Science.gov

Sample records for array x-ray detector

  1. Converting films for X-ray detectors, applied to amorphous silicon arrays

    SciTech Connect

    Ross, S.; Zentai, G.

    1998-12-31

    This paper presents results from the on-going efforts to characterize semiconductor thin films for direct X-ray conversion. The authors deposit these thin films onto an amorphous silicon (a-Si:H) readout array with the overall goal of developing a large area X-ray detector for protein crystallography, and for other X-ray imaging fields.

  2. Converting films for x-ray detectors, applied to amorphous silicon arrays.

    SciTech Connect

    Ross, S.; Zentai, G.

    1997-12-05

    This paper presents results from our on-going efforts to characterize semiconductor thin films for direct x-ray conversion. We deposit these thin films onto an amorphous silicon (a-Si:H) readout array with the overall goal of developing a large area x-ray detector for protein crystallography, and for other x-ray imaging fields.

  3. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    SciTech Connect

    Gruner, Sol

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  4. 20 element HgI sub 2 energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.A.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.); Patt, B.E. )

    1991-01-01

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K{sub a}) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  5. 20 element HgI{sub 2} energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.A.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J.; Hedman, B.; Hodgson, K.O.; Patt, B.E.

    1991-12-31

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20 element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K{sub a}) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken from diluted samples simulating proteins with nickel.

  6. X-ray source considerations in operation of digital detector arrays

    SciTech Connect

    Jensen, Terrence; Wendt, Scott

    2014-02-18

    Digital Detector Arrays (DDA) are increasingly replacing film in radiography applications. Standards exist for characterizing the performance of these detectors, and for using them in specific inspections. We have observed that the selection of the x-ray source to use with these detectors can also have a significant influence on the performance. We look at differences between standard, and micro-focus x-ray tubes, and end-window vs. side-window micro-focus tubes. We find that for best results, one must calibrate the DDA for the source settings used during an inspection. This is particularly true for variable-focus sources.

  7. X-ray Characterization of a Multichannel Smart-Pixel Array Detector

    SciTech Connect

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A.; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  8. 20-element HgI[sub 2] energy dispersive x-ray array detector system

    SciTech Connect

    Iwanczyk, J.S.; Dorri, N.; Wang, M.; Szczebiot, R.W.; Dabrowski, A.J. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.); Patt, B.E. )

    1992-10-01

    This paper describes recent progress in the development of HgI[sub 2] energy dispersive x-ray arrays and associated miniaturized processing electronics for synchrotron radiation research applications. The experimental results with a 20-element array detector were obtained under realistic synchrotron beam conditions at SSRL. An energy resolution of 250 eV (FWHM) at 5.9 keV (Mn-K[sub alpha]) was achieved. Energy resolution and throughput measurements versus input count rate and energy of incoming radiation have been measured. Extended X-ray Absorption Fine Structure (EXAFS) spectra were taken form diluted samples simulating proteins with nickel.

  9. Charge-coupled device/fiber optic taper array x-ray detector for protein crystallography

    SciTech Connect

    Naday, I.; Ross, S.; Westbrook, E.M.; Zentai, G.

    1998-04-01

    A large area charge-coupled device (CCD) based fiber optic taper array detector (APS-1) is installed at the insertion-device beamline of the Structural Biology Center at the Argonne Advanced Photon Source x-ray synchrotron. The detector is used in protein crystallography diffraction experiments, where the objective is to measure the position and intensity of x-ray Bragg peaks in diffraction images. Large imaging area, very high spatial resolution, high x-ray sensitivity, good detective quantum efficiency, low noise, wide dynamic range, excellent stability and short readout time are all fundamental requirements in this application. The APS-1 detector converts the 2-D x-ray patterns to visible light images by a thin layer of x-ray sensitive phosphor. The phosphor coating is directly deposited on the large ends of nine fiber optic tapers arranged in a 3{times}3 array. Nine, thermoelectrically cooled 1024{times}1024pixel CCDs image the patterns, demagnified by the tapers. After geometrical and uniformity corrections, the nine areas give a continuous image of the detector face with virtually no gaps between the individual tapers. The 18 parallel analog signal-processing channels and analog-to-digital converters ensure short readout time and low readout noise. We discuss the design and measured performance of the detector. {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}{ital Key words:} charge-coupled device; fiber optic taper; x-ray diffraction; crystallography; imaging detector. {copyright} {ital 1998} {ital Society of Photo-Optical Instrumentation Engineers}

  10. Implementation of digital multiplexing for high resolution X-ray detector arrays.

    PubMed

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We describe and demonstrate for the first time the use of the novel Multiple Module Multiplexer (MMMIC) for a 2×2 array of new electron multiplying charge coupled device (EMCCD) based x-ray detectors. It is highly desirable for x-ray imaging systems to have larger fields of view (FOV) extensible in two directions yet to still be capable of doing high resolution imaging over regions-of-interest (ROI). The MMMIC achieves these goals by acquiring and multiplexing data from an array of imaging modules thereby enabling a larger FOV, and at the same time allowing high resolution ROI imaging through selection of a subset of modules in the array. MMMIC also supports different binning modes. This paper describes how a specific two stage configuration connecting three identical MMMICs is used to acquire and multiplex data from a 2×2 array of EMCCD based detectors. The first stage contains two MMMICs wherein each MMMIC is getting data from two EMCCD detectors. The multiplexed data from these MMMICs is then forwarded to the second stage MMMIC in the similar fashion. The second stage that has only one MMMIC gives the final 12 bit multiplexed data from four modules. This data is then sent over a high speed Camera Link interface to the image processing computer. X-ray images taken through the 2×2 array of EMCCD based detectors using this two stage configuration of MMMICs are shown successfully demonstrating the concept.

  11. Charge-coupled-device/fiberoptic taper array x-ray detector for protein crystallography

    SciTech Connect

    Naday, I.; Ross, S.; Westbrook, E.M.; Zentai, G.

    1997-12-31

    A large area, charge-couple-device (CCD) based fiberoptic taper array detector (APS-1) has been installed at the insertion-device beamline of the Structural Biology Center at the ANL Advanced Photon Source. The detector is used in protein crystallography diffraction experiments, where the objective is to measure the position and intensity of X-ray Bragg peaks in diffraction images. Large imaging area, very high spatial resolution, high X-ray sensitivity, good detective quantum efficiency, low noise, wide dynamic range, excellent stability and short readout time are all fundamental requirements in this application. The APS-1 detector converts the two-dimensional X-ray patterns to a visible light images by a thin layer of X-ray sensitive phosphor. The phosphor coating is directly deposited on the large ends of nine fiberoptic tapers arranged in a 3 x 3 array. Nine, thermoelectrically cooled 1,024 x 1,024 pixel CCD`s image the patterns, demagnified by the tapers. After geometrical and uniformity corrections, the nine areas give a continuous image of the detector face with virtually no gaps between the individual tapers. The 18 parallel analog signal-processing channels and analog-to-digital converters assure short readout time and low readout noise.

  12. Charge-coupled-device/fiberoptic taper array X-ray detector for protein crystallography

    SciTech Connect

    Naday, I.; Ross, S.; Westbrook, E.M.; Zentai, G.

    1997-03-01

    A large area, charge-couple-device (CCD) based fiberoptic taper array detector (APS-1) has been installed at the insertion-device beamline of the Structural Biology Center at the ANL Advanced Photon Source. The detector is used in protein crystallography diffraction experiments, where the objective is to measure the position and intensity of X-ray Bragg peaks in diffraction images. Large imaging area, very high spatial resolution, high X-ray sensitivity, good detective quantum efficiency, low noise, wide dynamic range, excellent stability and short readout time are all fundamental requirements in this application. The APS-1 detector converts the two-dimensional X-ray patterns to a visible light images by a thin layer of X-ray sensitive phosphor. The phosphor coating is directly deposited on the large ends of nine fiberoptic tapers arranged in a 3x3 array. Nine, thermoelectrically cooled 1024 x 1024 pixel CCD`s image the patterns, demagnified by the tapers. After geometrical and uniformity corrections, the nine areas give a continuous image of the detector face with virtually no gaps between the individual tapers. The 18 parallel analog signal-processing channels and analog-to-digital converters assure short readout time and low readout noise.

  13. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    PubMed Central

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125

  14. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    DOE PAGES

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; ...

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less

  15. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    SciTech Connect

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.

  16. Development of a mercuric iodide detector array for in-vivo x-ray imaging

    SciTech Connect

    Patt, B.E.; Iwanczyk, J.S.; Tornai, M.P.; Levin, C.S.; Hoffman, E.J.

    1995-12-31

    A nineteen element mercuric iodide (HgI{sub 2}) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm{sup 2}) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm{sup 2}. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalk between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI{sub 2} x-ray detector with active area of about 3 mm{sup 2} and thickness of 500 {mu}m.

  17. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy

  18. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  19. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  20. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    SciTech Connect

    Sun, Cheng-Jun Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.

    2014-04-15

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  1. Three-dimensional modeling and inversion of x-ray pinhole detector arrays

    SciTech Connect

    Tritz, K.; Stutman, D.; Delgado-Aparicio, L.; Finkenthal, M.

    2006-10-15

    X-ray pinhole detectors are a common and useful diagnostic for high temperature and fusion-grade plasmas. While the measurements from such diagnostics are line integrated, local emission can be recovered by inverting or modeling the data using varying assumptions including toroidal symmetry, flux surface isoemissivity, and one-dimensional (1D) chordal lines of sight. This last assumption is often valid when the structure sizes and gradient scale lengths of interest are much larger than the spatial resolution of the detector elements. However, x-ray measurements of, for example, the strong gradients in the H-mode pedestal may require a full three-dimensional (3D) treatment of the detector geometry when the emission of the plasma has a significant variation within the field of view, especially in a high-triangularity, low aspect ratio plasma. Modeling of a high spatial resolution tangential edge array for NSTX has shown that a proper 3D treatment can improve the effective spatial resolution of the detector by 10%-40% depending on the modeled signal-to-noise ratio and gradient scale length. Results from a general treatment of arbitrary detector geometry will provide a guideline for the amount of systematic error that can be expected by a 1D versus 3D field of view analysis.

  2. Graphical User Interface for a Dual-Module EMCCD X-ray Detector Array.

    PubMed

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2011-03-16

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000× to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2k×1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  3. Graphical user interface for a dual-module EMCCD x-ray detector array

    NASA Astrophysics Data System (ADS)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  4. X-ray tests of a Pixel Array Detector for coherent x-ray imaging at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Koerner, L. J.; Philipp, H. T.; Hromalik, M. S.; Tate, M. W.; Gruner, S. M.

    2009-03-01

    Test results are presented of a pixel array detector (PAD) developed for x-ray imaging at the Stanford Linear Coherent Light Source (LCLS). The basic module of the PAD consists of two bump-bonded chips: a reverse-biased silicon diode chip of 185 × 194 pixels, each of which is coupled by bump-bonds to a charge integrating CMOS ASIC with digitization in each pixel. The LCLS experiment requires a high signal-to-noise ratio for detection of single 8 keV x-rays, a pixel full-well exceeding 1,000 8 keV x-rays, a frame-rate of 120 Hz, and the ability to handle the arrival of thousands of x-rays per pixel in tens of femtoseconds. Measurements have verified a pixel full-well value of 2,700 8 keV x-rays. Single 8 keV photon detection has been shown with a signal-to-noise ratio of >6. Line-spread response measurements confirmed charge spreading to be limited to nearest neighbor pixels. Modules still functioned after dosages up to 75 Mrad(Si) at the detector face. Work is proceeding to incorporate an array of modules into a large-area detector.

  5. A Comparison of DEF X-Ray Film and a Photodiode Array (Reticon) as Detectors for an X-Ray Crystal Spectrometer.

    PubMed

    Goodman, D A; Eason, R W; Shiwai, B; Allinson, N; Magorrian, B; Grande, M; Ridgley, A

    1989-01-01

    A crystal spectrometer with a photodiode array (PDA) detector was tested for a range of x-ray energies between 1 and 2 keV. A laser-produced plasma has been used as an x-ray source and was generated by the high-power (Vulcan) glass laser system at the SERC Rutherford Appleton Laboratory, UK. The performance of the array was directly compared with the response of Kodak DEF x-ray film. In order to compare quantitatively the performances of the PDA and the film, detective quantum efficiency (DQE) considerations are presented for both devices. It is demonstrated that the PDA has a useful dynamic range which is approximately seven times greater than that of film, a peak DQE of approximately six times that of film, and a greatly superior low-signal performance. The operational characteristics of the PDA are discussed.

  6. Two dimensional extensible array configuration for EMCCD-based solid state x-ray detectors

    NASA Astrophysics Data System (ADS)

    Sharma, P.; Swetadri Vasan, S. N.; Cartwright, A. N.; Titus, A. H.; Bednarek, D. R.; Rudin, S.

    2012-03-01

    We have designed and developed from the discrete component level a high resolution dynamic x-ray detector to be used for fluoroscopic and angiographic medical imaging. The heart of the detector is a 1024 ×1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm2 (Model CCD201-20, e2v Technologies, Inc.), bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm thick micro-columnar CsI(TI) scintillator via a fiber optic taper (FOT). Our aim is to design an array of these detectors that could be extended to any arbitrary X × Y size in two dimensions to provide a larger field of view (FOV). A physical configuration for a 3×3 array is presented that includes two major sub-systems. First is an optical front end that includes (i) a phosphor to convert the x-ray photons into light photons, and (ii) a fused array of FOTs that focuses light photons from the phosphor onto an array of EMCCD's optically coupled using FOPs. Second is an electronic front end that includes (i) an FPGA board used for generating clocks and for data acquisition (ii) driver boards to drive and digitize the analog output from the EMCCDs, (iii) a power board, and (iv) headboards to hold the EMCCD's while they are connected to their respective driver board using flex cables. This configuration provides a larger FOV as well as region-of-interest (ROI) high-resolution imaging as required by modern neurovascular procedures.

  7. A 2×2 array of EMCCD-based solid state x-ray detectors.

    PubMed

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We have designed and developed a new solid-state x-ray imaging system that consists of a 2×2 array of electron multiplying charge coupled devices (EMCCDs). This system is intended for fluoroscopic and angiographic medical imaging. The key components are the four 1024 × 1024 pixel EMCCDs with a pixel size of 13 × 13 µm(2). Each EMCCD is bonded to a fiber optic plate (FOP), and optically coupled to a 350 µm thick micro-columnar CsI(TI) scintillator via a 3.22∶1 fiber optic taper (FOT). The detector provides x-ray images of 9 line pairs/mm resolution at 15 frames/sec and real-time live video at 30 frames/sec with binning at a lower resolution, independent of the electronic gain applied to the EMCCD. The total field of view (FOV) of the array is 8.45 cm × 8.45 cm. The system is designed to also provide the ability to do region-of- interest imaging (ROI) by selectively enabling individual modules of the array.

  8. Development of mercuric iodide energy dispersive x-ray array detectors

    SciTech Connect

    Iwanczyk, J.S.; Warburton, W.K.; Dabrowski, A.J.; Hedman, B.; Hodgson, K.O.; Patt, B.E.

    1988-02-01

    There are various areas of synchrotron radiation research particularly Extended X-Ray Absorption Fine Structure (EXAFS) on dilute solutions and anomalous scattering, which would strongly benefit from the availability of energy dispersive detector arrays with high energy resolution and good spatial resolution. The goal of this development project is to produce high energy resolution mercuric iodide (HgI/sub 2/) detector sub-modules, consisting of several elements. These sub-modules can later be grouped into larger arrays of 100-400 elements. A prototype 5 element HgI/sub 2/ array detector was constructed and tested. Dimensions of each element were 7.3 mm x 0.7 mm. An energy resolution of 335 eV (FWHM) for Mn0K..cap alpha.. at 5.9 keV has been measured. The novel fiber-optic pulsed light feedback has been introduced into the charge preamplifiers in order to minimize electronic crosstalk between channels.

  9. Encapsulating X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Conley, Joseph M.; Bradley, James G.

    1987-01-01

    Vapor-deposited polymer shields crystals from environment while allowing X rays to pass. Polymer coating transparental to X rays applied to mercuric iodide detector in partial vacuum. Coating protects crystal from sublimation, chemical attack, and electrical degradation.

  10. Linear fitting of multi-threshold counting data with a pixel-array detector for spectral X-ray imaging

    PubMed Central

    Muir, Ryan D.; Pogranichney, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2014-01-01

    Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment. PMID:25178010

  11. The HgI sub 2 energy dispersive x-ray array detectors and minaturized processing electronics project

    SciTech Connect

    Iwanczyk, J.S.; Dorri, N.; Wang, M.; Szawlowski . Inst. of Physics); Patt, W.K. ); Hedman, B.; Hodgson, K.O. . Stanford Synchrotron Radiation Lab.)

    1990-04-01

    This paper describes recent progress in the development of HgI{sub 2} energy dispersive x-ray detector arrays for synchrotron radiation research and their associated miniaturized processing electronics. Deploying a 5 element HgI{sub 2} array detector under realistic operating conditions at SSRL, an energy resolution of 252 eV FWHM at 5.9 keV (Mn-K{alpha}) was obtained. The authors also report energy resolution and throughput measurements versus input count rate. The results from the HgI{sub 2} system are then compared to those obtained under identical conditions from a commercial 13 element Ge detector array.

  12. Preliminary results from a novel CdZnTe linear pad detector array x-ray imaging system

    SciTech Connect

    Peng, J.; Tuemer, T.O.; Petrini, B.M.; Kravis, S.D.; Yin, S.; Parnham, K.B.; Glick, B.; Willson, P.D.

    1996-12-31

    The excellent energy-resolution and short charge collection time, especially the possibility of room temperature operation, make CdZnTe semiconductor detectors an excellent candidate for x-ray imaging and spectroscopic application in nuclear physics. Because of these characteristics, CdZnTe pad detectors with a novel geometry and approximately 1 mm{sup 2} pad area have been developed. These pad type linear arrays are new and important for many scanning type applications using a wide energy range from about 10 to 300 keV energies. A prototype x-ray imaging system has been developed consisting of a state-of-the-art pad type linear array of CdZnTe detectors manufactured by eV Products and low noise readout electronics developed by NOVA R and D, Inc. A series of measurements on the temperature dependence of the performance of CdZnTe linear pad detector arrays has been performed at NOVA R and D, Inc. The changes in dark (leakage) current against temperature have been studied. High resolution x-ray spectra has been obtained using {sup 57}Co source at different temperatures. A low noise front-end electronics ASIC chip for reading out the detector array was developed that can achieve fast data acquisition with dual energy imaging capability. Several prototype CdZnTe pad detector arrays are placed next to each other to form an approximately 30 cm long linear array. This array is used to make preliminary dual energy scanned images of complex objects using a 90 kV x-ray generator. Some of the images will be presented. The results show that the system is excellent for applications in industrial and medical imaging.

  13. Development of a fast pixel array detector for use in microsecond time-resolved x-ray diffraction

    SciTech Connect

    Barna, S.L.; Gruner, S.M.; Shepherd, J.A.

    1995-08-01

    A large-area pixel x-ray detector is being developed to collect eight successive frames of wide dynamic range two-dimensional images at 200kHz rates. Such a detector, in conjunction with a synchrotron radiation x-ray source, will enable time-resolved x-ray studies of proteins and other materials on time scales which have previously been inaccessible. The detector will consist of an array of fully-depleted 150 micron square diodes connected to a CMOS integrated electronics layer with solder bump-bonding. During each framing period, the current resulting from the x-rays stopped in the diodes is integrated in the electronics layer, and then stored in one of eight storage capacitors underneath the pixel. After the last frame, the capacitors are read out at standard data transmission rates. The detector has been designed for a well-depth of at least 10,000 x-rays (at 20keV), and a noise level of one x-ray. Ultimately, the authors intend to construct a detector with over one million pixels (1024 by 1024). They present the results of their development effort and various features of the design. The electronics design is discussed, with special attention to the performance requirements. The choice and design of the detective diodes, as they relate to x-ray stopping power and charge collection, are presented. An analysis of various methods of bump bonding is also presented. Finally, the authors discuss the possible need for a radiation-blocking layer, to be placed between the electronics and the detective layer, and various methods they have pursued in the construction of such a layer.

  14. (55)Fe X-ray Response of HgCdTe NIR Detector Arrays

    NASA Technical Reports Server (NTRS)

    Fox, Ori; Rauscher, Bernard J.

    2008-01-01

    Conversion gain is a fundamental parameter in detector characteristics that is used to measure many identifying detector properties, including read noise, dark current, and quantum efficiency (QE). Charge coupling effects, such as inter-pixel capacitance, attenuate photon shot noise and result in an overestimation of of conversion gain when implementing the photon transfer technique. The (55)Fe X-ray technique is a direct and simple method by which to measure the conversion gain by comparing the observed instrumental counts (ADU) to the known charge (e-) liberated by a single X-ray photon. Here we present the calibrated pair production energy for 1.7 micron HgCdTe infrared detectors.

  15. Development of Multilayer Analyzer Array Detectors for X-ray Fluorescence at the Third Generation Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Rosenbaum, G.; Liu, R.; Liu, C.; Carmeli, C.; Bunker, G.; Fischer, D.

    2004-05-01

    The development of Multilayer Analyzer Array Detector (MAAD) for X-ray fluorescence eliminates the count rate limitation encountered with multi-element Ge detectors. A 24-element multilayer detector has been fabricated that is tunable in a large energy region. This detector has been operational for more than two years at the BioCAT Beamline of the Advanced Photon Source at Argonne National Laboratory. Here we report our recent progress in developing multilayer detectors working in lower energy regions, in particular, performance at Ca Kα fluorescence energy and test results at soft x-ray energies. The band width of the analyzer response is found to be 3-4% of the fluorescence energy. Namely, at the Ca Kα energy, the band width is 140 eV; it is reduced to about 60 eV at Al Kα fluorescence energy. The throughput of the detector in this energy region (1.5-3.6 KeV) is 20% to 30%. These results demonstrate the feasibility for constructing multilayer analyzer array detectors for use in the soft x-ray region.

  16. Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Busch, S. E.; Yoon, W. S.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Sultana, M.

    2016-07-01

    For future X-ray observatories utilizing transition-edge sensor (TES) microcalorimeters, an anti-coincidence detector (anti-co) is required to discriminate X-ray (˜ 0.1-10 keV) signals from non-X-ray background events, such as ionizing particles. We have developed a prototype anti-co that utilizes TESs, which will be compatible with the TES focal-plane arrays planned for future X-ray observatories. This anti-co is based upon the cryogenic dark matter search II detector design. It is a silicon wafer covered with superconducting collection fins and TES microcalorimeters. Minimum ionizing particles deposit energy while passing through the silicon. The athermal phonons produced by these events are absorbed in the superconducting fins, breaking Cooper pairs. The resulting quasiparticles diffuse along the superconducting fin, producing a signal when they reach the TES. By determining a correlation between detections in the anti-co and the X-ray detector one can identify and flag these background events. We have fabricated and tested a single-channel prototype anti-co device on a 1.5 × 1.9 cm^2 chip. We have measured the signals in this device from photons of several energies between 1.5 and 60 keV, as well as laboratory background events, demonstrating a threshold ˜ 100 times lower than is needed to detect minimum ionizing particles.

  17. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror

    SciTech Connect

    Minami, R. Imai, T.; Kariya, T.; Numakura, T.; Eguchi, T.; Kawarasaki, R.; Nakazawa, K.; Kato, T.; Sato, F.; Nanzai, H.; Uehara, M.; Endo, Y.; Ichimura, M.

    2014-11-15

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  18. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror

    NASA Astrophysics Data System (ADS)

    Minami, R.; Imai, T.; Kariya, T.; Numakura, T.; Eguchi, T.; Kawarasaki, R.; Nakazawa, K.; Kato, T.; Sato, F.; Nanzai, H.; Uehara, M.; Endo, Y.; Ichimura, M.

    2014-11-01

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  19. Spectral Resolution for Five-Element, Filtered, X-Ray Detector (XRD) Arrays Using the Methods of Backus and Gilbert

    SciTech Connect

    FEHL,DAVID LEE; BIGGS,F.; CHANDLER,GORDON A.; STYGAR,WILLIAM A.

    2000-01-17

    The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ({le}2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model.

  20. A low power X-ray diffractometer for soil analysis in remote locations employing a multiwire proportional counter detector array.

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Parnell, T. A.

    1972-01-01

    A low power X-ray powder diffraction system suitable for remote mineralogical analysis of lunar, planetary, or asteroid soils has been designed. A one Curie Fe-55 source provides a monochromatic X-ray beam of 5.9 keV. Seeman-Bohlin focusing geometry is employed in the camera, allowing peak detection to proceed simultaneously at all angles and obviating the need for moving parts. The detector system is an array of 500-600 proportional counters with a wire-spacing of 1 mm. An electronics unit comprising preamplifier, postamplifier, window discriminators, and storage flip-flops requiring only 3.5 milliwatts has been designed and tested. Total instrument power is less than 5 W.

  1. The development and test of multi-anode microchannel array detector systems. Part 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    Detector systems based on the high gain microchannel plate (MCP) electron multiplier were used extensively for imaging at soft X-ray wavelengths both on the ground and in space. The latest pulse counting electronic readout systems provide zero readout noise, spatial resolutions (FWHM) of 25 microns or better and can determine the arrival times of detected photons to an accuracy of the order of 100 ns. These systems can be developed to produce detectors with active areas of 100 nm in diameter or greater. The use of CsI photocathodes produces very high detective quantum efficiencies at wavelengths between about 100 and 1A (approximately 0.1 to 10 keV) with moderate energy resolution. The operating characteristics of the different types of soft X-ray MCP detector systems are described and the prospects for future developments are discussed.

  2. Local polarization phenomena in In-doped CdTe x-ray detector arrays

    SciTech Connect

    Sato, Toshiyuki; Sato, Kenji; Ishida, Shinichiro; Kiri, Motosada; Hirooka, Megumi; Yamada, Masayoshi; Kanamori, Hitoshi

    1995-10-01

    Local polarization phenomena have been studied in detector arrays with the detector element size of 500 {micro}m x 500 {micro}m, which are fabricated from high-resistivity In-doped CdTe crystals grown by the vertical Bridgman technique. It has been found for the first time that a polarization effect, which is characterized by a progressive decrease of the pulse counting rate with increasing photon fluence, strongly depends on the detector elements, that is, the portion of crystals used. The influence of several parameters, such as the applied electric field strength, time, and temperature, on this local polarization effect is also investigated. From the photoluminescence measurements of the inhomogeneity of In dopant, it is concluded that the local polarization effect observed here originates from a deep level associated with In dopant in CdTe crystals.

  3. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  4. Microgap x-ray detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  5. Development of a CCD array as an imaging detector for advanced X-ray astrophysics facilities

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.

    1981-01-01

    The development of a charge coupled device (CCD) X-ray imager for a large aperture, high angular resolution X-ray telescope is discussed. Existing CCDs were surveyed and three candidate concepts were identified. An electronic camera control and computer interface, including software to drive a Fairchild 211 CCD, is described. In addition a vacuum mounting and cooling system is discussed. Performance data for the various components are given.

  6. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  7. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Chen, Wei

    2014-11-01

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  8. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research

    SciTech Connect

    Warburton, William K

    2009-03-06

    Superconducting tunnel junction (STJ) detectors offer a an approach to detecting soft x-rays with energy resolutions 4-5 times better and at rates 10 faster than traditions semiconductor detectors. To make such detectors feasible, however, then need to be deployed in large arrays of order 1000 detectors, which in turn implies that their processing electronics must be compact, fully computer controlled, and low cost per channel while still delivering ultra-low noise performance so as to not degrade the STJ's performance. We report on our progress in designing a compact, low cost preamplifier intended for this application. In particular, we were able to produce a prototype preamplifier of 2 sq-cm area and a parts cost of less than $30 that matched the energy resolution of the best conventional system to date and demonstrated its ability to acquire an STJ I-V curve under computer control, the critical step for determining and setting the detectors' operating points under software control.

  9. Soft x-ray detection with diamond photoconductive detectors

    SciTech Connect

    Kania, D.R.; Pan, L.; Kornblum, H.; Bell, P.; Landen, O.N.; Pianetta, P.

    1990-05-04

    Photoconductive detectors fabricated from natural lla diamonds have been used to measure the x-ray power emitted from laser produced plasmas. The detector was operated without any absorbing filters to distort the x-ray power measurement. The 5.5 eV bandgap of the detector material practically eliminates its sensitivity to scattered laser radiation thus permitting filterless operation. The detector response time or carrier life time was 90 ps. Excellent agreement was achieved between a diamond PCD and a multichannel photoemissive diode array in the measurement of radiated x-ray power and energy. 4 figs.

  10. Advanced mercuric iodide detectors for X-ray microanalysis

    SciTech Connect

    Warburton, W.K.; Iwanczyk, J.S.

    1987-01-01

    We first present a brief tutorial on Mercuric Iodide (HgI/sub 2/) detectors and the intimately related topic of near-room temperature ultralow noise preamplifiers. This provides both a physical basis and technological perspective for the topics to follow. We next describe recent advances in HgI/sub 2/ applications to x-ray microanalysis, including a space probe Scanning Electron Microscope (SEM), Synchrotron x-ray detectors, and energy dispersive detector arrays. As a result of this work, individual detectors can now operate stably for long periods in vacuum, detect soft x-rays to the oxygen K edge at 523 eV, or count at rates exceeding 2x10(5)/sec. The detector packages are small, lightweight, and use low power. Preliminary HgI/sub 2/ detector arrays of 10 elements with 500eV resolution have also been constructed and operate stably. Finally, we discuss expected advances in HgI/sub 2/ array technology, including improved resolution, vacuum operation, and the development of soft x-ray transparent encapsulants. Array capabilities include: large active areas, high (parallel) count rate capability and spatial sensitivity. We then consider areas of x-ray microanalysis where the application of such arrays would be advantageous, particularly including elemental microanalysis, via x-ray fluorescence spectroscopy, in both SEMs and in scanning x-ray microscopes. The necessity of high count rate capability as spatial resolution increases is given particular attention in this connection. Finally, we consider the possibility of Extended X-ray Absorption Fine Structure (EXAFS) studies on square micron sized areas, using detector arrays.

