays, two control arrays were prepared which were kept with the flight arrays as long as possible during experimental integration and then stored in the lab. The flight and control arrays were read out alternating in groups of four; it was found that the control dose was negligible. The flight and control detectors were exposed to a 55 MeV proton beam in order to provide a recalibration of the detectors. It was found that the post-flight and pre-flight calibrations were in good agreement. A comparison of results with the prediction shows that the measured dose was a factor of 4 to 5 low. It is possible that there was in-flight annealing of the TLDs as a result of the long mission and perhaps temperature excursions of the sensors. The East-West effect was larger than expected. The ratio of 1.65 is approximately what was expected for the protons alone. Electrons should reduce the dose ratio since electrons add equally to the leading and trailing edge dose. A possible explanation is that the electron dose was negligible compared to the proton dose.

  6. Development And Test of A Digitally Steered Antenna Array for The Navigator GPS Receiver

    NASA Technical Reports Server (NTRS)

    Pinto, Heitor David; Valdez, Jennifer E.; Winternitz, Luke M. B.; Hassouneh, Munther A.; Price, Samuel R.

    2012-01-01

    Global Positioning System (GPS)-based navigation has become common for low-Earth orbit spacecraft as the signal environment is similar to that on the Earth s surface. The situation changes abruptly, however, for spacecraft whose orbital altitudes exceed that of the GPS constellation. Visibility is dramatically reduced and signals that are present may be very weak and more susceptible to interference. GPS receivers effective at these altitudes require increased sensitivity, which often requires a high-gain antenna. Pointing such an antenna can pose a challenge. One efficient approach to mitigate these problems is the use of a digitally steered antenna array. Such an antenna can optimally allocate gain toward desired signal sources and away from interferers. This paper presents preliminary results in the development and test of a digitally steered antenna array for the Navigator GPS research program at NASA s Goddard Space Flight Center. In particular, this paper highlights the development of an array and front-end electronics, the development and test of a real-time software GPS receiver, and implementation of three beamforming methods for combining the signals from the array. Additionally, this paper discusses the development of a GPS signal simulator which produces digital samples of the GPS L1C/A signals as they would be received by an arbitrary antenna array configuration. The simulator models transmitter and receiver dynamics, near-far and multipath interference, and has been a critical component in both the development and test of the GPS receiver. The GPS receiver system was tested with real and simulated GPS signals. Preliminary results show that performance improvement was achieved in both the weak signal and interference environments, matching analytical predictions. This paper summarizes our initial findings and discusses the advantages and limitations of the antenna array and the various beamforming methods.

  7. Nanostructure array plasmas generated by femtosecond pulses at highly relativistic intensities

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Wong, Y.; Wong, S.; Rockwood, A.; Glasby, J.; Shlyaptsev, V.; Rocca, J. J.; Capeluto, M. G.; Kaymak, V.; Pukhov, A.

    2017-10-01

    The irradiation of high aspect ratio ordered nanostructure arrays with ultra-high contrast femtosecond laser pulses of relativistic intensity provides a unique combination of nearly complete optical absorption and drastically enhanced light penetration into near-solid density targets. This allows the material to be volumetrically heated deep into the ultra-high energy density regime. In previous experiments we have shown that irradiation of Ni and Au nanostructures with femtosecond pulses focused to an intensity of 5x1018 Wcm-2 generate multi-KeV near solid density plasmas in which atoms are ionized to the Ni+26 and Au+52 charge states. Here we present the first results of the irradiation of nanostructure arrays with highly relativistic pulses of intensities up to 5x1021Wcm-2. Silver and Rhodium nanowire arrays were irradiated with frequency-doubled pulses of 30 fs duration from a petawatt-class Ti:Sa laser. Time integrated x-ray spectra show the presence of He-like and Li-like emission. Results of experiments conducted with a variety of different nanowires diameters with a range of interwire spacings will be presented and compared to the result of 3D particle-in-cell-simulations. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy.

  8. Photosensitive biosensor array system using optical addressing without an addressing circuit on array biochips

    NASA Astrophysics Data System (ADS)

    Ahn, Chang-Geun; Ah, Chil Seong; Kim, Tae-Youb; Park, Chan Woo; Yang, Jong-Heon; Kim, Ansoon; Sung, Gun Yong

    2010-09-01

    This paper introduces a photosensitive biosensor array system with a simple photodiode array that detects photocurrent changes caused by reactions between probe and target molecules. Using optical addressing, the addressing circuit on the array chip is removed for low-cost application, and real cell addressing is achieved using an externally located computer-controllable light-emitting diode array module. The fabricated biosensor array chip shows a good dynamic range of 1-100 ng/mL under prostate-specific antigen detection, with an on-chip resolution of roughly 1 ng/mL.

  9. The performance of disk arrays in shared-memory database machines

    NASA Technical Reports Server (NTRS)

    Katz, Randy H.; Hong, Wei

    1993-01-01

    In this paper, we examine how disk arrays and shared memory multiprocessors lead to an effective method for constructing database machines for general-purpose complex query processing. We show that disk arrays can lead to cost-effective storage systems if they are configured from suitably small formfactor disk drives. We introduce the storage system metric data temperature as a way to evaluate how well a disk configuration can sustain its workload, and we show that disk arrays can sustain the same data temperature as a more expensive mirrored-disk configuration. We use the metric to evaluate the performance of disk arrays in XPRS, an operational shared-memory multiprocessor database system being developed at the University of California, Berkeley.

  10. Ultrasound Transducer and System for Real-Time Simultaneous Therapy and Diagnosis for Noninvasive Surgery of Prostate Tissue

    PubMed Central

    Jeong, Jong Seob; Chang, Jin Ho; Shung, K. Kirk

    2009-01-01

    For noninvasive treatment of prostate tissue using high intensity focused ultrasound (HIFU), this paper proposes a design of an integrated multi-functional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6 MHz array in the center row for imaging and two 4 MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA was verifeid. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured −6 dB and −20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be −48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded −6dB and −20dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be −40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy. PMID:19811994

  11. Ultrasound transducer and system for real-time simultaneous therapy and diagnosis for noninvasive surgery of prostate tissue.

    PubMed

    Jeong, Jong Seob; Chang, Jin Ho; Shung, K Kirk

    2009-09-01

    For noninvasive treatment of prostate tissue using high-intensity focused ultrasound this paper proposes a design of an integrated multifunctional confocal phased array (IMCPA) and a strategy to perform both imaging and therapy simultaneously with this array. IMCPA is composed of triple-row phased arrays: a 6-MHz array in the center row for imaging and two 4-MHz arrays in the outer rows for therapy. Different types of piezoelectric materials and stack configurations may be employed to maximize their respective functionalities, i.e., therapy and imaging. Fabrication complexity of IMCPA may be reduced by assembling already constructed arrays. In IMCPA, reflected therapeutic signals may corrupt the quality of imaging signals received by the center-row array. This problem can be overcome by implementing a coded excitation approach and/or a notch filter when B-mode images are formed during therapy. The 13-bit Barker code, which is a binary code with unique autocorrelation properties, is preferred for implementing coded excitation, although other codes may also be used. From both Field II simulation and experimental results, we verified whether these remedial approaches would make it feasible to simultaneously carry out imaging and therapy by IMCPA. The results showed that the 13-bit Barker code with 3 cycles per bit provided acceptable performances. The measured -6 dB and -20 dB range mainlobe widths were 0.52 mm and 0.91 mm, respectively, and a range sidelobe level was measured to be -48 dB regardless of whether a notch filter was used. The 13-bit Barker code with 2 cycles per bit yielded -6 dB and -20 dB range mainlobe widths of 0.39 mm and 0.67 mm. Its range sidelobe level was found to be -40 dB after notch filtering. These results indicate the feasibility of the proposed transducer design and system for real-time imaging during therapy.

  12. Acoustic Location of Lightning Using Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Erives, H.; Arechiga, R. O.; Stock, M.; Lapierre, J. L.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    Acoustic arrays have been used to accurately locate thunder sources in lightning flashes. The acoustic arrays located around the Magdalena mountains of central New Mexico produce locations which compare quite well with source locations provided by the New Mexico Tech Lightning Mapping Array. These arrays utilize 3 outer microphones surrounding a 4th microphone located at the center, The location is computed by band-passing the signal to remove noise, and then computing the cross correlating the outer 3 microphones with respect the center reference microphone. While this method works very well, it works best on signals with high signal to noise ratios; weaker signals are not as well located. Therefore, methods are being explored to improve the location accuracy and detection efficiency of the acoustic location systems. The signal received by acoustic arrays is strikingly similar to th signal received by radio frequency interferometers. Both acoustic location systems and radio frequency interferometers make coherent measurements of a signal arriving at a number of closely spaced antennas. And both acoustic and interferometric systems then correlate these signals between pairs of receivers to determine the direction to the source of the received signal. The primary difference between the two systems is the velocity of propagation of the emission, which is much slower for sound. Therefore, the same frequency based techniques that have been used quite successfully with radio interferometers should be applicable to acoustic based measurements as well. The results presented here are comparisons between the location results obtained with current cross correlation method and techniques developed for radio frequency interferometers applied to acoustic signals. The data were obtained during the summer 2013 storm season using multiple arrays sensitive to both infrasonic frequency and audio frequency acoustic emissions from lightning. Preliminary results show that interferometric techniques have good potential for improving the lightning location accuracy and detection efficiency of acoustic arrays.

  13. Experimental investigation of heat transfer and flow pattern from heated horizontal rectangular fin array under natural convection

    NASA Astrophysics Data System (ADS)

    Taji, S. G.; Parishwad, G. V.; Sane, N. K.

    2014-07-01

    This paper presents results of the experimental study conducted on heated horizontal rectangular fin array under natural convection. The temperature mapping and the prediction of the flow patterns over the fin array with variable fin spacing is carried out. Dimensionless fin spacing to height (S/H) ratio is varied from 0.05 to 0.3 and length to height ratio (L/H) = 5 is kept constant. The heater input to the fin array assembly is varied from 25 to 100 W. The single chimney flow pattern is observed from 8 to 12 mm fin spacing. The end flow is choked below 6 mm fin spacing. The single chimney flow pattern changes to sliding or end flow choking at 6 mm fin spacing. The average heat transfer coefficient (ha) is very small (2.52-5.78 W/m2 K) at 100 W for S = 5-12 mm. The ha is very small (1.12-1.8 W/m2 K) at 100 W for 2-4 mm fin spacing due to choked fin array end condition. The end flow is not sufficient to reach up to central portion of fin array and in the middle portion there is an unsteady down and up flow pattern resulting in sliding chimney. The central bottom portion of fin array channel does not contribute much in heat dissipation for S = 2-4 mm. The ha has significantly improved at higher spacing as compared to lower spacing region. The single chimney flow pattern is preferred from heat transfer point of view. The optimum spacing is confirmed in the range of 8-10 mm. The average heat transfer results are compared with previous literature and showed similar trend and satisfactory agreement. An empirical equation has been proposed to correlate the average Nusselt number as a function of Grashof number and fin spacing to height ratio. The average error for this equation is -0.32 %.

  14. Magnetic tracking for TomoTherapy systems: gradiometer based methods to filter eddy-current magnetic fields.

    PubMed

    McGary, John E; Xiong, Zubiao; Chen, Ji

    2013-07-01

    TomoTherapy systems lack real-time, tumor tracking. A possible solution is to use electromagnetic markers; however, eddy-current magnetic fields generated in response to a magnetic source can be comparable to the signal, thus degrading the localization accuracy. Therefore, the tracking system must be designed to account for the eddy fields created along the inner bore conducting surfaces. The aim of this work is to investigate localization accuracy using magnetic field gradients to determine feasibility toward TomoTherapy applications. Electromagnetic models are used to simulate magnetic fields created by a source and its simultaneous generation of eddy currents within a conducting cylinder. The source position is calculated using a least-squares fit of simulated sensor data using the dipole equation as the model equation. To account for field gradients across the sensor area (≈ 25 cm(2)), an iterative method is used to estimate the magnetic field at the sensor center. Spatial gradients are calculated with two arrays of uniaxial, paired sensors that form a gradiometer array, where the sensors are considered ideal. Experimental measurements of magnetic fields within the TomoTherapy bore are shown to be 1%-10% less than calculated with the electromagnetic model. Localization results using a 5 × 5 array of gradiometers are, in general, 2-4 times more accurate than a planar array of sensors, depending on the solenoid orientation and position. Simulation results show that the localization accuracy using a gradiometer array is within 1.3 mm over a distance of 20 cm from the array plane. In comparison, localization errors using single array are within 5 mm. The results indicate that the gradiometer method merits further studies and work due to the accuracy achieved with ideal sensors. Future studies should include realistic sensor models and extensive numerical studies to estimate the expected magnetic tracking accuracy within a TomoTherapy system before proceeding with prototype development.

  15. High-Frequency Ultrasonic Imaging of the Anterior Segment Using an Annular Array Transducer

    PubMed Central

    Silverman, Ronald H.; Ketterling, Jeffrey A.; Coleman, D. Jackson

    2006-01-01

    Objective Very-high-frequency (>35 MHz) ultrasound (VHFU) allows imaging of anterior segment structures of the eye with a resolution of less than 40-μm. The low focal ratio of VHFU transducers, however, results in a depth-of-field (DOF) of less than 1-mm. Our aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity and resolution compared to conventional transducers. Design Experimental Study Participants Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. Methods A spherically curved annular array ultrasound transducer was fabricated. The array consisted of five concentric rings of equal area, had an overall aperture of 6 mm and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit/receive annuli combinations. The echo data were then synthetically focused and composite images produced. Transducer operation was tested by scanning a test object consisting of a series of 25-μm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit and human cadaver eyes. Main Outcome Measures Depth of field, resolution and sensitivity. Results The wire scans verified the operation of the array and demonstrated a 6.0 mm DOF compared to the 1.0 mm DOF of a conventional single-element transducer of comparable frequency, aperture and focal length. B-mode images of ex vivo bovine, in vivo rabbit and cadaver eyes showed that while the single-element transducer had high sensitivity and resolution within 1–2 mm of its focus, the array with synthetic focusing maintained this quality over a 6 mm DOF. Conclusion An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved depth-of-field, sensitivity and lateral resolution compared to single-element fixed focus transducers currently used for VHFU imaging of the eye. PMID:17141314

  16. Pulse-Echo Phased Array Ultrasonic Inspection of Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS)

    NASA Technical Reports Server (NTRS)

    Johnston, Pat H.

