Sample records for array technology markers

  1. The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers.

    PubMed

    Yang, Shi Ying; Saxena, Rachit K; Kulwal, Pawan L; Ash, Gavin J; Dubey, Anuja; Harper, John D I; Upadhyaya, Hari D; Gothalwal, Ragini; Kilian, Andrzej; Varshney, Rajeev K

    2011-04-01

    With an objective to develop a genetic map in pigeon pea (Cajanus spp.), a total of 554 diversity arrays technology (DArT) markers showed polymorphism in a pigeon pea F(2) mapping population of 72 progenies derived from an interspecific cross of ICP 28 (Cajanus cajan) and ICPW 94 (Cajanus scarabaeoides). Approximately 13% of markers did not conform to expected segregation ratio. The total number of DArT marker loci segregating in Mendelian manner was 405 with 73.1% (P > 0.001) of DArT markers having unique segregation patterns. Two groups of genetic maps were generated using DArT markers. While the maternal genetic linkage map had 122 unique DArT maternal marker loci, the paternal genetic linkage map has a total of 172 unique DArT paternal marker loci. The length of these two maps covered 270.0 cM and 451.6 cM, respectively. These are the first genetic linkage maps developed for pigeon pea, and this is the first report of genetic mapping in any grain legume using diversity arrays technology.

  2. High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT)

    USDA-ARS?s Scientific Manuscript database

    Implementation of molecular methods in hop breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. Diversity Arrays Technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of...

  3. Diversity Arrays Technology (DArT) platform for genotyping and mapping in carrot (Daucus carota L.)

    USDA-ARS?s Scientific Manuscript database

    Carrot is one of the most important root vegetable crops grown worldwide on more than one million hectares. Its progenitor, wild Daucus carota, is a weed commonly occurring across continents in the temperate climatic zone. Diversity Array Technology (DArT) is a microarray-based molecular marker syst...

  4. Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    USDA-ARS?s Scientific Manuscript database

    Carrot is one of the most economically important vegetables worldwide, however, genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to devel...

  5. Diversity arrays technology (DArT) markers in apple for genetic linkage maps.

    PubMed

    Schouten, Henk J; van de Weg, W Eric; Carling, Jason; Khan, Sabaz Ali; McKay, Steven J; van Kaauwen, Martijn P W; Wittenberg, Alexander H J; Koehorst-van Putten, Herma J J; Noordijk, Yolanda; Gao, Zhongshan; Rees, D Jasper G; Van Dyk, Maria M; Jaccoud, Damian; Considine, Michael J; Kilian, Andrzej

    2012-03-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52-54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55-76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9579-5) contains supplementary material, which is available to authorized users.

  6. Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana.

    PubMed

    Wittenberg, Alexander H J; van der Lee, Theo; Cayla, Cyril; Kilian, Andrzej; Visser, Richard G F; Schouten, Henk J

    2005-08-01

    Diversity Arrays Technology (DArT) is a microarray-based DNA marker technique for genome-wide discovery and genotyping of genetic variation. DArT allows simultaneous scoring of hundreds of restriction site based polymorphisms between genotypes and does not require DNA sequence information or site-specific oligonucleotides. This paper demonstrates the potential of DArT for genetic mapping by validating the quality and molecular basis of the markers, using the model plant Arabidopsis thaliana. Restriction fragments from a genomic representation of the ecotype Landsberg erecta (Ler) were amplified by PCR, individualized by cloning and spotted onto glass slides. The arrays were then hybridized with labeled genomic representations of the ecotypes Columbia (Col) and Ler and of individuals from an F(2) population obtained from a Col x Ler cross. The scoring of markers with specialized software was highly reproducible and 107 markers could unambiguously be ordered on a genetic linkage map. The marker order on the genetic linkage map coincided with the order on the DNA sequence map. Sequencing of the Ler markers and alignment with the available Col genome sequence confirmed that the polymorphism in DArT markers is largely a result of restriction site polymorphisms.

  7. High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT).

    PubMed

    Howard, E L; Whittock, S P; Jakše, J; Carling, J; Matthews, P D; Probasco, G; Henning, J A; Darby, P; Cerenak, A; Javornik, B; Kilian, A; Koutoulis, A

    2011-05-01

    Implementation of molecular methods in hop (Humulus lupulus L.) breeding is dependent on the availability of sizeable numbers of polymorphic markers and a comprehensive understanding of genetic variation. However, use of molecular marker technology is limited due to expense, time inefficiency, laborious methodology and dependence on DNA sequence information. Diversity arrays technology (DArT) is a high-throughput cost-effective method for the discovery of large numbers of quality polymorphic markers without reliance on DNA sequence information. This study is the first to utilise DArT for hop genotyping, identifying 730 polymorphic markers from 92 hop accessions. The marker quality was high and similar to the quality of DArT markers previously generated for other species; although percentage polymorphism and polymorphism information content (PIC) were lower than in previous studies deploying other marker systems in hop. Genetic relationships in hop illustrated by DArT in this study coincide with knowledge generated using alternate methods. Several statistical analyses separated the hop accessions into genetically differentiated North American and European groupings, with hybrids between the two groups clearly distinguishable. Levels of genetic diversity were similar in the North American and European groups, but higher in the hybrid group. The markers produced from this time and cost-efficient genotyping tool will be a valuable resource for numerous applications in hop breeding and genetics studies, such as mapping, marker-assisted selection, genetic identity testing, guidance in the maintenance of genetic diversity and the directed breeding of superior cultivars.

  8. Use of diversity arrays technology markers for integration into a cotton reference map and anchoring to a recombinant inbred line map

    USDA-ARS?s Scientific Manuscript database

    A DArT marker platform is developed for the cotton genome to evaluate the use of DArT markers compared to AFLPs in mapping, and transferability across the mapping populations. We used a reference genetic map of tetraploid Gossypium that already contained ~5000 loci which coalesced into 26 chromosom...

  9. A consensus genetic map of sorghum that integrates multiple component maps and high-throughput diversity array technology (DArT) markers

    USDA-ARS?s Scientific Manuscript database

    This final consensus map has allowed us to map a larger number of markers than possible in any individual map of sorghum, to obtain a more complete coverage of the sorghum genome and to fill a number of gaps on individual maps. In addition to overall general consistency of marker order across indiv...

  10. Fiber-Optic Array Scanning Technology (FAST) for Detection and Molecular Characterization of Circulating Tumor Cells.

    PubMed

    Ao, Zheng; Liu, Xiaohe

    2017-01-01

    Circulating tumor cell (CTC) as an important component in "liquid biopsy" holds crucial clinical relevance in cancer prognosis, treatment efficiency evaluation, prediction and potentially early detection. Here, we present a Fiber-optic Array Scanning Technology (FAST) that enables antigen-agnostic, size-agnostic detection of CTC. By immunofluorescence staining detection of a combination of a panel of markers, FAST technology can be applied to detect rare CTC in non-small cell lung cancer (NSCLC) setting with high sensitivity and specificity. In combination with Automated Digital Microscopy (ADM) platform, companion markers on CTC such as Vimentin and Programmed death-ligand 1 (PD-L1) can also be analyzed to further characterize these CTCs. FAST data output is also compatible with downstream single cell picking platforms. Single cell can be isolated post ADM confirmation and used for "actionable" genetic mutations analysis.

  11. Comparison between genotyping by sequencing and SNP-chip genotyping in QTL mapping in wheat

    USDA-ARS?s Scientific Manuscript database

    Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...

  12. Development and mapping of DArT markers within the Festuca - Lolium complex

    PubMed Central

    Kopecký, David; Bartoš, Jan; Lukaszewski, Adam J; Baird, James H; Černoch, Vladimír; Kölliker, Roland; Rognli, Odd Arne; Blois, Helene; Caig, Vanessa; Lübberstedt, Thomas; Studer, Bruno; Shaw, Paul; Doležel, Jaroslav; Kilian, Andrzej

    2009-01-01

    Background Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. Results The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. Conclusion The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca × Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions. PMID:19832973

  13. Novel SSR Markers from BAC-End Sequences, DArT Arrays and a Comprehensive Genetic Map with 1,291 Marker Loci for Chickpea (Cicer arietinum L.)

    PubMed Central

    Nayak, Spurthi N.; Varghese, Nicy; Shah, Trushar M.; Penmetsa, R. Varma; Thirunavukkarasu, Nepolean; Gudipati, Srivani; Gaur, Pooran M.; Kulwal, Pawan L.; Upadhyaya, Hari D.; KaviKishor, Polavarapu B.; Winter, Peter; Kahl, Günter; Town, Christopher D.; Kilian, Andrzej; Cook, Douglas R.; Varshney, Rajeev K.

    2011-01-01

    Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes. PMID:22102885

  14. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    PubMed

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom ® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Accuracy and training population design for genomic selection in elite north american oats

    USDA-ARS?s Scientific Manuscript database

    Genomic selection (GS) is a method to estimate the breeding values of individuals by using markers throughout the genome. We evaluated the accuracies of GS using data from five traits on 446 oat lines genotyped with 1005 Diversity Array Technology (DArT) markers and two GS methods (RR-BLUP and Bayes...

  16. Conversion of a diversity arrays technology marker differentiating wild and cultivated carrots to a co-dominant cleaved amplified polymorphic site marker

    USDA-ARS?s Scientific Manuscript database

    Cultivated carrot and its wild ancestor co-occur in most temperate regions of the world and can easily hybridize. The genetic basis of the process of domestication in carrot is not well recognized. Recent results of an investigation on genetic diversity structure of cultivated and wild carrot and si...

  17. Diversity arrays technology: a generic genome profiling technology on open platforms.

    PubMed

    Kilian, Andrzej; Wenzl, Peter; Huttner, Eric; Carling, Jason; Xia, Ling; Blois, Hélène; Caig, Vanessa; Heller-Uszynska, Katarzyna; Jaccoud, Damian; Hopper, Colleen; Aschenbrenner-Kilian, Malgorzata; Evers, Margaret; Peng, Kaiman; Cayla, Cyril; Hok, Puthick; Uszynski, Grzegorz

    2012-01-01

    In the last 20 years, we have observed an exponential growth of the DNA sequence data and simular increase in the volume of DNA polymorphism data generated by numerous molecular marker technologies. Most of the investment, and therefore progress, concentrated on human genome and genomes of selected model species. Diversity Arrays Technology (DArT), developed over a decade ago, was among the first "democratizing" genotyping technologies, as its performance was primarily driven by the level of DNA sequence variation in the species rather than by the level of financial investment. DArT also proved more robust to genome size and ploidy-level differences among approximately 60 organisms for which DArT was developed to date compared to other high-throughput genotyping technologies. The success of DArT in a number of organisms, including a wide range of "orphan crops," can be attributed to the simplicity of underlying concepts: DArT combines genome complexity reduction methods enriching for genic regions with a highly parallel assay readout on a number of "open-access" microarray platforms. The quantitative nature of the assay enabled a number of applications in which allelic frequencies can be estimated from DArT arrays. A typical DArT assay tests for polymorphism tens of thousands of genomic loci with the final number of markers reported (hundreds to thousands) reflecting the level of DNA sequence variation in the tested loci. Detailed DArT methods, protocols, and a range of their application examples as well as DArT's evolution path are presented.

  18. Identification of Pyrus single nucleotide polymorphisms (SNPs) and evaluation for genetic mapping in European pear and interspecific Pyrus hybrids.

    PubMed

    Montanari, Sara; Saeed, Munazza; Knäbel, Mareike; Kim, YoonKyeong; Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E; Crowhurst, Ross N; Chagné, David

    2013-01-01

    We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.

  19. Genomic Characterization of DArT Markers Based on High-Density Linkage Analysis and Physical Mapping to the Eucalyptus Genome

    PubMed Central

    Petroli, César D.; Sansaloni, Carolina P.; Carling, Jason; Steane, Dorothy A.; Vaillancourt, René E.; Myburg, Alexander A.; da Silva, Orzenil Bonfim; Pappas, Georgios Joannis; Kilian, Andrzej; Grattapaglia, Dario

    2012-01-01

    Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization. PMID:22984541

  20. Diversity Arrays Technology (DArT) for whole-genome profiling of barley

    PubMed Central

    Wenzl, Peter; Carling, Jason; Kudrna, David; Jaccoud, Damian; Huttner, Eric; Kleinhofs, Andris; Kilian, Andrzej

    2004-01-01

    Diversity Arrays Technology (DArT) can detect and type DNA variation at several hundred genomic loci in parallel without relying on sequence information. Here we show that it can be effectively applied to genetic mapping and diversity analyses of barley, a species with a 5,000-Mbp genome. We tested several complexity reduction methods and selected two that generated the most polymorphic genomic representations. Arrays containing individual fragments from these representations generated DArT fingerprints with a genotype call rate of 98.0% and a scoring reproducibility of at least 99.8%. The fingerprints grouped barley lines according to known genetic relationships. To validate the Mendelian behavior of DArT markers, we constructed a genetic map for a cross between cultivars Steptoe and Morex. Nearly all polymorphic array features could be incorporated into one of seven linkage groups (98.8%). The resulting map comprised ≈385 unique DArT markers and spanned 1,137 centimorgans. A comparison with the restriction fragment length polymorphism-based framework map indicated that the quality of the DArT map was equivalent, if not superior, to that of the framework map. These results highlight the potential of DArT as a generic technique for genome profiling in the context of molecular breeding and genomics. PMID:15192146

  1. Identification of Pyrus Single Nucleotide Polymorphisms (SNPs) and Evaluation for Genetic Mapping in European Pear and Interspecific Pyrus Hybrids

    PubMed Central

    Troggio, Michela; Malnoy, Mickael; Velasco, Riccardo; Fontana, Paolo; Won, KyungHo; Durel, Charles-Eric; Perchepied, Laure; Schaffer, Robert; Wiedow, Claudia; Bus, Vincent; Brewer, Lester; Gardiner, Susan E.; Crowhurst, Ross N.; Chagné, David

    2013-01-01

    We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear (‘Old Home’בLouise Bon Jersey’) and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality. PMID:24155917

  2. New Diversity Arrays Technology (DArT) markers for tetraploid oat (Avena magna Murphy et Terrell) provide the first complete oat linkage map and markers linked to domestication genes from hexaploid A. sativa L.

    USDA-ARS?s Scientific Manuscript database

    Nutritional benefits of cultivated oat (Avena sativa L., 2n = 6x = 42, AACCDD genomes) are well recognized; however, seed protein levels are modest and genetic resources for protein improvement are scarce. The wild tetraploid A. magna Ladiz. contains approximately 31% seed protein and has been hybr...

  3. USING ARRAY TECHNOLOGY TO IDENTIFY POTENTIAL BIOMARKERS FOR PYRETHROID INSECTICIDES.

    EPA Science Inventory

    Pyrethroid insecticides affect nervous system function by disruption of sodium channels in nerve membranes. FQPA requirements for assessing cumulative risk have increased the need for rapid and sensitive biomarkers of effect. This project aims to develop biochemical markers of n...

  4. Genome Microscale Heterogeneity among Wild Potatoes Revealed by Diversity Arrays Technology Marker Sequences.

    PubMed

    Traini, Alessandra; Iorizzo, Massimo; Mann, Harpartap; Bradeen, James M; Carputo, Domenico; Frusciante, Luigi; Chiusano, Maria Luisa

    2013-01-01

    Tuber-bearing potato species possess several genes that can be exploited to improve the genetic background of the cultivated potato Solanum tuberosum. Among them, S. bulbocastanum and S. commersonii are well known for their strong resistance to environmental stresses. However, scant information is available for these species in terms of genome organization, gene function, and regulatory networks. Consequently, genomic tools to assist breeding are meager, and efficient exploitation of these species has been limited so far. In this paper, we employed the reference genome sequences from cultivated potato and tomato and a collection of sequences of 1,423 potato Diversity Arrays Technology (DArT) markers that show polymorphic representation across the genomes of S. bulbocastanum and/or S. commersonii genotypes. Our results highlighted microscale genome sequence heterogeneity that may play a significant role in functional and structural divergence between related species. Our analytical approach provides knowledge of genome structural and sequence variability that could not be detected by transcriptome and proteome approaches.

  5. The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers.

    PubMed

    Amos, Christopher I; Dennis, Joe; Wang, Zhaoming; Byun, Jinyoung; Schumacher, Fredrick R; Gayther, Simon A; Casey, Graham; Hunter, David J; Sellers, Thomas A; Gruber, Stephen B; Dunning, Alison M; Michailidou, Kyriaki; Fachal, Laura; Doheny, Kimberly; Spurdle, Amanda B; Li, Yafang; Xiao, Xiangjun; Romm, Jane; Pugh, Elizabeth; Coetzee, Gerhard A; Hazelett, Dennis J; Bojesen, Stig E; Caga-Anan, Charlisse; Haiman, Christopher A; Kamal, Ahsan; Luccarini, Craig; Tessier, Daniel; Vincent, Daniel; Bacot, François; Van Den Berg, David J; Nelson, Stefanie; Demetriades, Stephen; Goldgar, David E; Couch, Fergus J; Forman, Judith L; Giles, Graham G; Conti, David V; Bickeböller, Heike; Risch, Angela; Waldenberger, Melanie; Brüske-Hohlfeld, Irene; Hicks, Belynda D; Ling, Hua; McGuffog, Lesley; Lee, Andrew; Kuchenbaecker, Karoline; Soucy, Penny; Manz, Judith; Cunningham, Julie M; Butterbach, Katja; Kote-Jarai, Zsofia; Kraft, Peter; FitzGerald, Liesel; Lindström, Sara; Adams, Marcia; McKay, James D; Phelan, Catherine M; Benlloch, Sara; Kelemen, Linda E; Brennan, Paul; Riggan, Marjorie; O'Mara, Tracy A; Shen, Hongbing; Shi, Yongyong; Thompson, Deborah J; Goodman, Marc T; Nielsen, Sune F; Berchuck, Andrew; Laboissiere, Sylvie; Schmit, Stephanie L; Shelford, Tameka; Edlund, Christopher K; Taylor, Jack A; Field, John K; Park, Sue K; Offit, Kenneth; Thomassen, Mads; Schmutzler, Rita; Ottini, Laura; Hung, Rayjean J; Marchini, Jonathan; Amin Al Olama, Ali; Peters, Ulrike; Eeles, Rosalind A; Seldin, Michael F; Gillanders, Elizabeth; Seminara, Daniela; Antoniou, Antonis C; Pharoah, Paul D P; Chenevix-Trench, Georgia; Chanock, Stephen J; Simard, Jacques; Easton, Douglas F

    2017-01-01

    Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers, and cancer-related traits. The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Results from these analyses will enable researchers to identify new susceptibility loci, perform fine-mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental, and lifestyle-related exposures. Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. Cancer Epidemiol Biomarkers Prev; 26(1); 126-35. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. The OncoArray Consortium: a Network for Understanding the Genetic Architecture of Common Cancers

    PubMed Central

    Amos, Christopher I.; Dennis, Joe; Wang, Zhaoming; Byun, Jinyoung; Schumacher, Fredrick R.; Gayther, Simon A.; Casey, Graham; Hunter, David J.; Sellers, Thomas A.; Gruber, Stephen B.; Dunning, Alison M.; Michailidou, Kyriaki; Fachal, Laura; Doheny, Kimberly; Spurdle, Amanda B.; Li, Yafang; Xiao, Xiangjun; Romm, Jane; Pugh, Elizabeth; Coetzee, Gerhard A.; Hazelett, Dennis J.; Bojesen, Stig E.; Caga-Anan, Charlisse; Haiman, Christopher A.; Kamal, Ahsan; Luccarini, Craig; Tessier, Daniel; Vincent, Daniel; Bacot, François; Van Den Berg, David J.; Nelson, Stefanie; Demetriades, Stephen; Goldgar, David E.; Couch, Fergus J.; Forman, Judith L.; Giles, Graham G.; Conti, David V.; Bickeböller, Heike; Risch, Angela; Waldenberger, Melanie; Brüske, Irene; Hicks, Belynda D.; Ling, Hua; McGuffog, Lesley; Lee, Andrew; Kuchenbaecker, Karoline B.; Soucy, Penny; Manz, Judith; Cunningham, Julie M.; Butterbach, Katja; Kote-Jarai, Zsofia; Kraft, Peter; FitzGerald, Liesel M.; Lindström, Sara; Adams, Marcia; McKay, James D.; Phelan, Catherine M.; Benlloch, Sara; Kelemen, Linda E.; Brennan, Paul; Riggan, Marjorie; O’Mara, Tracy A.; Shen, Hongbin; Shi, Yongyong; Thompson, Deborah J.; Goodman, Marc T.; Nielsen, Sune F.; Berchuck, Andrew; Laboissiere, Sylvie; Schmit, Stephanie L.; Shelford, Tameka; Edlund, Christopher K.; Taylor, Jack A.; Field, John K.; Park, Sue K.; Offit, Kenneth; Thomassen, Mads; Schmutzler, Rita; Ottini, Laura; Hung, Rayjean J.; Marchini, Jonathan; Al Olama, Ali Amin; Peters, Ulrike; Eeles, Rosalind A.; Seldin, Michael F.; Gillanders, Elizabeth; Seminara, Daniela; Antoniou, Antonis C.; Pharoah, Paul D.; Chenevix-Trench, Georgia; Chanock, Stephen J.; Simard, Jacques; Easton, Douglas F.

    2016-01-01

    Background Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers and cancer related traits. Methods The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. Results The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Conclusions Results from these analyses will enable researchers to identify new susceptibility loci, perform fine mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental and lifestyle related exposures. Impact Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. PMID:27697780

  7. Diversity Arrays Technology (DArT) Marker Platforms for Diversity Analysis and Linkage Mapping in a Complex Crop, the Octoploid Cultivated Strawberry (Fragaria × ananassa)

    PubMed Central

    Sánchez-Sevilla, José F.; Horvath, Aniko; Botella, Miguel A.; Gaston, Amèlia; Folta, Kevin; Kilian, Andrzej; Denoyes, Beatrice; Amaya, Iraida

    2015-01-01

    Cultivated strawberry (Fragaria × ananassa) is a genetically complex allo-octoploid crop with 28 pairs of chromosomes (2n = 8x = 56) for which a genome sequence is not yet available. The diploid Fragaria vesca is considered the donor species of one of the octoploid sub-genomes and its available genome sequence can be used as a reference for genomic studies. A wide number of strawberry cultivars are stored in ex situ germplasm collections world-wide but a number of previous studies have addressed the genetic diversity present within a limited number of these collections. Here, we report the development and application of two platforms based on the implementation of Diversity Array Technology (DArT) markers for high-throughput genotyping in strawberry. The first DArT microarray was used to evaluate the genetic diversity of 62 strawberry cultivars that represent a wide range of variation based on phenotype, geographical and temporal origin and pedigrees. A total of 603 DArT markers were used to evaluate the diversity and structure of the population and their cluster analyses revealed that these markers were highly efficient in classifying the accessions in groups based on historical, geographical and pedigree-based cues. The second DArTseq platform took benefit of the complexity reduction method optimized for strawberry and the development of next generation sequencing technologies. The strawberry DArTseq was used to generate a total of 9,386 SNP markers in the previously developed ‘232’ × ‘1392’ mapping population, of which, 4,242 high quality markers were further selected to saturate this map after several filtering steps. The high-throughput platforms here developed for genotyping strawberry will facilitate genome-wide characterizations of large accessions sets and complement other available options. PMID:26675207

  8. Analysis of genetic diversity using SNP markers in oat

    USDA-ARS?s Scientific Manuscript database

    A large-scale single nucleotide polymorphism (SNP) discovery was carried out in cultivated oat using Roche 454 sequencing methods. DNA sequences were generated from cDNAs originating from a panel of 20 diverse oat cultivars, and from Diversity Array Technology (DArT) genomic complexity reductions fr...

  9. Development of DArT-based PCR markers for selecting drought-tolerant spring barley.

    PubMed

    Fiust, Anna; Rapacz, Marcin; Wójcik-Jagła, Magdalena; Tyrka, Mirosław

    2015-08-01

    The tolerance of spring barley (Hordeum vulgare L.) cultivars to spring drought is an important agronomic trait affecting crop yield and quality in Poland. Therefore, breeders require new molecular markers to select plants with lower spring drought susceptibility. With the advent of genomic selection technology, simple molecular tools may still be applicable to screen material for markers of the most important traits and in-depth genome scanning. In previous studies, diversity arrays technology (DArT)-based genetic maps were constructed for F2 populations of Polish fodder and malt barley elite breeding lines, and 15 and 18 quantitative trait loci (QTLs) related to spring drought tolerance were identified, respectively. In this paper, we show the results of a conversion of 30 DArT markers corresponding to 11 QTLs into simple sequence repeat (SSR) and sequence tagged site (STS) markers. Twenty-two polymorphic markers were obtained, including 13 DArT-based SSRs. Additionally, 31 SSR markers, located in close proximity to the DArT markers, were selected from the GrainGenes database and tested. Further analyses of 24 advanced breeding lines with different drought tolerances confirmed that five out of the 30 converted markers, as well as three out of the 31 additional SSR markers, were effective in marker-assisted selection for drought tolerance. The possible function of clones related to these markers in drought tolerance is discussed.

  10. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm

    NASA Astrophysics Data System (ADS)

    Austin, Robert; Wunsch, Benjamin; Smith, Joshua; Gifford, Stacey; Wang, Chao; Brink, Markus; Bruce, Robert; Stolovitzky, Gustavo; Astier, Yann

    Deterministic lateral displacement (DLD) pillar arrays are an efficient technology to sort, separate and enrich micrometre-scale particles, which include parasites1, bacteria2, blood cells3 and circulating tumour cells in blood4. However, this technology has not been translated to the true nanoscale, where it could function on biocolloids, such as exosomes. Exosomes, a key target of liquid biopsies, are secreted by cells and contain nucleic acid and protein information about their originating tissue5. One challenge in the study of exosome biology is to sort exosomes by size and surface markers6, 7. We use manufacturable silicon processes to produce nanoscale DLD (nano-DLD) arrays of uniform gap sizes ranging from 25 to 235 nm. We show that at low Péclet (Pe) numbers, at which diffusion and deterministic displacement compete, nano-DLD arrays separate particles between 20 to 110 nm based on size with sharp resolution. Further, we demonstrate the size-based displacement of exosomes, and so open up the potential for on-chip sorting and quantification of these important biocolloids.

  11. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm

    NASA Astrophysics Data System (ADS)

    Wunsch, Benjamin H.; Smith, Joshua T.; Gifford, Stacey M.; Wang, Chao; Brink, Markus; Bruce, Robert L.; Austin, Robert H.; Stolovitzky, Gustavo; Astier, Yann

    2016-11-01

    Deterministic lateral displacement (DLD) pillar arrays are an efficient technology to sort, separate and enrich micrometre-scale particles, which include parasites, bacteria, blood cells and circulating tumour cells in blood. However, this technology has not been translated to the true nanoscale, where it could function on biocolloids, such as exosomes. Exosomes, a key target of 'liquid biopsies', are secreted by cells and contain nucleic acid and protein information about their originating tissue. One challenge in the study of exosome biology is to sort exosomes by size and surface markers. We use manufacturable silicon processes to produce nanoscale DLD (nano-DLD) arrays of uniform gap sizes ranging from 25 to 235 nm. We show that at low Péclet (Pe) numbers, at which diffusion and deterministic displacement compete, nano-DLD arrays separate particles between 20 to 110 nm based on size with sharp resolution. Further, we demonstrate the size-based displacement of exosomes, and so open up the potential for on-chip sorting and quantification of these important biocolloids.

  12. Chimpanzees (Pan troglodytes) use markers to monitor the movement of a hidden item.

    PubMed

    Beran, Michael J; Beran, Mary M; Menzel, Charles R

    2005-10-01

    Four chimpanzees (Pan troglodytes) monitored the movement of hidden items in arrays of opaque cups. A chocolate candy was hidden in an array of four cups and temporarily presented paper markers indicated the location of the candy (which otherwise was not visible). These markers were either non-symbolic or symbolic (lexigram) stimuli that in other contexts acted as a label for the hidden candy, and the array was either rotated 180 degrees after the marker was removed or the array remained in the same location. For three of four chimpanzees, performance was better than chance in all conditions and there was no effect of the type of marker. These experiments indicate that chimpanzees can track the movement of a hidden item in an array of identical cups even when they never see the item itself, but only see a temporarily presented marker for the location of that item. However, there was no benefit to the use of symbolic as opposed to non-symbolic stimuli in this performance.

  13. Construction of integrated linkage map of a recombinant inbred line population of white lupin (Lupinus albus L.)

    PubMed Central

    Vipin, Cina Ann; Luckett, David J.; Harper, John D.I.; Ash, Gavin J.; Kilian, Andrzej; Ellwood, Simon R.; Phan, Huyen T.T.; Raman, Harsh

    2013-01-01

    We report the development of a Diversity Arrays Technology (DArT) marker panel and its utilisation in the development of an integrated genetic linkage map of white lupin (Lupinus albus L.) using an F8 recombinant inbred line population derived from Kiev Mutant/P27174. One hundred and thirty-six DArT markers were merged into the first genetic linkage map composed of 220 amplified fragment length polymorphisms (AFLPs) and 105 genic markers. The integrated map consists of 38 linkage groups of 441 markers and spans a total length of 2,169 cM, with an average interval size of 4.6 cM. The DArT markers exhibited good genome coverage and were associated with previously identified genic and AFLP markers linked with quantitative trait loci for anthracnose resistance, flowering time and alkaloid content. The improved genetic linkage map of white lupin will aid in the identification of markers for traits of interest and future syntenic studies. PMID:24273424

  14. Gene expression profiling and pathway analysis in MCF-7 and MDA-MB-231 human breast cancer cell lines treated with dioscin

    USDA-ARS?s Scientific Manuscript database

    The long-term goal of our study is to understand the genetic and epigenetic mechanisms of breast cancer metastasis in human and to discover new possible genetic markers for use in clinical practice. We have used microarray technology (Human OneArray microarray, phylanxbiotech.com) to compare gene ex...

  15. Diversity Arrays Technology (DArT) for Pan-Genomic Evolutionary Studies of Non-Model Organisms

    PubMed Central

    James, Karen E.; Schneider, Harald; Ansell, Stephen W.; Evers, Margaret; Robba, Lavinia; Uszynski, Grzegorz; Pedersen, Niklas; Newton, Angela E.; Russell, Stephen J.; Vogel, Johannes C.; Kilian, Andrzej

    2008-01-01

    Background High-throughput tools for pan-genomic study, especially the DNA microarray platform, have sparked a remarkable increase in data production and enabled a shift in the scale at which biological investigation is possible. The use of microarrays to examine evolutionary relationships and processes, however, is predominantly restricted to model or near-model organisms. Methodology/Principal Findings This study explores the utility of Diversity Arrays Technology (DArT) in evolutionary studies of non-model organisms. DArT is a hybridization-based genotyping method that uses microarray technology to identify and type DNA polymorphism. Theoretically applicable to any organism (even one for which no prior genetic data are available), DArT has not yet been explored in exclusively wild sample sets, nor extensively examined in a phylogenetic framework. DArT recovered 1349 markers of largely low copy-number loci in two lineages of seed-free land plants: the diploid fern Asplenium viride and the haploid moss Garovaglia elegans. Direct sequencing of 148 of these DArT markers identified 30 putative loci including four routinely sequenced for evolutionary studies in plants. Phylogenetic analyses of DArT genotypes reveal phylogeographic and substrate specificity patterns in A. viride, a lack of phylogeographic pattern in Australian G. elegans, and additive variation in hybrid or mixed samples. Conclusions/Significance These results enable methodological recommendations including procedures for detecting and analysing DArT markers tailored specifically to evolutionary investigations and practical factors informing the decision to use DArT, and raise evolutionary hypotheses concerning substrate specificity and biogeographic patterns. Thus DArT is a demonstrably valuable addition to the set of existing molecular approaches used to infer biological phenomena such as adaptive radiations, population dynamics, hybridization, introgression, ecological differentiation and phylogeography. PMID:18301759

  16. SNPConvert: SNP Array Standardization and Integration in Livestock Species.

    PubMed

    Nicolazzi, Ezequiel Luis; Marras, Gabriele; Stella, Alessandra

    2016-06-09

    One of the main advantages of single nucleotide polymorphism (SNP) array technology is providing genotype calls for a specific number of SNP markers at a relatively low cost. Since its first application in animal genetics, the number of available SNP arrays for each species has been constantly increasing. However, conversely to that observed in whole genome sequence data analysis, SNP array data does not have a common set of file formats or coding conventions for allele calling. Therefore, the standardization and integration of SNP array data from multiple sources have become an obstacle, especially for users with basic or no programming skills. Here, we describe the difficulties related to handling SNP array data, focusing on file formats, SNP allele coding, and mapping. We also present SNPConvert suite, a multi-platform, open-source, and user-friendly set of tools to overcome these issues. This tool, which can be integrated with open-source and open-access tools already available, is a first step towards an integrated system to standardize and integrate any type of raw SNP array data. The tool is available at: https://github. com/nicolazzie/SNPConvert.git.

  17. Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice.

    PubMed

    Steele, Katherine A; Quinton-Tulloch, Mark J; Amgai, Resham B; Dhakal, Rajeev; Khatiwada, Shambhu P; Vyas, Darshna; Heine, Martin; Witcombe, John R

    2018-01-01

    Few public sector rice breeders have the capacity to use NGS-derived markers in their breeding programmes despite rapidly expanding repositories of rice genome sequence data. They rely on > 18,000 mapped microsatellites (SSRs) for marker-assisted selection (MAS) using gel analysis. Lack of knowledge about target SNP and InDel variant loci has hampered the uptake by many breeders of Kompetitive allele-specific PCR (KASP), a proprietary technology of LGC genomics that can distinguish alleles at variant loci. KASP is a cost-effective single-step genotyping technology, cheaper than SSRs and more flexible than genotyping by sequencing (GBS) or array-based genotyping when used in selection programmes. Before this study, there were 2015 rice KASP marker loci in the public domain, mainly identified by array-based screening, leaving large proportions of the rice genome with no KASP coverage. Here we have addressed the urgent need for a wide choice of appropriate rice KASP assays and demonstrated that NGS can detect many more KASP to give full genome coverage. Through re-sequencing of nine indica rice breeding lines or released varieties, this study has identified 2.5 million variant sites. Stringent filtering of variants generated 1.3 million potential KASP assay designs, including 92,500 potential functional markers. This strategy delivers a 650-fold increase in potential selectable KASP markers at a density of 3.1 per 1 kb in the indica crosses analysed and 377,178 polymorphic KASP design sites on average per cross. This knowledge is available to breeders and has been utilised to improve the efficiency of public sector breeding in Nepal, enabling identification of polymorphic KASP at any region or quantitative trait loci in relevant crosses. Validation of 39 new KASP was carried out by genotyping progeny from a range of crosses to show that they detected segregating alleles. The new KASP have replaced SSRs to aid trait selection during marker-assisted backcrossing in these crosses, where target traits include rice blast and BLB resistance loci. Furthermore, we provide the software for plant breeders to generate KASP designs from their own datasets.

  18. Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm

    PubMed Central

    Scalabrin, Simone; Gilmore, Barbara; Lawley, Cynthia T.; Gasic, Ksenija; Micheletti, Diego; Rosyara, Umesh R.; Cattonaro, Federica; Vendramin, Elisa; Main, Dorrie; Aramini, Valeria; Blas, Andrea L.; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Troggio, Michela; Sosinski, Bryon; Aranzana, Maria José; Arús, Pere; Iezzoni, Amy; Morgante, Michele; Peace, Cameron

    2012-01-01

    Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs. The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species. PMID:22536421

  19. Measuring and Modeling the Growth Dynamics of Self-Catalyzed GaP Nanowire Arrays.

    PubMed

    Oehler, Fabrice; Cattoni, Andrea; Scaccabarozzi, Andrea; Patriarche, Gilles; Glas, Frank; Harmand, Jean-Christophe

    2018-02-14

    The bottom-up fabrication of regular nanowire (NW) arrays on a masked substrate is technologically relevant, but the growth dynamic is rather complex due to the superposition of severe shadowing effects that vary with array pitch, NW diameter, NW height, and growth duration. By inserting GaAsP marker layers at a regular time interval during the growth of a self-catalyzed GaP NW array, we are able to retrieve precisely the time evolution of the diameter and height of a single NW. We then propose a simple numerical scheme which fully computes shadowing effects at play in infinite arrays of NWs. By confronting the simulated and experimental results, we infer that re-emission of Ga from the mask is necessary to sustain the NW growth while Ga migration on the mask must be negligible. When compared to random cosine or random uniform re-emission from the mask, the simple case of specular reflection on the mask gives the most accurate account of the Ga balance during the growth.

  20. Evaluation of SNP Data from the Malus Infinium Array Identifies Challenges for Genetic Analysis of Complex Genomes of Polyploid Origin.

    PubMed

    Troggio, Michela; Surbanovski, Nada; Bianco, Luca; Moretto, Marco; Giongo, Lara; Banchi, Elisa; Viola, Roberto; Fernández, Felicdad Fernández; Costa, Fabrizio; Velasco, Riccardo; Cestaro, Alessandro; Sargent, Daniel James

    2013-01-01

    High throughput arrays for the simultaneous genotyping of thousands of single-nucleotide polymorphisms (SNPs) have made the rapid genetic characterisation of plant genomes and the development of saturated linkage maps a realistic prospect for many plant species of agronomic importance. However, the correct calling of SNP genotypes in divergent polyploid genomes using array technology can be problematic due to paralogy, and to divergence in probe sequences causing changes in probe binding efficiencies. An Illumina Infinium II whole-genome genotyping array was recently developed for the cultivated apple and used to develop a molecular linkage map for an apple rootstock progeny (M432), but a large proportion of segregating SNPs were not mapped in the progeny, due to unexpected genotype clustering patterns. To investigate the causes of this unexpected clustering we performed BLAST analysis of all probe sequences against the 'Golden Delicious' genome sequence and discovered evidence for paralogous annealing sites and probe sequence divergence for a high proportion of probes contained on the array. Following visual re-evaluation of the genotyping data generated for 8,788 SNPs for the M432 progeny using the array, we manually re-scored genotypes at 818 loci and mapped a further 797 markers to the M432 linkage map. The newly mapped markers included the majority of those that could not be mapped previously, as well as loci that were previously scored as monomorphic, but which segregated due to divergence leading to heterozygosity in probe annealing sites. An evaluation of the 8,788 probes in a diverse collection of Malus germplasm showed that more than half the probes returned genotype clustering patterns that were difficult or impossible to interpret reliably, highlighting implications for the use of the array in genome-wide association studies.

  1. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells*

    PubMed Central

    Kanderova, Veronika; Kuzilkova, Daniela; Stuchly, Jan; Vaskova, Martina; Brdicka, Tomas; Fiser, Karel; Hrusak, Ondrej; Lund-Johansen, Fridtjof

    2016-01-01

    Acute leukemia is a disease pathologically manifested at both genomic and proteomic levels. Molecular genetic technologies are currently widely used in clinical research. In contrast, sensitive and high-throughput proteomic techniques for performing protein analyses in patient samples are still lacking. Here, we used a technology based on size exclusion chromatography followed by immunoprecipitation of target proteins with an antibody bead array (Size Exclusion Chromatography-Microsphere-based Affinity Proteomics, SEC-MAP) to detect hundreds of proteins from a single sample. In addition, we developed semi-automatic bioinformatics tools to adapt this technology for high-content proteomic screening of pediatric acute leukemia patients. To confirm the utility of SEC-MAP in leukemia immunophenotyping, we tested 31 leukemia diagnostic markers in parallel by SEC-MAP and flow cytometry. We identified 28 antibodies suitable for both techniques. Eighteen of them provided excellent quantitative correlation between SEC-MAP and flow cytometry (p < 0.05). Next, SEC-MAP was applied to examine 57 diagnostic samples from patients with acute leukemia. In this assay, we used 632 different antibodies and detected 501 targets. Of those, 47 targets were differentially expressed between at least two of the three acute leukemia subgroups. The CD markers correlated with immunophenotypic categories as expected. From non-CD markers, we found DBN1, PAX5, or PTK2 overexpressed in B-cell precursor acute lymphoblastic leukemias, LAT, SH2D1A, or STAT5A overexpressed in T-cell acute lymphoblastic leukemias, and HCK, GLUD1, or SYK overexpressed in acute myeloid leukemias. In addition, OPAL1 overexpression corresponded to ETV6-RUNX1 chromosomal translocation. In summary, we demonstrated that SEC-MAP technology is a powerful tool for detecting hundreds of proteins in clinical samples obtained from pediatric acute leukemia patients. It provides information about protein size and reveals differences in protein expression between particular leukemia subgroups. Forty-seven of SEC-MAP identified targets were validated by other conventional method in this study. PMID:26785729

  2. Haplotype-Based Genotyping in Polyploids.

    PubMed

    Clevenger, Josh P; Korani, Walid; Ozias-Akins, Peggy; Jackson, Scott

    2018-01-01

    Accurate identification of polymorphisms from sequence data is crucial to unlocking the potential of high throughput sequencing for genomics. Single nucleotide polymorphisms (SNPs) are difficult to accurately identify in polyploid crops due to the duplicative nature of polyploid genomes leading to low confidence in the true alignment of short reads. Implementing a haplotype-based method in contrasting subgenome-specific sequences leads to higher accuracy of SNP identification in polyploids. To test this method, a large-scale 48K SNP array (Axiom Arachis2) was developed for Arachis hypogaea (peanut), an allotetraploid, in which 1,674 haplotype-based SNPs were included. Results of the array show that 74% of the haplotype-based SNP markers could be validated, which is considerably higher than previous methods used for peanut. The haplotype method has been implemented in a standalone program, HAPLOSWEEP, which takes as input bam files and a vcf file and identifies haplotype-based markers. Haplotype discovery can be made within single reads or span paired reads, and can leverage long read technology by targeting any length of haplotype. Haplotype-based genotyping is applicable in all allopolyploid genomes and provides confidence in marker identification and in silico-based genotyping for polyploid genomics.

  3. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array.

    PubMed

    Antanaviciute, Laima; Fernández-Fernández, Felicidad; Jansen, Johannes; Banchi, Elisa; Evans, Katherine M; Viola, Roberto; Velasco, Riccardo; Dunwell, Jim M; Troggio, Michela; Sargent, Daniel J

    2012-05-25

    A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNP-based linkage map of an apple rootstock progeny. Of the 7,867 Malus SNP markers on the array, 1,823 (23.2%) were heterozygous in one of the two parents of the progeny, 1,007 (12.8%) were heterozygous in both parental genotypes, whilst just 2.8% of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the 'Golden Delicious' genome sequence. A total of 311 markers (13.7% of all mapped markers) mapped to positions that conflicted with their predicted positions on the 'Golden Delicious' pseudo-chromosomes, indicating the presence of paralogous genomic regions or mis-assignments of genome sequence contigs during the assembly and anchoring of the genome sequence. We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and the identification of SNPs that have been assigned erroneous positions on the 'Golden Delicious' reference sequence will assist in the continued improvement of the genome sequence assembly for that variety.

  4. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits

    PubMed Central

    Wenzl, Peter; Li, Haobing; Carling, Jason; Zhou, Meixue; Raman, Harsh; Paul, Edie; Hearnden, Phillippa; Maier, Christina; Xia, Ling; Caig, Vanessa; Ovesná, Jaroslava; Cakir, Mehmet; Poulsen, David; Wang, Junping; Raman, Rosy; Smith, Kevin P; Muehlbauer, Gary J; Chalmers, Ken J; Kleinhofs, Andris; Huttner, Eric; Kilian, Andrzej

    2006-01-01

    Background Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the information generated by DArT with previous data produced with gel-based marker technologies. The goal of this study was to build a high-density consensus linkage map from the combined datasets of ten populations, most of which were simultaneously typed with DArT and Simple Sequence Repeat (SSR), Restriction Enzyme Fragment Polymorphism (RFLP) and/or Sequence Tagged Site (STS) markers. Results The consensus map, built using a combination of JoinMap 3.0 software and several purpose-built perl scripts, comprised 2,935 loci (2,085 DArT, 850 other loci) and spanned 1,161 cM. It contained a total of 1,629 'bins' (unique loci), with an average inter-bin distance of 0.7 ± 1.0 cM (median = 0.3 cM). More than 98% of the map could be covered with a single DArT assay. The arrangement of loci was very similar to, and almost as optimal as, the arrangement of loci in component maps built for individual populations. The locus order of a synthetic map derived from merging the component maps without considering the segregation data was only slightly inferior. The distribution of loci along chromosomes indicated centromeric suppression of recombination in all chromosomes except 5H. DArT markers appeared to have a moderate tendency toward hypomethylated, gene-rich regions in distal chromosome areas. On the average, 14 ± 9 DArT loci were identified within 5 cM on either side of SSR, RFLP or STS loci previously identified as linked to agricultural traits. Conclusion Our barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes. The study also highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations. PMID:16904008

  5. Development of a dense SNP-based linkage map of an apple rootstock progeny using the Malus Infinium whole genome genotyping array

    PubMed Central

    2012-01-01

    Background A whole-genome genotyping array has previously been developed for Malus using SNP data from 28 Malus genotypes. This array offers the prospect of high throughput genotyping and linkage map development for any given Malus progeny. To test the applicability of the array for mapping in diverse Malus genotypes, we applied the array to the construction of a SNP-based linkage map of an apple rootstock progeny. Results Of the 7,867 Malus SNP markers on the array, 1,823 (23.2%) were heterozygous in one of the two parents of the progeny, 1,007 (12.8%) were heterozygous in both parental genotypes, whilst just 2.8% of the 921 Pyrus SNPs were heterozygous. A linkage map spanning 1,282.2 cM was produced comprising 2,272 SNP markers, 306 SSR markers and the S-locus. The length of the M432 linkage map was increased by 52.7 cM with the addition of the SNP markers, whilst marker density increased from 3.8 cM/marker to 0.5 cM/marker. Just three regions in excess of 10 cM remain where no markers were mapped. We compared the positions of the mapped SNP markers on the M432 map with their predicted positions on the ‘Golden Delicious’ genome sequence. A total of 311 markers (13.7% of all mapped markers) mapped to positions that conflicted with their predicted positions on the ‘Golden Delicious’ pseudo-chromosomes, indicating the presence of paralogous genomic regions or mis-assignments of genome sequence contigs during the assembly and anchoring of the genome sequence. Conclusions We incorporated data for the 2,272 SNP markers onto the map of the M432 progeny and have presented the most complete and saturated map of the full 17 linkage groups of M. pumila to date. The data were generated rapidly in a high-throughput semi-automated pipeline, permitting significant savings in time and cost over linkage map construction using microsatellites. The application of the array will permit linkage maps to be developed for QTL analyses in a cost-effective manner, and the identification of SNPs that have been assigned erroneous positions on the ‘Golden Delicious’ reference sequence will assist in the continued improvement of the genome sequence assembly for that variety. PMID:22631220

  6. Gene-Based Single Nucleotide Polymorphism Markers for Genetic and Association Mapping in Common Bean

    PubMed Central

    2012-01-01

    Background In common bean, expressed sequence tags (ESTs) are an underestimated source of gene-based markers such as insertion-deletions (Indels) or single-nucleotide polymorphisms (SNPs). However, due to the nature of these conserved sequences, detection of markers is difficult and portrays low levels of polymorphism. Therefore, development of intron-spanning EST-SNP markers can be a valuable resource for genetic experiments such as genetic mapping and association studies. Results In this study, a total of 313 new gene-based markers were developed at target genes. Intronic variation was deeply explored in order to capture more polymorphism. Introns were putatively identified after comparing the common bean ESTs with the soybean genome, and the primers were designed over intron-flanking regions. The intronic regions were evaluated for parental polymorphisms using the single strand conformational polymorphism (SSCP) technique and Sequenom MassARRAY system. A total of 53 new marker loci were placed on an integrated molecular map in the DOR364 × G19833 recombinant inbred line (RIL) population. The new linkage map was used to build a consensus map, merging the linkage maps of the BAT93 × JALO EEP558 and DOR364 × BAT477 populations. A total of 1,060 markers were mapped, with a total map length of 2,041 cM across 11 linkage groups. As a second application of the generated resource, a diversity panel with 93 genotypes was evaluated with 173 SNP markers using the MassARRAY-platform and KASPar technology. These results were coupled with previous SSR evaluations and drought tolerance assays carried out on the same individuals. This agglomerative dataset was examined, in order to discover marker-trait associations, using general linear model (GLM) and mixed linear model (MLM). Some significant associations with yield components were identified, and were consistent with previous findings. Conclusions In short, this study illustrates the power of intron-based markers for linkage and association mapping in common bean. The utility of these markers is discussed in relation with the usefulness of microsatellites, the molecular markers by excellence in this crop. PMID:22734675

  7. Trace level detection of analytes using artificial olfactometry

    NASA Technical Reports Server (NTRS)

    Wong, Bernard (Inventor); Lewis, Nathan S. (Inventor); Severin, Erik J. (Inventor)

    2001-01-01

    The present invention provides a device for detecting the presence of an analyte, wherein said analyte is a microorganism marker gas. The device comprises a sample chamber having a fluid inlet port for the influx of the microorganism marker gas; a fluid concentrator in flow communication with the sample chamber, wherein the fluid concentrator has an absorbent material capable of absorbing the microorganism marker gas and thereafter releasing a concentrated microorganism marker gas; and an array of sensors in fluid communication with the concentrated microorganism marker gas. The sensor array detects and identifies the marker gas upon its release from fluid concentrate.

  8. Device localization and dynamic scan plane selection using a wireless magnetic resonance imaging detector array.

    PubMed

    Riffe, Matthew J; Yutzy, Stephen R; Jiang, Yun; Twieg, Michael D; Blumenthal, Colin J; Hsu, Daniel P; Pan, Li; Gilson, Wesley D; Sunshine, Jeffrey L; Flask, Christopher A; Duerk, Jeffrey L; Nakamoto, Dean; Gulani, Vikas; Griswold, Mark A

    2014-06-01

    A prototype wireless guidance device using single sideband amplitude modulation (SSB) is presented for a 1.5T magnetic resonance imaging system. The device contained three fiducial markers each mounted to an independent receiver coil equipped with wireless SSB technology. Acquiring orthogonal projections of these markers determined the position and orientation of the device, which was used to define the scan plane for a subsequent image acquisition. Device localization and scan plane update required approximately 30 ms, so it could be interleaved with high temporal resolution imaging. Since the wireless device is used for localization and does not require full imaging capability, the design of the SSB wireless system was simplified by allowing an asynchronous clock between the transmitter and receiver. When coupled to a high readout bandwidth, the error caused by the lack of a shared frequency reference was quantified to be less than one pixel (0.78 mm) in the projection acquisitions. Image guidance with the prototype was demonstrated with a phantom where a needle was successfully guided to a target and contrast was delivered. The feasibility of active tracking with a wireless detector array is demonstrated. Wireless arrays could be incorporated into devices to assist in image-guided procedures. Copyright © 2013 Wiley Periodicals, Inc.

  9. Device localization and dynamic scan plane selection using a wireless MRI detector array

    PubMed Central

    Riffe, Matthew J.; Yutzy, Stephen R.; Jiang, Yun; Twieg, Michael D.; Blumenthal, Colin J.; Hsu, Daniel P.; Pan, Li; Gilson, Wesley D.; Sunshine, Jeffrey L.; Flask, Christopher A.; Duerk, Jeffrey L.; Nakamoto, Dean; Gulani, Vikas; Griswold, Mark A.

    2013-01-01

    Purpose A prototype wireless guidance device using single sideband amplitude modulation (SSB) is presented for a 1.5T MRI system. Methods The device contained three fiducial markers each mounted to an independent receiver coil equipped with wireless SSB technology. Acquiring orthogonal projections of these markers determined the position and orientation of the device, which was used to define the scan plane for a subsequent image acquisition. Device localization and scan plane update required approximately 30 ms, so it could be interleaved with high temporal resolution imaging. Since the wireless device is used for localization and doesn’t require full imaging capability, the design of the SSB wireless system was simplified by allowing an asynchronous clock between the transmitter and receiver. Results When coupled to a high readout bandwidth, the error caused by the lack of a shared frequency reference was quantified to be less than one pixel (0.78 mm) in the projection acquisitions. Image-guidance with the prototype was demonstrated with a phantom where a needle was successfully guided to a target and contrast was delivered. Conclusion The feasibility of active tracking with a wireless detector array is demonstrated. Wireless arrays could be incorporated into devices to assist in image-guided procedures. PMID:23900921

  10. Development and preliminary evaluation of a 90 K Axiom® SNP array for the allo-octoploid cultivated strawberry Fragaria × ananassa.

    PubMed

    Bassil, Nahla V; Davis, Thomas M; Zhang, Hailong; Ficklin, Stephen; Mittmann, Mike; Webster, Teresa; Mahoney, Lise; Wood, David; Alperin, Elisabeth S; Rosyara, Umesh R; Koehorst-Vanc Putten, Herma; Monfort, Amparo; Sargent, Daniel J; Amaya, Iraida; Denoyes, Beatrice; Bianco, Luca; van Dijk, Thijs; Pirani, Ali; Iezzoni, Amy; Main, Dorrie; Peace, Cameron; Yang, Yilong; Whitaker, Vance; Verma, Sujeet; Bellon, Laurent; Brew, Fiona; Herrera, Raul; van de Weg, Eric

    2015-03-07

    A high-throughput genotyping platform is needed to enable marker-assisted breeding in the allo-octoploid cultivated strawberry Fragaria × ananassa. Short-read sequences from one diploid and 19 octoploid accessions were aligned to the diploid Fragaria vesca 'Hawaii 4' reference genome to identify single nucleotide polymorphisms (SNPs) and indels for incorporation into a 90 K Affymetrix® Axiom® array. We report the development and preliminary evaluation of this array. About 36 million sequence variants were identified in a 19 member, octoploid germplasm panel. Strategies and filtering pipelines were developed to identify and incorporate markers of several types: di-allelic SNPs (66.6%), multi-allelic SNPs (1.8%), indels (10.1%), and ploidy-reducing "haploSNPs" (11.7%). The remaining SNPs included those discovered in the diploid progenitor F. iinumae (3.9%), and speculative "codon-based" SNPs (5.9%). In genotyping 306 octoploid accessions, SNPs were assigned to six classes with Affymetrix's "SNPolisher" R package. The highest quality classes, PolyHigh Resolution (PHR), No Minor Homozygote (NMH), and Off-Target Variant (OTV) comprised 25%, 38%, and 1% of array markers, respectively. These markers were suitable for genetic studies as demonstrated in the full-sib family 'Holiday' × 'Korona' with the generation of a genetic linkage map consisting of 6,594 PHR SNPs evenly distributed across 28 chromosomes with an average density of approximately one marker per 0.5 cM, thus exceeding our goal of one marker per cM. The Affymetrix IStraw90 Axiom array is the first high-throughput genotyping platform for cultivated strawberry and is commercially available to the worldwide scientific community. The array's high success rate is likely driven by the presence of naturally occurring variation in ploidy level within the nominally octoploid genome, and by effectiveness of the employed array design and ploidy-reducing strategies. This array enables genetic analyses including generation of high-density linkage maps, identification of quantitative trait loci for economically important traits, and genome-wide association studies, thus providing a basis for marker-assisted breeding in this high value crop.

  11. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring.

    PubMed

    Sharma, Sanjiv; Saeed, Anwer; Johnson, Christopher; Gadegaard, Nikolaj; Cass, Anthony Eg

    2017-04-01

    The next generation of devices for personal healthcare monitoring will comprise molecular sensors to monitor analytes of interest in the skin compartment. Transdermal devices based on microneedles offer an excellent opportunity to explore the dynamics of molecular markers in the interstitial fluid, however good acceptability of these next generation devices will require several technical problems associated with current commercially available wearable sensors to be overcome. These particularly include reliability, comfort and cost. An essential pre-requisite for transdermal molecular sensing devices is that they can be fabricated using scalable technologies which are cost effective. We present here a minimally invasive microneedle array as a continuous monitoring platform technology. Method for scalable fabrication of these structures is presented. The microneedle arrays were characterised mechanically and were shown to penetrate human skin under moderate thumb pressure. They were then functionalised and evaluated as glucose, lactate and theophylline biosensors. The results suggest that this technology can be employed in the measurement of metabolites, therapeutic drugs and biomarkers and could have an important role to play in the management of chronic diseases.

  12. Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat

    PubMed Central

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-01-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models. PMID:23275882

  13. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    PubMed

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  14. Evaluation of SNP Data from the Malus Infinium Array Identifies Challenges for Genetic Analysis of Complex Genomes of Polyploid Origin

    PubMed Central

    Troggio, Michela; Šurbanovski, Nada; Bianco, Luca; Moretto, Marco; Giongo, Lara; Banchi, Elisa; Viola, Roberto; Fernández, Felicdad Fernández; Costa, Fabrizio; Velasco, Riccardo; Cestaro, Alessandro; Sargent, Daniel James

    2013-01-01

    High throughput arrays for the simultaneous genotyping of thousands of single-nucleotide polymorphisms (SNPs) have made the rapid genetic characterisation of plant genomes and the development of saturated linkage maps a realistic prospect for many plant species of agronomic importance. However, the correct calling of SNP genotypes in divergent polyploid genomes using array technology can be problematic due to paralogy, and to divergence in probe sequences causing changes in probe binding efficiencies. An Illumina Infinium II whole-genome genotyping array was recently developed for the cultivated apple and used to develop a molecular linkage map for an apple rootstock progeny (M432), but a large proportion of segregating SNPs were not mapped in the progeny, due to unexpected genotype clustering patterns. To investigate the causes of this unexpected clustering we performed BLAST analysis of all probe sequences against the ‘Golden Delicious’ genome sequence and discovered evidence for paralogous annealing sites and probe sequence divergence for a high proportion of probes contained on the array. Following visual re-evaluation of the genotyping data generated for 8,788 SNPs for the M432 progeny using the array, we manually re-scored genotypes at 818 loci and mapped a further 797 markers to the M432 linkage map. The newly mapped markers included the majority of those that could not be mapped previously, as well as loci that were previously scored as monomorphic, but which segregated due to divergence leading to heterozygosity in probe annealing sites. An evaluation of the 8,788 probes in a diverse collection of Malus germplasm showed that more than half the probes returned genotype clustering patterns that were difficult or impossible to interpret reliably, highlighting implications for the use of the array in genome-wide association studies. PMID:23826289

  15. Genome-Wide Association Study Reveals a New QTL for Salinity Tolerance in Barley (Hordeum vulgare L.)

    PubMed Central

    Fan, Yun; Zhou, Gaofeng; Shabala, Sergey; Chen, Zhong-Hua; Cai, Shengguan; Li, Chengdao; Zhou, Meixue

    2016-01-01

    Salinity stress is one of the most severe abiotic stresses that affect agricultural production. Genome wide association study (GWAS) has been widely used to detect genetic variations in extensive natural accessions with more recombination and higher resolution. In this study, 206 barley accessions collected worldwide were genotyped with 408 Diversity Arrays Technology (DArT) markers and evaluated for salinity stress tolerance using salinity tolerance score – a reliable trait developed in our previous work. GWAS for salinity tolerance had been conducted through a general linkage model and a mixed linkage model based on population structure and kinship. A total of 24 significant marker-trait associations were identified. A QTL on 4H with the nearest marker of bPb-9668 was consistently detected in all different methods. This QTL has not been reported before and is worth to be further confirmed with bi-parental populations. PMID:27446173

  16. Geographic differentiation of domesticated einkorn wheat and possible Neolithic migration routes.

    PubMed

    Brandolini, A; Volante, A; Heun, M

    2016-09-01

    To analyse the spread of domesticated einkorn into Europe, 136 landraces, 9 wild einkorns and 3 Triticum urartu were fingerprinted by the diversity array technology sequence (DArT-seq) marker technology. The obtained 3455 single-nucleotide polymorphism (SNP) markers confirmed earlier results about the separation of wild and domesticated einkorn from T. urartu and about the pinpointing of the domesticated forms to the Karacadağ Mountains (Turkey). Further analyses identified two major domesticated landrace einkorn groups, one relating to the Prealpine region and the other to the Maghreb/Iberian region. The previously published four geographical provenance groups were mostly identified in our results. The earlier reported unique position of the Maghreb/Iberia einkorns cannot be confirmed, as the three landrace clusters we identified with STRUCTURE also occur in the remaining einkorn, although at different frequencies. The results are discussed with respect to the spreading of domesticated einkorn into Western Europe and two possible Neolithic migration routes are indicated.