  11. Direct x-ray sensing CCD array for intraoral dental x-ray imaging system

    NASA Astrophysics Data System (ADS)

    Cox, John D.; Williams, Donald W.; Langford, D. S.

    1994-05-01

    A commercial prototype electronic intraoral dental x-ray imaging system employing a direct sensing CCD array has been developed. Image quality parameters were measured using x-ray sources at the National Institute of Standard and Technology radiation physical department in Gaithersburg, MD. Detector response to x-rays in the 10 to 70 keV energy range was measured. The beam hardening effects of human anatomy on a typical 70 kVp spectra was measured using a tissue-equivalent dental phantom.

  12. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  13. Development of high resolution imaging detectors for x ray astronomy

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Schwartz, D. A.

    1992-01-01

    This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode.

  14. Characterization of CdTe sensors with Schottky contacts coupled to charge-integrating pixel array detectors for X-ray science

    NASA Astrophysics Data System (ADS)

    Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Ruff, J. P. C.; Gruner, S. M.

    2016-12-01

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we present characterizations of CdTe sensors hybridized with two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods < 150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/pixel/frame while framing at 1 kHz. Both detector chips consist of a 128 × 128 pixel array with (150 μm)2 pixels.

  15. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    PubMed Central

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W.; Szczygiel, Robert; Sandy, Alec

    2016-01-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed. PMID:27140146

  16. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    DOE PAGES

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; ...

    2016-01-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. As a result, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  17. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    SciTech Connect

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W.; Szczygiel, Robert; Sandy, Alec

    2016-01-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. As a result, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  18. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  19. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect

    Grudberg, Peter Matthew

    2013-04-30

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with

  20. High accuracy gaseous x-ray detectors

    SciTech Connect

    Smith, G.C.

    1983-11-01

    An outline is given of the design and operation of high accuracy position-sensitive x-ray detectors suitable for experiments using synchrotron radiation. They are based on the gas proportional detector, with position readout using a delay line; a detailed examination is made of factors which limit spatial resolution. Individual wire readout may be used for extremely high counting rates.

  1. Development of a Silicon Drift Detector Array: An X-Ray Fluorescence Spectrometer for Remote Surface Mapping

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Carini, Gabriella A.; Wei, Chen; Elsner, Ronald F.; Kramer, Georgiana; De Geronimo, Gianluigi; Keister, Jeffrey W.; Zheng, Li; Ramsey, Brian D.; Rehak, Pavel; Siddons, D. Peter

    2009-01-01

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  2. X-Ray Detector Simulations - Oral Presentation

    SciTech Connect

    Tina, Adrienne

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they must first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.

  3. X-ray grid-detector apparatus

    DOEpatents

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  4. First results of a novel Silicon Drift Detector array designed for low energy X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Rachevski, Alexandre; Ahangarianabhari, Mahdi; Bellutti, Pierluigi; Bertuccio, Giuseppe; Brigo, Elena; Bufon, Jernej; Carrato, Sergio; Castoldi, Andrea; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Gianoncelli, Alessandra; Giuressi, Dario; Guazzoni, Chiara; Kourousias, George; Liu, Chang; Menk, Ralf Hendrik; Montemurro, Giuseppe Vito; Picciotto, Antonino; Piemonte, Claudio; Rashevskaya, Irina; Shi, Yongbiao; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-07-01

    We developed a trapezoidal shaped matrix with 8 cells of Silicon Drift Detectors (SDD) featuring a very low leakage current (below 180 pA/cm2 at 20 °C) and a shallow uniformly implanted p+ entrance window that enables sensitivity down to few hundreds of eV. The matrix consists of a completely depleted volume of silicon wafer subdivided into 4 square cells and 4 half-size triangular cells. The energy resolution of a single square cell, readout by the ultra-low noise SIRIO charge sensitive preamplifier, is 158 eV FWHM at 5.9 keV and 0 °C. The total sensitive area of the matrix is 231 mm2 and the wafer thickness is 450 μm. The detector was developed in the frame of the INFN R&D project ReDSoX in collaboration with FBK, Trento. Its trapezoidal shape was chosen in order to optimize the detection geometry for the experimental requirements of low energy X-ray fluorescence (LEXRF) spectroscopy, aiming at achieving a large detection angle. We plan to exploit the complete detector at the TwinMic spectromicroscopy beamline at the Elettra Synchrotron (Trieste, Italy). The complete system, composed of 4 matrices, increases the solid angle coverage of the isotropic photoemission hemisphere about 4 times over the present detector configuration. We report on the layout of the SDD matrix and of the experimental set-up, as well as the spectroscopic performance measured both in the laboratory and at the experimental beamline.

  5. Neutron and X-ray Detectors

    SciTech Connect

    Carini, Gabriella; Denes, Peter; Gruener, Sol; Lessner, Elianne

    2012-08-01

    The Basic Energy Sciences (BES) X-ray and neutron user facilities attract more than 12,000 researchers each year to perform cutting-edge science at these state-of-the-art sources. While impressive breakthroughs in X-ray and neutron sources give us the powerful illumination needed to peer into the nano- to mesoscale world, a stumbling block continues to be the distinct lag in detector development, which is slowing progress toward data collection and analysis. Urgently needed detector improvements would reveal chemical composition and bonding in 3-D and in real time, allow researchers to watch “movies” of essential life processes as they happen, and make much more efficient use of every X-ray and neutron produced by the source The immense scientific potential that will come from better detectors has triggered worldwide activity in this area. Europe in particular has made impressive strides, outpacing the United States on several fronts. Maintaining a vital U.S. leadership in this key research endeavor will require targeted investments in detector R&D and infrastructure. To clarify the gap between detector development and source advances, and to identify opportunities to maximize the scientific impact of BES user facilities, a workshop on Neutron and X-ray Detectors was held August 1-3, 2012, in Gaithersburg, Maryland. Participants from universities, national laboratories, and commercial organizations from the United States and around the globe participated in plenary sessions, breakout groups, and joint open-discussion summary sessions. Sources have become immensely more powerful and are now brighter (more particles focused onto the sample per second) and more precise (higher spatial, spectral, and temporal resolution). To fully utilize these source advances, detectors must become faster, more efficient, and more discriminating. In supporting the mission of today’s cutting-edge neutron and X-ray sources, the workshop identified six detector research challenges

  6. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  7. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  8. Thermal detectors as X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Mather, J. C.; Mccammon, D.

    1984-01-01

    Sensitive thermal detectors should be useful for measuring very small energy pulses, such as those produced by the absorption of X-ray photons. The measurement uncertainty can be very small, making the technique promising for high resolution nondispersive X-ray spectroscopy. The limits to the energy resolution of such thermal detectors are derived and used to find the resolution to be expected for a detector suitable for X-ray spectroscopy in the 100 eV to 10,000 eV range. If there is no noise in the thermalization of the X-ray, resolution better than 1 eV full width at half maximum is possible for detectors operating at 0.1 K. Energy loss in the conversion of the photon energy to heat is a potential problem. The loss mechanisms may include emission of photons or electrons, or the trapping of energy in long lived metastable states. Fluctuations in the phonon spectrum could also limit the resolution if phonon relaxation times are very long. Conceptual solutions are given for each of these possible problems.

  9. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  10. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  11. Quantified, multi-scale X-ray fluorescence element mapping using the Maia detector array: application to mineral deposit studies

    NASA Astrophysics Data System (ADS)

    Fisher, Louise A.; Fougerouse, Denis; Cleverley, James S.; Ryan, Christopher G.; Micklethwaite, Steven; Halfpenny, Angela; Hough, Robert M.; Gee, Mary; Paterson, David; Howard, Daryl L.; Spiers, Kathryn

    2015-08-01

    The Maia large solid-angle detector array and imaging system is capable of collecting high-resolution images of up to ˜100 M pixels in size with dwell times of less than 0.2 ms per pixel and thus it is possible to document variation in textures associated with trace element chemistry by collecting quantified elemental maps of geological samples on the scale of entire thin sections in a short time frame (6-8 hr). The analysis is nondestructive and allows variation to be recognised on a centimetre scale while also recognising zonations at the micron scale.

  12. Characterization and error analysis of an N×N unfolding procedure applied to filtered, photoelectric x-ray detector arrays. I. Formulation and testing

    NASA Astrophysics Data System (ADS)

    Fehl, D. L.; Chandler, G. A.; Stygar, W. A.; Olson, R. E.; Ruiz, C. L.; Hohlfelder, J. J.; Mix, L. P.; Biggs, F.; Berninger, M.; Frederickson, P. O.; Frederickson, R.

    2010-12-01

    An algorithm for spectral reconstructions (unfolds) and spectrally integrated flux estimates from data obtained by a five-channel, filtered x-ray-detector array (XRD) is described in detail and characterized. This diagnostic is a broad-channel spectrometer, used primarily to measure time-dependent soft x-ray flux emitted by z-pinch plasmas at the Z pulsed-power accelerator (Sandia National Laboratories, Albuquerque, New Mexico, USA), and serves as both a plasma probe and a gauge of accelerator performance. The unfold method, suitable for online analysis, arises naturally from general assumptions about the x-ray source and spectral properties of the channel responses; a priori constraints control the ill-posed nature of the inversion. The unfolded spectrum is not assumed to be Planckian. This study is divided into two consecutive papers. This paper considers three major issues: (a) Formulation of the unfold method.—The mathematical background, assumptions, and procedures leading to the algorithm are described: the spectral reconstruction Sunfold(E,t)—five histogram x-ray bins j over the x-ray interval, 137≤E≤2300eV at each time step t—depends on the shape and overlap of the calibrated channel responses and on the maximum electrical power delivered to the plasma. The x-ray flux Funfold is estimated as ∫Sunfold(E,t)dE. (b) Validation with simulations.—Tests of the unfold algorithm with known static and time-varying spectra are described. These spectra included—but were not limited to—Planckian spectra Sbb(E,T) (25≤T≤250eV), from which noise-free channel data were simulated and unfolded. For Planckian simulations with 125≤T≤250eV and typical responses, the binwise unfold values Sj and the corresponding binwise averages ⟨Sbb⟩j agreed to ˜20%, except where Sbb≪max⁡{Sbb}. Occasionally, unfold values Sj≲0 (artifacts) were encountered. The algorithm recovered ≳90% of the x-ray flux over the wider range, 75≤T≤250eV. For lower T, the

  13. Silicon Absolute X-Ray Detectors

    SciTech Connect

    Seely, John F.; Korde, Raj; Sprunck, Jacob; Medjoubi, Kadda; Hustache, Stephanie

    2010-06-23

    The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

  14. Fluorescence X-ray absorption spectroscopy using a Ge pixel array detector: application to high-temperature superconducting thin-film single crystals.

    PubMed

    Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A

    2006-07-01

    A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.

  15. Burst Detector X-Ray IIR

    SciTech Connect

    1998-02-01

    The Burst Detector X-Ray (BDX) instrument for the Block IIR series of Global Positioning System satellites is described. The BDX instrument can locate and characterize exoatmospheric nuclear detonations by using four sensors consisting of sets of filters over silicon diodes to detect x rays of various energies from the burst. On the BDX-IIR, a fifth sensor with a response spanning those of the other sensors confirms coincidences among the four main channels. The mechanical and electronic features of the BDX-IIR and its sensors are described. The calibrations and the system tests used in flight are presented. The commands for the BDX-IIR are given. The messages sent from the BDX-IIR are described in detail.

  16. Large Imaging X-ray MKID Arrays for Astrophysics

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin

    Microwave Kinetic Inductance Detectors, or MKIDs, are a relatively new type of superconducting detector with built-in frequency domain multiplexing (FDM). Like Transition Edge Sensors (TESs), MKIDs can count single X-ray photons over a wide energy range and determine their energy and arrival time. Unlike TESs, MKIDs allow very large pixel counts with a fairly simple room temperature readout. MKIDs currently are being used for submillimeter/millimeter and optical/UV astronomy. They are a mature technology, and our group has recently demonstrated very promising X-ray MKIDs. The uncertain state of future NASA X-ray missions makes fundamental detector research even more important. New detector capabilities are one of the best ways to increase mission performance without increasing cost. We propose to continue our existing ROSES-funded program to develop X-ray MKIDs with the ultimate goal of developing large, sensitive focal plane arrays for future X-ray missions. In particular, we will focus on making a hybrid array with a core of high count rate, high energy resolution single pixels, and a very large (up to 50 mm x 50 mm, megapixel or larger) extended array with a moderate 5-15 eV energy resolution R=E/FWHM(E) at 6 keV. For the single pixel core of the array we propose a new type of "calorimetric" MKID that uses the temperature rise of a membrane suspended MKID and absorber, very similar in design to the TES detectors that have achieved an energy resolution of 1.8 eV at 5.9 keV. For the outer array the ability of absorber-coupled MKIDs to trap quasiparticles in a lower gap material allows the separation of the function of photon absorption from detection, and also allows distributed "strip detector/DROID" configurations that can drastically increase the size of the arrays. MKID arrays using rectangular 2-D detectors could quickly reach megapixel pixel counts and cover 25 cm^2. The science potential of a CCD-scale array but with 10-20 times better energy resolution is

  17. Small pixel CZT detector for hard X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C.

    2011-10-01

    A new small pixel cadmium zinc telluride (CZT) detector has been developed for hard X-ray spectroscopy. The X-ray performance of four detectors is presented and the detectors are analysed in terms of the energy resolution of each pixel. The detectors were made from CZT crystals grown by the travelling heater method (THM) bonded to a 20×20 application specific integrated circuit (ASIC) and data acquisition (DAQ) system. The detectors had an array of 20×20 pixels on a 250 μm pitch, with each pixel gold-stud bonded to an energy resolving circuit in the ASIC. The DAQ system digitised the ASIC output with 14 bit resolution, performing offset corrections and data storage to disc in real time at up to 40,000 frames per second. The detector geometry and ASIC design was optimised for X-ray spectroscopy up to 150 keV and made use of the small pixel effect to preferentially measure the electron signal. A 241Am source was used to measure the spectroscopic performance and uniformity of the detectors. The average energy resolution (FWHM at 59.54 keV) of each pixel ranged from 1.09±0.46 to 1.50±0.57 keV across the four detectors. The detectors showed good spectral performance and uniform response over almost all pixels in the 20×20 array. A large area 80×80 pixel detector will be built that will utilise the scalable design of the ASIC and the large areas of monolithic spectroscopic grade THM grown CZT that are now available. The large area detector will have the same performance as that demonstrated here.

  18. Fabrication of an X-Ray Imaging Detector

    NASA Technical Reports Server (NTRS)

    Alcorn, G. E.; Burgess, A. S.

    1986-01-01

    X-ray detector array yields mosaic image of object emitting 1- to 30-keV range fabricated from n-doped silicon wafer. In proposed fabrication technique, thin walls of diffused n+ dopant divide wafer into pixels of rectangular cross section, each containing central electrode of thermally migrated p-type metal. This pnn+ arrangement reduces leakage current by preventing transistor action caused by pnp structure of earlier version.

  19. Image acquisition, geometric correction and display of images from a 2×2 x-ray detector array based on Electron Multiplying Charge Coupled Device (EMCCD) technology.

    PubMed

    Vasan, S N Swetadri; Sharma, P; Ionita, Ciprian N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2013-03-06

    A high resolution (up to 11.2 lp/mm) x-ray detector with larger field of view (8.5 cm × 8.5 cm) has been developed. The detector is a 2 × 2 array of individual imaging modules based on EMCCD technology. Each module outputs a frame of size 1088 × 1037 pixels, each 12 bits. The frames from the 4 modules are acquired into the processing computer using one of two techniques. The first uses 2 CameraLink communication channels with each carrying information from two modules, the second uses a application specific custom integrated circuits, the Multiple Module Multiplexer Integrated Circuit (MMMIC), 3 of which are used to multiplex the data from 4 modules into one CameraLink channel. Once the data is acquired using either of the above mentioned techniques, it is decoded in the graphics processing unit (GPU) to form one single frame of size 2176 × 2074 pixels each 16 bits. Each imaging module uses a fiber optic taper coupled to the EMCCD sensor. To correct for mechanical misalignment between the sensors and the fiber optic tapers and produce a single seamless image, the images in each module may be rotated and translated slightly in the x-y plane with respect to each other. To evaluate the detector acquisition and correction techniques, an aneurysm model was placed over an anthropomorphic head phantom and a coil was guided into the aneurysm under fluoroscopic guidance using the detector array. Image sequences before and after correction are presented which show near-seamless boundary matching and are well suited for fluoroscopic imaging.

  20. X-Ray Detector Research at MSFC for Space Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica

    2006-01-01

    NASA's Vision for Space Exploration has specific goals aimed at exploring the Solar System. This vision, under presidential mandate includes landing humans on the moon before the end of the next decade, paving the way for eventual journeys to Mars and beyond. The first missions to the moon will be in the form of both Orbiters and Landers, with the goal of paving the way for human return. One of the instruments we are currently working on,in collaboration with Brookhaven National Laboratory, is a lunar orbiter fluorescent x-ray spectrometer to finely map the light elements (down to Carbon) on surface of the moon. Funded NASA s Planetary Instrument Definition and Development Program the instrument is based on silicon drift detector arrays read out by custom ASICs. These offer the promise of high spectral resolution, necessary for resolving weak lines against a strong background continuum, and very low power requirements, necessary for large areas (greater than 500 square centimeters) required for future lunar missions. Further, the inherent radiation hardness of these detectors makes them ideal candidates for exploring the Jovian system, where the harsh radiation environment from Jupiter s radiation belts creates unfavorable detector conditions. Looking beyond our solar system, in the hard x-ray regime (20-80keV.), we are studying Cadmium-Zinc-Telluride pixilated detectors as feasible candidates for focal plane detectors of a hard x-ray telescope. This energy region bridges the gap between thermal and non-thermal x-ray emission from astronomical sources, will allow us to better understand supernovae nucleosynthesis (such as through the Ti-44 lines at 68keV and 78keV), Active Galactic Nuclei and other compact objects, more completely. The detectors that we are characterizing are 2mm in thickness and are pixilated with a 16x16 array of 300 micrometer pitch pixels (50micometer gap). These detectors are designed at Rutherford Appleton Laboratory, material is from e

  1. Deep diode arrays for X-ray detection

    NASA Technical Reports Server (NTRS)

    Zemel, J. N.

    1984-01-01

    Temperature gradient zone melting process was used to form p-n junctions in bulk of high purity silicon wafers. These diodes were patterned to form arrays for X-ray spectrometers. The whole fabrication processes for these X-ray detectors are reviewed in detail. The p-n junctions were evaluated by (1) the dark diode I-V measurements, (2) the diode C sub I - V measurements, and (3) the MOS C-V measurements. The results showed that these junctions were linearly graded in charge distribution with low reverse bias leakage current flowing through them (few nA at -10 volts). The X-ray detection experiments showed that an FWHM of 500 eV was obtained from these diodes with a small bias of just -5 volts (for X-ray source Fe55). A theoretical model was proposed to explain the extra peaks found in the energy spectra and a very interesting point - cross talk effect was pointed out. This might be a solution to the problem of making really high resolution X-ray spectrometers.

  2. Determination of radial location of rotating magnetic islands by use of poloidal soft x-ray detector arrays in the STOR-M tokamak.

    PubMed

    Dreval, M; Xiao, C; Elgriw, S; Trembach, D; Wolfe, S; Hirose, A

    2011-05-01

    A technique is presented for determining the radial location of the rotating magnetic islands in the STOR-M tokamak by use of soft x-ray (SXR) detector arrays. The location is determined by examining the difference in the integrated SXR emission intensities through two adjacent lines of sight. A model for calculating dependence of the line integrated SXR emission intensity on the radius, the mode numbers and the magnetic island geometry, has been developed. The SXR difference signal shows phase inversion when the impact parameter of the line of sight sweeps across the magnetic islands. Experimentally, the difference SXR signals significantly reduce noise and suppress the influence of background plasma fluctuations through common mode rejection when a dominant mode exists in the STOR-M tokamak. The radial locations of the m = 2 magnetic islands have been determined under several experimental conditions in the STOR-M discharges. With the decrease in the tokamak discharge current and thus the increase of the safety factor at the edge, the radial location of the m = 2 magnetic islands has been found to move radially inward.

  3. Development of mercuric iodide uncooled x ray detectors and spectrometers

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1990-01-01

    The results obtained in the development of miniature, lowpower, light weight mercuric iodide, HgI2, x ray spectrometers for future space missions are summarized. It was demonstrated that HgI2 detectors can be employed in a high resolution x ray spectrometer, operating in a scanning electron microscope. Also, the development of HgI2 x ray detectors to augment alpha backscattering spectrometers is discussed. These combination instruments allow for the identification of all chemical elements, with the possible exception of hydrogen, and their respective concentrations. Additionally, further investigations of questions regarding radiation damage effects in the HgI2 x ray detectors are reported.

  4. Small area silicon diffused junction x-ray detectors

    SciTech Connect

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm/sup 2/ and a thickness of 100 ..mu..m. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150/sup 0/K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs.

  5. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  6. Performance of an X-ray imaging detector based on a structured scintillator

    NASA Astrophysics Data System (ADS)

    Svenonius, Olof; Sahlholm, Anna; Wiklund, Per; Linnros, Jan

    2009-08-01

    Structured scintillator plates have been fabricated by filling thallium-doped caesium iodide (CsI) into a silicon pore array. Their X-ray imaging properties have been characterized using a standard dental X-ray source and a charge coupled device (CCD) detector. Results indicate that finer structured pore arrays provide superior imaging resolution while their light output is lower. Direct absorption of X-ray quanta in the CCD is a significant contributor of detector noise. This can be avoided by using a thick fibre optic plate or, in certain cases, by using a hot-pixel software algorithm.

  7. Microwave Kinetic Inductance Detectors: Large Format X-ray Spectral Imagers for the Next Generation of X-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Eckart, Megan E.; Mazin, B. A.; Bumble, B.; Golwala, S. R.; Zmuidzinas, J.; Day, P. K.; Harrison, F. A.

    2006-09-01

    Microwave Kinetic Inductance Detectors (MKIDs) have the potential to provide megapixel imagers with few eV spectral resolution for future X-ray missions such as Gen-X. MKIDs offer the advantage over many other cryogenic detector technologies that they can be easily multiplexed, so that arrays with many thousand pixels are readily achievable. In addition, the readout electronics can be operated at room temperature, a significant advantage for space applications. MKIDs exploit the dependence of surface impedance of a superconductorwith the quasiparticle density. Quasiparticles are created by absorption of X-rays, with number proportional to the X-ray energy. The impedance change may be sensitively measured using a thin-film resonant circuit. The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. To apply the MKID scheme to X-ray detection we pattern tantalum strips with aluminum MKIDs attached at each end. An incident X-ray is absorbed in the Ta and creates millions of quasiparticle excitations, which diffuse to each end of the strip, finally entering the Al resonators where they are trapped and sensed. Simultaneous monitoring of the signal at both ends of the strip allow position and energy determination for each photon. We have demonstrated working strip detectors in the laboratory, and will present our measurements of the quasiparticle diffusion constant and the quasiparticle lifetime in tantalum, the aluminum quasiparticle lifetime, and the energy resolution of the detector. We will also discuss ideas for future detector designs and suggest ultimate performance goals for X-ray astronomy applications.

  8. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  9. Flexible amorphous silicon PIN diode x-ray detectors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael; Bawolek, Edward; Smith, Joseph T.; Raupp, Gregory B.; Morton, David

    2013-05-01

    A low temperature amorphous silicon (a-Si) thin film transistor (TFT) and amorphous silicon PIN photodiode technology for flexible passive pixel detector arrays has been developed using active matrix display technology. The flexible detector arrays can be conformed to non-planar surfaces with the potential to detect x-rays or other radiation with an appropriate conversion layer. The thin, lightweight, and robust backplanes may enable the use of highly portable x-ray detectors for use in the battlefield or in remote locations. We have fabricated detector arrays up to 200 millimeters along the diagonal on a Gen II (370 mm x 470 mm rectangular substrate) using plasma enhanced chemical vapor deposition (PECVD) a-Si as the active layer and PECVD silicon nitride (SiN) as the gate dielectric and passivation. The a-Si based TFTs exhibited an effective saturation mobility of 0.7 cm2/V-s, which is adequate for most sensing applications. The PIN diode material was fabricated using a low stress amorphous silicon (a-Si) PECVD process. The PIN diode dark current was 1.7 pA/mm2, the diode ideality factor was 1.36, and the diode fill factor was 0.73. We report on the critical steps in the evolution of the backplane process from qualification of the low temperature (180°C) TFT and PIN diode process on the 150 mm pilot line, the transfer of the process to flexible plastic substrates, and finally a discussion and demonstration of the scale-up to the Gen II (370 x 470 mm) panel scale pilot line.

  10. Silicon carbide X-ray detectors for planetary exploration

    NASA Astrophysics Data System (ADS)

    Lees, J. E.; Bassford, D. J.; Bunce, E. J.; Sims, M. R.; Horsfall, A. B.

    2009-06-01

    Planetary exploration places high demands on instrumentation and presents some of the harshest operating environments and constraints known, including extreme thermal conditions, high-radiation tolerance and the need for low mass and power. We present data on a novel X-ray detector, the Semi-Transparent SiC Schottky Diode (STSSD), which shows promising energy resolution (1.3 keV Full-Width Half-Maximum at 5.9 keV) at room temperature and good radiation tolerance to proton irradiation (with a dose of ˜1013 cm-2, energy ˜50 MeV) with some degradation in resolution to 2.5 keV. Future development of SiC detectors will lead, in principle, to X-ray imaging spectroscopic arrays capable of meeting the stringent demands of future planetary exploration missions. We outline the detector requirements necessary for use in the environment likely to be encountered in a mission to the Jovian system, which has the harshest radiation environment of all the planetary magnetospheres.

  11. Magnetically-coupled microcalorimeter arrays for x-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Bandler, Simon

    The "X-ray Surveyor" has been listed by NASA as one of the four major large mission concepts to be studied in the next Astrophysics Decadal Review in its preliminary list of large concepts. One of the key instruments on such a mission would be a very large format X-ray microcalorimeter array, with an array size of greater than 100 thousand pixels. Magnetically-coupled microcalorimeters (MCC) are one of the technologies with the greatest potential to meet the requirements of this mission, and this proposal is one to carry out research specifically to reach the goals of this vision. The "X-ray Surveyor" is a concept for a future mission that will make X-ray observations that are instrumental to understanding the quickly emerging population of galaxies and supermassive black holes at z ~10. The observations will trace the formation of galaxies and their assembly into large-scale structures starting from the earliest possible epochs. This mission would be observing baryons and large-scale physical processes outside of the very densest regions in the local Universe. This can be achieved with an X-ray observatory with similar angular resolution as Chandra but with significantly improved optic area and detector sensitivity. Chandra-scale angular resolution (1" or better) is essential in building more powerful, higher throughput observatories to avoid source confusion and remain photon-limited rather than background-limited. A prime consideration for the microcalorimeter camera on this type of mission is maintaining ~ 1 arcsec spatial resolution over the largest possible field of view, even if this means a slight trade-off against the spectral resolution. A uniform array of 1" pixels covering at least 5'x5' field of view is desired. To reduce the number of sensors read out, in geometries where extremely fine pitch (~50 microns) is desired, the most promising technologies are those in which a thermal sensor such an MCC can read out a sub-array of 20-25 individual 1'

  12. Hybrid Pixel Detectors for gamma/X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  13. Performance of detectors for x-ray crystallography

    NASA Astrophysics Data System (ADS)

    Stanton, Martin J.; Phillips, Walter C.

    1993-12-01

    The performance of a detector can be characterized by its efficiency for measuring individual x-rays or for measuring Bragg peak intensities. The performance for detecting individual x- rays or for measuring Bragg peak intensities. The performance for detecting individual x-rays is well modeled by the DQE. The performance for measuring Bragg peak intensities in the presence of an x-ray background can be modeled by an expanded definition of the DQE which allows inclusion of experimental constraints, the XDCE. These constraints include the observation that by increasing the crystal-to-detector distance and using a larger detector, Bragg peaks can be better resolved and the x-ray background reduced. Calculation of the XDCE for a detector consisting of a fiberoptic taper with a phosphor x-ray convertor deposited on the large end and a CCD bonded to the small end demonstrate the need to make the detector area relatively large, possibly at the expense of a decrease in the DQE.

  14. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  15. Digital Signal Processors for Cryogenic High-Resolution X-Ray Detector Readout

    SciTech Connect

    Friedrich, S; Drury, O; Bechstein, S; Henning, W; Momayezi, M

    2003-01-01

    The authors are developing fast digital signal processors (DSPs) to read out superconducting high-resolution X-ray detectors with on-line pulse processing. For superconducting tunnel junction (STJ) detector read-out, the DSPs offer on-line filtering, rise time discrimination and pile-up rejection. Compared to analog pulse processing, DSP readout somewhat degrades the detector resolution, but improves the spectral purity of the detector response. They discuss DSP performance with the 9-channel STJ array for synchrotron-based high-resolution X-ray spectroscopy.

  16. Image x-ray emission converters and microstrip porous dielectric x-ray detector

    SciTech Connect

    Lorikyan, M. P.