    2010-01-01

    A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading. Keywords: Phased Array, Ultrasonics, Composites, Out-of-Autoclave

  17. Wafer-size free-standing single-crystalline graphene device arrays

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jing, Gaoshan; Zhang, Bo; Sando, Shota; Cui, Tianhong

    2014-08-01

    We report an approach of wafer-scale addressable single-crystalline graphene (SCG) arrays growth by using pre-patterned seeds to control the nucleation. The growth mechanism and superb properties of SCG were studied. Large array of free-standing SCG devices were realized. Characterization of SCG as nano switches shows excellent performance with life time (>22 000 times) two orders longer than that of other graphene nano switches reported so far. This work not only shows the possibility of producing wafer-scale high quality SCG device arrays but also explores the superb performance of SCG as nano devices.

  18. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast

    PubMed Central

    Ganguli, Dwaipayan; Chereji, Răzvan V.; Iben, James R.; Cole, Hope A.

    2014-01-01

    RSC and SWI/SNF are related ATP-dependent chromatin remodeling machines that move nucleosomes, regulating access to DNA. We addressed their roles in nucleosome phasing relative to transcription start sites in yeast. SWI/SNF has no effect on phasing at the global level. In contrast, RSC depletion results in global nucleosome repositioning: Both upstream and downstream nucleosomal arrays shift toward the nucleosome-depleted region (NDR), with no change in spacing, resulting in a narrower and partly filled NDR. The global picture of RSC-depleted chromatin represents the average of a range of chromatin structures, with most genes showing a shift of the +1 or the −1 nucleosome into the NDR. Using RSC ChIP data reported by others, we show that RSC occupancy is highest on the coding regions of heavily transcribed genes, though not at their NDRs. We propose that RSC has a role in restoring chromatin structure after transcription. Analysis of gene pairs in different orientations demonstrates that phasing patterns reflect competition between phasing signals emanating from neighboring NDRs. These signals may be in phase, resulting in constructive interference and a regular array, or out of phase, resulting in destructive interference and fuzzy positioning. We propose a modified barrier model, in which a stable complex located at the NDR acts as a bidirectional phasing barrier. In RSC-depleted cells, this barrier has a smaller footprint, resulting in narrower NDRs. Thus, RSC plays a critical role in organizing yeast chromatin. PMID:25015381

  19. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast.

    PubMed

    Ganguli, Dwaipayan; Chereji, Răzvan V; Iben, James R; Cole, Hope A; Clark, David J

    2014-10-01

    RSC and SWI/SNF are related ATP-dependent chromatin remodeling machines that move nucleosomes, regulating access to DNA. We addressed their roles in nucleosome phasing relative to transcription start sites in yeast. SWI/SNF has no effect on phasing at the global level. In contrast, RSC depletion results in global nucleosome repositioning: Both upstream and downstream nucleosomal arrays shift toward the nucleosome-depleted region (NDR), with no change in spacing, resulting in a narrower and partly filled NDR. The global picture of RSC-depleted chromatin represents the average of a range of chromatin structures, with most genes showing a shift of the +1 or the -1 nucleosome into the NDR. Using RSC ChIP data reported by others, we show that RSC occupancy is highest on the coding regions of heavily transcribed genes, though not at their NDRs. We propose that RSC has a role in restoring chromatin structure after transcription. Analysis of gene pairs in different orientations demonstrates that phasing patterns reflect competition between phasing signals emanating from neighboring NDRs. These signals may be in phase, resulting in constructive interference and a regular array, or out of phase, resulting in destructive interference and fuzzy positioning. We propose a modified barrier model, in which a stable complex located at the NDR acts as a bidirectional phasing barrier. In RSC-depleted cells, this barrier has a smaller footprint, resulting in narrower NDRs. Thus, RSC plays a critical role in organizing yeast chromatin. Published by Cold Spring Harbor Laboratory Press.

  20. Limitations of Phased Array Beamforming in Open Rotor Noise Source Imaging

    NASA Technical Reports Server (NTRS)

    Horvath, Csaba; Envia, Edmane; Podboy, Gary G.

    2013-01-01

    Phased array beamforming results of the F31/A31 historical baseline counter-rotating open rotor blade set were investigated for measurement data taken on the NASA Counter-Rotating Open Rotor Propulsion Rig in the 9- by 15-Foot Low-Speed Wind Tunnel of NASA Glenn Research Center as well as data produced using the LINPROP open rotor tone noise code. The planar microphone array was positioned broadside and parallel to the axis of the open rotor, roughly 2.3 rotor diameters away. The results provide insight as to why the apparent noise sources of the blade passing frequency tones and interaction tones appear at their nominal Mach radii instead of at the actual noise sources, even if those locations are not on the blades. Contour maps corresponding to the sound fields produced by the radiating sound waves, taken from the simulations, are used to illustrate how the interaction patterns of circumferential spinning modes of rotating coherent noise sources interact with the phased array, often giving misleading results, as the apparent sources do not always show where the actual noise sources are located. This suggests that a more sophisticated source model would be required to accurately locate the sources of each tone. The results of this study also have implications with regard to the shielding of open rotor sources by airframe empennages.

  1. Lighting Condition Analysis for Mars' Moon Phobos

    NASA Technical Reports Server (NTRS)

    Li, Zu Qun; de Carufel, Guy; Crues, Edwin Z.; Bielski, Paul

    2016-01-01

    This study used high fidelity computer simulation to investigate the lighting conditions, specifically the solar radiation flux over the surface, on Phobos. Ephemeris data from the Jet Propulsion Laboratory (JPL) DE405 model was used to model the state of the Sun, Earth, Moon, and Mars. An occultation model was developed to simulate Phobos' self-shadowing and its solar eclipses by Mars. The propagated Phobos state was compared with data from JPL's Horizon system to ensure the accuracy of the result. Results for Phobos lighting conditions over one Martian year are presented, which include the duration of solar eclipses, average solar radiation intensity, surface exposure time, available energy per unit area for sun tracking arrays, and available energy per unit area for fixed arrays (constrained by incident angle). The results show that: Phobos' solar eclipse time varies throughout the Martian year, with longer eclipse durations during the Martian spring and fall seasons and no eclipses during the Martian summer and winter seasons; solar radiation intensity is close to minimum at the summer solstice and close to maximum at the winter solstice; exposure time per orbit is relatively constant over the surface during the spring and fall but varies with latitude during the summer and winter; and Sun tracking solar arrays generate more energy than a fixed solar array. A usage example of the result is also present in this paper to demonstrate the utility.

  2. What does tremor really look like? Initial results from an 84-element array

    NASA Astrophysics Data System (ADS)

    Vidale, J. E.; Sweet, J.; Creager, K. C.; Ghosh, A.

    2008-12-01

    Aspiring to see more intimate details, we placed an 84-element short-period vertical-component array with an aperture of 1km on a hard rock mountain over the path of Cascadia tremor. This site is coincident with a stellar 6-station three-component CAFE array (see talk by K. Creager). Texans, which are convenient to deploy but require recycling for fresh batteries every four days, recorded the seismograms. We recorded 8 days in March and 17 days in May 2008. We find most of the arrivals at high frequencies, especially in the stacks, are P-waves, due to the network constitution. The March week contains only six intermittent hours of tremor detectable by the usual envelope analysis of data from the regional network, but array beamforming shows much more continuous activity, and extending about a half day longer. We also pick up a later episode of weak tremor that contains probably the first glance of low-frequency earthquake in Cascadia (see abstract by J. Sweet). The May field season recorded full-blown tremor passing directly underneath in startling detail. The tremor source region in preliminary images is more compact than the cloud of locations determined from envelope correlation, but also with an apparently persistent patchwork of regions that do and do not generate tremor. Further analysis and future deployments with multiple dense arrays show great promise for getting to the bottom of the issue of tremor generation.

  3. Do icon arrays help reduce denominator neglect?

    PubMed

    Garcia-Retamero, Rocio; Galesic, Mirta; Gigerenzer, Gerd

    2010-01-01

    Denominator neglect is the focus on the number of times a target event has happened (e.g., the number of treated and nontreated patients who die) without considering the overall number of opportunities for it to happen (e.g., the overall number of treated and nontreated patients). In 2 studies, we addressed the effect of denominator neglect in problems involving treatment risk reduction where samples of treated and non-treated patients and the relative risk reduction were of different sizes. We also tested whether using icon arrays helps people take these different sample sizes into account. We especially focused on older adults, who are often more disadvantaged when making decisions about their health. . Study 1 was conducted on a laboratory sample using a within-subjects design; study 2 was conducted on a nonstudent sample interviewed through the Web using a between-subjects design. Accuracy of understanding risk reduction. Participants often paid too much attention to numerators and insufficient attention to denominators when numerical information about treatment risk reduction was provided. Adding icon arrays to the numerical information, however, drew participants' attention to the denominators and helped them make more accurate assessments of treatment risk reduction. Icon arrays were equally helpful to younger and older adults. Building on previous research showing that problems with understanding numerical information often do not reside in the mind but in the representation of the problem, the results show that icon arrays are an effective method of eliminating denominator neglect.

  4. Space Plasma Shown to Make Satellite Solar Arrays Fail

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1999-01-01

    In 1997, scientists and engineers of the Photovoltaic and Space Environments Branch of the NASA Lewis Research Center, Maxwell Technologies, and Space Systems/Loral discovered a new failure mechanism for solar arrays on communications satellites in orbit. Sustained electrical arcs, initiated by the space plasma and powered by the solar arrays themselves, were found to have destroyed solar array substrates on some Space Systems/Loral satellites, leading to array failure. The mechanism was tested at Lewis, and mitigation strategies were developed to prevent such disastrous occurrences on-orbit in the future. Deep Space 1 is a solar-electric-powered space mission to a comet, launched on October 24, 1998. Early in 1998, scientists at Lewis and Ballistic Missile Defense Organization (BMDO) realized that some aspects of the Deep Space 1 solar arrays were nearly identical to those that had led to the failure of solar arrays on Space Systems/Loral satellites. They decided to modify the Deep Space 1 arrays to prevent catastrophic failure in space. The arrays were suitably modified and are now performing optimally in outer space. Finally, the Earth Observing System (EOS) AM1, scheduled for launch in mid-1999, is a NASA mission managed by the Goddard Space Flight Center. Realizing the importance of Lewis testing on the Loral arrays, EOS-AM1 management asked Lewis scientists to test their solar arrays to show that they would not fail in the same way. The first phase of plasma testing showed that sustained arcing would occur on the unmodified EOS-AM1 arrays, so the arrays were removed from the spacecraft and fixed. Now, Lewis scientists have finished plasma testing of the modified array configuration to ensure that EOS-AM1 will have no sustained arcing problems on-orbit.

  5. An Improved Zero Potential Circuit for Readout of a Two-Dimensional Resistive Sensor Array.

    PubMed

    Wu, Jian-Feng; Wang, Feng; Wang, Qi; Li, Jian-Qing; Song, Ai-Guo

    2016-12-06

    With one operational amplifier (op-amp) in negative feedback, the traditional zero potential circuit could access one element in the two-dimensional (2-D) resistive sensor array with the shared row-column fashion but it suffered from the crosstalk problem for the non-scanned elements' bypass currents, which were injected into array's non-scanned electrodes from zero potential. Firstly, for suppressing the crosstalk problem, we designed a novel improved zero potential circuit with one more op-amp in negative feedback to sample the total bypass current and calculate the precision resistance of the element being tested (EBT) with it. The improved setting non-scanned-electrode zero potential circuit (S-NSE-ZPC) was given as an example for analyzing and verifying the performance of the improved zero potential circuit. Secondly, in the S-NSE-ZPC and the improved S-NSE-ZPC, the effects of different parameters of the resistive sensor arrays and their readout circuits on the EBT's measurement accuracy were simulated with the NI Multisim 12. Thirdly, part features of the improved circuit were verified with the experiments of a prototype circuit. Followed, the results were discussed and the conclusions were given. The experiment results show that the improved circuit, though it requires one more op-amp, one more resistor and one more sampling channel, can access the EBT in the 2-D resistive sensor array more accurately.

  6. Rotational Displacement Skills in Rhesus Macaques (Macaca mulatta)

    PubMed Central

    Hughes, Kelly D.; Santos, Laurie R.