  17. Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of Gossypium spp.

    PubMed Central

    Hulse-Kemp, Amanda M.; Lemm, Jana; Plieske, Joerg; Ashrafi, Hamid; Buyyarapu, Ramesh; Fang, David D.; Frelichowski, James; Giband, Marc; Hague, Steve; Hinze, Lori L.; Kochan, Kelli J.; Riggs, Penny K.; Scheffler, Jodi A.; Udall, Joshua A.; Ulloa, Mauricio; Wang, Shirley S.; Zhu, Qian-Hao; Bag, Sumit K.; Bhardwaj, Archana; Burke, John J.; Byers, Robert L.; Claverie, Michel; Gore, Michael A.; Harker, David B.; Islam, Md S.; Jenkins, Johnie N.; Jones, Don C.; Lacape, Jean-Marc; Llewellyn, Danny J.; Percy, Richard G.; Pepper, Alan E.; Poland, Jesse A.; Mohan Rai, Krishan; Sawant, Samir V.; Singh, Sunil Kumar; Spriggs, Andrew; Taylor, Jen M.; Wang, Fei; Yourstone, Scott M.; Zheng, Xiuting; Lawley, Cindy T.; Ganal, Martin W.; Van Deynze, Allen; Wilson, Iain W.; Stelly, David M.

    2015-01-01

    High-throughput genotyping arrays provide a standardized resource for plant breeding communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), complex trait dissection, and studying patterns of genomic diversity among cultivars and wild accessions. We have developed the CottonSNP63K, an Illumina Infinium array containing assays for 45,104 putative intraspecific single nucleotide polymorphism (SNP) markers for use within the cultivated cotton species Gossypium hirsutum L. and 17,954 putative interspecific SNP markers for use with crosses of other cotton species with G. hirsutum. The SNPs on the array were developed from 13 different discovery sets that represent a diverse range of G. hirsutum germplasm and five other species: G. barbadense L., G. tomentosum Nuttal × Seemann, G. mustelinum Miers × Watt, G. armourianum Kearny, and G. longicalyx J.B. Hutchinson and Lee. The array was validated with 1,156 samples to generate cluster positions to facilitate automated analysis of 38,822 polymorphic markers. Two high-density genetic maps containing a total of 22,829 SNPs were generated for two F2 mapping populations, one intraspecific and one interspecific, and 3,533 SNP markers were co-occurring in both maps. The produced intraspecific genetic map is the first saturated map that associates into 26 linkage groups corresponding to the number of cotton chromosomes for a cross between two G. hirsutum lines. The linkage maps were shown to have high levels of collinearity to the JGI G. raimondii Ulbrich reference genome sequence. The CottonSNP63K array, cluster file and associated marker sequences constitute a major new resource for the global cotton research community. PMID:25908569

  18. A New Cell Separation Method Based on Antibody-Immobilized Nanoneedle Arrays for the Detection of Intracellular Markers.

    PubMed

    Kawamura, Ryuzo; Miyazaki, Minami; Shimizu, Keita; Matsumoto, Yuta; Silberberg, Yaron R; Sathuluri, Ramachandra Rao; Iijima, Masumi; Kuroda, Shun'ichi; Iwata, Futoshi; Kobayashi, Takeshi; Nakamura, Chikashi

    2017-11-08

    Focusing on intracellular targets, we propose a new cell separation technique based on a nanoneedle array (NNA) device, which allows simultaneous insertion of multiple needles into multiple cells. The device is designed to target and lift ("fish") individual cells from a mixed population of cells on a substrate using an antibody-functionalized NNA. The mechanics underlying this approach were validated by force analysis using an atomic force microscope. Accurate high-throughput separation was achieved using one-to-one contacts between the nanoneedles and the cells by preparing a single-cell array in which the positions of the cells were aligned with 10,000 nanoneedles in the NNA. Cell-type-specific separation was realized by controlling the adhesion force so that the cells could be detached in cell-type-independent manner. Separation of nestin-expressing neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) was demonstrated using the proposed technology, and successful differentiation to neuronal cells was confirmed.

  19. Limited utility of tissue micro-arrays in detecting intra-tumoral heterogeneity in stem cell characteristics and tumor progression markers in breast cancer.

    PubMed

    Kündig, Pascale; Giesen, Charlotte; Jackson, Hartland; Bodenmiller, Bernd; Papassotirolopus, Bärbel; Freiberger, Sandra Nicole; Aquino, Catharine; Opitz, Lennart; Varga, Zsuzsanna

    2018-05-08

    Intra-tumoral heterogeneity has been recently addressed in different types of cancer, including breast cancer. A concept describing the origin of intra-tumoral heterogeneity is the cancer stem-cell hypothesis, proposing the existence of cancer stem cells that can self-renew limitlessly and therefore lead to tumor progression. Clonal evolution in accumulated single cell genomic alterations is a further possible explanation in carcinogenesis. In this study, we addressed the question whether intra-tumoral heterogeneity can be reliably detected in tissue-micro-arrays in breast cancer by comparing expression levels of conventional predictive/prognostic tumor markers, tumor progression markers and stem cell markers between central and peripheral tumor areas. We analyzed immunohistochemical expression and/or gene amplification status of conventional prognostic tumor markers (ER, PR, HER2, CK5/6), tumor progression markers (PTEN, PIK3CA, p53, Ki-67) and stem cell markers (mTOR, SOX2, SOX9, SOX10, SLUG, CD44, CD24, TWIST) in 372 tissue-micro-array samples from 72 breast cancer patients. Expression levels were compared between central and peripheral tumor tissue areas and were correlated to histopathological grading. 15 selected cases additionally underwent RNA sequencing for transcriptome analysis. No significant difference in any of the analyzed between central and peripheral tumor areas was seen with any of the analyzed methods/or results that showed difference. Except mTOR, PIK3CA and SOX9 (nuclear) protein expression, all markers correlated significantly (p < 0.05) with histopathological grading both in central and peripheral areas. Our results suggest that intra-tumoral heterogeneity of stem-cell and tumor-progression markers cannot be reliably addressed in tissue-micro-array samples in breast cancer. However, most markers correlated strongly with histopathological grading confirming prognostic information as expression profiles were independent on the site of the biopsy was taken.

  20. Transcriptomic SNP discovery for custom genotyping arrays: impacts of sequence data, SNP calling method and genotyping technology on the probability of validation success.

    PubMed

    Humble, Emily; Thorne, Michael A S; Forcada, Jaume; Hoffman, Joseph I

    2016-08-26

    Single nucleotide polymorphism (SNP) discovery is an important goal of many studies. However, the number of 'putative' SNPs discovered from a sequence resource may not provide a reliable indication of the number that will successfully validate with a given genotyping technology. For this it may be necessary to account for factors such as the method used for SNP discovery and the type of sequence data from which it originates, suitability of the SNP flanking sequences for probe design, and genomic context. To explore the relative importance of these and other factors, we used Illumina sequencing to augment an existing Roche 454 transcriptome assembly for the Antarctic fur seal (Arctocephalus gazella). We then mapped the raw Illumina reads to the new hybrid transcriptome using BWA and BOWTIE2 before calling SNPs with GATK. The resulting markers were pooled with two existing sets of SNPs called from the original 454 assembly using NEWBLER and SWAP454. Finally, we explored the extent to which SNPs discovered using these four methods overlapped and predicted the corresponding validation outcomes for both Illumina Infinium iSelect HD and Affymetrix Axiom arrays. Collating markers across all discovery methods resulted in a global list of 34,718 SNPs. However, concordance between the methods was surprisingly poor, with only 51.0 % of SNPs being discovered by more than one method and 13.5 % being called from both the 454 and Illumina datasets. Using a predictive modeling approach, we could also show that SNPs called from the Illumina data were on average more likely to successfully validate, as were SNPs called by more than one method. Above and beyond this pattern, predicted validation outcomes were also consistently better for Affymetrix Axiom arrays. Our results suggest that focusing on SNPs called by more than one method could potentially improve validation outcomes. They also highlight possible differences between alternative genotyping technologies that could be explored in future studies of non-model organisms.

  1. Construction of a versatile SNP array for pyramiding useful genes of rice.

    PubMed

    Kurokawa, Yusuke; Noda, Tomonori; Yamagata, Yoshiyuki; Angeles-Shim, Rosalyn; Sunohara, Hidehiko; Uehara, Kanako; Furuta, Tomoyuki; Nagai, Keisuke; Jena, Kshirod Kumar; Yasui, Hideshi; Yoshimura, Atsushi; Ashikari, Motoyuki; Doi, Kazuyuki

    2016-01-01

    DNA marker-assisted selection (MAS) has become an indispensable component of breeding. Single nucleotide polymorphisms (SNP) are the most frequent polymorphism in the rice genome. However, SNP markers are not readily employed in MAS because of limitations in genotyping platforms. Here the authors report a Golden Gate SNP array that targets specific genes controlling yield-related traits and biotic stress resistance in rice. As a first step, the SNP genotypes were surveyed in 31 parental varieties using the Affymetrix Rice 44K SNP microarray. The haplotype information for 16 target genes was then converted to the Golden Gate platform with 143-plex markers. Haplotypes for the 14 useful allele are unique and can discriminate among all other varieties. The genotyping consistency between the Affymetrix microarray and the Golden Gate array was 92.8%, and the accuracy of the Golden Gate array was confirmed in 3 F2 segregating populations. The concept of the haplotype-based selection by using the constructed SNP array was proofed. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Fractionation of Exosomes and DNA using Size-Based Separation at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wunsch, Benjamin; Smith, Joshua; Wang, Chao; Gifford, Stacey; Brink, Markus; Bruce, Robert; Solovitzky, Gustavo; Austin, Robert; Astier, Yann

    Exosomes, a key target of ``liquid biopsies'', are nano-vesicles found in nearly all biological fluids. Exosomes are secreted by eukaryotic and prokaryotic cells alike, and contain information about their originating cells, including surface proteins, cytoplasmic proteins, and nucleic acids. One challenge in studying exosome morphology is the difficulty of sorting exosomes by size and surface markers. Common separation techniques for exosomes include ultracentrifugation and ultrafiltration, for preparation of large volume samples, but these techniques often show contamination and significant heterogeneity between preparations. To date, deterministic lateral displacement (DLD) pillar arrays in silicon have proven an efficient technology to sort, separate, and enrich micron-scale particles including human parasites, eukaryotic cells, blood cells, and circulating tumor cells in blood; however, the DLD technology has never been translated to the true nanoscale, where it could function on bio-colloids such as exosomes. We have fabricated nanoscale DLD (nanoDLD) arrays capable of rapidly sorting colloids down to 20 nm in continuous flow, and demonstrated size sorting of individual exosome vesicles and dsDNA polymers, opening the potential for on-chip biomolecule separation and diagnosti

  3. Origin of year-long bean (Phaseolus dumosus Macfady, Fabaceae) from reticulated hybridization events between multiple Phaseolus species.

    PubMed

    Mina-Vargas, Angela M; McKeown, Peter C; Flanagan, Nicola S; Debouck, Daniel G; Kilian, Andrzej; Hodkinson, Trevor R; Spillane, Charles

    2016-08-06

    Improved understanding of the secondary gene pools of crops is essential for advancing genetic gain in breeding programmes. Common bean, Phaseolus vulgaris, is a staple crop with several wild relatives in its secondary gene pool. The year-long bean, P. dumosus, an important crop in Guatemala, is considered particularly closely related to P. vulgaris and a potential source of novel variation. However, the genetic diversity and relationship to other Phaseolus species of P. dumosus remain unclear. We conducted the first comprehensive investigation of P. dumosus genetic diversity using both nuclear and chloroplast genome markers. Our nuclear marker set included over 700 markers present within the Phaseolus DArT (Diversity Arrays Technology) array, which we applied to P. dumosus and other relatives of P. vulgaris (including every secondary gene pool species: P. acutifolius, P. albescens, P. coccineus and P. costaricensis). Phaseolus dumosus arose from hybridization of P. vulgaris and P. coccineus, followed by at least two later hybridizations with sympatric congener populations. Existing P. dumosus collections have low genetic diversity. The under-utilized crop P. dumosus has a complex hybrid origin. Further sampling in the region in which it arose may uncover additional germplasm for introgressing favourable traits into crops within the P. vulgaris gene pool. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping.

    PubMed

    Jørgensen, Malene; Bæk, Rikke; Pedersen, Shona; Søndergaard, Evo K L; Kristensen, Søren R; Varming, Kim

    2013-01-01

    Exosomes are one of the several types of cell-derived vesicles with a diameter of 30-100 nm. These extracellular vesicles are recognized as potential markers of human diseases such as cancer. However, their use in diagnostic tests requires an objective and high-throughput method to define their phenotype and determine their concentration in biological fluids. To identify circulating as well as cell culture-derived vesicles, the current standard is immunoblotting or a flow cytometrical analysis for specific proteins, both of which requires large amounts of purified vesicles. Based on the technology of protein microarray, we hereby present a highly sensitive Extracellular Vesicle (EV) Array capable of detecting and phenotyping exosomes and other extracellular vesicles from unpurified starting material in a high-throughput manner. To only detect the exosomes captured on the EV Array, a cocktail of antibodies against the tetraspanins CD9, CD63 and CD81 was used. These antibodies were selected to ensure that all exosomes captured are detected, and concomitantly excluding the detection of other types of microvesicles. The limit of detection (LOD) was determined on exosomes derived from the colon cancer cell line LS180. It clarified that supernatant from only approximately 10(4) cells was needed to obtain signals or that only 2.5×10(4) exosomes were required for each microarray spot (~1 nL). Phenotyping was performed on plasma (1-10 µL) from 7 healthy donors, which were applied to the EV Array with a panel of antibodies against 21 different cellular surface antigens and cancer antigens. For each donor, there was considerable heterogeneity in the expression levels of individual markers. The protein profiles of the exosomes (defined as positive for CD9, CD63 and CD81) revealed that only the expression level of CD9 and CD81 was approximately equal in the 7 donors. This implies questioning the use of CD63 as a standard exosomal marker since the expression level of this tetraspanin was considerably lower.

  5. Sunflower Hybrid Breeding: From Markers to Genomic Selection

    PubMed Central

    Dimitrijevic, Aleksandra; Horn, Renate

    2018-01-01

    In sunflower, molecular markers for simple traits as, e.g., fertility restoration, high oleic acid content, herbicide tolerance or resistances to Plasmopara halstedii, Puccinia helianthi, or Orobanche cumana have been successfully used in marker-assisted breeding programs for years. However, agronomically important complex quantitative traits like yield, heterosis, drought tolerance, oil content or selection for disease resistance, e.g., against Sclerotinia sclerotiorum have been challenging and will require genome-wide approaches. Plant genetic resources for sunflower are being collected and conserved worldwide that represent valuable resources to study complex traits. Sunflower association panels provide the basis for genome-wide association studies, overcoming disadvantages of biparental populations. Advances in technologies and the availability of the sunflower genome sequence made novel approaches on the whole genome level possible. Genotype-by-sequencing, and whole genome sequencing based on next generation sequencing technologies facilitated the production of large amounts of SNP markers for high density maps as well as SNP arrays and allowed genome-wide association studies and genomic selection in sunflower. Genome wide or candidate gene based association studies have been performed for traits like branching, flowering time, resistance to Sclerotinia head and stalk rot. First steps in genomic selection with regard to hybrid performance and hybrid oil content have shown that genomic selection can successfully address complex quantitative traits in sunflower and will help to speed up sunflower breeding programs in the future. To make sunflower more competitive toward other oil crops higher levels of resistance against pathogens and better yield performance are required. In addition, optimizing plant architecture toward a more complex growth type for higher plant densities has the potential to considerably increase yields per hectare. Integrative approaches combining omic technologies (genomics, transcriptomics, proteomics, metabolomics and phenomics) using bioinformatic tools will facilitate the identification of target genes and markers for complex traits and will give a better insight into the mechanisms behind the traits. PMID:29387071

  6. Biotechnology and apple breeding in Japan

    PubMed Central

    Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko

    2016-01-01

    Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding. PMID:27069388

  7. Biotechnology and apple breeding in Japan.

    PubMed

    Igarashi, Megumi; Hatsuyama, Yoshimichi; Harada, Takeo; Fukasawa-Akada, Tomoko

    2016-01-01

    Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding.

  8. Predicting Breed Composition Using Breed Frequencies of 50,000 Markers from the U.S. Meat Animal Research Center 2,000 Bull Project

    USDA-ARS?s Scientific Manuscript database

    Our objective was to evaluate whether breed composition of crossbred cattle could be predicted using reference breed frequencies of SNP markers on the BovineSNP50 array. Semen DNA samples of over 2,000 bulls from 16 common commercial beef breeds were genotyped using the array and used to estimate cu...

  9. A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome

    PubMed Central

    Ganal, Martin W.; Durstewitz, Gregor; Polley, Andreas; Bérard, Aurélie; Buckler, Edward S.; Charcosset, Alain; Clarke, Joseph D.; Graner, Eva-Maria; Hansen, Mark; Joets, Johann; Le Paslier, Marie-Christine; McMullen, Michael D.; Montalent, Pierre; Rose, Mark; Schön, Chris-Carolin; Sun, Qi; Walter, Hildrun; Martin, Olivier C.; Falque, Matthieu

    2011-01-01

    SNP genotyping arrays have been useful for many applications that require a large number of molecular markers such as high-density genetic mapping, genome-wide association studies (GWAS), and genomic selection. We report the establishment of a large maize SNP array and its use for diversity analysis and high density linkage mapping. The markers, taken from more than 800,000 SNPs, were selected to be preferentially located in genes and evenly distributed across the genome. The array was tested with a set of maize germplasm including North American and European inbred lines, parent/F1 combinations, and distantly related teosinte material. A total of 49,585 markers, including 33,417 within 17,520 different genes and 16,168 outside genes, were of good quality for genotyping, with an average failure rate of 4% and rates up to 8% in specific germplasm. To demonstrate this array's use in genetic mapping and for the independent validation of the B73 sequence assembly, two intermated maize recombinant inbred line populations – IBM (B73×Mo17) and LHRF (F2×F252) – were genotyped to establish two high density linkage maps with 20,913 and 14,524 markers respectively. 172 mapped markers were absent in the current B73 assembly and their placement can be used for future improvements of the B73 reference sequence. Colinearity of the genetic and physical maps was mostly conserved with some exceptions that suggest errors in the B73 assembly. Five major regions containing non-colinearities were identified on chromosomes 2, 3, 6, 7 and 9, and are supported by both independent genetic maps. Four additional non-colinear regions were found on the LHRF map only; they may be due to a lower density of IBM markers in those regions or to true structural rearrangements between lines. Given the array's high quality, it will be a valuable resource for maize genetics and many aspects of maize breeding. PMID:22174790

  10. Discovery and mapping of single feature polymorphisms in wheat using Affymetrix arrays

    PubMed Central

    Bernardo, Amy N; Bradbury, Peter J; Ma, Hongxiang; Hu, Shengwa; Bowden, Robert L; Buckler, Edward S; Bai, Guihua

    2009-01-01

    Background Wheat (Triticum aestivum L.) is a staple food crop worldwide. The wheat genome has not yet been sequenced due to its huge genome size (~17,000 Mb) and high levels of repetitive sequences; the whole genome sequence may not be expected in the near future. Available linkage maps have low marker density due to limitation in available markers; therefore new technologies that detect genome-wide polymorphisms are still needed to discover a large number of new markers for construction of high-resolution maps. A high-resolution map is a critical tool for gene isolation, molecular breeding and genomic research. Single feature polymorphism (SFP) is a new microarray-based type of marker that is detected by hybridization of DNA or cRNA to oligonucleotide probes. This study was conducted to explore the feasibility of using the Affymetrix GeneChip to discover and map SFPs in the large hexaploid wheat genome. Results Six wheat varieties of diverse origins (Ning 7840, Clark, Jagger, Encruzilhada, Chinese Spring, and Opata 85) were analyzed for significant probe by variety interactions and 396 probe sets with SFPs were identified. A subset of 164 unigenes was sequenced and 54% showed polymorphism within probes. Microarray analysis of 71 recombinant inbred lines from the cross Ning 7840/Clark identified 955 SFPs and 877 of them were mapped together with 269 simple sequence repeat markers. The SFPs were randomly distributed within a chromosome but were unevenly distributed among different genomes. The B genome had the most SFPs, and the D genome had the least. Map positions of a selected set of SFPs were validated by mapping single nucleotide polymorphism using SNaPshot and comparing with expressed sequence tags mapping data. Conclusion The Affymetrix array is a cost-effective platform for SFP discovery and SFP mapping in wheat. The new high-density map constructed in this study will be a useful tool for genetic and genomic research in wheat. PMID:19480702

  11. Genomic patterns of species diversity and divergence in Eucalyptus.

    PubMed

    Hudson, Corey J; Freeman, Jules S; Myburg, Alexander A; Potts, Brad M; Vaillancourt, René E

    2015-06-01

    We examined genome-wide patterns of DNA sequence diversity and divergence among six species of the important tree genus Eucalyptus and investigated their relationship with genomic architecture. Using c. 90 range-wide individuals of each Eucalyptus species (E. grandis, E. urophylla, E. globulus, E. nitens, E. dunnii and E. camaldulensis), genetic diversity and divergence were estimated from 2840 polymorphic diversity arrays technology markers covering the 11 chromosomes. Species differentiating markers (SDMs) identified in each of 15 pairwise species comparisons, along with species diversity (HHW ) and divergence (FST ), were projected onto the E. grandis reference genome. Across all species comparisons, SDMs totalled 1.1-5.3% of markers and were widely distributed throughout the genome. Marker divergence (FST and SDMs) and diversity differed among and within chromosomes. Patterns of diversity and divergence were broadly conserved across species and significantly associated with genomic features, including the proximity of markers to genes, the relative number of clusters of tandem duplications, and gene density within or among chromosomes. These results suggest that genomic architecture influences patterns of species diversity and divergence in the genus. This influence is evident across the six species, encompassing diverse phylogenetic lineages, geography and ecology. © 2015 University of Tasmania New Phytologist © 2015 New Phytologist Trust.

  12. [Theoretical foundations of protein chips and their possible use in medical research and diagnostics].

    PubMed

    Spisák, Sándor; Molnár, Béla; Galamb, Orsolya; Sipos, Ferenc; Tulassay, Zsolt

    2007-08-12

    The confirmation of mRNA expression studies by protein chips is of high recent interest due to the widespread application of expression arrays. In this review the advantages, technical limitations, application fields and the first results of the protein arrays is described. The bottlenecks of the increasing protein array applications are the fast decomposition of proteins, the problem with aspecific binding and the lack of amplification techniques. Today glass slide based printed, SELDI (MS) based, electrophoresis based and tissue microarray based technologies are available. The advantage of the glass slide based chips are the simplicity of their application, and relatively low cost. The SELDI based protein chip technique is applicable to minute amounts of starting material (<1 microg) but it is the most expensive one. The electrophoresis based techniques are still under intensive development. The tissue microarrays can be used for the parallel testing of the sensitivity and specificity of single antibodies on a broad range of histological specimens on a single slide. Protein chips were successfully used for serum tumor marker detection, cancer research, cell physiology studies and for the verification of mRNA expression studies. Protein chips are envisioned to be available for routine diagnostic applications if the ongoing technology development will be successful in increase in sensitivity, specificity, costs reduction and for the reduction of the necessary sample volume.

  13. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh).

    PubMed

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs.

  14. Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × domestica Borkh)

    PubMed Central

    Bianco, Luca; Cestaro, Alessandro; Sargent, Daniel James; Banchi, Elisa; Derdak, Sophia; Di Guardo, Mario; Salvi, Silvio; Jansen, Johannes; Viola, Roberto; Gut, Ivo; Laurens, Francois; Chagné, David; Velasco, Riccardo; van de Weg, Eric; Troggio, Michela

    2014-01-01

    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ∼3.7K validated SNPs from the IRSC 8K array. The array has already been used in other studies where ∼15.8K SNP markers were mapped with an average of ∼6.8K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs. PMID:25303088

  15. Development of DArT markers and assessment of diversity in Fusarium oxysporum f. sp. ciceris, wilt pathogen of chickpea (Cicer arietinum L.).

    PubMed

    Sharma, Mamta; Nagavardhini, Avuthu; Thudi, Mahendar; Ghosh, Raju; Pande, Suresh; Varshney, Rajeev K

    2014-06-10

    Fusarium oxysporum f. sp. ciceris (Foc), the causal agent of Fusarium wilt of chickpea is highly variable and frequent recurrence of virulent forms have affected chickpea production and exhausted valuable genetic resources. The severity and yield losses of Fusarium wilt differ from place to place owing to existence of physiological races among isolates. Diversity study of fungal population associated with a disease plays a major role in understanding and devising better disease control strategies. The advantages of using molecular markers to understand the distribution of genetic diversity in Foc populations is well understood. The recent development of Diversity Arrays Technology (DArT) offers new possibilities to study the diversity in pathogen population. In this study, we developed DArT markers for Foc population, analysed the genetic diversity existing within and among Foc isolates, compared the genotypic and phenotypic diversity and infer the race scenario of Foc in India. We report the successful development of DArT markers for Foc and their utility in genotyping of Foc collections representing five chickpea growing agro-ecological zones of India. The DArT arrays revealed a total 1,813 polymorphic markers with an average genotyping call rate of 91.16% and a scoring reproducibility of 100%. Cluster analysis, principal coordinate analysis and population structure indicated that the different isolates of Foc were partially classified based on geographical source. Diversity in Foc population was compared with the phenotypic variability and it was found that DArT markers were able to group the isolates consistent with its virulence group. A number of race-specific unique and rare alleles were also detected. The present study generated significant information in terms of pathogenic and genetic diversity of Foc which could be used further for development and deployment of region-specific resistant cultivars of chickpea. The DArT markers were proved to be a powerful diagnostic tool to study the genotypic diversity in Foc. The high number of DArT markers allowed a greater resolution of genetic differences among isolates and enabled us to examine the extent of diversity in the Foc population present in India, as well as provided support to know the changing race scenario in Foc population.

  16. Estrogen regulation of uterine genes in vivo detected by complementary DNA array.

    PubMed

    Andrade, P M; Silva, I D C G; Borra, R C; de Lima, G R; Baracat, E C

    2002-05-01

    In the present study, our aim was to identify differentially expressed genes involved in estrogen actions at the endometrium level in rats. Thirty adult rats were ovariectomized four days prior to drug administration for 48 days. Rats were divided in 2 groups: I, control and II, conjugated equine estrogens (CCE). Total RNA was isolated from uterus, and differential expression was analyzed by array technology and RT-PCR. A total of 32 candidate genes were shown to be upregulated or downregulated in groups I or II. Among them, differential expression was already confirmed by RT-PCR for IGFBP5, S12, c-kit, and VEGF, genes whose expression was up regulated during CCE therapy, and casein kinase II and serine kinase expression was the same level in both groups. We have demonstrated that cDNA array represents a powerful approach to identify key molecules in the estrogens therapy. A number of the candidates reported here should provide new markers that may contribute to the detection of target estrogen receptor. This information may also aid the development of new approaches to therapeutic intervention.

  17. A kilobyte rewritable atomic memory

    NASA Astrophysics Data System (ADS)

    Kalff, Floris; Rebergen, Marnix; Fahrenfort, Nora; Girovsky, Jan; Toskovic, Ranko; Lado, Jose; FernáNdez-Rossier, JoaquíN.; Otte, Sander

    The ability to manipulate individual atoms by means of scanning tunneling microscopy (STM) opens op opportunities for storage of digital data on the atomic scale. Recent achievements in this direction include data storage based on bits encoded in the charge state, the magnetic state, or the local presence of single atoms or atomic assemblies. However, a key challenge at this stage is the extension of such technologies into large-scale rewritable bit arrays. We demonstrate a digital atomic-scale memory of up to 1 kilobyte (8000 bits) using an array of individual surface vacancies in a chlorine terminated Cu(100) surface. The chlorine vacancies are found to be stable at temperatures up to 77 K. The memory, crafted using scanning tunneling microscopy at low temperature, can be read and re-written automatically by means of atomic-scale markers, and offers an areal density of 502 Terabits per square inch, outperforming state-of-the-art hard disk drives by three orders of magnitude.

  18. Evaluation of the FilmArray® system for detection of Bacillus anthracis, Francisella tularensis, and Yersinia pestis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiner, Derrick R.; Colburn, Heather A.; Baird, Cheryl L.

    2013-04-29

    To evaluate the sensitivity and specificity of the Idaho Technologies FilmArray® Biothreat Panel for the detection of Bacillus anthracis (Ba), Francisella tularensis (Ft), and Yersinia pestis (Yp) DNA, and demonstrate the detection of Ba spores. Methods and Results: DNA samples from Ba, Ft and Yp strains and near-neighbors, and live Ba spores were analyzed using the Biothreat Panel, a multiplexed PCR-based assay for 17 pathogens and toxins. Sensitivity studies with DNA suggest a limit of detection of 250 genome equivalents (GEs) per sample. Furthermore, the correct call of Ft, Yp or Bacillus species was made in 63 of 72 samplesmore » tested at 25 GE or less. With samples containing 25 Ba Sterne spores, at least one of the two possible Ba markers were identified in all samples tested. We observed no cross-reactivity with near-neighbor DNAs.« less

  19. Single-Cell, Multiplexed Protein Detection of Rare Tumor Cells Based on a Beads-on-Barcode Antibody Microarray.

    PubMed

    Yang, Liu; Wang, Zhihua; Deng, Yuliang; Li, Yan; Wei, Wei; Shi, Qihui

    2016-11-15

    Circulating tumor cells (CTCs) shed from tumor sites and represent the molecular characteristics of the tumor. Besides genetic and transcriptional characterization, it is important to profile a panel of proteins with single-cell precision for resolving CTCs' phenotype, organ-of-origin, and drug targets. We describe a new technology that enables profiling multiple protein markers of extraordinarily rare tumor cells at the single-cell level. This technology integrates a microchip consisting of 15000 60 pL-sized microwells and a novel beads-on-barcode antibody microarray (BOBarray). The BOBarray allows for multiplexed protein detection by assigning two independent identifiers (bead size and fluorescent color) of the beads to each protein. Four bead sizes (1.75, 3, 4.5, and 6 μm) and three colors (blue, green, and yellow) are utilized to encode up to 12 different proteins. The miniaturized BOBarray can fit an array of 60 pL-sized microwells that isolate single cells for cell lysis and the subsequent detection of protein markers. An enclosed 60 pL-sized microchamber defines a high concentration of proteins released from lysed single cells, leading to single-cell resolution of protein detection. The protein markers assayed in this study include organ-specific markers and drug targets that help to characterize the organ-of-origin and drug targets of isolated rare tumor cells from blood samples. This new approach enables handling a very small number of cells and achieves single-cell, multiplexed protein detection without loss of rare but clinically important tumor cells.

  20. Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array.

    PubMed

    Hinze, Lori L; Hulse-Kemp, Amanda M; Wilson, Iain W; Zhu, Qian-Hao; Llewellyn, Danny J; Taylor, Jen M; Spriggs, Andrew; Fang, David D; Ulloa, Mauricio; Burke, John J; Giband, Marc; Lacape, Jean-Marc; Van Deynze, Allen; Udall, Joshua A; Scheffler, Jodi A; Hague, Steve; Wendel, Jonathan F; Pepper, Alan E; Frelichowski, James; Lawley, Cindy T; Jones, Don C; Percy, Richard G; Stelly, David M

    2017-02-03

    Cotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured. A combination of both methods would greatly enhance our ability to characterize germplasm resources. Recent efforts have culminated in the identification of sufficient SNP markers to establish high-throughput genotyping systems, such as the CottonSNP63K array, which enables a researcher to efficiently analyze large numbers of SNP markers and obtain highly repeatable results. In the current investigation, we have utilized the SNP array for analyzing genetic diversity primarily among cotton cultivars, making comparisons to SSR-based phylogenetic analyses, and identifying loci associated with seed nutritional traits. The SNP markers distinctly separated G. hirsutum from other Gossypium species and distinguished the wild from cultivated types of G. hirsutum. The markers also efficiently discerned differences among cultivars, which was the primary goal when designing the CottonSNP63K array. Population structure within the genus compared favorably with previous results obtained using SSR markers, and an association study identified loci linked to factors that affect cottonseed protein content. Our results provide a large genome-wide variation data set for primarily cultivated cotton. Thousands of SNPs in representative cotton genotypes provide an opportunity to finely discriminate among cultivated cotton from around the world. The SNPs will be relevant as dense markers of genome variation for association mapping approaches aimed at correlating molecular polymorphisms with variation in phenotypic traits, as well as for molecular breeding approaches in cotton.

  1. Genome-Wide Association Mapping of Barley Yellow Dwarf Virus Tolerance in Spring Oat (Avena sativa L.)

    PubMed Central

    Foresman, Bradley J.; Oliver, Rebekah E.; Jackson, Eric W.; Chao, Shiaoman; Arruda, Marcio P.; Kolb, Frederic L.

    2016-01-01

    Barley yellow dwarf viruses (BYDVs) are responsible for the disease barley yellow dwarf (BYD) and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-trait association studies to determine the genetic mechanisms for tolerance. A genome-wide association study (GWAS) was performed on 428 spring oat lines using a recently developed high-density oat single nucleotide polymorphism (SNP) array as well as a SNP-based consensus map. Marker-trait associations were performed using a Q-K mixed model approach to control for population structure and relatedness. Six significant SNP-trait associations representing two QTL were found on chromosomes 3C (Mrg17) and 18D (Mrg04). This is the first report of BYDV tolerance QTL on chromosome 3C (Mrg17) and 18D (Mrg04). Haplotypes using the two QTL were evaluated and distinct classes for tolerance were identified based on the number of favorable alleles. A large number of lines carrying both favorable alleles were observed in the panel. PMID:27175781

  2. Development and implementation of a highly-multiplexed SNP array for genetic mapping in maritime pine and comparative mapping with loblolly pine

    PubMed Central

    2011-01-01

    Background Single nucleotide polymorphisms (SNPs) are the most abundant source of genetic variation among individuals of a species. New genotyping technologies allow examining hundreds to thousands of SNPs in a single reaction for a wide range of applications such as genetic diversity analysis, linkage mapping, fine QTL mapping, association studies, marker-assisted or genome-wide selection. In this paper, we evaluated the potential of highly-multiplexed SNP genotyping for genetic mapping in maritime pine (Pinus pinaster Ait.), the main conifer used for commercial plantation in southwestern Europe. Results We designed a custom GoldenGate assay for 1,536 SNPs detected through the resequencing of gene fragments (707 in vitro SNPs/Indels) and from Sanger-derived Expressed Sequenced Tags assembled into a unigene set (829 in silico SNPs/Indels). Offspring from three-generation outbred (G2) and inbred (F2) pedigrees were genotyped. The success rate of the assay was 63.6% and 74.8% for in silico and in vitro SNPs, respectively. A genotyping error rate of 0.4% was further estimated from segregating data of SNPs belonging to the same gene. Overall, 394 SNPs were available for mapping. A total of 287 SNPs were integrated with previously mapped markers in the G2 parental maps, while 179 SNPs were localized on the map generated from the analysis of the F2 progeny. Based on 98 markers segregating in both pedigrees, we were able to generate a consensus map comprising 357 SNPs from 292 different loci. Finally, the analysis of sequence homology between mapped markers and their orthologs in a Pinus taeda linkage map, made it possible to align the 12 linkage groups of both species. Conclusions Our results show that the GoldenGate assay can be used successfully for high-throughput SNP genotyping in maritime pine, a conifer species that has a genome seven times the size of the human genome. This SNP-array will be extended thanks to recent sequencing effort using new generation sequencing technologies and will include SNPs from comparative orthologous sequences that were identified in the present study, providing a wider collection of anchor points for comparative genomics among the conifers. PMID:21767361

  3. Nanotechnology-based electrochemical detection strategies for hypertension markers.

    PubMed

    Madhurantakam, Sasya; Babu, K Jayanth; Rayappan, John Bosco Balaguru; Krishnan, Uma Maheswari

    2018-09-30

    Hypertension results due to dysfunction of different metabolic pathways leading to the increased risk of cerebral ischemia, atherosclerosis, cardiovascular and inflammatory disorders. Hypertension has been considered a one of the major contributors to metabolic syndrome and is often referred to as a 'silent killer'. Its incidence is on the rise across the globe owing to the drastic life style changes. The diagnosis of hypertension had been traditionally carried out through measurement of systolic and diastolic blood pressure but in most cases, this form of diagnosis is too late and the disease has already caused organ damage. Therefore, early detection of hypertension by monitoring subtle changes in specific biochemical markers from body fluids can minimize the risk of organ damage. However, a single marker may be insufficient for accurate diagnosis of hypertension thereby necessitating quantification of multiple markers. Concerted efforts to identify key markers for hypertension and their quantification, especially using chemical and biosensors, are underway in different parts of the world. Constant evolution of the sensing elements and transduction strategies have contributed to significant improvements in the diagnosis field, especially in the context of sensitivity, response time and selectivity and this when applied to the detection of hypertension markers may prove beneficial. This review summarizes advances in the field of sensor technology towards the detection of biologically relevant entities, arrays and the next generation 'lab-on-a-chip' systems for hypertension. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Improvement for identification of heterophile antibody interference and AFP hook effect in immunoassays with multiplex suspension bead array system.

    PubMed

    Wang, Yajie; Yu, Jinsheng; Ren, Yuan; Liu, Li; Li, Haowen; Guo, Anchen; Shi, Congning; Fang, Fang; Juehne, Twyla; Yao, Jianer; Yang, Enhuan; Zhou, Xuelei; Kang, Xixiong

    2013-11-15

    A variety of immunoassays including multiplex suspension bead array have been developed for tumor marker detections; however, these assays could be compromised in their sensitivity and specificity by well-known heterophile antibody interference and hook effect. Using Luminex® multiplex suspension bead arrays, we modified protocols with two newly-developed solutions that can identify heterophile antibody interference and AFP hook effect. Effectiveness of the two solutions was assessed in serum samples from patients. Concentrations of 9 tumor markers in heterophile antibody positive samples assayed with Solution A, containing murine monoclonal antibodies and mouse serum, were significantly reduced when compared with those false high signals assayed without Solution A (all p<0.01). With incorporation of Solution H (fluorescent beads linked with AFP antigen), a new strategy for identification of AFP hook effect was established, and with this strategy AFP hook effect was identified effectively in serum samples with very high levels of AFP. Two proprietary solutions improve the identification of heterophile antibody interference and AFP hook effect. With these solutions, multiplex suspension bead arrays provide more reliable testing results in tumor marker detection where complex clinical serum samples are used. © 2013.

  5. MicroRNA array normalization: an evaluation using a randomized dataset as the benchmark.

    PubMed

    Qin, Li-Xuan; Zhou, Qin

    2014-01-01

    MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to samples and hence was free of confounding array effects; the second dataset was generated without blocking or randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before normalization further reduced the number of false positive markers while maintaining a similar number of true positive markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve normalization for microRNA arrays.

  6. MicroRNA Array Normalization: An Evaluation Using a Randomized Dataset as the Benchmark

    PubMed Central

    Qin, Li-Xuan; Zhou, Qin

    2014-01-01

    MicroRNA arrays possess a number of unique data features that challenge the assumption key to many normalization methods. We assessed the performance of existing normalization methods using two microRNA array datasets derived from the same set of tumor samples: one dataset was generated using a blocked randomization design when assigning arrays to samples and hence was free of confounding array effects; the second dataset was generated without blocking or randomization and exhibited array effects. The randomized dataset was assessed for differential expression between two tumor groups and treated as the benchmark. The non-randomized dataset was assessed for differential expression after normalization and compared against the benchmark. Normalization improved the true positive rate significantly in the non-randomized data but still possessed a false discovery rate as high as 50%. Adding a batch adjustment step before normalization further reduced the number of false positive markers while maintaining a similar number of true positive markers, which resulted in a false discovery rate of 32% to 48%, depending on the specific normalization method. We concluded the paper with some insights on possible causes of false discoveries to shed light on how to improve normalization for microRNA arrays. PMID:24905456

  7. Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: a workshop report: the RPPA (Reverse Phase Protein Array) society.

    PubMed

    Akbani, Rehan; Becker, Karl-Friedrich; Carragher, Neil; Goldstein, Ted; de Koning, Leanne; Korf, Ulrike; Liotta, Lance; Mills, Gordon B; Nishizuka, Satoshi S; Pawlak, Michael; Petricoin, Emanuel F; Pollard, Harvey B; Serrels, Bryan; Zhu, Jingchun

    2014-07-01

    Reverse phase protein array (RPPA) technology introduced a miniaturized "antigen-down" or "dot-blot" immunoassay suitable for quantifying the relative, semi-quantitative or quantitative (if a well-accepted reference standard exists) abundance of total protein levels and post-translational modifications across a variety of biological samples including cultured cells, tissues, and body fluids. The recent evolution of RPPA combined with more sophisticated sample handling, optical detection, quality control, and better quality affinity reagents provides exquisite sensitivity and high sample throughput at a reasonable cost per sample. This facilitates large-scale multiplex analysis of multiple post-translational markers across samples from in vitro, preclinical, or clinical samples. The technical power of RPPA is stimulating the application and widespread adoption of RPPA methods within academic, clinical, and industrial research laboratories. Advances in RPPA technology now offer scientists the opportunity to quantify protein analytes with high precision, sensitivity, throughput, and robustness. As a result, adopters of RPPA technology have recognized critical success factors for useful and maximum exploitation of RPPA technologies, including the following: preservation and optimization of pre-analytical sample quality, application of validated high-affinity and specific antibody (or other protein affinity) detection reagents, dedicated informatics solutions to ensure accurate and robust quantification of protein analytes, and quality-assured procedures and data analysis workflows compatible with application within regulated clinical environments. In 2011, 2012, and 2013, the first three Global RPPA workshops were held in the United States, Europe, and Japan, respectively. These workshops provided an opportunity for RPPA laboratories, vendors, and users to share and discuss results, the latest technology platforms, best practices, and future challenges and opportunities. The outcomes of the workshops included a number of key opportunities to advance the RPPA field and provide added benefit to existing and future participants in the RPPA research community. The purpose of this report is to share and disseminate, as a community, current knowledge and future directions of the RPPA technology. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. First High-Density Linkage Map and Single Nucleotide Polymorphisms Significantly Associated With Traits of Economic Importance in Yellowtail Kingfish Seriola lalandi.

    PubMed

    Nguyen, Nguyen H; Rastas, Pasi M A; Premachandra, H K A; Knibb, Wayne

    2018-01-01

    The genetic resources available for the commercially important fish species Yellowtail kingfish (YTK) ( Seriola lalandi) are relative sparse. To overcome this, we aimed (1) to develop a linkage map for this species, and (2) to identify markers/variants associated with economically important traits in kingfish (with an emphasis on body weight). Genetic and genomic analyses were conducted using 13,898 single nucleotide polymorphisms (SNPs) generated from a new high-throughput genotyping by sequencing platform, Diversity Arrays Technology (DArTseq TM ) in a pedigreed population comprising 752 animals. The linkage analysis enabled to map about 4,000 markers to 24 linkage groups (LGs), with an average density of 3.4 SNPs per cM. The linkage map was integrated into a genome-wide association study (GWAS) and identified six variants/SNPs associated with body weight ( P < 5e -8 ) when a multi-locus mixed model was used. Two out of the six significant markers were mapped to LGs 17 and 23, and collectively they explained 5.8% of the total genetic variance. It is concluded that the newly developed linkage map and the significantly associated markers with body weight provide fundamental information to characterize genetic architecture of growth-related traits in this population of YTK S. lalandi .

  9. Genome-Wide Association Mapping for Kernel and Malting Quality Traits Using Historical European Barley Records

    PubMed Central

    Röder, Marion S.; van Eeuwijk, Fred

    2014-01-01

    Malting quality is an important trait in breeding barley (Hordeum vulgare L.). It requires elaborate, expensive phenotyping, which involves micro-malting experiments. Although there is abundant historical information available for different cultivars in different years and trials, that historical information is not often used in genetic analyses. This study aimed to exploit historical records to assist in identifying genomic regions that affect malting and kernel quality traits in barley. This genome-wide association study utilized information on grain yield and 18 quality traits accumulated over 25 years on 174 European spring and winter barley cultivars combined with diversity array technology markers. Marker-trait associations were tested with a mixed linear model. This model took into account the genetic relatedness between cultivars based on principal components scores obtained from marker information. We detected 140 marker-trait associations. Some of these associations confirmed previously known quantitative trait loci for malting quality (on chromosomes 1H, 2H, and 5H). Other associations were reported for the first time in this study. The genetic correlations between traits are discussed in relation to the chromosomal regions associated with the different traits. This approach is expected to be particularly useful when designing strategies for multiple trait improvements. PMID:25372869

  10. Solar array technology evaluation program for SEPS (Solar Electrical Propulsion Stage)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the technology and the development of a preliminary design for a 25 kilowatt solar array system for solar electric propulsion are discussed. The solar array has a power to weight ratio of 65 watts per kilogram. The solar array system is composed of two wings. Each wing consists of a solar array blanket, a blanket launch storage container, an extension/retraction mast assembly, a blanket tensioning system, an array electrical harness, and hardware for supporting the system for launch and in the operating position. The technology evaluation was performed to assess the applicable solar array state-of-the-art and to define supporting research necessary to achieve technology readiness for meeting the solar electric propulsion system solar array design requirements.

  11. A Comparison Between Genotyping-by-sequencing and Array-based Scoring of SNPs for Genomic Prediction Accuracy in Winter Wheat

    USDA-ARS?s Scientific Manuscript database

    The utilization of DNA molecular markers in plant breeding to maximize selection response via marker assisted selection (MAS) and genomic selection (GS) has the potential to revolutionize plant breeding. A key factor affecting GS applicability is the choice of molecular marker platform. Genotypying-...

  12. The Implementation of Advanced Solar Array Technology in Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Kerslake, Thomas W.; Hoffman, David J.; White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan

    2003-01-01

    Advanced solar array technology is expected to be critical in achieving the mission goals on many future NASA space flight programs. Current PV cell development programs offer significant potential and performance improvements. However, in order to achieve the performance improvements promised by these devices, new solar array structures must be designed and developed to accommodate these new PV cell technologies. This paper will address the use of advanced solar array technology in future NASA space missions and specifically look at how newer solar cell technologies impact solar array designs and overall power system performance.

  13. Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.).

    PubMed

    Terracciano, Irma; Maccaferri, Marco; Bassi, Filippo; Mantovani, Paola; Sanguineti, Maria C; Salvi, Silvio; Simková, Hana; Doležel, Jaroslav; Massi, Andrea; Ammar, Karim; Kolmer, James; Tuberosa, Roberto

    2013-04-01

    Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a-resistant gene present in the durum wheat cv. Creso and its derivative cv. Colosseo is one of the best characterized leaf-rust resistance sources deployed in durum wheat breeding. Lr14a has been mapped close to the simple sequence repeat markers gwm146, gwm344 and wmc10 in the distal portion of the chromosome arm 7BL, a gene-dense region. The objectives of this study were: (1) to enrich the Lr14a region with single nucleotide polymorphisms (SNPs) and high-resolution melting (HRM)-based markers developed from conserved ortholog set (COS) genes and from sequenced Diversity Array Technology (DArT(®)) markers; (2) to further investigate the gene content and colinearity of this region with the Brachypodium and rice genomes. Ten new COS-SNP and five HRM markers were mapped within an 8.0 cM interval spanning Lr14a. Two HRM markers pinpointed the locus in an interval of <1.0 cM and eight COS-SNPs were mapped 2.1-4.1 cM distal to Lr14a. Each marker was tested for its capacity to predict the state of Lr14a alleles (in particular, Lr14-Creso associated to resistance) in a panel of durum wheat elite germplasm including 164 accessions. Two of the most informative markers were converted into KASPar(®) markers. Single assay markers ubw14 and wPt-4038-HRM designed for agarose gel electrophoresis/KASPar(®) assays and high-resolution melting analysis, respectively, as well as the double-marker combinations ubw14/ubw18, ubw14/ubw35 and wPt-4038-HRM-ubw35 will be useful for germplasm haplotyping and for molecular-assisted breeding.

  14. Phased-array-fed antenna configuration study. Volume 1: Technology assessment

    NASA Technical Reports Server (NTRS)

    Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.

    1983-01-01

    The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.

  15. Molecular inversion probe assay for allelic quantitation

    PubMed Central

    Ji, Hanlee; Welch, Katrina

    2010-01-01

    Molecular inversion probe (MIP) technology has been demonstrated to be a robust platform for large-scale dual genotyping and copy number analysis. Applications in human genomic and genetic studies include the possibility of running dual germline genotyping and combined copy number variation ascertainment. MIPs analyze large numbers of specific genetic target sequences in parallel, relying on interrogation of a barcode tag, rather than direct hybridization of genomic DNA to an array. The MIP approach does not replace, but is complementary to many of the copy number technologies being performed today. Some specific advantages of MIP technology include: Less DNA required (37 ng vs. 250 ng), DNA quality less important, more dynamic range (amplifications detected up to copy number 60), allele specific information “cleaner” (less SNP crosstalk/contamination), and quality of markers better (fewer individual MIPs versus SNPs needed to identify copy number changes). MIPs can be considered a candidate gene (targeted whole genome) approach and can find specific areas of interest that otherwise may be missed with other methods. PMID:19488872

  16. SEXCMD: Development and validation of sex marker sequences for whole-exome/genome and RNA sequencing.

    PubMed

    Jeong, Seongmun; Kim, Jiwoong; Park, Won; Jeon, Hongmin; Kim, Namshin

    2017-01-01

    Over the last decade, a large number of nucleotide sequences have been generated by next-generation sequencing technologies and deposited to public databases. However, most of these datasets do not specify the sex of individuals sampled because researchers typically ignore or hide this information. Male and female genomes in many species have distinctive sex chromosomes, XX/XY and ZW/ZZ, and expression levels of many sex-related genes differ between the sexes. Herein, we describe how to develop sex marker sequences from syntenic regions of sex chromosomes and use them to quickly identify the sex of individuals being analyzed. Array-based technologies routinely use either known sex markers or the B-allele frequency of X or Z chromosomes to deduce the sex of an individual. The same strategy has been used with whole-exome/genome sequence data; however, all reads must be aligned onto a reference genome to determine the B-allele frequency of the X or Z chromosomes. SEXCMD is a pipeline that can extract sex marker sequences from reference sex chromosomes and rapidly identify the sex of individuals from whole-exome/genome and RNA sequencing after training with a known dataset through a simple machine learning approach. The pipeline counts total numbers of hits from sex-specific marker sequences and identifies the sex of the individuals sampled based on the fact that XX/ZZ samples do not have Y or W chromosome hits. We have successfully validated our pipeline with mammalian (Homo sapiens; XY) and avian (Gallus gallus; ZW) genomes. Typical calculation time when applying SEXCMD to human whole-exome or RNA sequencing datasets is a few minutes, and analyzing human whole-genome datasets takes about 10 minutes. Another important application of SEXCMD is as a quality control measure to avoid mixing samples before bioinformatics analysis. SEXCMD comprises simple Python and R scripts and is freely available at https://github.com/lovemun/SEXCMD.

  17. B chromosomes are associated with redistribution of genetic recombination towards lower recombination chromosomal regions in perennial ryegrass.

    PubMed

    Harper, John; Phillips, Dylan; Thomas, Ann; Gasior, Dagmara; Evans, Caron; Powell, Wayne; King, Julie; King, Ian; Jenkins, Glyn; Armstead, Ian

    2018-04-09

    Supernumerary 'B' chromosomes are non-essential components of the genome present in a range of plant and animal species-including many grasses. Within diploid and polyploid ryegrass and fescue species, including the forage grass perennial ryegrass (Lolium perenne L.), the presence of B chromosomes has been reported as influencing both chromosome pairing and chiasma frequencies. In this study, the effects of the presence/absence of B chromosomes on genetic recombination has been investigated through generating DArT (Diversity Arrays Technology) marker genetic maps for six perennial ryegrass diploid populations, the pollen parents of which contained either two B or zero B chromosomes. Through genetic and cytological analyses of these progeny and their parents, we have identified that, while overall cytological estimates of chiasma frequencies were significantly lower in pollen mother cells with two B chromosomes as compared with zero B chromosomes, the recombination frequencies within some marker intervals were actually increased, particularly for marker intervals in lower recombination regions of chromosomes, namely pericentromeric regions. Thus, in perennial ryegrass, the presence of two B chromosomes redistributed patterns of meiotic recombination in pollen mother cells in ways which could increase the range of allelic variation available to plant breeders.

  18. Photovoltaic options for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Flood, Dennis J.

    1990-01-01

    During the past decade, a number of advances have occurred in solar cell and array technology. These advances have lead to performance improvement for both conventional space arrays and for advanced technology arrays. Performance enhancements have occurred in power density, specific power, and environmental capability. Both state-of-the-art and advanced development cells and array technology are discussed. Present technology will include rigid, rollout, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is also discussed based on both DOD and NASA efforts. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency, thin, radiation resistant cells is examined. This includes gallium arsenide on germaniun substrates, indium phosphide, and thin film devices such as copper indium diselenide.

  19. Identification of susceptibility genes and genetic modifiers of human diseases

    NASA Astrophysics Data System (ADS)

    Abel, Kenneth; Kammerer, Stefan; Hoyal, Carolyn; Reneland, Rikard; Marnellos, George; Nelson, Matthew R.; Braun, Andreas

    2005-03-01

    The completion of the human genome sequence enables the discovery of genes involved in common human disorders. The successful identification of these genes is dependent on the availability of informative sample sets, validated marker panels, a high-throughput scoring technology, and a strategy for combining these resources. We have developed a universal platform technology based on mass spectrometry (MassARRAY) for analyzing nucleic acids with high precision and accuracy. To fuel this technology, we generated more than 100,000 validated assays for single nucleotide polymorphisms (SNPs) covering virtually all known and predicted human genes. We also established a large DNA sample bank comprised of more than 50,000 consented healthy and diseased individuals. This combination of reagents and technology allows the execution of large-scale genome-wide association studies. Taking advantage of MassARRAY"s capability for quantitative analysis of nucleic acids, allele frequencies are estimated in sample pools containing large numbers of individual DNAs. To compare pools as a first-pass "filtering" step is a tremendous advantage in throughput and cost over individual genotyping. We employed this approach in numerous genome-wide, hypothesis-free searches to identify genes associated with common complex diseases, such as breast cancer, osteoporosis, and osteoarthritis, and genes involved in quantitative traits like high density lipoproteins cholesterol (HDL-c) levels and central fat. Access to additional well-characterized patient samples through collaborations allows us to conduct replication studies that validate true disease genes. These discoveries will expand our understanding of genetic disease predisposition, and our ability for early diagnosis and determination of specific disease subtype or progression stage.

  20. Automated tetraploid genotype calling by hierarchical clustering

    USDA-ARS?s Scientific Manuscript database

    SNP arrays are transforming breeding and genetics research for autotetraploids. To fully utilize these arrays, however, the relationship between signal intensity and allele dosage must be inferred independently for each marker. We developed an improved computational method to automate this process, ...

  1. Detection and validation of single feature polymorphisms in cowpea (Vigna unguiculata L. Walp) using a soybean genome array.

    PubMed

    Das, Sayan; Bhat, Prasanna R; Sudhakar, Chinta; Ehlers, Jeffrey D; Wanamaker, Steve; Roberts, Philip A; Cui, Xinping; Close, Timothy J

    2008-02-28

    Cowpea (Vigna unguiculata L. Walp) is an important food and fodder legume of the semiarid tropics and subtropics worldwide, especially in sub-Saharan Africa. High density genetic linkage maps are needed for marker assisted breeding but are not available for cowpea. A single feature polymorphism (SFP) is a microarray-based marker which can be used for high throughput genotyping and high density mapping. Here we report detection and validation of SFPs in cowpea using a readily available soybean (Glycine max) genome array. Robustified projection pursuit (RPP) was used for statistical analysis using RNA as a surrogate for DNA. Using a 15% outlying score cut-off, 1058 potential SFPs were enumerated between two parents of a recombinant inbred line (RIL) population segregating for several important traits including drought tolerance, Fusarium and brown blotch resistance, grain size and photoperiod sensitivity. Sequencing of 25 putative polymorphism-containing amplicons yielded a SFP probe set validation rate of 68%. We conclude that the Affymetrix soybean genome array is a satisfactory platform for identification of some 1000's of SFPs for cowpea. This study provides an example of extension of genomic resources from a well supported species to an orphan crop. Presumably, other legume systems are similarly tractable to SFP marker development using existing legume array resources.

  2. Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces.

    PubMed

    Montilla-Bascón, Gracia; Rispail, Nicolas; Sánchez-Martín, Javier; Rubiales, Diego; Mur, Luis A J; Langdon, Tim; Howarth, Catherine J; Prats, Elena

    2015-01-01

    Diseases caused by crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) are among the most important constraints for the oat crop. Breeding for resistance is one of the most effective, economical, and environmentally friendly means to control these diseases. The purpose of this work was to identify elite alleles for rust and powdery mildew resistance in oat by association mapping to aid selection of resistant plants. To this aim, 177 oat accessions including white and red oat cultivars and landraces were evaluated for disease resistance and further genotyped with 31 simple sequence repeat and 15,000 Diversity Arrays Technology (DArT) markers to reveal association with disease resistance traits. After data curation, 1712 polymorphic markers were considered for association analysis. Principal component analysis and a Bayesian clustering approach were applied to infer population structure. Five different general and mixed linear models accounting for population structure and/or kinship corrections and two different statistical tests were carried out to reduce false positive. Five markers, two of them highly significant in all models tested were associated with rust resistance. No strong association between any marker and powdery mildew resistance at the seedling stage was identified. However, one DArT sequence, oPt-5014, was strongly associated with powdery mildew resistance in adult plants. Overall, the markers showing the strongest association in this study provide ideal candidates for further studies and future inclusion in strategies of marker-assisted selection.