    2008-11-01

    The effective, fast, and accurate registration of x ray depends on the quality conversion of the X-quanta to photoelectrons. In this respect, of high interest are porous x-ray emission converters (PXECs). They are analogs of porous secondary electron emitters (PSEEs); the only difference is that active porous material should have high absorption properties for the X-quanta energies to be detected. Microstrip porous dielectric detector (MSPDD) is highly effective for x-ray registration without preliminary conversion of the X-quanta. Earlier it was shown that PSEE similar to PXEC has a high emission factor for 1-2 MeV {beta}-particles and 5 MeV {alpha}-particles. It was shown that MSPDDs and PSEEs are very stable.

  17. The development and characterization of neutron-damaged GaAs x-ray detectors

    SciTech Connect

    Springer, P.T.

    1988-09-09

    Photoconductive x-ray detectors are becoming an important x-ray diagnostic as a result of their small size, fast response time, and high sensitivity. We are developing a discrete array of neutron- damaged GaAs detectors to be used in an imaging x-ray spectrometer, and we describe herein the techniques we use to fabricate and characterize them for an upcoming experiment. Using a 225-ps x-ray pulse from a laser-produced plasma, we measured the sensitivity and time response of the detectors to be 7.1 mA/W and on the order of 150 ps FWHM, respectively. The carrier mobility is 741 cm/sup 2//V/center dot/s at a bias of 2 /times/ 10/sup 4/V/cm. 6 figs.

  18. X-ray imaging using a 320 x 240 hybrid GaAs pixel detector

    SciTech Connect

    Irsigler, R.; Andersson, J.; Alverbro, J.

    1999-06-01

    The authors present room temperature measurements on 200 {micro}m thick GaAs pixel detectors, which were hybridized to silicon readout circuits. The whole detector array contains 320 x 240 square shaped pixel with a pitch of 38 {micro}m and is based on semi-insulating liquid-encapsulated Czochralski (LEC) GaAs material. After fabricating and dicing, the detector chips were indium bump flip chip bonded to CMOS readout circuits based on charge integration and finally evaluated. This readout chip was originally designed for the readout of flip chip bonded infrared detectors, but appears to be suitable for X-ray applications as well. A bias voltage between 50 V and 100 V was sufficient to operate the detector at room temperature. The detector array did respond to x-ray radiation by an increase in current due to production of electron hole pairs by the ionization processes. Images of various objects and slit patterns were acquired by using a standard X-ray source for dental imaging. The new X-ray hybrid detector was analyzed with respect to its imaging properties. Due to the high absorption coefficient for X-rays in GaAs and the small pixel size, the sensor shows a high modulation transfer function up to the Nyquist frequency.

  19. X-Ray Spectroscopy Using Low Temperature Detectors

    NASA Technical Reports Server (NTRS)

    Porter, Frederick

    2011-01-01

    After several decades of development, a significant amount of the effort in low temperature detectors (LTDs) is concentrated on deploying real-world experiments. This has resulted from a great deal of basic detector physics performed by several generations of students, post-docs, and researchers. One of the most fruitful applications of LTDs is in non-dispersive x-ray spectroscopy. LTD x-ray spectrometers are broadband, efficient, moderately high-resolution, and can handle moderately high count rates. However, they require significantly more power, mass, and infrastructure compared to traditional solid state x-ray spectrometers, and cannot achieve, at least at low energies, the resolving powers achieved with dispersive spectrometers. In several fields, however, LTDs have or will make a significant contribution. In this review, we will discuss x-ray spectroscopy in general, the fields of science where LTDs are making a significant impact, and some of the current and near-term LTD spectrometers.

  20. Improved x-ray spectroscopy with room temperature CZT detectors.

    PubMed

    Fritz, Shannon G; Shikhaliev, Polad M; Matthews, Kenneth L

    2011-09-07

    Compact, room temperature x-ray spectroscopy detectors are of interest in many areas including diagnostic x-ray imaging, radiation protection and dosimetry. Room temperature cadmium zinc telluride (CZT) semiconductor detectors are promising candidates for these applications. One of the major problems for CZT detectors is low-energy tailing of the energy spectrum due to hole trapping. Spectral post-correction methods to correct the tailing effect do not work well for a number of reasons; thus it is advisable to eliminate the hole trapping effect in CZT using physical methods rather than correcting an already deteriorated energy spectrum. One method is using a CZT detector with an electrode configuration which modifies the electric field in the CZT volume to decrease low-energy tailing. Another method is to irradiate the CZT surface at a tilted angle, which modifies depth of interaction to decrease low-energy tailing. Neither method alone, however, eliminates the tailing effect. In this work, we have investigated the combination of modified electric field and tilted angle irradiation in a single detector to further decrease spectral tailing. A planar CZT detector with 10 × 10 × 3 mm³ size and CZT detector with 5 × 5 × 5 mm³ size and cap-shaped electrode were used in this study. The cap-shaped electrode (referred to as CAPture technology) modifies the electric field distribution in the CZT volume and decreases the spectral tailing effect. The detectors were investigated at 90° (normal) and 30° (tilted angle) irradiation modes. Two isotope sources with 59.6 and 122 keV photon energies were used for gamma-ray spectroscopy experiments. X-ray spectroscopy was performed using collimated beams at 60, 80 and 120 kVp tube voltages, in both normal and tilted angle irradiation. Measured x-ray spectra were corrected for K x-ray escape fractions that were calculated using Monte Carlo methods. The x-ray spectra measured with tilted angle CAPture detector at 60, 80 and 120

  1. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE PAGES

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; ...

    2017-02-17

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  2. Simultaneous x-ray fluorescence and K-edge CT imaging with photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Ruizhe; Zhang, Siyuan; Chen, Zhiqiang

    2016-10-01

    Rapid development of the X-ray phonon-counting detection technology brings tremendous research and application opportunities. In addition to improvements in conventional X-ray imaging performance such as radiation dose utilization and beam hardening correction, photon-counting detectors allows significantly more efficient X-ray fluorescence (XRF) and K-edge imaging, and promises a great potential of X-ray functional, cellular and molecular imaging. XRF is the characteristic emission of secondary X-ray photons from a material excited by initial X-rays. The phenomenon is widely used for chemical and elemental analysis. K-edge imaging identifies a material based on its chemically-specific absorption discontinuity over X-ray photon energy. In this paper, we try to combine XRF and K-edge signals from the contrast agents (e.g., iodine, gadolinium, gold nanoparticles) to simultaneously realize XFCT and K-edge CT imaging for superior image performance. As a prerequisite for this dual-modality imaging, the accurate energy calibration of multi-energy-bin photon-counting detectors is critically important. With the measured XRF data of different materials, we characterize the energy response function of a CZT detector for energy calibration and spectrum reconstruction, which can effectively improve the energy resolution and decrease the inconsistence of the photon counting detectors. Then, a simultaneous K-edge and X-ray fluorescence CT imaging (SKYFI) experimental setup is designed which includes a cone-beam X-ray tube, two separate photon counting detector arrays, a pin-hole collimator and a rotation stage. With a phantom containing gold nanoparticles the two types of XFCT and K-edge CT datasets are collected simultaneously. Then, XFCT and K-edge CT images are synergistically reconstructed in a same framework. Simulation results are presented and quantitative analyzed and compared with the separate XFCT and K-edge CT results.

  3. [Flat-panel detectors in X-ray systems].

    PubMed

    Spahn, M; Heer, V; Freytag, R

    2003-05-01

    For all application segments X-ray systems with flat-panel detectors increasingly enter the market. In digital radiography,mammography and cardiologic angiography flat-panel detectors are already well established while they are made ready for market introduction in general angiography and fluoroscopy. Two flat-panel detector technologies are available. One technology is based on an indirect conversion process of X-rays while the other one uses a direct conversion method. For radiography and dynamic applications the indirect method provides substantial advantages, while the direct method has some benefits for mammography. In radiography and mammography flat-panel detectors lead to clear improvements with respect to workflow, image quality and dose reduction potentials. These improvements are fostered by the immediate availability of the image, the large dynamic range and the high sensitivity to X-rays. New applications and the use of complex image processing algorithms have the potential to enlarge the present diagnostic range of applications. Up to now, image intensifiers are still the well-established technology for angiography and fluoroscopy. Nevertheless flat-panel detectors begin to enter this field, especially in cardiologic angiography. Characteristics of flat-panel detectors such as the availability of distortion-free images, the excellent contrast resolution, the large dynamic range, the high sensitivity to X-rays and the usability in magnetic fields provide the basis for improved and new diagnostic and interventional methods.

  4. Automated Hybridization of X-ray Absorber Elements-A Path to Large Format Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, S.; Kelley, R.; Allen, C.; Kilbourne, C.; Costen, N.; Miller, T.

    2007-01-01

    In the design of microcalorimeters, it is often desirable to produce the X-ray absorber separately from the detector element. In this case, the attachment of the absorber to the detector element with the required thermal and mechanical characteristics is a major challenge. In such arrays, the attachment has been done by hand. This process is not easily extended to the large format arrays required for future X- ray astronomy missions such as the New x-ray Telescope or NeXT. In this paper we present an automated process for attaching absorber tiles to the surface of a large-scale X-ray detector array. The absorbers are attached with stycast epoxy to a thermally isolating polymer structure made of SU-8. SU-8 is a negative epoxy based photo resist produced by Microchem. We describe the fabrication of the X-ray absorbers and their suspension on a handle die in an adhesive matrix. We describe the production process for the polymer isolators on the detector elements. We have developed a new process for the alignment, and simultaneous bonding of the absorber tiles to an entire detector array. This process uses equipment and techniques used in the flip-chip bonding industry and approaches developed in the fabrication of the XRS-2 instrument. XRS-2 was an X-ray spectrometer that was launched on the Suzaku telescope in July 10, 2005. We describe the process and show examples of sample arrays produced by this process. Arrays with up to 300 elements have been bonded. The present tests have used dummy absorbers made of Si. In future work, we will demonstrate bonding of HgTe absorbers.

  5. Spatial resolution of a hard x-ray CCD detector

    SciTech Connect

    Seely, John F.; Pereira, Nino R.; Weber, Bruce V.; Schumer, Joseph W.; Apruzese, John P.; Hudson, Lawrence T.; Szabo, Csilla I.; Boyer, Craig N.; Skirlo, Scott

    2010-08-10

    The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20{mu}m pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95{mu}m (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.

  6. Optimization of niobium tunnel junctions as X-ray detectors

    NASA Technical Reports Server (NTRS)

    Saulnier, Gregory G.; Zacher, Robert A.; Van Vechten, Deborah; Boyer, Craig; Lovellette, Michael N.; Fritz, Gilbert G.; Soulen, Robert J.; Kang, Joonhee; Blamire, Mark; Kirk, Eugenie C. G.

    1992-01-01

    We report on our ongoing work using Nb/Al/AlO(x)/Nb junctions for the detection of X-rays. Detectors based on superconducting tunneling junctions offer the prospect of resolution over an order of magnitude higher than is obtainable with the current generation of semiconductor-based detectors. Results of measurements taken at 1.85 K (a temperature achievable with current space flight technology) include the current-voltage (I-V) curve, subgap current vs temperature, the dependence of the superconducting current on the applied magnetic field (Fraunhofer pattern), X-ray pulses, and the spectra from a 6 keV X-ray source which gave an intrinsic device resolution of approximately 700 eV. The collection of more than 10 exp 5 electrons per 6 keV photon is established.

  7. High resolution, low energy avalanche photodiode X-ray detectors

    NASA Technical Reports Server (NTRS)

    Farrell, R.; Vanderpuye, K.; Entine, G.; Squillante, M. R.

    1991-01-01

    Silicon avalanche photodiodes have been fabricated, and their performance as X-ray detectors has been measured. Photon sensitivity and energy resolution were measured as a function of size and operating parameters. Noise thresholds as low as 212 eV were obtained at room temperature, and backscatter X-ray fluorescence data were obtained for aluminum and other light elements. It is concluded that the results with the X-ray detector are extremely encouraging, and the performance is challenging the best available proportional counters. While not at the performance level of either cryogenic silicon or HgI2, these device operate at room temperature and can be reproduced in large numbers and with much larger areas than typically achieved with HgI2. In addition, they are rugged and appear to be indefinitely stable.

  8. Unfolding X-ray spectra using a flat panel detector.

    PubMed

    Gallardo, Sergio; Juste, Belén; Pozuelo, Fausto; Ródenas, José; Querol, Andrea; Verdú, Gumersindo

    2013-01-01

    It is difficult to measure the energy spectrum of X-ray tubes due to the pile up effect produced by the high fluence of photons. Using attenuating materials, appropriate detector devices and the Monte Carlo method, primary X-ray spectrum of these devices can be estimated. In this work, a flat panel detector with a PMMA wedge has been used to obtain a dose curve corresponding to certain working conditions of a radiodiagnostic X-ray tube. The relation between the dose curve recorded by the flat panel and the primary X-ray spectrum is defined by a response function. Normally this function can be approximated by a matrix, which can be obtained by means of the Monte Carlo method. Knowing the measured dose curve and the response matrix, the primary X-ray spectrum can be unfolded. However, there are some problems that strongly affect the applicability of this method: i.e. technical features of the flat panel and inherent characteristics of the involved radiation physics (ill-posed problem). Both aspects are analyzed in this work, concluding that the proposed method can be applied with an acceptable accuracy for spectra without characteristic lines, for instance, tungsten anode in the 50-70 kVp range.

  9. Portable X-Ray, K-Edge Heavy Metal Detector

    SciTech Connect

    Fricke, V.

    1999-10-25

    The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precise assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available.

  10. A carbon nanotube based x-ray detector

    NASA Astrophysics Data System (ADS)

    Boucher, Richard A.; Bauch, Jürgen; Wünsche, Dietmar; Lackner, Gerhard; Majumder, Anindya

    2016-11-01

    X-ray detectors based on metal-oxide semiconductor field effect transistors couple instantaneous measurement with high accuracy. However, they only have a limited measurement lifetime because they undergo permanent degradation due to x-ray beam exposure. A field effect transistor based on carbon nanotubes (CNTs), however, overcomes this drawback of permanent degradation, because it can be reset into its starting state after being exposed to the x-ray beam. In this work the CNTs were deposited using a dielectrophoresis method on SiO2 coated p-type (boron-doped) Si substrates. For the prepared devices a best gate voltage shift of 244 V Gy-1 and a source-drain current sensitivity of 382 nA Gy-1 were achieved. These values are larger than those reached by the currently used MOSFET based devices.

  11. Stacked, filtered multi-channel X-ray diode array

    NASA Astrophysics Data System (ADS)

    MacNeil, L. P.; Dutra, E. C.; Compton, S. M.; Jacoby, B. A.; Raphaelian, M. L.

    2015-08-01

    There are many types of X-ray diodes that are used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need arose for a low cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. We fielded individual and stacked systems at several national facilities as ancillary `ride-along' diagnostics to test and improve the design usability. We present the MiniXRD system performance which supports consideration as a viable low-cost alternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  12. Stacked, filtered multi-channel X-ray diode array

    SciTech Connect

    MacNeil, Lawrence; Dutra, Eric; Raphaelian, Mark; Compton, Steve; Jacoby, Barry

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustness and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.

  13. Stacked, Filtered Multi-Channel X-Ray Diode Array

    SciTech Connect

    MacNeil, Lawrence P.; Dutra, Eric C.; Raphaelian, Mark; Compton, Steven; Jacoby, Barry

    2015-08-01

    This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilities to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.

  14. A space fiber-optic x-ray burst detector

    SciTech Connect

    Moss, C.E.; Casperson, D.E.; Echave, M.A.; Edwards, B.C.; Miller, J.R.; Saylor, W.W.; Sweet, M.R.; Valencia, J.E.

    1993-10-01

    We describe a novel, lightweight x-ray burst detector that can be embedded in a satellite structure, thus forming a ``smart skin,`` which has minimal impact on the host satellite. The design is based on two types of optical fibers coupled to photodiodes. The first is a scintillating fiber, which gives a fast signal for timing. The second is a germanium-doped silica fiber, which darkens for a few milliseconds when irradiated with a burst of x rays. The resulting slow signal is used to discriminate against electrostatic discharges. The coincidence of a fast signal from the scintillating fiber with a slow signal from the darkening fiber is the signature of an x-ray burst. The response is linear at low doses and becomes nonlinear at high doses. We have two techniques to test the instrument in a space experiment scheduled for 1994. First, a small, space-qualified flash x-ray unit can illuminate the fibers. Second, we can detect space background radiation. The cumulative dose will be monitored by RADFET dosimeters. Future work on embedding the fibers and the electronics as Application Specific Integrated Circuits (ASICs) in the spacecraft skin could lead to use of these detectors on many satellites.

  15. Measurements of Si Hybrid CMOS X-Ray Detector Characteristics

    NASA Astrophysics Data System (ADS)

    Bongiorno, Stephen; Falcone, A.; Burrows, D.; Cook, R.

    2010-01-01

    The development of Hybrid CMOS Detectors (HCDs) for X-Ray telescope focal planes will place them in contention with CCDs on future satellite missions due to their faster frame rates, flexible readout scenarios, lower power consumption, and inherent radiation hardness. CCDs have been used with great success on the current generation of X-Ray telescopes (e.g. Chandra, XMM, Suzaku, and Swift). However their bucket-brigade readout architecture, which transfers charge across the chip with discrete component readout electronics, results in clockrate limited readout speeds that cause pileup (saturation) of bright sources and an inherent susceptibility to radiation induced displacement damage that limits mission lifetime. In contrast, HCDs read pixels with low power, on-chip multiplexer electronics in a random access fashion. Faster frame rates, achieved with multi-output readout design, will allow the next generation's larger effective area telescopes to observe bright sources free of pileup. Radiation damaged lattice sites effect a single pixel instead of an entire row. Random access, multi-output readout will allow for novel readout modes such as simultaneous bright-source-fast/whole-chip-slow readout. In order for HCDs to become useful X-Ray detectors, they must show noise and energy resolution performance similar to CCDs while retaining advantages inherent to HCDs. We will report on readnoise, conversion gain, and energy resolution measurements of X-Ray enhanced Teledyne HAWAII-1RG (H1RG) HCDs and describe techniques of H1RG data reduction.

  16. Measurements of Si hybrid CMOS x-ray detector characteristics

    NASA Astrophysics Data System (ADS)

    Bongiorno, Stephen D.; Falcone, Abe D.; Burrows, David N.; Cook, Robert; Bai, Yibin; Farris, Mark

    2009-08-01

    The development of Hybrid CMOS Detectors (HCDs) for X-Ray telescope focal planes will place them in contention with CCDs on future satellite missions due to their faster frame rates, flexible readout scenarios, lower power consumption, and inherent radiation hardness. CCDs have been used with great success on the current generation of X-Ray telescopes (e.g. Chandra, XMM, Suzaku, and Swift). However their bucket-brigade readout architecture, which transfers charge across the chip with discrete component readout electronics, results in clockrate limited readout speeds that cause pileup (saturation) of bright sources and an inherent susceptibility to radiation induced displacement damage that limits mission lifetime. In contrast, HCDs read pixels with low power, on-chip multiplexer electronics in a random access fashion. Faster frame rates achieved with multi-output readout design will allow the next generation's larger effective area telescopes to observe bright sources free of pileup. Radiation damaged lattice sites effect a single pixel instead of an entire row. Random access, multi-output readout will allow for novel readout modes such as simultaneous bright-source-fast/whole-chip-slow readout. In order for HCDs to be useful as X-Ray detectors, they must show noise and energy resolution performance similar to CCDs while retaining advantages inherent to HCDs. We will report on readnoise, conversion gain, and energy resolution measurements of an X-Ray enhanced Teledyne HAWAII-1RG (H1RG) HCD and describe techniques of H1RG data reduction.

  17. SiC X-ray detectors for harsh environments

    NASA Astrophysics Data System (ADS)

    Lees, J. E.; Barnett, A. M.; Bassford, D. J.; Stevens, R. C.; Horsfall, A. B.

    2011-01-01

    We have characterised a number of SiC Schottky Diodes as soft X-ray photon counting detectors over the temperature range -30°C to +80°C. We present the spectroscopic performance, as measured over the energy range ~ 6 keV-30 keV and correlate the data with measurements of the temperature dependence of the device leakage current. The results show that these detectors can be used for X-ray photon counting spectroscopy over a wide temperature range. Measurement of the radiation tolerance of Semi Transparent SiC Schottky Diodes (STSSD) has shown that these devices can still operate as photon counting X-ray spectrometers after proton irradiation (total dose of 1013 cm-2, 50 MeV). We present measurements on proton irradiated STSSDs that indicate that radiation induced traps, located in the upper half of the bandgap, have reduced the mobility and concentration of charge carriers. X-ray spectra predicted using a Monte Carlo model for SiC diodes are compared with measured spectra.

  18. Developments in gas detectors for synchrotron x-ray radiation

    SciTech Connect

    Fischer, J.; Radeka, V.; Smith, G.C.

    1985-09-01

    New results on the physical limitations to position resolution in gas detectors for x-rays (approx. =3 to 20 keV) due to the range of photoelectrons and Auger electrons are discussed. These results were obtained with a small gap detector in which position readout was accomplished by using a very low noise centroid finding technique. A description is given of position sensitive detectors for medium rates (a few x 10/sup 5/ photons per second), using delay line readout, and for very high rates (approx. =10/sup 8/ photons per second), using fast signal shaping on the output of each anode wire.

  19. CZT Detector Development for Hard X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Garson, Alfred, III; Li, Q.; Beilicke, M.; Bose, R.; Burger, A.; Dowkonnt, P.; Groza, M.; Simburger, G.; Krawczynski, H.

    2008-05-01

    Cadmium Zinc Telluride (CZT) has proven itself as an excellent material for detection of hard X-rays. Advances in crystal growth have increased the quality and size of available single CZT crystals. We report on our ongoing development and characterization of CZT detector systems. With our dedicated class-100 cleanroom, we fabricate detectors using CZT crystals from different manufactures. Using photolithography and e-beam evaporation, we can produce detectors with different contact designs (pixellated, strip, monolithic, steering grid), contact dimensions (down to 50 microns), and contact materials (In, Ti, Au, etc.) . In addition, we develop ASIC readouts for various CZT detector applications, including our characterization of the detectors. We measure I-V and C-V curves for the detectors as well as their spectroscopic performance. We compare measured results with those from detailed modelling and simulations. The CZT detector systems can then be optimized for applications such as X-ray imaging and polarimetry with satellite or balloon-borne instruments.

  20. CZT Detector Development for Hard X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Garson, A. B., III; Li, Q.; Beilicke, M.; Bose, R.; Burger, A.; Dowkonnt, P.; Groza, M.; Simburger, G.; Krawczynski, H.

    2008-04-01

    Cadmium Zinc Telluride (CZT) has proven itself as an excellent material for detection of hard X-rays. Advances in crystal growth have increased the quality and size of available single CZT crystals. We report on our ongoing development and characterization of CZT detector systems. With our dedicated class-100 cleanroom, we fabricate detectors using CZT crystals from different manufactures. Using photolithography and e-beam evaporation, we can produce detectors with different contact designs (pixellated, strip, monolithic, steering grid), contact dimensions (down to 50 microns), and contact materials (In, Ti, Au, etc.) . In addition, we develop ASIC readouts for various CZT detector applications, including our characterization of the detectors. We measure I-V and C-V curves for the detectors as well as their spectroscopic performance. We compare measured results with those from detailed modelling and simulations. The CZT detector systems can then be optimized for applications such as X-ray imaging and polarimetry with satellite or balloon-borne instruments.

  1. HEXITEC: A Next Generation Hard X-ray Detector for Solar Observations

    NASA Astrophysics Data System (ADS)

    Ryan, Daniel; Christe, Steven; Shih, Albert; Inglis, Andrew R.; Gregory, Kyle; Baumgartner, Wayne H.; Gaskin, Jessica; Wilson-Hodge, Colleen; Seller, Paul; Wilson, Matthew; Veale, Matthew C.; Panessa, Marco

    2016-05-01

    There is an increasing demand in solar physics for high resolution X-ray spectroscopic imaging. Such observations would present ground-breaking opportunities to study the poorly understood high energy processes in the solar corona such as solar flares, coronal heating, etc. However, such observations require a new breed of solid-state detectors sensititve to high energy X-rays with fine independent pixels to subsample the point spread function (PSF) of the X-ray optics. They must also be capable of handling very high count rates as photon fluxes from solar flares often cause pileup in current detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new Cadmium Telluride (CdTe) detector system, dubbed HEXITEC (High Energy X-ray Imaging Technology). It is an 80x80 array of 250 micron independent pixels sensitive in the 4--80 keV band and capable of a high full frame readout rate of 10 kHz. HEXITEC provides the smallest independently read out pixels currently available, and are well matched to the few arcsecond PSF produced by the current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space-borne hard X-ray focusing telescopes. In this poster we show the latest results on HEXITEC's imaging capability, high read out rate, and energy sensitivity and reveal it to be ideal for such future instruments. The potential observations obtained by combining HEXITEC with the next generation of X-ray focusing optics could to revolutionize our understanding of high energy processes in the solar corona.

  2. X-ray tomography using a CMOS area detector

    NASA Astrophysics Data System (ADS)

    Brunetti, A.; Cesareo, R.

    2007-05-01

    A flat panel based on CMOS technology represents a valid alternative to other kinds of flat panels and to ccd detectors for X-ray imaging. Although the spatial resolution of the ccd sensors is better than that of a CMOS sensor, the last has a larger sensitive-area and it can work at room temperature reaching a dynamic performance comparable to that of a cooled ccd sensor. Other kinds of flat panels, such as TFT screen are much more expensive and they have lower spatial resolution and higher noise than the CMOS detector. In this paper, an application of the CMOS sensor to X-ray tomography is described. Preliminary results are reported and discussed.

  3. Hard x-ray response of pixellated CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Abbene, L.; Del Sordo, S.; Caroli, E.; Gerardi, G.; Raso, G.; Caccia, S.; Bertuccio, G.

    2009-06-01

    In recent years, the development of cadmium zinc telluride (CdZnTe) detectors for x-ray and gamma ray spectrometry has grown rapidly. The good room temperature performance and the high spatial resolution of pixellated CdZnTe detectors make them very attractive in space-borne x-ray astronomy, mainly as focal plane detectors for the new generation of hard x-ray focusing telescopes. In this work, we investigated on the spectroscopic performance of two pixellated CdZnTe detectors coupled with a custom low noise and low power readout application specific integrated circuit (ASIC). The detectors (10×10×1 and 10×10×2 mm3 single crystals) have an anode layout based on an array of 256 pixels with a geometric pitch of 0.5 mm. The ASIC, fabricated in 0.8 μm BiCMOS technology, is equipped with eight independent channels (preamplifier and shaper) and characterized by low power consumption (0.5 mW/channel) and low noise (150-500 electrons rms). The spectroscopic results point out the good energy resolution of both detectors at room temperature [5.8% full width at half maximum (FWHM) at 59.5 keV for the 1 mm thick detector; 5.5% FWHM at 59.5 keV for the 2 mm thick detector) and low tailing in the measured spectra, confirming the single charge carrier sensing properties of the CdZnTe detectors equipped with a pixellated anode layout. Temperature measurements show optimum performance of the system (detector and electronics) at T =10 °C and performance degradation at lower temperatures. The detectors and the ASIC were developed by our collaboration as two small focal plane detector prototypes for hard x-ray multilayer telescopes operating in the 20-70 keV energy range.

  4. Hard x-ray response of pixellated CdZnTe detectors

    SciTech Connect

    Abbene, L.; Caccia, S.; Bertuccio, G.

    2009-06-15

    In recent years, the development of cadmium zinc telluride (CdZnTe) detectors for x-ray and gamma ray spectrometry has grown rapidly. The good room temperature performance and the high spatial resolution of pixellated CdZnTe detectors make them very attractive in space-borne x-ray astronomy, mainly as focal plane detectors for the new generation of hard x-ray focusing telescopes. In this work, we investigated on the spectroscopic performance of two pixellated CdZnTe detectors coupled with a custom low noise and low power readout application specific integrated circuit (ASIC). The detectors (10x10x1 and 10x10x2 mm{sup 3} single crystals) have an anode layout based on an array of 256 pixels with a geometric pitch of 0.5 mm. The ASIC, fabricated in 0.8 mum BiCMOS technology, is equipped with eight independent channels (preamplifier and shaper) and characterized by low power consumption (0.5 mW/channel) and low noise (150-500 electrons rms). The spectroscopic results point out the good energy resolution of both detectors at room temperature [5.8% full width at half maximum (FWHM) at 59.5 keV for the 1 mm thick detector; 5.5% FWHM at 59.5 keV for the 2 mm thick detector) and low tailing in the measured spectra, confirming the single charge carrier sensing properties of the CdZnTe detectors equipped with a pixellated anode layout. Temperature measurements show optimum performance of the system (detector and electronics) at T=10 deg.C and performance degradation at lower temperatures. The detectors and the ASIC were developed by our collaboration as two small focal plane detector prototypes for hard x-ray multilayer telescopes operating in the 20-70 keV energy range.

  5. Installation of soft X-ray array diagnostics and its application to tomography reconstruction using synthetic KSTAR X-ray images

    SciTech Connect

    Lee, Seung Hun; Jang, Juhyeok; Hong, Joohwan; Jang, Siwon; Choe, Wonho; Pacella, D.; Romano, A.; Gabellieri, L.; Kim, Junghee

    2014-11-15

    Four-array system of soft X-ray diagnostics was installed on KSTAR tokamak. Each array has 32 viewing chords of two photo-diode array detectors with spatial resolution of 2 cm. To estimate signals from the soft X-ray radiation power, typical n{sub e}, T{sub e}, and argon impurity line radiation profiles in KSTAR are chosen. The photo-diodes were absolutely calibrated as a function of the incident photon energy in 2–40 keV range with a portable X-ray tube. Two-dimensional T{sub e} image properties by multi-energy method were simulated and visualized with six combinations of beryllium filter sets within the dynamic range of signal ratio.