    2016-01-01

    Rotational displacement tasks, in which participants must track an object at a hiding location within an array while the array rotates, exhibit a puzzling developmental pattern in humans. Human children take an unusually long time to master this task and tend to solve rotational problems through the use of nongeometric features or landmarks as opposed to other kinds of spatial cues. We investigated whether these developmental characteristics are unique to humans by testing rotational displacement skills in a monkey species, the rhesus macaque (Macaca mulatta), using a looking-time method. Monkeys first saw food hidden in two differently colored boxes within an array. The array was then rotated 180° and the boxes reopened to reveal the food in an expected or unexpected location. Our first two experiments explored the developmental time-course of performance on this rotational displacement task. We found that adult macaques looked longer at the unexpected event, but such performance was not mirrored in younger-aged macaques. In a third study, we systematically varied featural information and visible access to the array to investigate which strategies adult macaques used in solving rotational displacements. Our results show that adult macaques need both sets of information to solve the task. Taken together, these results suggest both similarities and differences in mechanisms by which human and nonhuman primates develop this spatial skill. PMID:22866770

  7. A proposed metric for assessing the measurement quality of individual microarrays

    PubMed Central

    Kim, Kyoungmi; Page, Grier P; Beasley, T Mark; Barnes, Stephen; Scheirer, Katherine E; Allison, David B

    2006-01-01

    Background High-density microarray technology is increasingly applied to study gene expression levels on a large scale. Microarray experiments rely on several critical steps that may introduce error and uncertainty in analyses. These steps include mRNA sample extraction, amplification and labeling, hybridization, and scanning. In some cases this may be manifested as systematic spatial variation on the surface of microarray in which expression measurements within an individual array may vary as a function of geographic position on the array surface. Results We hypothesized that an index of the degree of spatiality of gene expression measurements associated with their physical geographic locations on an array could indicate the summary of the physical reliability of the microarray. We introduced a novel way to formulate this index using a statistical analysis tool. Our approach regressed gene expression intensity measurements on a polynomial response surface of the microarray's Cartesian coordinates. We demonstrated this method using a fixed model and presented results from real and simulated datasets. Conclusion We demonstrated the potential of such a quantitative metric for assessing the reliability of individual arrays. Moreover, we showed that this procedure can be incorporated into laboratory practice as a means to set quality control specifications and as a tool to determine whether an array has sufficient quality to be retained in terms of spatial correlation of gene expression measurements. PMID:16430768

  8. NaI(Tl) scintillator read out with SiPM array for gamma spectrometer

    NASA Astrophysics Data System (ADS)

    Huang, Tuchen; Fu, Qibin; Lin, Shaopeng; Wang, Biao

    2017-04-01

    The NaI(Tl) scintillator is widely used in gamma spectrometer with photomultiplier tube (PMT) readout. Recently developed silicon photomultiplier (SiPM) offers gain and efficiency similar to those of PMT, but with merits such as low bias voltage, compact volume, low cost, high ruggedness and magnetic resonance compatibility. In this study, 2-in. and 1-in. NaI(Tl) scintillators were readout with SiPM arrays, which were made by tiling multiple SiPMs each with an active area of 6×6 mm2 on a printed circuit board. The energy resolutions for 661.6 keV gamma rays, obtained with Φ2×2 in. scintillator coupled to 6×6 ch SiPM array and Φ1×1 in. scintillator coupled to 4×4 ch SiPM array were 7.6% and 7.8%, respectively, and were very close to the results obtained with traditional bialkali PMT (7.3% and 7.6%, respectively). Scintillator coupled to photodetector with smaller area was also studied by adding a light guide or using scintillator with tapered head. The latter showed better performance than using light guide. The 1-in. NaI(Tl) scintillator with tapered head coupled to 2×2 ch SiPM array achieved 7.7% energy resolution at 661.6 keV, the same as that obtained with standard Φ1×1 in. scintillator coupled to 4×4 ch SiPM array. While the 2-in. scintillator with similar geometry showed degraded energy resolution, 10.2% at 661.6 keV, but could still be used when high efficiency is preferred over energy resolution.

  9. Crustal Structure and Seismicity along the Central Alpine Fault: Results from the WIZARD Array

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Roecker, S. W.; Townend, J.; Bannister, S. C.; Guo, B.; Rawles, C.; Feenstra, J. P.

    2015-12-01

    In 2012 and 2013, the University of Wisconsin-Madison (UW), Rensselaer Polytechnic Institute (RPI), and Victoria University of Wellington (VUW) operated a 20-station temporary seismic array along the obliquely slipping Alpine Fault on the South Island of New Zealand. The stations of the array, nicknamed WIZARD, were deployed mainly north and east of the Deep Fault Drilling Program (DFDP) borehole site in Whataroa Valley (DFPD-2). WIZARD complemented the station distribution of the Southern Alps Microearthquake Borehole Array (SAMBA) operated by VUW, situated south and west of DFDP-2. Three additional temporary stations were deployed to the north and east of WIZARD by GNS Science, and four GeoNet permanent stations fell within the footprint of our study area. The main goals of the WIZARD project are to image the crustal structure in the region surrounding the DFDP-2 site, relocate earthquakes as precisely and accurately as possible, and determine focal mechanisms for the larger earthquakes, in order to characterize the Alpine Fault and its geometry at depth. Some previous studies had identified the area covered by WIZARD to be largely aseismic, but we have in fact located roughly 500 earthquakes underneath WIZARD. A new automatic S-wave picker proved to be very effective for rapidly increasing the size of our S-wave arrival dataset. Our tomographic inversion results show that significant velocity contrasts in both Vp and Vs (hanging wall fast) appear to delineate the Alpine Fault at depth in most of our study region, dipping typically about 60 degrees SE, and some focal mechanisms show oblique slip. However, we are not able to identify earthquakes that are actually occurring on the Alpine Fault with certainty based only on our location results.

  10. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating.

    PubMed

    Payne, Allison; Vyas, Urvi; Todd, Nick; de Bever, Joshua; Christensen, Douglas A; Parker, Dennis L

    2011-09-01

    This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes' bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will help to ensure patient safety during an MRgHIFU treatment.

  11. Temporal Evolution of the Plasma Sheath Surrounding Solar Cells in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2017-01-01

    Initial results from the PIC simulation and the LEM simulation have been presented. The PIC simulation results show that more detailed study is required to refine the ISS solar array current collection model and to understand the development of the current collection in time. The initial results from the LEM demonstrate that is it possible the transients are caused by solar array interaction with the environment, but there are presently too many assumptions in the model to be certain. Continued work on the PIC simulation will provide valuable information on the development of the barrier potential, which will allow refinement the LEM simulation and a better understanding of the causes and effects of the transients.

  12. Design and implementation of a CMOS light pulse receiver cell array for spatial optical communications.

    PubMed

    Sarker, Md Shakowat Zaman; Itoh, Shinya; Hamai, Moeta; Takai, Isamu; Andoh, Michinori; Yasutomi, Keita; Kawahito, Shoji

    2011-01-01

    A CMOS light pulse receiver (LPR) cell for spatial optical communications is designed and evaluated by device simulations and a prototype chip implementation. The LPR cell consists of a pinned photodiode and four transistors. It works under sub-threshold region of a MOS transistor and the source terminal voltage which responds to the logarithm of the photo current are read out with a source follower circuit. For finding the position of the light spot on the focal plane, an image pixel array is embedded on the same plane of the LPR cell array. A prototype chip with 640 × 240 image pixels and 640 × 240 LPR cells is implemented with 0.18 μm CMOS technology. A proposed model of the transient response of the LPR cell agrees with the result of the device simulations and measurements. Both imaging at 60 fps and optical communication at the carrier frequency of 1 MHz are successfully performed. The measured signal amplitude and the calculation results of photocurrents show that the spatial optical communication up to 100 m is feasible using a 10 × 10 LED array.

  13. Noise Attenuation Performance of a Helmholtz Resonator Array Consist of Several Periodic Parts

    PubMed Central

    Wu, Dizi; Zhang, Nan; Mak, Cheuk Ming; Cai, Chenzhi

    2017-01-01

    The acoustic performance of the ducted Helmholtz resonator (HR) system is analyzed theoretically and numerically. The periodic HR array could provide a wider noise attenuation band due to the coupling of the Bragg reflection and the HR’s resonance. However, the transmission loss achieved by a periodic HR array is mainly dependent on the number of HRs, which restricted by the available space in the longitudinal direction of the duct. The full distance along the longitudinal direction of the duct for HR’s installation is sometimes unavailable in practical applications. Only several pieces of the duct may be available for the installation. It is therefore that this paper concentrates on the acoustic performance of a HR array consisting of several periodic parts. The transfer matrix method and the Bragg theory are used to investigate wave propagation in the duct. The theoretical prediction results show good agreement with the Finite Element Method (FEM) simulation results. The present study provides a practical way in noise control application of ventilation ductwork system by utilizing the advantage of periodicity with the limitation of available completed installation length for HRs. PMID:28471383

  14. Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method.

    PubMed

    Li, Baoe; Hao, Jingzu; Min, Yang; Xin, Shigang; Guo, Litong; He, Fei; Liang, Chunyong; Wang, Hongshui; Li, Haipeng

    2015-06-01

    TiO2 nanotube arrays were synthesized on Ti surface by anodic oxidation. The elements of Ca and P were simultaneously incorporated during nanotubes growth in SBF electrolyte, and then Ag was introduced to nanotube arrays by cathodic deposition, which endowed the good osseointegration and antibacterial property of Ti. The bioactivity of the Ti surface was evaluated by simulated body fluid soaking test. The biocompatibility was investigated by in vitro cell culture test. And the antibacterial effect against Staphylococcus aureus was examined by the bacterial counting method. The results showed that the incorporation of Ca, P and Ag elements had no significant influence on the formation of nanotube arrays on Ti surface during electrochemical treatment. Compared to the polished or nanotubular Ti surface, TiO2 nanotube arrays incorporated with Ca, P and Ag increased the formation of bone-like apatite in simulated body fluid, enhanced cell adhesion and proliferation, and inhibited the bacterial growth. Based on these results, it can be concluded that the nanostructured Ti incorporated with Ca, P and Ag by electrochemical method has promising applications as implant material. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Submillimeter-wave antennas on thin membranes

    NASA Technical Reports Server (NTRS)

    Rebeiz, Gabriel M.; Regehr, Wade G.; Rutledge, David B.; Savage, Richard L.; Luhmann, Neville C., Jr.

    1987-01-01

    Submillimeter-wave antennas have been fabricated on 1-micron thick silicon-oxynitride membranes. This approach results in better patterns than previous lens-coupled antennas, and eliminates the dielectric loss associated with the substrate lens. Measurements on a wideband log-periodic antenna at 700 GHz, 370 GHz and 167 GHz show no sidelobes and 3-dB beamwidths between 40 and 60 deg. A linear imaging array has similar patterns at 700 GHz. Possible applications for membrane antennas include wideband superconducting tunnel-junction receivers for radio astronomy and imaging arrays for radiometry and plasma diagnostics.

  16. Vortex circulation patterns in planar microdisk arrays

    DOE PAGES

    Velten, Sven; Streubel, Robert; Farhan, Alan; ...

    2017-06-26

    We report a magnetic X-ray microscopy study of the pattern formation of circulation in arrays of magnetic vortices ordered in a hexagonal and a honeycomb lattice. In the honeycomb lattice, we observe at remanence an ordered phase of alternating circulations, whereas in the hexagonal lattice, small regions of alternating lines form. A variation in the edge-to-edge distance shows that the size of those regions scales with the magnetostatic interaction. Micromagnetic simulations reveal that the patterns result from the formation of flux closure states during the nucleation process.

  17. Development of Ultra-Low Noise, High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR Sensor Systems

    DTIC Science & Technology

    1992-02-01

    Development of Ultra-Low Noise , High Sensitivity Planar Metal Grating Coupled AlGaAs/GaAs Multiquantum Well IR Detectors for Focal Plane Array Staring IR...dark current at 77 K was 10 times lower than the conventional QWIP reported in the literature. anid the BTM QWIP showed a largely enhanced intersubband...bias voltage in the BTM and SBTM1 QWIPs . The results reveal thiat therinionic emission is dominant current conduction mechianismn at higher temp

  18. Characterizations of low-temperature electroluminescence from ZnO nanowire light-emitting arrays on the p-GaN layer.

    PubMed

    Lu, Tzu-Chun; Ke, Min-Yung; Yang, Sheng-Chieh; Cheng, Yun-Wei; Chen, Liang-Yi; Lin, Guan-Jhong; Lu, Yu-Hsin; He, Jr-Hau; Kuo, Hao-Chung; Huang, JianJang

    2010-12-15

    Low-temperature electroluminescence from ZnO nanowire light-emitting arrays is reported. By inserting a thin MgO current blocking layer in between ZnO nanowire and p-GaN, high-purity UV light emission at wavelength 398 nm was obtained. As the temperature is decreased, contrary to the typical GaN-based light emitting diodes, our device shows a decrease of optical output intensity. The results are associated with various carrier tunneling processes and frozen MgO defects.

  19. A 31-Channel MR Brain Array Coil Compatible with Positron Emission Tomography

    PubMed Central

    Sander, Christin Y.; Keil, Boris; Chonde, Daniel B.; Rosen, Bruce R.; Catana, Ciprian; Wald, Lawrence L.

    2014-01-01

    Purpose Simultaneous acquisition of MR and PET images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. Methods A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (SNR, g-factor) and PET attenuation. Results The coil design showed an improvement in attenuation by 190% (average) compared to conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical ROI) compared to a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. Conclusion The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. PMID:25046699

  20. Simulated and Real Sheet-of-Light 3D Object Scanning Using a-Si:H Thin Film PSD Arrays.

    PubMed

    Contreras, Javier; Tornero, Josep; Ferreira, Isabel; Martins, Rodrigo; Gomes, Luis; Fortunato, Elvira

    2015-11-30

    A MATLAB/SIMULINK software simulation model (structure and component blocks) has been constructed in order to view and analyze the potential of the PSD (Position Sensitive Detector) array concept technology before it is further expanded or developed. This simulation allows changing most of its parameters, such as the number of elements in the PSD array, the direction of vision, the viewing/scanning angle, the object rotation, translation, sample/scan/simulation time, etc. In addition, results show for the first time the possibility of scanning an object in 3D when using an a-Si:H thin film 128 PSD array sensor and hardware/software system. Moreover, this sensor technology is able to perform these scans and render 3D objects at high speeds and high resolutions when using a sheet-of-light laser within a triangulation platform. As shown by the simulation, a substantial enhancement in 3D object profile image quality and realism can be achieved by increasing the number of elements of the PSD array sensor as well as by achieving an optimal position response from the sensor since clearly the definition of the 3D object profile depends on the correct and accurate position response of each detector as well as on the size of the PSD array.