  3. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao

    PubMed Central

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-01-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. PMID:26070980

  4. High-power, ultralow-mass solar arrays: FY-77 solar arrays technology readiness assessment report, volume 2

    NASA Technical Reports Server (NTRS)

    Costogue, E. N.; Young, L. E.; Brandhorst, H. W., Jr.

    1978-01-01

    Development efforts are reported in detail for: (1) a lightweight solar array system for solar electric propulsion; (2) a high efficiency thin silicon solar cell; (3) conceptual design of 200 W/kg solar arrays; (4) fluorocarbon encapsulation for silicon solar cell array; and (5) technology assessment of concentrator solar arrays.

  5. A High Density Consensus Map of Rye (Secale cereale L.) Based on DArT Markers

    PubMed Central

    Myśków, Beata; Stojałowski, Stefan; Heller-Uszyńska, Katarzyna; Góralska, Magdalena; Brągoszewski, Piotr; Uszyński, Grzegorz; Kilian, Andrzej; Rakoczy-Trojanowska, Monika

    2011-01-01

    Background Rye (Secale cereale L.) is an economically important crop, exhibiting unique features such as outstanding resistance to biotic and abiotic stresses and high nutrient use efficiency. This species presents a challenge to geneticists and breeders due to its large genome containing a high proportion of repetitive sequences, self incompatibility, severe inbreeding depression and tissue culture recalcitrance. The genomic resources currently available for rye are underdeveloped in comparison with other crops of similar economic importance. The aim of this study was to create a highly saturated, multilocus linkage map of rye via consensus mapping, based on Diversity Arrays Technology (DArT) markers. Methodology/Principal Findings Recombinant inbred lines (RILs) from 5 populations (564 in total) were genotyped using DArT markers and subjected to linkage analysis using Join Map 4.0 and Multipoint Consensus 2.2 software. A consensus map was constructed using a total of 9703 segregating markers. The average chromosome map length ranged from 199.9 cM (2R) to 251.4 cM (4R) and the average map density was 1.1 cM. The integrated map comprised 4048 loci with the number of markers per chromosome ranging from 454 for 7R to 805 for 4R. In comparison with previously published studies on rye, this represents an eight-fold increase in the number of loci placed on a consensus map and a more than two-fold increase in the number of genetically mapped DArT markers. Conclusions/Significance Through the careful choice of marker type, mapping populations and the use of software packages implementing powerful algorithms for map order optimization, we produced a valuable resource for rye and triticale genomics and breeding, which provides an excellent starting point for more in-depth studies on rye genome organization. PMID:22163026

  6. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius.

    PubMed

    Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot Hm; Rengel, Zed

    2016-06-01

    Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Root trait diversity, molecular marker diversity, and trait-marker associations in a core collection of Lupinus angustifolius

    PubMed Central

    Chen, Yinglong; Shan, Fucheng; Nelson, Matthew N; Siddique, Kadambot HM; Rengel, Zed

    2016-01-01

    Narrow-leafed lupin (Lupinus angustifolius L.) is the predominant grain legume crop in southern Australia, contributing half of the total grain legume production of Australia. Its yield in Australia is hampered by a range of subsoil constraints. The adaptation of lupin genotypes to subsoil constraints may be improved by selecting for optimal root traits from new and exotic germplasm sources. We assessed root trait diversity and genetic diversity of a core collection of narrow-leafed lupin (111 accessions) using 191 Diversity Arrays Technology (DArT) markers. The genetic relationship among accessions was determined using the admixture model in STRUCTURE. Thirty-eight root-associated traits were characterized, with 21 having coefficient of variation values >0.5. Principal coordinate analysis and cluster analysis of the DArT markers revealed broad diversity among the accessions. An ad hoc statistics calculation resulted in 10 distinct populations with significant differences among and within them (P < 0.001). The mixed linear model test in TASSEL showed a significant association between all root traits and some DArT markers, with the numbers of markers associated with an individual trait ranging from 2 to 13. The percentage of phenotypic variation explained by any one marker ranged from 6.4 to 21.8%, with 15 associations explaining >10% of phenotypic variation. The genetic variation values ranged from 0 to 7994, with 23 associations having values >240. Root traits such as deeper roots and lateral root proliferation at depth would be useful for this species for improved adaptation to drier soil conditions. This study offers opportunities for discovering useful root traits that can be used to increase the yield of Australian cultivars across variable environmental conditions. PMID:27049020

  8. New biochemical markers: from bench to bedside.

    PubMed

    Zaninotto, Martina; Mion, Monica Maria; Novello, Enrica; Altinier, Sara; Plebani, Mario

    2007-05-01

    Evaluation of patients presenting to hospital with chest pain or other signs or symptoms suggesting acute coronary syndrome (ACS) is problematic, time-consuming and sometimes expensive, even if new biochemical markers, such as troponins, have improved the ability to detect cardiac injury. However, patients with normal troponin values are not necessarily risk-free for major cardiac events. Recent investigations indicate that the overall patient risk may be assessed earlier than before, thanks to new knowledge acquired concerning the pathobiology of atherosclerosis and molecular events involved in the progression of disease, thus allowing the development of new biochemical markers. Some selected markers are released during the different phases of development of cardiovascular disease and may be useful for the diagnosis of patients with cardiovascular disease. In particular, the identification of emerging markers that provide relevant information on the inflammatory process, and the development of biomarkers whose circulating concentrations suggest the status of plaque instability and rupture, seems to be of particular value in prognosis and risk stratification. The overall expectations for a cardiovascular biochemical marker are not only its biological plausibility but also the availability at a reasonable cost of rapid, high quality assays, and their correct interpretation by clinicians using optimal cut-offs. The crossing from bench to bedside for each new marker discovered, must be associated with concurrent advances in the characterization of analytical features and the development of routine assay, in the assessment of analytical performance and in interpretative reporting of test results as well as in the training of physicians to use the array of biomarkers available appropriately and to interpret them correctly. This approach calls for the coordinated support of clinicians, technology experts, statisticians and the industry so that new biochemical developments can be of optimal value.

  9. Discovery of 100K SNP array and its utilization in sugarcane

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing (NGS) enable us to identify thousands of single nucleotide polymorphisms (SNPs) marker for genotyping and fingerprinting. However, the process requires very precise bioinformatics analysis and filtering process. High throughput SNP array with predefined genomic location co...

  10. Evaluation of space station solar array technology

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The research concerning lightweight solar array assemblies since 1970 is reported. A bibliography of abstracts of documents used for reference during this period is included along with an evaluation of available solar array technology. A list of recommended technology programs is presented.

  11. Exploring the potential of laser capture microdissection technology in integrated oral biosciences.

    PubMed

    Thennavan, A; Sharma, M; Chandrashekar, C; Hunter, K; Radhakrishnan, R

    2017-09-01

    Laser capture microdissection (LCM) is a high-end research and diagnostic technology that helps in obtaining pure cell populations for the purpose of cell- or lesion-specific genomic and proteomic analysis. Literature search on the application of LCM in oral tissues was made through PubMed. There is ample evidence to substantiate the utility of LCM in understanding the underlying molecular mechanism involving an array of oral physiological and pathological processes, including odontogenesis, taste perception, eruptive tooth movement, oral microbes, and cancers of the mouth and jaw tumors. This review is aimed at exploring the potential application of LCM in oral tissues as a high-throughput tool for integrated oral sciences. The indispensable application of LCM in the construction of lesion-specific genomic libraries with emphasis on some of the novel molecular markers thus discovered is also highlighted. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Genome-wide association mapping of quantitative traits in a breeding population of sugarcane.

    PubMed

    Racedo, Josefina; Gutiérrez, Lucía; Perera, María Francisca; Ostengo, Santiago; Pardo, Esteban Mariano; Cuenya, María Inés; Welin, Bjorn; Castagnaro, Atilio Pedro

    2016-06-24

    Molecular markers associated with relevant agronomic traits could significantly reduce the time and cost involved in developing new sugarcane varieties. Previous sugarcane genome-wide association analyses (GWAS) have found few molecular markers associated with relevant traits at plant-cane stage. The aim of this study was to establish an appropriate GWAS to find molecular markers associated with yield related traits consistent across harvesting seasons in a breeding population. Sugarcane clones were genotyped with DArT (Diversity Array Technology) and TRAP (Target Region Amplified Polymorphism) markers, and evaluated for cane yield (CY) and sugar content (SC) at two locations during three successive crop cycles. GWAS mapping was applied within a novel mixed-model framework accounting for population structure with Principal Component Analysis scores as random component. A total of 43 markers significantly associated with CY in plant-cane, 42 in first ratoon, and 41 in second ratoon were detected. Out of these markers, 20 were associated with CY in 2 years. Additionally, 38 significant associations for SC were detected in plant-cane, 34 in first ratoon, and 47 in second ratoon. For SC, one marker-trait association was found significant for the 3 years of the study, while twelve markers presented association for 2 years. In the multi-QTL model several markers with large allelic substitution effect were found. Sequences of four DArT markers showed high similitude and e-value with coding sequences of Sorghum bicolor, confirming the high gene microlinearity between sorghum and sugarcane. In contrast with other sugarcane GWAS studies reported earlier, the novel methodology to analyze multi-QTLs through successive crop cycles used in the present study allowed us to find several markers associated with relevant traits. Combining existing phenotypic trial data and genotypic DArT and TRAP marker characterizations within a GWAS approach including population structure as random covariates may prove to be highly successful. Moreover, sequences of DArT marker associated with the traits of interest were aligned in chromosomal regions where sorghum QTLs has previously been reported. This approach could be a valuable tool to assist the improvement of sugarcane and better supply sugarcane demand that has been projected for the upcoming decades.

  13. Development of an Ultraflex-Based Thin Film Solar Array for Space Applications

    NASA Technical Reports Server (NTRS)

    White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.

    2003-01-01

    As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.

  14. A reference linkage map for Eucalyptus

    PubMed Central

    2012-01-01

    Background Genetic linkage maps are invaluable resources in plant research. They provide a key tool for many genetic applications including: mapping quantitative trait loci (QTL); comparative mapping; identifying unlinked (i.e. independent) DNA markers for fingerprinting, population genetics and phylogenetics; assisting genome sequence assembly; relating physical and recombination distances along the genome and map-based cloning of genes. Eucalypts are the dominant tree species in most Australian ecosystems and of economic importance globally as plantation trees. The genome sequence of E. grandis has recently been released providing unprecedented opportunities for genetic and genomic research in the genus. A robust reference linkage map containing sequence-based molecular markers is needed to capitalise on this resource. Several high density linkage maps have recently been constructed for the main commercial forestry species in the genus (E. grandis, E. urophylla and E. globulus) using sequenced Diversity Arrays Technology (DArT) and microsatellite markers. To provide a single reference linkage map for eucalypts a composite map was produced through the integration of data from seven independent mapping experiments (1950 individuals) using a marker-merging method. Results The composite map totalled 1107 cM and contained 4101 markers; comprising 3880 DArT, 213 microsatellite and eight candidate genes. Eighty-one DArT markers were mapped to two or more linkage groups, resulting in the 4101 markers being mapped to 4191 map positions. Approximately 13% of DArT markers mapped to identical map positions, thus the composite map contained 3634 unique loci at an average interval of 0.31 cM. Conclusion The composite map represents the most saturated linkage map yet produced in Eucalyptus. As the majority of DArT markers contained on the map have been sequenced, the map provides a direct link to the E. grandis genome sequence and will serve as an important reference for progressing eucalypt research. PMID:22702473

  15. The GenoChip: A New Tool for Genetic Anthropology

    PubMed Central

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G.; Greenspan, Bennett; Spencer Wells, R.

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic relevance, the GenoChip is a useful tool for genetic anthropology and population genetics. PMID:23666864

  16. The GenoChip: a new tool for genetic anthropology.

    PubMed

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G; Greenspan, Bennett; Spencer Wells, R

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project's new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic relevance, the GenoChip is a useful tool for genetic anthropology and population genetics.

  17. Mass properties survey of solar array technologies

    NASA Technical Reports Server (NTRS)

    Kraus, Robert

    1991-01-01

    An overview of the technologies, electrical performance, and mass characteristics of many of the presently available and the more advanced developmental space solar array technologies is presented. Qualitative trends and quantitative mass estimates as total array output power is increased from 1 kW to 5 kW at End of Life (EOL) from a single wing are shown. The array technologies are part of a database supporting an ongoing solar power subsystem model development for top level subsystem and technology analyses. The model is used to estimate the overall electrical and thermal performance of the complete subsystem, and then calculate the mass and volume of the array, batteries, power management, and thermal control elements as an initial sizing. The array types considered here include planar rigid panel designs, flexible and rigid fold-out planar arrays, and two concentrator designs, one with one critical axis and the other with two critical axes. Solar cell technologies of Si, GaAs, and InP were included in the analyses. Comparisons were made at the array level; hinges, booms, harnesses, support structures, power transfer, and launch retention mountings were included. It is important to note that the results presented are approximations, and in some cases revised or modified performance and mass estimates of specific designs.

  18. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

    USDA-ARS?s Scientific Manuscript database

    High-density single nucleotide polymorphism (SNP) genotyping chips are a powerful tool for studying genomic patterns of diversity, inferring ancestral relationships among individuals in populations and studying marker-trait associations in mapping experiments. We developed a genotyping array includ...

  19. NASA advanced space photovoltaic technology-status, potential and future mission applications

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.

    1989-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  20. Whole genome sequences are required to fully resolve the linkage disequilibrium structure of human populations.

    PubMed

    Pengelly, Reuben J; Tapper, William; Gibson, Jane; Knut, Marcin; Tearle, Rick; Collins, Andrew; Ennis, Sarah

    2015-09-03

    An understanding of linkage disequilibrium (LD) structures in the human genome underpins much of medical genetics and provides a basis for disease gene mapping and investigating biological mechanisms such as recombination and selection. Whole genome sequencing (WGS) provides the opportunity to determine LD structures at maximal resolution. We compare LD maps constructed from WGS data with LD maps produced from the array-based HapMap dataset, for representative European and African populations. WGS provides up to 5.7-fold greater SNP density than array-based data and achieves much greater resolution of LD structure, allowing for identification of up to 2.8-fold more regions of intense recombination. The absence of ascertainment bias in variant genotyping improves the population representativeness of the WGS maps, and highlights the extent of uncaptured variation using array genotyping methodologies. The complete capture of LD patterns using WGS allows for higher genome-wide association study (GWAS) power compared to array-based GWAS, with WGS also allowing for the analysis of rare variation. The impact of marker ascertainment issues in arrays has been greatest for Sub-Saharan African populations where larger sample sizes and substantially higher marker densities are required to fully resolve the LD structure. WGS provides the best possible resource for LD mapping due to the maximal marker density and lack of ascertainment bias. WGS LD maps provide a rich resource for medical and population genetics studies. The increasing availability of WGS data for large populations will allow for improved research utilising LD, such as GWAS and recombination biology studies.

  1. A low-density SNP array for analyzing differential selection in freshwater and marine populations of threespine stickleback (Gasterosteus aculeatus).

    PubMed

    Ferchaud, Anne-Laure; Pedersen, Susanne H; Bekkevold, Dorte; Jian, Jianbo; Niu, Yongchao; Hansen, Michael M

    2014-10-06

    The threespine stickleback (Gasterosteus aculeatus) has become an important model species for studying both contemporary and parallel evolution. In particular, differential adaptation to freshwater and marine environments has led to high differentiation between freshwater and marine stickleback populations at the phenotypic trait of lateral plate morphology and the underlying candidate gene Ectodysplacin (EDA). Many studies have focused on this trait and candidate gene, although other genes involved in marine-freshwater adaptation may be equally important. In order to develop a resource for rapid and cost efficient analysis of genetic divergence between freshwater and marine sticklebacks, we generated a low-density SNP (Single Nucleotide Polymorphism) array encompassing markers of chromosome regions under putative directional selection, along with neutral markers for background. RAD (Restriction site Associated DNA) sequencing of sixty individuals representing two freshwater and one marine population led to the identification of 33,993 SNP markers. Ninety-six of these were chosen for the low-density SNP array, among which 70 represented SNPs under putatively directional selection in freshwater vs. marine environments, whereas 26 SNPs were assumed to be neutral. Annotation of these regions revealed several genes that are candidates for affecting stickleback phenotypic variation, some of which have been observed in previous studies whereas others are new. We have developed a cost-efficient low-density SNP array that allows for rapid screening of polymorphisms in threespine stickleback. The array provides a valuable tool for analyzing adaptive divergence between freshwater and marine stickleback populations beyond the well-established candidate gene Ectodysplacin (EDA).

  2. Analysis of oxidative stress biomarkers using a simultaneous competitive/non-competitive micromosaic immunoassay.

    PubMed

    Murphy, Brian M; Dandy, David S; Henry, Charles S

    2009-04-27

    Immunoassays represent a core workhorse methodology for many applications ranging from clinical diagnostics to environmental monitoring. In traditional formats such as the enzyme linked immunosorbent assay (ELISA), analytes are measured singly or in small sets. As more biomarkers are identified for disease states, there is a need to develop methods that can measure multiple markers simultaneously. Immunoaffinity arrays are one such chemistry that can achieve multi-marker screening. Most arrays are performed in either competitive or non-competitive formats, where the former are used predominantly for small molecules and the later for macromolecules. To date, ELISA and immunoaffinity array methods have relied exclusively on one of these formats and not the other. Here an immunoaffinity array method capable of performing simultaneous competitive and non-competitive analysis generated using micromosaic immunoassay techniques is introduced for the analysis of metabolites and proteins. In this report, three markers of oxidative stress were used as a model system. The method described here demonstrates the simultaneous analysis of 3-nitrotyrosine, by indirect competitive immunoassay while the enzymes catalase and superoxide dismutase are analyzed by non-competitive sandwich immunoassay. The method requires less than 1 microL sample and 45 min for completion. Logistic curve fits and LOD (limits of detection) statistical analysis of the binding results are presented and show good agreement with published data for these antibody-antigen systems.

  3. A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.)

    PubMed Central

    2011-01-01

    Background A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Results Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Conclusions Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection). PMID:21797998

  4. A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.).

    PubMed

    Diaz, Aurora; Fergany, Mohamed; Formisano, Gelsomina; Ziarsolo, Peio; Blanca, José; Fei, Zhanjun; Staub, Jack E; Zalapa, Juan E; Cuevas, Hugo E; Dace, Gayle; Oliver, Marc; Boissot, Nathalie; Dogimont, Catherine; Pitrat, Michel; Hofstede, René; van Koert, Paul; Harel-Beja, Rotem; Tzuri, Galil; Portnoy, Vitaly; Cohen, Shahar; Schaffer, Arthur; Katzir, Nurit; Xu, Yong; Zhang, Haiying; Fukino, Nobuko; Matsumoto, Satoru; Garcia-Mas, Jordi; Monforte, Antonio J

    2011-07-28

    A number of molecular marker linkage maps have been developed for melon (Cucumis melo L.) over the last two decades. However, these maps were constructed using different marker sets, thus, making comparative analysis among maps difficult. In order to solve this problem, a consensus genetic map in melon was constructed using primarily highly transferable anchor markers that have broad potential use for mapping, synteny, and comparative quantitative trait loci (QTL) analysis, increasing breeding effectiveness and efficiency via marker-assisted selection (MAS). Under the framework of the International Cucurbit Genomics Initiative (ICuGI, http://www.icugi.org), an integrated genetic map has been constructed by merging data from eight independent mapping experiments using a genetically diverse array of parental lines. The consensus map spans 1150 cM across the 12 melon linkage groups and is composed of 1592 markers (640 SSRs, 330 SNPs, 252 AFLPs, 239 RFLPs, 89 RAPDs, 15 IMAs, 16 indels and 11 morphological traits) with a mean marker density of 0.72 cM/marker. One hundred and ninety-six of these markers (157 SSRs, 32 SNPs, 6 indels and 1 RAPD) were newly developed, mapped or provided by industry representatives as released markers, including 27 SNPs and 5 indels from genes involved in the organic acid metabolism and transport, and 58 EST-SSRs. Additionally, 85 of 822 SSR markers contributed by Syngenta Seeds were included in the integrated map. In addition, 370 QTL controlling 62 traits from 18 previously reported mapping experiments using genetically diverse parental genotypes were also integrated into the consensus map. Some QTL associated with economically important traits detected in separate studies mapped to similar genomic positions. For example, independently identified QTL controlling fruit shape were mapped on similar genomic positions, suggesting that such QTL are possibly responsible for the phenotypic variability observed for this trait in a broad array of melon germplasm. Even though relatively unsaturated genetic maps in a diverse set of melon market types have been published, the integrated saturated map presented herein should be considered the initial reference map for melon. Most of the mapped markers contained in the reference map are polymorphic in diverse collection of germplasm, and thus are potentially transferrable to a broad array of genetic experimentation (e.g., integration of physical and genetic maps, colinearity analysis, map-based gene cloning, epistasis dissection, and marker-assisted selection).

  5. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    PubMed

    Livingstone, Donald; Royaert, Stefan; Stack, Conrad; Mockaitis, Keithanne; May, Greg; Farmer, Andrew; Saski, Christopher; Schnell, Ray; Kuhn, David; Motamayor, Juan Carlos

    2015-08-01

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ∼4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification project was undertaken using RNAseq data from 16 diverse cacao cultivars. RNA sequences were aligned to the assembled transcriptome of the cultivar Matina 1-6, and 330,000 SNPs within coding regions were identified. From these SNPs, a subset of 6,000 high-quality SNPs were selected for inclusion on an Illumina Infinium SNP array: the Cacao6kSNP array. Using Cacao6KSNP array data from over 1,000 cacao samples, we demonstrate that our custom array produces a saturated genetic map and can be used to distinguish among even closely related genotypes. Our study enhances and expands the genetic resources available to the cacao research community, and provides the genome-scale set of tools that are critical for advancing breeding with molecular markers in an agricultural species with high genetic diversity. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  6. Comparison of Models and Whole-Genome Profiling Approaches for Genomic-Enabled Prediction of Septoria Tritici Blotch, Stagonospora Nodorum Blotch, and Tan Spot Resistance in Wheat.

    PubMed

    Juliana, Philomin; Singh, Ravi P; Singh, Pawan K; Crossa, Jose; Rutkoski, Jessica E; Poland, Jesse A; Bergstrom, Gary C; Sorrells, Mark E

    2017-07-01

    The leaf spotting diseases in wheat that include Septoria tritici blotch (STB) caused by , Stagonospora nodorum blotch (SNB) caused by , and tan spot (TS) caused by pose challenges to breeding programs in selecting for resistance. A promising approach that could enable selection prior to phenotyping is genomic selection that uses genome-wide markers to estimate breeding values (BVs) for quantitative traits. To evaluate this approach for seedling and/or adult plant resistance (APR) to STB, SNB, and TS, we compared the predictive ability of least-squares (LS) approach with genomic-enabled prediction models including genomic best linear unbiased predictor (GBLUP), Bayesian ridge regression (BRR), Bayes A (BA), Bayes B (BB), Bayes Cπ (BC), Bayesian least absolute shrinkage and selection operator (BL), and reproducing kernel Hilbert spaces markers (RKHS-M), a pedigree-based model (RKHS-P) and RKHS markers and pedigree (RKHS-MP). We observed that LS gave the lowest prediction accuracies and RKHS-MP, the highest. The genomic-enabled prediction models and RKHS-P gave similar accuracies. The increase in accuracy using genomic prediction models over LS was 48%. The mean genomic prediction accuracies were 0.45 for STB (APR), 0.55 for SNB (seedling), 0.66 for TS (seedling) and 0.48 for TS (APR). We also compared markers from two whole-genome profiling approaches: genotyping by sequencing (GBS) and diversity arrays technology sequencing (DArTseq) for prediction. While, GBS markers performed slightly better than DArTseq, combining markers from the two approaches did not improve accuracies. We conclude that implementing GS in breeding for these diseases would help to achieve higher accuracies and rapid gains from selection. Copyright © 2017 Crop Science Society of America.

  7. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  8. High-performance, flexible, deployable array development for space applications

    NASA Technical Reports Server (NTRS)

    Gehling, Russell N.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Flexible, deployable arrays are an attractive alternative to conventional solar arrays for near-term and future space power applications, particularly due to their potential for high specific power and low storage volume. Combined with low-cost flexible thin-film photovoltaics, these arrays have the potential to become an enabling or an enhancing technology for many missions. In order to expedite the acceptance of thin-film photovoltaics for space applications, however, parallel development of flexible photovoltaics and the corresponding deployable structure is essential. Many innovative technologies must be incorporated in these arrays to ensure a significant performance increase over conventional technologies. For example, innovative mechanisms which employ shape memory alloys for storage latches, deployment mechanisms, and array positioning gimbals can be incorporated into flexible array design with significant improvement in the areas of cost, weight, and reliability. This paper discusses recent activities at Martin Marietta regarding the development of flexible, deployable solar array technology. Particular emphasis is placed on the novel use of shape memory alloys for lightweight deployment elements to improve the overall specific power of the array. Array performance projections with flexible thin-film copper-indium-diselenide (CIS) are presented, and government-sponsored solar array programs recently initiated at Martin Marietta through NASA and Air Force Phillips Laboratory are discussed.

  9. A High-Density Genetic Map with Array-Based Markers Facilitates Structural and Quantitative Trait Locus Analyses of the Common Wheat Genome

    PubMed Central

    Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo

    2014-01-01

    The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. PMID:24972598

  10. A high-density genetic map with array-based markers facilitates structural and quantitative trait locus analyses of the common wheat genome.

    PubMed

    Iehisa, Julio Cesar Masaru; Ohno, Ryoko; Kimura, Tatsuro; Enoki, Hiroyuki; Nishimura, Satoru; Okamoto, Yuki; Nasuda, Shuhei; Takumi, Shigeo

    2014-10-01

    The large genome and allohexaploidy of common wheat have complicated construction of a high-density genetic map. Although improvements in the throughput of next-generation sequencing (NGS) technologies have made it possible to obtain a large amount of genotyping data for an entire mapping population by direct sequencing, including hexaploid wheat, a significant number of missing data points are often apparent due to the low coverage of sequencing. In the present study, a microarray-based polymorphism detection system was developed using NGS data obtained from complexity-reduced genomic DNA of two common wheat cultivars, Chinese Spring (CS) and Mironovskaya 808. After design and selection of polymorphic probes, 13,056 new markers were added to the linkage map of a recombinant inbred mapping population between CS and Mironovskaya 808. On average, 2.49 missing data points per marker were observed in the 201 recombinant inbred lines, with a maximum of 42. Around 40% of the new markers were derived from genic regions and 11% from repetitive regions. The low number of retroelements indicated that the new polymorphic markers were mainly derived from the less repetitive region of the wheat genome. Around 25% of the mapped sequences were useful for alignment with the physical map of barley. Quantitative trait locus (QTL) analyses of 14 agronomically important traits related to flowering, spikes, and seeds demonstrated that the new high-density map showed improved QTL detection, resolution, and accuracy over the original simple sequence repeat map. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  11. Genome wide selection in Citrus breeding.

    PubMed

    Gois, I B; Borém, A; Cristofani-Yaly, M; de Resende, M D V; Azevedo, C F; Bastianel, M; Novelli, V M; Machado, M A

    2016-10-17

    Genome wide selection (GWS) is essential for the genetic improvement of perennial species such as Citrus because of its ability to increase gain per unit time and to enable the efficient selection of characteristics with low heritability. This study assessed GWS efficiency in a population of Citrus and compared it with selection based on phenotypic data. A total of 180 individual trees from a cross between Pera sweet orange (Citrus sinensis Osbeck) and Murcott tangor (Citrus sinensis Osbeck x Citrus reticulata Blanco) were evaluated for 10 characteristics related to fruit quality. The hybrids were genotyped using 5287 DArT_seq TM (diversity arrays technology) molecular markers and their effects on phenotypes were predicted using the random regression - best linear unbiased predictor (rr-BLUP) method. The predictive ability, prediction bias, and accuracy of GWS were estimated to verify its effectiveness for phenotype prediction. The proportion of genetic variance explained by the markers was also computed. The heritability of the traits, as determined by markers, was 16-28%. The predictive ability of these markers ranged from 0.53 to 0.64, and the regression coefficients between predicted and observed phenotypes were close to unity. Over 35% of the genetic variance was accounted for by the markers. Accuracy estimates with GWS were lower than those obtained by phenotypic analysis; however, GWS was superior in terms of genetic gain per unit time. Thus, GWS may be useful for Citrus breeding as it can predict phenotypes early and accurately, and reduce the length of the selection cycle. This study demonstrates the feasibility of genomic selection in Citrus.

  12. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  13. Replication of Associations of Genetic Loci Outside the HLA Region With Susceptibility to Anti–Cyclic Citrullinated Peptide–Negative Rheumatoid Arthritis

    PubMed Central

    Viatte, Sebastien; Massey, Jonathan; Bowes, John; Duffus, Kate; Eyre, Stephen; Barton, Anne; Loughlin, John; Arden, Nigel; Birrell, Fraser; Carr, Andrew; Deloukas, Panos; Doherty, Michael; McCaskie, Andrew W.; Ollier, William E. R.; Rai, Ashok; Ralston, Stuart H.; Spector, Tim D.; Valdes, Ana M.; Wallis, Gillian A.; Wilkinson, J. Mark; Zeggini, Eleftheria

    2016-01-01

    Objective Genetic polymorphisms within the HLA region explain only a modest proportion of anti–cyclic citrullinated peptide (anti‐CCP)–negative rheumatoid arthritis (RA) heritability. However, few non‐HLA markers have been identified so far. This study was undertaken to replicate the associations of anti‐CCP–negative RA with non‐HLA genetic polymorphisms demonstrated in a previous study. Methods The Rheumatoid Arthritis Consortium International densely genotyped 186 autoimmune‐related regions in 3,339 anti‐CCP–negative RA patients and 15,870 controls across 6 different populations using the Illumina ImmunoChip array. We performed a case–control replication study of the anti‐CCP–negative markers with the strongest associations in that discovery study, in an independent cohort of anti‐CCP–negative UK RA patients. Individuals from the arcOGEN Consortium and Wellcome Trust Case Control Consortium were used as controls. Genotyping in cases was performed using Sequenom MassArray technology. Genome‐wide data from controls were imputed using the 1000 Genomes Phase I integrated variant call set release version 3 as a reference panel. Results After genotyping and imputation quality control procedures, data were available for 15 non‐HLA single‐nucleotide polymorphisms in 1,024 cases and 6,348 controls. We confirmed the known markers ANKRD55 (meta‐analysis odds ratio [OR] 0.80; P = 2.8 × 10−13) and BLK (OR 1.13; P = 7.0 × 10−6) and identified new and specific markers of anti‐CCP–negative RA (prolactin [PRL] [OR 1.13; P = 2.1 × 10−6] and NFIA [OR 0.85; P = 2.5 × 10−6]). Neither of these loci is associated with other common, complex autoimmune diseases. Conclusion Anti‐CCP–negative RA and anti‐CCP–positive RA are genetically different disease subsets that only partially share susceptibility factors. Genetic polymorphisms located near the PRL and NFIA genes represent examples of genetic susceptibility factors specific for anti‐CCP–negative RA. PMID:26895230

  14. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays.

    PubMed

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-11-13

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test.

  15. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays

    PubMed Central

    Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won

    2015-01-01

    The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622

  16. Potential and limits to unravel the genetic architecture and predict the variation of Fusarium head blight resistance in European winter wheat (Triticum aestivum L.).

    PubMed

    Jiang, Y; Zhao, Y; Rodemann, B; Plieske, J; Kollers, S; Korzun, V; Ebmeyer, E; Argillier, O; Hinze, M; Ling, J; Röder, M S; Ganal, M W; Mette, M F; Reif, J C

    2015-03-01

    Genome-wide mapping approaches in diverse populations are powerful tools to unravel the genetic architecture of complex traits. The main goals of our study were to investigate the potential and limits to unravel the genetic architecture and to identify the factors determining the accuracy of prediction of the genotypic variation of Fusarium head blight (FHB) resistance in wheat (Triticum aestivum L.) based on data collected with a diverse panel of 372 European varieties. The wheat lines were phenotyped in multi-location field trials for FHB resistance and genotyped with 782 simple sequence repeat (SSR) markers, and 9k and 90k single-nucleotide polymorphism (SNP) arrays. We applied genome-wide association mapping in combination with fivefold cross-validations and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected quantitative trait loci (QTLs). Using a random sample of markers not selected for marker-trait associations revealed only a slight decrease in prediction accuracy compared with marker-based selection exploiting the QTL information. The same picture was confirmed in a simulation study, suggesting that relatedness is a main driver of the accuracy of prediction in marker-assisted selection of FHB resistance. When the accuracy of prediction of three genomic selection models was contrasted for the three marker data sets, no significant differences in accuracies among marker platforms and genomic selection models were observed. Marker density impacted the accuracy of prediction only marginally. Consequently, genomic selection of FHB resistance can be implemented most cost-efficiently based on low- to medium-density SNP arrays.

  17. Photovoltaic solar array technology required for three wide scale generating systems for terrestrial applications: rooftop, solar farm, and satellite

    NASA Technical Reports Server (NTRS)

    Berman, P. A.

    1972-01-01

    Three major options for wide-scale generation of photovoltaic energy for terrestrial use are considered: (1) rooftop array, (2) solar farm, and (3) satellite station. The rooftop array would use solar cell arrays on the roofs of residential or commercial buildings; the solar farm would consist of large ground-based arrays, probably in arid areas with high insolation; and the satellite station would consist of an orbiting solar array, many square kilometers in area. The technology advancement requirements necessary for each option are discussed, including cost reduction of solar cells and arrays, weight reduction, resistance to environmental factors, reliability, and fabrication capability, including the availability of raw materials. The majority of the technology advancement requirements are applicable to all three options, making possible a flexible basic approach regardless of the options that may eventually be chosen. No conclusions are drawn as to which option is most advantageous, since the feasibility of each option depends on the success achieved in the technology advancement requirements specified.

  18. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    PubMed Central

    Malik, Waqas; Iqbal, Muhammad Zaffar; Ali Khan, Asif; Qayyum, Abdul; Ali Abid, Muhammad; Noor, Etrat; Qadir Ahmad, Muhammad; Hasan Abbasi, Ghulam

    2014-01-01

    Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L.) is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS) technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS) are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i) comparative analysis of low- and high-throughput marker technologies available in cotton, (ii) genetic diversity in the available wild and improved gene pools of cotton, (iii) identification of the genomic regions within cotton genome underlying economic traits, and (iv) marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands. PMID:25401149

  19. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.

    PubMed

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2017-01-01

    A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.

  20. Direct protein detection with a nano-interdigitated array gate MOSFET.

    PubMed

    Tang, Xiaohui; Jonas, Alain M; Nysten, Bernard; Demoustier-Champagne, Sophie; Blondeau, Franoise; Prévot, Pierre-Paul; Pampin, Rémi; Godfroid, Edmond; Iñiguez, Benjamin; Colinge, Jean-Pierre; Raskin, Jean-Pierre; Flandre, Denis; Bayot, Vincent

    2009-08-15

    A new protein sensor is demonstrated by replacing the gate of a metal oxide semiconductor field effect transistor (MOSFET) with a nano-interdigitated array (nIDA). The sensor is able to detect the binding reaction of a typical antibody Ixodes ricinus immunosuppressor (anti-Iris) protein at a concentration lower than 1 ng/ml. The sensor exhibits a high selectivity and reproducible specific detection. We provide a simple model that describes the behavior of the sensor and explains the origin of its high sensitivity. The simulated and experimental results indicate that the drain current of nIDA-gate MOSFET sensor is significantly increased with the successive binding of the thiol layer, Iris and anti-Iris protein layers. It is found that the sensor detection limit can be improved by well optimizing the geometrical parameters of nIDA-gate MOSFET. This nanobiosensor, with real-time and label-free capabilities, can easily be used for the detection of other proteins, DNA, virus and cancer markers. Moreover, an on-chip associated electronics nearby the sensor can be integrated since its fabrication is compatible with complementary metal oxide semiconductor (CMOS) technology.

  1. Magnetic wire trap arrays for biomarker-based molecular detection

    NASA Astrophysics Data System (ADS)

    Vieira, Gregory; Mahajan, Kalpesh; Ruan, Gang; Winter, Jessica; Sooryakumar, R.

    2012-02-01

    Submicrometer-scale magnetic devices built on chip-based platforms have recently been shown to present opportunities for new particle trapping and manipulation technologies. Meanwhile, advances in nanoparticle fabrication allow for the building of custom-made particles with precise control of their size, composition, and other properties such as magnetism, fluorescence, and surface biomarker characteristics. In particular, carefully tailored surface biomarkers facilitate precise binding to targeted molecules, self-actuated construction of hybrid structures, and fluorescence-based detection schemes. Based on these progresses, we present an on-chip detection mechanism for molecules with known surface markers. Hybrid nanostructures consisting of micelle nanoparticles, fluorescent quantum dots, and superparamagnetic iron oxide nanoparticles are used to detect proteins or DNA molecules. The target is detected by the magnetic and fluorescent functionalities of the composite nanostructure, whereas in the absence of the target these signals are not present. Underlying this approach is the simultaneous manipulation via ferromagnetic zigzag nanowire arrays and imaging via quantum dot excitation. This chip-based detection technique could provide a powerful, low cost tool for ultrasensitive molecule detection with ramifications in healthcare diagnostics and small-scale chemical synthesis.

  2. The Engineering Development Array: A Low Frequency Radio Telescope Utilising SKA Precursor Technology

    NASA Astrophysics Data System (ADS)

    Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.

    2017-08-01

    We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.

  3. Recent results from advanced research on space solar cells at NASA

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1990-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 pm) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  4. Structural Coloration of a Colloidal Amorphous Array is Intensified by Carbon Nanolayers.

    PubMed

    Takeoka, Yukikazu; Iwata, Masanori; Seki, Takahiro; Nueangnoraj, Khanin; Nishihara, Hirotomo; Yoshioka, Shinya

    2018-04-10

    In this study, we introduce the possibility of applying a colloidal amorphous array composed of fine silica particles as a structural-color material to invisible information technology. The appearance of a thick filmlike colloidal amorphous array formed from fine silica particles is considerably influenced by incoherent light scattering across the entire visible region. Therefore, regardless of the diameter of the fine silica particles, the thick colloidal amorphous array exhibits a white color to the naked eye. When carbon is uniformly deposited in the colloidal amorphous array by a pressure-pulsed chemical vapor deposition method, incoherent light scattering in the colloidal amorphous array is suppressed. As a result, coherent light scattering due to the short-range order in the colloidal amorphous array becomes conspicuous and the array exhibits a vivid structural color. As structures, such as letters and pictures, can be drawn using this technology, the colloidal amorphous array as a structural-colored material may also be applicable for invisible information technology.

  5. Space Photovoltaic Research and Technology 1986. High Efficiency, Space Environment, and Array Technology

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The conference provided a forum to assess the progress made, the problems remaining, and the strategy for the future of photovoltaic research. Cell research and technology, space environmental effects, array technology and applications were discussed.

  6. Exploring the Distribution of Genetic Markers of Pharmacogenomics Relevance in Brazilian and Mexican Populations

    PubMed Central

    Bonifaz-Peña, Vania; Contreras, Alejandra V.; Struchiner, Claudio Jose; Roela, Rosimeire A.; Furuya-Mazzotti, Tatiane K.; Chammas, Roger; Rangel-Escareño, Claudia; Uribe-Figueroa, Laura; Gómez-Vázquez, María José; McLeod, Howard L.; Hidalgo-Miranda, Alfredo

    2014-01-01

    Studies of pharmacogenomics-related traits are increasingly being performed to identify loci that affect either drug response or susceptibility to adverse drug reactions. However, the effect of the polymorphisms can differ in magnitude or be absent depending on the population being assessed. We used the Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array to characterize the distribution of polymorphisms of pharmacogenetics and pharmacogenomics (PGx) relevance in two samples from the most populous Latin American countries, Brazil and Mexico. The sample from Brazil included 268 individuals from the southeastern state of Rio de Janeiro, and was stratified into census categories. The sample from Mexico comprised 45 Native American Zapotecas and 224 self-identified Mestizo individuals from 5 states located in geographically distant regions in Mexico. We evaluated the admixture proportions in the Brazilian and Mexican samples using a panel of Ancestry Informative Markers extracted from the DMET array, which was validated with genome-wide data. A substantial variation in ancestral proportions across census categories in Brazil, and geographic regions in Mexico was identified. We evaluated the extent of genetic differentiation (measured as FST values) of the genetic markers of the DMET Plus array between the relevant parental populations. Although the average levels of genetic differentiation are low, there is a long tail of markers showing large frequency differences, including markers located in genes belonging to the Cytochrome P450, Solute Carrier (SLC) and UDP-glucuronyltransferase (UGT) families as well as other genes of PGx relevance such as ABCC8, ADH1A, CHST3, PON1, PPARD, PPARG, and VKORC1. We show how differences in admixture history may have an important impact in the distribution of allele and genotype frequencies at the population level. PMID:25419701

  7. NASA photovoltaic research and technology

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1988-01-01

    NASA photovoltaic R and D efforts address future Agency space mission needs through a comprehensive, integrated program. Activities range from fundamental studies of materials and devices to technology demonstrations of prototype hardware. The program aims to develop and apply an improved understanding of photovoltaic energy conversion devices and systems that will increase the performance, reduce the mass, and extend the lifetime of photovoltaic arrays for use in space. To that end, there are efforts aimed at improving cell efficiency, reducing the effects of space particulate radiation damage (primarily electrons and protons), developing ultralightweight cells, and developing advanced ray component technology for high efficiency concentrator arrays and high performance, ultralightweight arrays. Current goals that have been quantified for the program are to develop cell and array technology capable of achieving 300 watts/kg for future missions for which mass is a critical factor, or 300 watts/sq m for future missions for which array size is a major driver (i.e., Space Station). A third important goal is to develop cell and array technology which will survive the GEO space radiation environment for at least 10 years.

  8. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  9. Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 806 (U.S. Geological Survey, TMGS Magnetometer/Towed Array)

    DTIC Science & Technology

    2007-05-01

    BOX 25046, FEDERAL CENTER, M.S. 964 DENVER, CO 80225-0046 TECHNOLOGY TYPE/PLATFORM: TMGS MAGNETOMETER/TOWED ARRAY PREPARED BY: U.S. ARMY...GEOLOGICAL SURVEY, TMGS MAGNETOMETER/TOWED ARRAY) 8-CO-160-UXO-021 Karwatka, Michael... TMGS Magnetometer/Towed Array, MEC Unclassified Unclassified Unclassified SAR (Page ii Blank) i ACKNOWLEDGMENTS

  10. Integration of Antibody Array Technology into Drug Discovery and Development.

    PubMed

    Huang, Wei; Whittaker, Kelly; Zhang, Huihua; Wu, Jian; Zhu, Si-Wei; Huang, Ruo-Pan

    Antibody arrays represent a high-throughput technique that enables the parallel detection of multiple proteins with minimal sample volume requirements. In recent years, antibody arrays have been widely used to identify new biomarkers for disease diagnosis or prognosis. Moreover, many academic research laboratories and commercial biotechnology companies are starting to apply antibody arrays in the field of drug discovery. In this review, some technical aspects of antibody array development and the various platforms currently available will be addressed; however, the main focus will be on the discussion of antibody array technologies and their applications in drug discovery. Aspects of the drug discovery process, including target identification, mechanisms of drug resistance, molecular mechanisms of drug action, drug side effects, and the application in clinical trials and in managing patient care, which have been investigated using antibody arrays in recent literature will be examined and the relevance of this technology in progressing this process will be discussed. Protein profiling with antibody array technology, in addition to other applications, has emerged as a successful, novel approach for drug discovery because of the well-known importance of proteins in cell events and disease development.

  11. DFT algorithms for bit-serial GaAs array processor architectures

    NASA Technical Reports Server (NTRS)

    Mcmillan, Gary B.

    1988-01-01

    Systems and Processes Engineering Corporation (SPEC) has developed an innovative array processor architecture for computing Fourier transforms and other commonly used signal processing algorithms. This architecture is designed to extract the highest possible array performance from state-of-the-art GaAs technology. SPEC's architectural design includes a high performance RISC processor implemented in GaAs, along with a Floating Point Coprocessor and a unique Array Communications Coprocessor, also implemented in GaAs technology. Together, these data processors represent the latest in technology, both from an architectural and implementation viewpoint. SPEC has examined numerous algorithms and parallel processing architectures to determine the optimum array processor architecture. SPEC has developed an array processor architecture with integral communications ability to provide maximum node connectivity. The Array Communications Coprocessor embeds communications operations directly in the core of the processor architecture. A Floating Point Coprocessor architecture has been defined that utilizes Bit-Serial arithmetic units, operating at very high frequency, to perform floating point operations. These Bit-Serial devices reduce the device integration level and complexity to a level compatible with state-of-the-art GaAs device technology.

  12. Development of a 63K SNP array for Gossypium and high-density mapping of intra- and inter-specific populations of cotton (G. hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    High-throughput genotyping arrays provide a standardized resource for crop research communities that are useful for a breadth of applications including high-density genetic mapping, genome-wide association studies (GWAS), genomic selection (GS), candidate marker and quantitative trait loci (QTL) ide...

  13. Detection and Characterization of Circulating Tumor Cells

    NASA Astrophysics Data System (ADS)

    Bruce, Richard

    2009-03-01

    Circulating tumor cells (CTCs) occur in blood below the concentration of 1 cell in a hundred thousand white blood cells and can provide prognostic and diagnostic information about the underlying disease. While numeration of CTCs has provided useful information on progression-free and overall survival, it does not provide guidance of treatment choice. Since CTCs are presumed contain features of the metastatic tissue, characterization of cancer markers on these cells could help selection of treatment. At such low concentrations, reliable location and identification of these cells represents a significant technical challenge. Automated digital microscopy (ADM) provides high levels of sensitivity, but the analysis time is prohibitively long for a clinical assay. Enrichment methods have been developed to reduce sample size but can result in cell loss. A major barrier in reliable enrichment stems from the biological heterogeneity of CTCs, exhibited in a wide range of genetic, biochemical, immunological and biological characteristics. We have developed an approach that uses fiber-optic array scanning technology (FAST) to detect CTCs. Here, laser-printing optics are used to excite 300,000 cells/sec, and fluorescence from immuno-labels is collected in an array of optical fibers that forms a wide collection aperture. The FAST cytometer can locate CTCs at a rate that is 500 times faster than an ADM with comparable sensitivity and improved specificity. With this high scan rate, no enrichment of CTCs is required. The target can be a cytoplasm protein with a very high expression level, which reduces sensitivity to CTC heterogeneity. We use this method to measure expression levels of multiple markers on CTCs to help predict effective cancer treatment.

  14. Redundant disk arrays: Reliable, parallel secondary storage. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gibson, Garth Alan

    1990-01-01

    During the past decade, advances in processor and memory technology have given rise to increases in computational performance that far outstrip increases in the performance of secondary storage technology. Coupled with emerging small-disk technology, disk arrays provide the cost, volume, and capacity of current disk subsystems, by leveraging parallelism, many times their performance. Unfortunately, arrays of small disks may have much higher failure rates than the single large disks they replace. Redundant arrays of inexpensive disks (RAID) use simple redundancy schemes to provide high data reliability. The data encoding, performance, and reliability of redundant disk arrays are investigated. Organizing redundant data into a disk array is treated as a coding problem. Among alternatives examined, codes as simple as parity are shown to effectively correct single, self-identifying disk failures.

  15. Advanced Microstrip Antenna Developments : Volume I. Technology Studies for Aircraft Phased Arrays

    DOT National Transportation Integrated Search

    1981-06-01

    Work has continued on improvement of microstrip phased-array antenna technology since the first microstrip phased-array was flight-tested during the FAA 1974-1975 ATS-6 test program. The present development has extended this earlier work in three are...

  16. Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research.

    PubMed

    Abdelrahman, Hisham; ElHady, Mohamed; Alcivar-Warren, Acacia; Allen, Standish; Al-Tobasei, Rafet; Bao, Lisui; Beck, Ben; Blackburn, Harvey; Bosworth, Brian; Buchanan, John; Chappell, Jesse; Daniels, William; Dong, Sheng; Dunham, Rex; Durland, Evan; Elaswad, Ahmed; Gomez-Chiarri, Marta; Gosh, Kamal; Guo, Ximing; Hackett, Perry; Hanson, Terry; Hedgecock, Dennis; Howard, Tiffany; Holland, Leigh; Jackson, Molly; Jin, Yulin; Khalil, Karim; Kocher, Thomas; Leeds, Tim; Li, Ning; Lindsey, Lauren; Liu, Shikai; Liu, Zhanjiang; Martin, Kyle; Novriadi, Romi; Odin, Ramjie; Palti, Yniv; Peatman, Eric; Proestou, Dina; Qin, Guyu; Reading, Benjamin; Rexroad, Caird; Roberts, Steven; Salem, Mohamed; Severin, Andrew; Shi, Huitong; Shoemaker, Craig; Stiles, Sheila; Tan, Suxu; Tang, Kathy F J; Thongda, Wilawan; Tiersch, Terrence; Tomasso, Joseph; Prabowo, Wendy Tri; Vallejo, Roger; van der Steen, Hein; Vo, Khoi; Waldbieser, Geoff; Wang, Hanping; Wang, Xiaozhu; Xiang, Jianhai; Yang, Yujia; Yant, Roger; Yuan, Zihao; Zeng, Qifan; Zhou, Tao

    2017-02-20

    Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.

  17. Photovoltaic cell and array technology development for future unique NASA missions

    NASA Technical Reports Server (NTRS)

    Bailey, S.; Curtis, H.; Piszczor, M.; Surampudi, R.; Hamilton, T.; Rapp, D.; Stella, P.; Mardesich, N.; Mondt, J.; Bunker, R.; hide

    2002-01-01

    A technology review committee from NASA, the U.S. Department of Energy (DOE), and the Air Force Research Lab, was formed to assess solar cell and array technologies required for future NASA science missions.

  18. Use of molecular markers aids in the development of diverse inbred backcross lines in beit alpha cucumber (Cucumis sativus L.)

    USDA-ARS?s Scientific Manuscript database

    Beit Alpha cucumber (Cucumis sativus L.) is a Mediterranean fresh-market type with a relatively narrow genetic base. To broaden its base for plant improvement, 42 diverse accessions were compared employing a previously defined standard marker array to choose wide-based parental lines for use in bac...

  19. Use of molecular markers aids in the development of diverse inbred backcross lines in Beit Alpha cucumber (Cucumis sativus L.)

    USDA-ARS?s Scientific Manuscript database

    Beit Alpha cucumber (Cucumis sativus L.) is a Mediterranean fresh-market type with a relatively narrow genetic base. To broaden its base for plant improvement, 42 diverse accessions were compared employing a previously defined standard marker array to choose wide-based parental lines for use in bac...

  20. DArT Markers Effectively Target Gene Space in the Rye Genome

    PubMed Central

    Gawroński, Piotr; Pawełkowicz, Magdalena; Tofil, Katarzyna; Uszyński, Grzegorz; Sharifova, Saida; Ahluwalia, Shivaksh; Tyrka, Mirosław; Wędzony, Maria; Kilian, Andrzej; Bolibok-Brągoszewska, Hanna

    2016-01-01

    Large genome size and complexity hamper considerably the genomics research in relevant species. Rye (Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes. PMID:27833625

  1. DArT Markers Effectively Target Gene Space in the Rye Genome.

    PubMed

    Gawroński, Piotr; Pawełkowicz, Magdalena; Tofil, Katarzyna; Uszyński, Grzegorz; Sharifova, Saida; Ahluwalia, Shivaksh; Tyrka, Mirosław; Wędzony, Maria; Kilian, Andrzej; Bolibok-Brągoszewska, Hanna

    2016-01-01

    Large genome size and complexity hamper considerably the genomics research in relevant species. Rye ( Secale cereale L.) has one of the largest genomes among cereal crops and repetitive sequences account for over 90% of its length. Diversity Arrays Technology is a high-throughput genotyping method, in which a preferential sampling of gene-rich regions is achieved through the use of methylation sensitive restriction enzymes. We obtained sequences of 6,177 rye DArT markers and following a redundancy analysis assembled them into 3,737 non-redundant sequences, which were then used in homology searches against five Pooideae sequence sets. In total 515 DArT sequences could be incorporated into publicly available rye genome zippers providing a starting point for the integration of DArT- and transcript-based genomics resources in rye. Using Blast2Go pipeline we attributed putative gene functions to 1101 (29.4%) of the non-redundant DArT marker sequences, including 132 sequences with putative disease resistance-related functions, which were found to be preferentially located in the 4RL and 6RL chromosomes. Comparative analysis based on the DArT sequences revealed obvious inconsistencies between two recently published high density consensus maps of rye. Furthermore we demonstrated that DArT marker sequences can be a source of SSR polymorphisms. Obtained data demonstrate that DArT markers effectively target gene space in the large, complex, and repetitive rye genome. Through the annotation of putative gene functions and the alignment of DArT sequences relative to reference genomes we obtained information, that will complement the results of the studies, where DArT genotyping was deployed, by simplifying the gene ontology and microcolinearity based identification of candidate genes.

  2. Effect of electromigration-induced back stress gradient on nanoindentation marker movement in SnAgCu solder joints

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.; Tu, K. N.

    2006-11-01

    The electromigration-induced back stress in Pb-free SnAgCu solder was studied by an area array of nanoindentation markers on the cross section of a solder joint. The marker movements driven by combined electron wind force and electromigration-induced back stress gradient were measured at different locations. The back stress gradient was determined from the observation of marker motion using the proposed model. With the applied current density of 104A/cm2 at 125°C, the stress gradient near the anode is 97kPa/μm.

  3. Tomato breeding in the genomics era: insights from a SNP array.

    PubMed

    Víquez-Zamora, Marcela; Vosman, Ben; van de Geest, Henri; Bovy, Arnaud; Visser, Richard G F; Finkers, Richard; van Heusden, Adriaan W

    2013-05-27

    The major bottle neck in genetic and linkage studies in tomato has been the lack of a sufficient number of molecular markers. This has radically changed with the application of next generation sequencing and high throughput genotyping. A set of 6000 SNPs was identified and 5528 of them were used to evaluate tomato germplasm at the level of species, varieties and segregating populations. From the 5528 SNPs, 1980 originated from 454-sequencing, 3495 from Illumina Solexa sequencing and 53 were additional known markers. Genotyping different tomato samples allowed the evaluation of the level of heterozygosity and introgressions among commercial varieties. Cherry tomatoes were especially different from round/beefs in chromosomes 4, 5 and 12. We were able to identify a set of 750 unique markers distinguishing S. lycopersicum 'Moneymaker' from all its distantly related wild relatives. Clustering and neighbour joining analysis among varieties and species showed expected grouping patterns, with S. pimpinellifolium as the most closely related to commercial tomatoes earlier results. Our results show that a SNP search in only a few breeding lines already provides generally applicable markers in tomato and its wild relatives. It also shows that the Illumina bead array generated data are highly reproducible. Our SNPs can roughly be divided in two categories: SNPs of which both forms are present in the wild relatives and in domesticated tomatoes (originating from common ancestors) and SNPs unique for the domesticated tomato (originating from after the domestication event). The SNPs can be used for genotyping, identification of varieties, comparison of genetic and physical linkage maps and to confirm (phylogenetic) relations. In the SNPs used for the array there is hardly any overlap with the SolCAP array and it is strongly recommended to combine both SNP sets and to select a core collection of robust SNPs completely covering the entire tomato genome.

  4. Ka-band MMIC subarray technology program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottenger, Warren

    1995-01-01

    The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.

  5. Rapid thermal cycling of new technology solar array blanket coupons

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Smith, Bryan K.; Kurland, Richard M.; Mesch, Hans G.

    1990-01-01

    NASA Lewis Research Center is conducting thermal cycle testing of a new solar array blanket technologies. These technologies include test coupons for Space Station Freedom (SSF) and the advanced photovoltaic solar array (APSA). The objective of this testing is to demonstrate the durability or operational lifetime of the solar array interconnect design and blanket technology within a low earth orbit (LEO) or geosynchronous earth orbit (GEO) thermal cycling environment. Both the SSF and the APSA array survived all rapid thermal cycling with little or no degradation in peak performance. This testing includes an equivalent of 15 years in LEO for SSF test coupons and 30 years of GEO plus ten years of LEO for the APSA test coupon. It is concluded that both the parallel gap welding of the SSF interconnects and the soldering of the APSA interconnects are adequately designed to handle the thermal stresses of space environment temperature extremes.

  6. Estimation of linkage disequilibrium and interspecific gene flow in Ficedula flycatchers by a newly developed 50k single-nucleotide polymorphism array

    PubMed Central

    Kawakami, Takeshi; Backström, Niclas; Burri, Reto; Husby, Arild; Olason, Pall; Rice, Amber M; Ålund, Murielle; Qvarnström, Anna; Ellegren, Hans

    2014-01-01

    With the access to draft genome sequence assemblies and whole-genome resequencing data from population samples, molecular ecology studies will be able to take truly genome-wide approaches. This now applies to an avian model system in ecological and evolutionary research: Old World flycatchers of the genus Ficedula, for which we recently obtained a 1.1 Gb collared flycatcher genome assembly and identified 13 million single-nucleotide polymorphism (SNP)s in population resequencing of this species and its sister species, pied flycatcher. Here, we developed a custom 50K Illumina iSelect flycatcher SNP array with markers covering 30 autosomes and the Z chromosome. Using a number of selection criteria for inclusion in the array, both genotyping success rate and polymorphism information content (mean marker heterozygosity = 0.41) were high. We used the array to assess linkage disequilibrium (LD) and hybridization in flycatchers. Linkage disequilibrium declined quickly to the background level at an average distance of 17 kb, but the extent of LD varied markedly within the genome and was more than 10-fold higher in ‘genomic islands’ of differentiation than in the rest of the genome. Genetic ancestry analysis identified 33 F1 hybrids but no later-generation hybrids from sympatric populations of collared flycatchers and pied flycatchers, contradicting earlier reports of backcrosses identified from much fewer number of markers. With an estimated divergence time as recently as <1 Ma, this suggests strong selection against F1 hybrids and unusually rapid evolution of reproductive incompatibility in an avian system. PMID:24784959

  7. SCARLET I: Mechanization solutions for deployable concentrator optics integrated with rigid array technology

    NASA Technical Reports Server (NTRS)

    Wachholz, James J.; Murphy, David M.

    1996-01-01

    The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and design development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.

  8. SCARLET I: Mechanization solutions for deployable concentrator optics integrated with rigid array technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachholz, J.J.; Murphy, D.M.

    1996-05-01

    The SCARLET I (Solar Concentrator Army with Refractive Linear Element Technology) solar array wing was designed and built to demonstrate, in flight, the feasibility of integrating deployable concentrator optics within the design envelope of typical rigid array technology. Innovative mechanism designs were used throughout the array, and a full series of qualification tests were successfully performed in anticipation of a flight on the Multiple Experiment Transporter to Earth Orbit and Return (METEOR) spacecraft. Even though the Conestoga launch vehicle was unable to place the spacecraft in orbit, the program effort was successful in achieving the milestones of analytical and designmore » development functional validation, and flight qualification, thus leading to a future flight evaluation for the SCARLET technology.« less

  9. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

  10. Arrays of Molecular Rotors with Triptycene Stoppers: Surface Inclusion in Hexagonal Tris(o-phenylenedioxy)cyclotriphosphazene.