  6. Quality control measurements for digital x-ray detectors.

    PubMed

    Marshall, N W; Mackenzie, A; Honey, I D

    2011-02-21

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 µGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 µGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm(-1) ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 µGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10(-5) mm(2) (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm(-1), with a maximum cov of 10% at 2.9 mm(-1), while the average DQE was 0.56 at 0.5 mm(-1) for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and

  7. Quality control measurements for digital x-ray detectors

    NASA Astrophysics Data System (ADS)

    Marshall, N. W.; Mackenzie, A.; Honey, I. D.

    2011-02-01

    This paper describes a digital radiography (DR) quality control protocol for DR detectors from the forthcoming report from the Institute of Physics and Engineering in Medicine (IPEM). The protocol was applied to a group of six identical caesium iodide (CsI) digital x-ray detectors to assess reproducibility of methods, while four further detectors were assessed to examine the wider applicability. Twelve images with minimal spatial frequency processing are required, from which the detector response, lag, modulation transfer function (MTF), normalized noise power spectrum (NNPS) and threshold contrast-detail (c-d) detectability are calculated. The x-ray spectrum used was 70 kV and 1 mm added copper filtration, with a target detector air kerma of 2.5 µGy for the NNPS and c-d results. In order to compare detector performance with previous imaging technology, c-d data from four screen/film systems were also acquired, at a target optical density of 1.5 and an average detector air kerma of 2.56 µGy. The DR detector images were typically acquired in 20 min, with a further 45 min required for image transfer and analysis. The average spatial frequency for the 50% point of the MTF for six identical detectors was 1.29 mm-1 ± 0.05 (3.9% coefficient of variation (cov)). The air kerma set for the six systems was 2.57 µGy ± 0.13 (5.0% cov) and the NNPS at this air kerma was 1.42 × 10-5 mm2 (6.5% cov). The detective quantum efficiency (DQE) measured for the six identical detectors was 0.60 at 0.5 mm-1, with a maximum cov of 10% at 2.9 mm-1, while the average DQE was 0.56 at 0.5 mm-1 for three CsI detectors from three different manufacturers. Comparable c-d performance was found for these detectors (5.9% cov) with an average threshold contrast of 0.46% for 11 mm circular discs. The average threshold contrast for the S/F systems was 0.70% at 11 mm, indicating superior imaging performance for the digital systems. The protocol was found to be quick, reproducible and gave an in

  8. CZT detector for dual-energy x-ray absorptiometry (DEXA)

    NASA Astrophysics Data System (ADS)

    Wear, James; Buchholz, Michael; Payne, Randall K.; Gorsuch, Darrell; Bisek, Joseph; Ergun, David L.; Grosholz, Joe; Falk, Ron

    2000-12-01

    A cadmium-zinc-telluride (CZT) detector has been developed for a bone densitometer that uses dual-energy x-ray absorptiometry (DEXA) to determine bone mineral density in vivo. A linear array of 16 discrete CZT detectors is used with a narrow fan-shaped x-ray beam to scan the patient. Each detector is 3 mm thick and 7 mm by 3 mm in area and has simple planar contacts. The x-ray beam has two broad energy lobes with effective energies of approximately 38 keV and approximately 65 keV. The energy sensitivity of the CZT detectors allows discrimination between low and high energy x-rays. Using DEXA, the relative difference in these two count rates permits a quantitative measurement of the real densities of bone mineral and soft tissue. The detectors demonstrate good performance characteristics and stable operation in a clinical environment. This paper discusses the suitability of CZT for use in DEXA applications and describes its successful implementation and performance in this bone densitometer.

  9. X-Ray Detector for Digital Fluoroscopy and Digital Radiography in Medical Imaging

    NASA Astrophysics Data System (ADS)

    Saito, Keiichi

    Recently digital X-ray detectors are developed for medical imaging. By comparison with the structure of X-ray image intensifier system and X-ray flat panel detector (FPD), the dynamic of digital images is more superior and would result in enhanced diagnosis. Moreover the difference from the detective quantum efficiency (DQE) of X-ray image intensifier and FPD is shown as the significant index of X-ray image quality.

  10. High energy X-ray photon counting imaging using linear accelerator and silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Shimazoe, K.; Yan, X.; Ueda, O.; Ishikura, T.; Fujiwara, T.; Uesaka, M.; Ohno, M.; Tomita, H.; Yoshihara, Y.; Takahashi, H.

    2016-09-01

    A photon counting imaging detector system for high energy X-rays is developed for on-site non-destructive testing of thick objects. One-dimensional silicon strip (1 mm pitch) detectors are stacked to form a two-dimensional edge-on module. Each detector is connected to a 48-channel application specific integrated circuit (ASIC). The threshold-triggered events are recorded by a field programmable gate array based counter in each channel. The detector prototype is tested using 950 kV linear accelerator X-rays. The fast CR shaper (300 ns pulse width) of the ASIC makes it possible to deal with the high instant count rate during the 2 μs beam pulse. The preliminary imaging results of several metal and concrete samples are demonstrated.

  11. Use of multielement detector systems with synchrotron x-ray sources

    SciTech Connect

    Thompson, A.C.

    1981-07-01

    The extremely high intensity and pulsed structure of synchrotron radiation x-ray sources put very demanding requirements on associated x-ray detectors. In current detector systems, trade-offs must be made between the efficiency, energy resolution, counting rate capability and the spatial resolution. Two detector systems are described which illustrate the optimization of these parameters for different applications of synchrotron radiation. One system is a segmented 16 channel multiwire proportional chamber which is used for fluorescent EXAFS measurements. The other is a 30 element Si(Li) linear detector array which is used for digital angiography experiments. The characteristics of these systems are discussed and recent results obtained with them are presented.

  12. [Assessment of parameters of digital X-ray detectors by the method of exposure of the working area of the detector to uniform X-ray radiation].

    PubMed

    Mazurov, A I

    2007-01-01

    It is shown that the main parameters determining the imaging quality of digital X-ray image detectors can be assessed by the method of exposure of the working area of the detector to uniform X-ray radiation. This method makes unnecessary the expert evaluation and measurements using high-precision test objects. It can be used in clinical practice for effective monitoring of the quality of digital X-ray detectors.

  13. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array

    PubMed Central

    Qian, Xin; Tucker, Andrew; Gidcumb, Emily; Shan, Jing; Yang, Guang; Calderon-Colon, Xiomara; Sultana, Shabana; Lu, Jianping; Zhou, Otto; Spronk, Derrek; Sprenger, Frank; Zhang, Yiheng; Kennedy, Don; Farbizio, Tom; Jing, Zhenxue

    2012-01-01

    Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. Methods: A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. Results: The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector

  14. Ultrafast Time-Resolved X-ray Absorption Spectroscopy of Ferrioxalate Photolysis with a Laser Plasma X-ray Source and Microcalorimeter Array.

    PubMed

    O'Neil, Galen C; Miaja-Avila, Luis; Joe, Young Il; Alpert, Bradley K; Balasubramanian, Mahalingam; Sagar, D M; Doriese, William; Fowler, Joseph W; Fullagar, Wilfred K; Chen, Ning; Hilton, Gene C; Jimenez, Ralph; Ravel, Bruce; Reintsema, Carl D; Schmidt, Dan R; Silverman, Kevin L; Swetz, Daniel S; Uhlig, Jens; Ullom, Joel N

    2017-03-02

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. These results are compared to previously published transient X-ray absorption measurements on the same reaction and found to be consistent with the results from Ogi et al. and inconsistent with the results of Chen et al. ( Ogi , Y. ; et al. Struct. Dyn. 2015 , 2 , 034901 ; Chen , J. ; Zhang , H. ; Tomov , I. V. ; Ding , X. ; Rentzepis , P. M. Chem. Phys. Lett. 2007 , 437 , 50 - 55 ). We provide quantitative limits on the Fe-O bond length change. Finally, we review potential improvements to our measurement technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.

  15. Development of Thin-Window Silicon Drift Detector for X-ray Spectroscopy

    SciTech Connect

    Chen, W.; Carini, G.A.; De Geronimo, G.; Fried, J.; Gaskin, J.A.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2009-10-01

    A new set of thin-window silicon drift detectors composed of an array of hexagonal shaped detectors has been designed, constructed and tested for X-ray spectroscopy. Each individual ThinWinSDD has a thin entrance window on one side and a spiral shaped hexagonal cathode around a center anode on the other side. To produce the thin entrance window a 10 keV implantation of boron through a 500 A silicon dioxide was used. The implantation was followed by an annealing at 700 C for 30 min and a reactive ion etching step to ensure the removal of silicon dioxide from the smallest feature (5 mum). An aluminum layer is coated in the same vacuum system after back-sputtering. This step involves removing the native oxide that has formed on the top of the silicon substrate and then sputtering a 1100 A thick layer of aluminum onto the X-ray entrance window. The aluminum layer must be thick enough to block visible light, but thin enough to be transparent to soft X-rays down to 280 eV. We discuss first test results that include detector leakage current measurements and the response for multiple detectors exposed to the National Synchrotron Light Source's UV beam line U3C located at Brookhaven National Laboratory for X-ray energies as low as 280 eV.

  16. Development of Thin-Window Silicon Drift Detector for X-ray Spectroscopy

    SciTech Connect

    Chen, W.; Carini, G.; De Geronimo, G; Fried, J.; Gaskin, J.A.; Keister, J.W.; Li, Z.; Ramsey, B.D.; Rehak, P.; Siddons, D.P.

    2008-01-22

    A new set of Thin-Window Silicon Drift Detectors composed of an array of hexagonal shaped detectors has been designed, constructed and tested for X-ray spectroscopy. Each individual ThinWinSDD has a thin entrance window on one side and a spiral shaped hexagonal cathode around a center anode on the other side. To produce the thin entrance window a 10 keV implantation of boron through a 500 {angstrom} silicon dioxide was used. The implantation was followed by an annealing at 700 C for 30 min and a reactive ion etching step to ensure the removal of silicon dioxide from the smallest feature (5 {micro}m). An aluminum layer is coated in the same vacuum system after back-sputtering. This step involves removing the native oxide that has formed on the top of the silicon substrate and then sputtering a 1100 {angstrom} thick layer of aluminum onto the X-ray entrance window. The aluminum layer must be thick enough to block visible light, but thin enough to be transparent to soft x-rays down to 280 eV. We discuss first test results that include detector leakage current measurements and the response for multiple detectors exposed to the National Synchrotron Light Source's UV beam line U3C located at Brookhaven National Laboratory for X-ray energies as low as 280 eV.

  17. A portable X-ray apparatus with GaAs linear array

    NASA Astrophysics Data System (ADS)

    Ardashev, E. N.; Gorokhov, S. A.; Polkovnikov, M. K.; Lobanov, I. S.; Vorobiev, A. P.

    2011-08-01

    The widely growing interest to the digital diagnostics and analysis systems, that have many advantages in comparison with the traditional (film) systems, in data taking, data storing, and data transmitting, requires a new detection technology. One of the most promising system for medical radiography today is a scanning type apparatus with some linear array detectors. The constructed apparatus is a device with some semiconductor GaAs detectors as sensitive elements to form the image while scanning an object. GaAs detectors are the detectors of the direct transformation of X-ray radiation into the electrical. The present paper describes the results of the construction and testing of the portable X-ray unit for traumatic examination and orthopedic manipulation in stationer clinics and at the first aid in medicine of catastrophe.

  18. CONTINUING THE DEVELOPMENT OF A 100 FEMTOSECOND X-RAY DETECTOR

    SciTech Connect

    Zenghu Chang

    2005-06-20

    The detector is an x-ray streak camera running in accumulation mode for time resolved x-ray studies at the existing third generation synchrotron facilities and will also be used for the development and applications of the fourth generation x-ray sources. We have made significant progress on both the detector development and its applications at Synchrotron facilities.

  19. CONTINUING THE DEVELOPMENT OF A 100 FEMTOSECOND X-RAY DETECTOR

    SciTech Connect

    Zenghu Chang

    2005-06-14

    The detector is an x-ray streak camera running in accumulation mode for time resolved x-ray studies at the existing third generation synchrotron facilities and will also be used for the development and applications of the fourth generation x-ray sources. We have made significant progress on both the detector development and its applications at Synchrotron facilities.

  20. Design and development of hard x-ray imaging detector using scintillator and Si photomultiplier

    NASA Astrophysics Data System (ADS)

    Goyal, S. K.; Naik, Amisha P.; Mithun, N. P. S.; Vadawale, S. V.; Acharya, Y. B.; Patel, A. R.; Ladiya, T.; Devashrayee, Niranjan M.

    2016-07-01

    There are various astrophysical phenomena which are of great importance and interest such as stellar explosions, Gamma ray bursts etc. There is also a growing interest in exploring the celestial sources in hard X-rays. High sensitive instruments are essential to perform the detailed studies of these cosmic accelerators and explosions. Hard X-ray imaging detectors having high absorption efficiency and mm spatial resolution are the key requirements to locate the generation of these astrophysical phenomenon. We hereby present a detector module which consists of a single CsI scintillation detector of size 15 x 15 x 3 mm3. The photon readout is done using an array of Silicon Photomultipliers (SiPMs). SiPM is a new development in the field of photon detection and can be described as 2D array of small (hundreds of μm2) avalanche photodiodes. We have achieved a spatial resolution of 0.5 mm with our initial setup. By using the array of these detector modules, we can build the detector with a large sensitive area with a very high spatial resolution. This paper presents the experimental details for single detector module using CsI (Tl) scintillator and SiPM and also presents the preliminary results of energy and position measurement. The GEANT4 simulation has also been carried out for the same geometry.

  1. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  2. 4H-SiC Schottky diode arrays for X-ray detection

    NASA Astrophysics Data System (ADS)

    Lioliou, G.; Chan, H. K.; Gohil, T.; Vassilevski, K. V.; Wright, N. G.; Horsfall, A. B.; Barnett, A. M.

    2016-12-01

    Five SiC Schottky photodiodes for X-ray detection have been electrically characterized at room temperature. One representative diode was also electrically characterized over the temperature range 20°C to 140 °C. The performance at 30 °C of all five X-ray detectors, in both current mode and for photon counting X-ray spectroscopy was investigated. The diodes were fabricated in an array form such that they could be operated as either a 2×2 or 1×3 pixel array. Although the devices showed double barrier heights, high ideality factors and higher than expected leakage current at room temperature (12 nA/cm2 at an internal electric field of 105 kV/cm), they operated as spectroscopic photon counting soft X-ray detectors uncooled at 30 °C. The measured energy resolution (FWHM at 17.4 keV, Mo Kα) varied from 1.36 to 1.68 keV among different diodes.

  3. Pixelated transmission-mode diamond X-ray detector.

    PubMed

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-11-01

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60-100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼ 1 kHz, which leads to an image sampling rate of ∼ 30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5-15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10(-2) to 90 W mm(-2). Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%).

  4. Pixelated transmission-mode diamond X-ray detector

    SciTech Connect

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-09-29

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ~1 kHz, which leads to an image sampling rate of ~30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10-2to 90 W mm-2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%).

  5. Pixelated transmission-mode diamond X-ray detector

    PubMed Central

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-01-01

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼1 kHz, which leads to an image sampling rate of ∼30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10−2 to 90 W mm−2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%). PMID:26524304

  6. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 Timepix chips

    NASA Astrophysics Data System (ADS)

    Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.

    2016-01-01

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.

  7. Lens-Coupled CCD Detector for X-ray Crystallography

    PubMed Central

    Madden, Timothy J.; McGuigan, William; Molitsky, Michael J.; Naday, Istvan; McArthur, Alan; Westbrook, Edwin M.

    2007-01-01

    An x-ray crystallography detector (Blue-1) has been built based upon a Fairchild 486 back-illuminated CCD and a custom lens system designed by Optics One Inc. The advantages of our Blue-1 lens system over more conventional fiber-optic tapers are: lower noise and higher efficiency; improved point spread function; negligible spatial distortion; and lack of “chicken-wire” patterns. Also, the engineering is simpler because the CCD is not bonded to the fiber-optic taper. A unique mechanical design has been employed to accurately focus the image on the CCD. The detector software is based on MATLAB and takes advantage of its powerful imaging and signal processing libraries. The CCD timing can be updated on the fly by using a “CCD controller language” to specify timing. PMID:18185837

  8. X-ray imaging performance of scintillator-filled silicon pore arrays

    SciTech Connect

    Simon, Matthias; Engel, Klaus Juergen; Menser, Bernd; Badel, Xavier; Linnros, Jan

    2008-03-15

    The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 {mu}m. A very high aspect ratio was achieved with wall thicknesses of 4-7 {mu}m and pore depths of about 400 {mu}m. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore array

  9. Development of Ta-based Superconducting Tunnel Junction X-ray Detectors for Fluorescence XAS

    SciTech Connect

    Friedrich, S; Drury, O; Hall, J; Cantor, R

    2009-09-23

    We are developing superconducting tunnel junction (STJ) soft X-ray detectors for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS). Our 36-pixel Nb-based STJ spectrometer covers a solid angle {Omega}/4{pi} {approx} 10{sup -3}, offers an energy resolution of {approx}10-20 eV FWHM for energies up to {approx}1 keV, and can be operated at total count rates of {approx}10{sup 6} counts/s. For increased quantum efficiency and cleaner response function, we have now started the development of Ta-based STJ detector arrays. Initial devices modeled after our Nb-based STJs have an energy resolution below 10 eV FWHM for X-ray energies below 1 keV, and pulse rise time discrimination can be used to improve their response function for energies up to several keV. We discuss the performance of the Ta-STJs and outline steps towards the next-generation of large STJ detector arrays with higher sensitivity.

  10. Development of Ta-based Superconducting Tunnel Junction X-ray Detectors for Fluorescence XAS

    SciTech Connect

    Friedrich, Stephan; Drury, Owen B.; Hall, John; Cantor, Robin

    2010-06-23

    We are developing superconducting tunnel junction (STJ) soft X-ray detectors for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS). Our 36-pixel Nb-based STJ spectrometer covers a solid angle {Omega}/4{pi}{approx_equal}10{sup -3}, offers an energy resolution of {approx}10-20 eV FWHM for energies up to {approx}1 keV, and can be operated at total count rates of {approx}10{sup 6} counts/s. For increased quantum efficiency and cleaner response function, we have now started the development of Ta-based STJ detector arrays. Initial devices modeled after our Nb-based STJs have an energy resolution below 10 eV FWHM for X-ray energies below 1 keV, and pulse rise time discrimination can be used to improve their response function for energies up to several keV. We discuss the performance of the Ta-STJs and outline steps towards the next-generation of large STJ detector arrays with higher sensitivity.

  11. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    SciTech Connect

    Ulbricht, Gerhard Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint; Bumble, Bruce

    2015-06-22

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV.

  12. Characterization and applications of hybrid CMOS detectors in X-ray astronomy

    NASA Astrophysics Data System (ADS)

    Bongiorno, Stephen

    The hybrid CMOS detector (HCD) is a powerful focal plane array (FPA) architecture that has begun to benefit the visible-infrared astronomical community and is poised to do the same for X-ray astronomy. Since Servicing Mission 4 in 2009, an HCD has given the Hubble Space Telescope's Wide-field Camera 3 improved imaging capability in the near-infrared. HCDs have been specified to operate at the focal plane of every science instrument on board the James Webb Space Telescope. A major goal of the Penn State X-ray Detector Group has been to modify the flexible HCD architecture to create high performance X-ray detectors that will achieve the currently unmet FPA requirements set by next-generation telescopes. These devices already exceed the radiation hardness, micrometeoroid tolerance, and high speed noise characteristics of current-generation X-ray charge coupled devices (CCDs), and they are on track to make a breakthrough in high count rate performance. This dissertation will begin with a presentation of background material on the detection of X-rays with semiconductor devices. The physics relevant to photon detection will be discussed and a review of the detector development history that led to the current state of the art will be presented. Next, details of the HCDs that our group has developed will be presented, followed by noise, energy resolution, and interpixel capacitance measurements of these detectors. A large part of my work over the past several years has consisted of designing, building, and carrying out tests with a laboratory apparatus that measures the quantum efficiency of HCDs. Details of this design process as well as the successful measurements that resulted will be presented. The topic of discussion will then broaden to the HCD's current and future roles in X-ray astronomy. The dissertation will close with the presentation of a successful project that used Swift XRT data to confirm the binary nature of the TeV emitting object HESS J0632+057, making

  13. A computer controlled television detector for light, X-rays and particles

    NASA Technical Reports Server (NTRS)

    Kalata, K.

    1981-01-01

    A versatile, high resolution, software configurable, two-dimensional intensified vidicon quantum detector system has been developed for multiple research applications. A thin phosphor convertor allows the detection of X-rays below 20 keV and non-relativistic particles in addition to visible light, and a thicker scintillator can be used to detect X-rays up to 100 keV and relativistic particles. Faceplates may be changed to allow any active area from 1 to 40 mm square, and active areas up to 200 mm square are possible. The image is integrated in a digital memory on any software specified array size up to 4000 x 4000. The array size is selected to match the spatial resolution, which ranges from 10 to 100 microns depending on the operating mode, the active area, and the photon or particle energy. All scan and data acquisition parameters are under software control to allow optimal data collection for each application.

  14. Interconnect and bonding techniques for pixelated X-ray and gamma-ray detectors

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Veale, M. C.; Duarte, D. D.; Bell, S. J.; Wilson, M. D.; Lipp, J. D.; Seller, P.

    2015-02-01

    In the last decade, the Detector Development Group at the Technology Department of the Science and Technology Facilities Council (STFC), U.K., established a variety of fabrication and bonding techniques to build pixelated X-ray and γ-ray detector systems such as the spectroscopic X-ray imaging detector HEXITEC [1]. The fabrication and bonding of such devices comprises a range of processes including material surface preparation, photolithography, stencil printing, flip-chip and wire bonding of detectors to application-specific integrated circuits (ASIC). This paper presents interconnect and bonding techniques used in the fabrication chain for pixelated detectors assembled at STFC. For this purpose, detector dies (~ 20× 20 mm2) of high quality, single crystal semiconductors, such as cadmium zinc telluride (CZT) are cut to the required thickness (up to 5mm). The die surfaces are lapped and polished to a mirror-finish and then individually processed by electroless gold deposition combined with photolithography to form 74× 74 arrays of 200 μ m × 200 μ m pixels with 250 μ m pitch. Owing to a lack of availability of CZT wafers, lithography is commonly carried out on individual detector dies which represents a significant technical challenge as the edge of the pixel array and the surrounding guard band lies close to the physical edge of the crystal. Further, such detector dies are flip-chip bonded to readout ASIC using low-temperature curing silver-loaded epoxy so that the stress between the bonded detector die and the ASIC is minimized. In addition, this reduces crystalline modifications of the detector die that occur at temperature greater than 150\\r{ }C and have adverse effects on the detector performance. To allow smaller pitch detectors to be bonded, STFC has also developed a compression cold-weld indium bump bonding technique utilising bumps formed by a photolithographic lift-off technique.

  15. CdTe focal plane detector for hard x-ray focusing optics

    NASA Astrophysics Data System (ADS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Gregory, Kyle; Inglis, Andrew; Panessa, Marco

    2015-08-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 mm x 20 mm CdTe-based detector with 250 μm square pixels (80x80 pixels) which achieves 1 keV FWHM @ 60 keV and gives full spectroscopy between 5 keV and 200 keV. An added advantage of these detectors is that they have a full-frame readout rate of 10 kHz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1mm-thick CdTe detectors are tiled into a 2x2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flightsuitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  16. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    NASA Technical Reports Server (NTRS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  17. Advanced X-Ray Timing Array (AXTAR) Animation

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Thompson, Kevin S.

    2011-01-01

    The animation depicts NASA's concept for a next-generation Advanced X-ray Timing Mission. The models and their textures doe not necessarily represent the final iteration. Delivery specifications include launch with Taurus II or Falcon 9, mass of 2650 kg, with a circular low earth orbit at approximately 600 km. The inclination depends on the launch vehicle and spacecraft mass. AXTAR's prime instrument will probe the physics of neutron stars and black holes through X-ray timing and spectral measurements. The primary instrument will be the Large Area Timing Array (LATA). The Sky Monitor Clusters configuration consists of 27 Sky Monitor cameras th at are grouped in five clusters. This configuration will achieve approximately 85 percent all sky coverage. Spacecraft components include a science bus to house the LATA of supermodules; a spacecraft bus to house components such as propulsion tanks, avionics, and reaction wheels; solar arrays configured from space-qualified GaAs 3-junction cells; star trackers for attitude knowledge; a propulsion system of four pods, each containing one 100 lbf and two 5 lbf engines; a launch vehicle adaptor; and a radiation shield.

  18. Multi-energy x-ray detector calibration for Te and impurity density (nZ) measurements of MCF plasmas

    DOE PAGES

    Maddox, J.; Pablant, N.; Efthimion, P.; ...

    2016-09-07

    Here, soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, n2eZeff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tubemore » under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.« less

  19. Multi-energy x-ray detector calibration for Te and impurity density (nZ) measurements of MCF plasmas

    NASA Astrophysics Data System (ADS)

    Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Reinke, M. L.; Rissi, M.; Donath, T.; Luethi, B.; Stratton, B.

    2016-11-01

    Soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, ne 2 Z eff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.

  20. The nuclear spectroscopic telescope array (NuSTAR) high-energy X-ray mission

    NASA Astrophysics Data System (ADS)

    Madsen, Kristin K.; Harrison, Fiona A.; An, Hongjun; Boggs, Steven E.; Christensen, Finn E.; Cook, Rick; Craig, William W.; Forster, Karl; Fuerst, Felix; Grefenstette, Brian; Hailey, Charles J.; Kitaguchi, Takao; Markwardt, Craig; Mao, Peter; Miyasaka, Hiromasa; Rana, Vikram R.; Stern, Daniel K.; Zhang, William W.; Zoglauer, Andreas; Walton, Dominic; Westergaard, Niels J.

    2014-07-01

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers, and combined with a focal length of 10.14 meters this enables operation from 3-79 keV. The optics focus onto two focal plane arrays, each consisting of 4 CdZnTe pixel detectors, for a field of view of 12.5 arcminutes. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity, and with an effective point spread function FWHM of 18 arcseconds (HPD ~1), NuSTAR provides a leap of improvement in resolution over the collimated or coded mask instruments that have operated in this bandpass. We present in-orbit performance details of the observatory and highlight important science results from the first two years of the mission.

  1. X-ray detectors at the Linac Coherent Light Source

    DOE PAGES

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; ...

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  2. X-ray detectors at the Linac Coherent Light Source

    PubMed Central

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced. PMID:25931071

  3. X-ray detectors at the Linac Coherent Light Source

    SciTech Connect

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  4. Development of a TES-Based Anti-Coincidence Detector for Future X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Bailey, Catherine N.; Adams, J. S.; Bandler, S. R.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Sultana, M.

    2012-01-01

    Microcalorimeters onboard future x-ray observatories require an anticoincidence detector to remove environmental backgrounds. In order to most effectively integrate this anti-coincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials.

  5. The high resolution X-ray imaging detector planes for the MIRAX mission

    NASA Astrophysics Data System (ADS)

    Rodrigues, B. H. G.; Grindlay, J. E.; Allen, B.; Hong, J.; Barthelmy, S.; Braga, J.; D'Amico, F.; Rothschild, R. E.

    2013-09-01

    The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-masks telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm2, a large field of view (60° × 60° FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution ( ~ 2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment (P2). Each one of 64 detector units of the P2 detector plane consists of an ASIC, developed by Caltech for the NuSTAR telescope, hybridized to a CZT crystal with 0.6 mm pixel size. The performance of each detector was evaluated using radioactive sources in the laboratory. The calibration results show that the P2 detectors have average energy resolution of ~ 2.1 keV @ 60 keV and 2.3 @ 122 keV. P2 was also successfully tested on near-space environment on a balloon flight, demonstrating the detector unit readiness for integration on a space mission telescope, as well as satisfying all MIRAX mission requirements.

  6. Multi-Material Decomposition using Low-Current X-Ray and a Photon-Counting CZT Detector

    PubMed Central

    Kim, Sangtaek; Hernandez, Andrew; Alhassen, Fares; Pivovaroff, Michael; Cho, Hyo-Min; Gould, Robert G.; Seo, Youngho

    2013-01-01

    We developed and evaluated an x-ray photon-counting imaging system using an energy-resolving cadmium zinc telluride (CZT) detector coupled with application specific integrated circuit (ASIC) readouts. This x-ray imaging system can be used to identify different materials inside the object. The CZT detector has a large active area (5×5 array of 25 CZT modules, each with 16×16 pixels, cover a total area of 200 mm × 200 mm), high stopping efficiency for x-ray photons (~ 100 % at 60 keV and 5 mm thickness). We explored the performance of this system by applying different energy windows around the absorption edges of target materials, silver and indium, in order to distinguish one material from another. The photon-counting CZT-based x-ray imaging system was able to distinguish between the materials, demonstrating its capability as a radiation-spectroscopic decomposition system. PMID:23503709

  7. Multi-Material Decomposition using Low-Current X-Ray and a Photon-Counting CZT Detector.

    PubMed

    Kim, Sangtaek; Hernandez, Andrew; Alhassen, Fares; Pivovaroff, Michael; Cho, Hyo-Min; Gould, Robert G; Seo, Youngho

    2011-01-01

    We developed and evaluated an x-ray photon-counting imaging system using an energy-resolving cadmium zinc telluride (CZT) detector coupled with application specific integrated circuit (ASIC) readouts. This x-ray imaging system can be used to identify different materials inside the object. The CZT detector has a large active area (5×5 array of 25 CZT modules, each with 16×16 pixels, cover a total area of 200 mm × 200 mm), high stopping efficiency for x-ray photons (~ 100 % at 60 keV and 5 mm thickness). We explored the performance of this system by applying different energy windows around the absorption edges of target materials, silver and indium, in order to distinguish one material from another. The photon-counting CZT-based x-ray imaging system was able to distinguish between the materials, demonstrating its capability as a radiation-spectroscopic decomposition system.