  1. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  2. Infrasound array criteria for automatic detection and front velocity estimation of snow avalanches: towards a real-time early-warning system

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ripepe, M.; Ulivieri, G.; Kogelnig, A.

    2015-11-01

    Avalanche risk management is strongly related to the ability to identify and timely report the occurrence of snow avalanches. Infrasound has been applied to avalanche research and monitoring for the last 20 years but it never turned into an operational tool to identify clear signals related to avalanches. We present here a method based on the analysis of infrasound signals recorded by a small aperture array in Ischgl (Austria), which provides a significant improvement to overcome this limit. The method is based on array-derived wave parameters, such as back azimuth and apparent velocity. The method defines threshold criteria for automatic avalanche identification by considering avalanches as a moving source of infrasound. We validate the efficiency of the automatic infrasound detection with continuous observations with Doppler radar and we show how the velocity of a snow avalanche in any given path around the array can be efficiently derived. Our results indicate that a proper infrasound array analysis allows a robust, real-time, remote detection of snow avalanches that is able to provide the number and the time of occurrence of snow avalanches occurring all around the array, which represent key information for a proper validation of avalanche forecast models and risk management in a given area.

  3. Dragon Ears airborne acoustic array: CSP analysis applied to cross array to compute real-time 2D acoustic sound field

    NASA Astrophysics Data System (ADS)

    Cerwin, Steve; Barnes, Julie; Kell, Scott; Walters, Mark

    2003-09-01

    This paper describes development and application of a novel method to accomplish real-time solid angle acoustic direction finding using two 8-element orthogonal microphone arrays. The developed prototype system was intended for localization and signature recognition of ground-based sounds from a small UAV. Recent advances in computer speeds have enabled the implementation of microphone arrays in many audio applications. Still, the real-time presentation of a two-dimensional sound field for the purpose of audio target localization is computationally challenging. In order to overcome this challenge, a crosspower spectrum phase1 (CSP) technique was applied to each 8-element arm of a 16-element cross array to provide audio target localization. In this paper, we describe the technique and compare it with two other commonly used techniques; Cross-Spectral Matrix2 and MUSIC3. The results show that the CSP technique applied to two 8-element orthogonal arrays provides a computationally efficient solution with reasonable accuracy and tolerable artifacts, sufficient for real-time applications. Additional topics include development of a synchronized 16-channel transmitter and receiver to relay the airborne data to the ground-based processor and presentation of test data demonstrating both ground-mounted operation and airborne localization of ground-based gunshots and loud engine sounds.

  4. Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome

    PubMed Central

    Erliandri, Indri; Fu, Haiqing; Nakano, Megumi; Kim, Jung-Hyun; Miga, Karen H.; Liskovykh, Mikhail; Earnshaw, William C.; Masumoto, Hiroshi; Kouprina, Natalay; Aladjem, Mirit I.; Larionov, Vladimir

    2014-01-01

    In human chromosomes, centromeric regions comprise megabase-size arrays of 171 bp alpha-satellite DNA monomers. The large distances spanned by these arrays preclude their replication from external sites and imply that the repetitive monomers contain replication origins. However, replication within these arrays has not previously been profiled and the role of alpha-satellite DNA in initiation of DNA replication has not yet been demonstrated. Here, replication of alpha-satellite DNA in endogenous human centromeric regions and in de novo formed Human Artificial Chromosome (HAC) was analyzed. We showed that alpha-satellite monomers could function as origins of DNA replication and that replication of alphoid arrays organized into centrochromatin occurred earlier than those organized into heterochromatin. The distribution of inter-origin distances within centromeric alphoid arrays was comparable to the distribution of inter-origin distances on randomly selected non-centromeric chromosomal regions. Depletion of CENP-B, a kinetochore protein that binds directly to a 17 bp CENP-B box motif common to alpha-satellite DNA, resulted in enrichment of alpha-satellite sequences for proteins of the ORC complex, suggesting that CENP-B may have a role in regulating the replication of centromeric regions. Mapping of replication initiation sites in the HAC revealed that replication preferentially initiated in transcriptionally active regions. PMID:25228468

  5. Identifying tagging SNPs for African specific genetic variation from the African Diaspora Genome

    PubMed Central

    Johnston, Henry Richard; Hu, Yi-Juan; Gao, Jingjing; O’Connor, Timothy D.; Abecasis, Gonçalo R.; Wojcik, Genevieve L; Gignoux, Christopher R.; Gourraud, Pierre-Antoine; Lizee, Antoine; Hansen, Mark; Genuario, Rob; Bullis, Dave; Lawley, Cindy; Kenny, Eimear E.; Bustamante, Carlos; Beaty, Terri H.; Mathias, Rasika A.; Barnes, Kathleen C.; Qin, Zhaohui S.; Preethi Boorgula, Meher; Campbell, Monica; Chavan, Sameer; Ford, Jean G.; Foster, Cassandra; Gao, Li; Hansel, Nadia N.; Horowitz, Edward; Huang, Lili; Ortiz, Romina; Potee, Joseph; Rafaels, Nicholas; Ruczinski, Ingo; Scott, Alan F.; Taub, Margaret A.; Vergara, Candelaria; Levin, Albert M.; Padhukasahasram, Badri; Williams, L. Keoki; Dunston, Georgia M.; Faruque, Mezbah U.; Gietzen, Kimberly; Deshpande, Aniket; Grus, Wendy E.; Locke, Devin P.; Foreman, Marilyn G.; Avila, Pedro C.; Grammer, Leslie; Kim, Kwang-Youn A.; Kumar, Rajesh; Schleimer, Robert; De La Vega, Francisco M.; Shringarpure, Suyash S.; Musharoff, Shaila; Burchard, Esteban G.; Eng, Celeste; Hernandez, Ryan D.; Pino-Yanes, Maria; Torgerson, Dara G.; Szpiech, Zachary A.; Torres, Raul; Nicolae, Dan L.; Ober, Carole; Olopade, Christopher O; Olopade, Olufunmilayo; Oluwole, Oluwafemi; Arinola, Ganiyu; Song, Wei; Correa, Adolfo; Musani, Solomon; Wilson, James G.; Lange, Leslie A.; Akey, Joshua; Bamshad, Michael; Chong, Jessica; Fu, Wenqing; Nickerson, Deborah; Reiner, Alexander; Hartert, Tina; Ware, Lorraine B.; Bleecker, Eugene; Meyers, Deborah; Ortega, Victor E.; Maul, Pissamai; Maul, Trevor; Watson, Harold; Ilma Araujo, Maria; Riccio Oliveira, Ricardo; Caraballo, Luis; Marrugo, Javier; Martinez, Beatriz; Meza, Catherine; Ayestas, Gerardo; Francisco Herrera-Paz, Edwin; Landaverde-Torres, Pamela; Erazo, Said Omar Leiva; Martinez, Rosella; Mayorga, Alvaro; Mayorga, Luis F.; Mejia-Mejia, Delmy-Aracely; Ramos, Hector; Saenz, Allan; Varela, Gloria; Marina Vasquez, Olga; Ferguson, Trevor; Knight-Madden, Jennifer; Samms-Vaughan, Maureen; Wilks, Rainford J.; Adegnika, Akim; Ateba-Ngoa, Ulysse; Yazdanbakhsh, Maria

    2017-01-01

    A primary goal of The Consortium on Asthma among African-ancestry Populations in the Americas (CAAPA) is to develop an ‘African Diaspora Power Chip’ (ADPC), a genotyping array consisting of tagging SNPs, useful in comprehensively identifying African specific genetic variation. This array is designed based on the novel variation identified in 642 CAAPA samples of African ancestry with high coverage whole genome sequence data (~30× depth). This novel variation extends the pattern of variation catalogued in the 1000 Genomes and Exome Sequencing Projects to a spectrum of populations representing the wide range of West African genomic diversity. These individuals from CAAPA also comprise a large swath of the African Diaspora population and incorporate historical genetic diversity covering nearly the entire Atlantic coast of the Americas. Here we show the results of designing and producing such a microchip array. This novel array covers African specific variation far better than other commercially available arrays, and will enable better GWAS analyses for researchers with individuals of African descent in their study populations. A recent study cataloging variation in continental African populations suggests this type of African-specific genotyping array is both necessary and valuable for facilitating large-scale GWAS in populations of African ancestry. PMID:28429804

  6. Facile construction of vertically aligned EuS-ZnO hybrid core shell nanorod arrays for visible light driven photocatalytic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranjith, K. S.; Kumar, D. Ranjith; Kumar, R. T. Rajendra, E-mail: rtrkumar@buc.edu.in

    2015-06-24

    We demonstrated the development of coupled semiconductor in the form of hybrid heterostructures for significant advancement in catalytic functional materials. In this article, we report the preparation of vertically aligned core shell ZnO-EuS nanorod photocatalyst arrays by a simple chemical solution process followed by sulfudation process. The XRD pattern confirmed formation of the hexagonal wurtzite structure of ZnO and cubic nature of the EuS. Cross sectional FESEM images show vertical rod array structure, and the size of the nanorods ranges from 80 to 120 nm. UV-Vis DRS spectra showed that the optical absorption of ZnO was significantly enhanced to the visiblemore » region by modification with EuS surfaces. TEM study confirmed that the surface of ZnO was drastically improved by the modification with EuS nanoparticle. The catalytic activity of EuS−ZnO core shell nanorod arrays were evaluated by the photodegradation of Methylene Blue (MB) dye under visible irradiation. The results revealed that the photocatalytic activity of EuS−ZnO was much higher than that of ZnO under natural sunlight. EuS−ZnO was found to be stable and reusable without appreciable loss of catalytic activity up to four consecutive cycles.« less

  7. Molecular Substrate Alteration by Solar Wind Radiation Documented on Flown Genesis Mission Array Materials

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Stansbery, Eileen K.

    2006-01-01

    The Genesis spacecraft sampling arrays were exposed to various regimes of solar wind during flight that included: 313.01 days of high-speed wind from coronal holes, 335.19 days of low-speed inter-stream wind, 191.79 days of coronal mass ejections, and 852.83 days of bulk solar wind at Lagrange 1 orbit. Ellipsometry measurements taken at NASA s Johnson Space Center show that all nine flown array materials from the four Genesis regimes have been altered by solar wind exposure during flight. These measurements show significant changes in the optical constant for all nine ultra-pure materials that flew on Genesis when compared with their non-flight material standard. This change in the optical constant (n and k) of the material suggests that the molecular structure of the all nine ultra-pure materials have been altered by solar radiation. In addition, 50 samples of float-zone and czochralski silicon bulk array ellipsometry results were modeled with an effective medium approximation layer (EMA substrate layer) revealing a solar radiation molecular damage zone depth below the SiO2 native oxide layer ranging from 392 to 613 . This bulk solar wind radiation penetration depth is comparable to the depth of solar wind implantation depth of Mg measured by SIMS and SARISA.

  8. Holocentromeres in Rhynchospora are associated with genome-wide centromere-specific repeat arrays interspersed among euchromatin.

    PubMed

    Marques, André; Ribeiro, Tiago; Neumann, Pavel; Macas, Jiří; Novák, Petr; Schubert, Veit; Pellino, Marco; Fuchs, Jörg; Ma, Wei; Kuhlmann, Markus; Brandt, Ronny; Vanzela, André L L; Beseda, Tomáš; Šimková, Hana; Pedrosa-Harand, Andrea; Houben, Andreas

    2015-11-03

    Holocentric chromosomes lack a primary constriction, in contrast to monocentrics. They form kinetochores distributed along almost the entire poleward surface of the chromatids, to which spindle fibers attach. No centromere-specific DNA sequence has been found for any holocentric organism studied so far. It was proposed that centromeric repeats, typical for many monocentric species, could not occur in holocentrics, most likely because of differences in the centromere organization. Here we show that the holokinetic centromeres of the Cyperaceae Rhynchospora pubera are highly enriched by a centromeric histone H3 variant-interacting centromere-specific satellite family designated "Tyba" and by centromeric retrotransposons (i.e., CRRh) occurring as genome-wide interspersed arrays. Centromeric arrays vary in length from 3 to 16 kb and are intermingled with gene-coding sequences and transposable elements. We show that holocentromeres of metaphase chromosomes are composed of multiple centromeric units rather than possessing a diffuse organization, thus favoring the polycentric model. A cell-cycle-dependent shuffling of multiple centromeric units results in the formation of functional (poly)centromeres during mitosis. The genome-wide distribution of centromeric repeat arrays interspersing the euchromatin provides a previously unidentified type of centromeric chromatin organization among eukaryotes. Thus, different types of holocentromeres exist in different species, namely with and without centromeric repetitive sequences.

  9. Insect adhesion on rough surfaces: analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates

    PubMed Central

    Zhou, Yanmin; Robinson, Adam; Steiner, Ullrich; Federle, Walter

    2014-01-01

    Insect climbing footpads are able to adhere to rough surfaces, but the details of this capability are still unclear. To overcome experimental limitations of randomly rough, opaque surfaces, we fabricated transparent test substrates containing square arrays of 1.4 µm diameter pillars, with variable height (0.5 and 1.4 µm) and spacing (from 3 to 22 µm). Smooth pads of cockroaches (Nauphoeta cinerea) made partial contact (limited to the tops of the structures) for the two densest arrays of tall pillars, but full contact (touching the substrate in between pillars) for larger spacings. The transition from partial to full contact was accompanied by a sharp increase in shear forces. Tests on hairy pads of dock beetles (Gastrophysa viridula) showed that setae adhered between pillars for larger spacings, but pads were equally unable to make full contact on the densest arrays. The beetles' shear forces similarly decreased for denser arrays, but also for short pillars and with a more gradual transition. These observations can be explained by simple contact models derived for soft uniform materials (smooth pads) or thin flat plates (hairy-pad spatulae). Our results show that microstructured substrates are powerful tools to reveal adaptations of natural adhesives for rough surfaces. PMID:24990289

  10. Insect adhesion on rough surfaces: analysis of adhesive contact of smooth and hairy pads on transparent microstructured substrates.