    PubMed

    Kaleta, Jiří; Dron, Paul I; Zhao, Ke; Shen, Yongqiang; Císařová, Ivana; Rogers, Charles T; Michl, Josef

    2015-06-19

    A new generation of rod-shaped dipolar molecular rotors designed for controlled insertion into channel arrays in the surface of hexagonal tris(o-phenylenedioxy)cyclotriphosphazene (TPP) has been designed and synthesized. Triptycene is used as a stopper intended to prevent complete insertion, forcing the formation of a surface inclusion. Two widely separated (13)C NMR markers are present in the shaft for monitoring the degree of insertion. The structure of the two-dimensional rotor arrays contained in these surface inclusions was examined by solid-state NMR and X-ray powder diffraction. The NMR markers and the triptycene stopper functioned as designed, but half of the guest molecules were not inserted as deeply into the TPP channels as the other half. As a result, the dipolar rotators were distributed equally in two planes parallel to the crystal surface instead of being located in a single plane as would be required for ferroelectricity. Dielectric spectroscopy revealed rotational barriers of ∼4 kcal/mol but no ferroelectric behavior.

  11. Systematic exploration of essential yeast gene function with temperature-sensitive mutants

    PubMed Central

    Li, Zhijian; Vizeacoumar, Franco J; Bahr, Sondra; Li, Jingjing; Warringer, Jonas; Vizeacoumar, Frederick S; Min, Renqiang; VanderSluis, Benjamin; Bellay, Jeremy; DeVit, Michael; Fleming, James A; Stephens, Andrew; Haase, Julian; Lin, Zhen-Yuan; Baryshnikova, Anastasia; Lu, Hong; Yan, Zhun; Jin, Ke; Barker, Sarah; Datti, Alessandro; Giaever, Guri; Nislow, Corey; Bulawa, Chris; Myers, Chad L; Costanzo, Michael; Gingras, Anne-Claude; Zhang, Zhaolei; Blomberg, Anders; Bloom, Kerry; Andrews, Brenda; Boone, Charles

    2012-01-01

    Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (~45%) of the 1,101 essential yeast genes, with ~30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes. PMID:21441928

  12. A 2x2 W-Band Reference Time-Shifted Phase-Locked Transmitter Array in 65nm CMOS Technology

    NASA Technical Reports Server (NTRS)

    Tang, Adrian; Virbila, Gabriel; Hsiao, Frank; Wu, Hao; Murphy, David; Mehdi, Imran; Siegel, P. H.; Chang, M-C. Frank

    2013-01-01

    This paper presents a complete 2x2 phased array transmitter system operating at W-band (90-95 GHz) which employs a PLL reference time-shifting approach instead of using traditional mm-wave phase shifters. PLL reference shifting enables a phased array to be distributed over multiple chips without the need for coherent mm-wave signal distribution between chips. The proposed phased array transmitter system consumes 248 mW per array element when implemented in a 65 nm CMOS technology.

  13. The Advanced Photovoltaic Solar Array (APSA) technology status and performance

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1991-01-01

    In 1985, the Jet Propulsion Laboratory initiated the Advanced Photovoltaic Solar Array (APSA) program. The program objective is to demonstrate a producible array system by the early 1990s with a specific performance of at least 130 W/kG (beginning-of-life) as an intermediate milestone towards the long range goal of 300 W/kG. The APSA performance represents an approximately four-fold improvement over existing rigid array technology and a doubling of the performance of the first generation NASA/OAST SAFE flexible blanket array of the early 1980s.

  14. 16-element photodiode array for the angular microdeflection detector and for stabilization of a laser radiation direction

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Piotrowski, Tadeusz; Bar, Jan; Dobrowolski, Rafał; Klimov, Andrii; Klos, Helena; Marchewka, Michał; Nieprzecki, Marek; Panas, Andrzej; Prokaryn, Piotr; Seredyński, Bartłomiej; Sierakowski, Andrzej; Słysz, Wojciech; Szmigiel, Dariusz; Zaborowski, Michal

    2016-12-01

    In this paper, the design and technology of two types of 16-element photodiode arrays is described. The arrays were developed by the ITE and are to be used in detection of microdeflection of laser radiation at the Institute of Metrology and Biomedical Engineering in the Faculty of Mechatronics of Warsaw University of Technology. The electrical and photoelectrical parameters of the arrays are presented.

  15. Noncontact Microembossing Technology for Fabricating Thermoplastic Optical Polymer Microlens Array Sheets

    PubMed Central

    Chang, Xuefeng; Ge, Xiaohong; Li, Hui

    2014-01-01

    Thermoplastic optical polymers have replaced traditional optical glass for many applications, due to their superior optical performance, mechanical characteristics, low cost, and efficient production process. This paper investigates noncontact microembossing technology used for producing microlens arrays made out of PMMA (polymethyl methacrylate), PS (polyStyrene), and PC (polycarbonate) from a quartz mold, with microhole arrays. An array of planoconvex microlenses are formed because of surface tension caused by applying pressure to the edge of a hole at a certain glass transition temperature. We studied the principle of noncontact microembossing techniques using finite element analysis, in addition to the thermal and mechanical properties of the three polymers. Then, the independently developed hot-embossing equipment was used to fabricate microlens arrays on PMMA, PS, and PC sheets. This is a promising technique for fabricating diverse thermoplastic optical polymer microlens array sheets, with a simple technological process and low production costs. PMID:25162063

  16. Ka-Band MMIC Subarray Technology Program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottinger, W.

    1995-01-01

    Ka-band monolithic microwave integrated circuit (MMIC) arrays have been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in closed proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments. The objective of this program was to demonstrate the technical feasibility of the 'tile' array packaging architecture at EHF via the insertion of 1990 MMIC technology into a functional tile array or subarray module. The means test of this objective was to demonstrate and deliver to NASA a minimum of two 4 x 4 (16 radiating element) subarray modules operating in a transmit mode at 29.6 GHz. Available (1990) MMIC technology was chosen to focus the program effort on the novel interconnect schemes and packaging requirements rather than focusing on MMIC development. Major technical achievements of this program include the successful integration of two 4 x 4 subarray modules into a single antenna array. This 32 element array demonstrates a transmit EIRP of over 300 watts yielding an effective directive power gain in excess of 55 dB at 29.63 GHz. The array has been actively used as the transmit link in airborne/terrestrial mobile communication experiments accomplished via the ACTS satellite launched in August 1993.

  17. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome.

    PubMed

    Zhang, Li; Luo, Jiang-Tao; Hao, Ming; Zhang, Lian-Quan; Yuan, Zhong-Wei; Yan, Ze-Hong; Liu, Ya-Xi; Zhang, Bo; Liu, Bao-Long; Liu, Chun-Ji; Zhang, Huai-Gang; Zheng, You-Liang; Liu, Deng-Cai

    2012-08-13

    A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.

  18. Review of infrared scene projector technology-1993

    NASA Astrophysics Data System (ADS)

    Driggers, Ronald G.; Barnard, Kenneth J.; Burroughs, E. E.; Deep, Raymond G.; Williams, Owen M.

    1994-07-01

    The importance of testing IR imagers and missile seekers with realistic IR scenes warrants a review of the current technologies used in dynamic infrared scene projection. These technologies include resistive arrays, deformable mirror arrays, mirror membrane devices, liquid crystal light valves, laser writers, laser diode arrays, and CRTs. Other methods include frustrated total internal reflection, thermoelectric devices, galvanic cells, Bly cells, and vanadium dioxide. A description of each technology is presented along with a discussion of their relative benefits and disadvantages. The current state of each methodology is also summarized. Finally, the methods are compared and contrasted in terms of their performance parameters.

  19. MMP13 is potentially a new tumor marker for breast cancer diagnosis.

    PubMed

    Chang, Hui-Jen; Yang, Ming-Je; Yang, Yu-Hsiang; Hou, Ming-Feng; Hsueh, Er-Jung; Lin, Shiu-Ru

    2009-11-01

    Within the past decade, the incidence of breast cancer in Taiwan has been rising year after year. Breast cancer is the first most prevalent cancer and the fourth leading cause of cancer-related deaths among women in Taiwan. The early stage of breast cancer not only have a wider range of therapeutic options, but also obtain a higher success rate of therapy than those with advanced breast cancer. A test for tumor markers is the most convenient method to screen for breast cancer. However, the tumor markers currently available for breast cancer detection include carcinoembryonic antigen (CEA), carbohydrate antigen 15.3 (CA15.3), and carbohydrate antigen 27.29 (CA27.29) exhibited certain limitations. Poor sensitivity and specificity greatly limits the diagnostic accuracy of these markers. This study aims to identify potential tumor markers for breast cancer. At first, we analyzed genes expression in infiltrating lobular carcinoma, metaplastic carcinoma, and infiltrating ductal carcinoma of paired specimens (tumor and normal tissue) from breast cancer patients using microarray technology. We selected 371 overexpressed genes in all of the three cell type. In advanced breast cancer tissue, we detected four genes MMP13, CAMP, COL10A1 and FLJ25416 from 25 overexpressed genes which encoded secretion protein more specifically for breast cancer than other genes. After validation with 15 pairs of breast cancer tissue and paired to normal adjacent tissues by membrane array and quantitative RT-PCR, we found MMP13 was 100% overexpressed and confirmed to be a secreted protein by Western blot analysis of the cell culture medium. The expression level of MMP13 was also measured by immunohistochemical staining. We suggest that MMP13 is a highly overexpressed secretion protein in breast cancer tissue. It has potential to be a new tumor marker for breast cancer diagnosis.

  20. High-density linkage mapping in a pine tree reveals a genomic region associated with inbreeding depression and provides clues to the extent and distribution of meiotic recombination

    PubMed Central

    2013-01-01

    Background The availability of a large expressed sequence tags (EST) resource and recent advances in high-throughput genotyping technology have made it possible to develop highly multiplexed SNP arrays for multi-objective genetic applications, including the construction of meiotic maps. Such approaches are particularly useful in species with a large genome size, precluding the use of whole-genome shotgun assembly with current technologies. Results In this study, a 12 k-SNP genotyping array was developed for maritime pine from an extensive EST resource assembled into a unigene set. The offspring of three-generation outbred and inbred mapping pedigrees were then genotyped. The inbred pedigree consisted of a classical F2 population resulting from the selfing of a single inter-provenance (Landes x Corsica) hybrid tree, whereas the outbred pedigree (G2) resulted from a controlled cross of two intra-provenance (Landes x Landes) hybrid trees. This resulted in the generation of three linkage maps based on SNP markers: one from the parental genotype of the F2 population (1,131 markers in 1,708 centimorgan (cM)), and one for each parent of the G2 population (1,015 and 1,110 markers in 1,447 and 1,425 cM for the female and male parents, respectively). A comparison of segregation patterns in the progeny obtained from the two types of mating (inbreeding and outbreeding) led to the identification of a chromosomal region carrying an embryo viability locus with a semi-lethal allele. Following selfing and segregation, zygote mortality resulted in a deficit of Corsican homozygous genotypes in the F2 population. This dataset was also used to study the extent and distribution of meiotic recombination along the length of the chromosomes and the effect of sex and/or genetic background on recombination. The genetic background of trees in which meiotic recombination occurred was found to have a significant effect on the frequency of recombination. Furthermore, only a small proportion of the recombination hot- and cold-spots were common to all three genotypes, suggesting that the spatial pattern of recombination was genetically variable. Conclusion This study led to the development of classical genomic tools for this ecologically and economically important species. It also identified a chromosomal region bearing a semi-lethal recessive allele and demonstrated the genetic variability of recombination rate over the genome. PMID:23597128

  1. FACT, Mega-ROSA, SOLAROSA

    NASA Technical Reports Server (NTRS)

    Spence, Brian; White, Steve; Schmid, Kevin; Douglas Mark

    2012-01-01

    The Flexible Array Concentrator Technology (FACT) is a lightweight, high-performance reflective concentrator blanket assembly that can be used on flexible solar array blankets. The FACT concentrator replaces every other row of solar cells on a solar array blanket, significantly reducing the cost of the array. The modular design is highly scalable for the array system designer, and exhibits compact stowage, good off-pointing acceptance, and mass/cost savings. The assembly s relatively low concentration ratio, accompanied by a large radiative area, provides for a low cell operating temperature, and eliminates many of the thermal problems inherent in high-concentration-ratio designs. Unlike other reflector technologies, the FACT concentrator modules function on both z-fold and rolled flexible solar array blankets, as well as rigid array systems. Mega-ROSA (Mega Roll-Out Solar Array) is a new, highly modularized and extremely scalable version of ROSA that provides immense power level range capability from 100 kW to several MW in size. Mega-ROSA will enable extremely high-power spacecraft and SEP-powered missions, including space-tug and largescale planetary science and lunar/asteroid exploration missions. Mega-ROSA's inherent broad power scalability is achieved while retaining ROSA s solar array performance metrics and missionenabling features for lightweight, compact stowage volume and affordability. This innovation will enable future ultra-high-power missions through lowcost (25 to 50% cost savings, depending on PV and blanket technology), lightweight, high specific power (greater than 200 to 400 Watts per kilogram BOL (beginning-of-life) at the wing level depending on PV and blanket technology), compact stowage volume (greater than 50 kilowatts per cubic meter for very large arrays), high reliability, platform simplicity (low failure modes), high deployed strength/stiffness when scaled to huge sizes, and high-voltage operation capability. Mega-ROSA is adaptable to all photovoltaic and concentrator flexible blanket technologies, and can readily accommodate standard multijunction and emerging ultra-lightweight IMM (inverted metamorphic) photovoltaic flexible blanket assemblies, as well as ENTECHs Stretched Lens Array (SLA) and DSSs (Deployable Space Systems) FACT, which allows for cost reduction at the array level.

  2. Developing an Inflatable Solar Array

    NASA Technical Reports Server (NTRS)

    Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.

    1992-01-01

    Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.

  3. Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array

    NASA Technical Reports Server (NTRS)

    Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2004-01-01

    A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.

  4. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Shepard, N. F., Jr.

    1981-12-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  5. Coherent Detector Arrays for Continuum and Spectral Line Applications

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.

    2006-01-01

    This viewgraph presentation reviews the requirements for improved coherent detector arrays for use in continuum and spectral line applications. With detectors approaching fundamental limits, large arrays offer the only path to sensitivity improvement. Monolithic Microwave Integrated Circuit (MMIC) technology offers a straightforward path to massive focal plane millimeter wave arrays: The technology will readily support continuum imagers, polarimeters and spectral line receivers from 30-110 GHz. Science programs, particularly large field blind surveys will benefit from simultaneous observations of hundreds or thousands of pixels 1000 element array is competitive with a cost less than $2M.

  6. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  7. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  8. Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis

    PubMed Central

    Mason, Annaliese S.; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E.; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A. P.; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N.

    2016-01-01

    Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. PMID:26614742

  9. Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis.

    PubMed

    Mason, Annaliese S; Rousseau-Gueutin, Mathieu; Morice, Jérôme; Bayer, Philipp E; Besharat, Naghmeh; Cousin, Anouska; Pradhan, Aneeta; Parkin, Isobel A P; Chèvre, Anne-Marie; Batley, Jacqueline; Nelson, Matthew N

    2016-02-01

    Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate. Copyright © 2016 by the Genetics Society of America.

  10. Space Photovoltaic Research and Technology 1985: High Efficiency, Space Environment, and Array Technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The seventh NASA Conference on Space Photovoltaic Research and Technology was held at NASA Lewis Research Center, Cleveland, Ohio, from 30 April until 2 May 1985. Its purpose was to assess the progress made, the problems remaining, and future strategy for space photovoltaic research. Particular emphasis was placed on high efficiency, space environment, and array technology.

  11. A study on software-based sensing technology for multiple object control in AR video.

    PubMed

    Jung, Sungmo; Song, Jae-Gu; Hwang, Dae-Joon; Ahn, Jae Young; Kim, Seoksoo

    2010-01-01

    Researches on Augmented Reality (AR) have recently received attention. With these, the Machine-to-Machine (M2M) market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker'should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms.

  12. Proceedings of the Third Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, Craig R. (Compiler)

    1989-01-01

    This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.

  13. Phased Arrays 1985 Symposium - Proceedings

    DTIC Science & Technology

    1985-08-01

    have served the logic industry well, and appropriate versions can do the same for micruwdve drid millimeter * wave technology, An aspect of phased...continuing revolutions of the logic industry and the microwave monolithic integrated circuit community are bringing relevant technology closer to the array...monolithic phased array antennas, and discuss their relative advantages and disadvantages . Considerations such as bandwidth, maxianiru scan range, feed

  14. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  15. Microelectronic electroporation array

    NASA Astrophysics Data System (ADS)

    Johnson, Lee J.; Shaffer, Kara J.; Skeath, Perry; Perkins, Frank K.; Pancrazio, Joseph; Scribner, Dean

    2004-06-01

    Gene Array technology has allowed for the study of gene binding by creating thousands of potential binding sites on a single device. A limitation of the current technology is that the effects of the gene and the gene-derived proteins cannot be studied in situ the same way, thousand site cell arrays are not readily available. We propose a new device structure to study the effects of gene modification on cells. This new array technology uses electroporation to target specific areas within a cell culture for transfection of genes. Electroporation arrays will allow high throughput analysis of gene effects on a given cell's response to a stress or a genes ability to restore normal cell function in disease modeling cells. Fluorescent imaging of dye labeled indicator molecules or cell viability will provide results indicating the most effective genes. The electroporation array consists of a microelectronic circuit, ancillary electronics, protecting electrode surface for cell culturing and a perfusion system for gene or drug delivery. The advantages of the current device are that there are 3200 sites for electroporation, all or any subsets of the electrodes can be activated. The cells are held in place by the electrode material. This technology could also be applied to high throughput screening of cell impermeant drugs.

  16. Technologies for Assessing Behavioral and Cognitive Markers of Suicide Risk

    DTIC Science & Technology

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0632 TITLE: Technologies for Assessing Behavioral and Cognitive Markers of Suicide Risk PRINCIPAL INVESTIGATOR: Brian...CONTRACT NUMBER Technologies for Assessing Behavioral and Cognitive Markers of Suicide Risk 5b. GRANT NUMBER W81XWH-15-1-0632 5c. PROGRAM...Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The primary aim of the proposed project is to develop cognitive and

  17. Hydrogel microstructure live-cell array for multiplexed analyses of cancer stem cells, tumor heterogeneity and differential drug response at single-element resolution.

    PubMed

    Afrimzon, E; Botchkina, G; Zurgil, N; Shafran, Y; Sobolev, M; Moshkov, S; Ravid-Hermesh, O; Ojima, I; Deutsch, M

    2016-03-21

    Specific phenotypic subpopulations of cancer stem cells (CSCs) are responsible for tumor development, production of heterogeneous differentiated tumor mass, metastasis, and resistance to therapies. The development of therapeutic approaches based on targeting rare CSCs has been limited partially due to the lack of appropriate experimental models and measurement approaches. The current study presents new tools and methodologies based on a hydrogel microstructure array (HMA) for identification and multiplex analyses of CSCs. Low-melt agarose integrated with type I collagen, a major component of the extracellular matrix (ECM), was used to form a solid hydrogel array with natural non-adhesive characteristics and high optical quality. The array contained thousands of individual pyramidal shaped, nanoliter-volume micro-chambers (MCs), allowing concomitant generation and measurement of large populations of free-floating CSC spheroids from single cells, each in an individual micro-chamber (MC). The optical live cell platform, based on an imaging plate patterned with HMA, was validated using CSC-enriched prostate and colon cancer cell lines. The HMA methodology and quantitative image analysis at single-element resolution clearly demonstrates several levels of tumor cell heterogeneity, including morphological and phenotypic variability, differences in proliferation capacity and in drug response. Moreover, the system facilitates real-time examination of single stem cell (SC) fate, as well as drug-induced alteration in expression of stemness markers. The technology may be applicable in personalized cancer treatment, including multiplex ex vivo analysis of heterogeneous patient-derived tumor specimens, precise detection and characterization of potentially dangerous cell phenotypes, and for representative evaluation of drug sensitivity of CSCs and other types of tumor cells.

  18. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach.

    PubMed

    Ali, Mehreen; Khan, Suleiman A; Wennerberg, Krister; Aittokallio, Tero

    2018-04-15

    Proteomics profiling is increasingly being used for molecular stratification of cancer patients and cell-line panels. However, systematic assessment of the predictive power of large-scale proteomic technologies across various drug classes and cancer types is currently lacking. To that end, we carried out the first pan-cancer, multi-omics comparative analysis of the relative performance of two proteomic technologies, targeted reverse phase protein array (RPPA) and global mass spectrometry (MS), in terms of their accuracy for predicting the sensitivity of cancer cells to both cytotoxic chemotherapeutics and molecularly targeted anticancer compounds. Our results in two cell-line panels demonstrate how MS profiling improves drug response predictions beyond that of the RPPA or the other omics profiles when used alone. However, frequent missing MS data values complicate its use in predictive modeling and required additional filtering, such as focusing on completely measured or known oncoproteins, to obtain maximal predictive performance. Rather strikingly, the two proteomics profiles provided complementary predictive signal both for the cytotoxic and targeted compounds. Further, information about the cellular-abundance of primary target proteins was found critical for predicting the response of targeted compounds, although the non-target features also contributed significantly to the predictive power. The clinical relevance of the selected protein markers was confirmed in cancer patient data. These results provide novel insights into the relative performance and optimal use of the widely applied proteomic technologies, MS and RPPA, which should prove useful in translational applications, such as defining the best combination of omics technologies and marker panels for understanding and predicting drug sensitivities in cancer patients. Processed datasets, R as well as Matlab implementations of the methods are available at https://github.com/mehr-een/bemkl-rbps. mehreen.ali@helsinki.fi or tero.aittokallio@fimm.fi. Supplementary data are available at Bioinformatics online.

  19. Development of a rapid microarray-based DNA subtyping assay for the alleles of Shiga toxins 1 and 2 of Escherichia coli.

    PubMed

    Geue, Lutz; Stieber, Bettina; Monecke, Stefan; Engelmann, Ines; Gunzer, Florian; Slickers, Peter; Braun, Sascha D; Ehricht, Ralf

    2014-08-01

    In this study, we developed a new rapid, economic, and automated microarray-based genotyping test for the standardized subtyping of Shiga toxins 1 and 2 of Escherichia coli. The microarrays from Alere Technologies can be used in two different formats, the ArrayTube and the ArrayStrip (which enables high-throughput testing in a 96-well format). One microarray chip harbors all the gene sequences necessary to distinguish between all Stx subtypes, facilitating the identification of single and multiple subtypes within a single isolate in one experiment. Specific software was developed to automatically analyze all data obtained from the microarray. The assay was validated with 21 Shiga toxin-producing E. coli (STEC) reference strains that were previously tested by the complete set of conventional subtyping PCRs. The microarray results showed 100% concordance with the PCR results. Essentially identical results were detected when the standard DNA extraction method was replaced by a time-saving heat lysis protocol. For further validation of the microarray, we identified the Stx subtypes or combinations of the subtypes in 446 STEC field isolates of human and animal origin. In summary, this oligonucleotide array represents an excellent diagnostic tool that provides some advantages over standard PCR-based subtyping. The number of the spotted probes on the microarrays can be increased by additional probes, such as for novel alleles, species markers, or resistance genes, should the need arise. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction.

    PubMed

    Brøndum, R F; Su, G; Janss, L; Sahana, G; Guldbrandtsen, B; Boichard, D; Lund, M S

    2015-06-01

    This study investigated the effect on the reliability of genomic prediction when a small number of significant variants from single marker analysis based on whole genome sequence data were added to the regular 54k single nucleotide polymorphism (SNP) array data. The extra markers were selected with the aim of augmenting the custom low-density Illumina BovineLD SNP chip (San Diego, CA) used in the Nordic countries. The single-marker analysis was done breed-wise on all 16 index traits included in the breeding goals for Nordic Holstein, Danish Jersey, and Nordic Red cattle plus the total merit index itself. Depending on the trait's economic weight, 15, 10, or 5 quantitative trait loci (QTL) were selected per trait per breed and 3 to 5 markers were selected to tag each QTL. After removing duplicate markers (same marker selected for more than one trait or breed) and filtering for high pairwise linkage disequilibrium and assaying performance on the array, a total of 1,623 QTL markers were selected for inclusion on the custom chip. Genomic prediction analyses were performed for Nordic and French Holstein and Nordic Red animals using either a genomic BLUP or a Bayesian variable selection model. When using the genomic BLUP model including the QTL markers in the analysis, reliability was increased by up to 4 percentage points for production traits in Nordic Holstein animals, up to 3 percentage points for Nordic Reds, and up to 5 percentage points for French Holstein. Smaller gains of up to 1 percentage point was observed for mastitis, but only a 0.5 percentage point increase was seen for fertility. When using a Bayesian model accuracies were generally higher with only 54k data compared with the genomic BLUP approach, but increases in reliability were relatively smaller when QTL markers were included. Results from this study indicate that the reliability of genomic prediction can be increased by including markers significant in genome-wide association studies on whole genome sequence data alongside the 54k SNP set. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Photovoltaic options for solar electric propulsion

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Flood, Dennis J.

    1990-01-01

    This paper discusses both state-of-the-art and advanced development cell and array technology. Present technology includes rigid, roll-out, and foldout flexible substrate designs, with silicon and GaAs solar cells. The use of concentrator array systems is discussed based on both DOD efforts and NASA work. The benefits of advanced lightweight array technology, for both near term and far term utilization, and of advanced high efficiency thin radiation resistant cells is examined. This includes gallium arsenide/germanium, indium phosphide, and thin film devices such as copper indium disclenide.

  2. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species

    PubMed Central

    Takmakov, Pavel; Ruda, Kiersten; Phillips, K Scott; Isayeva, Irada S; Krauthamer, Victor; Welle, Cristin G

    2017-01-01

    Objective A challenge for implementing high bandwidth cortical brain–machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. Approach Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz–1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. Main results RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies <10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. Significance ROS, which are known to be present in vivo, can create structural damage and change electrical properties of MEAs. Broad-spectrum electrical impedance spectroscopy demonstrates increased sensitivity to electrode damage compared with single-frequency measurements. RAA can be a useful tool to simulate worst-case in vivo damage resulting from chronic electrode implantation, simplifying the device development lifecycle. PMID:25627426

  3. Cell and tissue microarray technologies for protein and nucleic acid expression profiling.

    PubMed

    Cardano, Marina; Diaferia, Giuseppe R; Falavigna, Maurizio; Spinelli, Chiara C; Sessa, Fausto; DeBlasio, Pasquale; Biunno, Ida

    2013-02-01

    Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform.

  4. Pharmacogenomics in the preclinical development of vaccines: evaluation of efficacy and systemic toxicity in the mouse using array technology.

    PubMed

    Regnström, Karin J

    2008-01-01

    The development of vaccines, conventional protein based as well as nucleic acid based vaccines, and their delivery systems has been largely empirical and ineffective. This is partly due to a lack of methodology, since traditionally only a few markers are studied. By introducing gene expression analysis and bioinformatics into the design of vaccines and their delivery systems, vaccine development can be improved and accelerated considerably. Each vaccine antigen and delivery system combination is characterized by a unique genomic profile, a "fingerprint" that will give information of not only immunological and toxicological responses but also other related cellular responses e.g. cell cycle, apoptosis and carcinogenic effects. The resulting unique genomic fingerprint facilitates the establishment of molecular structure--pharmacological activity relationships and therefore leads to optimization of vaccine development.

  5. Technologies for Assessing Behavioral and Cognitive Markers of Suicide Risk

    DTIC Science & Technology

    2016-10-01

    the annual conference of the Association for Behavioral and Cognitive Therapies in New York, NY October 27, 2016 – October 30, 2016. How were the...AWARD NUMBER: W81XWH-15-1-0632 TITLE: Technologies for Assessing Behavioral and Cognitive Markers of Suicide Risk PRINCIPAL INVESTIGATOR: Brian...CONTRACT NUMBER Technologies for Assessing Behavioral and Cognitive Markers of Suicide Risk 5b. GRANT NUMBER W81XWH-15-1-0632 5c. PROGRAM ELEMENT

  6. Integrated detector array technology for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, c. R.; Goebel, J. H.; Mckelvey, M. E.; Stafford, P. S.; Lee, J. H.

    1984-01-01

    The status of laboratory and telescope tests of integrated infrared detector array technology for astronomical applications is described. The devices tested represent a number of extrinsic and intrinsic detector materials and various multiplexer designs. Infrared arrays have now been used in successful astronomical applications. These have shown that device sensitivities can be comparable to those of discrete detector systems and excellent astronomical imagery can be produced.

  7. Integrating Residential Photovoltaics With Power Lines

    NASA Technical Reports Server (NTRS)

    Borden, C. S.

    1985-01-01

    Report finds rooftop solar-cell arrays feed excess power to electric-utility grid for fee are potentially attractive large-scale application of photovoltaic technology. Presents assessment of breakeven costs of these arrays under variety of technological and economic assumptions.

  8. Materials, devices, techniques, and applications for Z-plane focal plane array technology II; Proceedings of the Meeting, San Diego, CA, July 12, 13, 1990

    NASA Astrophysics Data System (ADS)

    Carson, John C.

    1990-11-01

    Various papers on materials, devices, techniques, and applications for X-plane focal plane array technology are presented. Individual topics addressed include: application of Z-plane technology to the remote sensing of the earth from GEO, applications of smart neuromorphic focal planes, image-processing of Z-plane technology, neural network Z-plane implementation with very high interconnection rates, using a small IR surveillance satellite for tactical applications, establishing requirements for homing applications, Z-plane technology. Also discussed are: on-array spike suppression signal processing, algorithms for on-focal-plane gamma circumvention and time-delay integration, current HYMOSS Z-technology, packaging of electrons for on- and off-FPA signal processing, space/performance qualification of tape automated bonded devices, automation in tape automated bonding, high-speed/high-volume radiometric testing of Z-technology focal planes, 128-layer HYMOSS-module fabrication issues, automation of IRFPA production processes.

  9. A Study on Software-based Sensing Technology for Multiple Object Control in AR Video

    PubMed Central

    Jung, Sungmo; Song, Jae-gu; Hwang, Dae-Joon; Ahn, Jae Young; Kim, Seoksoo

    2010-01-01

    Researches on Augmented Reality (AR) have recently received attention. With these, the Machine-to-Machine (M2M) market has started to be active and there are numerous efforts to apply this to real life in all sectors of society. To date, the M2M market has applied the existing marker-based AR technology in entertainment, business and other industries. With the existing marker-based AR technology, a designated object can only be loaded on the screen from one marker and a marker has to be added to load on the screen the same object again. This situation creates a problem where the relevant marker’should be extracted and printed in screen so that loading of the multiple objects is enabled. However, since the distance between markers will not be measured in the process of detecting and copying markers, the markers can be overlapped and thus the objects would not be augmented. To solve this problem, a circle having the longest radius needs to be created from a focal point of a marker to be copied, so that no object is copied within the confines of the circle. In this paper, software-based sensing technology for multiple object detection and loading using PPHT has been developed and overlapping marker control according to multiple object control has been studied using the Bresenham and Mean Shift algorithms. PMID:22163444

  10. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver.

    PubMed

    Petrusca, Lorena; Viallon, Magalie; Breguet, Romain; Terraz, Sylvain; Manasseh, Gibran; Auboiroux, Vincent; Goget, Thomas; Baboi, Loredana; Gross, Patrick; Sekins, K Michael; Becker, Christoph D; Salomir, Rares

    2014-01-16

    Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. At the end of the procedure, no ultrasound indication of the marker's presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Experimental validation of this new ballistic marker method was performed for liver MRgHIFU ablation, free of any side effects (e.g. no edema around the marker, no infection, no bleeding). The study suggests that the absolute reference marker had ultrasound conspicuity below the detection threshold, was irreversible, MR-compatible and MR-detectable, while also being a well-established histology staining technique.

  11. JPRS Report, Science & Technology, China, High-Performance Computer Systems

    DTIC Science & Technology

    1992-10-28

    microprocessor array The microprocessor array in the AP85 system is com- posed of 16 completely identical array element micro - processors . Each array element...microprocessors and capable of host machine reading and writing. The memory capacity of the array element micro - processors as a whole can be expanded...transmission functions to carry out data transmission from array element micro - processor to array element microprocessor, from array element

  12. Low-background detector arrays for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.

    1989-01-01

    The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.

  13. Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays

    NASA Technical Reports Server (NTRS)

    Cai, Jianhong

    2015-01-01

    Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.

  14. Image science team

    NASA Technical Reports Server (NTRS)

    Ando, K.

    1982-01-01

    A substantial technology base of solid state pushbroom sensors exists and is in the process of further evolution at both GSFC and JPL. Technologies being developed relate to short wave infrared (SWIR) detector arrays; HgCdTe hybrid detector arrays; InSb linear and area arrays; passive coolers; spectral beam splitters; the deposition of spectral filters on detector arrays; and the functional design of the shuttle/space platform imaging spectrometer (SIS) system. Spatial and spectral characteristics of field, aircraft and space multispectral sensors are summaried. The status, field of view, and resolution of foreign land observing systems are included.

  15. Study of Power Options for Jupiter and Outer Planet Missions

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Fincannon, James

    2015-01-01

    Power for missions to Jupiter and beyond presents a challenging goal for photovoltaic power systems, but NASA missions including Juno and the upcoming Europa Clipper mission have shown that it is possible to operate solar arrays at Jupiter. This work analyzes photovoltaic technologies for use in Jupiter and outer planet missions, including both conventional arrays, as well as analyzing the advantages of advanced solar cells, concentrator arrays, and thin film technologies. Index Terms - space exploration, spacecraft solar arrays, solar electric propulsion, photovoltaic cells, concentrator, Fresnel lens, Jupiter missions, outer planets.

  16. DNA ARRAYS: TECHNOLOGY, OPTIONS AND TOXOCOLOGICAL APPLICATIONS

    EPA Science Inventory

    DNA arrays: technology, options and toxicological applications.

    Rockett JC, Dix DJ.

    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, NC 27711, USA. rockett.john@epa.gov

    The hu...

  17. Markers and mapping revisited: finding your gene.

    PubMed

    Jones, Neil; Ougham, Helen; Thomas, Howard; Pasakinskiene, Izolda

    2009-01-01

    This paper is an update of our earlier review (Jones et al., 1997, Markers and mapping: we are all geneticists now. New Phytologist 137: 165-177), which dealt with the genetics of mapping, in terms of recombination as the basis of the procedure, and covered some of the first generation of markers, including restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNA (RAPDs), simple sequence repeats (SSRs) and quantitative trait loci (QTLs). In the intervening decade there have been numerous developments in marker science with many new systems becoming available, which are herein described: cleavage amplification polymorphism (CAP), sequence-specific amplification polymorphism (S-SAP), inter-simple sequence repeat (ISSR), sequence tagged site (STS), sequence characterized amplification region (SCAR), selective amplification of microsatellite polymorphic loci (SAMPL), single nucleotide polymorphism (SNP), expressed sequence tag (EST), sequence-related amplified polymorphism (SRAP), target region amplification polymorphism (TRAP), microarrays, diversity arrays technology (DArT), single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE) and methylation-sensitive PCR. In addition there has been an explosion of knowledge and databases in the area of genomics and bioinformatics. The number of flowering plant ESTs is c. 19 million and counting, with all the opportunity that this provides for gene-hunting, while the survey of bioinformatics and computer resources points to a rapid growth point for future activities in unravelling and applying the burst of new information on plant genomes. A case study is presented on tracking down a specific gene (stay-green (SGR), a post-transcriptional senescence regulator) using the full suite of mapping tools and comparative mapping resources. We end with a brief speculation on how genome analysis may progress into the future of this highly dynamic arena of plant science.

  18. Genetic Diversity and Population Structure Analysis of European Hexaploid Bread Wheat (Triticum aestivum L.) Varieties

    PubMed Central

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents. PMID:24718292

  19. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties.

    PubMed

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  20. LSSA (Low-cost Silicon Solar Array) project

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Methods are explored for economically generating electrical power to meet future requirements. The Low-Cost Silicon Solar Array Project (LSSA) was established to reduce the price of solar arrays by improving manufacturing technology, adapting mass production techniques, and promoting user acceptance. The new manufacturing technology includes the consideration of new silicon refinement processes, silicon sheet growth techniques, encapsulants, and automated assembly production being developed under contract by industries and universities.

  1. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation

    PubMed Central

    Zubakov, Dmitry; Boersma, Anton W. M.; Choi, Ying; van Kuijk, Patricia F.; Wiemer, Erik A. C.

    2010-01-01

    MicroRNAs (miRNAs) are non-protein coding molecules with important regulatory functions; many have tissue-specific expression patterns. Their very small size in principle makes them less prone to degradation processes, unlike messenger RNAs (mRNAs), which were previously proposed as molecular tools for forensic body fluid identification. To identify suitable miRNA markers for forensic body fluid identification, we first screened total RNA samples derived from saliva, semen, vaginal secretion, and venous and menstrual blood for the expression of 718 human miRNAs using a microarray platform. All body fluids could be easily distinguished from each other on the basis of complete array-based miRNA expression profiles. Results from quantitative reverse transcription PCR (RT-PCR; TaqMan) assays for microarray candidate markers confirmed strong over-expression in the targeting body fluid of several miRNAs for venous blood and several others for semen. However, no candidate markers from array experiments for other body fluids such as saliva, vaginal secretion, or menstrual blood could be confirmed by RT-PCR. Time-wise degradation of venous blood and semen stains for at least 1 year under lab conditions did not significantly affect the detection sensitivity of the identified miRNA markers. The detection limit of the TaqMan assays tested for selected venous blood and semen miRNA markers required only subpicogram amounts of total RNA per single RT-PCR test, which is considerably less than usually needed for reliable mRNA RT-PCR detection. We therefore propose the application of several stable miRNA markers for the forensic identification of blood stains and several others for semen stain identification, using commercially available TaqMan assays. Additional work remains necessary in search for suitable miRNA markers for other forensically relevant body fluids. Electronic supplementary material The online version of this article (doi:10.1007/s00414-009-0402-3) contains supplementary material, which is available to authorized users. PMID:20145944

  2. Wide-Bandgap CIAS Thin-film Photovoltaics with Transparent Back Contacts for Next-Generation Single and Multijunction Devices

    NASA Technical Reports Server (NTRS)

    Woods, Lawrence M.; Kalla, Ajay; Gonzalez, Damian; Ribelin, Rosine

    2005-01-01

    Future spacecraft and high-altitude airship (HAA) technologies will require high array specific power (W/kg), which can be met using thin-film photovoltaics (PV) on lightweight and flexible substrates. It has been calculated that the thin-film array technology, including the array support structure, begins to exceed the specific power of crystalline multi-junction arrays when the thin-film device efficiencies begin to exceed 12%. Thin-film PV devices have other advantages in that they are more easily integrated into HAA s, and are projected to be much less costly than their crystalline PV counterparts. Furthermore, it is likely that only thin-film array technology will be able to meet device specific power requirements exceeding 1 kW/kg (photovoltaic and integrated substrate/blanket mass only). Of the various thin-film technologies, single junction and radiation resistant CuInSe2 (CIS) and associated alloys with gallium, aluminum and sulfur have achieved the highest levels of thin-film device performance, with the best efficiency, reaching 19.2% under AM1.5 illumination conditions and on thick glass substrates.(3) Thus, it is anticipated that single- and tandem-junction devices with flexible substrates and based on CIS and related alloys could achieve the highest levels of thin-film space and HAA solar array performance.

  3. Analysis of mismatch and shading effects in a photovoltaic array using different technologies

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Muñoz, Y.; Ibáñez, F.; Ospino, A.

    2014-06-01

    In this paper, we analyze the performance of a photovoltaic array implemented in the Universidad Politécnica de Valencia which consists of modules of different technologies and power, connected in series, in order to quantify the energy losses due to mismatch and the effect of the shadows. To do this, the performance of the modules was measured in operation under ambient conditions with field measurement equipment (AMPROBE Solar Analyzer, Solar - 4000), which allows the extrapolation of measures to standard conditions STC. For the data validation, measures under controlled conditions were taken to some modules in the flash test laboratory of the Institute of Energy Technology ITE of Valencia in Spain. Subsequently the array curves measured were validated with a photovoltaic array model developed in MATLAB-Simulink for the same conditions and technologies. The results of this particular array are lost up to 20% of the energy supplied due to the modules mismatch. The study shows the curves and the energy loss due to shadows modules. This result opens scenarios for conceivable modifications to the PV field configurations today, chosen during the design stage and unchangeable during the operating stage; and gives greater importance to the energy loss by mismatch in the PV array.

  4. Uniparental disomy and prenatal phenotype

    PubMed Central

    Li, Xiaofei; Liu, Yan; Yue, Song; Wang, Li; Zhang, Tiejuan; Guo, Cuixia; Hu, Wenjie; Kagan, Karl-Oliver; Wu, Qingqing

    2017-01-01

    Abstract Rationale: Uniparental disomy (UPD) gives a description of the inheritance of both homologues of a chromosome pair from the same parent. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. Patient concerns: We report prenatal phenotypes of 2 rare cases of UPD. Diagnoses: The prenatal phenotype of case 1 included sonographic markers such as enlarged nuchal translucency (NT), absent nasal bone, short femur and humerus length, and several structural malformations involving Dandy–Walker malformation and congenital heart defects. The prenatal phenotype of Case 2 are sonographic markers, including enlarged NT, thickened nuchal fold, ascites, and polyhydramnios without apparent structural malformations. Interventions: Conventional G-band karyotype appears normal in case 1, while it shows normal chromosomes with a small supernumerary marker chromosome (sSMC) in case 2. Genetic etiology was left unknown until single-nucleotide polymorphism-based array (SNP-array) was performed, and segmental paternal UPD 22 was identified in case 1 and segmental paternal UPD 14 was found in case 2. Outcomes: The parents of case 1 chose termination of pregnancy. The neonate of case 2 was born prematurely with a bellshaped small thorax and died within a day. Lessons: UPD cases are rare and the phenotypes are different, which depend on the origin and affected chromosomal part. If a fetus shows multiple anomalies that cannot be attributed to a common aneuploidy or a genetic syndrome, or manifests some features possibly related to an UPD syndrome, such as detection of sSMC, SNP-array should be considered. PMID:29137034

  5. Uniparental disomy and prenatal phenotype: Two case reports and review.

    PubMed

    Li, Xiaofei; Liu, Yan; Yue, Song; Wang, Li; Zhang, Tiejuan; Guo, Cuixia; Hu, Wenjie; Kagan, Karl-Oliver; Wu, Qingqing

    2017-11-01

    Uniparental disomy (UPD) gives a description of the inheritance of both homologues of a chromosome pair from the same parent. The consequences of UPD depend on the specific chromosome/segment involved and its parental origin. We report prenatal phenotypes of 2 rare cases of UPD. The prenatal phenotype of case 1 included sonographic markers such as enlarged nuchal translucency (NT), absent nasal bone, short femur and humerus length, and several structural malformations involving Dandy-Walker malformation and congenital heart defects. The prenatal phenotype of Case 2 are sonographic markers, including enlarged NT, thickened nuchal fold, ascites, and polyhydramnios without apparent structural malformations. Conventional G-band karyotype appears normal in case 1, while it shows normal chromosomes with a small supernumerary marker chromosome (sSMC) in case 2. Genetic etiology was left unknown until single-nucleotide polymorphism-based array (SNP-array) was performed, and segmental paternal UPD 22 was identified in case 1 and segmental paternal UPD 14 was found in case 2. The parents of case 1 chose termination of pregnancy. The neonate of case 2 was born prematurely with a bellshaped small thorax and died within a day. UPD cases are rare and the phenotypes are different, which depend on the origin and affected chromosomal part. If a fetus shows multiple anomalies that cannot be attributed to a common aneuploidy or a genetic syndrome, or manifests some features possibly related to an UPD syndrome, such as detection of sSMC, SNP-array should be considered.

  6. Advances in diagnostic ultrasonography.

    PubMed

    Reef, V B

    1991-08-01

    A wide variety of ultrasonographic equipment currently is available for use in equine practice, but no one machine is optimal for every type of imaging. Image quality is the most important factor in equipment selection once the needs of the practitioner are ascertained. The transducer frequencies available, transducer footprints, depth of field displayed, frame rate, gray scale, simultaneous electrocardiography, Doppler, and functions to modify the image are all important considerations. The ability to make measurements off of videocassette recorder playback and future upgradability should be evaluated. Linear array and sector technology are the backbone of equine ultrasonography today. Linear array technology is most useful for a high-volume broodmare practice, whereas sector technology is ideal for a more general equine practice. The curved or convex linear scanner has more applications than the standard linear array and is equipped with the linear array rectal probe, which provides the equine practitioner with a more versatile unit for equine ultrasonographic evaluations. The annular array and phased array systems have improved image quality, but each has its own limitations. The new sector scanners still provide the most versatile affordable equipment for equine general practice.

  7. Performance, size, mass, and cost estimates for projected 1kW EOL Si, InP, and GaAs arrays

    NASA Technical Reports Server (NTRS)

    Slifer, Luther W., Jr.

    1991-01-01

    One method of evaluating the potential of emerging solar cell and array technologies is to compare their projected capabilities in space flight applications to those of established Si solar cells and arrays. Such an application-oriented comparison provides an integrated view of the elemental comparisons of efficiency, radiation resistance, temperature sensitivity, size, mass, and cost in combination. In addition, the assumptions necessary to make the comparisons provide insights helpful toward determining necessary areas of development or evaluation. Finally, as developments and evaluations progress, the results can be used in more precisely defining the overall potential of the new technologies in comparison to existing technologies. The projected capabilities of Si, InP, and GaAs cells and arrays are compared.

  8. Ultralow-Background Large-Format Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)

    2002-01-01

    In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.

  9. An update on SCARLET hardware development and flight programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, P.A.; Murphy, D.M.; Piszczor, M.F.

    1995-10-01

    Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) is one of the first practical photovoltaic concentrator array technologies that offers a number of benefits for space applications (i.e. high array efficiency, protection from space radiation effects, a relatively light weight system, minimized plasma interactions, etc.) The line-focus concentrator concept, however, also offers two very important advantages: (1) low-cost mass production potential of the lens material; and (2) relaxation of precise array tracking requirements to only a single axis. These benefits offer unique capabilities to both commercial and government spacecraft users, specifically those interested in high radiation missions, such asmore » MEO orbits, and electric-powered propulsion LEO-to-GEO orbit raising applications. SCARLET is an aggressive hardware development and flight validation program sponsored by the Ballistic Missile Defense Organization (BMDO) and NASA Lewis Research Center. Its intent is to bring technology to the level of performance and validation necessary for use by various government and commercial programs. The first phase of the SCARLET program culminated with the design, development and fabrication of a small concentrator array for flight on the METEOR satellite. This hardware will be the first in-space demonstration of concentrator technology at the `array level` and will provide valuable in-orbit performance measurements. The METEOR satellite is currently planned for a September/October 1995 launch. The next phase of the program is the development of large array for use by one of the NASA New Millenium Program missions. This hardware will incorporate a number of the significant improvements over the basic METEOR design. This presentation will address the basic SCARLET technology, examine its benefits to users, and describe the expected improvements for future missions.« less

  10. Sequencing consolidates molecular markers with plant breeding practice.

    PubMed

    Yang, Huaan; Li, Chengdao; Lam, Hon-Ming; Clements, Jonathan; Yan, Guijun; Zhao, Shancen

    2015-05-01

    Plenty of molecular markers have been developed by contemporary sequencing technologies, whereas few of them are successfully applied in breeding, thus we present a review on how sequencing can facilitate marker-assisted selection in plant breeding. The growing global population and shrinking arable land area require efficient plant breeding. Novel strategies assisted by certain markers have proven effective for genetic gains. Fortunately, cutting-edge sequencing technologies bring us a deluge of genomes and genetic variations, enlightening the potential of marker development. However, a large gap still exists between the potential of molecular markers and actual plant breeding practices. In this review, we discuss marker-assisted breeding from a historical perspective, describe the road from crop sequencing to breeding, and highlight how sequencing facilitates the application of markers in breeding practice.

  11. Smart Energy Cryo-refrigerator Technology for the next generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Spagna, Stefano

    2018-01-01

    We describe a “smart energy” cryocooler technology architecture for the next generation Very Large Array that makes use of multiple variable frequency cold heads driven from a single variable speed air cooled compressor. Preliminary experiments indicate that the compressor variable flow control, advanced diagnostics, and the cryo-refrigerator low vibration, provide a unique energy efficient capability for the very large number of antennas that will be employed in this array.

  12. Guided Lamb wave based 2-D spiral phased array for structural health monitoring of thin panel structures

    NASA Astrophysics Data System (ADS)

    Yoo, Byungseok

    2011-12-01

    In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the fundamentals of the GLW-based phased array approach and the development of an innovative signal processing algorithm associated with the 2-D spiral phased sensor array. The SHM approach based on array responses determined by the proposed phased array algorithm implementation is addressed. The experimental validation of the GLW-based 2-D spiral phased array technology and the associated damage detection applications to thin isotropic plate and anisotropic composite plate structures are presented.

  13. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    PubMed

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  14. Promising Results from Three NASA SBIR Solar Array Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Eskenazi, Mike; White, Steve; Spence, Brian; Douglas, Mark; Glick, Mike; Pavlick, Ariel; Murphy, David; O'Neill, Mark; McDanal, A. J.; Piszczor, Michael

    2005-01-01

    Results from three NASA SBIR solar array technology programs are presented. The programs discussed are: 1) Thin Film Photovoltaic UltraFlex Solar Array; 2) Low Cost/Mass Electrostatically Clean Solar Array (ESCA); and 3) Stretched Lens Array SquareRigger (SLASR). The purpose of the Thin Film UltraFlex (TFUF) Program is to mature and validate the use of advanced flexible thin film photovoltaics blankets as the electrical subsystem element within an UltraFlex solar array structural system. In this program operational prototype flexible array segments, using United Solar amorphous silicon cells, are being manufactured and tested for the flight qualified UltraFlex structure. In addition, large size (e.g. 10 kW GEO) TFUF wing systems are being designed and analyzed. Thermal cycle and electrical test and analysis results from the TFUF program are presented. The purpose of the second program entitled, Low Cost/Mass Electrostatically Clean Solar Array (ESCA) System, is to develop an Electrostatically Clean Solar Array meeting NASA s design requirements and ready this technology for commercialization and use on the NASA MMS and GED missions. The ESCA designs developed use flight proven materials and processes to create a ESCA system that yields low cost, low mass, high reliability, high power density, and is adaptable to any cell type and coverglass thickness. All program objectives, which included developing specifications, creating ESCA concepts, concept analysis and trade studies, producing detailed designs of the most promising ESCA treatments, manufacturing ESCA demonstration panels, and LEO (2,000 cycles) and GEO (1,350 cycles) thermal cycling testing of the down-selected designs were successfully achieved. The purpose of the third program entitled, "High Power Platform for the Stretched Lens Array," is to develop an extremely lightweight, high efficiency, high power, high voltage, and low stowed volume solar array suitable for very high power (multi-kW to MW) applications. These objectives are achieved by combining two cutting edge technologies, the SquareRigger solar array structure and the Stretched Lens Array (SLA). The SLA SquareRigger solar array is termed SLASR. All program objectives, which included developing specifications, creating preliminary designs for a near-term SLASR, detailed structural, mass, power, and sizing analyses, fabrication and power testing of a functional flight-like SLASR solar blanket, were successfully achieved.

  15. Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays.

    PubMed

    Qureshi, Anjum; Niazi, Javed H; Kallempudi, Saravan; Gurbuz, Yasar

    2010-06-15

    In this study, a highly sensitive and label-free multianalyte capacitive immunosensor was developed based on gold interdigitated electrodes (GID) capacitor arrays to detect a panel of disease biomarkers. C-reactive protein (CRP), TNFalpha, and IL6 have strong and consistent relationships between markers of inflammation and future cardiovascular risk (CVR) events. Early detection of a panel of biomarkers for a disease could enable accurate prediction of a disease risk. The detection of protein biomarkers was based on relative change in capacitive/dielectric properties. Two different lab-on-a-chip formats were employed for multiple biomarker detection on GID-capacitors. In format I, capacitor arrays were immobilized with pure forms of anti-CRP, -TNFalpha, and -IL6 antibodies in which each capacitor array contained a different immobilized antibody. Here, the CRP and IL6 were detected in the range 25 pg/ml to 25 ng/ml and 25 pg/ml to 1 ng/ml for TNFalpha in format I. Sensitive detection was achieved with chips co-immobilized (diluted) with equimolar mixtures of anti-CRP, -IL6, and -TNFalpha antibodies (format II) in which all capacitors in an array were identical and tested for biomarkers with sequential incubation. The resulting response to CRP, IL6, and TNFalpha in format II for all biomarkers was found to be within 25 pg/ml to 25 ng/ml range. The capacitive biosensor for panels of inflammation and CVR markers show significant clinical value and provide great potential for detection of biomarker panel in suspected subjects for early diagnosis. Copyright 2010 Elsevier B.V. All rights reserved.

  16. High-density functional-RNA arrays as a versatile platform for studying RNA-based interactions.

    PubMed

    Phillips, Jack O; Butt, Louise E; Henderson, Charlotte A; Devonshire, Martin; Healy, Jess; Conway, Stuart J; Locker, Nicolas; Pickford, Andrew R; Vincent, Helen A; Callaghan, Anastasia J

    2018-05-28

    We are just beginning to unravel the myriad of interactions in which non-coding RNAs participate. The intricate RNA interactome is the foundation of many biological processes, including bacterial virulence and human disease, and represents unexploited resources for the development of potential therapeutic interventions. However, identifying specific associations of a given RNA from the multitude of possible binding partners within the cell requires robust high-throughput systems for their rapid screening. Here, we present the first demonstration of functional-RNA arrays as a novel platform technology designed for the study of such interactions using immobilized, active RNAs. We have generated high-density RNA arrays by an innovative method involving surface-capture of in vitro transcribed RNAs. This approach has significant advantages over existing technologies, particularly in its versatility in regards to binding partner character. Indeed, proof-of-principle application of RNA arrays to both RNA-small molecule and RNA-RNA pairings is demonstrated, highlighting their potential as a platform technology for mapping RNA-based networks and for pharmaceutical screening. Furthermore, the simplicity of the method supports greater user-accessibility over currently available technologies. We anticipate that functional-RNA arrays will find broad utility in the expanding field of RNA characterization.

  17. Chronic, percutaneous connector for electrical recording and stimulation with microelectrode arrays.

    PubMed

    Shah, Kedar G; Lee, Kye Young; Tolosa, Vanessa; Tooker, Angela; Felix, Sarah; Benett, William; Pannu, Satinderpall

    2014-01-01

    The translation of advances in neural stimulation and recording research into clinical practice hinges on the ability to perform chronic experiments in awake and behaving animal models. Advances in microelectrode array technology, most notably flexible polymer arrays, have significantly improved reliability of the neural interface. However, electrical connector technology has lagged and is prone to failure from non-biocompatibility, large size, contamination, corrosion, and difficulty of use. We present a novel chronic, percutaneous electrical connector system that is suitable for neural stimulation and recording. This system features biocompatible materials, low connect and disconnect forces, passive alignment, and a protective cap during non-use. We have successfully designed, assembled, and tested in vitro both a 16-channel system and a high density 64-channel system. Custom, polyimide, 16-channel, microelectrode arrays were electrically assembled with the connector system and tested using cyclic voltammetry and electrochemical impedance spectroscopy. This connector system is versatile and can be used with a variety of microelectrode array technologies for chronic studies.

  18. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver

    PubMed Central

    2014-01-01

    Background Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. Methods The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. Results At the end of the procedure, no ultrasound indication of the marker’s presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Conclusions Experimental validation of this new ballistic marker method was performed for liver MRgHIFU ablation, free of any side effects (e.g. no edema around the marker, no infection, no bleeding). The study suggests that the absolute reference marker had ultrasound conspicuity below the detection threshold, was irreversible, MR-compatible and MR-detectable, while also being a well-established histology staining technique. PMID:24433332

  19. NORMAL NASAL GENE EXPRESSION LEVELS USING CDNA ARRAY TECHNOLOGY

    EPA Science Inventory

    Normal Nasal Gene Expression Levels Using cDNA Array Technology.

    The nasal epithelium is a target site for chemically-induced toxicity and carcinogenicity. To detect and analyze genetic events which contribute to nasal tumor development, we first defined the gene expressi...

  20. High-density Schottky barrier IRCCD sensors for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Elabd, H.; Tower, J. R.; McCarthy, B. M.

    1983-01-01

    It is pointed out that the ambitious goals envisaged for the next generation of space-borne sensors challenge the state-of-the-art in solid-state imaging technology. Studies are being conducted with the aim to provide focal plane array technology suitable for use in future Multispectral Linear Array (MLA) earth resource instruments. An important new technology for IR-image sensors involves the use of monolithic Schottky barrier infrared charge-coupled device arrays. This technology is suitable for earth sensing applications in which moderate quantum efficiency and intermediate operating temperatures are required. This IR sensor can be fabricated by using standard integrated circuit (IC) processing techniques, and it is possible to employ commercial IC grade silicon. For this reason, it is feasible to construct Schottky barrier area and line arrays with large numbers of elements and high-density designs. A Pd2Si Schottky barrier sensor for multispectral imaging in the 1 to 3.5 micron band is under development.

  1. Latest developments of 10μm pitch HgCdTe diode array from the legacy to the extrinsic technology

    NASA Astrophysics Data System (ADS)

    Péré-Laperne, Nicolas; Berthoz, Jocelyn; Taalat, Rachid; Rubaldo, Laurent; Kerlain, Alexandre; Carrère, Emmanuel; Dargent, Loïc.

    2016-05-01

    Sofradir recently presented Daphnis, its latest 10 μm pitch product family. Both Daphnis XGA and HD720 are 10μm pitch mid-wave infrared focal plane array. Development of small pixel pitch is opening the way to very compact products with a high spatial resolution. This new product is taking part in the HOT technology competition allowing reductions in size, weight and power of the overall package. This paper presents the recent developments achieved at Sofradir to make the 10μm pitch HgCdTe focal plane array based on the legacy technology. Electrical and electro-optical characterizations are presented to define the appropriate design of 10μm pitch diode array. The technological tradeoffs are explained to lower the dark current, to keep high quantum efficiency with a high operability above 110K, F/4. Also, Sofradir recently achieved outstanding Modulation Transfer Function (MTF) demonstration at this pixel pitch, which clearly demonstrates the benefit to users of adopting 10μm pixel pitch focal plane array based detectors. Furthermore, the HgCdTe technology has demonstrated an increase of the operating temperature, plus 40K, moving from the legacy to the P-on-n one at a 15μm pitch in mid-wave band. The first realizations using the extrinsic P-on-n technology and the characterizations of diodes with a 10μm pitch neighborhood will be presented in both mid-wave and long-wave bands.