  8. Properties of the Channel Electron Multiplier Arrays (CEMAs) for the SOLEX solar X-ray Spectrometer/Spectroheliograph

    NASA Astrophysics Data System (ADS)

    Eng, W., Jr.; Landecker, P. B.

    1981-06-01

    A Channel Electron Multiplier Array (CEMA) detector was launched on 24 February 1979 as part of the SOLEX Solar X-Ray Spectrometer/Spectroheliograph experiment aboard the U.S. Air Force Space Test Program P78-1 satellite. Since launch, this detector has successfully recorded X-rays in the 3-25 A wavelength range. This report describes the comprehensive laboratory testing program of the flight and flight spare CEMA detectors. Quantum efficiencies, energy resolution and gain are given as a function of different incident photon wavelengths, voltage configurations, incident angles and lifetime exposures. Our results are compared to other published values.

  9. X ray and gamma ray standards for detector calibration

    NASA Astrophysics Data System (ADS)

    1991-09-01

    The IAEA established a Coordinated Research Program (CRP) on the measurements and evaluation of x- and gamma-ray standards for detector efficiency calibration in 1986 with the aim of alleviating the generation of such discrepancies. Within the framework of this CRP, representatives of nine research groups from six member states and one international organization performed a number of precise measurements and systematic in-depth evaluations of the required decay data. They have also contributed to the development of evaluation methodology and measurement techniques, and stimulated a number of such studies at laboratories not directly involved in the IAEA project. The results of the work of the CRP, which was finished in 1990, are presented in this report. Recommended values of half-lives and photon emission probabilities are given for a carefully selected set of radionuclides that are suitable for detector efficiency calibration (x-rays from 5 to 90 keV and gamma-rays from 30 to about 3000 keV). Detector efficiency calibration for higher gamma-ray energies (up to 14 MeV) is also considered. The evaluation procedures used to obtain the recommended values and their estimated uncertainties are reported, and a summary of the remaining discrepancies is given.

  10. Two new types of microneedle array fabricated by x-ray lithography

    NASA Astrophysics Data System (ADS)

    Li, Yigui; Sugiyama, Susumu

    2004-12-01

    The microneedle for blood extraction and painless injection is a rapidly growing area of interest in bio-applications. Two new types of microneedle array are designed and developed for biomedical application. The one is hollow PMMA microneedle array with very shape tip fabricated by two times X-ray lithography (one time is with X-ray mask and one time is without X-ray mask). The other is PMMA microneedle array with tips and fluid channels fabricated by an X-ray lithography technique. The resist stage of the X-ray system driven by actuators is to realize movement lithography.

  11. Multi-element silicon detector for x-ray flux measurements

    SciTech Connect

    Thompson, A.C.; Goulding, F.S.; Sommer, H.A.; Walton, J.T.; Hughes, E.B.; Rolfe, J.; Zeman, H.D.

    1981-10-01

    A 30-element Si(Li) detector has been fabricated to measure the one-dimensional flux profile of 33 KeV x-rays from a synchrotron radiation beam. The device, which is fabricated from a single 39 mm x 15 mm silicon wafer, is a linear array of 0.9 mm x 7 mm elements with a 1 mm center-to-center spacing. It is 5 mm thick and when operated at room temperature has an average leakage current of 10 nA/element. The x-ray flux in each element is determined by measuring the current with a high quality operational amplifier followed by a current digitizer. This detector is being used to study the use of synchrotron radiation for non-invasive imaging of coronary arteries. The experiment uses the difference in the transmitted flux of a monochromatized x-ray beam above and below the iodine K-edge. Measurements have been made on plastic phantoms and on excised animal hearts with iodinated arteries. The images obtained indicate that a 256-element device with similar properties, but with 0.6 mm element spacing, will make a very effective detector for high-speed medical imaging.

  12. Tilted angle CZT detector for photon counting/energy weighting x-ray and CT imaging.

    PubMed

    Shikhaliev, Polad M

    2006-09-07

    X-ray imaging with a photon counting/energy weighting detector can provide the highest signal to noise ratio (SNR). Scanning slit/multi-slit x-ray image acquisition can provide a dose-efficient scatter rejection, which increases SNR. Use of a photon counting/energy weighting detector in a scanning slit/multi-slit acquisition geometry could provide highest possible dose efficiency in x-ray and CT imaging. Currently, the most advanced photon counting detector is the cadmium zinc telluride (CZT) detector, which, however, is suboptimal for energy resolved x-ray imaging. A tilted angle CZT detector is proposed in this work for applications in photon counting/energy weighting x-ray and CT imaging. In tilted angle configuration, the x-ray beam hits the surface of the linear array of CZT crystals at a small angle. This allows the use of CZT crystals of a small thickness while maintaining the high photon absorption. Small thickness CZT detectors allow for a significant decrease in the polarization effect in the CZT volume and an increase in count rate. The tilted angle CZT with a small thickness also provides higher spatial and energy resolution, and shorter charge collection time, which potentially enables fast energy resolving x-ray image acquisition. In this work, the major performance parameters of the tilted angle CZT detector, including its count rate, spatial resolution and energy resolution, were evaluated. It was shown that for a CZT detector with a 0.7 mm thickness and 13 degrees tilting angle, the maximum count rate can be increased by 10.7 times, while photon absorption remains >90% at photon energies up to 120 keV. Photon counting/energy weighting x-ray imaging using a tilted angle CZT detector was simulated. SNR improvement due to optimal photon energy weighting was 23% and 14% when adipose contrast element, inserted in soft tissue with 10 cm and 20 cm thickness, respectively, was imaged using 5 energy bins and weighting factors optimized for the adipose. SNR

  13. Recent Developments in Transition-Edge Strip Detectors for Solar X-Rays

    NASA Technical Reports Server (NTRS)

    Rausch, Adam J.; Deiker, Steven W.; Hilton, Gene; Irwin, Kent D.; Martinez-Galarce, Dennis S.; Shing, Lawrence; Stern, Robert A.; Ullom, Joel N.; Vale, Leila R.

    2008-01-01

    LMSAL and NIST are developing position-sensitive x-ray strip detectors based on Transition Edge Sensor (TES) microcalorimeters optimized for solar physics. By combining high spectral (E/ delta E approximately equals 1600) and temporal (single photon delta t approximately equals 10 micro s) resolutions with imaging capabilities, these devices will be able to study high-temperature (>l0 MK) x-ray lines as never before. Diagnostics from these lines should provide significant new insight into the physics of both microflares and the early stages of flares. Previously, the large size of traditional TESs, along with the heat loads associated with wiring large arrays, presented obstacles to using these cryogenic detectors for solar missions. Implementing strip detector technology at small scales, however, addresses both issues: here, a line of substantially smaller effective pixels requires only two TESs, decreasing both the total array size and the wiring requirements for the same spatial resolution. Early results show energy resolutions of delta E(sub fwhm) approximately equals 30 eV and spatial resolutions of approximately 10-15 micron, suggesting the strip-detector concept is viable.

  14. Novel X-ray Communication Based XNAV Augmentation Method Using X-ray Detectors.

    PubMed

    Song, Shibin; Xu, Luping; Zhang, Hua; Bai, Yuanjie

    2015-09-03

    The further development of X-ray pulsar-based NAVigation (XNAV) is hindered by its lack of accuracy, so accuracy improvement has become a critical issue for XNAV. In this paper, an XNAV augmentation method which utilizes both pulsar observation and X-ray ranging observation for navigation filtering is proposed to deal with this issue. As a newly emerged concept, X-ray communication (XCOM) shows great potential in space exploration. X-ray ranging, derived from XCOM, could achieve high accuracy in range measurement, which could provide accurate information for XNAV. For the proposed method, the measurement models of pulsar observation and range measurement observation are established, and a Kalman filtering algorithm based on the observations and orbit dynamics is proposed to estimate the position and velocity of a spacecraft. A performance comparison of the proposed method with the traditional pulsar observation method is conducted by numerical experiments. Besides, the parameters that influence the performance of the proposed method, such as the pulsar observation time, the SNR of the ranging signal, etc., are analyzed and evaluated by numerical experiments.

  15. Novel X-ray Communication Based XNAV Augmentation Method Using X-ray Detectors

    PubMed Central

    Song, Shibin; Xu, Luping; Zhang, Hua; Bai, Yuanjie

    2015-01-01

    The further development of X-ray pulsar-based NAVigation (XNAV) is hindered by its lack of accuracy, so accuracy improvement has become a critical issue for XNAV. In this paper, an XNAV augmentation method which utilizes both pulsar observation and X-ray ranging observation for navigation filtering is proposed to deal with this issue. As a newly emerged concept, X-ray communication (XCOM) shows great potential in space exploration. X-ray ranging, derived from XCOM, could achieve high accuracy in range measurement, which could provide accurate information for XNAV. For the proposed method, the measurement models of pulsar observation and range measurement observation are established, and a Kalman filtering algorithm based on the observations and orbit dynamics is proposed to estimate the position and velocity of a spacecraft. A performance comparison of the proposed method with the traditional pulsar observation method is conducted by numerical experiments. Besides, the parameters that influence the performance of the proposed method, such as the pulsar observation time, the SNR of the ranging signal, etc., are analyzed and evaluated by numerical experiments. PMID:26404295

  16. A large area detector for x-ray applications

    SciTech Connect

    Rodricks, B.; Huang, Qiang; Hopf, R.; Wang, Kemei

    1993-10-01

    A large area detector for x-ray synchrotron applications has been developed. The front end of this device consist of a scintillator coupled to a fiber-optic taper. The fiber-optic taper is comprised of 4 smaller (70 mm x 70 mm) tapers fused together in a square matrix giving an active area of 140 mm x 140 mm. Each taper has a demagnification of 5.5 resulting in four small ends that are 12 mm diagonally across. The small ends of each taper are coupled to four microchannel-plate-based image intensifiers. The output from each image intensifier is focused onto a Charge Coupled Device (CCD) detector. The four CCDs are read out in parallel and are independently controlled. The image intensifiers also act as fast (20 ns) electronic shutters. The system is capable of displaying images in real time. Additionally, with independent control on the readout of each row of data from the CCD, the system is capable of performing high speed imaging through novel readout manipulation.

  17. Temporal artifacts in flat dynamic x-ray detectors

    NASA Astrophysics Data System (ADS)

    Overdick, Michael; Solf, Torsten; Wischmann, Hans-Aloys

    2001-06-01

    Flat X-ray detectors based on CsI:Tl scintillators and amorphous silicon photodiodes are known to exhibit temporal artefacts (ghost images) which decay over time. Previously, these temporal artefacts have been attributed mainly to residual signals from the amorphous silicon photodiodes. More detailed experiments presented here show that a second class of effects, the so-called gain effects, also contributes significantly to the observed temporal artefacts. Both the residual signals and the photodiode gain effect have been characterized under various exposure conditions in the study presented here. The results of the experiments quantitatively show the decay of the temporal artefacts. Additionally, the influence of the detector's reset light on both effects in the photodiode has been studied in detail. The data from the measurements is interpreted based on a simple trapping model which suggests a strong link between the photodiode residual signals and the photodiode gain effect. For the residual signal effect a possible correction scheme is described. Furthermore, the relevance of the remaining temporal artefacts for the applications is briefly discussed for both the photodiode residual signals and the photodiode gain effect.

  18. Fluoroscopic x-ray imaging with amorphous silicon thin-film arrays

    NASA Astrophysics Data System (ADS)

    Schiebel, Ulrich W.; Conrads, Norbert; Jung, Norbert; Weibrecht, Martin; Wieczorek, Herfried K.; Zaengel, Thomas T.; Powell, M. J.; French, I. D.; Glasse, C.

    1994-05-01

    The dream of an all-solid state large area x-ray image sensor with digital readout and full dynamic performance will most probably find a first realization in 2D thin-film amorphous silicon arrays. In this paper we address in particular the evaluation of the limits of the signal/noise ratio in this concept. Using small prototype detectors measurements of MTF and noise power spectra have been made as a function of x-ray dose. The results are given in terms of the detective quantum efficiency as a function of dose and spatial frequency. We further present an analysis of the different noise sources and their dependence on the detector parameters, and we provide estimates on the maximum signals that may be achieved per unit dose. The intrinsic lag of the amorphous silicon photodiodes causes a second problem area with this type of x-ray detectors. Especially in radiography/fluoroscopy mixed applications, memory effects may not be negligible.

  19. Non-destructive imaging of fragments of historical beeswax seals using high-contrast X-ray micro-radiography and micro-tomography with large area photon-counting detector array.

    PubMed

    Karch, Jakub; Bartl, Benjamin; Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek

    2016-12-01

    Historical beeswax seals are unique cultural heritage objects. Unfortunately, a number of historical sealing waxes show a porous structure with a strong tendency to stratification and embrittlement, which makes these objects extremely prone to mechanical damage. The understanding of beeswax degradation processes therefore plays an important role in the preservation and consequent treatment of these objects. Conventional methods applied for the investigation of beeswax materials (e.g. gas chromatography) are of a destructive nature or bring only limited information about the sample surface (microscopic techniques). Considering practical limitations of conventional methods and ethical difficulties connected with the sampling of the historical material, radiation imaging methods such as X-ray micro-tomography presents a promising non-destructive tool for the onward scientific research in this field. In this contribution, we present the application of high-contrast X-ray micro-radiography and micro-tomography for the investigation of beeswax seal fragments. The method is based on the application of the large area photon-counting detector recently developed at our institute. The detector combines the advantages of single-photon counting technology with a large field of view. The method, consequently, enables imaging of relatively large objects with high geometrical magnification. In the reconstructed micro-tomographies of investigated historical beeswax seals, we are able to reveal morphological structures such as stratification, micro-cavities and micro-fractures with spatial resolution down to 5μm non-destructively and with high imaging quality. The presented work therefore demonstrates that a combination of state-of-the-art hybrid pixel semiconductor detectors and currently available micro-focus x-ray sources makes it possible to apply X-ray micro-radiography and micro-tomography as a valuable non-destructive tool for volumetric beeswax seal morphological studies.

  20. Development of Kilo-Pixel Arrays of Transition-Edge Sensors for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; Kilbourne, C. A.; Leutenegger, M. A.; Porst, J.-P.; Porter, F. S.; Ray, C. A.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Irwin, K. D.; Reintsema, C. D.; Smith, D. R.; Swetz, D. S.

    2012-01-01

    We are developing kilo-pixel arrays of transition-edge sensor (TES) microcalorimeters for future X-ray astronomy observatories or for use in laboratory astrophysics applications. For example, Athena/XMS (currently under study by the european space agency) would require a close-packed 32x32 pixel array on a 250-micron pitch with < 3.0 eV full-width-half-maximum energy resolution at 6 keV and at count-rates of up to 50 counts/pixel/second. We present characterization of 32x32 arrays. These detectors will be readout using state of the art SQUID based time-domain multiplexing (TDM). We will also present the latest results in integrating these detectors and the TDM readout technology into a 16 row x N column field-able instrument.

  1. Performance of Gas Scintillation Proportional Counter Array for High-Energy X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Apple, Jeffery

    2004-01-01

    A focal plane array of high-pressure gas scintillation proportional counters (GSPC) for a High Energy X-Ray Observatory (HERO) is developed at the Marshall Space Flight Center. The array is consisted from eight GSPCs and is a part of balloon born payload scheduled to flight in May 2004. These detectors have an active area of approximately 20 square centimeters, and are filled with a high pressure (10(exp 6) Pa) xenon-helium mixture. Imaging is via crossed-grid position-sensitive phototubes sensitive in the UV region. The performance of the GSPC is well matched to that of the telescopes x-ray optics which have response to 75 keV and a focal spot size of approximately 500 microns. The detector's energy resolution, 4% FWHM at 60 keV, is adequate for resolving the broad spectral lines of astrophysical importance and for accurate continuum measurements. Results of the on-earth detector calibration will be presented and in-flight detector performance will be provided, as available.

  2. Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT).

    PubMed

    Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei

    2015-05-01

    In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).

  3. Measurement of the characteristic X ray of oxygen and other ultrasoft X rays using mercuric iodide detectors

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Dabrowski, A. J.; Huth, G. C.; Economou, T. E.

    1985-01-01

    This letter reports the detection and resolution of the characteristic X-ray of oxygen at 523 eV and other ultrasoft X-rays (photons energy less than 1 keV) using radiation detectors fabricated from the compound semi-insulator mercuric iodide (HgI2). These detectors are capable of operation at room ambient but in these experiments were slightly cooled using a Peltier element to 0 C. A pulsed light feedback preamplifier with a Peltier element cooled (to -30 deg) first stage field-effect transistor was used to amplify signals from the detector. Overall system noise level was 185 eV (full width at half-maximum) limited by the temperature of the first stage field-effect transistor. With optimal cooling of this element the characteristic X-ray of carbon at 282 eV should be measurable. These results would seem to be important in measurement of biological samples in electron column instruments.

  4. X-ray polarimetry with the Polarization Spectroscopic Telescope Array (PolSTAR)

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric S.; Stern, Daniel; Harrison, Fiona A.; Kislat, Fabian F.; Zajczyk, Anna; Beilicke, Matthias; Hoormann, Janie; Guo, Qingzhen; Endsley, Ryan; Ingram, Adam R.; Miyasaka, Hiromasa; Madsen, Kristin K.; Aaron, Kim M.; Amini, Rashied; Baring, Matthew G.; Beheshtipour, Banafsheh; Bodaghee, Arash; Booth, Jeffrey; Borden, Chester; Böttcher, Markus; Christensen, Finn E.; Coppi, Paolo S.; Cowsik, Ramanath; Davis, Shane; Dexter, Jason; Done, Chris; Dominguez, Luis A.; Ellison, Don; English, Robin J.; Fabian, Andrew C.; Falcone, Abe; Favretto, Jeffrey A.; Fernández, Rodrigo; Giommi, Paolo; Grefenstette, Brian W.; Kara, Erin; Lee, Chung H.; Lyutikov, Maxim; Maccarone, Thomas; Matsumoto, Hironori; McKinney, Jonathan; Mihara, Tatehiro; Miller, Jon M.; Narayan, Ramesh; Natalucci, Lorenzo; Özel, Feryal; Pivovaroff, Michael J.; Pravdo, Steven; Psaltis, Dimitrios; Okajima, Takashi; Toma, Kenji; Zhang, William W.

    2016-02-01

    This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter, radiation and the very fabric of spacetime under the extreme conditions close to the event horizons of black holes, as well as in and around magnetars and neutron stars. The PolSTAR design is based on the technology developed for the Nuclear Spectroscopic Telescope Array (NuSTAR) mission launched in June 2012. In particular, it uses the same X-ray optics, extendable telescope boom, optical bench, and CdZnTe detectors as NuSTAR. The mission has the sensitivity to measure ˜1% linear polarization fractions for X-ray sources with fluxes down to ˜5 mCrab. This paper describes the PolSTAR design as well as the science drivers and the potential science return.

  5. X-ray detector physics and applications; Proceedings of the Meeting, San Diego, CA, July 23, 24, 1992

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor)

    1993-01-01

    Recent developments in X-ray and hard X-ray imaging detector, high-intensity sources, hard X-ray imaging optics, calibration, and detection technologies are discussed. Particular attention is given to a high-MTF X-ray image intensifier, application of monolithic CdZnTe linear solid state ionization detectors for X-ray imaging, magnetic response of high-Tc superconductors to X-ray radiation and detection of X-rays, laboratory soft X-ray source with foil target, detection of explosive materials using nuclear radiation, energy response of astronomical CCD X-ray detectors, calibration techniques for high-flux X-ray detectors, fabrication of grazing-incidence optics using flow-polishing techniques, and numerical simulations for capillary-based X-ray optics. (No individual items are abstracted in this volume)

  6. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector

    PubMed Central

    Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.

    2016-01-01

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = −0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches. PMID:27795606

  7. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector

    NASA Astrophysics Data System (ADS)

    Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.

    2016-10-01

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.

  8. Thin-film transistor array technology for high-performance direct-conversion x-ray sensors

    NASA Astrophysics Data System (ADS)

    den Boer, Willem; Aggas, Steven; Byun, Young H.; Gu, Tieer; Zhong, Johnny Q.; Thomsen, Scott V.; Jeromin, Lothar S.; Lee, Denny L. Y.

    1998-07-01

    Thin Film Transistor (TFT) array technology is presented for Digital X-ray Sensors in Direct Radiography applications. Circuit simulations were performed to optimize the design of the TFT array. The sensor array uses a combination of a mushroom electrode with a high fill factor of 86% and a polymer passivation dielectric to minimize column capacitance and improve signal-to-noise ratio. A 14 in. X 8.5 in. sensor array with 1536 X 2560 pixels was developed using this technology. The TFT arrays are processed entirely in Class 1 clean room environments to eliminate line defects and minimize pixel defects. The best 14 in. X 8.5 in. panels have exhibited fewer than 0.001% pixel defects, as detected during in process testing prior to Se coating. In typical image quality comparisons with conventional X-ray film/screen combinations, the digital X-ray sensor exhibited equal or better performance than film-screens. Clinical studies were also conducted. Radiologists concluded that diagnostically significant projection radiographic images can be produced with the new digital X-ray sensor that are equivalent or superior to conventional film/screen images at the same X-ray exposures. The detector recently received FDA approval.

  9. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams

    NASA Astrophysics Data System (ADS)

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-01

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  10. Automated Absorber Attachment for X-ray Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, S.; Allen, Christine; Kilbourne, Caroline; Miller, Timothy M.; Costen, Nick; Schulte, Eric; Moseley, Samuel J.

    2007-01-01

    Our goal is to develop a method for the automated attachment of large numbers of absorber tiles to large format detector arrays. This development includes the fabrication of high quality, closely spaced HgTe absorber tiles that are properly positioned for pick-and-place by our FC150 flip chip bonder. The FC150 also transfers the appropriate minute amount of epoxy to the detectors for permanent attachment of the absorbers. The success of this development will replace an arduous, risky and highly manual task with a reliable, high-precision automated process.

  11. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: a feasibility study

    NASA Astrophysics Data System (ADS)

    Shan, Jing; Tucker, Andrew W.; Lee, Yueh Z.; Heath, Michael D.; Wang, Xiaohui; Foos, David H.; Lu, Jianping; Zhou, Otto

    2015-01-01

    Chest tomosynthesis is a low-dose, quasi-3D imaging modality that has been demonstrated to improve the detection sensitivity for small lung nodules, compared to 2D chest radiography. The purpose of this study is to investigate the feasibility and system requirements of stationary chest tomosynthesis (s-DCT) using a spatially distributed carbon nanotube (CNT) x-ray source array, where the projection images are collected by electronically activating individual x-ray focal spots in the source array without mechanical motion of the x-ray source, detector, or the patient. A bench-top system was constructed using an existing CNT field emission source array and a flat panel detector. The tube output, beam quality, focal spot size, system in-plane and in-depth resolution were characterized. Tomosynthesis slices of an anthropomorphic chest phantom were reconstructed for image quality assessment. All 75 CNT sources in the source array were shown to operate reliably at 80 kVp and 5 mA tube current. Source-to-source consistency in the tube current and focal spot size was observed. The incident air kerma reading per mAs was measured as 74.47 uGy mAs-1 at 100 cm. The first half value layer of the beam was 3 mm aluminum. An average focal spot size of 2.5  ×  0.5 mm was measured. The system MTF was measured to be 1.7 cycles mm-1 along the scanning direction, and 3.4 cycles mm-1 perpendicular to the scanning direction. As the angular coverage of 11.6°-34°, the full width at half maximum of the artifact spread function improved greatly from 9.5 to 5.2 mm. The reconstructed tomosynthesis slices clearly show airways and pulmonary vascular structures in the anthropomorphic lung phantom. The results show the CNT source array is capable of generating sufficient dose for chest tomosynthesis imaging. The results obtained so far suggest an s-DCT using a distributed CNT x-ray source array is feasible.

  12. Development of wide-band X-ray/gamma-ray imagers using reach through APD arrays

    SciTech Connect

    Nakamori, T.; Kataoka, J.; Toizumi, T.; Koizumi, M.; Tanaka, S.; Kanai, Y.; Yatsu, Y.; Kawai, N.; Ishikawa, Y.; Kawai, T.; Kawabata, N.; Matsunaga, Y.

    2009-05-25

    It is quite important to obtain wide band spectra of gamma-ray bursts (GRBs) at the same time in order to probe the emission processes or the structure of GRBs. An avalanche photo diode (APD) is a compact photon sensor with an internal gain of 100. We have developed an X-ray/gamma-ray detector using a back-illuminated reach-through APD (5x5 mm{sup 2}) optically coupled with a conventional CsI(Tl) scintillator, which covers typically from 1 keV to 1 MeV. Further, we developed a 1-dimensional array of the 8/16 APDs (net 16x20 mm{sup 2}) for the purpose of an imaging photon detector to be used in future GRB missions. Here we present the current status and performance of our hybrid detector.

  13. Shimming with permanent magnets for the x-ray detector in a hybrid x-ray/ MR system.

    PubMed

    Wen, Zhifei; Fahrig, Rebecca; Williams, Scott T; Pelc, Norbert J

    2008-09-01

    In this x-ray/MR hybrid system an x-ray flat panel detector is placed under the patient cradle, close to the MR volume of interest (VOI), where the magnetic field strength is approximately 0.5 T. Immersed in this strong field, several electronic components inside the detector become magnetized and create an additional magnetic field that is superimposed on the original field of the MR scanner. Even after linear shimming, the field homogeneity of the MR scanner remains disrupted by the detector. The authors characterize the field due to the detector with the field of two magnetic dipoles and further show that two sets of permanent magnets (NdFeB) can withstand the main magnetic field and compensate for the nonlinear components of the additional field. The ideal number of magnets and their locations are calculated based on a field map measured with the detector in place. Experimental results demonstrate great promise for this technique, which may be useful in many settings where devices with magnetic components need to be placed inside or close to an MR scanner.

  14. Generalized prism-array lenses for hard X-rays.

    PubMed

    Cederström, Björn; Ribbing, Carolina; Lundqvist, Mats

    2005-05-01

    A Fresnel-like X-ray lens can be constructed by a triangular array of identical prisms whose base corresponds to the 2pi-shift length. Each column of prisms is progressively shifted from the optical axis by an arbitrary fraction of the prism height. Similarly to the multi-prism lens, quasi-parabolic profiles are formed by a superposition of straight-line segments. The resulting projected lens profile is approximately linear with a Fresnel-lens pattern superimposed on it to provide the focusing. This geometry exhibits a significantly larger effective aperture than conventional parabolic refractive lenses. Prototype lenses were fabricated by deep reactive ion etching of silicon. These one-dimensionally focusing lenses were tested at a synchrotron beamline and provided focal line-widths down to 1.4 microm FWHM and an intensity gain of 39 at a photon energy of 13.4 keV. Fabrication imperfections gave rise to unwanted interference effects resulting in several intensity maxima in the focal plane. The presented design allows the focal length to be shortened without decreasing the feature size of the lens. Furthermore, this feature size does not limit the resolution as for real Fresnel optics.

  15. Complete optical stack modeling for CMOS-based medical x-ray detectors

    NASA Astrophysics Data System (ADS)

    Zyazin, Alexander S.; Peters, Inge M.

    2015-03-01

    We have developed a simulation tool for modeling the performance of CMOS-based medical x-ray detectors, based on the Monte Carlo toolkit GEANT4. Following the Fujita-Lubberts-Swank approach recently reported by Star-Lack et al., we calculate modulation transfer function MTF(f), noise power spectrum NPS(f) and detective quantum efficiency DQE(f) curves. The complete optical stack is modeled, including scintillator, fiber optic plate (FOP), optical adhesive and CMOS image sensor. For critical parts of the stack, detailed models have been developed, taking into account their respective microstructure. This includes two different scintillator types: Gd2O2S:Tb (GOS) and CsI:Tl. The granular structure of the former is modeled using anisotropic Mie scattering. The columnar structure of the latter is introduced into calculations directly, using the parameterization capabilities of GEANT4. The underlying homogeneous CsI layer is also incorporated into the model as well as the optional reflective layer on top of the scintillator screen or the protective polymer top coat. The FOP is modeled as an array of hexagonal bundles of fibers. The simulated CMOS stack consists of layers of Si3N4 and SiO2 on top of a silicon pixel array. The model is validated against measurements of various test detector structures, using different x-ray spectra (RQA5 and RQA-M2), showing good match between calculated and measured MTF(f) and DQE(f) curves.

  16. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  17. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C.; Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S.