    PubMed

    Zhou, Yanmin; Robinson, Adam; Steiner, Ullrich; Federle, Walter

    2014-09-06

    Insect climbing footpads are able to adhere to rough surfaces, but the details of this capability are still unclear. To overcome experimental limitations of randomly rough, opaque surfaces, we fabricated transparent test substrates containing square arrays of 1.4 µm diameter pillars, with variable height (0.5 and 1.4 µm) and spacing (from 3 to 22 µm). Smooth pads of cockroaches (Nauphoeta cinerea) made partial contact (limited to the tops of the structures) for the two densest arrays of tall pillars, but full contact (touching the substrate in between pillars) for larger spacings. The transition from partial to full contact was accompanied by a sharp increase in shear forces. Tests on hairy pads of dock beetles (Gastrophysa viridula) showed that setae adhered between pillars for larger spacings, but pads were equally unable to make full contact on the densest arrays. The beetles' shear forces similarly decreased for denser arrays, but also for short pillars and with a more gradual transition. These observations can be explained by simple contact models derived for soft uniform materials (smooth pads) or thin flat plates (hairy-pad spatulae). Our results show that microstructured substrates are powerful tools to reveal adaptations of natural adhesives for rough surfaces.

  11. Implementation of a direct-imaging and FX correlator for the BEST-2 array

    NASA Astrophysics Data System (ADS)

    Foster, G.; Hickish, J.; Magro, A.; Price, D.; Zarb Adami, K.

    2014-04-01

    A new digital backend has been developed for the Basic Element for SKA Training II (BEST-2) array at Radiotelescopi di Medicina, INAF-IRA, Italy, which allows concurrent operation of an FX correlator, and a direct-imaging correlator and beamformer. This backend serves as a platform for testing some of the spatial Fourier transform concepts which have been proposed for use in computing correlations on regularly gridded arrays. While spatial Fourier transform-based beamformers have been implemented previously, this is, to our knowledge, the first time a direct-imaging correlator has been deployed on a radio astronomy array. Concurrent observations with the FX and direct-imaging correlator allow for direct comparison between the two architectures. Additionally, we show the potential of the direct-imaging correlator for time-domain astronomy, by passing a subset of beams though a pulsar and transient detection pipeline. These results provide a timely verification for spatial Fourier transform-based instruments that are currently in commissioning. These instruments aim to detect highly redshifted hydrogen from the epoch of reionization and/or to perform wide-field surveys for time-domain studies of the radio sky. We experimentally show the direct-imaging correlator architecture to be a viable solution for correlation and beamforming.

  12. Seasonal Variations in Resistivity at a Police Forensic Site and the Effectiveness of Unconventional Array Types

    NASA Astrophysics Data System (ADS)

    Edwards, S.; Bank, C. G.

    2016-12-01

    Geophysical studies involving the detection of buried organic material can be affected by the passage of time and environmental changes such as temperature and, in more importantly, water content in the ground. These effects can be of particular concern for police forensic investigations. This study involved conducting multiple resistivity surveys across 4 months to determine how time and environmental variations affected the detection of porcine carcasses buried four years previous at a provincial police training and research site. Our research also explored survey results of non-conventional grid and square arrays versus traditional linear arrays. The study site is located in Bolton, Ontario, and measures 16 m by 30 m. It contains 18 graves plus other buried objects. Studies were conducted approximately every other week. The resistivity lines used Wenner arrays of 24 m (0.5 m electrode spacing) and 48 m (1 m spacing) in length. Environmental data was obtained from Environment Canada and through simple observations. Preliminary findings indicated that time and environmental changes affected the detection of the porcine bodies by either being too dry and having too high a resistivity to survey effectively, or too wet and having the site flushed with water making the surrounding ground similar in resistivity to the bodies. Future research is needed to further explore how best to minimize environmental changes from resistivity results to enable reliable detection of buried organic material such as human remains In regard to array configurations, the square array in particular shows promise in that it can be set up and executed in less time than running several linear arrays over the same area. The application of such unconventional arrays to police forensic work may prove valuable if the area of interest is off-limits for resistivity surveys due to physical obstructions.

  13. Quench dynamics of a disordered array of dissipative coupled cavities.

    PubMed

    Creatore, C; Fazio, R; Keeling, J; Türeci, H E

    2014-09-08

    We investigate the mean-field dynamics of a system of interacting photons in an array of coupled cavities in the presence of dissipation and disorder. We follow the evolution of an initially prepared Fock state, and show how the interplay between dissipation and disorder affects the coherence properties of the cavity emission, and show that these properties can be used as signatures of the many-body phase of the whole array.

  14. Zonal wavefront sensing with enhanced spatial resolution.

    PubMed

    Pathak, Biswajit; Boruah, Bosanta R

    2016-12-01

    In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.

  15. Low-background performance of a monolithic InSb CCD array

    NASA Technical Reports Server (NTRS)

    Bregman, J. D.; Goebel, J. H.; Mccreight, C. R.; Matsumoto, T.

    1982-01-01

    A 20 element monolithic InSb charge coupled device (CCD) detector array was measured under low background conditions to assess its potential for orbital astronomical applications. At a temperature of 64 K, previous results for charge transfer efficiency (CTE) were reproduced, and a sensitivity of about 2 x 10 to the minus 15th power joules was measured. At 27 and 6 K, extended integration times were achieved, but CTE was substantially degraded. The noise was approximately 6000 charges, which was in excess of the level where statistical fluctuations from the illumination could be detected. A telescope demonstration was performed showing that the array sensitivity and difficulty of operation were not substantially different from laboratory levels. Ways in which the device could be improved for astronomical applications were discussed.

  16. A novel type of rim thrust motor with Halbach array permanent magnet rotor

    NASA Astrophysics Data System (ADS)

    Cao, Haichuan; Chen, Weihu

    2018-05-01

    The Rim-driven Thruster (RDT) is a new type of marine electric thruster proposed in recent years. In this paper, the author proposed a new type of permanent magnet synchronous rim thrust motor (RTM). The motor uses a Halbach array permanent magnet rotor, which can improve the torque density of the propulsion motor by utilizing the unilateral magnetic field of the Halbach array. In this paper, the electromagnetic properties of the motor were measured and compared with that of the ordinary magnetic pole motor through numerical analysis. The results show that at the same power, the new motor can significantly reduce the thickness of the rotor's permanent magnet and yoke core, and has obvious advantages in power density, moment of inertia, dynamic performance, and cost.

  17. A Readout Integrated Circuit (ROIC) employing self-adaptive background current compensation technique for Infrared Focal Plane Array (IRFPA)

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Zhao, Jian; He, Yong; Jiang, Bo; Su, Yan

    2018-05-01

    A novel self-adaptive background current compensation circuit applied to infrared focal plane array is proposed in this paper, which can compensate the background current generated in different conditions. Designed double-threshold detection strategy is to estimate and eliminate the background currents, which could significantly reduce the hardware overhead and improve the uniformity among different pixels. In addition, the circuit is well compatible to various categories of infrared thermo-sensitive materials. The testing results of a 4 × 4 experimental chip showed that the proposed circuit achieves high precision, wide application and high intelligence. Tape-out of the 320 × 240 readout circuit, as well as the bonding, encapsulation and imaging verification of uncooled infrared focal plane array, have also been completed.

  18. Characterization of anisotropically shaped silver nanoparticle arrays via spectroscopic ellipsometry supported by numerical optical modeling

    NASA Astrophysics Data System (ADS)

    Gkogkou, Dimitra; Shaykhutdinov, Timur; Oates, Thomas W. H.; Gernert, Ulrich; Schreiber, Benjamin; Facsko, Stefan; Hildebrandt, Peter; Weidinger, Inez M.; Esser, Norbert; Hinrichs, Karsten

    2017-11-01

    The present investigation aims to study the optical response of anisotropic Ag nanoparticle arrays deposited on rippled silicon substrates by performing a qualitative comparison between experimental and theoretical results. Spectroscopic ellipsometry was used along with numerical calculations using finite-difference time-domain (FDTD) method and rigorous coupled wave analysis (RCWA) to reveal trends in the optical and geometrical properties of the nanoparticle array. Ellipsometric data show two resonances, in the orthogonal x and y directions, that originate from localized plasmon resonances as demonstrated by the calculated near-fields from FDTD calculations. The far-field calculations by RCWA point to decoupled resonances in x direction and possible coupling effects in y direction, corresponding to the short and long axis of the anisotropic nanoparticles, respectively.

  19. Shadowing effects on multi-step Langmuir probe array on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Ke, R.; Xu, M.; Nie, L.; Gao, Z.; Wu, Y.; Yuan, B.; Chen, J.; Song, X.; Yan, L.; Duan, X.

    2018-05-01

    Multi-step Langmuir probe arrays have been designed and installed on the HL-2A tokamak [1]–[2] to study the turbulent transport in the edge plasma, especially for the measurement of poloidal momentum flux, Reynolds stress Rs. However, except the probe tips on the top step, all other tips on lower steps are shadowed by graphite skeleton. It is necessary to estimate the shadowing effects on equilibrium and fluctuation measurement. In this paper, comparison of shadowed tips to unshadowed ones is presented. The results show that shadowing can strongly reduce the ion and electron effective collection area. However, its effect is negligible for the turbulence intensity and coherence measurement, confirming that the multi-step LP array is proper for the turbulent transport measurement.

  20. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    PubMed

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  1. Conductive Photo-Activated Porphyrin-ZnO Nanostructured Gas Sensor Array.

    PubMed

    Magna, Gabriele; Catini, Alexandro; Kumar, Raj; Palmacci, Massimo; Martinelli, Eugenio; Paolesse, Roberto; di Natale, Corrado

    2017-04-01

    Chemoresistors working at room temperature are attractive for low-consumption integrated sensors. Previous studies show that this feature can be obtained with photoconductive porphyrins-coated ZnO nanostructures. Furthermore, variations of the porphyrin molecular structure alter both the chemical sensitivity and the photoconductivity, and can be used to define the sensor characteristics. Based on these assumptions, we investigated the properties of an array of four sensors made of a layer of ZnO nanoparticles coated with porphyrins with the same molecular framework but different metal atoms. The array was tested with five volatile organic compounds (VOCs), each measured at different concentrations. Results confirm that the features of individual porphyrins influence the sensor behavior, and the differences among sensors are enough to enable the discrimination of volatile compounds disregarding their concentration.

  2. Gold surface plasmon crystal structure based-on polystyrene template for biosensor application.

    PubMed

    Cheng, Min-Zhuo; Zhang, Jing; Bao, Dequan; Huang, Xiwei

    2018-05-21

    In this communication, we assembled ordered polystyrene (PS) microsphere array as a template with the drop-coating method, and the oxygen plasma was used to etch the template to adjust the spacing between the PS microspheres. Nano-triangular gold array and silver nano-pyramid array were obtained by ion beam sputtering to deposit precious metal gold and silver. We observed the surface morphology of Au and Au/Ag composite films by scanning electron microscope and characterized the films by X-ray diffraction and ultraviolet/visible light spectrophotometer. The results show that the etching time of oxygen plasma has an obvious effect in adjusting the spacing between PSs and has a significant effect on the morphology of Au structure. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enhanced light extraction efficiency of micro-ring array AlGaN deep ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Bekele Fayisa, Gabisa; Lee, Jong Won; Kim, Jungsub; Kim, Yong-Il; Park, Youngsoo; Kim, Jong Kyu

    2017-09-01

    An effective approach to overcome inherently poor light extraction efficiency of AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) is presented. We demonstrated the 5 × 5 array micro-ring DUV LED having an inclined sidewall at the outer perimeter and a p-GaN-removed inner circle of the micro-ring, together with MgF2/Al omnidirectional reflectors. The micro-ring array DUV LED shows remarkably higher light output power by 70% than the reference, consistent with the calculated result, as well as comparable turn-on and operational voltages, which are attributed to the effective extraction of strong transverse-magnetic polarized anisotropic emission and the reduction of the absorption loss by the p-GaN contact layer, simultaneously.

  4. Density-controlled, solution-based growth of ZnO nanorod arrays via layer-by-layer polymer thin films for enhanced field emission

    NASA Astrophysics Data System (ADS)

    Weintraub, Benjamin; Chang, Sehoon; Singamaneni, Srikanth; Han, Won Hee; Choi, Young Jin; Bae, Joonho; Kirkham, Melanie; Tsukruk, Vladimir V.; Deng, Yulin

    2008-10-01

    A simple, scalable, and cost-effective technique for controlling the growth density of ZnO nanorod arrays based on a layer-by-layer polyelectrolyte polymer film is demonstrated. The ZnO nanorods were synthesized using a low temperature (T = 90 °C), solution-based method. The density-control technique utilizes a polymer thin film pre-coated on the substrate to control the mass transport of the reactant to the substrate. The density-controlled arrays were investigated as potential field emission candidates. The field emission results revealed that an emitter density of 7 nanorods µm-2 and a tapered nanorod morphology generated a high field enhancement factor of 5884. This novel technique shows promise for applications in flat panel display technology.

  5. Preparation of superhydrophobic copper surface by a novel silk-screen printing aided electrochemical machining method

    NASA Astrophysics Data System (ADS)

    Yan, X. Y.; Chen, G. X.; Liu, J. W.

    2018-03-01

    A kind of superhydrophobic copper surface with micro-nanocomposite structure has been successfully fabricated by employing a silk-screen printing aided electrochemical machining method. At first silk-screen printing technology has been used to form a column point array mask, and then the microcolumn array would be fabricated by electrochemical machining (ECM) effect. In this study, the drop contact angles have been studied and scanning electron microscopy (SEM) has been used to study the surface characteristic of the workpiece. The experiment results show that the micro-nanocomposite structure with cylindrical array can be successfully fabricated on the metal surface. And the maximum contact angle is 151° when the fluoroalkylsilane ethanol solution was used to modify the machined surface in this study.