  2. Naturally occurring anti-glycan antibodies binding to Globo H-expressing cells identify ovarian cancer patients.

    PubMed

    Pochechueva, Tatiana; Alam, Shahidul; Schötzau, Andreas; Chinarev, Alexander; Bovin, Nicolai V; Hacker, Neville F; Jacob, Francis; Heinzelmann-Schwarz, Viola

    2017-02-10

    Glycosphingolipids are important compounds of the plasma membrane of mammalian cells and a number of them have been associated with malignant transformation and progression, reinforcing tumour aggressiveness and metastasis. Here we investigated the levels of naturally occurring anti-glycan antibodies to Globo H in blood plasma obtained from high-grade serous ovarian cancer patients (SOC) and women without gynaecological malignancies (control) using suspension glycan array technology employing chemically synthesized glycans as antibody targets. We found that anti-human Globo H IgG antibodies were able to significantly discriminate SOC from controls (P < 0.05). A combination with the clinically used tumour marker CA125 increased the diagnostic performance (AUC 0.8711). We next compared suspension array with standard flow cytometry in plasma samples and found that the level of anti-Globo H antibodies highly correlated (r = 0.992). The incubation of plasma-derived anti-glycan antibodies with chemically synthesized (presented on fluorescence microspheres) and native Globo H (expressed on Globo H-positive cell lines) revealed strong reactivity of naturally occurring human anti-Globo H antibodies towards its antigen expressed on ovarian cancer cells. Our data demonstrate that human plasma-derived antibodies to Globo H as well as the presence of the antigen might be considered as therapeutic option in ovarian cancer.

  3. Development of a DNA Microarray-Based Assay for the Detection of Sugar Beet Root Rot Pathogens.

    PubMed

    Liebe, Sebastian; Christ, Daniela S; Ehricht, Ralf; Varrelmann, Mark

    2016-01-01

    Sugar beet root rot diseases that occur during the cropping season or in storage are accompanied by high yield losses and a severe reduction of processing quality. The vast diversity of microorganism species involved in rot development requires molecular tools allowing simultaneous identification of many different targets. Therefore, a new microarray technology (ArrayTube) was applied in this study to improve diagnosis of sugar beet root rot diseases. Based on three marker genes (internal transcribed spacer, translation elongation factor 1 alpha, and 16S ribosomal DNA), 42 well-performing probes enabled the identification of prevalent field pathogens (e.g., Aphanomyces cochlioides), storage pathogens (e.g., Botrytis cinerea), and ubiquitous spoilage fungi (e.g., Penicillium expansum). All probes were proven for specificity with pure cultures from 73 microorganism species as well as for in planta detection of their target species using inoculated sugar beet tissue. Microarray-based identification of root rot pathogens in diseased field beets was successfully confirmed by classical detection methods. The high discriminatory potential was proven by Fusarium species differentiation based on a single nucleotide polymorphism. The results demonstrate that the ArrayTube constitute an innovative tool allowing a rapid and reliable detection of plant pathogens particularly when multiple microorganism species are present.

  4. Development of a standardized differential-reflective bioassay for microbial pathogens

    NASA Astrophysics Data System (ADS)

    Wilhelm, Jay; Auld, J. R. X.; Smith, James E.

    2008-04-01

    This research examines standardizing a method for the rapid/semi-automated identification of microbial contaminates. It introduces a method suited to test for food/water contamination, serology, urinalysis and saliva testing for any >1 micron sized molecule that can be effectively bound to an identifying marker with exclusivity. This optical biosensor method seeks to integrate the semi-manual distribution of a collected sample onto a "transparent" substrate array of binding sites that will then be applied to a standard optical data disk and run for analysis. The detection of most microbe species is possible in this platform because the relative scale is greater than the resolution of the standard-scale digital information on a standard CD or DVD. This paper explains the critical first stage in the advance of this detection concept. This work has concentrated on developing the necessary software component needed to perform highly sensitive small-scale recognition using the standard optical disk as a detection platform. Physical testing has made significant progress in demonstrating the ability to utilize a standard optical drive for the purposes of micro-scale detection through the exploitation of CIRC error correction. Testing has also shown a definable trend in the optimum scale and geometry of micro-arrayed attachment sites for the technology's concept to reach achievement.

  5. Integrated infrared detector arrays for low-background astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.

    1979-01-01

    Existing integrated infrared detector array technology is being evaluated under low-background conditions to determine its applicability in orbiting astronomical applications where extended integration times and photometric accuracy are of interest. Preliminary performance results of a 1 x 20 elements InSb CCD array under simulated astronomical conditions are presented. Using the findings of these tests, improved linear- and area-array technology will be developed for use in NASA programs such as the Shuttle Infrared Telescope Facility. For wavelengths less than 30 microns, extrinsic silicon and intrinsic arrays with CCD readout will be evaluated and improved as required, while multiplexed arrays of Ge:Ga for wavelengths in the range 30 to 120 microns will be developed as fundamental understanding of this material improves. Future efforts will include development of improved drive and readout circuitry, and consideration of alternate multiplexing schemes.

  6. Fabrication of polymer micro-lens array with pneumatically diaphragm-driven drop-on-demand inkjet technology.

    PubMed

    Xie, Dan; Zhang, Honghai; Shu, Xiayun; Xiao, Junfeng

    2012-07-02

    The paper reports an effective method to fabricate micro-lens arrays with the ultraviolet-curable polymer, using an original pneumatically diaphragm-driven drop-on-demand inkjet system. An array of plano convex micro-lenses can be formed on the glass substrate due to surface tension and hydrophobic effect. The micro-lens arrays have uniform focusing function, smooth and real planar surface. The fabrication process showed good repeatability as well, fifty micro-lenses randomly selected form 9 × 9 miro-lens array with an average diameter of 333.28μm showed 1.1% variations. Also, the focal length, the surface roughness and optical property of the fabricated micro-lenses are measured, analyzed and proved satisfactory. The technique shows great potential for fabricating polymer micro-lens arrays with high flexibility, simple technological process and low production cost.

  7. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection

    PubMed Central

    Leng, Yuankui

    2017-01-01

    Spectrometrically or optically encoded microsphere based suspension array technology (SAT) is applicable to the high-throughput, simultaneous detection of multiple analytes within a small, single sample volume. Thanks to the rapid development of nanotechnology, tremendous progress has been made in the multiplexed detecting capability, sensitivity, and photostability of suspension arrays. In this review, we first focus on the current stock of nanoparticle-based barcodes as well as the manufacturing technologies required for their production. We then move on to discuss all existing barcode-based bioanalysis patterns, including the various labels used in suspension arrays, label-free platforms, signal amplification methods, and fluorescence resonance energy transfer (FRET)-based platforms. We then introduce automatic platforms for suspension arrays that use superparamagnetic nanoparticle-based microspheres. Finally, we summarize the current challenges and their proposed solutions, which are centered on improving encoding capacities, alternative probe possibilities, nonspecificity suppression, directional immobilization, and “point of care” platforms. Throughout this review, we aim to provide a comprehensive guide for the design of suspension arrays, with the goal of improving their performance in areas such as multiplexing capacity, throughput, sensitivity, and cost effectiveness. We hope that our summary on the state-of-the-art development of these arrays, our commentary on future challenges, and some proposed avenues for further advances will help drive the development of suspension array technology and its related fields. PMID:26021602

  8. The impact of solar cell technology on planar solar array performance

    NASA Technical Reports Server (NTRS)

    Mills, Michael W.; Kurland, Richard M.

    1989-01-01

    The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.

  9. Gallium arsenide solar array subsystem study

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.

    1982-01-01

    The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.

  10. Summary of flat-plate solar array project documentation. Abstracts of published documents, 1975 to June 1982

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Technologies that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and government applications at a cost per watt that is competitive with other means is investigated. Silicon refinement processes, advanced silicon sheet growth techniques, solar cell development, encapsulation, automated fabrication process technology, advanced module/array design, and module/array test and evaluation techniques are developed.

  11. SCARLET Photovoltaic Concentrator Array Selected for Flight Under NASA's New Millennium Program

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.

    1997-01-01

    The NASA Lewis Research Center continues to demonstrate its expertise in the development and implementation of advanced space power systems. For example, during the past year, the NASA New Millennium Program selected the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) photovoltaic array as the power system for its Deep Space-1 (DS-1) mission. This Jet Propulsion Laboratory (JPL) managed DS-1 mission, which represents the first operational flight of a photovoltaic concentrator array, will provide a baseline for the use of this technology in a variety of future government and commercial applications. SCARLET is a joint NASA Lewis/Ballistic Missile Defense Organization program to develop advanced photovoltaic array technology that uses a unique refractive concentrator design to focus sunlight onto a line of photovoltaic cells located below the optical element. The general concept is based on previous work conducted at Lewis under a Small Business Innovation Research (SBIR) contract with AEC-Able Engineering, Inc., for the Multiple Experiments to Earth Orbit and Return (METEOR) spacecraft. The SCARLET II design selected by the New Millennium Program is a direct adaptation of the smaller SCARLET I array built for METEOR. Even though SCARLET I was lost during a launch failure in October 1995, the hardware (designed, built, and flight qualified within 6 months) provided invaluable information and experience that led to the selection of this technology as the primary power source for DS-1.

  12. Clinical Adoption of Prognostic Biomarkers The Case for Heart Failure

    PubMed Central

    Kalogeropoulos, Andreas P.; Georgiopoulou, Vasiliki V.; Butler, Javed

    2013-01-01

    The recent explosion of scientific knowledge and technological progress has led to the discovery of a large array of circulating molecules commonly referred to as biomarkers. Biomarkers in heart failure research have been used to provide pathophysiological insights, aid in establishing the diagnosis, refine prognosis, guide management, and target treatment. However, beyond diagnostic applications of natriuretic peptides, there are currently few widely recognized applications for biomarkers in heart failure. This represents a remarkable discordance considering the number of molecules that have been shown to correlate with outcomes, refine risk prediction, or track disease severity in heart failure in the past decade. In this article, we use a broad framework proposed for cardiovascular risk markers to summarize the current state of biomarker development for heart failure patients. We utilize this framework to identify the challenges of biomarker adoption for risk prediction, disease management, and treatment selection for heart failure and suggest considerations for future research. PMID:22824105

  13. Cell and Tissue Microarray Technologies for Protein and Nucleic Acid Expression Profiling

    PubMed Central

    Cardano, Marina; Diaferia, Giuseppe R.; Falavigna, Maurizio; Spinelli, Chiara C.; Sessa, Fausto; DeBlasio, Pasquale

    2013-01-01

    Tissue microarray (TMA) and cell microarray (CMA) are two powerful techniques that allow for the immunophenotypical characterization of hundreds of samples simultaneously. In particular, the CMA approach is particularly useful for immunophenotyping new stem cell lines (e.g., cardiac, neural, mesenchymal) using conventional markers, as well as for testing the specificity and the efficacy of newly developed antibodies. We propose the use of a tissue arrayer not only to perform protein expression profiling by immunohistochemistry but also to carry out molecular genetics studies. In fact, starting with several tissues or cell lines, it is possible to obtain the complete signature of each sample, describing the protein, mRNA and microRNA expression, and DNA mutations, or eventually to analyze the epigenetic processes that control protein regulation. Here we show the results obtained using the Galileo CK4500 TMA platform. PMID:23172795

  14. Genotyping by Sequencing Using Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat

    PubMed Central

    Holtz, Yan; Ardisson, Morgane; Ranwez, Vincent; Besnard, Alban; Leroy, Philippe; Poux, Gérard; Roumet, Pierre; Viader, Véronique; Santoni, Sylvain; David, Jacques

    2016-01-01

    Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays. PMID:27171472

  15. The DS1 Mission and the Validation of the SCARLET Advanced Array

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Nieraeth, Donald G.; Murphy, David M.; Eskenazi, Michael I.

    2000-01-01

    On October 24, 1998, the first of the NASA New Millenium Spacecraft, DS1, was successfully launched into Space. The objectives for this spacecraft are to test advanced technologies that can reduce the cost or risk of future missions. One of these technologies is the SCARLET concentrating solar array. Although part of the advanced technology validation study, the array is also the spacecraft's power source. Funded by BMDO, the SCARLET concentrator solar array is the first application of a refractive lens concentrator designed for space applications. As part of the DS1 validation process, the amount of diagnostics data that will be acquired is more extensive than would be the norm for a more conventional solar array. These data include temperature measurements at numerous locations on the 2-wing, 4-panel per wing, solar array. For each panel, one 5-cell module in one of the circuit strings is wired so that a complete I-V curve can be obtained. This data is used to verify sun pointing accuracy and array output performance. In addition, the spacecraft power load can be varied in a number of discrete steps from a small fraction of the array total power capability, up to maximum power. For each of the power loads, array operating voltage can be measured along with the current output from each wing. Preliminary in-space measurements suggest SCARLET performance is within one (1) percent of predictions made from ground data. This paper will briefly discuss the SCARLET configuration and critical features. Emphasis will be given to the results of the in-space validation, including array performance as a function of changing solar distance and array performance compared to pre-launch predictions.

  16. Method for replicating an array of nucleic acid probes

    DOEpatents

    Cantor, Charles R.; Przetakiewicz, Marek; Smith, Cassandra L.; Sano, Takeshi

    1998-01-01

    The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.

  17. A high-density intraspecific SNP linkage map of pigeonpea (Cajanas cajan L. Millsp.)

    PubMed Central

    Mandal, Paritra; Bhutani, Shefali; Dutta, Sutapa; Kumawat, Giriraj; Singh, Bikram Pratap; Chaudhary, A. K.; Yadav, Rekha; Gaikwad, K.; Sevanthi, Amitha Mithra; Datta, Subhojit; Raje, Ranjeet S.; Sharma, Tilak R.; Singh, Nagendra Kumar

    2017-01-01

    Pigeonpea (Cajanus cajan (L.) Millsp.) is a major food legume cultivated in semi-arid tropical regions including the Indian subcontinent, Africa, and Southeast Asia. It is an important source of protein, minerals, and vitamins for nearly 20% of the world population. Due to high carbon sequestration and drought tolerance, pigeonpea is an important crop for the development of climate resilient agriculture and nutritional security. However, pigeonpea productivity has remained low for decades because of limited genetic and genomic resources, and sparse utilization of landraces and wild pigeonpea germplasm. Here, we present a dense intraspecific linkage map of pigeonpea comprising 932 markers that span a total adjusted map length of 1,411.83 cM. The consensus map is based on three different linkage maps that incorporate a large number of single nucleotide polymorphism (SNP) markers derived from next generation sequencing data, using Illumina GoldenGate bead arrays, and genotyping with restriction site associated DNA (RAD) sequencing. The genotyping-by-sequencing enhanced the marker density but was met with limited success due to lack of common markers across the genotypes of mapping population. The integrated map has 547 bead-array SNP, 319 RAD-SNP, and 65 simple sequence repeat (SSR) marker loci. We also show here correspondence between our linkage map and published genome pseudomolecules of pigeonpea. The availability of a high-density linkage map will help improve the anchoring of the pigeonpea genome to its chromosomes and the mapping of genes and quantitative trait loci associated with useful agronomic traits. PMID:28654689

  18. Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar).

    PubMed

    Gutierrez, Alejandro P; Yáñez, José M; Fukui, Steve; Swift, Bruce; Davidson, William S

    2015-01-01

    Early sexual maturation is considered a serious drawback for Atlantic salmon aquaculture as it retards growth, increases production times and affects flesh quality. Although both growth and sexual maturation are thought to be complex processes controlled by several genetic and environmental factors, selection for these traits has been continuously accomplished since the beginning of Atlantic salmon selective breeding programs. In this genome-wide association study (GWAS) we used a 6.5K single-nucleotide polymorphism (SNP) array to genotype ∼ 480 individuals from the Cermaq Canada broodstock program and search for SNPs associated with growth and age at sexual maturation. Using a mixed model approach we identified markers showing a significant association with growth, grilsing (early sexual maturation) and late sexual maturation. The most significant associations were found for grilsing, with markers located in Ssa10, Ssa02, Ssa13, Ssa25 and Ssa12, and for late maturation with markers located in Ssa28, Ssa01 and Ssa21. A lower level of association was detected with growth on Ssa13. Candidate genes, which were linked to these genetic markers, were identified and some of them show a direct relationship with developmental processes, especially for those in association with sexual maturation. However, the relatively low power to detect genetic markers associated with growth (days to 5 kg) in this GWAS indicates the need to use a higher density SNP array in order to overcome the low levels of linkage disequilibrium observed in Atlantic salmon before the information can be incorporated into a selective breeding program.

  19. Evaluation of Protein Profiles From Treated Xenograft Tumor Models Identifies an Antibody Panel for Formalin-fixed and Paraffin-embedded (FFPE) Tissue Analysis by Reverse Phase Protein Arrays (RPPA)*

    PubMed Central

    Bader, Sabine; Zajac, Magdalena; Friess, Thomas; Ruge, Elisabeth; Rieder, Natascha; Gierke, Berthold; Heubach, Yvonne; Thomas, Marlene; Pawlak, Michael

    2015-01-01

    Reverse phase protein arrays (RPPA) are an established tool for measuring the expression and activation status of multiple proteins in parallel using only very small amounts of tissue. Several studies have demonstrated the value of this technique for signaling pathway analysis using proteins extracted from fresh frozen (FF) tissue in line with validated antibodies for this tissue type; however, formalin fixation and paraffin embedding (FFPE) is the standard method for tissue preservation in the clinical setting. Hence, we performed RPPA to measure profiles for a set of 300 protein markers using matched FF and FFPE tissue specimens to identify which markers performed similarly using the RPPA technique in fixed and unfixed tissues. Protein lysates were prepared from matched FF and FFPE tissue specimens of individual tumors taken from three different xenograft models of human cancer. Materials from both untreated mice and mice treated with either anti-HER3 or bispecific anti-IGF-1R/EGFR monoclonal antibodies were analyzed. Correlations between signals from FF and FFPE tissue samples were investigated. Overall, 60 markers were identified that produced comparable profiles between FF and FFPE tissues, demonstrating significant correlation between the two sample types. The top 25 markers also showed significance after correction for multiple testing. The panel of markers covered several clinically relevant tumor signaling pathways and both phosphorylated and nonphosphorylated proteins were represented. Biologically relevant changes in marker expression were noted when RPPA profiles from treated and untreated xenografts were compared. These data demonstrate that, using appropriately selected antibodies, RPPA analysis from FFPE tissue is well feasible and generates biologically meaningful information. The identified panel of markers that generate similar profiles in matched fixed and unfixed tissue samples may be clinically useful for pharmacodynamic studies of drug effect using FFPE tissues. PMID:26106084

  20. Allergy and allergic mediators in tears.

    PubMed

    Leonardi, Andrea

    2013-12-01

    The identification of inflammatory mediators in the tear fluid have been extensively used in ocular allergy to find either a 'disease marker', to better understand the immune mechanisms involved in the ocular surface inflammation, or to identify potential targets for therapeutic interventions. While the clinical characteristics allow a relatively convincing diagnosis of ocular allergic diseases, in the initial, non active phases, or in the chronic stages, the diagnosis may not be clear. Although not highly specific, total tear IgE can be measured with local tests by inserting a paper strip in the lower meniscus. The measurement of tear specific inflammatory markers, such as histamine, tryptase, ECP, IL-4, IL-5 and eotaxin, may be useful for the diagnosis or monitoring ocular allergy. New technologies such as multiplex bead assays, membrane-bound antibody array and proteomic techniques can characterize the distribution of a wide range of bioactive trace proteins in tears. Dozens of mediators, cytokines, chemokines, growth factors, angiogenic modulators, enzymes and inhibitors were thus identified in small tear samples using these techniques, providing the possible identification of specific biomarker for either specific disease or disease activity. However, to date, there is no a single specific laboratory test suitable for the diagnosis and monitoring of allergic conjunctivitis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Conclusive evidence for hexasomic inheritance in chrysanthemum based on analysis of a 183 k SNP array.

    PubMed

    van Geest, Geert; Voorrips, Roeland E; Esselink, Danny; Post, Aike; Visser, Richard Gf; Arens, Paul

    2017-08-07

    Cultivated chrysanthemum is an outcrossing hexaploid (2n = 6× = 54) with a disputed mode of inheritance. In this paper, we present a single nucleotide polymorphism (SNP) selection pipeline that was used to design an Affymetrix Axiom array with 183 k SNPs from RNA sequencing data (1). With this array, we genotyped four bi-parental populations (with sizes of 405, 53, 76 and 37 offspring plants respectively), and a cultivar panel of 63 genotypes. Further, we present a method for dosage scoring in hexaploids from signal intensities of the array based on mixture models (2) and validation of selection steps in the SNP selection pipeline (3). The resulting genotypic data is used to draw conclusions on the mode of inheritance in chrysanthemum (4), and to make an inference on allelic expression bias (5). With use of the mixture model approach, we successfully called the dosage of 73,936 out of 183,130 SNPs (40.4%) that segregated in any of the bi-parental populations. To investigate the mode of inheritance, we analysed markers that segregated in the large bi-parental population (n = 405). Analysis of segregation of duplex x nulliplex SNPs resulted in evidence for genome-wide hexasomic inheritance. This evidence was substantiated by the absence of strong linkage between markers in repulsion, which indicated absence of full disomic inheritance. We present the success rate of SNP discovery out of RNA sequencing data as affected by different selection steps, among which SNP coverage over genotypes and use of different types of sequence read mapping software. Genomic dosage highly correlated with relative allele coverage from the RNA sequencing data, indicating that most alleles are expressed according to their genomic dosage. The large population, genotyped with a very large number of markers, is a unique framework for extensive genetic analyses in hexaploid chrysanthemum. As starting point, we show conclusive evidence for genome-wide hexasomic inheritance.

  2. An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells.

    PubMed

    Burger, R; Kurzbuch, D; Gorkin, R; Kijanka, G; Glynn, M; McDonagh, C; Ducrée, J

    2015-01-21

    In this work we present a centrifugal microfluidic system enabling highly efficient collective trapping and alignment of particles such as microbeads and cells, their multi-colour fluorescent detection and subsequent manipulation by optical tweezers. We demonstrate array-based capture and imaging followed by "cherry-picking" of individual particles, first for fluorescently labelled polystyrene (PS) beads and then for cells. Different cell lines are discriminated based on intracellular as well as surface-based markers.

  3. Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1980-01-01

    The double layer metallization technology applied on p type silicon gate CMOS/SOS integrated circuits is described. A smooth metal surface was obtained by using the 2% Si-sputtered Al. More than 10% probe yield was achieved on solar cell controller circuit TCS136 (or MSFC-SC101). Reliability tests were performed on 15 arrays at 150 C. Only three arrays failed during the burn in, and 18 arrays out of 22 functioning arrays maintained the leakage current below 100 milli-A. Analysis indicates that this technology will be a viable process if the metal short circuit problem between the two metals can be reduced.

  4. Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip

    PubMed Central

    Hill, Theresa A.; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W.; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome-wide transcript-based markers to assess genetic and genomic features among Capsicum annuum. PMID:23409153

  5. Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30K unigene Pepper GeneChip.

    PubMed

    Hill, Theresa A; Ashrafi, Hamid; Reyes-Chin-Wo, Sebastian; Yao, JiQiang; Stoffel, Kevin; Truco, Maria-Jose; Kozik, Alexander; Michelmore, Richard W; Van Deynze, Allen

    2013-01-01

    The widely cultivated pepper, Capsicum spp., important as a vegetable and spice crop world-wide, is one of the most diverse crops. To enhance breeding programs, a detailed characterization of Capsicum diversity including morphological, geographical and molecular data is required. Currently, molecular data characterizing Capsicum genetic diversity is limited. The development and application of high-throughput genome-wide markers in Capsicum will facilitate more detailed molecular characterization of germplasm collections, genetic relationships, and the generation of ultra-high density maps. We have developed the Pepper GeneChip® array from Affymetrix for polymorphism detection and expression analysis in Capsicum. Probes on the array were designed from 30,815 unigenes assembled from expressed sequence tags (ESTs). Our array design provides a maximum redundancy of 13 probes per base pair position allowing integration of multiple hybridization values per position to detect single position polymorphism (SPP). Hybridization of genomic DNA from 40 diverse C. annuum lines, used in breeding and research programs, and a representative from three additional cultivated species (C. frutescens, C. chinense and C. pubescens) detected 33,401 SPP markers within 13,323 unigenes. Among the C. annuum lines, 6,426 SPPs covering 3,818 unigenes were identified. An estimated three-fold reduction in diversity was detected in non-pungent compared with pungent lines, however, we were able to detect 251 highly informative markers across these C. annuum lines. In addition, an 8.7 cM region without polymorphism was detected around Pun1 in non-pungent C. annuum. An analysis of genetic relatedness and diversity using the software Structure revealed clustering of the germplasm which was confirmed with statistical support by principle components analysis (PCA) and phylogenetic analysis. This research demonstrates the effectiveness of parallel high-throughput discovery and application of genome-wide transcript-based markers to assess genetic and genomic features among Capsicum annuum.

  6. Report of the Power Sub systems Panel. [spacecraft instrumentation technology

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Problems in spacecraft power system design, testing, integration, and operation are identified and solutions are defined. The specific technology development problems discussed include substorm and plasma design data, modeling of the power subsystem and components, power system monitoring and degraded system management, rotary joints for transmission of power and signals, nickel cadmium battery manufacturing and application, on-array power management, high voltage technology, and solar arrays.

  7. Toward a comprehensive and systematic methylome signature in colorectal cancers.

    PubMed

    Ashktorab, Hassan; Rahi, Hamed; Wansley, Daniel; Varma, Sudhir; Shokrani, Babak; Lee, Edward; Daremipouran, Mohammad; Laiyemo, Adeyinka; Goel, Ajay; Carethers, John M; Brim, Hassan

    2013-08-01

    CpG Island Methylator Phenotype (CIMP) is one of the underlying mechanisms in colorectal cancer (CRC). This study aimed to define a methylome signature in CRC through a methylation microarray analysis and a compilation of promising CIMP markers from the literature. Illumina HumanMethylation27 (IHM27) array data was generated and analyzed based on statistical differences in methylation data (1st approach) or based on overall differences in methylation percentages using lower 95% CI (2nd approach). Pyrosequencing was performed for the validation of nine genes. A meta-analysis was used to identify CIMP and non-CIMP markers that were hypermethylated in CRC but did not yet make it to the CIMP genes' list. Our 1st approach for array data analysis demonstrated the limitations in selecting genes for further validation, highlighting the need for the 2nd bioinformatics approach to adequately select genes with differential aberrant methylation. A more comprehensive list, which included non-CIMP genes, such as APC, EVL, CD109, PTEN, TWIST1, DCC, PTPRD, SFRP1, ICAM5, RASSF1A, EYA4, 30ST2, LAMA1, KCNQ5, ADHEF1, and TFPI2, was established. Array data are useful to categorize and cluster colonic lesions based on their global methylation profiles; however, its usefulness in identifying robust methylation markers is limited and rely on the data analysis method. We have identified 16 non-CIMP-panel genes for which we provide rationale for inclusion in a more comprehensive characterization of CIMP+ CRCs. The identification of a definitive list for methylome specific genes in CRC will contribute to better clinical management of CRC patients.

  8. The Diversity of REcent and Ancient huMan (DREAM): A New Microarray for Genetic Anthropology and Genealogy, Forensics, and Personalized Medicine

    PubMed Central

    Yusuf, Leeban; Anderson, Ainan I J; Pirooznia, Mehdi; Arnellos, Dimitrios; Vilshansky, Gregory; Ercal, Gunes; Lu, Yontao; Webster, Teresa; Baird, Michael L; Esposito, Umberto

    2017-01-01

    Abstract The human population displays wide variety in demographic history, ancestry, content of DNA derived from hominins or ancient populations, adaptation, traits, copy number variation, drug response, and more. These polymorphisms are of broad interest to population geneticists, forensics investigators, and medical professionals. Historically, much of that knowledge was gained from population survey projects. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism genotyping, their design specifications are limited and they do not allow a full exploration of biodiversity. We thereby aimed to design the Diversity of REcent and Ancient huMan (DREAM)—an all-inclusive microarray that would allow both identification of known associations and exploration of standing questions in genetic anthropology, forensics, and personalized medicine. DREAM includes probes to interrogate ancestry informative markers obtained from over 450 human populations, over 200 ancient genomes, and 10 archaic hominins. DREAM can identify 94% and 61% of all known Y and mitochondrial haplogroups, respectively, and was vetted to avoid interrogation of clinically relevant markers. To demonstrate its capabilities, we compared its FST distributions with those of the 1000 Genomes Project and commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, DREAM’s autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. DREAM performances are further illustrated in biogeographical, identical by descent, and copy number variation analyses. In summary, with approximately 800,000 markers spanning nearly 2,000 genes, DREAM is a useful tool for genetic anthropology, forensic, and personalized medicine studies. PMID:29165562

  9. Hemispherical array of sensors with contractively wrapped polymer petals for flow sensing

    NASA Astrophysics Data System (ADS)

    Kanhere, Elgar; Wang, Nan; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael

    2017-11-01

    Hemispherical arrays have inherent advantages that allow simultaneous detection of flow speed and direction due to their shape. Though MEMS technology has progressed leaps and bounds, fabrication of array of sensors on a hemispherical surface is still a challenge. In this work, a novel approach of constructing hemispherical array is presented which employs a technique of contractively wrapping a hemispherical surface with flexible liquid crystal polymer petals. This approach also leverages the offerings from rapid prototyping technology and established standard MEMS fabrication processes. Hemispherical arrays of piezoresistive sensors are constructed with two types of petal wrappings, 4-petals and 8-petals, on a dome. The flow sensing and direction detection abilities of the dome are evaluated through experiments in wind tunnel. Experimental results demonstrate that a dome equipped with a dense array of sensors can provide information pertaining to the stimulus, through visualization of output profile over the entire surface.

  10. Terahertz Array Receivers with Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; hide

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  11. Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain

    2015-10-01

    Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.

  12. ASIC Readout Circuit Architecture for Large Geiger Photodiode Arrays

    NASA Technical Reports Server (NTRS)

    Vasile, Stefan; Lipson, Jerold

    2012-01-01

    The objective of this work was to develop a new class of readout integrated circuit (ROIC) arrays to be operated with Geiger avalanche photodiode (GPD) arrays, by integrating multiple functions at the pixel level (smart-pixel or active pixel technology) in 250-nm CMOS (complementary metal oxide semiconductor) processes. In order to pack a maximum of functions within a minimum pixel size, the ROIC array is a full, custom application-specific integrated circuit (ASIC) design using a mixed-signal CMOS process with compact primitive layout cells. The ROIC array was processed to allow assembly in bump-bonding technology with photon-counting infrared detector arrays into 3-D imaging cameras (LADAR). The ROIC architecture was designed to work with either common- anode Si GPD arrays or common-cathode InGaAs GPD arrays. The current ROIC pixel design is hardwired prior to processing one of the two GPD array configurations, and it has the provision to allow soft reconfiguration to either array (to be implemented into the next ROIC array generation). The ROIC pixel architecture implements the Geiger avalanche quenching, bias, reset, and time to digital conversion (TDC) functions in full-digital design, and uses time domain over-sampling (vernier) to allow high temporal resolution at low clock rates, increased data yield, and improved utilization of the laser beam.

  13. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  14. Arrays of probes for positional sequencing by hybridization

    DOEpatents

    Cantor, Charles R [Boston, MA; Prezetakiewiczr, Marek [East Boston, MA; Smith, Cassandra L [Boston, MA; Sano, Takeshi [Waltham, MA

    2008-01-15

    This invention is directed to methods and reagents useful for sequencing nucleic acid targets utilizing sequencing by hybridization technology comprising probes, arrays of probes and methods whereby sequence information is obtained rapidly and efficiently in discrete packages. That information can be used for the detection, identification, purification and complete or partial sequencing of a particular target nucleic acid. When coupled with a ligation step, these methods can be performed under a single set of hybridization conditions. The invention also relates to the replication of probe arrays and methods for making and replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.

  15. Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes.

    PubMed

    Grochowski, Christopher M; Gu, Shen; Yuan, Bo; Tcw, Julia; Brennand, Kristen J; Sebat, Jonathan; Malhotra, Dheeraj; McCarthy, Shane; Rudolph, Uwe; Lindstrand, Anna; Chong, Zechen; Levy, Deborah L; Lupski, James R; Carvalho, Claudia M B

    2018-04-25

    Small supernumerary marker chromosomes (sSMC) are chromosomal fragments difficult to characterize genomically. Here, we detail a proband with schizoaffective disorder and a mother with bipolar disorder with psychotic features who present with a marker chromosome that segregates with disease. We explored the architecture of this marker and investigated its temporal origin. Array comparative genomic hybridization (aCGH) analysis revealed three duplications and three triplications that spanned the short arm of chromosome 9, suggestive of a chromoanasynthesis-like event. Segregation of marker genotypes, phased using sSMC mosaicism in the mother, provided evidence that it was generated during a germline-level event in the proband's maternal grandmother. Whole-genome sequencing (WGS) was performed to resolve the structure and junctions of the chromosomal fragments, revealing further complexities. While structural variations have been previously associated with neuropsychiatric disorders and marker chromosomes, here we detail the precise architecture, human life-cycle genesis, and propose a DNA replicative/repair mechanism underlying formation. © 2018 Wiley Periodicals, Inc.

  16. Method for replicating an array of nucleic acid probes

    DOEpatents

    Cantor, C.R.; Przetakiewicz, M.; Smith, C.L.; Sano, T.

    1998-08-18

    The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5{prime}- and/or 3{prime}-overhangs. 16 figs.

  17. Flat-plate solar array progress and plans

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1984-01-01

    The results of research into the technology of flat-plate solar arrays undertaken in the Flat-Plate Solar Array Project under the sponsorship of the U.S. Department of Energy are surveyed. Topics examined include Si refinement, ribbon-sheet substrate formation, module process sequences, environmental isolation, module engineering and testing, and photovoltaic-array economics.

  18. Measurement of high-voltage and radiation-damage limitations to advanced solar array performance

    NASA Technical Reports Server (NTRS)

    Guidice, D. A.; Severance, P. S.; Keinhardt, K. C.

    1991-01-01

    A description is given of the reconfigured Photovoltaic Array Space Power (PASP) Plus experiment: its objectives, solar-array complement, and diagnostic sensors. Results from a successful spaceflight will lead to a better understanding of high-voltage and radiation-damage limitations in the operation of new-technology solar arrays.

  19. Fabrication and characterization of multi-stopband Fabry-Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology

    NASA Astrophysics Data System (ADS)

    Shen, Yannan; Istock, André; Zaman, Anik; Woidt, Carsten; Hillmer, Hartmut

    2018-05-01

    Miniaturization of optical spectrometers can be achieved by Fabry-Pérot (FP) filter arrays. Each FP filter consists of two parallel highly reflecting mirrors and a resonance cavity in between. Originating from different individual cavity heights, each filter transmits a narrow spectral band (transmission line) with different wavelengths. Considering the fabrication efficiency, plasma enhanced chemical vapor deposition (PECVD) technology is applied to implement the high-optical-quality distributed Bragg reflectors (DBRs), while substrate conformal imprint lithography (one type of nanoimprint technology) is utilized to achieve the multiple cavities in just a single step. The FP filter array fabricated by nanoimprint combined with corresponding detector array builds a so-called "nanospectrometer". However, the silicon nitride and silicon dioxide stacks deposited by PECVD result in a limited stopband width of DBR (i.e., < 100 nm), which then limits the sensing range of filter arrays. However, an extension of the spectral range of filter arrays is desired and the topic of this investigation. In this work, multiple DBRs with different central wavelengths (λ c) are structured, deposited, and combined on a single substrate to enlarge the entire stopband. Cavity arrays are successfully aligned and imprinted over such terrace like surface in a single step. With this method, small chip size of filter arrays can be preserved, and the fabrication procedure of multiple resonance cavities is kept efficient as well. The detecting range of filter arrays is increased from roughly 50 nm with single DBR to 163 nm with three different DBRs.

  20. Application of MEMS Microphone Array Technology to Airframe Noise Measurements

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Shams, Qamar A.; Graves, Sharon S.; Sealey, Bradley S.; Bartram, Scott M.; Comeaux, Toby

    2005-01-01

    Current generation microphone directional array instrumentation is capable of extracting accurate noise source location and directivity data on a variety of aircraft components, resulting in significant gains in test productivity. However, with this gain in productivity has come the desire to install larger and more complex arrays in a variety of ground test facilities, creating new challenges for the designers of array systems. To overcome these challenges, a research study was initiated to identify and develop hardware and fabrication technologies which could be used to construct an array system exhibiting acceptable measurement performance but at much lower cost and with much simpler installation requirements. This paper describes an effort to fabricate a 128-sensor array using commercially available Micro-Electro-Mechanical System (MEMS) microphones. The MEMS array was used to acquire noise data for an isolated 26%-scale high-fidelity Boeing 777 landing gear in the Virginia Polytechnic Institute and State University Stability Tunnel across a range of Mach numbers. The overall performance of the array was excellent, and major noise sources were successfully identified from the measurements.

  1. Stretched Lens Array Squarerigger (SLASR) Technology Maturation

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; McDanal, A.J.; Howell, Joe; Lollar, Louis; Carrington, Connie; Hoppe, David; Piszczor, Michael; Suszuki, Nantel; Eskenazi, Michael; Aiken, Dan; hide

    2007-01-01

    Since April 2005, our team has been underway on a competitively awarded program sponsored by NASA s Exploration Systems Mission Directorate to develop, refine, and mature the unique solar array technology known as Stretched Lens Array SquareRigger (SLASR). SLASR offers an unprecedented portfolio of performance metrics, SLASR offers an unprecedented portfolio of performance metrics, including the following: Areal Power Density = 300 W/m2 (2005) - 400 W/m2 (2008 Target) Specific Power = 300 W/kg (2005) - 500 W/kg (2008 Target) for a Full 100 kW Solar Array Stowed Power = 80 kW/cu m (2005) - 120 kW/m3 (2008 Target) for a Full 100 kW Solar Array Scalable Array Capacity = 100 s of W s to 100 s of kW s Super-Insulated Small Cell Circuit = High-Voltage (300-600 V) Operation at Low Mass Penalty Super-Shielded Small Cell Circuit = Excellent Radiation Hardness at Low Mass Penalty 85% Cell Area Savings = 75% Lower Array Cost per Watt than One-Sun Array Modular, Scalable, & Mass-Producible at MW s per Year Using Existing Processes and Capacities

  2. Phased Array Theory and Technology

    DTIC Science & Technology

    1981-07-01

    Generalized Array Coordinates 2. Linear, Planar and Circular Art -ays 3. Periodic fwo Dimensional ^rras 4. Grating Lobe Lattices 5. 1’llenienl...formal and low profile antennas, antennas for limited sector coverage, and wide- band array feeds. To aid designers, there is an attempt to give ...ol Vol. 2, Elliott gives convenient formulas lor the directivity of Imear dipole arrays, and derives an especially simple form tor arrays

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takada, Michiya; Ban, Yoshiyuki, E-mail: yshyban@yahoo.co.jp; Yamamoto, Gou

    Research highlights: {yields} In proliferative membrane and epiretinal membrane specimens, the numbers of proteins are 225 and 154, respectively, and 123 proteins are common to both. {yields} Periostin and thrombospondin-1 proteins are unique to the proliferative membrane specimens. {yields} The expression of periostin is significantly up-regulated in proliferative membrane specimens. -- Abstract: Diabetes can lead to serious microvascular complications including proliferative diabetic retinopathy (PDR), the leading cause of blindness in adults. Recent studies using gene array technology have attempted to apply a hypothesis-generating approach to elucidate the pathogenesis of PDR, but these studies rely on mRNA differences, which may ormore » may not be related to significant biological processes. To better understand the basic mechanisms of PDR and to identify potential new biomarkers, we performed shotgun liquid chromatography (LC)/tandem mass spectrometry (MS/MS) analysis on pooled protein extracts from neovascular membranes obtained from PDR specimens and compared the results with those from non-vascular epiretinal membrane (ERM) specimens. We detected 226 distinct proteins in neovascular membranes and 154 in ERM. Among these proteins, 102 were specific to neovascular membranes and 30 were specific to ERM. We identified a candidate marker, periostin, as well as several known PDR markers such as pigment epithelium-derived factor (PEDF). We then performed RT-PCR using these markers. The expression of periostin was significantly up-regulated in proliferative membrane specimens. Periostin induces cell attachment and spreading and plays a role in cell adhesion. Proteomic analysis by LC/MS/MS, which permits accurate quantitative comparison, was useful in identifying new candidates such as periostin potentially involved in the pathogenesis of PDR.« less

  4. Derivation and Characterization of Induced Pluripotent Stem Cells from Equine Fibroblasts

    PubMed Central

    Breton, Amandine; Sharma, Ruchi; Diaz, Andrea Catalina; Parham, Alea Gillian; Graham, Audrey; Neil, Claire; Whitelaw, Christopher Bruce; Milne, Elspeth

    2013-01-01

    Pluripotent stem cells offer unprecedented potential not only for human medicine but also for veterinary medicine, particularly in relation to the horse. Induced pluripotent stem cells (iPSCs) are particularly promising, as they are functionally similar to embryonic stem cells and can be generated in vitro in a patient-specific manner. In this study, we report the generation of equine iPSCs from skin fibroblasts obtained from a foal and reprogrammed using viral vectors coding for murine Oct4, Sox2, c-Myc, and Klf4 sequences. The reprogrammed cell lines were morphologically similar to iPSCs reported from other species and could be stably maintained over more than 30 passages. Immunostaining and polymerase chain reaction analyses revealed that these cell lines expressed an array of endogenous markers associated with pluripotency, including OCT4, SOX2, NANOG, REX1, LIN28, SSEA1, SSEA4, and TRA1-60. Furthermore, under the appropriate conditions, the equine iPSCs readily formed embryoid bodies and differentiated in vitro into cells expressing markers of ectoderm, mesoderm, and endoderm, and when injected into immunodeficient mice, gave raise to tumors containing differentiated derivatives of the 3 germ layers. Finally, we also reprogrammed fibroblasts from a 2-year-old horse. The reprogrammed cells were similar to iPSCs derived from neonatal fibroblasts in terms of morphology, expression of pluripotency markers, and differentiation ability. The generation of these novel cell lines constitutes an important step toward the understanding of pluripotency in the horse, and paves the way for iPSC technology to potentially become a powerful research and clinical tool in veterinary biomedicine. PMID:22897112

  5. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus.

    PubMed

    Li, Fagen; Zhou, Changpin; Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10-56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa.

  6. Comparative Genomics Analyses Reveal Extensive Chromosome Colinearity and Novel Quantitative Trait Loci in Eucalyptus

    PubMed Central

    Weng, Qijie; Li, Mei; Yu, Xiaoli; Guo, Yong; Wang, Yu; Zhang, Xiaohong; Gan, Siming

    2015-01-01

    Dense genetic maps, along with quantitative trait loci (QTLs) detected on such maps, are powerful tools for genomics and molecular breeding studies. In the important woody genus Eucalyptus, the recent release of E. grandis genome sequence allows for sequence-based genomic comparison and searching for positional candidate genes within QTL regions. Here, dense genetic maps were constructed for E. urophylla and E. tereticornis using genomic simple sequence repeats (SSR), expressed sequence tag (EST) derived SSR, EST-derived cleaved amplified polymorphic sequence (EST-CAPS), and diversity arrays technology (DArT) markers. The E. urophylla and E. tereticornis maps comprised 700 and 585 markers across 11 linkage groups, totaling at 1,208.2 and 1,241.4 cM in length, respectively. Extensive synteny and colinearity were observed as compared to three earlier DArT-based eucalypt maps (two maps with E. grandis × E. urophylla and one map of E. globulus) and with the E. grandis genome sequence. Fifty-three QTLs for growth (10–56 months of age) and wood density (56 months) were identified in 22 discrete regions on both maps, in which only one colocalizaiton was found between growth and wood density. Novel QTLs were revealed as compared with those previously detected on DArT-based maps for similar ages in Eucalyptus. Eleven to 585 positional candidate genes were obained for a 56-month-old QTL through aligning QTL confidence interval with the E. grandis genome. These results will assist in comparative genomics studies, targeted gene characterization, and marker-assisted selection in Eucalyptus and the related taxa. PMID:26695430

  7. Review of an assortment of IR materials-devices technologies used for imaging in spectral bands ranging from the visible to very long wavelengths

    NASA Astrophysics Data System (ADS)

    DeWames, Roger E.

    2016-05-01

    In this paper we review the intrinsic and extrinsic technological properties of the incumbent technology, InP/In0.53Ga0.47As/InP, for imaging in the visible- short wavelength spectral band, InSb and HgCdTe for imaging in the mid-wavelength spectral band and HgCdTe for imaging in the long wavelength spectral band. These material systems are in use for a wide range of applications addressing compelling needs in night vision imaging, low light level astronomical applications and defense strategic satellite sensing. These materials systems are direct band gap energy semiconductors hence the internal quantum efficiency η, is near unity over a wide spectral band pass. A key system figure of merit of a shot noise limited detector technology is given by the equation (1+Jdark. /Jphoton), where Jdark is the dark current density and Jphoton ~qηΦ is the photocurrent density; Φ is the photon flux incident on the detector and q is the electronic charge. The capability to maintain this factor for a specific spectral band close to unity for low illumination conditions and low temperature onset of non-ideal dark current components, basically intrinsic diffusion limited performance all the way, is a marker of quality and versatility of a semiconductor detector technology. It also enables the highest temperature of operation for tactical illumination conditions. A purpose of the work reported in this paper is to explore the focal plane array data sets of photodiode detector technologies widely used to bench mark their fundamental and technology properties and identify paths for improvements.

  8. Development of an Influenza virus protein array using Sortagging technology

    PubMed Central

    Sinisi, Antonia; Popp, Maximilian Wei-Lin; Antos, John M.; Pansegrau, Werner; Savino, Silvana; Nissum, Mikkel; Rappuoli, Rino; Ploegh, Hidde L.; Buti, Ludovico

    2013-01-01

    Protein array technology is an emerging tool that enables high throughput screening of protein-protein or protein-lipid interactions and identification of immunodominant antigens during the course of a bacterial or viral infection. In this work we developed an Influenza virus protein array using the sortase-mediated transpeptidation reaction known as “Sortagging”. LPETG-tagged Influenza virus proteins from bacterial and eukaryotic cellular extracts were immobilized at their carboxyl-termini onto a pre-activated amine-glass slide coated with a Gly3 linker. Immobilized proteins were revealed by specific antibodies and the newly generated Sortag-protein chip can be used as a device for antigen and/or antibody screening. The specificity of the Sortase A (SrtA) reaction avoids purification steps in array building and allows immobilization of proteins in an oriented fashion. Previously, this versatile technology has been successfully employed for protein labeling and protein conjugation. Here, the tool is implemented to covalently link proteins of a viral genome onto a solid support. The system could readily be scaled up to proteins of larger genomes in order to develop protein arrays for high throughput screening. PMID:22594688

  9. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    PubMed

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  10. Tumor Touch Imprints as Source for Whole Genome Analysis of Neuroblastoma Tumors

    PubMed Central

    Brunner, Clemens; Brunner-Herglotz, Bettina; Ziegler, Andrea; Frech, Christian; Amann, Gabriele; Ladenstein, Ruth; Ambros, Inge M.; Ambros, Peter F.

    2016-01-01

    Introduction Tumor touch imprints (TTIs) are routinely used for the molecular diagnosis of neuroblastomas by interphase fluorescence in-situ hybridization (I-FISH). However, in order to facilitate a comprehensive, up-to-date molecular diagnosis of neuroblastomas and to identify new markers to refine risk and therapy stratification methods, whole genome approaches are needed. We examined the applicability of an ultra-high density SNP array platform that identifies copy number changes of varying sizes down to a few exons for the detection of genomic changes in tumor DNA extracted from TTIs. Material and Methods DNAs were extracted from TTIs of 46 neuroblastoma and 4 other pediatric tumors. The DNAs were analyzed on the Cytoscan HD SNP array platform to evaluate numerical and structural genomic aberrations. The quality of the data obtained from TTIs was compared to that from randomly chosen fresh or fresh frozen solid tumors (n = 212) and I-FISH validation was performed. Results SNP array profiles were obtained from 48 (out of 50) TTI DNAs of which 47 showed genomic aberrations. The high marker density allowed for single gene analysis, e.g. loss of nine exons in the ATRX gene and the visualization of chromothripsis. Data quality was comparable to fresh or fresh frozen tumor SNP profiles. SNP array results were confirmed by I-FISH. Conclusion TTIs are an excellent source for SNP array processing with the advantage of simple handling, distribution and storage of tumor tissue on glass slides. The minimal amount of tumor tissue needed to analyze whole genomes makes TTIs an economic surrogate source in the molecular diagnostic work up of tumor samples. PMID:27560999

  11. Development and validation of the Axiom(®) Apple480K SNP genotyping array.

    PubMed

    Bianco, Luca; Cestaro, Alessandro; Linsmith, Gareth; Muranty, Hélène; Denancé, Caroline; Théron, Anthony; Poncet, Charles; Micheletti, Diego; Kerschbamer, Emanuela; Di Pierro, Erica A; Larger, Simone; Pindo, Massimo; Van de Weg, Eric; Davassi, Alessandro; Laurens, François; Velasco, Riccardo; Durel, Charles-Eric; Troggio, Michela

    2016-04-01

    Cultivated apple (Malus × domestica Borkh.) is one of the most important fruit crops in temperate regions, and has great economic and cultural value. The apple genome is highly heterozygous and has undergone a recent duplication which, combined with a rapid linkage disequilibrium decay, makes it difficult to perform genome-wide association (GWA) studies. Single nucleotide polymorphism arrays offer highly multiplexed assays at a relatively low cost per data point and can be a valid tool for the identification of the markers associated with traits of interest. Here, we describe the development and validation of a 487K SNP Affymetrix Axiom(®) genotyping array for apple and discuss its potential applications. The array has been built from the high-depth resequencing of 63 different cultivars covering most of the genetic diversity in cultivated apple. The SNPs were chosen by applying a focal points approach to enrich genic regions, but also to reach a uniform coverage of non-genic regions. A total of 1324 apple accessions, including the 92 progenies of two mapping populations, have been genotyped with the Axiom(®) Apple480K to assess the effectiveness of the array. A large majority of SNPs (359 994 or 74%) fell in the stringent class of poly high resolution polymorphisms. We also devised a filtering procedure to identify a subset of 275K very robust markers that can be safely used for germplasm surveys in apple. The Axiom(®) Apple480K has now been commercially released both for public and proprietary use and will likely be a reference tool for GWA studies in apple. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Large solar arrays

    NASA Technical Reports Server (NTRS)

    Crabtree, W. L.

    1980-01-01

    A spectrophotovoltaic converter, a thermophotovoltaic converter, a cassegrainian concentrator, a large silicon cell blanket, and a high flux approach are among the concepts being investigated as part of the multihundred kW solar array program for reducing the cost of photovoltaic energy in space. These concepts involve a range of technology risks, the highest risk being represented by the thermophotovoltaics and spectrophotovoltaics approaches which involve manipulation to of the incoming spectrum to enhance system efficiency. The planar array (solar blanket) has no technology risk and a moderate payback. The primary characteristics, components, and technology concerns of each of these concepts are summarized. An orbital power platform mission in the late 1980's is being used to allow a coherent technology advancement program in order to achieve a ten year life with maintenance at a capital recurring cost of $30/watt based on 1978 dollars.

  13. Selective in situ potential-assisted SAM formation on multi electrode arrays

    NASA Astrophysics Data System (ADS)

    Haag, Ann-Lauriene; Toader, Violeta; Lennox, R. Bruce; Grutter, Peter

    2016-11-01

    The selective modification of individual components in a biosensor array is challenging. To address this challenge, we present a generalizable approach to selectively modify and characterize individual gold surfaces in an array, in an in situ manner. This is achieved by taking advantage of the potential dependent adsorption/desorption of surface-modified organic molecules. Control of the applied potential of the individual sensors in an array where each acts as a working electrode provides differential derivatization of the sensor surfaces. To demonstrate this concept, two different self-assembled monolayer (SAM)-forming electrochemically addressable ω-ferrocenyl alkanethiols (C11) are chemisorbed onto independent but spatially adjacent gold electrodes. The ferrocene alkanethiol does not chemisorb onto the surface when the applied potential is cathodic relative to the adsorption potential and the electrode remains underivatized. However, applying potentials that are modestly positive relative to the adsorption potential leads to extensive coverage within 10 min. The resulting SAM remains in a stable state while held at potentials <200 mV above the adsorption potential. In this state, the chemisorbed SAM does not significantly desorb nor do new ferrocenylalkythiols adsorb. Using three set applied potentials provides for controlled submonolayer alkylthiol marker coverage of each independent gold electrode. These three applied potentials are dependent upon the specifics of the respective adsorbate. Characterization of the ferrocene-modified electrodes via cyclic voltammetry demonstrates that each specific ferrocene marker is exclusively adsorbed to the desired target electrode.

  14. Development of new SNP derived cleaved amplified polymorphic sequence marker set and its successful utilization in the genetic analysis of seed color variation in barley.

    PubMed

    Bungartz, Annemarie; Klaus, Marius; Mathew, Boby; Léon, Jens; Naz, Ali Ahmad

    2016-03-01

    The aim of the present study was to develop a new cost effective PCR based CAPS marker set using advantages of high-throughput SNP genotyping. Initially, SNP survey was made using 20 diverse barley genotypes via 9k iSelect array genotyping that resulted in 6334 polymorphic SNP markers. Principle component analysis using this marker data showed fine differentiation of barley diverse gene pool. Till this end, we developed 200 SNP derived CAPS markers distributed across the genome covering around 991cM with an average marker density of 5.09cM. Further, we genotyped 68 CAPS markers in an F2 population (Cheri×ICB181160) segregating for seed color variation in barley. Genetic mapping of seed color revealed putative linkage of single nuclear gene on chromosome 1H. These findings showed the proof of concept for the development and utility of a newer cost effective genomic tool kit to analyze broader genetic resources of barley worldwide. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Precision molding of advanced glass optics: innovative production technology for lens arrays and free form optics

    NASA Astrophysics Data System (ADS)

    Pongs, Guido; Bresseler, Bernd; Bergs, Thomas; Menke, Gert

    2012-10-01

    Today isothermal precision molding of imaging glass optics has become a widely applied and integrated production technology in the optical industry. Especially in consumer electronics (e.g. digital cameras, mobile phones, Blu-ray) a lot of optical systems contain rotationally symmetrical aspherical lenses produced by precision glass molding. But due to higher demands on complexity and miniaturization of optical elements the established process chain for precision glass molding is not sufficient enough. Wafer based molding processes for glass optics manufacturing become more and more interesting for mobile phone applications. Also cylindrical lens arrays can be used in high power laser systems. The usage of unsymmetrical free-form optics allows an increase of efficiency in optical laser systems. Aixtooling is working on different aspects in the fields of mold manufacturing technologies and molding processes for extremely high complex optical components. In terms of array molding technologies, Aixtooling has developed a manufacturing technology for the ultra-precision machining of carbide molds together with European partners. The development covers the machining of multi lens arrays as well as cylindrical lens arrays. The biggest challenge is the molding of complex free-form optics having no symmetrical axis. A comprehensive CAD/CAM data management along the entire process chain is essential to reach high accuracies on the molded lenses. Within a national funded project Aixtooling is working on a consistent data handling procedure in the process chain for precision molding of free-form optics.

  16. The value of residential photovoltaic systems: A comprehensive assessment

    NASA Technical Reports Server (NTRS)

    Borden, C. S.

    1983-01-01

    Utility-interactive photovoltaic (PV) arrays on residential rooftops appear to be a potentially attractive, large-scale application of PV technology. Results of a comprehensive assessment of the value (i.e., break-even cost) of utility-grid connected residential photovoltaic power systems under a variety of technological and economic assumptions are presented. A wide range of allowable PV system costs are calculated for small (4.34 kW (p) sub ac) residential PV systems in various locales across the United States. Primary factor in this variation are differences in local weather conditions, utility-specific electric generation capacity, fuel types, and customer-load profiles that effect purchase and sell-back rates, and non-uniform state tax considerations. Additional results from this analysis are: locations having the highest insolation values are not necessary the most economically attractive sites; residential PV systems connected in parallel to the utility demonstrate high percentages of energy sold back to the grid, and owner financial and tax assumptions cause large variations in break-even costs. Significant cost reduction and aggressive resolution of potential institutional impediments (e.g., liability, standards, metering, and technical integration) are required for a residential PV marker to become a major electric-grid-connected energy-generation source.

  17. The value of residential photovoltaic systems: A comprehensive assessment

    NASA Astrophysics Data System (ADS)

    Borden, C. S.

    1983-09-01

    Utility-interactive photovoltaic (PV) arrays on residential rooftops appear to be a potentially attractive, large-scale application of PV technology. Results of a comprehensive assessment of the value (i.e., break-even cost) of utility-grid connected residential photovoltaic power systems under a variety of technological and economic assumptions are presented. A wide range of allowable PV system costs are calculated for small (4.34 kW (p) sub ac) residential PV systems in various locales across the United States. Primary factor in this variation are differences in local weather conditions, utility-specific electric generation capacity, fuel types, and customer-load profiles that effect purchase and sell-back rates, and non-uniform state tax considerations. Additional results from this analysis are: locations having the highest insolation values are not necessary the most economically attractive sites; residential PV systems connected in parallel to the utility demonstrate high percentages of energy sold back to the grid, and owner financial and tax assumptions cause large variations in break-even costs. Significant cost reduction and aggressive resolution of potential institutional impediments (e.g., liability, standards, metering, and technical integration) are required for a residential PV marker to become a major electric-grid-connected energy-generation source.

  18. Challenges and the state of the technology for printed sensor arrays for structural monitoring

    NASA Astrophysics Data System (ADS)

    Joshi, Shiv; Bland, Scott; DeMott, Robert; Anderson, Nickolas; Jursich, Gregory

    2017-04-01

    Printed sensor arrays are attractive for reliable, low-cost, and large-area mapping of structural systems. These sensor arrays can be printed on flexible substrates or directly on monitored structural parts. This technology is sought for continuous or on-demand real-time diagnosis and prognosis of complex structural components. In the past decade, many innovative technologies and functional materials have been explored to develop printed electronics and sensors. For example, an all-printed strain sensor array is a recent example of a low-cost, flexible and light-weight system that provides a reliable method for monitoring the state of aircraft structural parts. Among all-printing techniques, screen and inkjet printing methods are well suited for smaller-scale prototyping and have drawn much interest due to maturity of printing procedures and availability of compatible inks and substrates. Screen printing relies on a mask (screen) to transfer a pattern onto a substrate. Screen printing is widely used because of the high printing speed, large selection of ink/substrate materials, and capability of making complex multilayer devices. The complexity of collecting signals from a large number of sensors over a large area necessitates signal multiplexing electronics that need to be printed on flexible substrate or structure. As a result, these components are subjected to same deformation, temperature and other parameters for which sensor arrays are designed. The characteristics of these electronic components, such as transistors, are affected by deformation and other environmental parameters which can lead to erroneous sensed parameters. The manufacturing and functional challenges of the technology of printed sensor array systems for structural state monitoring are the focus of this presentation. Specific examples of strain sensor arrays will be presented to highlight the technical challenges.

  19. Configuration study for a 30 GHz monolithic receive array: Technical assessment

    NASA Technical Reports Server (NTRS)

    Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.