    2016-11-01

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO2 clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1-3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  18. High-efficiency fast scintillators for 'optical' soft x-ray arrays for laboratory plasma diagnostics

    SciTech Connect

    Delgado-Aparicio, L. F.; Stutman, D.; Tritz, K.; Vero, R.; Finkenthal, M.; Suliman, G.; Kaita, R.; Majeski, R.; Stratton, B.; Roquemore, L.; Tarrio, C

    2007-08-20

    Scintillator-based 'optical' soft x-ray (OSXR) arrays have been investigated as a replacement for the conventional silicon (Si)-based diode arrays used for imaging, tomographic reconstruction, magnetohydrodynamics, transport, and turbulence studies in magnetically confined fusion plasma research. An experimental survey among several scintillator candidates was performed, measuring the relative and absolute conversion efficiencies of soft x rays to visible light. Further investigations took into account glass and fiber-optic faceplates (FOPs) as substrates, and a thin aluminum foil(150 nm) to reflect the visible light emitted by the scintillator back to the optical detector.Columnar (crystal growth) thallium-doped cesium iodide (CsI:Tl) deposited on an FOP, was found to be the best candidate for the previously mentioned plasma diagnostics.Its luminescence decay time of the order of?1-10 {mu}s is thus suitable for the 10 {mu}s time resolution required for the development of scintillator-based SXR plasma diagnostics. A prototype eight channel OSXR array using CsI:Tl was designed, built,and compared to an absolute extreme ultraviolet diode counterpart: its operation on the National Spherical Torus Experiment showed a lower level of induced noise relative to the Si-based diode arrays, especially during neutral beam injection heated plasma discharges. The OSXR concept can also be implemented in less harsh environments for basic spectroscopic laboratory plasma diagnostics.

  19. Improving x-ray image resolution using subpixel shifts of the detector

    NASA Astrophysics Data System (ADS)

    Bruandet, Jean-Pierre; Dinten, Jean-Marc

    1999-05-01

    The resolution of digitized images is linked to the detector array pixel size. Aliasing effects result from a non- adequation between the detector sampling and the signal bandwidths. The aim of this study is to develop a super- resolution algorithm for X-ray images. Our technique uses controlled horizontal and vertical subpixel shifts. Generalized sampling theorem of Papoulis, based on a multichannel approach, is the theoretical justification for the recovery of a high resolution image thanks to a set of low resolution ones. A higher resolution image is recovered by a minimization of a quadratic criterion. An iterative relaxation method is used to compute the minimum. To regularize, a priori data about the signal are introduced in order to fight against noise effects. Because of the opposite effects of regularization and super-resolution an adapted regularization that preserves discontinuities has to be used. Results obtained show that our algorithm recovers high frequency components on X-ray images without noise amplification. An analysis of real acquisitions in terms of modulation transfer function (MTF) shows that we obtain, thanks to this method, a 'virtual' detector better than a low resolution one, and equivalent to a real high resolution one.

  20. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    SciTech Connect

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  1. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode.

    PubMed

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  2. Relative calibration of energy thresholds on multi-bin spectral x-ray detectors

    NASA Astrophysics Data System (ADS)

    Sjölin, M.; Danielsson, M.

    2016-12-01

    Accurate and reliable energy calibration of spectral x-ray detectors used in medical imaging is essential for avoiding ring artifacts in the reconstructed images (computed tomography) and for performing accurate material basis decomposition. A simple and accurate method for relative calibration of the energy thresholds on a multi-bin spectral x-ray detector is presented. The method obtains the linear relations between all energy thresholds in a channel by scanning the thresholds with respect to each other during x-ray illumination. The method does not rely on a model of the detector's response function and does not require any identifiable features in the x-ray spectrum. Applying the same method, the offset between the thresholds can be determined also without external stimuli by utilizing the electronic noise as a source. The simplicity and accuracy of the method makes it suitable for implementation in clinical multi-bin spectral x-ray imaging systems.

  3. Large-area linear Silicon Drift Detector design for X-ray experiments

    NASA Astrophysics Data System (ADS)

    Rachevski, A.; Zampa, G.; Zampa, N.; Campana, R.; Evangelista, Y.; Giacomini, G.; Picciotto, A.; Bellutti, P.; Feroci, M.; Labanti, C.; Piemonte, C.; Vacchi, A.

    2014-07-01

    A large area, 120 × 72 mm2, linear Silicon Drift Detector (SDD) has been developed for X-ray spectroscopy in the 2-50 keV energy range. Elaborated via a number of prototypes, the final detector design, REDSOX1, features elements to meet the requirements of a modern space-borne X-ray detector with a power consumption per sensitive area below 0.5 mW/cm2, offering the possibility to perform timing and spectroscopy X-ray observations on a ten microseconds scale.

  4. CdZnTe Image Detectors for Hard-X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.

    2005-01-01

    Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.

  5. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M.; Gibson, Walter M.; Huang, Huapeng

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  6. Optomechanical design of a high-precision detector robot arm system for x-ray nano-diffraction with x-ray nanoprobe

    NASA Astrophysics Data System (ADS)

    Shu, D.; Kalbfleisch, S.; Kearney, S.; Anton, J.; Chu, Y. S.

    2014-03-01

    Collaboration between Argonne National Laboratory and Brookhaven National Laboratory has created a design for the high-precision detector robot arm system that will be used in the x-ray nano-diffraction experimental station at the Hard X-ray Nanoprobe (HXN) beamline for the NSLS-II project. The robot arm system is designed for positioning and manipulating an x-ray detector in three-dimensional space for nano-diffraction data acquisition with the HXN x-ray microscope. It consists of the following major component groups: a granite base with air-bearing support, a 2-D horizontal base stage, a vertical axis goniometer, a 2-D vertical plane robot arm, a 3-D fast scanning stages group, and a 2-D x-ray pixel detector. The design specifications and unique optomechanical structure of this novel high-precision detector robot arm system will be presented in this paper.

  7. Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography

    PubMed Central

    Miyoshi, Toshinobu; Igarashi, Noriyuki; Matsugaki, Naohiro; Yamada, Yusuke; Hirano, Keiichi; Hyodo, Kazuyuki; Tanioka, Kenkichi; Egami, Norifumi; Namba, Masakazu; Kubota, Misao; Kawai, Teruo; Wakatsuki, Soichi

    2008-01-01

    A new detector system for protein crystallography is now being developed based on an X-ray HARP–FEA (high-gain avalanche rushing amorphous photoconductor–field emitter array), which consists of an amorphous selenium membrane and a matrix field emitter array. The combination of the membrane avalanche effect with a single driven FEA has several advantages over currently available area detectors, including higher sensitivity, higher spatial resolution and a higher frame rate. Preliminary evaluation of the detector has been carried out and its effectiveness has been confirmed. Next, diffraction images were measured with continuous rotation of a protein crystal, and the images were compared with those measured by the existing CCD detector; the system successfully obtained high-spatial-resolution images. Using shutterless measurement, the total measurement time can be reduced significantly, making the method appropriate for high-throughput protein crystallography. The X-ray HARP–FEA detector is an attractive candidate for the next generation of X-ray area detectors. PMID:18421159

  8. CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.

    SciTech Connect

    Shu, D.

    1999-04-19

    A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray and gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.

  9. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-03-03

    A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  10. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-07-21

    A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  11. Development of Position-sensitive Transition-edge Sensor X-ray Detectors

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Eckard, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. s.; Sad (eor. K/ E/); Figueroa-Feliciano, E.

    2008-01-01

    We report on the development of position-sensitive transition-edge sensors (PoST's) for future x-ray astronomy missions such as the International X-ray Observatory (IXO), currently under study by NASA and ESA. PoST's consist of multiple absorbers each with a different thermal coupling to one or more transition-edge sensor (TES). This differential thermal coupling between absorbers and TES's results in different characteristic pulse shapes and allows position discrimination between the different pixels. The development of PoST's is motivated by a desire to achieve maximum focal-plane area with the least number of readout channels and as such. PoST's are ideally suited to provide a focal-plane extension to the Constellation-X microcalorimeter array. We report the first experimental results of our latest one and two channel PoST's, which utilize fast thermalizing electroplated Au/Bi absorbers coupled to low noise Mo/Au TES's - a technology already successfully implemented in our arrays of single pixel TES's. We demonstrate 6 eV energy resolution coupled with spatial sensitivity in the keV energy range. We also report on the development of signal processing algorithms to optimize energy and position sensitivity of our detectors.

  12. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, David S.; Ruud, Clay O.

    1998-01-01

    A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

  13. X-ray and gamma ray detector readout system

    DOEpatents

    Tumer, Tumay O; Clajus, Martin; Visser, Gerard

    2010-10-19

    A readout electronics scheme is under development for high resolution, compact PET (positron emission tomography) imagers based on LSO (lutetium ortho-oxysilicate, Lu.sub.2SiO.sub.5) scintillator and avalanche photodiode (APD) arrays. The key is to obtain sufficient timing and energy resolution at a low power level, less than about 30 mW per channel, including all required functions. To this end, a simple leading edge level crossing discriminator is used, in combination with a transimpedance preamplifier. The APD used has a gain of order 1,000, and an output noise current of several pA/ Hz, allowing bipolar technology to be used instead of CMOS, for increased speed and power efficiency. A prototype of the preamplifier and discriminator has been constructed, achieving timing resolution of 1.5 ns FWHM, 2.7 ns full width at one tenth maximum, relative to an LSO/PMT detector, and an energy resolution of 13.6% FWHM at 511 keV, while operating at a power level of 22 mW per channel. Work is in progress towards integration of this preamplifier and discriminator with appropriate coincidence logic and amplitude measurement circuits in an ASIC suitable for a high resolution compact PET instrument. The detector system and/or ASIC can also be used for many other applications for medical to industrial imaging.

  14. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  15. Calibration of a time-resolved hard-x-ray detector using radioactive sources

    NASA Astrophysics Data System (ADS)

    Stoeckl, C.; Theobald, W.; Regan, S. P.; Romanofsky, M. H.

    2016-11-01

    A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.

  16. Wire array z-pinch insights for high x-ray power generation

    SciTech Connect

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  17. Wire array z-pinch insights for high x-ray power generation

    SciTech Connect

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  18. Soft x-ray measurements using photoconductive type-IIa and single-crystal chemical vapor deposited diamond detectors.

    PubMed

    Moore, A S; Bentley, C D; Foster, J M; Goedhart, G; Graham, P; Taylor, M J; Hellewell, E

    2008-10-01

    Photoconductive detectors (PCDs) are routinely used alongside vacuum x-ray diodes (XRDs) to provide an alternative x-ray flux measurement at laser facilities such as HELEN at AWE Aldermaston, UK, and Omega at the Laboratory for Laser Energetics. To evaluate diamond PCDs as an alternative to XRD arrays, calibration measurements made at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory are used to accurately calculate the x-ray flux from a laser-heated target. This is compared to a flux measurement using the Dante XRD diagnostic. Estimates indicate that the photoinduced conductivity from measurements made at Omega are too large, and calculations using the radiometric calibrations made at the NSLS agree with this hypothesis. High-purity, single-crystal, chemical vapor deposited (CVD) diamond samples are compared to natural type-IIa PCDs and show promising high resistivity effects, the corollary of which preliminary results show is a slower response time.

  19. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: A Monte Carlo study

    SciTech Connect

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    2011-03-15

    Purpose: The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Methods: Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 deg. to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. Results: The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. Conclusions: The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.

  20. Design considerations for soft X-ray television imaging detectors

    NASA Technical Reports Server (NTRS)

    Kalata, Kenneth; Golub, Leon

    1988-01-01

    Television sensors for X-rays can be coupled to converters and image intensifiers to obtain active areas, high flux capabilities, quantum efficiency, high time resolution, or ease of construction and operation that may not be obtained with a directly illuminated sensor. A general purpose system which makes use of these capabilities for a number of applications is decribed. Some of the performance characteristics of this type of system are examined, and the expected future developments for such systems are briefly addressed.

  1. Prospective gated chest tomosynthesis using CNT X-ray source array

    NASA Astrophysics Data System (ADS)

    Shan, Jing; Burk, Laurel; Wu, Gongting; Lee, Yueh Z.; Heath, Michael D.; Wang, Xiaohui; Foos, David; Lu, Jianping; Zhou, Otto

    2015-03-01

    Chest tomosynthesis is a low-dose 3-D imaging modality that has been shown to have comparable sensitivity as CT in detecting lung nodules and other lung pathologies. We have recently demonstrated the feasibility of stationary chest tomosynthesis (s-DCT) using a distributed CNT X-ray source array. The technology allows acquisition of tomographic projections without moving the X-ray source. The electronically controlled CNT x-ray source also enables physiologically gated imaging, which will minimize image blur due to the patient's respiration motion. In this paper, we investigate the feasibility of prospective gated chest tomosynthesis using a bench-top s-DCT system with a CNT source array, a high- speed at panel detector and realistic patient respiratory signals captured using a pressure sensor. Tomosynthesis images of inflated pig lungs placed inside an anthropomorphic chest phantom were acquired at different respiration rate, with and without gating for image quality comparison. Metal beads of 2 mm diameter were placed on the pig lung for quantitative measure of the image quality. Without gating, the beads were blurred to 3:75 mm during a 3 s tomosynthesis acquisition. When gated to the end of the inhalation and exhalation phase the detected bead size reduced to 2:25 mm, much closer to the actual bead size. With gating the observed airway edges are sharper and there are more visible structural details in the lung. Our results demonstrated the feasibility of prospective gating in the s-DCT, which substantially reduces image blur associated with lung motion.

  2. Technological aspects of GEM detector design and assembling for soft x-ray application

    NASA Astrophysics Data System (ADS)

    Kowalska-Strzeciwilk, E.; Chernyshova, M.

    2016-09-01

    Various types of Micro Pattern Gas Detectors (MPGDs) found applications as tracking detectors in high energy particle physics experiments and as well as imaging detectors, especially for soft X-rays. These detectors offer several advantages like high count rate capability, good spatial and energy resolution, low cost and possibility of constructing large area detectors with very small dead area. Construction, like the triple Gas Electron Multiplier (GEM) detector has become a standard detector, which is widely used for different imaging applications. Some examples of such applications are: monitoring the impurity in plasma, imaging system for mapping of some parameters like pigment distributions using X-ray fluorescence technique[1], proton range radiography system for quality assurance in hadron therapy. Measuring of the Soft X-Ray (SXR) radiation of magnetic fusion plasma is a standard way of accessing valuable information, for example, about particle transport and MHD. The paper is focused on the design of GEM based soft Xray radiation detecting system which is under development. It is dedicated to study soft X-ray emission of plasma radiation with focus on tungsten emission lines energy region. The paper presents the designing, construction and assembling of a prototype of two triple-GEM detectors for soft-X ray application on the WEST device.

  3. Entrance window design parameters for high-pressure gas x-ray imaging detectors.

    PubMed

    Jordan, L M; Dibianca, F A

    1995-01-01

    Gas ionization x-ray detectors operating at pressures up to 100 atm offer inherently high spatial and contrast resolution. However, incorporating the detector x-ray entrance window in a conventional pressure vessel designed for such pressures can result in high primary beam loss in the window and a much reduced overall detective quantum efficiency. The design of a gas chamber cover plate for a strip beam detector which mechanically isolates the x-ray entrance window from the lateral tensile stresses in the chamber body is described. A number of test windows of this design, varying in three geometric parameters-thickness, window curvature, and fillet radius-were fabricated from wrought aluminum [6061-T651 ] and subjected to pressures of up to 400 atm for the purpose of selecting an optimum window for a prototype digital x-ray imaging detector. The experimental data indicate that windows can be designed for a detector admitting a 1.0 cm wide x-ray beam that have rupture pressures exceeding 500 atm while maintaining x-ray transmittances of as much as 93.4% for a 120 kVp tungsten anode spectrum.

  4. Mercuric iodide detector systems for identifying substances by x-ray energy dispersive diffraction

    SciTech Connect

    Iwanczyk, J.S.; Patt, B.E.; Wang, Y.J.; Croft, M.; Kalman, Z.; Mayo, W.

    1995-08-01

    The use of mercuric iodide arrays for energy-dispersive x-ray diffraction (EDXRD) spectroscopy is now being investigated by the authors for inspection of specific crystalline powders in substances ranging from explosives to illicit drugs. Mercuric iodide has been identified as the leading candidate for replacing the Ge detectors previously employed in the development of this technique because HgI{sub 2} detectors: operate at or near room temperature; without the bulky apparatus associated with cryogenic cooling; and offer excellent spectroscopy performance with extremely high efficiency. Furthermore, they provide the practicality of constructing optimal array geometries necessary for these measurements. Proof of principle experiments have been performed using a single-HgI{sub 2} detector spectrometer. An energy resolution of 655 eV (FWHM) has been obtained for 60 keV gamma line from an {sup 241}Am source. The EDXRD signatures of various crystalline powdered compounds have been measured and the spectra obtained show the excellent potential of mercuric iodide for this application.

  5. Place of HgI/sub 2/ energy-dispersive x-ray detectors

    SciTech Connect

    Dabrowski, A.J.; Huth, G.C.; Iwanczyk, J.S.; Kusmiss, J.H.; Barton, J.S.; Szymczyk, J.M.; Schnepple, W.F.; Lynn, R.

    1982-01-01

    After a review of solid-state conduction counters, in general, and of the history of mercuric iodide, in particular, the theory of operation of solid-state energy-dispersive HgI/sub 2/ detectors is dicusssed. The main factors which limit energy resolution in solid-state compound detectors are considered, including statistical fluctuations in charge generation, the window effect, trapping, inhomogeneities in the detector material, and electronic noise. Potential applications of room-temperature HgI/sub 2/ x-ray detectors are listed, and general considerations are discussed for x-ray fluorescence analysis with HgI/sub 2/. Directions of current investigations are given. (LEW)

  6. Spatial resolution of synchrotron x-ray microtomography in high energy range: Effect of x-ray energy and sample-to-detector distance

    NASA Astrophysics Data System (ADS)

    Seo, D.; Tomizato, F.; Toda, H.; Uesugi, K.; Takeuchi, A.; Suzuki, Y.; Kobayashi, M.

    2012-12-01

    Spatial resolution of three-dimensional images obtained by synchrotron X-ray microtomography technique is evaluated using cyclic bar patterns machined on a steel wire. Influences of X-ray energy and the sample-to-detector distance on spatial resolution were investigated. High X-ray energies of 33-78 keV are applied due to the high X-ray absorption of transition metals. Best spatial resolution of about 1.2 μm pitch was observed at the sample-to-detector distance range of 20-110 mm and at the energy range of 68-78 keV. Several factors such as X-ray scattering and diffraction phenomena affecting the degradation of spatial resolution are also discussed.

  7. Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.

    2011-01-01

    The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.

  8. Preliminary test results of a new high-energy-resolution silicon and CdZnTe pixel detectors for application to x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Sushkov, V. V.; Hamilton, William J.; Hurley, Kevin; Maeding, Dale G.; Ogelman, Hakki; Paulos, Robert J.; Puetter, Richard C.; Tumer, Tumay O.; Zweerink, Jeffrey

    1999-10-01

    New, high spatial resolution CdZnTe (CZT) and silicon (Si) pixel detectors are highly suitable for x-ray astronomy. These detectors are planned for use in wide field of view, imaging x-ray, and low energy gamma-ray all-sky monitor (AXGAM) in a future space mission. The high stopping power of CZT detectors combined with low-noise front-end readout makes possible an order of magnitude improvement in spatial and energy resolution in x-ray detection. The AXGAM instrument will be built in the form of a fine coded aperture placed over two-dimensional, high spatial resolution and low energy threshold CZT pixel detector array. The preliminary result of CZT and silicon pixel detector test with low-noise readout electronics system are presented. These detectors may also be used with or without modification for medical and industrial imaging.

  9. Methods for characterizing x-ray detectors for use at the National Ignition Facility.

    PubMed

    Khan, S F; Benedetti, L R; Hargrove, D R; Glenn, S M; Simanovskaia, N; Holder, J P; Barrios, M A; Hahn, D; Nagel, S R; Bell, P M; Bradley, D K

    2012-10-01

    Gated and streaked x-ray detectors generally require corrections in order to counteract instrumental effects in the data. The method of correcting for gain variations in gated cameras fielded at National Ignition Facility (NIF) is described. Four techniques for characterizing the gated x-ray detectors are described. The current principal method of characterizing x-ray instruments is the production of controlled x-ray emission by laser-generated plasmas as a dedicated shot at the NIF. A recently commissioned pulsed x-ray source has the potential to replace the other characterization systems. This x-ray source features a pulsed power source consisting of a Marx generator, capacitor bank that is charged in series and discharged in parallel, producing up to 300 kV. The pulsed x-ray source initially suffered from a large jitter (∼60 ns), but the recent addition of a pulsed laser to trigger the spark gap has reduced the jitter to ∼5 ns. Initial results show that this tool is a promising alternative to the other flat fielding techniques.

  10. Hard X-ray Detector Calibrations for the FOXSI Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Lopez, A.; Glesener, L.; Buitrago Casas, J. C.; Han, R.; Ishikawa, S. N.; Christe, S.; Krucker, S.

    2015-12-01

    In the study of high-energy solar flares, detailed X-ray images and spectra of the Sun are required. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment is used to test direct-focusing X-ray telescopes and Double-sided Silicon Strip Detectors (DSSD) for solar flare study and to further understand coronal heating. The measurement of active region differential emission measures, flare temperatures, and possible quiet-Sun emission requires a precisely calibrated spectral response. This poster describes recent updates in the calibration of FOXSI's DSSDs based on new calibration tests that were performed after the second flight. The gain for each strip was recalculated using additional radioactive sources. Additionally, the varying strip sensitivity across the detectors was investigated and based on these measurements, the flight images were flatfielded. These improvements lead to more precise X-ray data for future FOXSI flights and show promise for these new technologies in imaging the Sun.

  11. X-ray position detector and implementation in a mirror pointing servo system

    SciTech Connect

    Rabedeau, Thomas A.; Van Campen, Douglas G.; Stefan, Peter M.

    2016-04-05

    An X-ray beam position and stability detector is provided having a first metal blade collinear with a second metal blade, where an edge of the first metal blade is opposite an edge of the second metal blade, where the first metal blade edge and the second metal blade edge are disposed along a centerline with respect to each other, where the metal blades are capable of photoelectron emission when exposed to an x-ray beam, a metal coating on the metal blades that is capable of enhancing the photoelectron emission, or suppressing energy-resonant contaminants, or enhancing the photoelectron emission and suppressing energy-resonant contaminants, a background shielding element having an electrode capable of suppressing photoelectron emission from spurious x-rays not contained in an x-ray beam of interest, and a photoelectron emission detector having an amplifier capable of detecting the photoelectron emission as a current signal.

  12. Characterization and development of an event-driven hybrid CMOS x-ray detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher

    2015-06-01

    Hybrid CMOS detectors (HCD) have provided great benefit to the infrared and optical fields of astronomy, and they are poised to do the same for X-ray astronomy. Infrared HCDs have already flown on the Hubble Space Telescope and the Wide-Field Infrared Survey Explorer (WISE) mission and are slated to fly on the James Webb Space Telescope (JWST). Hybrid CMOS X-ray detectors offer low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up. The fast readout time is necessary for future high throughput X-ray missions. The Speedster-EXD X-ray HCD presented in this dissertation offers new in-pixel features and reduces known noise sources seen on previous generation HCDs. The Speedster-EXD detector makes a great step forward in the development of these detectors for future space missions. This dissertation begins with an overview of future X-ray space mission concepts and their detector requirements. The background on the physics of semiconductor devices and an explanation of the detection of X-rays with these devices will be discussed followed by a discussion on CCDs and CMOS detectors. Next, hybrid CMOS X-ray detectors will be explained including their advantages and disadvantages. The Speedster-EXD detector and its new features will be outlined including its ability to only read out pixels which contain X-ray events. Test stand design and construction for the Speedster-EXD detector is outlined and the characterization of each parameter on two Speedster-EXD detectors is detailed including read noise, dark current, interpixel capacitance crosstalk (IPC), and energy resolution. Gain variation is also characterized, and a Monte Carlo simulation of its impact on energy resolution is described. This analysis shows that its effect can be successfully nullified with proper calibration, which would be important for a flight mission. Appendix B contains a study of the extreme tidal disruption event, Swift J1644+57, to search for

  13. A bismuth germanate-shielded mercuric iodide X-ray detector for space applications

    NASA Technical Reports Server (NTRS)

    Vallerga, J. V.; Ricker, G. R.; Schnepple, W. S.; Ortale, C.

    1982-01-01

    The development of HgI2 for solid state X-ray detector applications over the past decade was carried out in connection with the ability of the crystal to operate as a detector at room temperature. In order to achieve the lowest background possible for HgI2 detectors in a space-like environment (balloon and/or satellite altitudes), attention was given to the design of a shielding system which actively vetoes nonaperture events such as gamma rays and charged particles that can mimic signal X-rays by partial deposition of energy in the main detector. The detector system consists of two HgI2 detectors mounted back to back and operated in anticoincidence. The two detectors are placed inside a bismuth germanate scintillating shield along with two hybrid charge-sensitive preamps. Monte Carlo simulations of detector performance are discussed.

  14. The development of new X-ray still image detector "XTV-PROM".

    NASA Astrophysics Data System (ADS)

    Osugi, Y.; Honda, A.; Tange, S.; Toyoda, S.; Minemoto, T.

    1993-12-01

    A new type X-ray real time image detector named "X-ray to Visible Light PROM (XTV-PROM)" has been developed. XTV-PROM consists of a thin Bi12SiO20 (BSO) single crystal plate, transparent insulating layers and two electrodes on both faces of the crystal plate. The XTV-PROM with large active area (18×18 mm2) and high resolution (25 μm) has a good response for bremsstrahlung X-rays higher than 30 keV.

  15. Low energy x-ray response of Ge detectors with amorphous Ge entrance contacts

    SciTech Connect

    Luke, P.N.; Rossington, C.S.; Wesela, M.F.

    1993-10-01

    The low energy x-ray response of GI detectors with amorphous GI entrance contacts has been evaluated. The spectral background due to near contact incomplete charge collection was found to consist of two components: a low level component which is insensitive to applied voltage and a high level step-like component which is voltage dependent. At high operating voltages, the high level component can be completely suppressed, resulting in background levels which are much lower than those previously observed using GI detectors with Pd surface barrier or B ion implanted contacts, and which also compare favorably to those obtained with Si(Li) x-ray detectors. The response of these detectors to {sup 55}Fe and 1.77 keV x-rays is shown. A qualitative explanation of the origins of the observed background components is presented.

  16. Development of plasma-display-panel-based x-ray detector (PXD)

    NASA Astrophysics Data System (ADS)

    Lee, Hakjae; Lee, Kisung; Min, Eungi; Eom, Sangheum; Park, Hanho; Kang, Jungwon

    2013-09-01

    The plasma display panel (PDP) is popular in the large area flat panel display market due to its relatively simple cell structure, low cost materials, and uncomplicated manufacturing process. The cell structure of PDP, which consists of electrodes and gas mixture, could be utilized in the manufacture of radiation detectors. In this study, we developed a plasma display panel based x-ray detector (PXD) based on Monte-Carlo simulation. This prototype detector panel has row and column strips, and it can thus be utilized as an imaging detector. To achieve the 2D x-ray image from the developed panel, a PXD dedicated driving and data acquisition circuit has been developed. Now we integrate the individual modules into a system. We hope to further study signal processing to achieve the first x-ray image of PXD.

  17. Theoretical consideration of the energy resolution in planar HPGe detectors for low energy X-rays

    SciTech Connect

    Samedov, Victor V.

    2015-07-01

    In this work, theoretical consideration of the processes in planar High Purity Ge (HPGe) detectors for low energy X-rays using the random stochastic processes formalism was carried out. Using the random stochastic processes formalism, the generating function of the processes of X-rays registration in a planar HPGe detector was derived. The power serial expansions of the detector amplitude and the variance in terms of the inverse bias voltage were derived. The coefficients of these expansions allow determining the Fano factor, electron mobility lifetime product, nonuniformity of the trap density, and other characteristics of the semiconductor material. (authors)

  18. A robot-based detector manipulator system for a hard x-ray nanoprobe instrument.

    SciTech Connect

    Shu, D., Maser, J., Holt, M. , Winarski, R., Preissner, C.,Lai, B., Vogt, S., Stephenson, G.B.

    2007-11-11

    This paper presents the design of a robot-based detector manipulator for microdiffraction applications with a hard X-ray nanoprobe instrument system being constructed at the Advanced Photon Source (APS) for the Center for Nanoscale Materials (CNM) being constructed at Argonne National Laboratory (ANL). Applications for detectors weighing from 1.5 to 100 kg were discussed in three configurations.

  19. Development of mm2-size high energy resolution X-ray detectors using W-SPT

    NASA Astrophysics Data System (ADS)

    Angloher, G.; Bento, A.; Kraus, H.; Pröbst, F.; Seidel, W.

    2002-02-01

    The low transition temperature of tungsten should allow fabrication of X-ray detectors combining high-energy resolution and enlarged absorber area (~1 mm2). We present first results obtained for lead and gold absorbers read out by tungsten superconducting phase transition thermometers (W-SPT) using a variety of detector geometries. .

  20. Low-energy X-ray detection with an in-vacuum PILATUS detector

    NASA Astrophysics Data System (ADS)

    Marchal, Julien; Luethi, Benjamin; Ursachi, Catalin; Mykhaylyk, Vitaliy; Wagner, Armin

    2011-11-01

    The feasibility of using PILATUS single-X-ray-photon counting detectors for long-wavelength macromolecular crystallography was investigated by carrying out a series of experiments at Diamond Light Source. A water-cooled PILATUS 100k detector was tested in vacuum with monochromatic 3 keV X-rays on the Diamond test beamline B16. Effects of detector cooling on noise performance, energy calibration and threshold trimming were investigated. When detecting 3 keV X-rays, the electronic noise of the analogue output of pixel preamplifiers forces the threshold to be set at a higher level than the 50% energy level recommended to minimize charge-sharing effects. The influence of threshold settings at low X-ray energy was studied by characterizing the detector response to a collimated beam of 3 keV X-rays scanned across several pixels. The relationship between maximum count rate and minimum energy threshold was investigated separately for various detector gain settings.