  6. Multi-Array Back-Projections of The 2015 Gorkha Earthquake With Physics-Based Aftershock Calibrations

    NASA Astrophysics Data System (ADS)

    Meng, L.; Zhang, A.; Yagi, Y.

    2015-12-01

    The 2015 Mw 7.8 Nepal-Gorkha earthquake with casualties of over 9,000 people is the most devastating disaster to strike Nepal since the 1934 Nepal-Bihar earthquake. Its rupture process is well imaged by the teleseismic MUSIC back-projections (BP). Here, we perform independent back-projections of high-frequency recordings (0.5-2 Hz) from the Australian seismic network (AU), the North America network (NA) and the European seismic network (EU), located in complementary orientations. Our results of all three arrays show unilateral linear rupture path to the east of the hypocenter. But the propagating directions and the inferred rupture speeds differ significantly among different arrays. To understand the spatial uncertainties of the BP analysis, we image four moderate-size (M5~6) aftershocks based on the timing correction derived from the alignment of the initial P-wave of the mainshock. We find that the apparent source locations inferred from BP are systematically biased along the source-array orientation, which can be explained by the uncertainty of the 3D velocity structure deviated from the 1D reference model (e.g. IASP91). We introduced a slowness error term in travel time as a first-order calibration that successfully mitigates the source location discrepancies of different arrays. The calibrated BP results of three arrays are mutually consistent and reveal a unilateral rupture propagating eastward at a speed of 2.7 km/s along the down-dip edge of the locked Himalaya thrust zone over ~ 150 km, in agreement with a narrow slip distribution inferred from finite source inversions.

  7. Magnetic-optical bifunctional CoPt3/Co multilayered nanowire arrays

    NASA Astrophysics Data System (ADS)

    Su, Yi-Kun; Yan, Zhi-Long; Wu, Xi-Ming; Liu, Huan; Ren, Xiao; Yang, Hai-Tao

    2015-10-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).

  8. Identification of the collagen type 1 alpha 1 gene (COL1A1) as a candidate survival-related factor associated with hepatocellular carcinoma

    PubMed Central

    2014-01-01

    Background Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death especially among Asian and African populations. It is urgent that we identify carcinogenesis-related genes to establish an innovative treatment strategy for this disease. Methods Triple-combination array analysis was performed using one pair each of HCC and noncancerous liver samples from a 68-year-old woman. This analysis consists of expression array, single nucleotide polymorphism array and methylation array. The gene encoding collagen type 1 alpha 1 (COL1A1) was identified and verified using HCC cell lines and 48 tissues from patients with primary HCC. Results Expression array revealed that COL1A1 gene expression was markedly decreased in tumor tissues (log2 ratio –1.1). The single nucleotide polymorphism array showed no chromosomal deletion in the locus of COL1A1. Importantly, the methylation value in the tumor tissue was higher (0.557) than that of the adjacent liver tissue (0.008). We verified that expression of this gene was suppressed by promoter methylation. Reactivation of COL1A1 expression by 5-aza-2′-deoxycytidine treatment was seen in HCC cell lines, and sequence analysis identified methylated CpG sites in the COL1A1 promoter region. Among 48 pairs of surgical specimens, 13 (27.1%) showed decreased COL1A1 mRNA expression in tumor sites. Among these 13 cases, 10 had promoter methylation at the tumor site. The log-rank test indicated that mRNA down-regulated tumors were significantly correlated with a poor overall survival rate (P = 0.013). Conclusions Triple-combination array analysis successfully identified COL1A1 as a candidate survival-related gene in HCCs. Epigenetic down-regulation of COL1A1 mRNA expression might have a role as a prognostic biomarker of HCC. PMID:24552139

  9. Optical Demonstration of a Medical Imaging System with an EMCCD-Sensor Array for Use in a High Resolution Dynamic X-ray Imager

    PubMed Central

    Qu, Bin; Huang, Ying; Wang, Weiyuan; Sharma, Prateek; Kuhls-Gilcrist, Andrew T.; Cartwright, Alexander N.; Titus, Albert H.; Bednarek, Daniel R.; Rudin, Stephen

    2011-01-01

    Use of an extensible array of Electron Multiplying CCDs (EMCCDs) in medical x-ray imager applications was demonstrated for the first time. The large variable electronic-gain (up to 2000) and small pixel size of EMCCDs provide effective suppression of readout noise compared to signal, as well as high resolution, enabling the development of an x-ray detector with far superior performance compared to conventional x-ray image intensifiers and flat panel detectors. We are developing arrays of EMCCDs to overcome their limited field of view (FOV). In this work we report on an array of two EMCCD sensors running simultaneously at a high frame rate and optically focused on a mammogram film showing calcified ducts. The work was conducted on an optical table with a pulsed LED bar used to provide a uniform diffuse light onto the film to simulate x-ray projection images. The system can be selected to run at up to 17.5 frames per second or even higher frame rate with binning. Integration time for the sensors can be adjusted from 1 ms to 1000 ms. Twelve-bit correlated double sampling AD converters were used to digitize the images, which were acquired by a National Instruments dual-channel Camera Link PC board in real time. A user-friendly interface was programmed using LabVIEW to save and display 2K × 1K pixel matrix digital images. The demonstration tiles a 2 × 1 array to acquire increased-FOV stationary images taken at different gains and fluoroscopic-like videos recorded by scanning the mammogram simultaneously with both sensors. The results show high resolution and high dynamic range images stitched together with minimal adjustments needed. The EMCCD array design allows for expansion to an M×N array for arbitrarily larger FOV, yet with high resolution and large dynamic range maintained. PMID:23505330

  10. Hierarchical 3-dimensional nickel-iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing.

    PubMed

    Kannan, Palanisamy; Maiyalagan, Thandavarayan; Marsili, Enrico; Ghosh, Srabanti; Niedziolka-Jönsson, Joanna; Jönsson-Niedziolka, Martin

    2016-01-14

    Three-dimensional nickel-iron (3-D/Ni-Fe) nanostructures are exciting candidates for various applications because they produce more reaction-active sites than 1-D and 2-D nanostructured materials and exhibit attractive optical, electrical and catalytic properties. In this work, freestanding 3-D/Ni-Fe interconnected hierarchical nanosheets, hierarchical nanospheres, and porous nanospheres are directly grown on a flexible carbon fiber paper (CFP) substrate by a single-step hydrothermal process. Among the nanostructures, 3-D/Ni-Fe interconnected hierarchical nanosheets show excellent electrochemical properties because of its high conductivity, large specific active surface area, and mesopores on its walls (vide infra). The 3-D/Ni-Fe hierarchical nanosheet array modified CFP substrate is further explored as a novel electrode for electrochemical non-enzymatic glucose sensor application. The 3-D/Ni-Fe hierarchical nanosheet arrays exhibit significant catalytic activity towards the electrochemical oxidation of glucose, as compared to the 3-D/Ni-Fe hierarchical nanospheres, and porous nanospheres. The 3-D/Ni-Fe hierarchical nanosheet arrays can access a large amount of glucose molecules on their surface (mesopore walls) for an efficient electrocatalytic oxidation process. Moreover, 3-D/Ni-Fe hierarchical nanosheet arrays showed higher sensitivity (7.90 μA μM(-1) cm(-2)) with wide linear glucose concentration ranging from 0.05 μM to 0.2 mM, and the low detection limit (LOD) of 0.031 μM (S/N = 3) is achieved by the amperometry method. Further, the 3-D/Ni-Fe hierarchical nanosheet array modified CFP electrode can be demonstrated to have excellent selectivity towards the detection of glucose in the presence of 500-fold excess of major important interferents. All these results indicate that 3-D/Ni-Fe hierarchical nanosheet arrays are promising candidates for non-enzymatic glucose sensing.

  11. Advanced compilation techniques in the PARADIGM compiler for distributed-memory multicomputers

    NASA Technical Reports Server (NTRS)

    Su, Ernesto; Lain, Antonio; Ramaswamy, Shankar; Palermo, Daniel J.; Hodges, Eugene W., IV; Banerjee, Prithviraj

    1995-01-01

    The PARADIGM compiler project provides an automated means to parallelize programs, written in a serial programming model, for efficient execution on distributed-memory multicomputers. .A previous implementation of the compiler based on the PTD representation allowed symbolic array sizes, affine loop bounds and array subscripts, and variable number of processors, provided that arrays were single or multi-dimensionally block distributed. The techniques presented here extend the compiler to also accept multidimensional cyclic and block-cyclic distributions within a uniform symbolic framework. These extensions demand more sophisticated symbolic manipulation capabilities. A novel aspect of our approach is to meet this demand by interfacing PARADIGM with a powerful off-the-shelf symbolic package, Mathematica. This paper describes some of the Mathematica routines that performs various transformations, shows how they are invoked and used by the compiler to overcome the new challenges, and presents experimental results for code involving cyclic and block-cyclic arrays as evidence of the feasibility of the approach.

  12. Highly scalable parallel processing of extracellular recordings of Multielectrode Arrays.

    PubMed

    Gehring, Tiago V; Vasilaki, Eleni; Giugliano, Michele

    2015-01-01

    Technological advances of Multielectrode Arrays (MEAs) used for multisite, parallel electrophysiological recordings, lead to an ever increasing amount of raw data being generated. Arrays with hundreds up to a few thousands of electrodes are slowly seeing widespread use and the expectation is that more sophisticated arrays will become available in the near future. In order to process the large data volumes resulting from MEA recordings there is a pressing need for new software tools able to process many data channels in parallel. Here we present a new tool for processing MEA data recordings that makes use of new programming paradigms and recent technology developments to unleash the power of modern highly parallel hardware, such as multi-core CPUs with vector instruction sets or GPGPUs. Our tool builds on and complements existing MEA data analysis packages. It shows high scalability and can be used to speed up some performance critical pre-processing steps such as data filtering and spike detection, helping to make the analysis of larger data sets tractable.

  13. Nanohole Array-directed Trapping of Mammalian Mitochondria Enabling Single Organelle Analysis

    PubMed Central

    Kumar, Shailabh; Wolken, Gregory G.; Wittenberg, Nathan J.; Arriaga, Edgar A.; Oh, Sang-Hyun

    2016-01-01

    We present periodic nanohole arrays fabricated in free-standing metal-coated nitride films as a platform for trapping and analyzing single organelles. When a microliter-scale droplet containing mitochondria is dispensed above the nanohole array, the combination of evaporation and capillary flow directs individual mitochondria to the nanoholes. Mammalian mitochondria arrays were rapidly formed on chip using this technique without any surface modification steps, microfluidic interconnects or external power sources. The trapped mitochondria were depolarized on chip using an ionophore with results showing that the organelle viability and behavior were preserved during the on-chip assembly process. Fluorescence signal related to mitochondrial membrane potential was obtained from single mitochondria trapped in individual nanoholes revealing statistical differences between the behavior of polarized vs. depolarized mammalian mitochondria. This technique provides a fast and stable route for droplet-based directed localization of organelles-on-a-chip with minimal limitations and complexity, as well as promotes integration with other optical or electrochemical detection techniques. PMID:26593329

  14. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    PubMed Central

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R.J. Dwayne

    2016-01-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence. PMID:28008918

  15. On the Suitability of Suffix Arrays for Lempel-Ziv Data Compression

    NASA Astrophysics Data System (ADS)

    Ferreira, Artur J.; Oliveira, Arlindo L.; Figueiredo, Mário A. T.

    Lossless compression algorithms of the Lempel-Ziv (LZ) family are widely used nowadays. Regarding time and memory requirements, LZ encoding is much more demanding than decoding. In order to speed up the encoding process, efficient data structures, like suffix trees, have been used. In this paper, we explore the use of suffix arrays to hold the dictionary of the LZ encoder, and propose an algorithm to search over it. We show that the resulting encoder attains roughly the same compression ratios as those based on suffix trees. However, the amount of memory required by the suffix array is fixed, and much lower than the variable amount of memory used by encoders based on suffix trees (which depends on the text to encode). We conclude that suffix arrays, when compared to suffix trees in terms of the trade-off among time, memory, and compression ratio, may be preferable in scenarios (e.g., embedded systems) where memory is at a premium and high speed is not critical.

  16. Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Bulusheva, L. G.; Arkhipov, V. E.; Fedorovskaya, E. O.; Zhang, Su; Kurenya, A. G.; Kanygin, M. A.; Asanov, I. P.; Tsygankova, A. R.; Chen, Xiaohong; Song, Huaihe; Okotrub, A. V.

    2016-04-01

    We show that a high-temperature CCl4 vapor treatment of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) grown on silicon substrate allows carefully detach the array from the substrate. Moreover, this procedure partially purifies the VA-MWCNTs from the residual iron catalyst. To improve electrical connectivity of free-standing VA-MWCNTs in an electrochemical cell, the array was placed between the layers of Ni foam. Such assembly demonstrated the better performance in Li-battery as compared to the disordered MWCNTs. After 50 cycles, the specific capacity of VA-MWCNT array synthesized from 0.5 wt% ferrocene solution in toluene was 350 mAh g-1 at a current density of 0.1 A g-1, while the battery with the disordered MWCNTs achieved 197 mAh g-1 only. By the results of electrochemical impedance spectroscopy, the higher capacity of VA-MWCNTs was attributed to larger surface area available for electrolyte and Li ions due to the absence of binder coating.