    1984-01-01

    The current status of monolithic microwave integrated circuits (MMICs) in phased array feeds is discussed from the point of view of cost performance, reliability, and design considerations. Transitions to MMICs, compatible antenna radiating elements and reliability considerations are addressed. Hybrid antennas, feed array antenna technology, and offset reflectors versus phased arrays are examined.

  20. Status of LWIR HgCdTe infrared detector technology

    NASA Technical Reports Server (NTRS)

    Reine, M. B.

    1990-01-01

    The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.

  1. Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients.

    PubMed

    Schlick, Bettina; Massoner, Petra; Lueking, Angelika; Charoentong, Pornpimol; Blattner, Mirjam; Schaefer, Georg; Marquart, Klaus; Theek, Carmen; Amersdorfer, Peter; Zielinski, Dirk; Kirchner, Matthias; Trajanoski, Zlatko; Rubin, Mark A; Müllner, Stefan; Schulz-Knappe, Peter; Klocker, Helmut

    2016-01-01

    Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation.

  2. Serum Autoantibodies in Chronic Prostate Inflammation in Prostate Cancer Patients

    PubMed Central

    Schlick, Bettina; Massoner, Petra; Lueking, Angelika; Charoentong, Pornpimol; Blattner, Mirjam; Schaefer, Georg; Marquart, Klaus; Theek, Carmen; Amersdorfer, Peter; Zielinski, Dirk; Kirchner, Matthias; Trajanoski, Zlatko; Rubin, Mark A.; Müllner, Stefan; Schulz-Knappe, Peter; Klocker, Helmut

    2016-01-01

    Background Chronic inflammation is frequently observed on histological analysis of malignant and non-malignant prostate specimens. It is a suspected supporting factor for prostate diseases and their progression and a main cause of false positive PSA tests in cancer screening. We hypothesized that inflammation induces autoantibodies, which may be useful biomarkers. We aimed to identify and validate prostate inflammation associated serum autoantibodies in prostate cancer patients and evaluate the expression of corresponding autoantigens. Methods Radical prostatectomy specimens of prostate cancer patients (N = 70) were classified into high and low inflammation groups according to the amount of tissue infiltrating lymphocytes. The corresponding pre-surgery blood serum samples were scrutinized for autoantibodies using a low-density protein array. Selected autoantigens were identified in prostate tissue and their expression pattern analyzed by immunohistochemistry and qPCR. The identified autoantibody profile was cross-checked in an independent sample set (N = 63) using the Luminex-bead protein array technology. Results Protein array screening identified 165 autoantibodies differentially abundant in the serum of high compared to low inflammation patients. The expression pattern of three corresponding antigens were established in benign and cancer tissue by immunohistochemistry and qPCR: SPAST (Spastin), STX18 (Syntaxin 18) and SPOP (speckle-type POZ protein). Of these, SPAST was significantly increased in prostate tissue with high inflammation. All three autoantigens were differentially expressed in primary and/or castration resistant prostate tumors when analyzed in an inflammation-independent tissue microarray. Cross-validation of the inflammation autoantibody profile on an independent sample set using a Luminex-bead protein array, retrieved 51 of the significantly discriminating autoantibodies. Three autoantibodies were significantly upregulated in both screens, MUT, RAB11B and CSRP2 (p>0.05), two, SPOP and ZNF671, close to statistical significance (p = 0.051 and 0.076). Conclusions We provide evidence of an inflammation-specific autoantibody profile and confirm the expression of corresponding autoantigens in prostate tissue. This supports evaluation of autoantibodies as non-invasive markers for prostate inflammation. PMID:26863016

  3. DNA methylome profiling of maternal peripheral blood and placentas reveal potential fetal DNA markers for non-invasive prenatal testing.

    PubMed

    Xiang, Yuqian; Zhang, Junyu; Li, Qiaoli; Zhou, Xinyao; Wang, Teng; Xu, Mingqing; Xia, Shihui; Xing, Qinghe; Wang, Lei; He, Lin; Zhao, Xinzhi

    2014-09-01

    Utilizing epigenetic (DNA methylation) differences to differentiate between maternal peripheral blood (PBL) and fetal (placental) DNA has been a promising strategy for non-invasive prenatal testing (NIPT). However, the differentially methylated regions (DMRs) have yet to be fully ascertained. In the present study, we performed genome-wide comparative methylome analysis between maternal PBL and placental DNA from pregnancies of first trimester by methylated DNA immunoprecipitation-sequencing (MeDIP-Seq) and Infinium HumanMethylation450 BeadChip assays. A total of 36 931 DMRs and 45 804 differentially methylated sites (DMSs) covering the whole genome, exclusive of the Y chromosome, were identified via MeDIP-Seq and Infinium 450k array, respectively, of which 3759 sites in 2188 regions were confirmed by both methods. Not only did we find the previously reported potential fetal DNA markers in our identified DMRs/DMSs but also we verified fully the identified DMRs/DMSs in the validation round by MassARRAY EpiTYPER. The screened potential fetal DNA markers may be used for NIPT on aneuploidies and other chromosomal diseases, such as cri du chat syndrome and velo-cardio-facial syndrome. In addition, these potential markers may have application in the early diagnosis of placental dysfunction, such as pre-eclampsia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Infrared sensors for Earth observation missions

    NASA Astrophysics Data System (ADS)

    Ashcroft, P.; Thorne, P.; Weller, H.; Baker, I.

    2007-10-01

    SELEX S&AS is developing a family of infrared sensors for earth observation missions. The spectral bands cover shortwave infrared (SWIR) channels from around 1μm to long-wave infrared (LWIR) channels up to 15μm. Our mercury cadmium telluride (MCT) technology has enabled a sensor array design that can satisfy the requirements of all of the SWIR and medium-wave infrared (MWIR) bands with near-identical arrays. This is made possible by the combination of a set of existing technologies that together enable a high degree of flexibility in the pixel geometry, sensitivity, and photocurrent integration capacity. The solution employs a photodiode array under the control of a readout integrated circuit (ROIC). The ROIC allows flexible geometries and in-pixel redundancy to maximise operability and reliability, by combining the photocurrent from a number of photodiodes into a single pixel. Defective or inoperable diodes (or "sub-pixels") can be deselected with tolerable impact on the overall pixel performance. The arrays will be fabricated using the "loophole" process in MCT grown by liquid-phase epitaxy (LPE). These arrays are inherently robust, offer high quantum efficiencies and have been used in previous space programs. The use of loophole arrays also offers access to SELEX's avalanche photodiode (APD) technology, allowing low-noise, highly uniform gain at the pixel level where photon flux is very low.

  5. Full automatic fiducial marker detection on coil arrays for accurate instrumentation placement during MRI guided breast interventions

    NASA Astrophysics Data System (ADS)

    Filippatos, Konstantinos; Boehler, Tobias; Geisler, Benjamin; Zachmann, Harald; Twellmann, Thorsten

    2010-02-01

    With its high sensitivity, dynamic contrast-enhanced MR imaging (DCE-MRI) of the breast is today one of the first-line tools for early detection and diagnosis of breast cancer, particularly in the dense breast of young women. However, many relevant findings are very small or occult on targeted ultrasound images or mammography, so that MRI guided biopsy is the only option for a precise histological work-up [1]. State-of-the-art software tools for computer-aided diagnosis of breast cancer in DCE-MRI data offer also means for image-based planning of biopsy interventions. One step in the MRI guided biopsy workflow is the alignment of the patient position with the preoperative MR images. In these images, the location and orientation of the coil localization unit can be inferred from a number of fiducial markers, which for this purpose have to be manually or semi-automatically detected by the user. In this study, we propose a method for precise, full-automatic localization of fiducial markers, on which basis a virtual localization unit can be subsequently placed in the image volume for the purpose of determining the parameters for needle navigation. The method is based on adaptive thresholding for separating breast tissue from background followed by rigid registration of marker templates. In an evaluation of 25 clinical cases comprising 4 different commercial coil array models and 3 different MR imaging protocols, the method yielded a sensitivity of 0.96 at a false positive rate of 0.44 markers per case. The mean distance deviation between detected fiducial centers and ground truth information that was appointed from a radiologist was 0.94mm.

  6. Multiplex-Ready Technology for mid-throughput genotyping of molecular markers.

    PubMed

    Bonneau, Julien; Hayden, Matthew

    2014-01-01

    Screening molecular markers across large populations in breeding programs is generally time consuming and expensive. The Multiplex-Ready Technology (MRT) (Hayden et al., BMC genomics 9:80, 2008) was created to optimize polymorphism screening and genotyping using standardized PCR reaction conditions. The flexibility of this method maximizes the number of markers (up to 24 markers SSR or SNP, ideally small PCR product <500 bp and highly polymorphic) by using fluorescent dye (VIC, FAM, NED, and PET) and a semiautomated DNA fragment analyzer (ABI3730) capillary electrophoresis for large numbers of DNA samples (96 or 384 samples).

  7. November 1996 Kennedy Airport Wake Vortex Test : Sensor Evaluation

    DOT National Transportation Integrated Search

    1997-08-01

    In November 1996, a number of wake vortex and meteorological sensors were operated simultaneously in the middle marker region of Runway 31R at New York's Kennedy Airport. The vortex sensors included: 1)ground-based anemometer array, 2) cw 10-micron l...

  8. Progress on uncooled PbSe detectors for low-cost applications

    NASA Astrophysics Data System (ADS)

    Vergara, German; Gomez, Luis J.; Villamayor, Victor; Alvarez, M.; Rodrigo, Maria T.; del Carmen Torquemada, Maria; Sanchez, Fernando J.; Verdu, Marina; Diezhandino, Jorge; Rodriguez, Purificacion; Catalan, Irene; Almazan, Rosa; Plaza, Julio; Montojo, Maria T.

    2004-08-01

    This work reports on progress on development of polycrystalline PbSe infrared detectors at the Centro de Investigacion y Desarrollo de la Armada (CIDA). Since mid nineties, the CIDA owns an innovative technology for processing uncooled MWIR detectors of polycrystalline PbSe. Based on this technology, some applications have been developed. However, future applications demand smarter, more complex, faster yet cheaper detectors. Aiming to open new perspectives to polycrystalline PbSe detectors, we are currently working on different directions: 1) Processing of 2D arrays: a) Designing and processing low density x-y addressed arrays with 16x16 and 32x32 elements, as an extension of our standard technology. b) Trying to make compatible standard CMOS and polycrystalline PbSe technologies in order to process monolithic large format arrays. 2) Adding new features to the detector such as monolithically integrated spectral discrimination.

  9. Study of large adaptive arrays for space technology applications

    NASA Technical Reports Server (NTRS)

    Berkowitz, R. S.; Steinberg, B.; Powers, E.; Lim, T.

    1977-01-01

    The research in large adaptive antenna arrays for space technology applications is reported. Specifically two tasks were considered. The first was a system design study for accurate determination of the positions and the frequencies of sources radiating from the earth's surface that could be used for the rapid location of people or vehicles in distress. This system design study led to a nonrigid array about 8 km in size with means for locating the array element positions, receiving signals from the earth and determining the source locations and frequencies of the transmitting sources. It is concluded that this system design is feasible, and satisfies the desired objectives. The second task was an experiment to determine the largest earthbound array which could simulate a spaceborne experiment. It was determined that an 800 ft array would perform indistinguishably in both locations and it is estimated that one several times larger also would serve satisfactorily. In addition the power density spectrum of the phase difference fluctuations across a large array was measured. It was found that the spectrum falls off approximately as f to the minus 5/2 power.

  10. High Contrast Programmable Field Masks for JWST NIRSpec

    NASA Technical Reports Server (NTRS)

    Kutyrev, Alexander S.

    2008-01-01

    Microshutter arrays are one of the novel technologies developed for the James Webb Space Telescope (JWST). It will allow Near Infrared Spectrometer (NIRSpec) to acquire spectra of hundreds of objects simultaneously therefore increasing its efficiency tremendously. We have developed these programmable arrays that are based on Micro-Electro Mechanical Structures (MEMS) technology. The arrays are 2D addressable masks that can operate in cryogenic environment of JWST. Since the primary JWST science requires acquisition of spectra of extremely faint objects, it is important to provide very high contrast of the open to closed shutters. This high contrast is necessary to eliminate any possible contamination and confusion in the acquired spectra by unwanted objects. We have developed and built a test system for the microshutter array functional and optical characterization. This system is capable of measuring the contrast of the microshutter array both in visible and infrared light of the NIRSpec wavelength range while the arrays are in their working cryogenic environment. We have measured contrast ratio of several microshutter arrays and demonstrated that they satisfy and in many cases far exceed the NIRSpec contrast requirement value of 2000.

  11. Progress and prospects of silicon-based design for optical phased array

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie

    2016-03-01

    The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.

  12. Earth Science Geostationary Platform Technology

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Editor); Campbell, Thomas G. (Editor)

    1989-01-01

    The objective of the workshop was to address problems in science and in four technology areas (large space antenna technology, microwave sensor technology, electromagnetics-phased array adaptive systems technology, and optical metrology technology) related to Earth Science Geostationary Platform missions.

  13. The Diversity of REcent and Ancient huMan (DREAM): A New Microarray for Genetic Anthropology and Genealogy, Forensics, and Personalized Medicine.

    PubMed

    Elhaik, Eran; Yusuf, Leeban; Anderson, Ainan I J; Pirooznia, Mehdi; Arnellos, Dimitrios; Vilshansky, Gregory; Ercal, Gunes; Lu, Yontao; Webster, Teresa; Baird, Michael L; Esposito, Umberto

    2017-12-01

    The human population displays wide variety in demographic history, ancestry, content of DNA derived from hominins or ancient populations, adaptation, traits, copy number variation, drug response, and more. These polymorphisms are of broad interest to population geneticists, forensics investigators, and medical professionals. Historically, much of that knowledge was gained from population survey projects. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism genotyping, their design specifications are limited and they do not allow a full exploration of biodiversity. We thereby aimed to design the Diversity of REcent and Ancient huMan (DREAM)-an all-inclusive microarray that would allow both identification of known associations and exploration of standing questions in genetic anthropology, forensics, and personalized medicine. DREAM includes probes to interrogate ancestry informative markers obtained from over 450 human populations, over 200 ancient genomes, and 10 archaic hominins. DREAM can identify 94% and 61% of all known Y and mitochondrial haplogroups, respectively, and was vetted to avoid interrogation of clinically relevant markers. To demonstrate its capabilities, we compared its FST distributions with those of the 1000 Genomes Project and commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, DREAM's autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. DREAM performances are further illustrated in biogeographical, identical by descent, and copy number variation analyses. In summary, with approximately 800,000 markers spanning nearly 2,000 genes, DREAM is a useful tool for genetic anthropology, forensic, and personalized medicine studies. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Phased Arrays of Ground and Airborne Mobile Terminals for Satellite Communications

    NASA Technical Reports Server (NTRS)

    Huang, John

    1996-01-01

    Phased array antenna is beginning to play an important in the arena of mobile/satellite communications. Two examples of mobile terminal phased arrays will be shown. Their technical background, challenges, and cost drivers will be discussed. A possible solution to combat some of the deficiencies of the conventional phased array by exploiting the phased reflectarray technology will be briefly presented.

  15. Microoptical artificial compound eyes: from design to experimental verification of two different concepts

    NASA Astrophysics Data System (ADS)

    Duparré, Jacques; Wippermann, Frank; Dannberg, Peter; Schreiber, Peter; Bräuer, Andreas; Völkel, Reinhard; Scharf, Toralf

    2005-09-01

    Two novel objective types on the basis of artificial compound eyes are examined. Both imaging systems are well suited for fabrication using microoptics technology due to the small required lens sags. In the apposition optics a microlens array (MLA) and a photo detector array of different pitch in its focal plane are applied. The image reconstruction is based on moire magnification. Several generations of demonstrators of this objective type are manufactured by photo lithographic processes. This includes a system with opaque walls between adjacent channels and an objective which is directly applied onto a CMOS detector array. The cluster eye approach, which is based on a mixture of superposition compound eyes and the vision system of jumping spiders, produces a regular image. Here, three microlens arrays of different pitch form arrays of Keplerian microtelescopes with tilted optical axes, including a field lens. The microlens arrays of this demonstrator are also fabricated using microoptics technology, aperture arrays are applied. Subsequently the lens arrays are stacked to the overall microoptical system on wafer scale. Both fabricated types of artificial compound eye imaging systems are experimentally characterized with respect to resolution, sensitivity and cross talk between adjacent channels. Captured images are presented.

  16. Two color QWIP and extended wavebands

    NASA Astrophysics Data System (ADS)

    Costard, Eric; Truffer, Jean P.; Huet, Odile; Dua, Lydie; Nedelcu, Alexandru; Robo, J. A.; Marcadet, Xavier; Briere de l'Isle, Nadia; Bois, Philippe; Manissadjian, A.; Gohier, D.

    2007-04-01

    Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at THALES Research and Technology Laboratory. The QWIP technology allows the realization of large staring arrays for Thermal Imagers (TI) working in the long-wave infrared (LWIR) band (8-12 μm). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. The 640x512 LWIR focal plane arrays (FPAs) with 20μm pitch was the demonstration that state of the art performances can be achieved even with small pixels. This opened the field for the realization of usable and affordable megapixel FPAs. Thales Research & Technology (TRT) has been developing third generation GaAs LWIR QWIP arrays for volume manufacture of high performance low cost thermal imaging cameras. In the past, another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures to fulfil the requirements of specific applications such as very long wavelength (VLWIR) or multispectral detection. In this presentation, we present the performances of both our first 384x288, 25 μm pitch, MWIR (3-5μm) / LWIR (8-9 μm) dual-band FPAs, and the current status of QWIPs for MWIR (< 5μm) and VLWIR (>15μm) arrays.

  17. Cross-Translational Studies in Human and Drosophila Identify Markers of Sleep Loss

    PubMed Central

    Thimgan, Matthew S.; Gottschalk, Laura; Toedebusch, Cristina; McLeland, Jennifer; Rechtschaffen, Allan; Gilliland-Roberts, Marcia; Duntley, Stephen P.; Shaw, Paul J.

    2013-01-01

    Inadequate sleep has become endemic, which imposes a substantial burden for public health and safety. At present, there are no objective tests to determine if an individual has gone without sleep for an extended period of time. Here we describe a novel approach that takes advantage of the evolutionary conservation of sleep to identify markers of sleep loss. To begin, we demonstrate that IL-6 is increased in rats following chronic total sleep deprivation and in humans following 30 h of waking. Discovery experiments were then conducted on saliva taken from sleep-deprived human subjects to identify candidate markers. Given the relationship between sleep and immunity, we used Human Inflammation Low Density Arrays to screen saliva for novel markers of sleep deprivation. Integrin αM (ITGAM) and Anaxin A3 (AnxA3) were significantly elevated following 30 h of sleep loss. To confirm these results, we used QPCR to evaluate ITGAM and AnxA3 in independent samples collected after 24 h of waking; both transcripts were increased. The behavior of these markers was then evaluated further using the power of Drosophila genetics as a cost-effective means to determine whether the marker is associated with vulnerability to sleep loss or other confounding factors (e.g., stress). Transcript profiling in flies indicated that the Drosophila homologues of ITGAM were not predictive of sleep loss. Thus, we examined transcript levels of additional members of the integrin family in flies. Only transcript levels of scab, the Drosophila homologue of Integrin α5 (ITGA5), were associated with vulnerability to extended waking. Since ITGA5 was not included on the Low Density Array, we returned to human samples and found that ITGA5 transcript levels were increased following sleep deprivation. These cross-translational data indicate that fly and human discovery experiments are mutually reinforcing and can be used interchangeably to identify candidate biomarkers of sleep loss. PMID:23637783

  18. Letter regarding 'Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics' by Patrizi et al. and research reproducibility.

    PubMed

    2017-04-01

    The reporting of research in a manner that allows reproduction in subsequent investigations is important for scientific progress. Several details of the recent study by Patrizi et al., 'Comparison between low-cost marker-less and high-end marker-based motion capture systems for the computer-aided assessment of working ergonomics', are absent from the published manuscript and make reproduction of findings impossible. As new and complex technologies with great promise for ergonomics develop, new but surmountable challenges for reporting investigations using these technologies in a reproducible manner arise. Practitioner Summary: As with traditional methods, scientific reporting of new and complex ergonomics technologies should be performed in a manner that allows reproduction in subsequent investigations and supports scientific advancement.

  19. Recent Progress on the Stretched Lens Array (SLA)

    NASA Technical Reports Server (NTRS)

    O'Neill, Markl; McDanal, A. J.; Piszczor, Michael; George, Patrick; Eskenazi, Michael; Botke, Matthew; Edwards, David; Hoppe, David; Brandhorst, Henry

    2005-01-01

    At the last Space Photovoltaic Research and Technology Conference, SPRAT XVII, held during the fateful week of 9/11/01, our team presented a paper on the early developments related to the new Stretched Lens Array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Within the past two years, the SLA team has made significant progress in the SLA technology, including the successful fabrication and testing of a complete four-panel prototype solar array wing (Fig. 1). The prototype wing verified the mechanical and structural design of the rigid-panel SLA approach, including multiple successful demonstrations of automatic wing deployment. One panel in the prototype wing included four fully functional photovoltaic receivers, employing triple-junction solar cells.

  20. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Yi; Chen, Xin; Zhou, Ning; Huang, Xiao-Dong; Cao, Ming-De; Liu, Wen

    2014-07-01

    A 16-channel distributed-feedback (DFB) laser array with a monolithic integrated arrayed waveguide grating multiplexer for a wavelength division multiplex-passive optical network system is fabricated by using the butt-joint metal organic chemical vapor deposition technology and nanoimpirnt technology. The results show that the threshold current is about 20-30 mA at 25°C. The DFB laser side output power is about 16 mW with a 150 mA injection current. The lasing wavelength is from 1550 nm to 1575 nm covering a more than 25 nm range with 200 GHz channel space. A more than 55 dB sidemode suppression ratio is obtained.

  1. Future sensor system needs for staring arrays

    NASA Astrophysics Data System (ADS)

    Miller, John Lester

    2011-05-01

    This is a systems application paper regarding how sensor systems may use future technology FPAs. A historical perspective is discussed along with lessons learned from previous technologies. Future system requirements for strained super-lattice (SLS), quantum dots (QDOT) and traditional quantum well infrared photo-diodes (QWIP) arrays will be presented from both a commercial and military perspective. New potential markets will open up in the future if certain FPA technologies can reduce cost and provide higher sensitivities at higher operating temperatures.

  2. The application of DNA microarrays in gene expression analysis.

    PubMed

    van Hal, N L; Vorst, O; van Houwelingen, A M; Kok, E J; Peijnenburg, A; Aharoni, A; van Tunen, A J; Keijer, J

    2000-03-31

    DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.

  3. Packaging and testing of multi-wavelength DFB laser array using REC technology

    NASA Astrophysics Data System (ADS)

    Ni, Yi; Kong, Xuan; Gu, Xiaofeng; Chen, Xiangfei; Zheng, Guanghui; Luan, Jia

    2014-02-01

    Packaging of distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this paper, DFB laser arrays of 4-channel @1310 nm and 8-channel @1550 nm are packaged. Our experimental results show that both these laser arrays have uniform wavelength spacing and larger than 35 dB average Side Mode Suppression Ratio (SMSR). When I=35 mA, we obtain the total output power of 1 mW for 4-channel @1310 nm, and 227 μw for 8-channel @1550 nm respectively. The high frequency characteristics of the packaged chips are also obtained, and the requirements for 4×10 G or even 8×10 G systems can be reached. Our results demonstrate the practical and low cost performance of REC technology and indicate its potential in the future fiber-to-the-home (FTTH) application.

  4. Application of Nexus copy number software for CNV detection and analysis.

    PubMed

    Darvishi, Katayoon

    2010-04-01

    Among human structural genomic variation, copy number variants (CNVs) are the most frequently known component, comprised of gains/losses of DNA segments that are generally 1 kb in length or longer. Array-based comparative genomic hybridization (aCGH) has emerged as a powerful tool for detecting genomic copy number variants (CNVs). With the rapid increase in the density of array technology and with the adaptation of new high-throughput technology, a reliable and computationally scalable method for accurate mapping of recurring DNA copy number aberrations has become a main focus in research. Here we introduce Nexus Copy Number software, a platform-independent tool, to analyze the output files of all types of commercial and custom-made comparative genomic hybridization (CGH) and single-nucleotide polymorphism (SNP) arrays, such as those manufactured by Affymetrix, Agilent Technologies, Illumina, and Roche NimbleGen. It also supports data generated by various array image-analysis software tools such as GenePix, ImaGene, and BlueFuse. (c) 2010 by John Wiley & Sons, Inc.

  5. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool.

    PubMed

    Winfield, Mark O; Allen, Alexandra M; Burridge, Amanda J; Barker, Gary L A; Benbow, Harriet R; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; King, Julie; West, Claire; Griffiths, Simon; King, Ian; Bentley, Alison R; Edwards, Keith J

    2016-05-01

    In wheat, a lack of genetic diversity between breeding lines has been recognized as a significant block to future yield increases. Species belonging to bread wheat's secondary and tertiary gene pools harbour a much greater level of genetic variability, and are an important source of genes to broaden its genetic base. Introgression of novel genes from progenitors and related species has been widely employed to improve the agronomic characteristics of hexaploid wheat, but this approach has been hampered by a lack of markers that can be used to track introduced chromosome segments. Here, we describe the identification of a large number of single nucleotide polymorphisms that can be used to genotype hexaploid wheat and to identify and track introgressions from a variety of sources. We have validated these markers using an ultra-high-density Axiom(®) genotyping array to characterize a range of diploid, tetraploid and hexaploid wheat accessions and wheat relatives. To facilitate the use of these, both the markers and the associated sequence and genotype information have been made available through an interactive web site. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Identification of Methylated Genes Associated with Aggressive Bladder Cancer

    PubMed Central

    Marsit, Carmen J.; Houseman, E. Andres; Christensen, Brock C.; Gagne, Luc; Wrensch, Margaret R.; Nelson, Heather H.; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K.; Andrew, Angeline S.; Schned, Alan R.; Karagas, Margaret R.; Kelsey, Karl T.

    2010-01-01

    Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment. PMID:20808801

  7. Identification of methylated genes associated with aggressive bladder cancer.

    PubMed

    Marsit, Carmen J; Houseman, E Andres; Christensen, Brock C; Gagne, Luc; Wrensch, Margaret R; Nelson, Heather H; Wiemels, Joseph; Zheng, Shichun; Wiencke, John K; Andrew, Angeline S; Schned, Alan R; Karagas, Margaret R; Kelsey, Karl T

    2010-08-23

    Approximately 500,000 individuals diagnosed with bladder cancer in the U.S. require routine cystoscopic follow-up to monitor for disease recurrences or progression, resulting in over $2 billion in annual expenditures. Identification of new diagnostic and monitoring strategies are clearly needed, and markers related to DNA methylation alterations hold great promise due to their stability, objective measurement, and known associations with the disease and with its clinical features. To identify novel epigenetic markers of aggressive bladder cancer, we utilized a high-throughput DNA methylation bead-array in two distinct population-based series of incident bladder cancer (n = 73 and n = 264, respectively). We then validated the association between methylation of these candidate loci with tumor grade in a third population (n = 245) through bisulfite pyrosequencing of candidate loci. Array based analyses identified 5 loci for further confirmation with bisulfite pyrosequencing. We identified and confirmed that increased promoter methylation of HOXB2 is significantly and independently associated with invasive bladder cancer and methylation of HOXB2, KRT13 and FRZB together significantly predict high-grade non-invasive disease. Methylation of these genes may be useful as clinical markers of the disease and may point to genes and pathways worthy of additional examination as novel targets for therapeutic treatment.

  8. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful performance of experimental, proof-of-concept MMIC K/Ka-band arrays developed with U.S. industry in field demonstrations with ACTS indicates that high density MMIC integration at 20 and 30 GHz is indeed feasible. The successful development and demonstration of the MMIC array systems was possible only because of significant intergovernmental and Government/industry cooperation and the high level of teamwork within Lewis. The results provide a strong incentive for continuing the focused development of MMIC-array technology for satellite communications applications, with emphasis on packaging and cost issues, and for continuing the planning and conducting of other appropriate demonstrations or experiments of phased-array technology with ACTS. Given the present pressures on reducing funding for research and development in Government and industry, the extent to which this can be continued in a cooperative manner will determine whether MMIC array technology will make the transition from the proof-of-concept level to the operational system level.

  9. Maximization of Markers Linked in Coupling for Tetraploid Potatoes via Monoparental Haploids

    PubMed Central

    Bartkiewicz, Annette M.; Chilla, Friederike; Terefe-Ayana, Diro; Lübeck, Jens; Strahwald, Josef; Tacke, Eckhard; Hofferbert, Hans-Reinhard; Linde, Marcus; Debener, Thomas

    2018-01-01

    Haploid potato populations derived from a single tetraploid donor constitute an efficient strategy to analyze markers segregating from a single donor genotype. Analysis of marker segregation in populations derived from crosses between polysomic tetraploids is complicated by a maximum of eight segregating alleles, multiple dosages of the markers and problems related to linkage analysis of marker segregation in repulsion. Here, we present data on two monoparental haploid populations generated by prickle pollination of two tetraploid cultivars with Solanum phureja and genotyped with the 12.8 k SolCAP single nucleotide polymorphism (SNP) array. We show that in a population of monoparental haploids, the number of biallelic SNP markers segregating in linkage to loci from the tetraploid donor genotype is much larger than in putative crosses of this genotype to a diverse selection of 125 tetraploid cultivars. Although this strategy is more laborious than conventional breeding, the generation of haploid progeny for efficient marker analysis is straightforward if morphological markers and flow cytometry are utilized to select true haploid progeny. The level of introgressed fragments from S. phureja, the haploid inducer, is very low, supporting its suitability for genetic analysis. Mapping with single-dose markers allowed the analysis of quantitative trait loci (QTL) for four phenotypic traits. PMID:29868076

  10. Multistage WDM access architecture employing cascaded AWGs

    NASA Astrophysics Data System (ADS)

    El-Nahal, F. I.; Mears, R. J.

    2009-03-01

    Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.

  11. Stretched Lens Array Photovoltaic Concentrator Technology Developed

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    2004-01-01

    Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.

  12. Mission applications for advanced photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; West, John L.; Chave, Robert G.; Mcgee, David P.; Yen, Albert S.

    1990-01-01

    The suitability of the Advanced Photovoltaic Solar Array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system was compared to rigid arrays and a radio-isotope thermoelectric generator (RTG) static power source for a wide range of assumed future earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. The authors discuss the three selected power sources, the assessment criteria and rating definitions, and the reference missions. They present the assessment results in a convenient tabular format. It is concluded that the three power sources examined, APSA, conventional solar arrays, and RTGs, can be considered to complement each other. Each power technology has its own range of preferred applications.

  13. Thin-Film Solar Cells on Metal Foil Substrates for Space Power

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Hepp, Aloysius F.; Hoffman, David J.; Dhere, N.; Tuttle, J. R.; Jin, Michael H.

    2004-01-01

    Photovoltaic arrays have played a key role in power generation in space. The current technology will continue to evolve but is limited in the important mass specific power metric (MSP or power/weight ratio) because it is based on bulk crystal technology. The objective of this research is to continue development of an innovative photovoltaic technology for satellite power sources that could provide up to an order of magnitude saving in both weight and cost, and is inherently radiation-tolerant through use of thin film technology and thin foil substrates such as 5-mil thick stainless steel foil or 1-mil thick Ti. Current single crystal technology for space power can cost more than $300 per watt at the array level and weigh more than 1 kg/sq m equivalent to specific power of approx. 65 W/kg. Thin film material such as CuIn(1-x),Ga(x)S2, (CIGS2), CuIn(1-x), G(x)Se(2-y),S(y), (CIGSS) or amorphous hydrogenated silicon (a-Si:H) may be able to reduce both the cost and mass per unit area by an order of magnitude. Manufacturing costs for solar arrays are an important consideration for total spacecraft budget. For a medium sized 5kW satellite, for example, the array manufacturing cost alone may exceed $2 million. Moving to thin film technology could reduce this expense to less than $500 K. Previous work at FSEC demonstrated the potential of achieving higher efficiencies from CIGSS thin film solar cells on 5-mil thick stainless steel foil as well as initial stages of facility augmentation for depositing thin film solar cells on larger (6"x 4") substrates. This paper presents further progress in processing on metal foil substrates. Also, previous work at DayStar demonstrated the feasibility of flexible-thin-film copper-indium-gallium-diselenide (CIGS) solar cells with a power-to-weight ratio in excess of 1000 W/kg. We will comment on progress on the critical issue of scale-up of the solar cell absorber deposition process. Several important technical issues need to be resolved to realize the benefits of lightweight technologies for solar arrays, such as: monolithic interconnects, lightweight array structures, and new ultra-light support and deployment mechanisms. Once the technology has gained spaceflight certification it should find rapid acceptance in specific satellite markets.

  14. Evaluating imputation algorithms for low-depth genotyping-by-sequencing (GBS) data

    USDA-ARS?s Scientific Manuscript database

    Well-powered genomic studies require genome-wide marker coverage across many individuals. For non-model species with few genomic resources, high-throughput sequencing (HTS) methods, such as Genotyping-By-Sequencing (GBS), offer an inexpensive alternative to array-based genotyping. Although affordabl...

  15. Implementation and Performance of GaAs Digital Signal Processing ASICs

    NASA Technical Reports Server (NTRS)

    Whitaker, William D.; Buchanan, Jeffrey R.; Burke, Gary R.; Chow, Terrance W.; Graham, J. Scott; Kowalski, James E.; Lam, Barbara; Siavoshi, Fardad; Thompson, Matthew S.; Johnson, Robert A.

    1993-01-01

    The feasibility of performing high speed digital signal processing in GaAs gate array technology has been demonstrated with the successful implementation of a VLSI communications chip set for NASA's Deep Space Network. This paper describes the techniques developed to solve some of the technology and implementation problems associated with large scale integration of GaAs gate arrays.

  16. Spacecraft level impacts of integrating concentrator solar arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.M.; Piszczor, M.F. Jr.

    1994-12-31

    The paper describes the results of a study to determine the impacts of integrating concentrator solar arrays on spacecraft design and performance. First, concentrator array performance is summarized for the AEC-Able/Entech SCARLET array, the Ioffe refractive and reflective concepts being developed in Russia, the Martin Marietta SLATS system, and other concentrator concepts that have been designed or developed. Concentrator array performance is compared to rigid and flex blanket planar array technologies at the array level. Then other impacts on the spacecraft are quantified. Conclusions highlight the most important results as they relate to recommended approaches in developing concentrator arrays formore » satellites.« less

  17. Integrated infrared detector arrays for low-background applications

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Goebel, J. H.

    1982-01-01

    Advanced infrared detector and detector array technology is being developed and characterized for future NASA space astronomy applications. Si:Bi charge-injection-device arrays have been obtained, and low-background sensitivities comparable to that of good discrete detectors have been measured. Intrinsic arrays are being assessed, and laboratory and telescope data have been collected on a monolithic InSb CCD array. For wavelengths longer than 30 microns, improved Ge:Ga detectors have been produced, and steps have been taken to prove the feasibility of an integrated extrinsic germanium array. Other integrated arrays and cryogenic components are also under investigation.

  18. A High-Density Integrated DArTseq SNP-Based Genetic Map of Pisum fulvum and Identification of QTLs Controlling Rust Resistance

    PubMed Central

    Barilli, Eleonora; Cobos, María J.; Carrillo, Estefanía; Kilian, Andrzej; Carling, Jason; Rubiales, Diego

    2018-01-01

    Pisum fulvum, a wild relative of pea is an important source of allelic diversity to improve the genetic resistance of cultivated species against fungal diseases of economic importance like the pea rust caused by Uromyces pisi. To unravel the genetic control underlying resistance to this fungal disease, a recombinant inbred line (RIL) population was generated from a cross between two P. fulvum accessions, IFPI3260 and IFPI3251, and genotyped using Diversity Arrays Technology. A total of 9,569 high-quality DArT-Seq and 8,514 SNPs markers were generated. Finally, a total of 12,058 markers were assembled into seven linkage groups, equivalent to the number of haploid chromosomes of P. fulvum and P. sativum. The newly constructed integrated genetic linkage map of P. fulvum covered an accumulated distance of 1,877.45 cM, an average density of 1.19 markers cM−1 and an average distance between adjacent markers of 1.85 cM. The composite interval mapping revealed three QTLs distributed over two linkage groups that were associated with the percentage of rust disease severity (DS%). QTLs UpDSII and UpDSIV were located in the LGs II and IV respectively and were consistently identified both in adult plants over 3 years at the field (Córdoba, Spain) and in seedling plants under controlled conditions. Whenever they were detected, their contribution to the total phenotypic variance varied between 19.8 and 29.2. A third QTL (UpDSIV.2) was also located in the LGIVand was environmentally specific as was only detected for DS % in seedlings under controlled conditions. It accounted more than 14% of the phenotypic variation studied. Taking together the data obtained in the study, it could be concluded that the expression of resistance to fungal diseases in P. fulvum originates from the resistant parent IFPI3260. PMID:29497430

  19. Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator

    DTIC Science & Technology

    1992-12-01

    Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the

  20. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Kurland, Richard M.

    1992-01-01

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  1. Operational considerations of the Advanced Photovoltaic Solar Array

    NASA Astrophysics Data System (ADS)

    Stella, Paul M.; Kurland, Richard M.

    Issues affecting the long-term operational performance of the Advanced Photovoltaic Solar Array (APSA) are discussed, with particular attention given to circuit electrical integrity from shadowed and cracked cell modules. The successful integration of individual advanced array components provides a doubling of array specific performance from the previous NASA-developed advanced array (SAFE). Flight test modules both recently fabricated and under fabrication are described. The development of advanced high-performance blanket technology for future APSA enhancement is presented.

  2. Cancer Immunotherapy Using Virus-like Particles | NCI Technology Transfer Center | TTC

    Cancer.gov

    A considerable effort has been devoted to identifying and targeting specific extracellular cancer markers using antibody based therapies. However, diminished access to new cancer cell surface markers has limited the development of corresponding antibodies. NCI Technology Transfer Center is seeking to license cancer immunotherapy using virus-like particles.

  3. New approach: Chemical and fluorescence profiling of NZ honeys.

    PubMed

    Bong, Jessie; Loomes, Kerry M; Lin, Bin; Stephens, Jonathan M

    2018-11-30

    New Zealand manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides) honeys contain a unique array of chemical markers useful for chemical fingerprinting. We investigated the presence of 13 potential marker compounds in nectars of the major honey crop species. We confirmed that leptosperin, lepteridine, 2'-methoxyacetophenone, and 2-methoxybenzoic acid are exclusive to manuka nectar whereas lumichrome is unique to kanuka nectar. 3-Phenyllactic acid and 4-hydroxyphenyllactic acid are present in manuka and kanuka nectars. Leptosperin, lepteridine, 3-phenyllactic acid, and 4-hydroxyphenyllactic acid are chemically stable over prolonged storage, but not 2-methoxybenzoic acid and 2'-methoxyacetophenone. Accordingly, leptosperin and lepteridine are definitive chemical markers for authentication of manuka honey. An optimal concentration cut-off was established for the floral source-specific markers: leptosperin (94mg/kg), lepteridine (2.1mg/kg), 2'-methoxyacetophenone (2.0mg/kg) for manuka honey, and lumichrome (4.5mg/kg) for kanuka honey. The use of leptosperin and lepteridine as fluorescence markers for manuka honey authentication is reinforced. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Application of real-time single camera SLAM technology for image-guided targeting in neurosurgery

    NASA Astrophysics Data System (ADS)

    Chang, Yau-Zen; Hou, Jung-Fu; Tsao, Yi Hsiang; Lee, Shih-Tseng

    2012-10-01

    In this paper, we propose an application of augmented reality technology for targeting tumors or anatomical structures inside the skull. The application is a combination of the technologies of MonoSLAM (Single Camera Simultaneous Localization and Mapping) and computer graphics. A stereo vision system is developed to construct geometric data of human face for registration with CT images. Reliability and accuracy of the application is enhanced by the use of fiduciary markers fixed to the skull. The MonoSLAM keeps track of the current location of the camera with respect to an augmented reality (AR) marker using the extended Kalman filter. The fiduciary markers provide reference when the AR marker is invisible to the camera. Relationship between the markers on the face and the augmented reality marker is obtained by a registration procedure by the stereo vision system and is updated on-line. A commercially available Android based tablet PC equipped with a 320×240 front-facing camera was used for implementation. The system is able to provide a live view of the patient overlaid by the solid models of tumors or anatomical structures, as well as the missing part of the tool inside the skull.

  5. MILSTAR's flexible substrate solar array: Lessons learned, addendum

    NASA Technical Reports Server (NTRS)

    Gibb, John

    1990-01-01

    MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.

  6. Performance Of The IEEE 802.15.4 Protocol As The Marker Of Augmented Reality In Museum

    NASA Astrophysics Data System (ADS)

    Kurniawan Saputro, Adi; Sumpeno, Surya; Hariadi, Mochamad

    2018-04-01

    Museum is a place to keep the historic objects and historical education center to introduce the nation’s culture. Utilizing technology in a museum to become a smart city is a challenge. Internet of thing (IOT) is a technological advance in Information and communication (ICT) that can be applied in the museum The current ICT development is not only a transmission medium, but Augmented Reality technology is also being developed. Currently, Augmented Reality technology creates virtual objects into the real world using markers or images. In this study, researcher used signals to make virtual objects appear in the real world using the IEEE 802.14.5 protocol replacing the Augmented Reality marker. RSSI and triangulation are used as a substitute microlocation for AR objects. The result is the performance of Wireless Sensor Network could be used for data transmission in the museum. LOS research at a distance of 15 meters with 1000 ms delay found 1.4% error rate and NLOS with 2.3% error rate. So it can be concluded that utilization technology (IOT) using signal wireless sensor network as a replace for marker augmented reality can be used in museum

  7. Impacts of Population Structure and Analytical Models in Genome-Wide Association Studies of Complex Traits in Forest Trees: A Case Study in Eucalyptus globulus

    PubMed Central

    Garcia, Martín N.; Acuña, Cintia; Borralho, Nuno M. G.; Grattapaglia, Dario; Marcucci Poltri, Susana N.

    2013-01-01

    The promise of association genetics to identify genes or genomic regions controlling complex traits has generated a flurry of interest. Such phenotype-genotype associations could be useful to accelerate tree breeding cycles, increase precision and selection intensity for late expressing, low heritability traits. However, the prospects of association genetics in highly heterozygous undomesticated forest trees can be severely impacted by the presence of cryptic population and pedigree structure. To investigate how to better account for this, we compared the GLM and five combinations of the Unified Mixed Model (UMM) on data of a low-density genome-wide association study for growth and wood property traits carried out in a Eucalyptus globulus population (n = 303) with 7,680 Diversity Array Technology (DArT) markers. Model comparisons were based on the degree of deviation from the uniform distribution and estimates of the mean square differences between the observed and expected p-values of all significant marker-trait associations detected. Our analysis revealed the presence of population and family structure. There was not a single best model for all traits. Striking differences in detection power and accuracy were observed among the different models especially when population structure was not accounted for. The UMM method was the best and produced superior results when compared to GLM for all traits. Following stringent correction for false discoveries, 18 marker-trait associations were detected, 16 for tree diameter growth and two for lignin monomer composition (S∶G ratio), a key wood property trait. The two DArT markers associated with S∶G ratio on chromosome 10, physically map within 1 Mbp of the ferulate 5-hydroxylase (F5H) gene, providing a putative independent validation of this marker-trait association. This study details the merit of collectively integrate population structure and relatedness in association analyses in undomesticated, highly heterozygous forest trees, and provides additional insights into the nature of complex quantitative traits in Eucalyptus. PMID:24282578

  8. Study of multi-megawatt technology needs for photovoltaic space power systems, volume 2

    NASA Technical Reports Server (NTRS)

    Peterson, D. M.; Pleasant, R. L.

    1981-01-01

    Possible missions requiring multimegawatt photovoltaic space power systems in the 1990's time frame and power system technology needs associated with these missions are examined. Four specific task areas were considered: (1) missions requiring power in the 1-10 megawatt average power region; (2) alternative power systems and component technologies; (3) technology goals and sensitivity trades and analyses; and (4) technology recommendations. Specific concepts for photovoltaic power approaches considered were: planar arrays, concentrating arrays, hybrid systems using Rankine engines, thermophotovoltaic approaches; all with various photovoltaic cell component technologies. Various AC/DC power management approaches, and battery, fuel cell, and flywheel energy storage concepts are evaluated. Interactions with the electrical ion engine injection and stationkeeping system are also considered.

  9. [Strategies to identify supernumerary chromosomal markers in constitutional cytogenetics].

    PubMed

    Douet-Guilbert, N; Basinko, A; Le Bris, M-J; Herry, A; Morel, F; De Braekeleer, M

    2008-09-01

    Supernumerary marker chromosomes (SMCs) are defined as extrastructurally abnormal chromosomes which origin and composition cannot be determined by conventional cytogenetics. SMCs are an heterogeneous group of abnormalities concerning all chromosomes with variable structure and size and are associated with phenotypic heterogeneity. The characterisation of SMCs is of utmost importance for genetic counselling. Different molecular techniques are used to identify chromosomal material present in markers such as 24-colour FISH (MFISH, SKY), centromere specific multicolour FISH (cenMFISH) and derivatives (acroMFISH, subcenMFISH), comparative genomic hybridisation (CGH), arrayCGH, and targeted FISH techniques (banding techniques, whole chromosome painting...). Based on the morphology of SMC with conventional cytogenetic and clinical data, we tried to set up different molecular strategies with all available techniques.

  10. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: identification of QTL associated with carotenoid variation in broccoli florets.

    PubMed

    Brown, Allan F; Yousef, Gad G; Chebrolu, Kranthi K; Byrd, Robert W; Everhart, Koyt W; Thomas, Aswathy; Reid, Robert W; Parkin, Isobel A P; Sharpe, Andrew G; Oliver, Rebekah; Guzman, Ivette; Jackson, Eric W

    2014-09-01

    A high-resolution genetic linkage map of B. oleracea was developed from a B. napus SNP array. The work will facilitate genetic and evolutionary studies in Brassicaceae. A broccoli population, VI-158 × BNC, consisting of 150 F2:3 families was used to create a saturated Brassica oleracea (diploid: CC) linkage map using a recently developed rapeseed (Brassica napus) (tetraploid: AACC) Illumina Infinium single nucleotide polymorphism (SNP) array. The map consisted of 547 non-redundant SNP markers spanning 948.1 cM across nine chromosomes with an average interval size of 1.7 cM. As the SNPs are anchored to the genomic reference sequence of the rapid cycling B. oleracea TO1000, we were able to estimate that the map provides 96 % coverage of the diploid genome. Carotenoid analysis of 2 years data identified 3 QTLs on two chromosomes that are associated with up to half of the phenotypic variation associated with the accumulation of total or individual compounds. By searching the genome sequences of the two related diploid species (B. oleracea and B. rapa), we further identified putative carotenoid candidate genes in the region of these QTLs. This is the first description of the use of a B. napus SNP array to rapidly construct high-density genetic linkage maps of one of the constituent diploid species. The unambiguous nature of these markers with regard to genomic sequences provides evidence to the nature of genes underlying the QTL, and demonstrates the value and impact this resource will have on Brassica research.

  11. High-density genetic map construction and comparative genome analysis in asparagus bean.

    PubMed

    Huang, Haitao; Tan, Huaqiang; Xu, Dongmei; Tang, Yi; Niu, Yisong; Lai, Yunsong; Tie, Manman; Li, Huanxiu

    2018-03-19

    Genetic maps are a prerequisite for quantitative trait locus (QTL) analysis, marker-assisted selection (MAS), fine gene mapping, and assembly of genome sequences. So far, several asparagus bean linkage maps have been established using various kinds of molecular markers. However, these maps were all constructed by gel- or array-based markers. No maps based on sequencing method have been reported. In this study, an NGS-based strategy, SLAF-seq, was applied to create a high-density genetic map for asparagus bean. Through SLAF library construction and Illumina sequencing of two parents and 100 F2 individuals, a total of 55,437 polymorphic SLAF markers were developed and mined for SNP markers. The map consisted of 5,225 SNP markers in 11 LGs, spanning a total distance of 1,850.81 cM, with an average distance between markers of 0.35 cM. Comparative genome analysis with four other legume species, soybean, common bean, mung bean and adzuki bean showed that asparagus bean is genetically more related to adzuki bean. The results will provide a foundation for future genomic research, such as QTL fine mapping, comparative mapping in pulses, and offer support for assembling asparagus bean genome sequence.

  12. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.).

    PubMed

    Li, Haobing; Vaillancourt, René; Mendham, Neville; Zhou, Meixue

    2008-08-27

    Resistance to soil waterlogging stress is an important plant breeding objective in high rainfall or poorly drained areas across many countries in the world. The present study was conducted to identify quantitative trait loci (QTLs) associated with waterlogging tolerance (e.g. leaf chlorosis, plant survival and biomass reduction) in barley and compare the QTLs identified across two seasons and in two different populations using a composite map constructed with SSRs, RFLP and Diversity Array Technology (DArT) markers. Twenty QTLs for waterlogging tolerance related traits were found in the two barley double haploid (DH) populations. Several of these QTLs were validated through replication of experiments across seasons or by co-location across populations. Some of these QTLs affected multiple waterlogging tolerance related traits, for example, QTL Qwt4-1 contributed not only to reducing barley leaf chlorosis, but also increasing plant biomass under waterlogging stress, whereas other QTLs controlled both leaf chlorosis and plant survival. Improving waterlogging tolerance in barley is still at an early stage compared with other traits. QTLs identified in this study have made it possible to use marker assisted selection (MAS) in combination with traditional field selection to significantly enhance barley breeding for waterlogging tolerance. There may be some degree of homoeologous relationship between QTLs controlling barley waterlogging tolerance and that in other crops as discussed in this study.

  13. Regularized rare variant enrichment analysis for case-control exome sequencing data.

    PubMed

    Larson, Nicholas B; Schaid, Daniel J

    2014-02-01

    Rare variants have recently garnered an immense amount of attention in genetic association analysis. However, unlike methods traditionally used for single marker analysis in GWAS, rare variant analysis often requires some method of aggregation, since single marker approaches are poorly powered for typical sequencing study sample sizes. Advancements in sequencing technologies have rendered next-generation sequencing platforms a realistic alternative to traditional genotyping arrays. Exome sequencing in particular not only provides base-level resolution of genetic coding regions, but also a natural paradigm for aggregation via genes and exons. Here, we propose the use of penalized regression in combination with variant aggregation measures to identify rare variant enrichment in exome sequencing data. In contrast to marginal gene-level testing, we simultaneously evaluate the effects of rare variants in multiple genes, focusing on gene-based least absolute shrinkage and selection operator (LASSO) and exon-based sparse group LASSO models. By using gene membership as a grouping variable, the sparse group LASSO can be used as a gene-centric analysis of rare variants while also providing a penalized approach toward identifying specific regions of interest. We apply extensive simulations to evaluate the performance of these approaches with respect to specificity and sensitivity, comparing these results to multiple competing marginal testing methods. Finally, we discuss our findings and outline future research. © 2013 WILEY PERIODICALS, INC.

  14. GaAs QWIP Array Containing More Than a Million Pixels

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Choi, K. K.; Gunapala, Sarath

    2005-01-01

    A 1,024 x 1,024-pixel array of quantum-well infrared photodetectors (QWIPs) has been built on a 1.8 x 1.8- cm GaAs chip. In tests, the array was found to perform well in detecting images at wavelengths from 8 to 9 m in operation at temperatures between 60 and 70 K. The largest-format QWIP prior array that performed successfully in tests contained 512 x 640 pixels. There is continuing development effort directed toward satisfying actual and anticipated demands to increase numbers of pixels and pixel sizes in order to increase the imaging resolution of infrared photodetector arrays. A 1,024 x 1,024-pixel and even larger formats have been achieved in the InSb and HgCdTe material systems, but photodetector arrays in these material systems are very expensive and manufactured by fewer than half a dozen large companies. In contrast, GaAs-photodetector-array technology is very mature, and photodetectors in the GaAs material system can be readily manufactured by a wide range of industrial technologists, by universities, and government laboratories. There is much similarity between processing in the GaAs industry and processing in the pervasive silicon industry. With respect to yield and cost, the performance of GaAs technology substantially exceeds that of InSb and HgCdTe technologies. In addition, GaAs detectors can be designed to respond to any portion of the wavelength range from 3 to about 16 micrometers - a feature that is very desirable for infrared imaging. GaAs QWIP arrays, like the present one, have potential for use as imaging sensors in infrared measuring instruments, infrared medical imaging systems, and infrared cameras.

  15. Fiducial Marker Detection and Pose Estimation From LIDAR Range Data

    DTIC Science & Technology

    2010-03-01

    of View FPA Focal Plane Array FPS Frames Per Second FRE Fiducial Registration Error GIS Geographic Information Systems GPS Global...applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395. Bradski, G., & Kaehler, A. (2008). Learning OpenCV

  16. Indium Hybridization of Large Format TES Bolometer Arrays to Readout Multiplexers for Far-Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Costen, Nick; Allen, Christine

    2007-01-01

    The advance of new detector technologies combined with enhanced fabrication methods has resulted in an increase in development of large format arrays. The next generation of scientific instruments will utilize detectors containing hundreds to thousands of elements providing a more efficient means to conduct large area sky surveys. Some notable detectors include a 32x32 x-ray microcalorimeter for Constellation-X, an infrared bolometer called SAFIRE to fly on the airborne observatory SOFIA, and the sub-millimeter bolometer SCUBA-2 to be deployed at the JCMT which will use more than 10,000 elements for two colors, each color using four 32x40 arrays. Of these detectors, SCUBA-2 is farthest along in development and uses indium hybridization to multiplexers for readout of the large number of elements, a technology that will be required to enable the next generation of large format arrays. Our current efforts in working toward large format arrays have produced GISMO, the Goddard IRAM Superconducting 2-Millimeter observer. GISMO is a far infrared instrument to be field tested later this year at the IRAM 30 meter telescope in Spain. GISMO utilizes transition edge sensor (TES) technology in an 8x16 filled array format that allows for typical fan-out wiring and wire-bonding to four 1x32 NIST multiplexers. GISMO'S electrical wiring is routed along the tops of 30 micron walls which also serve as the mechanical framework for the array. This architecture works well for the 128 element array, but is approaching the limit for routing the necessary wires along the surface while maintaining a high fill factor. Larger format arrays will benefit greatly from making electrical connections through the wafer to the backside, where they can be hybridized to a read-out substrate tailored to handling the wiring scheme. The next generation array we are developing is a 32x40 element array on a pitch of 1135 microns that conforms to the NIST multiplexer, already developed for the SCUBA-2 instrument This architecture will utilize electrical connections that route from the TES to the support frame and through the wafer. The detector chip will then be hybridized to the NIST multiplexer via indium bump bonding. In our development scheme we are using substrates that allow for diagnostic testing of electrical continuity across the entire array and we are testing our process to minimize or eliminate any contact resistance at metal interfaces. Our goal is hybridizing a fully functional 32x40 array of TES bolometers to a NIST multiplexer. The following work presents our current progress toward enabling this technology.

  17. Development of optimized detector/spectrophotometer technology for low background space astronomy missions

    NASA Technical Reports Server (NTRS)

    Jones, B.

    1985-01-01

    This program was directed towards a better understanding of some of the important factors in the performance of infrared detector arrays at low background conditions appropriate for space astronomy. The arrays were manufactured by Aerojet Electrosystems Corporation, Azusa. Two arrays, both bismuth doped silicon, were investigated: an AMCID 32x32 Engineering mosiac Si:Bi accumulation mode charge injection device detector array and a metal oxide semiconductor/field effect transistor (MOS-FET) switched array of 16x32 pixels.

  18. QTL mapping of slow-rusting, adult plant resistance to race Ug99 of stem rust fungus in PBW343/Muu RIL population.

    PubMed

    Singh, Sukhwinder; Singh, Ravi P; Bhavani, Sridhar; Huerta-Espino, Julio; Eugenio, Lopez-Vera Eric

    2013-05-01

    Races of stem rust fungus pose a major threat to wheat production worldwide. We mapped adult plant resistance (APR) to Ug99 in 141 lines of a PBW343/Muu recombinant inbred lines (RILs) population by phenotyping them for three seasons at Njoro, Kenya in field trials and genotyping them with Diversity Arrays Technology (DArT) markers. Moderately susceptible parent PBW343 and APR parent Muu displayed mean stem rust severities of 66.6 and 5 %, respectively. The mean disease severity of RILs ranged from 1 to 100 %, with an average of 23.3 %. Variance components for stem rust severity were highly significant (p < 0.001) for RILs and seasons and the heritability (h (2)) for the disease ranged between 0.78 and 0.89. Quantitative trait loci (QTL) analysis identified four consistent genomic regions on chromosomes 2BS, 3BS, 5BL, and 7AS; three contributed by Muu (QSr.cim-2BS, QSr.cim-3BS and QSr.cim-7AS) and one (QSr.cim-5BL) derived from PBW343. RILs with flanking markers for these QTLs had significantly lower severities than those lacking the markers, and combinations of QTLs had an additive effect, significantly enhancing APR. The QTL identified on chromosome 3BS mapped to the matching region as the known APR gene Sr2. Four additional QTLs on chromosomes 1D, 3A, 4B, and 6A reduced disease severity significantly at least once in three seasons. Our results show a complex nature of APR to stem rust where Sr2 and other minor slow rusting resistance genes can confer a higher level of resistance when present together.

  19. Genetic identification of missing persons: DNA analysis of human remains and compromised samples.

    PubMed

    Alvarez-Cubero, M J; Saiz, M; Martinez-Gonzalez, L J; Alvarez, J C; Eisenberg, A J; Budowle, B; Lorente, J A

    2012-01-01

    Human identification has made great strides over the past 2 decades due to the advent of DNA typing. Forensic DNA typing provides genetic data from a variety of materials and individuals, and is applied to many important issues that confront society. Part of the success of DNA typing is the generation of DNA databases to help identify missing persons and to develop investigative leads to assist law enforcement. DNA databases house DNA profiles from convicted felons (and in some jurisdictions arrestees), forensic evidence, human remains, and direct and family reference samples of missing persons. These databases are essential tools, which are becoming quite large (for example the US Database contains 10 million profiles). The scientific, governmental and private communities continue to work together to standardize genetic markers for more effective worldwide data sharing, to develop and validate robust DNA typing kits that contain the reagents necessary to type core identity genetic markers, to develop technologies that facilitate a number of analytical processes and to develop policies to make human identity testing more effective. Indeed, DNA typing is integral to resolving a number of serious criminal and civil concerns, such as solving missing person cases and identifying victims of mass disasters and children who may have been victims of human trafficking, and provides information for historical studies. As more refined capabilities are still required, novel approaches are being sought, such as genetic testing by next-generation sequencing, mass spectrometry, chip arrays and pyrosequencing. Single nucleotide polymorphisms offer the potential to analyze severely compromised biological samples, to determine the facial phenotype of decomposed human remains and to predict the bioancestry of individuals, a new focus in analyzing this type of markers. Copyright © 2012 S. Karger AG, Basel.