  1. Quantum noise in digital x-ray image detectors with optically coupled scintillators

    SciTech Connect

    Flynn, M.J.; Hames, S.M. |; Wilderman, S.J.; Ciarelli, J.J.

    1996-08-01

    Digital x-ray imaging detectors designed to soft x-ray (1 to 50 keV) are significant for medical mammography, dental radiography, microradiography, and microtomography. Detector designs involve either direct absorption of x-rays in solid state devices or thin scintillator screens optically coupled to solid state sensors. Well designed scintillator systems produce 10 or more electrons per detected x-ray and, used with charge coupled devices (CCD), detect 100,000 x-rays per pixel before saturation. However, if the scintillator is directly coupled to the detector, radiation can penetrate to the semiconductor detector with a small number of events producing large charge and noise. The authors have investigated the degradation of image noise by these direct absorption events using numerical models for a laboratory detector system consisting of a 60 {micro}m CsI scintillator optically coupled to a scientific CCD. Monte Carlo methods were used to estimate the charge deposition signal and noise for both the CsI and the semiconductor. Without a fiber optic coupler, direct absorptions dominate the signal and increase the signal variance by a factor of about 30 at energies above 10 keV. With a 3 mm fiber optic coupler, no significant degradation is observed for input energies below 45 keV.

  2. Kilopixel X-Ray Microcalorimeter Arrays for Astrophysics: Device Performance and Uniformity

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Porst, J.-P.; Sadleir, J. E.; Smith, S. J.

    2012-01-01

    We are developing kilopixel arrays of TES microcalorimeters to enable high-resolution x-ray imaging spectrometers for future x-ray observatories and laboratory astrophysics experiments. Our current array design was targeted as a prototype for the X-ray Microcalorimeter Spectrometer proposed for the International X-ray Observatory, which calls for a 40×40-pixel core array of 300 micron devices with 2.5 eV energy resolution (at 6 keV). Here we present device characterization of our 32×32 arrays, including x-ray spectral performance of individual pixels within the array. We present our results in light of the understanding that our Mo/Au TESs act as weak superconducting links, causing the TES critical current (I(sub c)) and transition shape to oscillate with applied magnetic field (B). We show I(sub c)(B) measurements and discuss the uniformity of these measurements across the array, as well as implications regarding the uniformity of device noise and response. In addition, we are working to reduce pixel-to-pixel electrical and thermal crosstalk; we present recent test results from an array that has microstrip wiring and an angle-evaporated copper backside heatsinking layer, which provides copper coverage on the four sidewalls of the silicon wells beneath each pixel.

  3. Kilopixel X-Ray Microcalorimeter Arrays for Astrophysics: Device Performance and Uniformity

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, F. M.

    2011-01-01

    We are developing kilo-pixel arrays of TES microcalorimeters to enable high-resolution X-ray imaging spectrometers for future X-ray observatories and laboratory astrophysics experiments. Our current array design was targeted as a prototype for the X-ray Microcalorimeter Spectrometer proposed for the International X-ray Observatory, which calls for a 40x40-pixel core array of 300 micron devices with 2.5 e V energy resolution (at 6 keV). Here we present device characterization of our 32x32 arrays, including X-ray spectral performance of individual pixels within the array. We present our results in light of the understanding that our Mo/Au TESs act as weak superconducting links, causing the TES critical current (Ic) and transition shape to oscillate with applied magnetic field (B). We show Ic(B) measurements and discuss the uniformity of these measurements across the array, as well as implications regarding the uniformity of device noise and response. In addition, we are working to reduce pixel-to-pixel electrical and thermal crosstalk; we present recent test results from an array that has microstrip wiring and an angle-evaporated Cu backside heatsinking layer, which provides Cu coverage on the four sidewalls of the silicon wells beneath each pixel.

  4. The design and imaging characteristics of dynamic, solid-state, flat-panel x-ray image detectors for digital fluoroscopy and fluorography.

    PubMed

    Cowen, A R; Davies, A G; Sivananthan, M U

    2008-10-01

    Dynamic, flat-panel, solid-state, x-ray image detectors for use in digital fluoroscopy and fluorography emerged at the turn of the millennium. This new generation of dynamic detectors utilize a thin layer of x-ray absorptive material superimposed upon an electronic active matrix array fabricated in a film of hydrogenated amorphous silicon (a-Si:H). Dynamic solid-state detectors come in two basic designs, the indirect-conversion (x-ray scintillator based) and the direct-conversion (x-ray photoconductor based). This review explains the underlying principles and enabling technologies associated with these detector designs, and evaluates their physical imaging characteristics, comparing their performance against the long established x-ray image intensifier television (TV) system. Solid-state detectors afford a number of physical imaging benefits compared with the latter. These include zero geometrical distortion and vignetting, immunity from blooming at exposure highlights and negligible contrast loss (due to internal scatter). They also exhibit a wider dynamic range and maintain higher spatial resolution when imaging over larger fields of view. The detective quantum efficiency of indirect-conversion, dynamic, solid-state detectors is superior to that of both x-ray image intensifier TV systems and direct-conversion detectors. Dynamic solid-state detectors are playing a burgeoning role in fluoroscopy-guided diagnosis and intervention, leading to the displacement of x-ray image intensifier TV-based systems. Future trends in dynamic, solid-state, digital fluoroscopy detectors are also briefly considered. These include the growth in associated three-dimensional (3D) visualization techniques and potential improvements in dynamic detector design.

  5. System design and implementation of the detector assembly for the Astro-H soft x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Chiao, M. P.; Adams, J.; Goodwin, P.; Hobson, C. W.; Kelley, R. L.; Kilbourne, C. A.; McCammon, D.; McGuinness, D. S.; Moseley, S. J.; Porter, F. S.; Shuman, S.; Watanabe, T.

    2016-07-01

    The soft x-ray spectrometer (SXS) onboard Astro-H presents to the science community unprecedented capability (> 7 eV at 6 keV) for high-resolution spectral measurements in the range of 0.5 - 12 keV to study extended celestial sources. At the heart of this SXS is the x-ray calorimeter spectrometer (XCS) where detectors (calorimeter array and anticoincidence detector) operate at 50 mK, the bias circuit operates at nominal 1.3 K, and the first stage amplifiers operate at 130 K, all within a nominal 20 cm envelope. The design of the detector assembly in this XCS originates from the Astro-E x-ray spectrometer (XRS) and lessons learned from Astro-E and Suzaku. After the production of our engineering model, additional changes were made in order to improve our flight assembly process for better reliability and overall performance. In this poster, we present the final design and implementation of the flight detector assembly, show comparison of parameters and performance to Suzaku's XRS, and list susceptibilities to other subsystems as well as our lessons learned.

  6. The manufacture of a very high precision x-ray collimator array for rapid tomographic energy dispersive diffraction imaging (TEDDI)

    NASA Astrophysics Data System (ADS)

    Tunna, L.; Barclay, P.; Cernik, R. J.; Khor, K. H.; O'Neill, W.; Seller, P.

    2006-07-01

    A very high resolution x-ray collimator array has been constructed for use with tomographic energy dispersive diffraction imaging (TEDDI). The collimator consists of a 16 × 16 array of 50 µm diameter holes in a series of 0.1 mm tungsten plates aligned to a tolerance of ±2 µm. The minimum angular divergence of the transmitted x-ray beams through each transmission pathway in the collimator array has been designed to be 0.02°, which is equivalent to an energy dispersed resolution of 250 eV with an aspect ratio of 6000:1. The collimator array has been matched to the development of an energy sensitive x-ray detector array (Seller et al 1998 Proc. SPIE 3445 584-92) for TEDDI studies of materials. The very high tolerance of the aperture size and placement was achieved by utilizing high intensity femtosecond pulse duration laser machining from a diode pumped solid state laser (DPSS). Using a novel arrangement the laser acted as the principal alignment and cutting tool. The collimator transmission function has been tested using a uniform synchrotron radiation flood field. The transmission and spatial uniformity were found to be consistent with the design parameters for TEDDI applications and also as a diffracted beam collimator for monochromatic powder diffraction studies.

  7. Design and Performance of a TES X-ray Microcalorimeter Array for Energy Dispersive Spectroscopy on Scanning Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Muramatsu, Haruka; Nagayoshi, K.; Hayashi, T.; Sakai, K.; Yamamoto, R.; Mitsuda, K.; Yamasaki, N. Y.; Maehata, K.; Hara, T.

    2016-07-01

    We discuss the design and performance of a transition edge sensor (TES) X-ray microcalorimeter array for scanning transmission electron microscope (STEM)-energy dispersive X-ray spectroscopy (EDS). The TES X-ray microcalorimeter has better energy resolution compared to conventional silicon drift detector and STEM-EDS utilizing a TES detector makes it possible to map the distribution of elements on a specimen in addition to analyze the composition. The requirement for a TES detector is a high counting rate (>20 kcps), wide energy band (0.5-15 keV) and good energy resolution (<10 eV) full width at half maximum. The major improvement of this development is to increase the maximum counting rate. In order to accommodate the high counting rate, we adopted an 8 × 8 format, 64-pixel array and common biasing scheme for the readout method. We did all design and fabrication of the device in house. With the device we have fabricated most recently, the pulse decay time is 40 \\upmu s which is expected to achieve 50 kcps. For a single pixel, the measured energy resolution was 7.8 eV at 5.9 keV. This device satisfies the requirements of counting rate and energy resolution, although several issues remain where the performance must be confirmed.

  8. A Novel Integrating Solid State Detector With Segmentation For Scanning Transmission Soft X-ray Microscopy

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Jacobsen, Chris; Degeronimo, Gianluigi; Rehak, Pavel; Holl, Peter; Strueder, Lothar

    2003-03-01

    Scanning transmission x-ray microscopy (STXM) with soft x-rays has unique detector requirements, which are not readily met by commercially available detectors. For implementation of dark-field and phase contrast imaging modes a segmented detector is needed with the high signal to noise ratio of a counting detector and a high detective quantum efficiency. Since the market for STXM is very small, the development of specialized detector systems relies on the collaboration with detector specialists at research facilities. We report on the successful development of a segmented silicon detector for STXM, which has been carried out in collaboration between the x-ray microscopy research group at SUNY Stony Brook, the instrumentation division at Brookhaven National Laboratory and silicon x-ray detector specialists in Germany. This project illustrates the effectiveness of such arrangements and justifies the support of future efforts in developing dedicated detectors for synchrotron radiation experiments bringing together detector experts and experimenters. The developed detector features eight separate circular segments matched to the STXM geometry. Fast charge integrating electronics have been developed to match the short pixel dwell times in a synchrotron based scanning microscope (in the ms range for the NSLS). The noise level of 5 photons RMS per integration per channel (at 520 eV photon energy) and a 1500 photon capacity (corresponding to the well depth in a CCD detector) is well matched to the characteristics of the experiment. Combining the detector signals in an appropriate way, different imaging modes (i.e. bright field, dark field or phase contrast) can be selected. We discuss recent developments on simultaneous quantitative phase and amplitude contrast imaging using this segmented detector in conjunction with a Fourier filter reconstruction technique.

  9. Development of a stacked detector system for the x-ray range and its possible applications

    NASA Astrophysics Data System (ADS)

    Maier, Daniel; Limousin, Olivier; Meuris, Aline; Pürckhauer, Sabina; Santangelo, Andrea; Schanz, Thomas; Tenzer, Christoph

    2014-07-01

    We have constructed a stacked detector system operating in the X-ray range from 0.5 keV to 250 keV that consists of a Si-based 64×64 DePFET-Matrix in front of a CdTe hybrid detector called Caliste-64. The setup is operated under laboratory conditions that approximate the expected environment of a space-borne observatory. The DePFET detector is an active pixel matrix that provides high count-rate capabilities with a near Fanolimited spectral resolution at energies up to 15 keV. The Caliste-64 hard X-ray camera consists of a 1mm thick CdTe crystal combined with very compact integrated readout electronics, constituting a high performance spectro-imager with event-triggered time-tagging capability in the energy range between 2 keV and 200 keV. In this combined geometry the DePFET detector works as the Low Energy Detector (LED) while the Caliste-64 - as the High Energy Detector (HED) - detects predominantly the high energetic photons that have passed the LED. In addition to the individual optimization of both detectors, we use the setup to test and optimize the performance of the combined detector system. Side-effects like X-ray fluorescence photons, electrical crosstalk, and mutual heating have negative impacts on the data quality and will be investigated. Besides the primary application as a combined imaging detector system with high sensitivity across a broad energy range, additional applications become feasible. Via the analysis of coincident events in both detectors we can estimate the capabilities of the setup to be used as a Compton camera and as an X-ray polarimeter - both desirable functionalities for use in the lab as well as for future X-ray missions.

  10. Development of new x-ray still-image detector 'XTV-PROM'

    NASA Astrophysics Data System (ADS)

    Osugi, Yukihisa; Honda, Akihiko; Tange, Shoji; Toyoda, Shuhei; Minemoto, Takumi

    1993-02-01

    A new type of x-ray real time still image detector named `X ray to Visible Light PROM (XTV-PROM)' has been developed. XTV-PROM consists of a thin Bi(subscript 12)SiO(subscript 20) (BSO) single crystal plate, transparent insulating layers, and two electrodes on both faces of the crystal plate. One electrode is transparent and the other refracts readout lights and lets in x rays. Several tens of keV x rays generate electron-hole pairs in the crystal and an x-ray image is recorded as a charge pattern. A voltage pattern generated from the charge pattern causes the Pockels effect and the recorded x-ray image is converted to the visible light image using the effect of the crystal. The recorded image can be erased and the device can be used repeatedly. The XTV-PROM with a large active area (18 X 18 mm(superscript 2)) and high resolution (25 micrometers ) has been made by a new process for polishing BSO crystal thinly. The XTV-PROM has a good response for bremsstrahlung x rays higher than 30 keV.

  11. Analytic model of energy-absorption response functions in compound X-ray detector materials.

    PubMed

    Yun, Seungman; Kim, Ho Kyung; Youn, Hanbean; Tanguay, Jesse; Cunningham, Ian A

    2013-10-01

    The absorbed energy distribution (AED) in X-ray imaging detectors is an important factor that affects both energy resolution and image quality through the Swank factor and detective quantum efficiency. In the diagnostic energy range (20-140 keV), escape of characteristic photons following photoelectric absorption and Compton scatter photons are primary sources of absorbed-energy dispersion in X-ray detectors. In this paper, we describe the development of an analytic model of the AED in compound X-ray detector materials, based on the cascaded-systems approach, that includes the effects of escape and reabsorption of characteristic and Compton-scatter photons. We derive analytic expressions for both semi-infinite slab and pixel geometries and validate our approach by Monte Carlo simulations. The analytic model provides the energy-dependent X-ray response function of arbitrary compound materials without time-consuming Monte Carlo simulations. We believe this model will be useful for correcting spectral distortion artifacts commonly observed in photon-counting applications and optimal design and development of novel X-ray detectors.

  12. Improvements in the Low Energy Collection Efficiency of Si(Li) X-ray Detectors

    SciTech Connect

    Cox,C.; Fischer, D.; Schwartz, W.; Song, Y.

    2005-01-01

    Soft X-ray beam-line applications are of fundamental importance to material research, and commonly employ high-resolution Si(Li) detectors for energy dispersive spectroscopy. However, the measurement of X-rays below 1 keV is compromised by absorption in the material layers in front of the active crystal and a dead layer at the crystal surface. Various Schottky barrier type contacts were investigated resulting in a 40% reduction of the dead-layer thickness and a factor of two increased sensitivity at carbon K{sub {alpha}} compared to the standard Si(Li) detector. Si(Li) detectors were tested on the U7A soft X-ray beam-line at the National Synchrotron Light Source and on a scanning electron microscope (SEM).

  13. Two-dimensional imaging detectors for structural biology with X-ray lasers.

    PubMed

    Denes, Peter

    2014-07-17

    Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors--monolithic or hybrid--are the standard for XFELs today. For structural biology, improvements are needed for today's 10-100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art.

  14. Multispectral X-Ray Imaging With A Pinhole Array And A Flat Bragg Mirror

    SciTech Connect

    Koch, J A; Barbee, Jr., T W; Izumi, N; Tommasini, R; Welser, L A; Mancini, R C; Marshall, F J

    2005-03-17

    We describe a multiple monochromatic x-ray imager designed for implosion experiments. This instrument uses an array of pinholes in front of a flat multilayered Bragg mirror to provide many individual quasi-monochromatic x-ray pinhole images spread over a wide spectral range. We discuss design constraints and optimizations, and we discuss the specific details of the instrument we have used to obtain temperature and density maps of implosion plasmas.

  15. Development of an X-ray pixel detector with multi-port charge-coupled device for X-ray free-electron laser experiments

    SciTech Connect

    Kameshima, Takashi; Ono, Shun; Kudo, Togo; Ozaki, Kyosuke; Kirihara, Yoichi; Kobayashi, Kazuo; Inubushi, Yuichi; Yabashi, Makina; Hatsui, Takaki; Horigome, Toshio; Holland, Andrew; Holland, Karen; Burt, David; Murao, Hajime

    2014-03-15

    This paper presents development of an X-ray pixel detector with a multi-port charge-coupled device (MPCCD) for X-ray Free-Electron laser experiments. The fabrication process of the CCD was selected based on the X-ray radiation hardness against the estimated annual dose of 1.6 × 10{sup 14} photon/mm{sup 2}. The sensor device was optimized by maximizing the full well capacity as high as 5 Me- within 50 μm square pixels while keeping the single photon detection capability for X-ray photons higher than 6 keV and a readout speed of 60 frames/s. The system development also included a detector system for the MPCCD sensor. This paper summarizes the performance, calibration methods, and operation status.

  16. Simulation of one-dimensionally polarized x-ray semiconductor detectors

    NASA Astrophysics Data System (ADS)

    Engel, Klaus J.; Herrmann, Christoph

    2011-03-01

    A pixelated X-ray semiconductor detector (="direct converter") is studied which contains an inhomogeneous electric field parallel to the depth axis caused by different concentrations of ionized dopants. X-ray energy depositions and charge movements within the detector are modeled in Monte-Carlo simulations giving access to a statistical analysis of electron drift times and current pulse widths for various degrees of static polarization. Charges induced on the pixel electrodes and pulse heights are evaluated and put to histograms of spectral detector responses and pulse height spectra, respectively, considering energy measurements before and after electronic pulse shaping. For n-doped semiconductors, the detector performance degrades due to pulse broadening. In contrast, a moderate p-doping can improve the detector performance in terms of shorter electron pulses, as long as the detector is not limited by dynamic polarization.

  17. A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction

    SciTech Connect

    Sarin, P.; Haggerty, R; Yoon, W; Knapp, M; Berghaeuser, A; Zschack, P; Karapetrova, E; Yang, N; Kriven, W

    2009-01-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate, regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.

  18. Development of a fast multi-line x-ray CT detector for NDT

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  19. Fundamental x-ray interaction limits in diagnostic imaging detectors: Spatial resolution

    SciTech Connect

    Hajdok, G.; Battista, J. J.; Cunningham, I. A.

    2008-07-15

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The ''x-ray interaction'' modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (<0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors.

  20. Fundamental x-ray interaction limits in diagnostic imaging detectors: spatial resolution.

    PubMed

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    The practice of diagnostic x-ray imaging has been transformed with the emergence of digital detector technology. Although digital systems offer many practical advantages over conventional film-based systems, their spatial resolution performance can be a limitation. The authors present a Monte Carlo study to determine fundamental resolution limits caused by x-ray interactions in four converter materials: Amorphous silicon (a-Si), amorphous selenium, cesium iodide, and lead iodide. The "x-ray interaction" modulation transfer function (MTF) was determined for each material and compared in terms of the 50% MTF spatial frequency and Wagner's effective aperture for incident photon energies between 10 and 150 keV and various converter thicknesses. Several conclusions can be drawn from their Monte Carlo study. (i) In low-Z (a-Si) converters, reabsorption of Compton scatter x rays limits spatial resolution with a sharp MTF drop at very low spatial frequencies (< 0.3 cycles/mm), especially above 60 keV; while in high-Z materials, reabsorption of characteristic x rays plays a dominant role, resulting in a mid-frequency (1-5 cycles/mm) MTF drop. (ii) Coherent scatter plays a minor role in the x-ray interaction MTF. (iii) The spread of energy due to secondary electron (e.g., photoelectrons) transport is significant only at very high spatial frequencies. (iv) Unlike the spread of optical light in phosphors, the spread of absorbed energy from x-ray interactions does not significantly degrade spatial resolution as converter thickness is increased. (v) The effective aperture results reported here represent fundamental spatial resolution limits of the materials tested and serve as target benchmarks for the design and development of future digital x-ray detectors.

  1. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    SciTech Connect

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2015-01-01

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.

  2. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    PubMed Central

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2016-01-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825

  3. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE PAGES

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; ...

    2015-01-01

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  4. Optimizing detector geometry for trace element mapping by X-ray fluorescence.

    PubMed

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2015-05-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.

  5. Results of ground tests and calibration of x-ray focal plane detectors for ART-XC/SRG instrument

    NASA Astrophysics Data System (ADS)

    Levin, Vasily; Pavlinsky, Mikhail; Akimov, Valery; Kuznetsova, Maria; Rotin, Alexey; Krivchenko, Aleksandr; Lapshov, Igor; Oleynikov, Vladimir

    2016-07-01

    The Russian Space Research Institute (IKI) has developed seven flight models and three spare models of the X-ray detectors for the ART-XC/SRG telescope. Each detector situated in the focal plane of ART-XC X-ray optics and includes CdTe die, front-end electronics, data processing, storage and telemetry units. In the Space Research Institute performed a vibration, thermal cycling and thermal vacuum tests of X-ray detectors. During this tests have been studied the leakage current stability, polarization rate, spectroscopic and imaging performance in the working temperature range. The current status of the X-ray detectors development and testing presented.

  6. Energy calibration of the pixels of spectral X-ray detectors.

    PubMed

    Panta, Raj Kumar; Walsh, Michael F; Bell, Stephen T; Anderson, Nigel G; Butler, Anthony P; Butler, Philip H

    2015-03-01

    The energy information acquired using spectral X-ray detectors allows noninvasive identification and characterization of chemical components of a material. To achieve this, it is important that the energy response of the detector is calibrated. The established techniques for energy calibration are not practical for routine use in pre-clinical or clinical research environment. This is due to the requirements of using monochromatic radiation sources such as synchrotron, radio-isotopes, and prohibitively long time needed to set up the equipment and make measurements. To address these limitations, we have developed an automated technique for calibrating the energy response of the pixels in a spectral X-ray detector that runs with minimal user intervention. This technique uses the X-ray tube voltage (kVp) as a reference energy, which is stepped through an energy range of interest. This technique locates the energy threshold where a pixel transitions from not-counting (off) to counting (on). Similarly, we have developed a technique for calibrating the energy response of individual pixels using X-ray fluorescence generated by metallic targets directly irradiated with polychromatic X-rays, and additionally γ-rays from (241)Am. This technique was used to measure the energy response of individual pixels in CdTe-Medipix3RX by characterizing noise performance, threshold dispersion, gain variation and spectral resolution. The comparison of these two techniques shows the energy difference of 1 keV at 59.5 keV which is less than the spectral resolution of the detector (full-width at half-maximum of 8 keV at 59.5 keV). Both techniques can be used as quality control tools in a pre-clinical multi-energy CT scanner using spectral X-ray detectors.

  7. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  8. Geant4 simulations of STIX Caliste-SO detector's response to solar X-ray radiation

    NASA Astrophysics Data System (ADS)

    Barylak, Jaromir; Barylak, Aleksandra; Mrozek, Tomasz; Steślicki, Marek; Podgórski, Piotr; Netzel, Henryka

    Spectrometer/Telescope for Imaging X-rays (STIX) is a part of Solar Orbiter (SO) science payload. SO will be launched in October 2018, and after three years of cruise phase, it will reach orbit with perihelion distance of 0.3 a.u. STIX is a Fourier imager equipped with pairs of grids that comprise the flare hard X-ray tomograph. Similar imager types were already used in the past (eq. RHESSI, Yohkoh/HXT), but STIX will incorporate Moiré modulation and a new type of pixelized detectors with CdTe sensor. We developed a method of modeling these detectors' response matrix (DRM) using the Geant4 simulations of X-ray photons interactions with CdTe crystals. Taking into account known detector effects (Fano noise, hole tailing etc.) we modeled the resulting spectra with high accuracy. Comparison of Caliste-SO laboratory measurements of 241Am decay spectrum with our results shows a very good agreement. The modeling based on the Geant4 simulations significantly improves our understanding of detector response to X-ray photons. Developed methodology gives opportunity for detailed simulation of whole instrument response with complicated geometry and secondary radiation from cosmic ray particles taken into account. Moreover, we are developing the Geant4 simulations of aging effects which decrease detector's performance.

  9. X-ray micro-beam characterization of a small pixel spectroscopic CdTe detector

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Bell, S. J.; Seller, P.; Wilson, M. D.; Kachkanov, V.

    2012-07-01

    A small pixel, spectroscopic, CdTe detector has been developed at the Rutherford Appleton Laboratory (RAL) for X-ray imaging applications. The detector consists of 80 × 80 pixels on a 250 μm pitch with 50 μm inter-pixel spacing. Measurements with an 241Am γ-source demonstrated that 96% of all pixels have a FWHM of better than 1 keV while the majority of the remaining pixels have FWHM of less than 4 keV. Using the Diamond Light Source synchrotron, a 10 μm collimated beam of monochromatic 20 keV X-rays has been used to map the spatial variation in the detector response and the effects of charge sharing corrections on detector efficiency and resolution. The mapping measurements revealed the presence of inclusions in the detector and quantified their effect on the spectroscopic resolution of pixels.

  10. Comparing performances of a CdTe X-ray spectroscopic detector and an X-ray dual-energy sandwich detector

    NASA Astrophysics Data System (ADS)

    Gorecki, A.; Brambilla, A.; Moulin, V.; Gaborieau, E.; Radisson, P.; Verger, L.

    2013-11-01

    Multi-energy (ME) detectors are becoming a serious alternative to classical dual-energy sandwich (DE-S) detectors for X-ray applications such as medical imaging or explosive detection. They can use the full X-ray spectrum of irradiated materials, rather than disposing only of low and high energy measurements, which may be mixed. In this article, we intend to compare both simulated and real industrial detection systems, operating at a high count rate, independently of the dimensions of the measurements and independently of any signal processing methods. Simulations or prototypes of similar detectors have already been compared (see [1] for instance), but never independently of estimation methods and never with real detectors. We have simulated both an ME detector made of CdTe - based on the characteristics of the MultiX ME100 and - a DE-S detector - based on the characteristics of the Detection Technology's X-Card 1.5-64DE model. These detectors were compared to a perfect spectroscopic detector and an optimal DE-S detector. For comparison purposes, two approaches were investigated. The first approach addresses how to distinguise signals, while the second relates to identifying materials. Performance criteria were defined and comparisons were made over a range of material thicknesses and with different photon statistics. Experimental measurements in a specific configuration were acquired to checks simulations. Results showed good agreement between the ME simulation and the ME100 detector. Both criteria seem to be equivalent, and the ME detector performs 3.5 times better than the DE-S detector with same photon statistics based on simulations and experimental measurements. Regardless of the photon statistics ME detectors appeared more efficient than DE-S detectors for all material thicknesses between 1 and 9 cm when measuring plastics with an attenuation signature close that of explosive materials. This translates into an improved false detection rate (FDR): DE

  11. An ultrafast x-ray detector system at an elliptically polarizingundulator beamline

    SciTech Connect

    Feng, J.; Comin, A.; Bartelt, A.F.; Shin, H.J.; Nasiatka, J.R.; Padmore, H.A.; Young, A.T.; Scholl, A.

    2007-05-01

    An ultrafast x-ray detector system is under development atLawrence Berkeley National Laboratory (LBNL) for application primarily tostudyies of ultrafast magnetization dynamics. The system consists of a fslaser, an x-ray streak camera and an ellipitically polarization undulator(EPU) beamline. Polarized x-rays from an EPU can be used to measure x-raymagnetic circular dichroism (XMCD) of a sample. XMCD has the uniqueability to independently measure orbit and spin magnetization withsub-monolayer sensitivity and element specificity. The streak camera hassimultaneously a sub-picosecond temporal resolution and a high spatialresolution. The combination of the streak camera and EPU allows us tostudy the transfer of angular momentum from spin to orbit to the latticein the sample on an ultrafast time scale. We describe here theperformance of the ultrafast detector, the laser and the x-raysynchronization system. The observation of the demagnetization process ofdifferent samples demonstrates the ability of the apparatus.

  12. Two-dimensional imaging detectors for structural biology with X-ray lasers

    PubMed Central

    Denes, Peter

    2014-01-01

    Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors—monolithic or hybrid—are the standard for XFELs today. For structural biology, improvements are needed for today's 10–100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art. PMID:24914161

  13. Two-dimensional Detector for High Resolution Soft X-ray Imaging

    SciTech Connect

    Ejima, Takeo; Ogasawara, Shodo; Hatano, Tadashi; Yanagihara, Mihiro; Yamamoto, Masaki

    2010-06-23

    A new two-dimensional (2D) detector for detecting soft X-ray (SX) images was developed. The detector has a scintillator plate to convert a SX image into a visible (VI) one, and a relay optics to magnify and detect the converted VI image. In advance of the fabrication of the detector, quantum efficiencies of scintillators were investigated. As a result, a Ce:LYSO single crystal on which Zr thin film was deposited was used as an image conversion plate. The spatial resolution of fabricated detector is 3.0 {mu}m, and the wavelength range which the detector has sensitivity is 30-6 nm region.