  17. Implementation of total focusing method for phased array ultrasonic imaging on FPGA

    NASA Astrophysics Data System (ADS)

    Guo, JianQiang; Li, Xi; Gao, Xiaorong; Wang, Zeyong; Zhao, Quanke

    2015-02-01

    This paper describes a multi-FPGA imaging system dedicated for the real-time imaging using the Total Focusing Method (TFM) and Full Matrix Capture (FMC). The system was entirely described using Verilog HDL language and implemented on Altera Stratix IV GX FPGA development board. The whole algorithm process is to: establish a coordinate system of image and divide it into grids; calculate the complete acoustic distance of array element between transmitting array element and receiving array element, and transform it into index value; then index the sound pressure values from ROM and superimpose sound pressure values to get pixel value of one focus point; and calculate the pixel values of all focus points to get the final imaging. The imaging result shows that this algorithm has high SNR of defect imaging. And FPGA with parallel processing capability can provide high speed performance, so this system can provide the imaging interface, with complete function and good performance.

  18. Optimizing the field distribution of a Halbach type permanent magnet cylinder using the soft iron and superhard magnet

    NASA Astrophysics Data System (ADS)

    Xu, Xiaonong; Lu, Dingwei; Xu, Xibin; Yu, Yang; Gu, Min

    2018-01-01

    When a conventional Halbach type Hollow Cylindrical Permanent Magnet Array (HCPMA) is used to generate magnetic induction over the magnitude of coercivity μ0Hc, some detrimental parasitic magnetic phenomena, such as the demagnetization, magnetization reversal, and vortexes of magnetization, can appear in the interior of the magnets. We present a self-consistent quantitative analysis of the magnetization and magnetic induction distributions inside the magnetic array by considering the anisotropic and nonlinear magnetization functions of the materials consisting of the array. These numeric simulations reveal novel magnetization structures resulted from the self-field of array. We demonstrate that both the field uniformity and magnetic flux in the pole gap can be modulated by partially substituting the magnets of high energy products with the soft irons and the superhard magnets. We also show how the optimized substitution parameters can be obtained for a HCPMA achieving the best field uniformity or the maximum magnetic flux.

  19. A waveform diversity method for optimizing 3-d power depositions generated by ultrasound phased arrays.

    PubMed

    Zeng, Xiaozheng Jenny; Li, Jian; McGough, Robert J

    2010-01-01

    A waveform-diversity-based approach for 3-D tumor heating is compared to spot scanning for hyperthermia applications. The waveform diversity method determines the excitation signals applied to the phased array elements and produces a beam pattern that closely matches the desired power distribution. The optimization algorithm solves the covariance matrix of the excitation signals through semidefinite programming subject to a series of quadratic cost functions and constraints on the control points. A numerical example simulates a 1444-element spherical-section phased array that delivers heat to a 3-cm-diameter spherical tumor located 12 cm from the array aperture, and the results show that waveform diversity combined with mode scanning increases the heated volume within the tumor while simultaneously decreasing normal tissue heating. Whereas standard single focus and multiple focus methods are often associated with unwanted intervening tissue heating, the waveform diversity method combined with mode scanning shifts energy away from intervening tissues where hotspots otherwise accumulate to improve temperature localization in deep-seated tumors.

  20. Characterization of NaI crystal scintillators for the COHERENT collaboration

    NASA Astrophysics Data System (ADS)

    Erkela, Eric; Coherent Collaboration

    2017-09-01

    The COHERENT project aims to make a first observation of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) using a set of complimentary detector arrays located at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Using NaI scintillators acquired from the DHS-ASP program, we plan to construct a multi-tonne array with the capacity to detect CEvNS even in the presence of moderate background. Such an array would also have sensitivity to charged-current scattering of the SNS' pion Decay-At-Rest neutrinos with potential application to neutrinoless double-beta decay nuclear matrix element calculations. Optimization of the array design requires detailed characterization of the NaI scintillators themselves. We will show results on measurements of the light response and its linearity, as well as the energy resolution as a function of detector voltage. We also measured detector thresholds, dynamic range, and spatial and temporal variation of the detector response. This work is supported by the University of Washington Royalty Research Fund.

  1. Spectral statistics and scattering resonances of complex primes arrays

    NASA Astrophysics Data System (ADS)

    Wang, Ren; Pinheiro, Felipe A.; Dal Negro, Luca

    2018-01-01

    We introduce a class of aperiodic arrays of electric dipoles generated from the distribution of prime numbers in complex quadratic fields (Eisenstein and Gaussian primes) as well as quaternion primes (Hurwitz and Lifschitz primes), and study the nature of their scattering resonances using the vectorial Green's matrix method. In these systems we demonstrate several distinctive spectral properties, such as the absence of level repulsion in the strongly scattering regime, critical statistics of level spacings, and the existence of critical modes, which are extended fractal modes with long lifetimes not supported by either random or periodic systems. Moreover, we show that one can predict important physical properties, such as the existence spectral gaps, by analyzing the eigenvalue distribution of the Green's matrix of the arrays in the complex plane. Our results unveil the importance of aperiodic correlations in prime number arrays for the engineering of gapped photonic media that support far richer mode localization and spectral properties compared to usual periodic and random media.

  2. Reliability apportionment approach for spacecraft solar array using fuzzy reasoning Petri net and fuzzy comprehensive evaluation

    NASA Astrophysics Data System (ADS)

    Wu, Jianing; Yan, Shaoze; Xie, Liyang; Gao, Peng

    2012-07-01

    The reliability apportionment of spacecraft solar array is of significant importance for spacecraft designers in the early stage of design. However, it is difficult to use the existing methods to resolve reliability apportionment problem because of the data insufficiency and the uncertainty of the relations among the components in the mechanical system. This paper proposes a new method which combines the fuzzy comprehensive evaluation with fuzzy reasoning Petri net (FRPN) to accomplish the reliability apportionment of the solar array. The proposed method extends the previous fuzzy methods and focuses on the characteristics of the subsystems and the intrinsic associations among the components. The analysis results show that the synchronization mechanism may obtain the highest reliability value and the solar panels and hinges may get the lowest reliability before design and manufacturing. Our developed method is of practical significance for the reliability apportionment of solar array where the design information has not been clearly identified, particularly in early stage of design.

  3. Measurement of transverse emittance and coherence of double-gate field emitter array cathodes

    NASA Astrophysics Data System (ADS)

    Tsujino, Soichiro; Das Kanungo, Prat; Monshipouri, Mahta; Lee, Chiwon; Miller, R. J. Dwayne

    2016-12-01

    Achieving small transverse beam emittance is important for high brightness cathodes for free electron lasers and electron diffraction and imaging experiments. Double-gate field emitter arrays with on-chip focussing electrode, operating with electrical switching or near infrared laser excitation, have been studied as cathodes that are competitive with photocathodes excited by ultraviolet lasers, but the experimental demonstration of the low emittance has been elusive. Here we demonstrate this for a field emitter array with an optimized double-gate structure by directly measuring the beam characteristics. Further we show the successful application of the double-gate field emitter array to observe the low-energy electron beam diffraction from suspended graphene in minimal setup. The observed low emittance and long coherence length are in good agreement with theory. These results demonstrate that our all-metal double-gate field emitters are highly promising for applications that demand extremely low-electron bunch-phase space volume and large transverse coherence.

  4. Thermal management methods for compact high power LED arrays

    NASA Astrophysics Data System (ADS)

    Christensen, Adam; Ha, Minseok; Graham, Samuel

    2007-09-01

    The package and system level temperature distributions of a high power (>1W) light emitting diode (LED) array has been investigated using numerical heat flow models. For this analysis, a thermal resistor network model was combined with a 3D finite element submodel of an LED structure to predict system and die level temperatures. The impact of LED array density, LED power density, and active versus passive cooling methods on device operation were calculated. In order to help understand the role of various thermal resistances in cooling such compact arrays, the thermal resistance network was analyzed in order to estimate the contributions from materials as well as active and passive cooling schemes. An analysis of thermal stresses and residual stresses in the die are also calculated based on power dissipation and convection heat transfer coefficients. Results show that the thermal stress in the GaN layer are compressive which can impact the band gap and performance of the LEDs.

  5. A fast signal subspace approach for the determination of absolute levels from phased microphone array measurements

    NASA Astrophysics Data System (ADS)

    Sarradj, Ennes

    2010-04-01

    Phased microphone arrays are used in a variety of applications for the estimation of acoustic source location and spectra. The popular conventional delay-and-sum beamforming methods used with such arrays suffer from inaccurate estimations of absolute source levels and in some cases also from low resolution. Deconvolution approaches such as DAMAS have better performance, but require high computational effort. A fast beamforming method is proposed that can be used in conjunction with a phased microphone array in applications with focus on the correct quantitative estimation of acoustic source spectra. This method bases on an eigenvalue decomposition of the cross spectral matrix of microphone signals and uses the eigenvalues from the signal subspace to estimate absolute source levels. The theoretical basis of the method is discussed together with an assessment of the quality of the estimation. Experimental tests using a loudspeaker setup and an airfoil trailing edge noise setup in an aeroacoustic wind tunnel show that the proposed method is robust and leads to reliable quantitative results.

  6. Effect of intrinsic zinc oxide coating on the properties of Al-doped zinc oxide nanorod arrays

    NASA Astrophysics Data System (ADS)

    Saidi, S. A.; Mamat, M. H.; Ismail, A. S.; Malek, M. F.; Yusoff, M. M.; Sin, N. D. Md.; Zoolfakar, A. S.; Khusaimi, Z.; Rusop, M.

    2018-05-01

    The aim of this study was to explore the influence of intrinsic zinc oxide (ZnO) coating fabricated by a simple immersion method. X-ray powder diffraction (XRD) analysis indicated that the Al-doped ZnO nanorod arrays films had a hexagonal wurtzite structure, similar to that of an intrinsic ZnO coating. Structural properties of the samples were characterised using field emission scanning electron microscopy (FESEM; JEOL JSM-7600F) and optical properties using X-ray diffraction (XRD). The XRD results showed that all films were crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis (002) was obtained. The XRD results showed that the intrinsic ZnO coating material had a strong orientation, whereas the ZnO was randomly oriented. Overall these results indicate that intrinsic ZnO coating are pontetial for the creation of functional materials such as barrier protection, optoelectronic devices, humidity sensor and ultraviolet photoconductive sensor.

  7. Coherent emission from integrated Talbot-cavity quantum cascade lasers.

    PubMed

    Meng, Bo; Qiang, Bo; Rodriguez, Etienne; Hu, Xiao Nan; Liang, Guozhen; Wang, Qi Jie

    2017-02-20

    We report experimental realization of phase-locked quantum cascade laser (QCL) array using a monolithically integrated Talbot cavity. An array with six laser elements at a wavelength of ~4.8 μm shows a maximum peak power of ~4 W which is more than 5 times higher than that of a single ridge laser element and a slope efficiency of 1 W/A at room temperature. Operation of in-phase coherent supermode has been achieved over the whole dynamic range of the Talbot-cavity QCL. The structure was analysed using a straightforward theoretical model, showing quantitatively good agreement with the experimental results. The reduced thermal resistance makes the structure an attractive approach to achieve high beam quality continuous wave QCLs.

  8. A neurophysiological explanation for biases in visual localization.

    PubMed

    Moreland, James C; Boynton, Geoffrey M

    2017-02-01

    Observers show small but systematic deviations from equal weighting of all elements when asked to localize the center of an array of dots. Counter-intuitively, with small numbers of dots drawn from a Gaussian distribution, this bias results in subjects overweighting the influence of outlier dots - inconsistent with traditional statistical estimators of central tendency. Here we show that this apparent statistical anomaly can be explained by the observation that outlier dots also lie in regions of lower dot density. Using a standard model of V1 processing, which includes spatial integration followed by a compressive static nonlinearity, we can successfully predict the finding that dots in less dense regions of an array have a relatively greater influence on the perceived center.

  9. Photovoltaic array: Power conditioner interface characteristics

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. C.; Hill, G. M.; Ross, R. G., Jr.

    1982-01-01

    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes.

  10. Crust and Upper Mantle Structure Beneath Tibet and SW China From Seismic Tomography and Array Analysis

    NASA Astrophysics Data System (ADS)

    van der Hilst, R. D.; Li, C.; Yao, H.; Sun, R.; Meltzer, A. S.

    2007-12-01

    We will present a summary of the results of our seismological studies of crust and upper mantle heterogeneity and anisotropy beneath Tibet and SW China with data from temporary (PASSCAL) arrays as well as other regional, national, and global networks. In 2003 and 2004 MIT and CIGMR (Chengdu Institute of Geology and Mineral Resources) operated a 25 station array (3-component, broad band seismometers) in Sichuan and Yunnan provinces, SW China; during the same period Lehigh University (also in collaboration with CIGMR) operated a 75 station array in east Tibet. Data from these arrays allow delineation of mantle structure in unprecedented detail. We focus our presentation on results of two lines of seismological study. Travel time tomography (Li et al., PEPI, 2006; EPSL, 2007) with hand-picked phase arrivals from recordings at regional arrays, and combined with data from over 1,000 stations in China and with the global data base due to Engdahl et al. (BSSA, 1998), reveals substantial the structural complexity of the upper mantle beneath SE Asia. In particular, structures associated with subduction of the Indian plate beneath the Himalayas vary significantly from west Tibet (where the plate seems to have underthrusted the entire plateau) to east Tibet (where P-wave tomography provides no evidence for the presence of fast lithosphere beneath the Plateau proper). Further east, fast structures appear in the upper mantle transition zone, presumably related to stagnation of slab fragments associated with subduction of the Pacific plate. (2) Surface wave array tomography (Yao et al., GJI, 2006, 2007), using ambient noise interferometry and traditional (inter station) dispersion analysis, is used to delineate the 3-D structure of the crust and lithospheric mantle at length scales as small as 100 km beneath the MIT and Lehigh arrays. This analysis reveals a complex spatial distribution of intra-crustal low velocity zones (which may imply that crustal-scale faults influence the pattern of middle/lower crustal flow). We will also show preliminary results of surface wave inversion for azimuthal anisotropy, which - combined with previous results from shear wave splitting (Lev et al., EPSL, 2006) - give insight into the deformation of the upper mantle beneath the area under study.