  20. Uneven recombination rate and linkage disequilibrium across a reference SNP map for common bean (Phaseolus vulgaris L.)

    PubMed Central

    Farmer, Andrew D.; Huang, Wei; Ambachew, Daniel; Penmetsa, R. Varma; Carrasquilla-Garcia, Noelia; Assefa, Teshale; Cannon, Steven B.

    2018-01-01

    Recombination (R) rate and linkage disequilibrium (LD) analyses are the basis for plant breeding. These vary by breeding system, by generation of inbreeding or outcrossing and by region in the chromosome. Common bean (Phaseolus vulgaris L.) is a favored food legume with a small sequenced genome (514 Mb) and n = 11 chromosomes. The goal of this study was to describe R and LD in the common bean genome using a 768-marker array of single nucleotide polymorphisms (SNP) based on Trans-legume Orthologous Group (TOG) genes along with an advanced-generation Recombinant Inbred Line reference mapping population (BAT93 x Jalo EEP558) and an internationally available diversity panel. A whole genome genetic map was created that covered all eleven linkage groups (LG). The LGs were linked to the physical map by sequence data of the TOGs compared to each chromosome sequence of common bean. The genetic map length in total was smaller than for previous maps reflecting the precision of allele calling and mapping with SNP technology as well as the use of gene-based markers. A total of 91.4% of TOG markers had singleton hits with annotated Pv genes and all mapped outside of regions of resistance gene clusters. LD levels were found to be stronger within the Mesoamerican genepool and decay more rapidly within the Andean genepool. The recombination rate across the genome was 2.13 cM / Mb but R was found to be highly repressed around centromeres and frequent outside peri-centromeric regions. These results have important implications for association and genetic mapping or crop improvement in common bean. PMID:29522524

  1. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  2. Glyco-Immune Diagnostic Signatures and Therapeutic Targets of Mesothelioma

    DTIC Science & Technology

    2015-09-01

    Mesothelioma; Glycan Array; Immunoprofiles; Robotic Arrayer 16. SECURITY CLASSIFICATION OF: U 17. LIMITATION OF ABSTRACT: UU 18. NUMBER OF PAGES 19 19a...PROJECT SUMMARY: General Comments: This project involved novel technology in which biochemically synthesized glycans were robotically printed on glass...include 386 glycans and the platform was known as the PGA-400. (Figure 1) A standard robotic technology for printing a large range of

  3. [Purifying process of gynostemma pentaphyllum saponins based on "adjoint marker" online control technology and identification of their compositions by UPLC-QTOF-MS].

    PubMed

    Fan, Dong-Dong; Kuang, Yan-Hui; Dong, Li-Hua; Ye, Xiao; Chen, Liang-Mian; Zhang, Dong; Ma, Zhen-Shan; Wang, Jin-Yu; Zhu, Jing-Jing; Wang, Zhi-Min; Wang, De-Qin; Li, Chu-Yuan

    2017-04-01

    To optimize the purification process of gynostemma pentaphyllum saponins (GPS) based on "adjoint marker" online control technology with GPS as the testing index. UPLC-QTOF-MS technology was used for qualitative analysis. "Adjoint marker" online control results showed that the end point of load sample was that the UV absorbance of effluent liquid was equal to half of that of load sample solution, and the absorbance was basically stable when the end point was stable. In UPLC-QTOF-MS qualitative analysis, 16 saponins were identified from GPS, including 13 known gynostemma saponins and 3 new saponins. This optimized method was proved to be simple, scientific, reasonable, easy for online determination, real-time record, and can be better applied to the mass production and automation of production. The results of qualitative analysis indicated that the "adjoint marker" online control technology can well retain main efficacy components of medicinal materials, and provide analysis tools for the process control and quality traceability. Copyright© by the Chinese Pharmaceutical Association.

  4. First Thin Film Festival

    NASA Astrophysics Data System (ADS)

    Samson, Philippe

    2005-05-01

    The constant evolution of the satellite market is asking for better technical performances and reliability for a reduced cost. Solar array is in front line of this challenge.This can be achieved by present technologies progressive improvement in cost reduction or by technological breakthrough.To reach an effective End Of Live performance100 W/kg of solar array is not so easy, even if you suppose that the mass of everything is nothing!Thin film cells are potential candidate to contribute to this challenge with certain confidence level and consequent development plan validation and qualification on ground and flight.Based on a strong flight heritage in flexible Solar Array design, the work has allowed in these last years, to pave the way on road map of thin film technologies . This is encouraged by ESA on many technological contracts put in concurrent engineering.CISG was selected cell and their strategy of design, contributions and results will be presented.Trade-off results and Design to Cost solutions will discussed.Main technical drivers, system design constraints, market access, key technologies needed will be detailed in this paper and the resulting road-map and development plan will be presented.

  5. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  6. Multispectral Linear Array detector technology

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The Multispectral Linear Array (MLA) program sponsored by NASA has the aim to extend space-based remote sensor capabilities. The technology development effort involves the realization of very large, all-solid-state, pushbroom focal planes. The pushbroom, staring focal planes will contain thousands of detectors with the objective to provide two orders of magnitude improvement in detector dwell time compared to present Landsat mechanically scanned systems. Attenton is given to visible and near-infrared sensor development, the shortwave infrared sensor, aspects of filter technology development, the packaging concept, and questions of system performance. First-sample, four-band interference filters have been fabricated successfully, and a hybrid packaging technology is being developed.

  7. Array-on-a-disk? How Blu-ray technology can be applied to molecular diagnostics.

    PubMed

    Morais, Sergi; Tortajada-Genaro, Luis; Maquieira, Angel

    2014-09-01

    This editorial comments on the balance and perspectives of compact disk technology applied to molecular diagnostics. The development of sensitive, rapid and multiplex assays using Blu-ray technology for the determination of biomarkers, drug allergens, pathogens and detection of infections would have a direct impact on diagnostics. Effective tests for use in clinical, environmental and food applications require versatile and low-cost platforms as well as cost-effective detectors. Blu-ray technology accomplishes those requirements and advances on the concept of high density arrays for massive screening to achieve the demands of point of care or in situ analysis.

  8. Microstrip technology and its application to phased array compensation

    NASA Technical Reports Server (NTRS)

    Dudgeon, J. E.; Daniels, W. D.

    1972-01-01

    A systematic analysis of mutual coupling compensation using microstrip techniques is presented. A method for behind-the-array coupling of a phased antenna array is investigated as to its feasibility. The matching scheme is tried on a rectangular array of one half lambda 2 dipoles, but it is not limited to this array element or geometry. In the example cited the values of discrete components necessary were so small an L-C network is needed for realization. Such L-C tanks might limit an otherwise broadband array match, however, this is not significant for this dipole array. Other areas investigated were balun feeding and power limits of spiral antenna elements.

  9. Multi-kW solar arrays for Earth orbit applications

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The multi-kW solar array program is concerned with developing the technology required to enable the design of solar arrays required to power the missions of the 1990's. The present effort required the design of a modular solar array panel consisting of superstrate modules interconnected to provide the structural support for the solar cells. The effort was divided into two tasks: (1) superstrate solar array panel design, and (2) superstrate solar array panel-to-panel design. The primary objective was to systematically investigate critical areas of the transparent superstrate solar array and evaluate the flight capabilities of this low cost approach.

  10. On-line monitoring system of PV array based on internet of things technology

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  11. Massively parallel sequencing and the emergence of forensic genomics: Defining the policy and legal issues for law enforcement.

    PubMed

    Scudder, Nathan; McNevin, Dennis; Kelty, Sally F; Walsh, Simon J; Robertson, James

    2018-03-01

    Use of DNA in forensic science will be significantly influenced by new technology in coming years. Massively parallel sequencing and forensic genomics will hasten the broadening of forensic DNA analysis beyond short tandem repeats for identity towards a wider array of genetic markers, in applications as diverse as predictive phenotyping, ancestry assignment, and full mitochondrial genome analysis. With these new applications come a range of legal and policy implications, as forensic science touches on areas as diverse as 'big data', privacy and protected health information. Although these applications have the potential to make a more immediate and decisive forensic intelligence contribution to criminal investigations, they raise policy issues that will require detailed consideration if this potential is to be realised. The purpose of this paper is to identify the scope of the issues that will confront forensic and user communities. Copyright © 2017 The Chartered Society of Forensic Sciences. All rights reserved.

  12. Biomarkers in inflammatory bowel disease: current practices and recent advances.

    PubMed

    Iskandar, Heba N; Ciorba, Matthew A

    2012-04-01

    Crohn's disease and ulcerative colitis represent the two main forms of the idiopathic chronic inflammatory bowel diseases (IBD). Currently available blood and stool based biomarkers provide reproducible, quantitative tools that can complement clinical assessment to aid clinicians in IBD diagnosis and management. C-reactive protein and fecal based leukocyte markers can help the clinician distinguish IBD from noninflammatory diarrhea and assess disease activity. The ability to differentiate between forms of IBD and predict risk for disease complications is specific to serologic tests including antibodies against Saccharomyces cerevisiae and perinuclear antineutrophil cytoplasmic proteins. Advances in genomic, proteomic, and metabolomic array based technologies are facilitating the development of new biomarkers for IBD. The discovery of novel biomarkers, which can correlate with mucosal healing or predict long-term disease course has the potential to significantly improve patient care. This article reviews the uses and limitations of currently available biomarkers and highlights recent advances in IBD biomarker discovery. Copyright © 2012 Mosby, Inc. All rights reserved.

  13. Analytical considerations for mass spectrometry profiling in serum biomarker discovery.

    PubMed

    Whiteley, Gordon R; Colantonio, Simona; Sacconi, Andrea; Saul, Richard G

    2009-03-01

    The potential of using mass spectrometry profiling as a diagnostic tool has been demonstrated for a wide variety of diseases. Various cancers and cancer-related diseases have been the focus of much of this work because of both the paucity of good diagnostic markers and the knowledge that early diagnosis is the most powerful weapon in treating cancer. The implementation of mass spectrometry as a routine diagnostic tool has proved to be difficult, however, primarily because of the stringent controls that are required for the method to be reproducible. The method is evolving as a powerful guide to the discovery of biomarkers that could, in turn, be used either individually or in an array or panel of tests for early disease detection. Using proteomic patterns to guide biomarker discovery and the possibility of deployment in the clinical laboratory environment on current instrumentation or in a hybrid technology has the possibility of being the early diagnosis tool that is needed.

  14. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  15. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  16. Phased array-fed antenna configuration study: Technology assessment

    NASA Technical Reports Server (NTRS)

    Croswell, W. F.; Ball, D. E.; Taylor, R. C.

    1983-01-01

    Spacecraft array fed reflector antenna systems were assessed for particular application to a multiple fixed spot beam/multiple scanning spot beam system. Reflector optics systems are reviewed in addition to an investigation of the feasibility of the use of monolithic microwave integrated circuit power amplifiers and phase shifters in each element of the array feed.

  17. A High-Density Consensus Map of Common Wheat Integrating Four Mapping Populations Scanned by the 90K SNP Array

    PubMed Central

    Wen, Weie; He, Zhonghu; Gao, Fengmei; Liu, Jindong; Jin, Hui; Zhai, Shengnan; Qu, Yanying; Xia, Xianchun

    2017-01-01

    A high-density consensus map is a powerful tool for gene mapping, cloning and molecular marker-assisted selection in wheat breeding. The objective of this study was to construct a high-density, single nucleotide polymorphism (SNP)-based consensus map of common wheat (Triticum aestivum L.) by integrating genetic maps from four recombinant inbred line populations. The populations were each genotyped using the wheat 90K Infinium iSelect SNP assay. A total of 29,692 SNP markers were mapped on 21 linkage groups corresponding to 21 hexaploid wheat chromosomes, covering 2,906.86 cM, with an overall marker density of 10.21 markers/cM. Compared with the previous maps based on the wheat 90K SNP chip detected 22,736 (76.6%) of the SNPs with consistent chromosomal locations, whereas 1,974 (6.7%) showed different chromosomal locations, and 4,982 (16.8%) were newly mapped. Alignment of the present consensus map and the wheat expressed sequence tags (ESTs) Chromosome Bin Map enabled assignment of 1,221 SNP markers to specific chromosome bins and 819 ESTs were integrated into the consensus map. The marker orders of the consensus map were validated based on physical positions on the wheat genome with Spearman rank correlation coefficients ranging from 0.69 (4D) to 0.97 (1A, 4B, 5B, and 6A), and were also confirmed by comparison with genetic position on the previously 40K SNP consensus map with Spearman rank correlation coefficients ranging from 0.84 (6D) to 0.99 (6A). Chromosomal rearrangements reported previously were confirmed in the present consensus map and new putative rearrangements were identified. In addition, an integrated consensus map was developed through the combination of five published maps with ours, containing 52,607 molecular markers. The consensus map described here provided a high-density SNP marker map and a reliable order of SNPs, representing a step forward in mapping and validation of chromosomal locations of SNPs on the wheat 90K array. Moreover, it can be used as a reference for quantitative trait loci (QTL) mapping to facilitate exploitation of genes and QTL in wheat breeding. PMID:28848588

  18. An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus)

    PubMed Central

    2014-01-01

    Background Modern watermelon (Citrullus lanatus L.) cultivars share a narrow genetic base due to many years of selection for desirable horticultural qualities. Wild subspecies within C. lanatus are important potential sources of novel alleles for watermelon breeding, but successful trait introgression into elite cultivars has had limited success. The application of marker assisted selection (MAS) in watermelon is yet to be realized, mainly due to the past lack of high quality genetic maps. Recently, a number of useful maps have become available, however these maps have few common markers, and were constructed using different marker sets, thus, making integration and comparative analysis among maps difficult. The objective of this research was to use single-nucleotide polymorphism (SNP) anchor markers to construct an integrated genetic map for C. lanatus. Results Under the framework of the high density genetic map, an integrated genetic map was constructed by merging data from four independent mapping experiments using a genetically diverse array of parental lines, which included three subspecies of watermelon. The 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel), 36 structure variation (SV) and 386 SNP markers from the four maps were used to construct an integrated map. This integrated map contained 1339 markers, spanning 798 cM with an average marker interval of 0.6 cM. Fifty-eight previously reported quantitative trait loci (QTL) for 12 traits in these populations were also integrated into the map. In addition, new QTL identified for brix, fructose, glucose and sucrose were added. Some QTL associated with economically important traits detected in different genetic backgrounds mapped to similar genomic regions of the integrated map, suggesting that such QTL are responsible for the phenotypic variability observed in a broad array of watermelon germplasm. Conclusions The integrated map described herein enhances the utility of genomic tools over previous watermelon genetic maps. A large proportion of the markers in the integrated map are SSRs, InDels and SNPs, which are easily transferable across laboratories. Moreover, the populations used to construct the integrated map include all three watermelon subspecies, making this integrated map useful for the selection of breeding traits, identification of QTL, MAS, analysis of germplasm and commercial hybrid seed detection. PMID:24443961

  19. A passive optical fibre hydrophone array utilising fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Karas, Andrew R.; Papageorgiou, Anthony W.; Cook, Peter R.; Arkwright, John W.

    2018-02-01

    Many current high performance hydrophones use piezo-electric technology to measure sound pressure in water. These hydrophones are sensitive enough to detect any sound above the lowest ambient ocean acoustic noise, however cost of manufacture, weight and storage volume of the array as well as deployment and maintenance costs can limit their largescale application. Piezo-electric systems also have issues with electro-magnetic interference and the signature of the electrical cabling required in a large array. A fibre optic hydrophone array has advantages over the piezo-electric technology in these areas. This paper presents the operating principle of a passive optical fibre hydrophone array utilising Fibre Bragg Gratings (FBGs). The multiple FBG sensors are interrogated using a single solid state spectrometer which further reduces the cost of the deployed system. A noise equivalent power (NEP) comparison of the developed FBG hydrophone versus an existing piezo-electric hydrophone is presented as well as a comparison to the lowest ambient ocean acoustic noise (sea state zero). This research provides an important first step towards a cost effective multi sensor hydrophone array using FBGs.

  20. The Stretched Lens Array SquareRigger (SLASR) for Space Power

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; O'Neill, Mark J.; Eskenazi, Michael I.; Brandhorst, Henry W.

    2006-01-01

    For the past three years, our team has been developing, refining, and maturing a unique solar array technology known as Stretched Lens Array SquareRigger (SLASR). SLASR offers an unprecedented portfolio of state-of-the-art performance metrics, including areal power density, specific power, stowed power density, high-voltage capability, radiation hardness, modularity, scalability, mass-producibility, and cost-effectiveness. SLASR is particularly well suited to high-power space missions, including solar electric propulsion (SEP) space tugs, major exploration missions to the Moon and Mars, and power-intensive military spacecraft. SLASR is also very well suited to high-radiation missions, since the cell shielding mass penalty is 85% less for the SLASR concentrator array than for one-sun planar arrays. The paper describes SLASR technology and presents significant results of developments to date in a number of key areas, from advances in the key components to full-scale array hardware fabrication and evaluation. A summary of SLASR s unprecedented performance metrics, both near-term and longer term, will be presented. Plans for future SLASR developments and near-term space applications will also be outlined.

  1. Microbial whole‐cell arrays

    PubMed Central

    Elad, Tal; Lee, Jin Hyung; Belkin, Shimshon; Gu, Man Bock

    2008-01-01

    Summary The coming of age of whole‐cell biosensors, combined with the continuing advances in array technologies, has prepared the ground for the next step in the evolution of both disciplines – the whole‐cell array. In the present review, we highlight the state‐of‐the‐art in the different disciplines essential for a functional bacterial array. These include the genetic engineering of the biological components, their immobilization in different polymers, technologies for live cell deposition and patterning on different types of solid surfaces, and cellular viability maintenance. Also reviewed are the types of signals emitted by the reporter cell arrays, some of the transduction methodologies for reading these signals and the mathematical approaches proposed for their analysis. Finally, we review some of the potential applications for bacterial cell arrays, and list the future needs for their maturation: a richer arsenal of high‐performance reporter strains, better methodologies for their incorporation into hardware platforms, design of appropriate detection circuits, the continuing development of dedicated algorithms for multiplex signal analysis and – most importantly – enhanced long‐term maintenance of viability and activity on the fabricated biochips. PMID:21261831

  2. Experimental results for a prototype 3-D acoustic imaging system using an ultra-sparse planar array

    NASA Astrophysics Data System (ADS)

    Impagliazzo, John M.; Chiang, Alice M.; Broadstone, Steven R.

    2002-11-01

    A handheld high resolution sonar has been under development to provide Navy Divers with a 3-D acoustic imaging system for mine reconnaissance. An ultra-sparse planar array, consisting of 121 1 mm x1 mm, 2 MHz elements, was fabricated to provide 3-D acoustic images. The array was 10 cm x10 cm. A full array at this frequency with elements at half-wavelength spacing would consist of 16384 elements. The first phase of testing of the planar array was completed in September 2001 with the characterization of the array in the NUWC Acoustic Test Facility (ATF). The center frequency was 2 MHz with a 667 kHz bandwidth. A system-level technology demonstration will be conducted in July 2002 with a real-time beamformer and near real-time 3-D imaging software. The demonstration phase consists of imaging simple targets at a range of 3 m in the ATF. Experimental results obtained will be reported on. [Work supported by the Defense Applied Research Project Agency, Advance Technology Office, Dr. Theo Kooij, Program Manager.

  3. CIDR

    Science.gov Websites

    NIH CIDR Program Studies For whole exome sequencing projects, we pretest all samples using a high -density SNP array (>200,000 markers). For custom targeted sequencing, we pretest all samples using a 96 pretest samples using a 96 SNP GoldenGate assay. This extensive pretesting allows us to unambiguously tie

  4. Text Recall in Adulthood: The Role of Intellectual Abilities.

    ERIC Educational Resources Information Center

    Hultsch, David F.; And Others

    1984-01-01

    Examines age-related predictive relationships among an array of psychometric intellectual ability markers and text recall performance. Women from three age groups (ranging from 21 to 78 years) read and recalled four narratives at three delay intervals and completed a battery of intellectual ability tests. (Author/CB)

  5. CLOFIBRATE-INDUCED GENE EXPRESSION CHANGES IN RAT LIVER: A CROSS-LABORATORY ANALYSIS USING MEMBRANE CDNA ARRAYS

    EPA Science Inventory

    Microarrays have the potential to significantly impact our ability to identify toxic hazards by the identification of mechanistically-relevant markers of toxicity. To be useful for risk assessment however, microarray data must be challenged to determine its reliability and inter...

  6. Potentials and capabilities of the Extracellular Vesicle (EV) Array.

    PubMed

    Jørgensen, Malene Møller; Bæk, Rikke; Varming, Kim

    2015-01-01

    Extracellular vesicles (EVs) and exosomes are difficult to enrich or purify from biofluids, hence quantification and phenotyping of these are tedious and inaccurate. The multiplexed, highly sensitive and high-throughput platform of the EV Array presented by Jørgensen et al., (J Extracell Vesicles, 2013; 2: 10) has been refined regarding the capabilities of the method for characterization and molecular profiling of EV surface markers. Here, we present an extended microarray platform to detect and phenotype plasma-derived EVs (optimized for exosomes) for up to 60 antigens without any enrichment or purification prior to analysis.

  7. Evidence for multiple paternity in the school shark Galeorhinus galeus found in New Zealand waters.

    PubMed

    Hernández, S; Duffy, C; Francis, M P; Ritchie, P A

    2014-11-01

    This study assessed the levels of relatedness of Galeorhinus galeus of progeny arrays using six microsatellite DNA markers. A parentage analysis from five families (mother and litter) from the North Island of New Zealand suggested the occurrence of genetic polyandry in G. galeus with two of the five litters showing multiple sires involved in the progeny arrays. This finding may be consistent with the reproductive characteristics of G. galeus, in which females can potentially store sperm for long periods of time after the mating season. © 2014 The Fisheries Society of the British Isles.

  8. Eclipse SteerTech liquid lenslet beam steering technology

    NASA Astrophysics Data System (ADS)

    Westfall, Raymond T.; Rogers, Stanley; Shannon, Kenneth C., III

    2007-09-01

    Eclipse SteerTech TM transmissive fluid state electrowetting technology has successfully demonstrated the ability to control the shape and position of a fluid lenslet. In its final form, the technology will incorporate a dual fluid lenslet approach capable of operating in extremely high acceleration environments. The beam steering system works on the principle of electro-wetting. A substrate is covered with a closely spaced array of, independently addressable, transparent, electrically conductive pixels utilizing Eclipse's proprietary EclipseTEC TM technology. By activating and deactivating selected EclipseTEC TM pixels in the proper sequence, the shape and position of fluid lenslets or arrays of lenslets can be dynamically changed at will. The position and shape of individual fluid lenslets may be accurately controlled on any flat, simply curved, or complex curved, transparent or reflective surface. The smaller the pixels the better control of the position and shape of the fluid lenslets. Information on the successful testing of the Eclipse SteerTech TM lenslet and discussion of its use in a de-centered lenslet array will be presented.

  9. Microsensor research

    NASA Astrophysics Data System (ADS)

    Hughes, R. C.; Drebing, C. G.

    1990-04-01

    The technology that led to very large scale integrated circuits on silicon chips also provides a basis for new microsensors that are small, inexpensive, low power, rugged, and reliable. Two examples of microsensors Sandia is developing that take advantage of this technology are the microelectronic chemical sensor array and the radiation sensing field effect transistor (RADFET). Increasingly, the technology of chemical sensing needs new microsensor concepts. Applications in this area include environmental monitoring, criminal investigations, and state-of-health monitoring, both for equipment and living things. Chemical microsensors can satisfy sensing needs in the industrial, consumer, aerospace, and defense sectors. The microelectronic chemical-sensor array may address some of these applications. We have fabricated six separate chemical gas sensing areas on the microelectronic chemical sensor array. By using different catalytic metals on the gate areas of the diodes, we can selectively sense several gases.

  10. Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology

    NASA Astrophysics Data System (ADS)

    Riahi, Mohammadreza

    2016-06-01

    In this article, the fabrication of a corner cube array retro-reflective structure is presented by using DLP-based 3D printing technology. In this additive manufacturing technology a pattern of a cube corner array is designed in a computer and sliced with specific software. The image of each slice is then projected from the bottom side of a reservoir, containing UV cure resin, utilizing a DLP video projector. The projected area is cured and attached to a base plate. This process is repeated until the entire part is made. The best orientation of the printing process and the effect of layer thicknesses on the surface finish of the cube has been investigated. The thermal reflow surface finishing and replication with soft molding has also been presented in this article.

  11. Advances in marker-assisted breeding of sugarcane

    USDA-ARS?s Scientific Manuscript database

    Despite the challenges posed by sugarcane, geneticists and breeders have actively sought to use DNA marker technology to enhance breeding efforts. Markers have been used to explore taxonomy, estimate genetic diversity, and to develop unique molecular fingerprints. Numerous studies have been undertak...

  12. Biomimetic Cross-Reactive Sensor Arrays: Prospects in Biodiagnostics

    PubMed Central

    Fitzgerald, J. E.

    2016-01-01

    Biomimetic cross-reactive sensor arrays have been used to detect and analyze a wide variety of vapour and liquid components in applications such as food science, public health and safety, and diagnostics. As technology has advanced over the past three decades, these systems have become selective, sensitive, and affordable. Currently, the need for non-invasive and accurate devices for early disease diagnosis remains a challenge. This review provides an overview of the various types of Biomimetic cross-reactive sensor arrays (also referred to as electronic noses and tongues in the literature), their current use and future directions, and an outlook for future technological development. PMID:28217300

  13. Fabrication of cell container arrays with overlaid surface topographies.

    PubMed

    Truckenmüller, Roman; Giselbrecht, Stefan; Escalante-Marun, Maryana; Groenendijk, Max; Papenburg, Bernke; Rivron, Nicolas; Unadkat, Hemant; Saile, Volker; Subramaniam, Vinod; van den Berg, Albert; van Blitterswijk, Clemens; Wessling, Matthias; de Boer, Jan; Stamatialis, Dimitrios

    2012-02-01

    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches.

  14. NeuroSeek dual-color image processing infrared focal plane array

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  15. Shedding Light on Solar Power

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Glenn Research Center sponsored an SBIR contract with ENTECH, in which the company worked to mold its successful terrestrial concentrator technology into applications that would generate solar power for space missions. ENTECH's first application made use of small, dome-shaped Fresnel lenses to direct sunlight onto high- efficiency photovoltaic cells. After some key adjustments, the mini- dome lens array was flown as part of the U.S. Air Force/NASA Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment in 1994. Due to their three-dimensional shape, the mini- dome lenses entailed construction by a batch molding process, which is naturally more costly than a continuous process. To overcome this disadvantage and meet the requirement for precise solar pointing in two axes, ENTECH started developing solar concentrator arrays for space using a line-focus lens that can be mass-produced by a continuous process. This new technology, named Solar Concentrator Array with Refractive Linear Element Technology (SCARLET), was created with support from Glenn and the Ballistic Missile Defense Organization, and was used to power the NASA/Jet Propulsion Laboratory Deep Space 1 spacecraft.

  16. Multilevel photonic modules for millimeter-wave phased-array antennas

    NASA Astrophysics Data System (ADS)

    Paolella, Arthur C.; Bauerle, Athena; Joshi, Abhay M.; Wright, James G.; Coryell, Louis A.

    2000-09-01

    Millimeter wave phased array systems have antenna element sizes and spacings similar to MMIC chip dimensions by virtue of the operating wavelength. Designing modules in traditional planar packaing techniques are therefore difficult to implement. An advantageous way to maintain a small module footprint compatible with Ka-Band and high frequency systems is to take advantage of two leading edge technologies, opto- electronic integrated circuits (OEICs) and multilevel packaging technology. Under a Phase II SBIR these technologies are combined to form photonic modules for optically controlled millimeter wave phased array antennas. The proposed module, consisting of an OEIC integrated with a planar antenna array will operate on the 40GHz region. The OEIC consists of an InP based dual-depletion PIN photodetector and distributed amplifier. The multi-level module will be fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated using an enhanced circuit processing thick film process. Since the modules are batch fabricated, using standard commercial processes, it has the potential to be low cost while maintaining high performance, impacting both military and commercial communications systems.

  17. Phase 1 of the automated array assembly task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Grenon, L. A.; Lesk, I. A.

    1977-01-01

    The state of technology readiness for the automated production of solar cells and modules is reviewed. Individual process steps and process sequences for making solar cells and modules were evaluated both technically and economically. High efficiency with a suggested cell goal of 15% was stressed. It is concluded that the technology exists to manufacture solar cells which will meet program goals.

  18. Evaluation of second-generation sequencing of 19 dilated cardiomyopathy genes for clinical applications.

    PubMed

    Gowrisankar, Sivakumar; Lerner-Ellis, Jordan P; Cox, Stephanie; White, Emily T; Manion, Megan; LeVan, Kevin; Liu, Jonathan; Farwell, Lisa M; Iartchouk, Oleg; Rehm, Heidi L; Funke, Birgit H

    2010-11-01

    Medical sequencing for diseases with locus and allelic heterogeneities has been limited by the high cost and low throughput of traditional sequencing technologies. "Second-generation" sequencing (SGS) technologies allow the parallel processing of a large number of genes and, therefore, offer great promise for medical sequencing; however, their use in clinical laboratories is still in its infancy. Our laboratory offers clinical resequencing for dilated cardiomyopathy (DCM) using an array-based platform that interrogates 19 of more than 30 genes known to cause DCM. We explored both the feasibility and cost effectiveness of using PCR amplification followed by SGS technology for sequencing these 19 genes in a set of five samples enriched for known sequence alterations (109 unique substitutions and 27 insertions and deletions). While the analytical sensitivity for substitutions was comparable to that of the DCM array (98%), SGS technology performed better than the DCM array for insertions and deletions (90.6% versus 58%). Overall, SGS performed substantially better than did the current array-based testing platform; however, the operational cost and projected turnaround time do not meet our current standards. Therefore, efficient capture methods and/or sample pooling strategies that shorten the turnaround time and decrease reagent and labor costs are needed before implementing this platform into routine clinical applications.

  19. Design and Development of the Space Technology 5 (ST5) Solar Arrays

    NASA Technical Reports Server (NTRS)

    Lyons, John; Fatemi, Navid; Gamica, Robert; Sharma, Surya; Senft, Donna; Maybery, Clay

    2005-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Technology 5 (ST5) is designed to flight-test the concept of miniaturized 'small size" satellites and innovative technologies in Earth's magnetosphere. Three satellites will map the intensity and direction of the magnetic fields within the inner magnetosphere. Due to the small area available for the solar arrays, and to meet the mission power requirements, very high-efficiency multijunction solar cells were selected to power the spacecraft built by NASA Goddard Space Flight Center (GSFC). This was done in partnership with the Air Force Research Lab (AFRL) through the Dual-Use Science and Technology (DUS&T) program. Emcore's InGaP/lnGaAs/Ge Advanced triple-junction (ATJ) solar cells, exhibiting an average air mass zero (AMO) efficiency of 28.0% (one-sun, 28 C), were used to populate the arrays. Each spacecraft employs 8 identical solar panels (total area of about 0.3 square meters), with 15 large-area solar cells per panel. The requirement for power is to support on-orbit average load of 13.5 W at 8.4 V, with plus or minus 5% off pointing. The details of the solar array design, development and qualification considerations, as well as ground electrical performance & shadowing analysis results are presented.

  20. Limits in point to point resolution of MOS based pixels detector arrays

    NASA Astrophysics Data System (ADS)

    Fourches, N.; Desforge, D.; Kebbiri, M.; Kumar, V.; Serruys, Y.; Gutierrez, G.; Leprêtre, F.; Jomard, F.

    2018-01-01

    In high energy physics point-to-point resolution is a key prerequisite for particle detector pixel arrays. Current and future experiments require the development of inner-detectors able to resolve the tracks of particles down to the micron range. Present-day technologies, although not fully implemented in actual detectors, can reach a 5-μm limit, this limit being based on statistical measurements, with a pixel-pitch in the 10 μm range. This paper is devoted to the evaluation of the building blocks for use in pixel arrays enabling accurate tracking of charged particles. Basing us on simulations we will make here a quantitative evaluation of the physical and technological limits in pixel size. Attempts to design small pixels based on SOI technology will be briefly recalled here. A design based on CMOS compatible technologies that allow a reduction of the pixel size below the micrometer is introduced here. Its physical principle relies on a buried carrier-localizing collecting gate. The fabrication process needed by this pixel design can be based on existing process steps used in silicon microelectronics. The pixel characteristics will be discussed as well as the design of pixel arrays. The existing bottlenecks and how to overcome them will be discussed in the light of recent ion implantation and material characterization experiments.

  1. Passive Bottom Loss Estimation Using Compact Arrays and Autonomous Underwater Vehicles

    DTIC Science & Technology

    2015-09-30

    advances in the technology of autonomous underwater vehicles ( AUV ), make it now possible to envision an efficient, cost effective survey tool for seabed...characterization composed of a short array mounted on an AUV . While AUV mounting would require arrays of length presumably below 2m, the passive...frequency range indicated above, the poor angular resolution of the short arrays required in AUV deployment causes an underestimation of the loss

  2. A ddRAD Based Linkage Map of the Cultivated Strawberry, Fragaria xananassa

    PubMed Central

    Davik, Jahn; Sargent, Daniel James; Brurberg, May Bente; Lien, Sigbjørn; Kent, Matthew; Alsheikh, Muath

    2015-01-01

    The cultivated strawberry (Fragaria ×ananassa Duch.) is an allo-octoploid considered difficult to disentangle genetically due to its four relatively similar sub-genomic chromosome sets. This has been alleviated by the recent release of the strawberry IStraw90 whole genome genotyping array. However, array resolution relies on the genotypes used in the array construction and may be of limited general use. SNP detection based on reduced genomic sequencing approaches has the potential of providing better coverage in cases where the studied genotypes are only distantly related from the SNP array’s construction foundation. Here we have used double digest restriction-associated DNA sequencing (ddRAD) to identify SNPs in a 145 seedling F1 hybrid population raised from the cross between the cultivars Sonata (♀) and Babette (♂). A linkage map containing 907 markers which spanned 1,581.5 cM across 31 linkage groups representing the 28 chromosomes of the species. Comparing the physical span of the SNP markers with the F. vesca genome sequence, the linkage groups resolved covered 79% of the estimated 830 Mb of the F. ×ananassa genome. Here, we have developed the first linkage map for F. ×ananassa using ddRAD and show that this technique and other related techniques are useful tools for linkage map development and downstream genetic studies in the octoploid strawberry. PMID:26398886

  3. Reliability of Measured Data for pH Sensor Arrays with Fault Diagnosis and Data Fusion Based on LabVIEW

    PubMed Central

    Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi

    2013-01-01

    Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study. PMID:24351636

  4. Reliability of measured data for pH sensor arrays with fault diagnosis and data fusion based on LabVIEW.

    PubMed

    Liao, Yi-Hung; Chou, Jung-Chuan; Lin, Chin-Yi

    2013-12-13

    Fault diagnosis (FD) and data fusion (DF) technologies implemented in the LabVIEW program were used for a ruthenium dioxide pH sensor array. The purpose of the fault diagnosis and data fusion technologies is to increase the reliability of measured data. Data fusion is a very useful statistical method used for sensor arrays in many fields. Fault diagnosis is used to avoid sensor faults and to measure errors in the electrochemical measurement system, therefore, in this study, we use fault diagnosis to remove any faulty sensors in advance, and then proceed with data fusion in the sensor array. The average, self-adaptive and coefficient of variance data fusion methods are used in this study. The pH electrode is fabricated with ruthenium dioxide (RuO2) sensing membrane using a sputtering system to deposit it onto a silicon substrate, and eight RuO2 pH electrodes are fabricated to form a sensor array for this study.

  5. Nonimaging applications for microbolometer arrays

    NASA Astrophysics Data System (ADS)

    Picard, Francis; Jerominek, Hubert; Pope, Timothy D.; Zhang, Rose; Ngo, Linh P.; Tremblay, Bruno; Tasker, Nick; Grenier, Carol; Bilodeau, Ghislain; Cayer, Felix; Lehoux, Mario; Alain, Christine; Larouche, Carl; Savard, Simon

    2001-10-01

    In an effort to leverage uncooled microbolometer technology, testing of bolometer performance in various nonimaging applications has been performed. One of these applications makes use of an uncooled microbolometer array as the sensing element for a laser beam analyzer. Results of the characterization of cw CO2 laser beams with this analyzer are given. A comparison with the results obtained with a commercial laser beam analyzer is made. Various advantages specific to microbolometer arrays for this application are identified. A second application makes use of microbolometers for absolute temperature measurements. The experimental method and results are described. The technique's limitations and possible implementations are discussed. Finally, the third application evaluated is related to the rapidly expanding field of biometry. It consists of using a modified microbolometer array for fingerprint sensing. The basic approach allowing the use of microbolometers for such an application is discussed. The results of a proof-of-principle experiment are described. Globally, the described work illustrates the fact that microbolometer array fabrication technology can be exploited for many important applications other than IR imaging.

  6. Flexible Light Emission Diode Arrays Made of Transferred Si Microwires-ZnO Nanofilm with Piezo-Phototronic Effect Enhanced Lighting.

    PubMed

    Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin

    2017-04-25

    Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.

  7. Signal Processing for a Lunar Array: Minimizing Power Consumption

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry; Simmons, Samuel

    2011-01-01

    Motivation for the study is: (1) Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z =6-50, f=30-200 MHz) (2) High precision cosmological measurements of 21 cm H I line fluctuations (3) Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures (5) Does the current cosmological model accurately describe the Universe before reionization? Lunar Radio Array is for (1) Radio interferometer based on the far side of the moon (1a) Necessary for precision measurements, (1b) Shielding from earth-based and solar RFI (12) No permanent ionosphere, (2) Minimum collecting area of approximately 1 square km and brightness sensitivity 10 mK (3)Several technologies must be developed before deployment The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology. Two different concepts have been proposed: (1) Dark Ages Radio Interferometer (DALI) (2)( Lunar Array for Radio Cosmology (LARC)

  8. Development and Evaluation of a Genome-Wide 6K SNP Array for Diploid Sweet Cherry and Tetraploid Sour Cherry

    PubMed Central

    Peace, Cameron; Bassil, Nahla; Main, Dorrie; Ficklin, Stephen; Rosyara, Umesh R.; Stegmeir, Travis; Sebolt, Audrey; Gilmore, Barbara; Lawley, Cindy; Mockler, Todd C.; Bryant, Douglas W.; Wilhelm, Larry; Iezzoni, Amy

    2012-01-01

    High-throughput genome scans are important tools for genetic studies and breeding applications. Here, a 6K SNP array for use with the Illumina Infinium® system was developed for diploid sweet cherry (Prunus avium) and allotetraploid sour cherry (P. cerasus). This effort was led by RosBREED, a community initiative to enable marker-assisted breeding for rosaceous crops. Next-generation sequencing in diverse breeding germplasm provided 25 billion basepairs (Gb) of cherry DNA sequence from which were identified genome-wide SNPs for sweet cherry and for the two sour cherry subgenomes derived from sweet cherry (avium subgenome) and P. fruticosa (fruticosa subgenome). Anchoring to the peach genome sequence, recently released by the International Peach Genome Initiative, predicted relative physical locations of the 1.9 million putative SNPs detected, preliminarily filtered to 368,943 SNPs. Further filtering was guided by results of a 144-SNP subset examined with the Illumina GoldenGate® assay on 160 accessions. A 6K Infinium® II array was designed with SNPs evenly spaced genetically across the sweet and sour cherry genomes. SNPs were developed for each sour cherry subgenome by using minor allele frequency in the sour cherry detection panel to enrich for subgenome-specific SNPs followed by targeting to either subgenome according to alleles observed in sweet cherry. The array was evaluated using panels of sweet (n = 269) and sour (n = 330) cherry breeding germplasm. Approximately one third of array SNPs were informative for each crop. A total of 1825 polymorphic SNPs were verified in sweet cherry, 13% of these originally developed for sour cherry. Allele dosage was resolved for 2058 polymorphic SNPs in sour cherry, one third of these being originally developed for sweet cherry. This publicly available genomics resource represents a significant advance in cherry genome-scanning capability that will accelerate marker-locus-trait association discovery, genome structure investigation, and genetic diversity assessment in this diploid-tetraploid crop group. PMID:23284615

  9. Wireless fluorescence capsule for endoscopy using single photon-based detection

    NASA Astrophysics Data System (ADS)

    Al-Rawhani, Mohammed A.; Beeley, James; Cumming, David R. S.

    2015-12-01

    Fluorescence Imaging (FI) is a powerful technique in biological science and clinical medicine. Current FI devices that are used either for in-vivo or in-vitro studies are expensive, bulky and consume substantial power, confining the technique to laboratories and hospital examination rooms. Here we present a miniaturised wireless fluorescence endoscope capsule with low power consumption that will pave the way for future FI systems and applications. With enhanced sensitivity compared to existing technology we have demonstrated that the capsule can be successfully used to image tissue autofluorescence and targeted fluorescence via fluorophore labelling of tissues. The capsule incorporates a state-of-the-art complementary metal oxide semiconductor single photon avalanche detector imaging array, miniaturised optical isolation, wireless technology and low power design. When in use the capsule consumes only 30.9 mW, and deploys very low-level 468 nm illumination. The device has the potential to replace highly power-hungry intrusive optical fibre based endoscopes and to extend the range of clinical examination below the duodenum. To demonstrate the performance of our capsule, we imaged fluorescence phantoms incorporating principal tissue fluorophores (flavins) and absorbers (haemoglobin). We also demonstrated the utility of marker identification by imaging a 20 μM fluorescein isothiocyanate (FITC) labelling solution on mammalian tissue.

  10. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.

    PubMed

    Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S

    2015-12-28

    Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.

  11. Choosing the correct forensic marker(s) in currency, document, and product protection

    NASA Astrophysics Data System (ADS)

    Plimmer, Jeremy J.

    2006-02-01

    The use of forensic markers (often known as 'tags' or taggants) as authenticity agents in currency, document and product provenance protection is gaining increased acceptance. There is now a wide choice to be made from a variety of technologies available from a number of suppliers. What criteria should be employed to aid the selection of the most appropriate technology? This paper will identify by type the range of technologies available. The use of tags and identification markers in all forms of authenticity test is highly dependent upon criteria such as the method used to deliver the marking component and the equipment needed to identify and extract the marking agent during the authorisation process. For instance, the type of marking system that can be effectively used in currency protection will require different attributes to that of a marker that identifies the authenticity of say a pharmaceutical product or the provenance of a precious stone. Such marking systems offer quality results to potential users, all of whom posses their own distinctive needs. However the correct choice will be driven by a decision making process that involves cost, speed of application, ease of recovery and low risk of compromise as well suitability for purpose. This paper will briefly identify the way forensic markers can be utilised in protecting users from various risks such as counterfeiting, dilution and refilling. This paper will also explore the technical aspects of each process with regard to characteristics and components involved in the system and then analyse the suitability of a range of available technologies to address risks on a sector by sector basis.

  12. Circulating and synovial antibody profiling of juvenile arthritis patients by nucleic acid programmable protein arrays

    PubMed Central

    2012-01-01

    Introduction Juvenile idiopathic arthritis (JIA) is a heterogeneous disease characterized by chronic joint inflammation of unknown cause in children. JIA is an autoimmune disease and small numbers of autoantibodies have been reported in JIA patients. The identification of antibody markers could improve the existing clinical management of patients. Methods A pilot study was performed on the application of a high-throughput platform, the nucleic acid programmable protein array (NAPPA), to assess the levels of antibodies present in the systemic circulation and synovial joint of a small cohort of juvenile arthritis patients. Plasma and synovial fluid from 10 JIA patients was screened for antibodies against 768 proteins on NAPPAs. Results Quantitative reproducibility of NAPPAs was demonstrated with > 0.95 intra-array and inter-array correlations. A strong correlation was also observed for the levels of antibodies between plasma and synovial fluid across the study cohort (r = 0.96). Differences in the levels of 18 antibodies were revealed between sample types across all patients. Patients were segregated into two clinical subtypes with distinct antibody signatures by unsupervised hierarchical cluster analysis. Conclusion The NAPPAs provide a high-throughput quantitatively reproducible platform to screen for disease-specific autoantibodies at the proteome level on a microscope slide. The strong correlation between the circulating antibody levels and those of the inflamed joint represents a novel finding and provides confidence to use plasma for discovery of autoantibodies in JIA, thus circumventing the challenges associated with joint aspiration. We expect that autoantibody profiling of JIA patients on NAPPAs could yield antibody markers that can act as criteria to stratify patients, predict outcomes and understand disease etiology at the molecular level. PMID:22510425

  13. Technology Developments in Radiation-Hardened Electronics for Space Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Howell, Joe T.

    2008-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS, Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches. System level applications for the RHESE technology products are discussed.

  14. LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER

    NASA Image and Video Library

    2016-09-23

    JOHN CARR, RIGHT, CO-PRINCIPAL INVESTIGATOR FOR NASA'S LIGHTWEIGHT INTEGRATED SOLAR ARRAY AND TRANSCEIVER PROJECT, TALKS WITH GREG LAUE, DIRECTOR OF AEROSPACE PRODUCTS FOR NEXOLVE, MANUFACTURER OF THE THIN-FILM TECHNOLOGY AND A PARTNER IN THE PROJECT.

  15. Proceedings of the Low-Cost Solar Array Wafering Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1982-01-01

    The technology and economics of silicon ingot wafering for low cost solar arrays were discussed. Fixed and free abrasive sawing wire, ID, and multiblade sawing, materials, mechanisms, characterization, and innovative concepts were considered.

  16. Navy Collaborative Integrated Information Technology Initiative (NAVCIITI)

    DTIC Science & Technology

    2004-09-01

    We investigated a new type of antenna array consisting of sub- elements that are excited together to form the primary element. All of the sub...elements of the array are excited for the highest operating band. Only the primary elements are excited for the low frequency band. This fractal geometry has...fully active array. The fully active input impedance is the input impedance of an element in an array when all elements are excited . It is a function

  17. Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    PubMed Central

    Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael

    2011-01-01

    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474

  18. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  19. Application of Ultrasonic Phased Array Technology to the Detection of Defect in Composite Stiffened-structures

    NASA Astrophysics Data System (ADS)

    Zhou, Yuan-Qi; Zhan, Li-Hua

    2016-05-01

    Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.

  20. IEEE Photovoltaic Specialists Conference, 20th, Las Vegas, NV, Sept. 26-30, 1988, Conference Record. Volumes 1 & 2

    NASA Astrophysics Data System (ADS)

    Various papers on photovoltaics are presented. The general topics considered include: amorphous materials and cells; amorphous silicon-based solar cells and modules; amorphous silicon-based materials and processes; amorphous materials characterization; amorphous silicon; high-efficiency single crystal solar cells; multijunction and heterojunction cells; high-efficiency III-V cells; modeling and characterization of high-efficiency cells; LIPS flight experience; space mission requirements and technology; advanced space solar cell technology; space environmental effects and modeling; space solar cell and array technology; terrestrial systems and array technology; terrestrial utility and stand-alone applications and testing; terrestrial concentrator and storage technology; terrestrial stand-alone systems applications; terrestrial systems test and evaluation; terrestrial flatplate and concentrator technology; use of polycrystalline materials; polycrystalline II-VI compound solar cells; analysis of and fabrication procedures for compound solar cells.

  1. Required technologies for a lunar optical UV-IR synthesis array

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Wetzel, John P.

    1992-01-01

    A Lunar Optical UV-IR Synthesis Array (LOUISA) proposed to take advantage of the characteristics of the lunar environment requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. LOUISA needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for LOUISA operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  2. Optics Design for the U.S. SKA Technology Development Project Design Verification Antenna

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Baker, L.; Cortes-Medellin, G.

    2012-01-01

    The U.S. design concept for the Square Kilometer Array (SKA) program is based on utilizing a large number of 15 meter dish antennas. The Technology Development Project (TDP) is planning to design and build the first of these antennas to provide a demonstration of the technology and a solid base on which to estimate costs. This paper describes the performance of the selected optics design. It is a dual-shaped offset Gregorian design with a feed indexer that can accommodate corrugated horns, wide band single pixel feeds or phased array feeds.

  3. The Stretched Lens Array (SLA): A Low-Risk, Cost-Effective Array Offering Wing-Level Performance of 180 W/KG and 300 W/M2 at 300 VDC

    NASA Technical Reports Server (NTRS)

    ONeill, Mark; Piszczor, Michael F.; Eskenazi, Michael I.; McDanal, A. J.; George, Patrick J.; Botke, Matthew M.; Brandhorst, Henry W.; Edwards, David L.; Jaster, Paul A.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    At IECEC 2001, our team presented a paper on the new stretched lens array (SLA), including its evolution from the successful SCARLET array on the NASA/JPL Deep Space 1 spacecraft. Since that conference, the SLA team has made significant advances in the SLA technology, including component-level improvements, array-level optimization, space environment exposure testing, and prototype hardware fabrication and evaluation. This paper describes the evolved version of the SLA, highlighting recent improvements in the lens, solar cell, photovoltaic receiver, rigid panel structure, and complete solar array wing.

  4. High-Speed Monitoring of Multiple Grid-Connected Photovoltaic Array Configurations and Supplementary Weather Station.

    PubMed

    Boyd, Matthew T

    2017-06-01

    Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation.

  5. High-Speed Monitoring of Multiple Grid-Connected Photovoltaic Array Configurations and Supplementary Weather Station

    PubMed Central

    Boyd, Matthew T.

    2017-01-01

    Three grid-connected monocrystalline silicon photovoltaic arrays have been instrumented with research-grade sensors on the Gaithersburg, MD campus of the National Institute of Standards and Technology (NIST). These arrays range from 73 kW to 271 kW and have different tilts, orientations, and configurations. Irradiance, temperature, wind, and electrical measurements at the arrays are recorded, and images are taken of the arrays to monitor shading and capture any anomalies. A weather station has also been constructed that includes research-grade instrumentation to measure all standard meteorological quantities plus additional solar irradiance spectral bands, full spectrum curves, and directional components using multiple irradiance sensor technologies. Reference photovoltaic (PV) modules are also monitored to provide comprehensive baseline measurements for the PV arrays. Images of the whole sky are captured, along with images of the instrumentation and reference modules to document any obstructions or anomalies. Nearly, all measurements at the arrays and weather station are sampled and saved every 1s, with monitoring having started on Aug. 1, 2014. This report describes the instrumentation approach used to monitor the performance of these photovoltaic systems, measure the meteorological quantities, and acquire the images for use in PV performance and weather monitoring and computer model validation. PMID:28670044

  6. Genomic markers for decision making: what is preventing us from using markers?

    PubMed

    Coyle, Vicky M; Johnston, Patrick G

    2010-02-01

    The advent of novel genomic technologies that enable the evaluation of genomic alterations on a genome-wide scale has significantly altered the field of genomic marker research in solid tumors. Researchers have moved away from the traditional model of identifying a particular genomic alteration and evaluating the association between this finding and a clinical outcome measure to a new approach involving the identification and measurement of multiple genomic markers simultaneously within clinical studies. This in turn has presented additional challenges in considering the use of genomic markers in oncology, such as clinical study design, reproducibility and interpretation and reporting of results. This Review will explore these challenges, focusing on microarray-based gene-expression profiling, and highlights some common failings in study design that have impacted on the use of putative genomic markers in the clinic. Despite these rapid technological advances there is still a paucity of genomic markers in routine clinical use at present. A rational and focused approach to the evaluation and validation of genomic markers is needed, whereby analytically validated markers are investigated in clinical studies that are adequately powered and have pre-defined patient populations and study endpoints. Furthermore, novel adaptive clinical trial designs, incorporating putative genomic markers into prospective clinical trials, will enable the evaluation of these markers in a rigorous and timely fashion. Such approaches have the potential to facilitate the implementation of such markers into routine clinical practice and consequently enable the rational and tailored use of cancer therapies for individual patients.

  7. Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture

    NASA Astrophysics Data System (ADS)

    Missaggia, Leo; Wang, Christine; Connors, Michael; Saar, Brian; Sanchez-Rubio, Antonio; Creedon, Kevin; Turner, George; Herzog, William

    2016-03-01

    There are a number of military and commercial applications for high-power laser systems in the mid-to-long-infrared wavelength range. By virtue of their demonstrated watt-level performance and wavelength diversity, quantum cascade laser (QCL) and amplifier devices are an excellent choice of emitter for those applications. To realize the power levels of interest, beam combining of arrays of these emitters is required and as a result, array technology must be developed. With this in mind, packaging and thermal management strategies were developed to facilitate the demonstration of a monolithic QCL array operating under CW conditions. Thermal models were constructed and simulations performed to determine the effect of parameters such as array-element ridge width and pitch on gain region temperature rise. The results of the simulations were considered in determining an appropriate QCL array configuration. State-of-the-art micro-impingement cooling along with an electrical distribution scheme comprised of AlN multi-layer technology were integrated into the design. The design of the module allows for individual electrical addressability of the array elements, a method of phase control demonstrated previously for coherent beam combining of diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was realized containing a 5 mm cavity length monolithic QCL array comprised of 7 elements on 450 m pitch. An output power of 3.16 W was demonstrated under CW conditions at an emission wavelength of 9μm.

  8. DNA marker technology for wildlife conservation

    PubMed Central

    Arif, Ibrahim A.; Khan, Haseeb A.; Bahkali, Ali H.; Al Homaidan, Ali A.; Al Farhan, Ahmad H.; Al Sadoon, Mohammad; Shobrak, Mohammad

    2011-01-01

    Use of molecular markers for identification of protected species offers a greater promise in the field of conservation biology. The information on genetic diversity of wildlife is necessary to ascertain the genetically deteriorated populations so that better management plans can be established for their conservation. Accurate classification of these threatened species allows understanding of the species biology and identification of distinct populations that should be managed with utmost care. Molecular markers are versatile tools for identification of populations with genetic crisis by comparing genetic diversities that in turn helps to resolve taxonomic uncertainties and to establish management units within species. The genetic marker analysis also provides sensitive and useful tools for prevention of illegal hunting and poaching and for more effective implementation of the laws for protection of the endangered species. This review summarizes various tools of DNA markers technology for application in molecular diversity analysis with special emphasis on wildlife conservation. PMID:23961128

  9. Making a chocolate chip: development and evaluation of a 6K SNP array for Theobroma cacao.

    USDA-ARS?s Scientific Manuscript database

    Theobroma cacao, the key ingredient in chocolate production, is one of the world's most important tree fruit crops, with ~4,000,000 metric tons produced across 50 countries. To move towards gene discovery and marker-assisted breeding in cacao, a single-nucleotide polymorphism (SNP) identification pr...

  10. Genome-wide associations for water-soluble carbohydrate concentration and relative maturity in wheat using SNP and DArT marker arrays

    USDA-ARS?s Scientific Manuscript database

    Improving water-use efficiency by incorporating drought avoidance traits into new wheat varieties is an important objective for wheat breeding in water-limited environments. This study uses genome wide association studies (GWAS) to identify candidate loci for water-soluble carbohydrate accumulation,...

  11. Using the methylome to identify aggressive Barrett’s esophagus — EDRN Public Portal

    Cancer.gov

    OVERALL STRATEGY: Our strategy will consist of using HumanMethylation450 arrays to identify methylation profiles and/or candidate methylated genes that distinguish BE from BE+LGD, BE+HGD and EAC (Aim 1). We will then assess whether these genes are predictive markers for aggressive BE (Aim 2)

  12. Complex rearranged small supernumerary marker chromosomes (sSMC), three new cases; evidence for an underestimated entity?

    PubMed Central

    Trifonov, Vladimir; Fluri, Simon; Binkert, Franz; Nandini, Adayapalam; Anderson, Jasen; Rodriguez, Laura; Gross, Madeleine; Kosyakova, Nadezda; Mkrtchyan, Hasmik; Ewers, Elisabeth; Reich, Daniela; Weise, Anja; Liehr, Thomas

    2008-01-01

    Background Small supernumerary marker chromosomes (sSMC) are present ~2.6 × 106 human worldwide. sSMC are a heterogeneous group of derivative chromosomes concerning their clinical consequences as well as their chromosomal origin and shape. Besides the sSMC present in Emanuel syndrome, i.e. der(22)t(11;22)(q23;q11), only few so-called complex sSMC are reported. Results Here we report three new cases of unique complex sSMC. One was a de novo case with a dic(13 or 21;22) and two were maternally derived: a der(18)t(8;18) and a der(13 or 21)t(13 or 21;18). Thus, in summary, now 22 cases of unique complex sSMC are available in the literature. However, this special kind of sSMC might be under-diagnosed among sSMC-carriers. Conclusion More comprehensive characterization of sSMC and approaches like reverse fluorescence in situ hybridization (FISH) or array based comparative genomic hybridization (array-CGH) might identify them to be more frequent than only ~0.9% among all sSMC. PMID:18471318

  13. ECM1 and TMPRSS4 Are Diagnostic Markers of Malignant Thyroid Neoplasms and Improve the Accuracy of Fine Needle Aspiration Biopsy

    PubMed Central

    Kebebew, Electron; Peng, Miao; Reiff, Emily; Duh, Quan-Yang; Clark, Orlo H.; McMillan, Alex

    2005-01-01

    Objective: The objective of this study was to determine whether genes that regulate cellular invasion and metastasis are differentially expressed and could serve as diagnostic markers of malignant thyroid nodules. Summary and Background Data: Patients whose thyroid nodules have indeterminate or suspicious cytologic features on fine needle aspiration (FNA) biopsy require thyroidectomy because of a 20% to 30% risk of thyroid cancer. Cell invasion and metastasis is a hallmark of malignant phenotype; therefore, genes that regulate these processes might be differentially expressed and could serve as diagnostic markers of malignancy. Methods: Differentially expressed genes (2-fold higher or lower) in malignant versus benign thyroid neoplasms were identified by extracellular matrix and adhesion molecule cDNA array analysis and confirmed by real-time quantitative polymerase chain reaction (PCR). The area under the receiver operating characteristic (AUC) curve was calculated to determine diagnostic accuracy of gene expression level cutoffs established by logistic regression analysis. Results: By cDNA array analysis, ADAMTS8, ECM1, MMP8, PLAU, SELP, and TMPRSS4 were upregulated, and by quantitative PCR, ECM1, SELP, and TMPRSS4 mRNA expression was higher in malignant (n = 57) than in benign (n = 38) thyroid neoplasms (P< 0.002). ECM1 and TMPRSS4 mRNA expression levels were independent predictors of a malignant thyroid neoplasm (P < 0.003). The AUC was 0.956 for ECM1 and 0.926 for TMPRSS4. Combining both markers improved their diagnostic use (AUC 0.985; sensitivity, 91.7%; specificity, 89.8%; positive predictive value, 85.7%; negative predictive value, 82.8%). ECM1 and TMPRSS4 expression analysis improved the diagnostic accuracy of FNA biopsy in 35 of 38 indeterminate or suspicious results. The level of ECM1 mRNA expression was higher in TNM stage I differentiated thyroid cancers than in stage II and III tumors (P ≤ 0.031). Conclusions: ECM1 and TMPRSS4 are excellent diagnostic markers of malignant thyroid nodules and may be used to improve the diagnostic accuracy of FNA biopsy. ECM1 is also a marker of the extent of disease in differentiated thyroid cancers. PMID:16135921

  14. New DNA Markers for the Use in Cotton (Gossypium spp.) Improvement

    USDA-ARS?s Scientific Manuscript database

    SSR markers, also known as DNA microsatellite markers, are proving to be very useful for saturation of the large and complex upland cotton (Gossypium hirsutum genetic linkage map. Monsanto Company has invested heavily in development of cotton SSRs and has implemented molecular breeding technologies ...