  11. Simulation and experiment for depth sizing of cracks in anchor bolts by ultrasonic phased array technology

    NASA Astrophysics Data System (ADS)

    Lin, Shan

    2018-04-01

    There have been lots of reports about the occurrence of cracks in bolts in aging nuclear and thermal power plants. Sizing of such cracks is crucial for assessing the integrity of bolts. Currently, hammering and visual tests are used to detect cracks in bolts. However, they are not applicable for sizing cracks. Although the tip diffraction method is well known as a crack sizing technique, reflection echoes from threads make it difficult to apply this technique to bolts. This paper addresses a method for depth sizing of cracks in bolts by means of ultrasonic phased array technology. Numerical results of wave propagation in bolts by the finite element method (FEM) shows that a peak associated within the vicinity of a crack tip can be observed in the curve of echo intensity versus refraction angle for deep cracks. The refraction angle with respect to this peak decreases as crack depth increases. Such numerical results are verified by experiments on bolt specimens that have electrical discharge machining notches or fatigue cracks with different depths. In the experiment, a 10-MHz linear array probe is used. Depth of cracks in bolts using the refraction angle associated with the peak is determined and compared to actual depths. The comparison shows that accurately determining a crack depth from the inspection results is possible.

  12. Investigation of the influence of geometric parameters of carbon nanotube arrays on their adhesion properties

    NASA Astrophysics Data System (ADS)

    Il’ina, M. V.; Konshin, A. A.; Il’in, O. I.; Rudyk, N. N.; Fedotov, A. A.; Ageev, O. A.

    2018-03-01

    The results of experimental studies of adhesion of carbon nanotube (CNT) arrays with different geometric parameters and orientations using atomic-force microscopy are presented. The adhesion values of CNT arrays were determined, which were from 82 to 1315 nN depending on the parameters of the array. As a result, it was established that the adhesion of a CNT array increases with an increase in branching and disorientation of the array, as well as with the growth of the aspect ratio of CNTs in the array.

  13. Towards High Throughput Cell Growth Screening: A New CMOS 8 × 8 Biosensor Array for Life Science Applications.

    PubMed

    Nabovati, Ghazal; Ghafar-Zadeh, Ebrahim; Letourneau, Antoine; Sawan, Mohamad

    2017-04-01

    In this paper we present a CMOS capacitive sensor array as a compact and low-cost platform for high-throughput cell growth monitoring. The proposed biosensor, consists of an array of 8 × 8 CMOS fully differential charge-based capacitive measurement sensors. A DC-input Σ∆ modulator is used to convert the sensors' signals to digital values for reading out the biological/chemical data and further signal processing. To compensate the mismatch variations between the current mirror transistors, a calibration circuitry is proposed which removes the output voltage offset with less than 8.2% error. We validate the chip functionality using various organic solvents with different dielectric constants. Moreover, we show the response of the chip to different concentrations of Polystyrene beads that have the same electrical properties as the living cells. The experimental results show that the chip allows the detection of a wide range of Polystyrene beads concentrations from as low as 10 beads/ml to 100 k beads/ml. In addition, we present the experimental results from H1299 (human lung carcinoma) cell line where we show that the chip successfully allows the detection of cell attachment and growth over capacitive electrodes in a 30 h measurement time and the results are in consistency with the standard cell-based assays. The capability of proposed device for label-free and real-time detection of cell growth with very high sensitivity opens up the important opportunity for utilizing the device in rapid screening of living cells.

  14. Schottky-contact plasmonic rectenna for biosensing

    NASA Astrophysics Data System (ADS)

    Alavirad, Mohammad; Siadat Mousavi, Saba; Roy, Langis; Berini, Pierre

    2013-10-01

    We propose a plasmonic gold nanodipole array on silicon, forming a Schottky contact thereon, and covered by water. The behavior of this array under normal excitation has been extensively investigated. Trends have been found and confirmed by identification of the mode propagating in nanodipoles and its properties. This device can be used to detect infrared radiation below the bandgap energy of the substrate via internal photoelectric effect (IPE). Also we estimate its responsivity and detection limit. Finally, we assess the potential of the structure for bulk and surface (bio) chemical sensing. Based on modal results an analytical model has been proposed to estimate the sensitivity of the device. Results show a good agreement between numerical and analytical interpretations.

  15. Optical super-resolution and periodical focusing effects by dielectric microspheres

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash

    Optical microscopy is one of the oldest and most important imaging techniques; however, its far-field resolution is diffraction-limited. In this dissertation, we proposed and developed a novel method of optical microscopy with super-resolution by using high-index dielectric microspheres immersed in liquid and placed on the surface of the structures under study. We used barium titanate glass microspheres with diameters of D~2-220 mum and refractive indices n˜1.9-2.1 to discern minimal feature sizes ˜lambda/4 (down to ˜lambda/7) of various photonic and plasmonic nanostructures, where lambda is the illumination wavelength. We studied the magnification, field of view, and resolving power, in detail, as a function of sphere sizes. We studied optical coupling, transport, focusing, and polarization properties of linear arrays of dielectric spheres. We showed that in arrays of spheres with refractive index n=3, a special type of rays with transverse magnetic (TM) polarization incident on the spheres under the Brewster's angle form periodically focused modes with radial polarization and 2D period, where D is the diameter of the spheres. We showed that the formation of periodically focused modes in arrays of dielectric spheres gives a physical explanation for beam focusing and extraordinarily small attenuation of light in such chains. We showed that the light propagation in such arrays is strongly polarization-dependent, indicating that such arrays can be used as filters of beams with radial polarization. The effect of forming progressively smaller focused beams was experimentally observed in chains of sapphire spheres in agreement with the theory. We studied optical coupling,transport, focusing, and polarization properties of linear arrays of dielectric spheres. We showed that in arrays of spheres with refractive index n=a3, a special type of rays with transverse magnetic (TM) polarization incident on the spheres under the Brewster's angle form periodically focused modes with radial polarization and 2D period, where D is the diameter of the spheres. We showed that the formation of periodically focused modes in arrays of dielectric spheres gives a physical explanation for beam focusing and extraordinarily small attenuation of light in such chains. We showed that the light propagation in such arrays is strongly polarization-dependent, indicating that such arrays can be used as filters of beams with radial polarization. The effect of forming progressively smaller focused beams was experimentally observed in chains of sapphire spheres in agreement with the theory.

  16. Emission enhancement, light extraction and carrier dynamics in InGaAs/GaAs nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kivisaari, Pyry; Chen, Yang; Anttu, Nicklas

    2018-03-01

    Nanowires (NWs) have the potential for a wide range of new optoelectronic applications. For example, light-emitting diodes that span over the whole visible spectrum are currently being developed from NWs to overcome the well known green gap problem. However, due to their small size, NW devices exhibit special properties that complicate their analysis, characterization, and further development. In this paper, we develop a full optoelectronic simulation tool for NW array light emitters accounting for carrier transport and wave-optical emission enhancement (EE), and we use the model to simulate InGaAs/GaAs NW array light emitters with different geometries and temperatures. Our results show that NW arrays emit light preferentially to certain angles depending on the NW diameter and temperature, encouraging temperature- and angle-resolved measurements of NW array light emission. On the other hand, based on our results both the EE and light extraction efficiency can easily change by at least a factor of two between room temperature and 77 K, complicating the characterization of NW light emitters if conventional methods are used. Finally, simulations accounting for surface recombination emphasize its major effect on the device performance. For example, a surface recombination velocity of 104 cm s-1 reported earlier for bare InGaAs surfaces results in internal quantum efficiencies less than 30% for small-diameter NWs even at the temperature of 30 K. This highlights that core-shell structures or high-quality passivation techniques are eventually needed to achieve efficient NW-based light emitters.

  17. GPS/Acoustic seafloor observation in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Ando, M.; Lin, C. H.

    2017-12-01

    Two sets of transponder arrays, around 100 km off-Ilan and off-Hualien, respectively, have been establisted to estimate the movement behaviors at the upper part of the subduction zone between the Philippine sea plate and Ryukyu islands arc collision boundary in eastern Taiwan since 2012 and 2014. Ten seafloor geodetic surveys have been conducted for off-Ilan array on July 2012, April, July, September 2013, September 2014, July, September 2015, June, August 2016, August 2017, and Four campaigns on September 2015, June, August 2016, August 2017 for off-Hualien array. The positioning results have been acquired on root-mean-square (rms) in 0.06 and 0.10 msec (i.e. 7 and 12 cm) of positioning accuracy. Compare the accuracy with further studies on Peru-Chile trench and Nankai Trough of Japan, the results is slight worse in 2-3 cm level. The primary velocity shows 6.0±1.2 cm to the south 7.1±2.2 cm to the west and 1.7±1.9 downward from July 2012 to August 2017 in the off-Ilan array, and 6.1±11.8 cm to the south 5.2±10.6 cm to the west and 47.0±16.0 downward from September 2015 to August 2017 in the off-Hualien array. The movement behavior of this result is similar to the onshore vectors estimated by GPS, but the uncertainty of the velocity is still slight large to determine the positions precisely. However, the accuracy has been improved by extending the experience time spend and prolonging the observation periods.

  18. Spacecraft level impacts of integrating concentrator solar arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.M.; Piszczor, M.F. Jr.

    1994-12-31

    The paper describes the results of a study to determine the impacts of integrating concentrator solar arrays on spacecraft design and performance. First, concentrator array performance is summarized for the AEC-Able/Entech SCARLET array, the Ioffe refractive and reflective concepts being developed in Russia, the Martin Marietta SLATS system, and other concentrator concepts that have been designed or developed. Concentrator array performance is compared to rigid and flex blanket planar array technologies at the array level. Then other impacts on the spacecraft are quantified. Conclusions highlight the most important results as they relate to recommended approaches in developing concentrator arrays formore » satellites.« less

  19. Impact of Solar Array Designs on High Voltage Operations

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.; Ferguson, Dale; Piszczor, Mike; ONeill, Mark

    2006-01-01

    As power levels of advanced spacecraft climb above 25 kW, higher solar array operating voltages become attractive. Even in today s satellites, operating spacecraft buses at 100 V and above has led to arcing in GEO communications satellites, so the issue of spacecraft charging and solar array arcing remains a design problem. In addition, micrometeoroid impacts on all of these arrays can also lead to arcing if the spacecraft is at an elevated potential. For example, tests on space station hardware disclosed arcing at 75V on anodized A1 structures that were struck with hypervelocity particles in Low Earth Orbit (LEO) plasmas. Thus an understanding of these effects is necessary to design reliable high voltage solar arrays of the future, especially in light of the Vision for Space Exploration of NASA. In the future, large GEO communication satellites, lunar bases, solar electric propulsion missions, high power communication systems around Mars can lead to power levels well above 100 kW. As noted above, it will be essential to increase operating voltages of the solar arrays well above 80 V to keep the mass of cabling needed to carry the high currents to an acceptable level. Thus, the purpose of this paper is to discuss various solar array approaches, to discuss the results of testing them at high voltages, in the presence of simulated space plasma and under hypervelocity impact. Three different types of arrays will be considered. One will be a planar array using thin film cells, the second will use planar single or multijunction cells and the last will use the Stretched Lens Array (SLA - 8-fold concentration). Each of these has different approaches for protection from the space environment. The thin film cell based arrays have minimal covering due to their inherent radiation tolerance, conventional GaAs and multijunction cells have the traditional cerium-doped microsheet glasses (of appropriate thickness) that are usually attached with Dow Corning DC 93-500 silicone adhesive. In practice, these cover glasses and adhesive do not cover the cell edges. Finally, in the SLA, the entire cell and cell edges are fully encapsulated by a cover glass that overhangs the cell perimeter and the silicone adhesive covers the cell edges providing a sealed environment. These three types of blanket technology have been tested at GRC and Auburn. The results of these tests will be described. For example, 15 modules composed of four state-of-the-art 2x4 cm GaAs solar cells with 150 pm cover glasses connected in two-cell series strings were tested at high voltage, in plasma under hypervelocity impact. A picture of one of the modules is shown in figure 1. These were prepared by standard industry practice from a major supplier and had efficiencies above 18%. The test results and other fabrication factors that influenced the tests will be presented. In addition, results for SLA segments tested under the same conditions will be presented. Testing of thin film blankets at GRC will also be presented. Figure 1 : Typical GaAs Solar Cell Module These results will show significant differences in resistance to arcing that are directly related to array design and manufacturing procedures. Finally, the approaches for mitigating the problems uncovered by these tests will be described. These will lay the foundation for future higher voltage array operation, even including voltages above 300-600 V for direct drive SEP applications.

  20. LED array designing and its bactericidal effect researching on Pseudomonas aeruginosa in vitro

    NASA Astrophysics Data System (ADS)

    Fang, Jing; Xing, Jin; Gao, Liucun; Shen, Benjian; Kang, Hongxiang; Jie, Liang; Peng, Chen

    2015-10-01

    Lights with some special waveband and output power density have a bactericidal effect to some special bacteria. In this paper, the bactericidal effect of light at wavelength of 470 nm on P. aeruginosa (ATCC 27853) is researched with different irradiation dose. The light source is a LED array which is obtained by incoherent combine of 36 LEDs with emitting wavelength of 470 nm. The P. aeruginosa suspension is exposed with the LED array at the light power density of 100 mW/cm2 with exposures time of 0, 5, 10, 20, 40, and 80 min, respectively. The numbers of CFU are then determined by serial dilutions on LB agar plates. The bactericidal effect research results of 470 nm LED on P. aeruginosa show that the killing ratio increases with increasing of the exposure time. For the 80 min irradiation, as much as 92.4% reduction of P. aeruginosa is achieved. The results indicate that, in vitro, 470-nm lights produce dose dependent bactericidal effects on P. aeruginosa.

Top