  15. High-Voltage High-Energy Stretched Lens Array Square-Rigger (SLASR) for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; O'Neill, Mark J.; Mankins, John C.

    2006-01-01

    Development is underway on a unique high-voltage, high energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA's robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.

  16. High-Voltage High-Energy Stretched Lens Array Square-Rigger (SLASR) for Direct-Drive Solar Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; O'Neill, Mark; Mankins, John C.

    2006-01-01

    Development is underway on a unique high-voltage, high-energy solar concentrator array called Stretched Lens Array Square-Rigger (SLASR) for direct drive electric propulsion. The SLASR performance attributes closely match the critical needs of solar electric propulsion (SEP) systems, which may be used for space tugs to fuel-efficiently transport cargo from low earth orbit (LEO) to low lunar orbit (LLO), in support of NASA s robotic and human exploration missions. Later SEP systems may similarly transport cargo from the earth-moon neighborhood to the Mars neighborhood. This paper will describe the SLASR technology, discuss SLASR developments and ground testing, and outline plans for future SLASR technology maturation.

  17. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation

    PubMed Central

    Morales, Norma B.; Moskwa, Sam; Clingeleffer, Peter R.; Thomas, Mark R.

    2018-01-01

    Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine. PMID:29462210

  18. SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation.

    PubMed

    Smith, Harley M; Smith, Brady P; Morales, Norma B; Moskwa, Sam; Clingeleffer, Peter R; Thomas, Mark R

    2018-01-01

    Plant parasitic nematodes, including root knot nematode Meloidogyne species, cause extensive damage to agriculture and horticultural crops. As Vitis vinifera cultivars are susceptible to root knot nematode parasitism, rootstocks resistant to these soil pests provide a sustainable approach to maintain grapevine production. Currently, most of the commercially available root knot nematode resistant rootstocks are highly vigorous and take up excess potassium, which reduces wine quality. As a result, there is a pressing need to breed new root knot nematode resistant rootstocks, which have no impact on wine quality. To develop molecular markers that predict root knot nematode resistance for marker assisted breeding, a genetic approach was employed to identify a root knot nematode resistance locus in grapevine. To this end, a Meloidogyne javanica resistant Vitis cinerea accession was crossed to a susceptible Vitis vinifera cultivar Riesling and results from screening the F1 individuals support a model that root knot nematode resistance, is conferred by a single dominant allele, referred as MELOIDOGYNE JAVANICA RESISTANCE1 (MJR1). Further, MJR1 resistance appears to be mediated by a hypersensitive response that occurs in the root apical meristem. Single nucleotide polymorphisms (SNPs) were identified using genotyping-by-sequencing and results from association and genetic mapping identified the MJR1 locus, which is located on chromosome 18 in the Vitis cinerea accession. Validation of the SNPs linked to the MJR1 locus using a Sequenom MassARRAY platform found that only 50% could be validated. The validated SNPs that flank and co-segregate with the MJR1 locus can be used for marker-assisted selection for Meloidogyne javanica resistance in grapevine.

  19. Ultrasound to video registration using a bi-plane transrectal probe with photoacoustic markers

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Kang, Hyun Jae; Zhang, Haichong K.; Taylor, Russell H.; Boctor, Emad M.

    2016-03-01

    Modern surgical scenarios typically provide surgeons with additional information through fusion of video and other imaging modalities. To provide this information, the tools and devices used in surgery must be registered together with interventional guidance equipment and surgical navigation systems. In this work, we focus explicitly on registering ultrasound with a stereo camera system using photoacoustic markers. Previous work has shown that photoacoustic markers can be used in this registration task to achieve target registration errors lower than the current available systems. Photoacoustic markers are defined as a set of non-collinear laser spots projected onto some surface. They can be simultaneously visualized by a stereo camera system and an ultrasound transducer because of the photoacoustic effect. In more recent work, the three-dimensional ultrasound volume was replaced by images from a single ultrasound image pose from a convex array transducer. The feasibility of this approach was demonstrated, but the accuracy was lacking due to the physical limitations of the convex array transducer. In this work, we propose the use of a bi-plane transrectal ultrasound transducer. The main advantage of using this type of transducer is that the ultrasound elements are no longer restricted to a single plane. While this development would be limited to prostate applications, liver and kidney applications are also feasible if a suitable transducer is built. This work is demonstrated in two experiments, one without photoacoustic sources and one with. The resulting target registration error for these experiments were 1.07mm±0.35mm and 1.27mm+/-0.47mm respectively, both of which are better than current available navigation systems.

  20. The Photovoltaic Array Space Power plus Diagnostics (PASP Plus) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Curtis, Henry B.; Guidice, Donald A.; Severance, Paul S.

    1992-01-01

    An overview of the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment is presented in outline and graphic form. The goal of the experiment is to test a variety of photovoltaic cell and array technologies under various space environmental conditions. Experiment objectives, flight hardware, experiment control and diagnostic instrumentation, and illuminated thermal vacuum testing are addressed.

  1. High-repetition-rate optical delay line using a micromirror array and galvanometer mirror for a terahertz system.

    PubMed

    Kitahara, Hideaki; Tani, Masahiko; Hangyo, Masanori

    2009-07-01

    We developed a high-repetition-rate optical delay line based on a micromirror array and galvanometer mirror for terahertz time-domain spectroscopy. The micromirror array is fabricated by using the x-ray lithographic technology. The measurement of terahertz time-domain waveforms with the new optical delay line is demonstrated successfully up to 25 Hz.

  2. MTF measurements with high-resolution a-Si:H imaging arrays

    NASA Astrophysics Data System (ADS)

    Yorkston, John; Antonuk, Larry E.; Seraji, N.; Huang, Weidong; Siewerdsen, Jeffrey H.; El-Mohri, Youcef

    1995-05-01

    Recent advances in a-Si:H fabrication technology have opened the way for the application of flat panel imaging arrays in a number of areas in medical imaging. Their large area (up to approximately 26 X 26 cm), thin profile (< 1 mm) and real time readout capability make them strong candidates for the replacement of more traditional x-ray imaging technologies such as film and image intensifier systems. As a first step towards a device suitable for clinical use we have created a 24.4 X 19.4 cm array with 127 micrometers pitch pixels. This device serves as a testbed for investigating the effects of design changes on array imaging performance. This paper reports on initial measurements of the spatial resolution of this device used in conjunction with an overlaying Lanex Regular screen and 90 kVp x rays. The measured pre-sampled modulation transfer function (p.s. MTF) is found to fall below the predicted value by up to approximately 8%. At least part of this reduction seems to be due to scattering of light photons between the array and the surface of the phosphor screen contacting the array.

  3. Novel anti-reflection technology for GaAs single-junction solar cells using surface patterning and Au nanoparticles.

    PubMed

    Kim, Youngjo; Lam, Nguyen Dinh; Kim, Kangho; Kim, Sangin; Rotermund, Fabian; Lim, Hanjo; Lee, Jaejin

    2012-07-01

    Single-junction GaAs solar cell structures were grown by low-pressure MOCVD on GaAs (100) substrates. Micro-rod arrays with diameters of 2 microm, 5 microm, and 10 microm were fabricated on the surfaces of the GaAs solar cells via photolithography and wet chemical etching. The patterned surfaces were coated with Au nanoparticles using an Au colloidal solution. Characteristics of the GaAs solar cells with and without the micro-rod arrays and Au nanoparticles were investigated. The short-circuit current density of the GaAs solar cell with 2 microm rod arrays and Au nanoparticles increased up to 34.9% compared to that of the reference cell without micro-rod arrays and Au nanoparticles. The conversion efficiency of the GaAs solar cell that was coated with Au nanoparticles on the patterned surface with micro-rod arrays can be improved from 14.1% to 19.9% under 1 sun AM 1.5G illumination. These results show that micro-rod arrays and Au nanoparticle coating can be applied together in surface patterning to achieve a novel cost-effective anti-reflection technology.

  4. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  5. Development of FIR arrays with integrating amplifiers

    NASA Technical Reports Server (NTRS)

    Young, Erick T.

    1988-01-01

    The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.

  6. Development of FIR arrays with integrating amplifiers

    NASA Astrophysics Data System (ADS)

    Young, Erick T.

    1988-08-01

    The development of optimized photoconductor arrays suitable for far infrared space astronomical applications are described. Although the primary impetus is the production of a 16 by 16 element Ge:Ga demonstration array for SIRTF, the extension of this technology to Large Deployable Reflector (LDR) is considered. The optimization of Ge:Ga and Ge:Be photoconductor materials is discussed. In collaboration with Lawrence Berkeley Laboratory, measurements of FIR photoconductors with quantum efficiencies greater than 20 percent at 100 micrometers, and dark currents below 300 electrons/s are presented. Integrating J-FET amplifier technology is discussed. The current generation of integrating amplifiers has a demonstrated read noise of less than 20 electrons for an integration time of 100 s. The design is shown for a stackable 16 x n Ge:Ga array that utilizes a 16-channel monolithic version of the J-FET integrator. A part of the design is the use of a thin, thermally insulating substrate that allows the electronics to operate at the optimum temperature of 50 K while maintaining thermal and optical isolation from the detectors at 2 K. The power dissipation for the array is less than 16 mW. The array design may particularly be applicable to high resolution imaging spectrometers for LDR.

  7. Automated array assembly

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.

    1977-01-01

    A general technology assessment and manufacturing cost analysis was presented. A near-term (1982) factory design is described, and the results of an experimental production study for the large-scale production of flat-panel silicon and solar-cell arrays are detailed.

  8. An Active K-Band Receive Slot Array for Mobile Satellite Communications

    NASA Technical Reports Server (NTRS)

    Tulintseff, A. N.; Lee, K. A.; Sukamto, L. M.; Chew, W.

    1994-01-01

    An active receive slot array has been developed for operation in the downlink frequency band, 19.914-20.064 GHz, of NASA's Advanced Communication Technology Satellite (ACTS) for the ACTS Mobile Terminal (AMT) project.

  9. Flat-plate solar array project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Callaghan, W.; Mcdonald, R.

    1986-01-01

    In 1975, the U.S. Government contracted the Jet Propulsion Lab. to develop, by 1985, in conjunction with industry, the photovoltaics (PV) module and array technology required for widespread use of photovoltaics as a significant terrestrial energy source. As a result, a project that eventually became known as the Flat Plate Solar Array (FSA) Project was formed to manage an industry, university, and Government team to perform the necessary research and development. The original goals were to achieve widespread commercial use of PV modules and arrays through the development of technology that would allow them to be profitably sold for $1.07/peak watts (1985 dollars). A 10% module conversion efficiency and a 20 year lifetime were also goals. It is intended that the executive summary provide the means by which one can gain a perspective on 11 years of terrestrial photovoltaic research and development conducted by the FSA Project.

  10. SCARLET development, fabrication and testing for the Deep Space 1 spacecraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, D.M.; Allen, D.M.

    1997-12-31

    An advanced version of ``Solar Concentrator Arrays with Refractive Linear Element Technology`` (SCARLET) is being assembled for use on the first NASA/JPL New Millennium spacecraft: Deep Space 1 (DS1). The array is scaled up from the first SCARLET array that was built for the METEOR satellite in 1995 and incorporates advanced technologies such as dual-junction solar cells and an improved structural design. Due to the failure of the Conestoga launch vehicle, this will be the first flight of a modular concentrator array. SCARLET will provide 2.6 kW to the DS1 spacecraft to be launched in July 1998 for a missionmore » that includes fly-bys of the asteroid McAuliffe, Mars, and the comet West-Kohoutek-Ikemura. This paper describes the SCARLET design, fabrication/assembly, and testing program for the flight system.« less

  11. Technology Development for AGIS (Advanced Gamma-ray Imaging System).

    NASA Astrophysics Data System (ADS)

    Krennrich, Frank

    2008-04-01

    Next-generation arrays of atmospheric Cherenkov telescopes are at the conceptual planning stage and each could consist of on the order of 100 telescopes. The two currently-discussed projects AGIS in the US and CTA in Europe, have the potential to achieve an order of magnitude better sensitivity for Very High Energy (VHE) gamma-ray observations over state-to-the-art observatories. These projects require a substantial increase in scale from existing 4-telescope arrays such as VERITAS and HESS. The optimization of a large array requires exploring cost reduction and research and development for the individual elements while maximizing their performance as an array. In this context, the technology development program for AGIS will be discussed. This includes developing new optical designs, evaluating new types of photodetectors, developing fast trigger systems, integrating fast digitizers into highly-pixilated cameras, and reliability engineering of the individual components.

  12. System design of ELITE power processing unit

    NASA Astrophysics Data System (ADS)

    Caldwell, David J.

    The Electric Propulsion Insertion Transfer Experiment (ELITE) is a space mission planned for the mid 1990s in which technological readiness will be demonstrated for electric orbit transfer vehicles (EOTVs). A system-level design of the power processing unit (PPU), which conditions solar array power for the arcjet thruster, was performed to optimize performance with respect to reliability, power output, efficiency, specific mass, and radiation hardness. The PPU system consists of multiphased parallel switchmode converters, configured as current sources, connected directly from the array to the thruster. The PPU control system includes a solar array peak power tracker (PPT) to maximize the power delivered to the thruster regardless of variations in array characteristics. A stability analysis has been performed to verify that the system is stable despite the nonlinear negative impedance of the PPU input and the arcjet thruster. Performance specifications are given to provide the required spacecraft capability with existing technology.

  13. The SCARLET{trademark} array for high power GEO satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, B.R.; Jones, P.A.; Eskenazi, M.I.

    1997-12-31

    The GEO satellite market is demanding increasingly capable spacecraft which, in turn, drives commercial spacecraft manufacturers to require significantly higher power solar arrays. As satellite capability increases the demand for high power array systems which are both cost and performance competitive becomes more crucial. Conventional rigid panel planar arrays, although suitable in the past, negatively impact spacecraft competitiveness for these new applications. The Solar Concentrator Array with Refractive Linear Element Technology (SCARLET{trademark}) represents an economically attractive solution for meeting these new high power requirements. When compared to conventional planar arrays, SCARLET provides substantially lower cost and higher deployed stiffness, competitivemore » mass, better producibility, and affordable use of high efficiency multijunction cells. This paper compares cost/performance characteristics of the SCARLET array to conventional planar arrays for high power GEO spacecraft applications. High power SCARLET array configurations are described, and inherent spacecraft and array level cost/performance benefits are presented.« less

  14. QTL mapping for fruit quality in Citrus using DArTseq markers.

    PubMed

    Curtolo, Maiara; Cristofani-Yaly, Mariângela; Gazaffi, Rodrigo; Takita, Marco Aurélio; Figueira, Antonio; Machado, Marcos Antonio

    2017-04-12

    Citrus breeding programs have many limitations associated with the species biology and physiology, requiring the incorporation of new biotechnological tools to provide new breeding possibilities. Diversity Arrays Technology (DArT) markers, combined with next-generation sequencing, have wide applicability in the construction of high-resolution genetic maps and in quantitative trait locus (QTL) mapping. This study aimed to construct an integrated genetic map using full-sib progeny derived from Murcott tangor and Pera sweet orange and DArTseq™ molecular markers and to perform QTL mapping of twelve fruit quality traits. A controlled Murcott x Pera crossing was conducted at the Citrus Germplasm Repository at the Sylvio Moreira Citrus Centre of the Agronomic Institute (IAC) located in Cordeirópolis, SP, in 1997. In 2012, 278 F 1 individuals out of a family of 312 confirmed hybrid individuals were analyzed for fruit traits and genotyped using the DArTseq markers. Using OneMap software to obtain the integrated genetic map, we considered only the DArT loci that showed no segregation deviation. The likelihood ratio and the genomic information from the available Citrus sinensis L. Osbeck genome were used to determine the linkage groups (LGs). The resulting integrated map contained 661 markers in 13 LGs, with a genomic coverage of 2,774 cM and a mean density of 0.23 markers/cM. The groups were assigned to the nine Citrus haploid chromosomes; however, some of the chromosomes were represented by two LGs due the lack of information for a single integration, as in cases where markers segregated in a 3:1 fashion. A total of 19 QTLs were identified through composite interval mapping (CIM) of the 12 analyzed fruit characteristics: fruit diameter (cm), height (cm), height/diameter ratio, weight (g), rind thickness (cm), segments per fruit, total soluble solids (TSS, %), total titratable acidity (TTA, %), juice content (%), number of seeds, TSS/TTA ratio and number of fruits per box. The genomic sequence (pseudochromosomes) of C. sinensis was compared to the genetic map, and synteny was clearly identified. Further analysis of the map regions with the highest LOD scores enabled the identification of putative genes that could be associated with the fruit quality characteristics. An integrated linkage map of Murcott tangor and Pera sweet orange using DArTseq™ molecular markers was established and it was useful to perform QTL mapping of twelve fruit quality traits. The next generation sequences data allowed the comparison between the linkage map and the genomic sequence (pseudochromosomes) of C. sinensis and the identification of genes that may be responsible for phenotypic traits in Citrus. The obtained linkage map was used to assign sequences that had not been previously assigned to a position in the reference genome.

  15. 32 CFR 250.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (c) Critical Technology. Technologies that consist of (1) arrays of design and manufacturing know-how... militarily critical technology). (d) Other legitimate business purposes. Include: (1) Providing or seeking to provide equipment or technology to a foreign government with the approval of the U.S. Government (for...

  16. 32 CFR 250.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (c) Critical Technology. Technologies that consist of (1) arrays of design and manufacturing know-how... militarily critical technology). (d) Other legitimate business purposes. Include: (1) Providing or seeking to provide equipment or technology to a foreign government with the approval of the U.S. Government (for...

  17. 32 CFR 250.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (c) Critical Technology. Technologies that consist of (1) arrays of design and manufacturing know-how... militarily critical technology). (d) Other legitimate business purposes. Include: (1) Providing or seeking to provide equipment or technology to a foreign government with the approval of the U.S. Government (for...

  18. 32 CFR 250.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (c) Critical Technology. Technologies that consist of (1) arrays of design and manufacturing know-how... militarily critical technology). (d) Other legitimate business purposes. Include: (1) Providing or seeking to provide equipment or technology to a foreign government with the approval of the U.S. Government (for...

  19. Development of a gallium-doped germanium far-infrared photoconductor direct hybrid two-dimensional array.

    PubMed

    Fujiwara, Mikio; Hirao, Takanori; Kawada, Mitsunobu; Shibai, Hiroshi; Matsuura, Shuji; Kaneda, Hidehiro; Patrashin, Mikhail; Nakagawa, Takao

    2003-04-20

    To our knowledge, we are the first to successfully report a direct hybrid two-dimensional (2D) detector array in the far-infrared region. Gallium-doped germanium (Ge:Ga) has been used extensively to produce sensitive far-infrared detectors with a cutoff wavelength of approximately equal to 110 microm (2.7 THz). It is widely used in the fields of astronomy and molecular and solid spectroscopy. However, Ge:Ga photoconductors must be cooled below 4.2 K to reduce thermal noise, and this operating condition makes it difficult to develop a large format array because of the need for a warm amplifier. Development of Ge:Ga photoconductor arrays to take 2D terahertz images is now an important target in such research fields as space astronomy. We present the design of a 20 x 3 Ge:Ga far-infrared photoconductor array directly hybridized to a Si p-type metal-oxide-semiconductor readout integrated circuit using indium-bump technology. The main obstacles in creating this 2D array were (1) fabricating a monolithic Ge:Ga 2D array with a longitudinal configuration, (2) developing a cryogenic capacitive transimpedance amplifer, and (3) developing a technology for connecting the detector to the electronics. With this technology, a prototype Ge:Ga photoconductor with a direct hybrid structure has shown a responsivity as high as 14.6 A/W and a minimum detectable power of 5.6 x 10(-17) W for an integration time of 0.14 s when it was cooled to 2.1 K. Its noise is limited by the readout circuit with 20 microV/Hz(1/2) at 1 Hz. Vibration and cooling tests demonstrated that this direct hybrid structure is strong enough for spaceborne instruments. This detector array will be installed on the Japanese infrared satellite ASTRO-F.

  20. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat

    USGS Publications Warehouse

    Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.

    2016-01-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef environment.

  1. Achieving ultra-high temperatures with a resistive emitter array

    NASA Astrophysics Data System (ADS)

    Danielson, Tom; Franks, Greg; Holmes, Nicholas; LaVeigne, Joe; Matis, Greg; McHugh, Steve; Norton, Dennis; Vengel, Tony; Lannon, John; Goodwin, Scott

    2016-05-01

    The rapid development of very-large format infrared detector arrays has challenged the IR scene projector community to also develop larger-format infrared emitter arrays to support the testing of systems incorporating these detectors. In addition to larger formats, many scene projector users require much higher simulated temperatures than can be generated with current technology in order to fully evaluate the performance of their systems and associated processing algorithms. Under the Ultra High Temperature (UHT) development program, Santa Barbara Infrared Inc. (SBIR) is developing a new infrared scene projector architecture capable of producing both very large format (>1024 x 1024) resistive emitter arrays and improved emitter pixel technology capable of simulating very high apparent temperatures. During earlier phases of the program, SBIR demonstrated materials with MWIR apparent temperatures in excess of 1400 K. New emitter materials have subsequently been selected to produce pixels that achieve even higher apparent temperatures. Test results from pixels fabricated using the new material set will be presented and discussed. A 'scalable' Read In Integrated Circuit (RIIC) is also being developed under the same UHT program to drive the high temperature pixels. This RIIC will utilize through-silicon via (TSV) and Quilt Packaging (QP) technologies to allow seamless tiling of multiple chips to fabricate very large arrays, and thus overcome the yield limitations inherent in large-scale integrated circuits. Results of design verification testing of the completed RIIC will be presented and discussed.

  2. Study of solar array switching power management technology for space power system

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. E.

    1982-01-01

    This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts were identified that could safisfy the mission requirements. These switching concepts were compared with a conventional buck regulator system on the basis of cost, weight and volume, reliability, efficiency and thermal control. For the missions reviewed, solar array switching provided significant advantages in all areas of comparison.

  3. LSA Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Silicon Solar Array Project during the period October through December, 1977 are reported. The LSSA Project is assigned responsibility for advancing silicon solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  4. Study of solar array switching power management technology for space power system

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. E.

    1982-01-01

    This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts which could satisfy the mission requirements were identified. The switching concepts were compared with a conventional buck regulator system for cost, weight and volume, reliability, efficiency and thermal control. Solar array switching provided significant advantages in all areas of comparison for the reviewed missions.

  5. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Low-Cost Solar Array Project are described for the period April through June 1978. The Project is assigned responsibility for advancing solar array technology while encouraging industry to reduce the price of arrays to a level at which photovoltaic electric power systems will be competitive with more conventional power sources early in the next decade. Set forth are the goals and plans with which the Project intends to accomplish this and the progress that was made during the quarter.

  6. Using next generation sequencing for multiplexed trait-linked markers in wheat

    USDA-ARS?s Scientific Manuscript database

    With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat (Triticum aestivum L.) that can be effectively used...

  7. Development and transferability of black and red raspberry microsatellite markers from short-read sequences

    USDA-ARS?s Scientific Manuscript database

    The advent of next-generation sequencing technologies has been a boon to the cost-effective development of molecular markers, particularly in non-model species. Here, we demonstrate the efficiency of microsatellite or simple sequence repeat (SSR) marker development from short-read sequences using th...

  8. The evolution and exploitation of the fiber-optic hydrophone

    NASA Astrophysics Data System (ADS)

    Hill, David J.

    2007-07-01

    In the late 1970s one of the first applications identified for fibre-optic sensing was the fibre-optic hydrophone. It was recognised that the technology had the potential to provide a cost effective solution for large-scale arrays of highly sensitive hydrophones which could be interrogated over large distances. Consequently both the United Kingdom and United States navies funded the development of this sonar technology to the point that it is now deployed on submarines and as seabed arrays. The basic design of a fibre-optic hydrophone has changed little; comprising a coil of optical fibre wound on a compliant mandrel, interrogated using interferometric techniques. Although other approaches are being investigated, including the development of fibre-laser hydrophones, the interferometric approach remains the most efficient way to create highly multiplexed arrays of acoustic sensors. So much so, that the underlying technology is now being exploited in civil applications. Recently the exploration and production sector of the oil and gas industry has begun funding the development of fibre-optic seismic sensing using seabed mounted, very large-scale arrays of four component (three accelerometers and a hydrophone) packages based upon the original technology developed for sonar systems. This has given new impetus to the development of the sensors and the associated interrogation systems which has led to the technology being adopted for other commercial uses. These include the development of networked in-road fibre-optic Weigh-in-Motion sensors and of intruder detection systems which are able to acoustically monitor long lengths of border, on both land and at sea. After two decades, the fibre-optic hydrophone and associated technology has matured and evolved into a number of highly capable sensing solutions used by a range of industries.

  9. In situ synthesis of protein arrays.

    PubMed

    He, Mingyue; Stoevesandt, Oda; Taussig, Michael J

    2008-02-01

    In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.

  10. MR 201104: Evaluation of Discrimination Technologies and Classification Results and MR 201157: Demonstration of MetalMapper Static Data Acquisition and Data Analysis

    DTIC Science & Technology

    2016-09-23

    Acquisition and Data Analysis). EMI sensors, MetalMapper, man-portable Time-domain Electromagnetic Multi-sensor Towed Array Detection System (TEMTADS...California Department of Toxic Substances Control EM61 EM61-MK2 EMI electromagnetic induction ESTCP Environmental Security Technology Certification...SOP Standard Operating Procedure v TEMTADS Time-domain Electromagnetic Multi-sensor Towed Array Detection System man-portable 2x2 TOI target(s

  11. 3.4-Inch Quarter High Definition Flexible Active Matrix Organic Light Emitting Display with Oxide Thin Film Transistor

    NASA Astrophysics Data System (ADS)

    Hatano, Kaoru; Chida, Akihiro; Okano, Tatsuya; Sugisawa, Nozomu; Inoue, Tatsunori; Seo, Satoshi; Suzuki, Kunihiko; Oikawa, Yoshiaki; Miyake, Hiroyuki; Koyama, Jun; Yamazaki, Shunpei; Eguchi, Shingo; Katayama, Masahiro; Sakakura, Masayuki

    2011-03-01

    In this paper, we report a 3.4-in. flexible active matrix organic light emitting display (AMOLED) display with remarkably high definition (quarter high definition: QHD) in which oxide thin film transistors (TFTs) are used. We have developed a transfer technology in which a TFT array formed on a glass substrate is separated from the substrate by physical force and then attached to a flexible plastic substrate. Unlike a normal process in which a TFT array is directly fabricated on a thin plastic substrate, our transfer technology permits a high integration of high performance TFTs, such as low-temperature polycrystalline silicon TFTs (LTPS TFTs) and oxide TFTs, on a plastic substrate, because a flat, rigid, and thermally-stable glass substrate can be used in the TFT fabrication process in our transfer technology. As a result, this technology realized an oxide TFT array for an AMOLED on a plastic substrate. Furthermore, in order to achieve a high-definition AMOLED, color filters were incorporated in the TFT array and a white organic light-emitting diode (OLED) was combined. One of the features of this device is that the whole body of the device can be bent freely because a source driver and a gate driver can be integrated on the substrate due to the high mobility of an oxide TFT. This feature means “true” flexibility.

  12. Space Science

    NASA Image and Video Library

    1999-04-20

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for the solar concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  13. Space Science

    NASA Image and Video Library

    1999-04-20

    NASA's Space Optics Manufacturing Technology Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century, including the long-term goal of imaging Earth-like planets in distant solar systems. A segmented array of mirrors was designed by the Space Optics Manufacturing Technology Center for solar the concentrator test stand at the Marshall Space Flight Center (MSFC) for powering solar thermal propulsion engines. Each hexagon mirror has a spherical surface to approximate a parabolic concentrator when combined into the entire 18-foot diameter array. The aluminum mirrors were polished with a diamond turning machine, that creates a glass-like reflective finish on metal. The precision fabrication machinery at the Space Optics Manufacturing Technology Center at MSFC can polish specialized optical elements to a world class quality of smoothness. This image shows optics physicist, Vince Huegele, examining one of the 144-segment hexagonal mirrors of the 18-foot diameter array at the MSFC solar concentrator test stand.

  14. Advances in lenticular lens arrays for visual display

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry; Jacobsen, Gary A.

    2005-08-01

    Lenticular lens arrays are widely used in the printed display industry and in specialized applications of electronic displays. In general, lenticular arrays can create from interlaced printed images such visual effects as 3-D, animation, flips, morph, zoom, or various combinations. The use of these typically cylindrical lens arrays for this purpose began in the late 1920's. The lenses comprise a front surface having a spherical crosssection and a flat rear surface upon where the material to be displayed is proximately located. The principal limitation to the resultant image quality for current technology lenticular lenses is spherical aberration. This limitation causes the lenticular lens arrays to be generally thick (0.5 mm) and not easily wrapped around such items as cans or bottles. The objectives of this research effort were to develop a realistic analytical model, to significantly improve the image quality, to develop the tooling necessary to fabricate lenticular lens array extrusion cylinders, and to develop enhanced fabrication technology for the extrusion cylinder. It was determined that the most viable cross-sectional shape for the lenticular lenses is elliptical. This shape dramatically improves the image quality. The relationship between the lens radius, conic constant, material refractive index, and thickness will be discussed. A significant challenge was to fabricate a diamond-cutting tool having the proper elliptical shape. Both true elliptical and pseudo-elliptical diamond tools were designed and fabricated. The plastic sheets extruded can be quite thin (< 0.25 mm) and, consequently, can be wrapped around cans and the like. Fabrication of the lenticular engraved extrusion cylinder required remarkable development considering the large physical size and weight of the cylinder, and the tight mechanical tolerances associated with the lenticular lens molds cut into the cylinder's surface. The development of the cutting tool and the lenticular engraved extrusion cylinder will be presented in addition to an illustrative comparison of current lenticular technology and the new technology. Three U.S. patents have been issued as a consequence of this research effort.

  15. DNA Array-Based Gene Profiling

    PubMed Central

    Mocellin, Simone; Provenzano, Maurizio; Rossi, Carlo Riccardo; Pilati, Pierluigi; Nitti, Donato; Lise, Mario

    2005-01-01

    Cancer is a heterogeneous disease in most respects, including its cellularity, different genetic alterations, and diverse clinical behaviors. Traditional molecular analyses are reductionist, assessing only 1 or a few genes at a time, thus working with a biologic model too specific and limited to confront a process whose clinical outcome is likely to be governed by the combined influence of many genes. The potential of functional genomics is enormous, because for each experiment, thousands of relevant observations can be made simultaneously. Accordingly, DNA array, like other high-throughput technologies, might catalyze and ultimately accelerate the development of knowledge in tumor cell biology. Although in its infancy, the implementation of DNA array technology in cancer research has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to carcinogenesis, tumor aggressiveness, and sensitivity to antiblastic agents. Given the revolutionary implications that the use of this technology might have in the clinical management of patients with cancer, principles of DNA array-based tumor gene profiling need to be clearly understood for the data to be correctly interpreted and appreciated. In the present work, we discuss the technical features characterizing this powerful laboratory tool and review the applications so far described in the field of oncology. PMID:15621987

  16. Frequency multiplexed superconducting quantum interference device readout of large bolometer arrays for cosmic microwave background measurements.

    PubMed

    Dobbs, M A; Lueker, M; Aird, K A; Bender, A N; Benson, B A; Bleem, L E; Carlstrom, J E; Chang, C L; Cho, H-M; Clarke, J; Crawford, T M; Crites, A T; Flanigan, D I; de Haan, T; George, E M; Halverson, N W; Holzapfel, W L; Hrubes, J D; Johnson, B R; Joseph, J; Keisler, R; Kennedy, J; Kermish, Z; Lanting, T M; Lee, A T; Leitch, E M; Luong-Van, D; McMahon, J J; Mehl, J; Meyer, S S; Montroy, T E; Padin, S; Plagge, T; Pryke, C; Richards, P L; Ruhl, J E; Schaffer, K K; Schwan, D; Shirokoff, E; Spieler, H G; Staniszewski, Z; Stark, A A; Vanderlinde, K; Vieira, J D; Vu, C; Westbrook, B; Williamson, R

    2012-07-01

    A technological milestone for experiments employing transition edge sensor bolometers operating at sub-Kelvin temperature is the deployment of detector arrays with 100s-1000s of bolometers. One key technology for such arrays is readout multiplexing: the ability to read out many sensors simultaneously on the same set of wires. This paper describes a frequency-domain multiplexed readout system which has been developed for and deployed on the APEX-SZ and South Pole Telescope millimeter wavelength receivers. In this system, the detector array is divided into modules of seven detectors, and each bolometer within the module is biased with a unique ∼MHz sinusoidal carrier such that the individual bolometer signals are well separated in frequency space. The currents from all bolometers in a module are summed together and pre-amplified with superconducting quantum interference devices operating at 4 K. Room temperature electronics demodulate the carriers to recover the bolometer signals, which are digitized separately and stored to disk. This readout system contributes little noise relative to the detectors themselves, is remarkably insensitive to unwanted microphonic excitations, and provides a technology pathway to multiplexing larger numbers of sensors.

  17. The Sequencing Bead Array (SBA), a Next-Generation Digital Suspension Array

    PubMed Central

    Akhras, Michael S.; Pettersson, Erik; Diamond, Lisa; Unemo, Magnus; Okamoto, Jennifer; Davis, Ronald W.; Pourmand, Nader

    2013-01-01

    Here we describe the novel Sequencing Bead Array (SBA), a complete assay for molecular diagnostics and typing applications. SBA is a digital suspension array using Next-Generation Sequencing (NGS), to replace conventional optical readout platforms. The technology allows for reducing the number of instruments required in a laboratory setting, where the same NGS instrument could be employed from whole-genome and targeted sequencing to SBA broad-range biomarker detection and genotyping. As proof-of-concept, a model assay was designed that could distinguish ten Human Papillomavirus (HPV) genotypes associated with cervical cancer progression. SBA was used to genotype 20 cervical tumor samples and, when compared with amplicon pyrosequencing, was able to detect two additional co-infections due to increased sensitivity. We also introduce in-house software Sphix, enabling easy accessibility and interpretation of results. The technology offers a multi-parallel, rapid, robust, and scalable system that is readily adaptable for a multitude of microarray diagnostic and typing applications, e.g. genetic signatures, single nucleotide polymorphisms (SNPs), structural variations, and immunoassays. SBA has the potential to dramatically change the way we perform probe-based applications, and allow for a smooth transition towards the technology offered by genomic sequencing. PMID:24116138

  18. IRIS Arrays: Observing Wavefields at Multiple Scales and Frequencies

    NASA Astrophysics Data System (ADS)

    Sumy, D. F.; Woodward, R.; Frassetto, A.

    2014-12-01

    The Incorporated Research Institutions for Seismology (IRIS) provides instruments for creating and operating seismic arrays at a wide range of scales. As an example, for over thirty years the IRIS PASSCAL program has provided instruments to individual Principal Investigators to deploy arrays of all shapes and sizes on every continent. These arrays have ranged from just a few sensors to hundreds or even thousands of sensors, covering areas with dimensions of meters to thousands of kilometers. IRIS also operates arrays directly, such as the USArray Transportable Array (TA) as part of the EarthScope program. Since 2004, the TA has rolled across North America, at any given time spanning a swath of approximately 800 km by 2,500 km, and thus far sampling 2% of the Earth's surface. This achievement includes all of the lower-48 U.S., southernmost Canada, and now parts of Alaska. IRIS has also facilitated specialized arrays in polar environments and on the seafloor. In all cases, the data from these arrays are freely available to the scientific community. As the community of scientists who use IRIS facilities and data look to the future they have identified a clear need for new array capabilities. In particular, as part of its Wavefields Initiative, IRIS is exploring new technologies that can enable large, dense array deployments to record unaliased wavefields at a wide range of frequencies. Large-scale arrays might utilize multiple sensor technologies to best achieve observing objectives and optimize equipment and logistical costs. Improvements in packaging and power systems can provide equipment with reduced size, weight, and power that will reduce logistical constraints for large experiments, and can make a critical difference for deployments in harsh environments or other situations where rapid deployment is required. We will review the range of existing IRIS array capabilities with an overview of previous and current deployments and examples of data and results. We will review existing IRIS projects that explore new array capabilities and highlight future directions for IRIS instrumentation facilities.

  19. Sequence-Based Genotyping for Marker Discovery and Co-Dominant Scoring in Germplasm and Populations

    PubMed Central

    Truong, Hoa T.; Ramos, A. Marcos; Yalcin, Feyruz; de Ruiter, Marjo; van der Poel, Hein J. A.; Huvenaars, Koen H. J.; Hogers, René C. J.; van Enckevort, Leonora. J. G.; Janssen, Antoine; van Orsouw, Nathalie J.; van Eijk, Michiel J. T.

    2012-01-01

    Conventional marker-based genotyping platforms are widely available, but not without their limitations. In this context, we developed Sequence-Based Genotyping (SBG), a technology for simultaneous marker discovery and co-dominant scoring, using next-generation sequencing. SBG offers users several advantages including a generic sample preparation method, a highly robust genome complexity reduction strategy to facilitate de novo marker discovery across entire genomes, and a uniform bioinformatics workflow strategy to achieve genotyping goals tailored to individual species, regardless of the availability of a reference sequence. The most distinguishing features of this technology are the ability to genotype any population structure, regardless whether parental data is included, and the ability to co-dominantly score SNP markers segregating in populations. To demonstrate the capabilities of SBG, we performed marker discovery and genotyping in Arabidopsis thaliana and lettuce, two plant species of diverse genetic complexity and backgrounds. Initially we obtained 1,409 SNPs for arabidopsis, and 5,583 SNPs for lettuce. Further filtering of the SNP dataset produced over 1,000 high quality SNP markers for each species. We obtained a genotyping rate of 201.2 genotypes/SNP and 58.3 genotypes/SNP for arabidopsis (n = 222 samples) and lettuce (n = 87 samples), respectively. Linkage mapping using these SNPs resulted in stable map configurations. We have therefore shown that the SBG approach presented provides users with the utmost flexibility in garnering high quality markers that can be directly used for genotyping and downstream applications. Until advances and costs will allow for routine whole-genome sequencing of populations, we expect that sequence-based genotyping technologies such as SBG will be essential for genotyping of model and non-model genomes alike. PMID:22662172

  20. High-throughput microarray technology in diagnostics of enterobacteria based on genome-wide probe selection and regression analysis.

    PubMed

    Friedrich, Torben; Rahmann, Sven; Weigel, Wilfried; Rabsch, Wolfgang; Fruth, Angelika; Ron, Eliora; Gunzer, Florian; Dandekar, Thomas; Hacker, Jörg; Müller, Tobias; Dobrindt, Ulrich

    2010-10-21

    The Enterobacteriaceae comprise a large number of clinically relevant species with several individual subspecies. Overlapping virulence-associated gene pools and the high overall genome plasticity often interferes with correct enterobacterial strain typing and risk assessment. Array technology offers a fast, reproducible and standardisable means for bacterial typing and thus provides many advantages for bacterial diagnostics, risk assessment and surveillance. The development of highly discriminative broad-range microbial diagnostic microarrays remains a challenge, because of marked genome plasticity of many bacterial pathogens. We developed a DNA microarray for strain typing and detection of major antimicrobial resistance genes of clinically relevant enterobacteria. For this purpose, we applied a global genome-wide probe selection strategy on 32 available complete enterobacterial genomes combined with a regression model for pathogen classification. The discriminative power of the probe set was further tested in silico on 15 additional complete enterobacterial genome sequences. DNA microarrays based on the selected probes were used to type 92 clinical enterobacterial isolates. Phenotypic tests confirmed the array-based typing results and corroborate that the selected probes allowed correct typing and prediction of major antibiotic resistances of clinically relevant Enterobacteriaceae, including the subspecies level, e.g. the reliable distinction of different E. coli pathotypes. Our results demonstrate that the global probe selection approach based on longest common factor statistics as well as the design of a DNA microarray with a restricted set of discriminative probes enables robust discrimination of different enterobacterial variants and represents a proof of concept that can be adopted for diagnostics of a wide range of microbial pathogens. Our approach circumvents misclassifications arising from the application of virulence markers, which are highly affected by horizontal gene transfer. Moreover, a broad range of pathogens have been covered by an efficient probe set size enabling the design of high-throughput diagnostics.

  1. Mapping and validation of major quantitative trait loci for kernel length in wild barley (Hordeum vulgare ssp. spontaneum).

    PubMed

    Zhou, Hong; Liu, Shihang; Liu, Yujiao; Liu, Yaxi; You, Jing; Deng, Mei; Ma, Jian; Chen, Guangdeng; Wei, Yuming; Liu, Chunji; Zheng, Youliang

    2016-09-13

    Kernel length is an important target trait in barley (Hordeum vulgare L.) breeding programs. However, the number of known quantitative trait loci (QTLs) controlling kernel length is limited. In the present study, we aimed to identify major QTLs for kernel length, as well as putative candidate genes that might influence kernel length in wild barley. A recombinant inbred line (RIL) population derived from the barley cultivar Baudin (H. vulgare ssp. vulgare) and the long-kernel wild barley genotype Awcs276 (H.vulgare ssp. spontaneum) was evaluated at one location over three years. A high-density genetic linkage map was constructed using 1,832 genome-wide diversity array technology (DArT) markers, spanning a total of 927.07 cM with an average interval of approximately 0.49 cM. Two major QTLs for kernel length, LEN-3H and LEN-4H, were detected across environments and further validated in a second RIL population derived from Fleet (H. vulgare ssp. vulgare) and Awcs276. In addition, a systematic search of public databases identified four candidate genes and four categories of proteins related to LEN-3H and LEN-4H. This study establishes a fundamental research platform for genomic studies and marker-assisted selection, since LEN-3H and LEN-4H could be used for accelerating progress in barley breeding programs that aim to improve kernel length.

  2. High-efficiency UV/optical/NIR detectors for large aperture telescopes and UV explorer missions: development of and field observations with delta-doped arrays

    NASA Astrophysics Data System (ADS)

    Nikzad, Shouleh; Jewell, April D.; Hoenk, Michael E.; Jones, Todd J.; Hennessy, John; Goodsall, Tim; Carver, Alexander G.; Shapiro, Charles; Cheng, Samuel R.; Hamden, Erika T.; Kyne, Gillian; Martin, D. Christopher; Schiminovich, David; Scowen, Paul; France, Kevin; McCandliss, Stephan; Lupu, Roxana E.

    2017-07-01

    Exciting concepts are under development for flagship, probe class, explorer class, and suborbital class NASA missions in the ultraviolet/optical spectral range. These missions will depend on high-performance silicon detector arrays being delivered affordably and in high numbers. To that end, we have advanced delta-doping technology to high-throughput and high-yield wafer-scale processing, encompassing a multitude of state-of-the-art silicon-based detector formats and designs. We have embarked on a number of field observations, instrument integrations, and independent evaluations of delta-doped arrays. We present recent data and innovations from JPL's Advanced Detectors and Systems Program, including two-dimensional doping technology, JPL's end-to-end postfabrication processing of high-performance UV/optical/NIR arrays and advanced coatings for detectors. While this paper is primarily intended to provide an overview of past work, developments are identified and discussed throughout. Additionally, we present examples of past, in-progress, and planned observations and deployments of delta-doped arrays.

  3. A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Zhiyao; Sun, Kexu; Wang, Guanhua

    This article presents a compact low-power 4 x 10 Gb/s quad-driver module for Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays in a 65 nm CMOS technology. The side-by-side drivers can be directly wire bonded to the VCSEL diode array, supporting up to 4 channels. To increase the bandwidth of the driver, an internal feed-forward path is added for pole-zero cancellation, without increasing the power consumption. An edge-configurable pre-emphasis technique is proposed to achieve high bandwidth and minimize the asymmetry of the fall and rise times of the driver output current. Measurement results demonstrate a RMS jitter of 0.68 ps for 10 Gb/smore » operation. Tests demonstrate negligible crosstalk between channels. Under irradiation, the modulation amplitude degrades less than 5% up to 300 Mrad ionizing dose. Finally, the area of the quaddriver array is 500 μm by 1000 μm and the total power consumption for the entire driver array chip is 130 mW for the typical current setting.« less

  4. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array

    NASA Astrophysics Data System (ADS)

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-01

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h

  5. 64-element photodiode array for scintillation detection of x-rays

    NASA Astrophysics Data System (ADS)

    Wegrzecki, Maciej; Wolski, Dariusz; Bar, Jan; Budzyński, Tadeusz; Chłopik, Arkadiusz; Grabiec, Piotr; Kłos, Helena; Panas, Andrzej; Piotrowski, Tadeusz; Słysz, Wojciech; Stolarski, Maciej; Szmigiel, Dariusz; Wegrzecka, Iwona; Zaborowski, Michał

    2014-08-01

    The paper presents the design, technology and parameters of a new, silicon 64-element linear photodiode array developed at the Institute of Electron Technology (ITE) for the detection of scintillations emitted by CsI scintillators (λ≈550 nm). The arrays are used in a device for examining the content of containers at border crossings under development at the National Centre for Nuclear Research. Two arrays connected with a scintillator block (128 CsI scintillators) form a 128-channel detection module. The array consists of 64 epiplanar photodiode structures (5.1 × 7.2 mm) and a 5.3 mm module. p+-ν-n+ photodiode structures are optimised for the detection of radiation of λ≈ 550 nm wavelength with no voltage applied (photovoltaic mode). The structures are mounted on an epoxy-glass laminate substrate, copper-clad on both sides, on which connections with a common anode and separate cathode leads are located. The photosensitive surface of photodiodes is covered with a special silicone gel, which protects photodiodes against the mechanical impact of scintillators

  6. Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments

    NASA Technical Reports Server (NTRS)

    Boca, Andreea (Principal Investigator); Stella, Paul; Kerestes, Christopher; Sharps, Paul

    2017-01-01

    This is the Base Period final report DRAFT for the JPL task 'Solar Arrays for Low-Irradiance Low-Temperature and High-Radiation Environments', under Task Plan 77-16518 TA # 21, for NASA's Extreme Environments Solar Power (EESP) project. This report covers the Base period of performance, 7/18/2016 through 5/2/2017.The goal of this project is to develop an ultra-high efficiency lightweight scalable solar array technology for low irradiance, low temperature and high-radiation (LILT/Rad) environments. The benefit this technology will bring to flight systems is a greater than 20 reduction in solar array surface area, and a six-fold reduction in solar array mass and volume. The EESP project objectives are summarized in the 'NRA Goal' column of Table 1. Throughout this report, low irradiance low temperature (LILT) refers to 5AU -125 C test conditions; beginning of life (BOL) refers to the cell state prior to radiation exposure; and end of life (EOL) refers to the test article condition after exposure to a radiation dose of 4e15 1MeV e(-)/cm(exp 2).

  7. A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology

    DOE PAGES

    Zeng, Zhiyao; Sun, Kexu; Wang, Guanhua; ...

    2017-05-08

    This article presents a compact low-power 4 x 10 Gb/s quad-driver module for Vertical-Cavity Surface-Emitting Laser (VCSEL) arrays in a 65 nm CMOS technology. The side-by-side drivers can be directly wire bonded to the VCSEL diode array, supporting up to 4 channels. To increase the bandwidth of the driver, an internal feed-forward path is added for pole-zero cancellation, without increasing the power consumption. An edge-configurable pre-emphasis technique is proposed to achieve high bandwidth and minimize the asymmetry of the fall and rise times of the driver output current. Measurement results demonstrate a RMS jitter of 0.68 ps for 10 Gb/smore » operation. Tests demonstrate negligible crosstalk between channels. Under irradiation, the modulation amplitude degrades less than 5% up to 300 Mrad ionizing dose. Finally, the area of the quaddriver array is 500 μm by 1000 μm and the total power consumption for the entire driver array chip is 130 mW for the typical current setting.« less

  8. Assessment of SEPS solar array technology for orbital service module application

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Work performed in the following assessment areas on the SEPS solar array is reported: (1) requirements definition, (2) electrical design evaluation, (3) mechanical design evaluation, and (4) design modification analysis. General overall assessment conclusions are summarized. There are no known serious design limitations involved in the implementation of the recommended design modifications. A section of orbiter and array engineering drawings is included.

  9. Preliminary Assessment of Microwave Readout Multiplexing Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croce, Mark Philip; Koehler, Katrina Elizabeth; Rabin, Michael W.

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must bemore » operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.« less

  10. Physical interpretation and development of ultrasonic nondestructive evaluation techniques applied to the quantitative characterization of textile composite materials

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1994-01-01

    In this Progress Report, we describe our continuing research activities concerning the development and implementation of advanced ultrasonic nondestructive evaluation methods applied to the inspection and characterization of complex composite structures. We explore the feasibility of implementing medical linear array imaging technology as a viable ultrasonic-based nondestructive evaluation method to inspect and characterize complex materials. As an initial step toward the application of linear array imaging technology to the interrogation of a wide range of complex composite structures, we present images obtained using an unmodified medical ultrasonic imaging system of two epoxy-bonded aluminum plate specimens, each with intentionally disbonded regions. These images are compared with corresponding conventional ultrasonic contact transducer measurements in order to assess whether these images can detect disbonded regions and provide information regarding the nature of the disbonded region. We present a description of a standoff/delay fixture which has been designed, constructed, and implemented on a Hewlett-Packard SONOS 1500 medical imaging system. This standoff/delay fixture, when attached to a 7.5 MHz linear array probe, greatly enhances our ability to interrogate flat plate specimens. The final section of this Progress Report describes a woven composite plate specimen that has been specially machined to include intentional flaws. This woven composite specimen will allow us to assess the feasibility of applying linear array imaging technology to the inspection and characterization of complex textile composite materials. We anticipate the results of this on-going investigation may provide a step toward the development of a rapid, real-time, and portable method of ultrasonic inspection and characterization based on linear array technology.

  11. A polychromator-type near-infrared spectrometer with a high-sensitivity and high-resolution photodiode array detector for pharmaceutical process monitoring on the millisecond time scale.

    PubMed

    Murayama, Kodai; Genkawa, Takuma; Ishikawa, Daitaro; Komiyama, Makoto; Ozaki, Yukihiro

    2013-02-01

    In the fine chemicals industry, particularly in the pharmaceutical industry, advanced sensing technologies have recently begun being incorporated into the process line in order to improve safety and quality in accordance with process analytical technology. For estimating the quality of powders without preparation during drug formulation, near-infrared (NIR) spectroscopy has been considered the most promising sensing approach. In this study, we have developed a compact polychromator-type NIR spectrometer equipped with a photodiode (PD) array detector. This detector is consisting of 640 InGaAs-PD elements with 20-μm pitch. Some high-specification spectrometers, which use InGaAs-PD with 512 elements, have a wavelength resolution of about 1.56 nm when covering 900-1700 nm range. On the other hand, the newly developed detector, having the PD with one of the world's highest density, enables wavelength resolution of below 1.25 nm. Moreover, thanks to the combination with a highly integrated charge amplifier array circuit, measurement speed of the detector is higher by two orders than that of existing PD array detectors. The developed spectrometer is small (120 mm × 220 mm × 200 mm) and light (6 kg), and it contains various key devices including the high-density and high-sensitivity PD array detector, NIR technology, and spectroscopy technology for a spectroscopic analyzer that has the required detection mechanism and high sensitivity for powder measurement, as well as a high-speed measuring function for blenders. Moreover, we have evaluated the characteristics of the developed NIR spectrometer, and the measurement of powder samples confirmed that it has high functionality.

  12. Energy requirement for the production of silicon solar arrays

    NASA Technical Reports Server (NTRS)

    Lindmayer, J.; Wihl, M.; Scheinine, A.; Rosenfield, T.; Wrigley, C. Y.; Morrison, A.; Anderson, J.; Clifford, A.; Lafky, W.

    1977-01-01

    The results of a study to investigate the feasibility of manufacturing photovoltaic solar array modules by the use of energy obtained from similar or identical photovoltaic sources are presented. The primary objective of this investigation was the characterization of the energy requirements of current and developing technologies which comprise the photovoltaic field. For cross-checking the energies of prevailing technologies data were also used and the wide-range assessment of alternative technologies included different refinement methods, various ways of producing light sheets, semicrystalline cells, etc. Energy data are utilized to model the behavior of a future solar breeder plant under various operational conditions.

  13. Use of molecular binding pair technology for definitive product marking and identification

    NASA Astrophysics Data System (ADS)

    Rittenburg, James H.

    1998-04-01

    Counterfeiting and diversion of brand name products is a significant worldwide problem. Loss of revenue to the manufacturers is obviously important, however erosion of consumer confidence, and liability for adverse health effects or performance caused by poor quality product can be of even greater significance. Biocode has developed a novel approach to product marking and identification that utilizes molecular binding pair technologies such as immunoassay. The sensitivity, specificity, and ease of use of immunoassay provides a powerful method for detecting trace levels of intentionally added chemical markers. Using the diversity of the immune response, Biocode has developed a library of binding molecules and highly sensitive immunoassay systems for detection and measurement of a variety of chemical markers. The markers have been selected based on their stability and compatibility within various types of products. For food, beverage, and pharmaceutical applications, common and naturally occurring food ingredients and pharmaceutical excipients provide markers which are safe, readily available, and already approved for use. For other applications such as fuel and lubricant marking. Solubility and chemical stability of the markers are a major consideration. In addition to incorporating markers directly into products, Biocode has also developed invisible inks that can be printed onto the surface of products, packaging, or labels. The trace levels of marker that is printed onto the surface of a product or package can only be revealed by using the complementary binding pair that has been developed by Biocode. This technology provides for simple field tests and very high level of security as it is virtually impossible to copy.

  14. Wafer-scale, massively parallel carbon nanotube arrays for realizing field effect transistors with current density exceeding silicon and gallium arsenide

    NASA Astrophysics Data System (ADS)

    Arnold, Michael

    Calculations have indicated that aligned arrays of semiconducting carbon nanotubes (CNTs) promise to outperform conventional semiconducting materials in short-channel, aggressively scaled field effect transistors (FETs) like those used in semiconductor logic and high frequency amplifier technologies. These calculations have been based on extrapolation of measurements of FETs based on one CNT, in which ballistic transport approaching the quantum conductance limit of 2Go = 4e2/h has been achieved. However, constraints in CNT sorting, processing, alignment, and contacts give rise to non-idealities when CNTs are implemented in densely-packed parallel arrays, which has resulted in a conductance per CNT far from 2Go. The consequence has been that it has been very difficult to create high performance CNT array FETs, and CNT array FETs have not outperformed but rather underperformed channel materials such as Si by 6 x or more. Here, we report nearly ballistic CNT array FETs at a density of 50 CNTs um-1, created via CNT sorting, wafer-scale alignment and assembly, and treatment. The on-state conductance in the arrays is as high as 0.46 Go per CNT, and the conductance of the arrays reaches 1.7 mS um-1, which is 7 x higher than previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density reaches 900 uA um-1 and is similar to or exceeds that of Si FETs when compared at equivalent gate oxide thickness, off-state current density, and channel length. The on-state current density exceeds that of GaAs FETs, as well. This leap in CNT FET array performance is a significant advance towards the exploitation of CNTs in high-performance semiconductor electronics technologies.

  15. Next generation miniature simultaneous multi-hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Hinnrichs, Michele; Gupta, Neelam

    2014-03-01

    The concept for a hyperspectral imaging system using a Fabry-Perot tunable filter (FPTF) array that is fabricated using "miniature optical electrical mechanical system" (MOEMS) technology. [1] Using an array of FPTF as an approach to hyperspectral imaging relaxes wavelength tuning requirements considerably because of the reduced portion of the spectrum that is covered by each element in the array. In this paper, Pacific Advanced Technology and ARL present the results of a concept design and performed analysis of a MOEMS based tunable Fabry-Perot array (FPTF) to perform simultaneous multispectral and hyperspectral imaging with relatively high spatial resolution. The concept design was developed with support of an Army SBIR Phase I program The Fabry-Perot tunable MOEMS filter array was combined with a miniature optics array and a focal plane array of 1024 x 1024 pixels to produce 16 colors every frame of the camera. Each color image has a spatial resolution of 256 x 256 pixels with an IFOV of 1.7 mrads and FOV of 25 degrees. The spectral images are collected simultaneously allowing high resolution spectral-spatial-temporal information in each frame of the camera, thus enabling the implementation of spectral-temporal-spatial algorithms in real-time to provide high sensitivity for the detection of weak signals in a high clutter background environment with low sensitivity to camera motion. The challenge in the design was the independent actuation of each Fabry Perot element in the array allowing for individual tuning. An additional challenge was the need to maximize the fill factor to improve the spatial coverage with minimal dead space. This paper will only address the concept design and analysis of the Fabry-Perot tunable filter array. A previous paper presented at SPIE DSS in 2012 explained the design of the optical array.

  16. Low cost silicon solar cell array

    NASA Technical Reports Server (NTRS)

    Bartels, F. T. C.

    1974-01-01

    The technological options available for producing low cost silicon solar cell arrays were examined. A project value of approximately $250/sq m and $2/watt is projected, based on mass production capacity demand. Recommendations are included for the most promising cost reduction options.

  17. Solar Power for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    2014-01-01

    An overview of NASA missions and technology development efforts are discussed. Future spacecraft will need higher power, higher voltage, and much lower cost solar arrays to enable a variety of missions. One application driving development of these future arrays is solar electric propulsion.

  18. One GigaSample Per Second Data Acquisition using Available Gate Array Technology

    NASA Technical Reports Server (NTRS)

    Wagner, K.W.

    1999-01-01

    A new National Aeronautics and Space Administration instrument forced demanding requirements upon its altimeter digitizer system. Eight-bit data would be generated at a rate of one billion samples per second. NASA had never before attempted to capture such high-speed data in the radiation, low-power, no-convective-cooling, limited-board-area environment of space. This presentation describes how the gate array technology available at the time of the design was used to implement this one gigasample per second data acquisition system

  19. Rearranging the lenslet array of the compact passive interference imaging system with high resolution

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Wen, Desheng; Song, Zongxi

    2017-10-01

    With the development of aeronautics and astronautics, higher resolution requirement of the telescope was necessary. However, the increase in resolution of conventional telescope required larger apertures, whose size, weight and power consumption could be prohibitively expensive. This limited the further development of the telescope. This paper introduced a new imaging technology using interference—Compact Passive Interference Imaging Technology with High Resolution, and proposed a rearranging method for the arrangement of the lenslet array to obtain continuously object spatial frequency.

  20. Lightweight solar array blanket tooling, laser welding and cover process technology

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.

    1983-01-01

    A two phase technology investigation was performed to demonstrate effective methods for integrating 50 micrometer thin solar cells into ultralightweight module designs. During the first phase, innovative tooling was developed which allows lightweight blankets to be fabricated in a manufacturing environment with acceptable yields. During the second phase, the tooling was improved and the feasibility of laser processing of lightweight arrays was confirmed. The development of the cell/interconnect registration tool and interconnect bonding by laser welding is described.

Top