  14. Fundamental x-ray interaction limits in diagnostic imaging detectors: Frequency-dependent Swank noise

    SciTech Connect

    Hajdok, G.; Battista, J. J.; Cunningham, I. A.

    2008-07-15

    A frequency-dependent x-ray Swank factor based on the ''x-ray interaction'' modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI{sub 2}) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI{sub 2}, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.

  15. Fundamental x-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise.

    PubMed

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    A frequency-dependent x-ray Swank factor based on the "x-ray interaction" modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI2) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI2, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.

  16. The GEMpix detector as new soft X-rays diagnostic tool for laser produced plasmas

    NASA Astrophysics Data System (ADS)

    Claps, G.; Pacella, D.; Murtas, F.; Jakubowska, K.; Boutoux, G.; Burgy, F.; Ducret, J. E.; Batani, D.

    2016-10-01

    Laser produced plasmas lend to several interesting applications. The study of X-ray emission from this kind of plasmas is important not only to characterize plasmas itself but also to study the application of these particular plasmas as intense X-ray sources. In particular several emission configurations can be obtained using different kinds of targets and tuning the characteristics of the laser pulse delivered to the target. Typically, laser pulse duration ranges between a few tens of femtoseconds and tens of nanoseconds, with energies from few mJ to tens of kJ. X-ray photon emissions last for times comparable to the laser pulses and during this time a great number of photons can be emitted. The following paper presents a measure of the soft-X-ray emission on the ECLIPSE laser facility realized with a new triple-GEM gas detector (GEMpix). It is a hybrid gas detector with a C-MOS front-end electronics based on Medipix chips. In the present work, different targets have been used in order to test X-rays of different energies. In this paper, in particular, we present results obtained for copper and iron targets. GEMpix is able to realize a 2D imaging of the X-ray emission from plasma with a signal proportional to the energy released in the gas of the detector active volume. Then through a preliminary single photon equalization realized at the NIXT lab (ENEA), also the number of photons reaching the area of the detector has been estimated.

  17. The GEMpix detector as new soft X-rays diagnostic tool for laser produced plasmas.

    PubMed

    Claps, G; Pacella, D; Murtas, F; Jakubowska, K; Boutoux, G; Burgy, F; Ducret, J E; Batani, D

    2016-10-01

    Laser produced plasmas lend to several interesting applications. The study of X-ray emission from this kind of plasmas is important not only to characterize plasmas itself but also to study the application of these particular plasmas as intense X-ray sources. In particular several emission configurations can be obtained using different kinds of targets and tuning the characteristics of the laser pulse delivered to the target. Typically, laser pulse duration ranges between a few tens of femtoseconds and tens of nanoseconds, with energies from few mJ to tens of kJ. X-ray photon emissions last for times comparable to the laser pulses and during this time a great number of photons can be emitted. The following paper presents a measure of the soft-X-ray emission on the ECLIPSE laser facility realized with a new triple-GEM gas detector (GEMpix). It is a hybrid gas detector with a C-MOS front-end electronics based on Medipix chips. In the present work, different targets have been used in order to test X-rays of different energies. In this paper, in particular, we present results obtained for copper and iron targets. GEMpix is able to realize a 2D imaging of the X-ray emission from plasma with a signal proportional to the energy released in the gas of the detector active volume. Then through a preliminary single photon equalization realized at the NIXT lab (ENEA), also the number of photons reaching the area of the detector has been estimated.

  18. Counting x-ray line detector with monolithically integrated readout circuits

    NASA Astrophysics Data System (ADS)

    Lohse, T.; Krüger, P.; Heuer, H.; Oppermann, M.; Torlee, H.; Meyendorf, N.

    2013-05-01

    The developed direct converting X-ray line detectors offer a number of advantages in comparison to other X-ray sensor concepts. Direct converting X-ray detectors are based on absorption of X-rays in semiconductor material, which leads to a generation of charge carriers. By applying high bias voltage charge carriers can be separated and with this the arising current pulse can be assessed by suitable readout integrated circuits (ICs) subsequently. The X-ray absorber itself is implemented as a diode based on GaAs to use it in the reverse direction. It exhibits low dark currents and can therefore be used at room temperatures. The GaAs absorber has a structured top electrode designed on variable bonding and high breakdown voltages. The implemented GaAs absorber exhibits a pixel size of 100 μm while the readout IC features fast dead-time-free readout, energy discrimination by two individually adjustable thresholds with 20 bit deep counters and radiation-hard design on chip level. These properties guarantee the application as fast and thus sensitive line detector for imaging processes. Another advantage of the imaging line detector is the cascadability of several sensor modules with 1024 pixels each. This property ensures that the 102.4 mm long sensor modules can be concatenated virtually with arbitrary length gaplessly. The readout ICs hitting radiation dose can be further minimized by implementing constructive steps to ensure longer lifetime of the sensor module. Furthermore, first results using the introduced sensor module for solid state X-ray detection are discussed.

  19. Possibility of gated silicon drift detector detecting hard x-ray

    NASA Astrophysics Data System (ADS)

    Matsuura, Hideharu; Fukushima, Shinya; Sakurai, Shungo; Ishikawa, Shohei; Takeshita, Akinobu; Hidaka, Atsuki

    2015-08-01

    One of the authors has proposed a simple-structure silicon X-ray detector (gated silicon drift detector: GSDD), whose structure is much simpler than commercial silicon drift detectors (SDDs). SDDs contain multiple built-in metal-oxide-semiconductor field-effect transistors (MOSFETs) or implanted resistors, whose fabrication processes lower the yield rate of detectors, and also require at least two high-voltage sources. On the other hand, GSDDs do not contain built-in MOSFETs or implanted resistors. Moreover, GSDDs require only one high-voltage source. Therefore, GSDDs greatly reduce the cost of the X-ray detection system. We fabricated prototype GSDDs that contained 0.625-mm-thick Si substrates with an active area of 18 mm2, operated by Peltier cooling and a single voltage source. Its energy resolution at 5.9 keV from an 55Fe source was 145 eV at -38°C and -90°V. Thicker Si substrates are required to enhance its absorption of X-rays. To detect X-ray photons with energies up to 77 keV for X-ray absorbance higher than 15%, we simulate the electric potential distribution in GSDDs with Si thicknesses from 0.625 to 3.0 mm. We obtain an adequate electric potential distribution in the thicknesses of up to 3.0 mm, and the capacitance of the GSDD remains small and its X-ray count rate remain high. The high reverse bias required in the 3-mm-thick GSDD was a third of that in a 3-mm-thick pin diode.

  20. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    NASA Astrophysics Data System (ADS)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  1. The use of a mercuric iodide detector for X-ray fluorescence analysis in archaeometry

    NASA Astrophysics Data System (ADS)

    Cesareo, R.; Gigante, G. E.; Iwanczyk, J. S.; Dabrowski, A.

    1992-11-01

    For about two decades, energy dispersive X-ray fluorescence (EDXRF) has been employed in Rome for the analysis of works of art. A short history of the applications of EDXRF to paintings and alloys is presented. Finally, the usefulness of mercuric iodide room-temperature semiconductor detectors in this field is shown.

  2. Hard X-ray and γ-ray detectors for the NeXT mission

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Makishima, Kazuo; Fukazawa, Yasushi; Kokubun, Motohide; Nakazawa, Kazuhiro; Nomachi, Masaharu; Tajima, Hiroyasu; Tashiro, Makoto; Terada, Yukikatsu

    2004-02-01

    When compared with X-ray astronomy, the γ-ray astronomy, especially in the energy band from 10 keV to several MeV, is still immature and significant improvements should be done to obtain sensitivity comparable to that achieved in the energy band below 10 keV. In order to fill this "sensitivity gap", the NeXT (New X-ray Telescope) mission has been proposed as a successor of the Astro-E2 mission. The high-energy response of the super mirror will enable us to perform first sensitive imaging observation up to 80 keV. One idea for the focal plane detector is to combine a fully depleted X-ray imaging device (soft X-ray detector) and a pixelated CdTe (cadmium telluride) detector. In the soft γ-ray band upto ˜1 MeV, a narrow field-of-view Compton γ-ray telescope utilizing several tens of layers of thin Si or CdTe detector has been proposed to obtain much higher sensitivity than present instruments.

  3. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Wei, Haotong; Fang, Yanjun; Mulligan, Padhraic; Chuirazzi, William; Fang, Hong-Hua; Wang, Congcong; Ecker, Benjamin R.; Gao, Yongli; Loi, Maria Antonietta; Cao, Lei; Huang, Jinsong

    2016-05-01

    The large mobilities and carrier lifetimes of hybrid perovskite single crystals and the high atomic numbers of Pb, I and Br make them ideal for X-ray and gamma-ray detection. Here, we report a sensitive X-ray detector made of methylammonium lead bromide perovskite single crystals. A record-high mobility-lifetime product of 1.2 × 10-2 cm2 V-1 and an extremely small surface charge recombination velocity of 64 cm s-1 are realized by reducing the bulk defects and passivating surface traps. Single-crystal devices with a thickness of 2-3 mm show 16.4% detection efficiency at near zero bias under irradiation with continuum X-ray energy up to 50 keV. The lowest detectable X-ray dose rate is 0.5 μGyair s-1 with a sensitivity of 80 μC Gy-1air cm-2, which is four times higher than the sensitivity achieved with α-Se X-ray detectors. This allows the radiation dose applied to a human body to be reduced for many medical and security check applications.

  4. Development of CZT detectors for x-ray and gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Lee, Kuen; Martin, J. W.; Garson, A., III; Guo, Q.; Matteson, J.; Groza, M.; Beilicke, M.; Burger, A.; de Geronimo, G.; Krawczynski, H.

    2011-09-01

    Cadmium Zinc Telluride (CZT) is the detector material of choice for the detection of X-rays in the 10 keV-1MeV energy band with excellent spatial and energy resolutions and without cryogenic cooling. In this contribution, we report on recent results of the CZT detector development program and several astrophysical experiments which make use of CZT detectors. In the first part of the paper, we discuss the performance of pixel and cross-strip CZT detectors read out with an ASIC developed at the Brookhaven National Laboratory. Our pixel detectors achieve some of the best energy resolutions reported in the literature. Cross-strip detectors are found to give an inferior performance and we investigate the reason for this performance difference. We also present results from a precision measurement of the effect of a steering grid on multi-pixel events obtained with a 200 micrometer collimator. In the second part of the paper, we describe the design and performance of the hard X-ray polarimeter X-Calibur. The polarimeter uses a 14 cm long scintillator scatterer, surrounded by an assembly of 32 2-5 mm thick CZT detectors. We discuss the sensitivity of the polarimeter to measure the linear polarization of 10 keV-80 keV X-rays on short and long balloon flights and results from testing the polarimeter in the laboratory.

  5. EIGER: Next generation single photon counting detector for X-ray applications

    NASA Astrophysics Data System (ADS)

    Dinapoli, Roberto; Bergamaschi, Anna; Henrich, Beat; Horisberger, Roland; Johnson, Ian; Mozzanica, Aldo; Schmid, Elmar; Schmitt, Bernd; Schreiber, Akos; Shi, Xintian; Theidel, Gerd

    2011-09-01

    EIGER is an advanced family of single photon counting hybrid pixel detectors, primarily aimed at diffraction experiments at synchrotrons. Optimization of maximal functionality and minimal pixel size (using a 0.25 μm process and conserving the radiation tolerant design) has resulted in 75×75 μm2 pixels. Every pixel comprises a preamplifier, shaper, discriminator (with a 6 bit DAC for threshold trimming), a configurable 4/8/12 bit counter with double buffering, as well as readout, control and test circuitry. A novel feature of this chip is its double buffered counter, meaning a next frame can be acquired while the previous one is being readout. An array of 256×256 pixels fits on a ˜2×2 cm2 chip and a sensor of ˜8×4 cm2 will be equipped with eight readout chips to form a module containing 0.5 Mpixel. Several modules can then be tiled to form larger area detectors. Detectors up to 4×8 modules (16 Mpixel) are planned. To achieve frame rates of up to 24 kHz the readout architecture is highly parallel, and the chip readout happens in parallel on 32 readout lines with a 100 MHz Double Data Rate clock. Several chips and singles (i.e. a single chip bump-bonded to a single chip silicon sensor) were tested both with a lab X-ray source and at Swiss Light Source (SLS) beamlines. These tests demonstrate the full functionality of the chip and provide a first assessment of its performance. High resolution X-ray images and "high speed movies" were produced, even without threshold trimming, at the target system frame rates (up to ˜24 kHz in 4 bit mode). In parallel, dedicated hardware, firmware and software had to be developed to comply with the enormous data rate the chip is capable of delivering. Details of the chip design and tests will be given, as well as highlights of both test and final readout systems.

  6. Duplex multiwire proportional x-ray detector for multichord time-resolved soft x-ray and electron temperature measurements on T-10 tokamaka)

    NASA Astrophysics Data System (ADS)

    Sushkov, A. V.; Andreev, V. F.; Kravtsov, D. E.

    2008-10-01

    Compact 64-channel multiwire proportional chamber is successfully used on T-10 and TCV tokamaks as a continuous-current soft x-ray detectors. The duplex multiwire proportional x-ray detector is a new generation of these detectors. It has been designed for simultaneous multichord measurement of plasma soft x-ray emissivity in a two spectral ranges and determination of the electron temperature by the two-absorber method. The detector consists of two identical multiwire proportional chambers filled by 90%Kr+10%CH4 gas mixture at atmospheric pressure. The first multiwire chamber has 64 channels. The second multiwire chamber (installed behind the first one) has 32 channels. Both chambers view the plasma through the one helium-filled slot-hole camera. Thus, the first multiwire chamber serves as an absorber filter for the second one. Such construction of the detector allows us in addition to soft x-ray measurements to provide measurement of the plasma core electron temperature with spatial resolution of about 2cm and a time resolution of less than 50μs. The construction of the detector and experimental results illustrating the potential of the diagnostic are presented.

  7. Use of mercuric iodide X-ray detectors with alpha backscattering spectrometers for space applications

    NASA Technical Reports Server (NTRS)

    Iwanczyk, J. S.; Wang, Y. J.; Dorri, N.; Dabrowski, A. J.; Economou, T. E.

    1991-01-01

    The authors present X-ray fluorescence (XRF) spectra of different extraterrestrial samples taken with a mercuric iodide (HgI2) spectrometer inserted into an alpha backscattering instrument identical to that used in the Soviet Phobos mission. The results obtained with the HgI2 ambient temperature detector are compared with those obtained using an Si(Li) cryogenically cooled detector. Efforts to design an optimized instrument for space application are also described. The results presented indicate that the energy resolution and sensitivity of HgI2 detectors are adequate to meet the performance needs of a number of proposed space applications, particularly those in which cooled silicon X-ray detectors are impractical or even not usable, such as for the target science programs on geoscience opportunities for lunar surface, Mars surface, and other comet and planetary missions being planned by NASA and ESA.

  8. Use of mercuric iodide x-ray detectors with alpha backscattering spectrometers for space applications

    SciTech Connect

    Iwanczyk, J.S.; Wang, Y.J.; Dorri, N.; Dabrowski, A.J. ); Economou, T.E.; Turkevich, A.L. . Enrico Fermi Inst.)

    1991-04-01

    This paper presents x-ray fluorescence (XRF) spectra of different extraterrestrial samples taken with a mercuric iodide (HgI{sub 2}) spectrometer inserted into an Alpha Backscattering Instrument identical to that used in the Soviet Phobos Mission. The results obtained with the HgI{sub 2} ambient temperature detector are compared with those obtained using a Si(Li) cryogenically cooled detector. The authors' efforts to design an optimized instrument for space application are described.

  9. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array sourcea)

    NASA Astrophysics Data System (ADS)

    Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Ouart, N. D.

    2012-10-01

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (˜10-40 eV) plasmas than emission spectra (˜350-500 eV).

  10. Development of Superconducting Tunnel Junction X-ray Detector with High Absorption Yields Utilizing Silicon Pixel Absorbers

    NASA Astrophysics Data System (ADS)

    Shiki, Shigetomo; Fujii, Go; Ukibe, Masahiro; Kitajima, Yoshinori; Ohkubo, Masataka

    2016-07-01

    A superconducting tunnel junction (STJ) array detector along with silicon pixel absorbers (STJ-SPA) is fabricated to achieve high detection efficiency at X-ray energies below 10 keV. The STJ pixels have dimensions of 100 \\upmu m × 100 \\upmu m and are composed of Nb-Al/AlOX/Al-Nb thin layers. The SPAs are also 100 \\upmu m × 100 \\upmu m and have a depth of 400 \\upmu m, and are isolated from each other by a deep trench with a depth of 350 \\upmu m. The detection efficiency of the STJ-SPA exceeds 95 % at X-ray energies below 10 keV, and its energy resolution is 82 eV FWHM, as measured at the Si K\\upalpha line at 1740 eV. By means of the STJ-SPA detector, the X-ray absorption spectrum of the light element sulfur with a concentration of less than 0.1 wt% in a soda-lime glass sample was successfully acquired.

  11. A novel wafer-scale CMOS APS X-ray detector for breast cancer diagnosis using X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.; Zheng, Y.; Philip, D.; Vinnicombe, S.; Speller, R.

    2012-12-01

    The current study uses a novel large area (12.8 cm × 13.1 cm) complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) X-ray detector, named Dynamic range Adjustable for Medical Imaging Technology (DynAMITe), for breast cancer diagnosis. The detector consists of two geometrically superimposed grids: a) 2560 × 2624 fine-pitch grid of pixels (50 μm pitch), named Sub-Pixels (SP camera), for low intrinsic noise and high spatial resolution and b) 1280 × 1312 large-pitch grid of pixels (100 μm pitch), named Pixels (P camera), for high dynamic range. X-ray performance characterization measurements show that the detective quantum efficiency (DQE) of the SP camera is in the range 0.7-0.75 at low spatial frequencies using a tungsten (W) anode X-ray source at 28 kV. Hence, the detector is suitable for mammography. Furthermore, we used the SP camera to combine mammograms with angle dispersive X-ray diffraction (ADXRD) measurements in order to apply the X-ray biopsy concept in one examination. The results show that ADXRD technique indicates the presence of cancer in suspicious areas on the mammogram. Hence, it could be used to determine the region affected by cancer and assist in planning surgery. This study is the proof of concept that mammography and ADXRD can be combined in one examination.

  12. Continued Development of Small-Pixel CZT and CdTe Detectors for Future High-Angular-Resolution Hard X-ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric

    The Nuclear Spectroscopic Telescope Array (NuSTAR) Small Explorer Mission was launched in June 2012 and has demonstrated the technical feasibility and high scientific impact of hard X-ray astronomy. We propose to continue our current R&D program to develop finely pixelated semiconductor detectors and the associated readout electronics for the focal plane of a NuSTAR follow-up mission. The detector-ASIC (Application Specific Integrated Circuit) package will be ideally matched to the new generation of low-cost, low-mass X-ray mirrors which achieve an order of magnitude better angular resolution than the NuSTAR mirrors. As part of this program, the Washington University group will optimize the contacts of 2x2 cm^2 footprint Cadmium Zinc Telluride (CZT) and Cadmium Telluride (CdTe) detectors contacted with 100x116 hexagonal pixels at a next-neighbor pitch of 200 microns. The Brookhaven National Laboratory group will design, fabricate, and test the next generation of the HEXID ASIC matched to the new X-ray mirrors and the detectors, providing a low-power 100x116 channel ASIC with extremely low readout noise (i.e. with a root mean square noise of 13 electrons). The detectors will be tested with radioactive sources and in the focal plane of high-angular-resolution X-ray mirrors at the X-ray beam facilities at the Goddard and Marshall Space Flight Centers.

  13. Comparison of measured responses in two spectrally-sensitive X-ray detectors to predictions obtained using the its radiation transport code

    SciTech Connect

    Carlson, G.A.; Beutler, D.E.; Seager, K.D.; Knott, D.P.

    1988-12-01

    Responses of a Ge detector and a filtered TLD array detector have been measured at a steady-state bremsstrahlung source (the Pelletron), at endpoint energies from 150 to 900 keV. Predictions of detector response using Monte Carlo ITS codes are found to be in excellent agreement with measured responses for both detectors. These results extend the range of validity of the ITS codes. With calibration provided by these experiments and by ITS predictions, dose-depth data from the TLD arrays can be used to estimate flash X-ray source endpoint energies.

  14. Comparison of measured responses in two spectrally-sensitive x-ray detectors to predictions obtained using the ITS (Integrated Tiger Series) radiation transport code

    SciTech Connect

    Carlson, G.A.; Beutler, D.E.; Seager, K.D.; Knott, D.P.

    1988-01-01

    Responses of a Ge detector and a filtered TLD array detector have been measured at a steady-state bremsstrahlung source (the Pelletron), at endpoint energies from 150 to 900 keV. Predictions of detector response using Monte Carlo ITS codes are found to be in excellent agreement with measured response for both detectors. These results extend the range of validity of the ITS codes. With calibration provided by these experiments and by ITS predictions, dose-depth data from the TLD arrays can be used to estimate flash x-ray source endpoint energies.

  15. Material specific X-ray imaging using an energy-dispersive pixel detector

    NASA Astrophysics Data System (ADS)

    Egan, Christopher K.; Wilson, Matthew D.; Veale, Matthew C.; Seller, Paul; Jacques, Simon D. M.; Cernik, Robert J.

    2014-04-01

    By imaging the X-ray spectral properties or ‘colours’ we have shown how material specific imaging can be performed. Using a pixelated energy-dispersive X-ray detector we record the absorbed and emitted hard X-radiation and measure the energy (colour) and intensity of the photons. Using this technology, we are not only able to obtain attenuation contrast but also to image chemical (elemental) variations inside objects, potentially opening up a very wide range of applications from materials science to medical diagnostics.

  16. SOLPEX x-ray polarimeter detector luminescence background calculated using Geant4 simulation software

    NASA Astrophysics Data System (ADS)

    Gorgolewski, Aleksander; Barylak, Jaromir; Steślicki, Marek; Szaforz, Å.»aneta; BÄ kała, Jarosław

    2016-09-01

    The Soft X-ray Solar polarimeter-spectrometer (SOLPEX) experiment is planned to be placed in Roscosmos' Multipurpose Laboratory Module "NAUKA" on International Space Station (ISS) in 2019. The experiment is design to detect polarization and X-ray spectra of solar flares. Due to very high, few percent, linear polarization detection limit, accurate background estimation and modeling is crucial. Calculating the background photoelectric effect, Compton scattering and Bremsstrahlung were taken into account. Luminescence background from particles produced in solar flares was simulated using Geant4. Additionally, theoretical spectra was modeled in order to simulate full SOLPEX detector response for M5 and X1 solar flare classes.

  17. Component Level Modular Design of a Solid State X-ray Image Intensifier for an M×N Array.

    PubMed

    Huang, Ying; Qu, Bin; Sharma, Prateek; Kuhls-Gilcrist, Andrew; Wang, Weiyuan; Titus, Albert H; Cartwright, Alexander N; Bednarek, Daniel R; Rudin, Stephen

    2010-10-30

    The Solid-State X-ray Image Intensifier (SSXII) is a novel dynamic x-ray imager, based on an array of electron-multiplying CCDs (EMCCDs), that can significantly improve performance compared to conventional x-ray image intensifiers (XIIs) and flat panel detectors (FPDs). To expand the field-of-view (FOV) of the SSXII detectors while maintaining high resolution, a scalable component level modular design is presented. Each module can be fit together with minimum dead-space and optically coupled to one contiguous x-ray converter plate. The electronics of each of the modules consists of a detachable head-board, on which is mounted the EMCCD, and a driver board. The size of the head-boards is minimized to ensure that the modules fit together properly. The driver boards connect with the head-boards via flat cables and are designed to be plugged into the main mother-board that contains an FPGA chip that generates the driving clock signals for the EMCCDs and analog-to-digital converter (ADC). At the front-end, a high speed ADC on each of the driver boards samples and digitizes the EMCCD analog output signal and an extensible modular digital multiplexer back-end is used to acquire and combine image data from multiple modules. The combined digital data is then transmitted to a PC via a standard Camera Link interface. Eventually, this modular design will be extended to a 3×3 or larger array to accomplish full clinical FOVs and enable the SSXII to replace conventional lower-resolution XIIs or FPDs.

  18. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    NASA Astrophysics Data System (ADS)

    Gianoncelli, Alessandra; Bufon, Jernej; Ahangarianabhari, Mahdi; Altissimo, Matteo; Bellutti, Pierluigi; Bertuccio, Giuseppe; Borghes, Roberto; Carrato, Sergio; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Giuressi, Dario; Kourousias, George; Menk, Ralf Hendrik; Picciotto, Antonino; Piemonte, Claudio; Rachevski, Alexandre; Rashevskaya, Irina; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-04-01

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  19. Soft x-ray submicron imaging detector based on point defects in LiF

    SciTech Connect

    Baldacchini, G.; Bollanti, S.; Bonfigli, F.; Flora, F.; Di Lazzaro, P.; Lai, A.; Marolo, T.; Montereali, R.M.; Murra, D.; Faenov, A.; Pikuz, T.; Nichelatti, E.; Tomassetti, G.; Reale, A.; Reale, L.; Ritucci, A.; Limongi, T.; Palladino, L.; Francucci, M.; Martellucci, S.

    2005-11-15

    The use of lithium fluoride (LiF) crystals and films as imaging detectors for EUV and soft-x-ray radiation is discussed. The EUV or soft-x-ray radiation can generate stable color centers, emitting in the visible spectral range an intense fluorescence from the exposed areas. The high dynamic response of the material to the received dose and the atomic scale of the color centers make this detector extremely interesting for imaging at a spatial resolution which can be much smaller than the light wavelength. Experimental results of contact microscopy imaging of test meshes demonstrate a resolution of the order of 400 nm. This high spatial resolution has been obtained in a wide field of view, up to several mm{sup 2}. Images obtained on different biological samples, as well as an investigation of a soft x-ray laser beam are presented. The behavior of the generated color centers density as a function of the deposited x-ray dose and the advantages of this new diagnostic technique for both coherent and noncoherent EUV sources, compared with CCDs detectors, photographic films, and photoresists are discussed.

  20. Characterization of energy dispersive semiconductor detectors for x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Hopman, Theodore Lambert

    Since the development of the electron microprobe in the 1950s by Castaing, characteristic x-ray emission lines have been used to determine chemical compositions of samples. Energy-dispersive detectors allow simultaneous multi-element analysis; continued improvements in detector technology have lowered limits of detection and allowed the effects of physical processes in the detector to become apparent. A well-characterized detector, in terms of its geometry and its response to x-rays, is essential for accurate and precise chemical analysis. In this work, scans with a collimated 55Fe radionuclide source allowed the geometry of Si(Li) detectors to be determined. Across the surface of the detector the response function was uniform, indicating it is due primarily to detector physics and/or processing electronics. Monochromatized x-rays over an energy range of 1--10 keV were used to generate simple spectra in Si(Li) and silicon drift detectors with analog and digital pulse processing systems. Monte Carlo simulations of detector response allowed approximate contributions from physical processes to be seen individually. Transport of energetic electrons, electron diffusion at metal-semiconductor junctions, and differences in detector structure together determine variation with energy of spectral features. The Si K photoelectron escape step at ˜1.8 keV, previously attributed to electron transport only, is found to be affected by diffusion. The diffusion tail to the low-energy side of the primary peak is found to have a component due to escape of Si L Auger electrons. Escape peak intensities in SDD and Si(Li) detectors agree only when contact photoelectron contributions are taken into account.

  1. Feasibility study of a gas electron multiplier detector as an X-Ray image sensor

    NASA Astrophysics Data System (ADS)

    Shin, Sukyoung; Jung, Jaehoon; Lee, Soonhyouk

    2015-07-01

    For its ease of manufacture, flexible geometry, and cheap manufacturing cost, the gas electron multiplier (GEM) detector can be used as an X-ray image sensor. For this purpose, we acquired relative detection efficiencies and suggested a method to increase the detection efficiency in order to study the possibility of using a GEM detector as an X-ray image sensor. The GEM detector system is composed of GEM foils, the instrument system, the gas system, and the negative power supply. The instrument system consists of an A225 charge sensitive preamp, an A206 discriminator, and a MCA8000D multichannel analyzer. For the gas system, argon gas was mixed with CO2 in a ratio of 8:2, and for the negative 2,000 volts, a 3106D power supply was used. A CsI-coated GEM foil was used to increase the detection efficiency. Fe-55 was used as an X-ray source, and the relative efficiency was acquired by using the ratio of the efficiency of the GEM detector to that of the CdTe detector. The total count method and the energy spectrum method were used to calculate the relative efficiency. The relative detection efficiency of the GEM detector for Fe-55 by using total count method was 32%, and the relative detection efficiencies were 5, 43, 33, 37, 35, and 36%, respectively, for 2-, 3-, 4-, 5-, 6-, and 7- keV energy spectrum by using the energy spectrum method. In conclusion, we found that the detection efficiency of the two-layered GEM detector is insufficient for use as an X-ray image sensor, so we suggest a CsI-coated GEM foil to increase the efficiency, with resulting value being increased to 41%.

  2. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  3. A High-Speed Detector System for X-ray Fluorescence Microprobes.

    SciTech Connect

    Siddons,P.D.; Dragone, A.; De Geronimo, g.; Kuczewski, A.; Kuczewski, J.; O

    2006-10-29

    We have developed a high-speed system for collecting x-ray fluorescence microprobe data, based on ASICs developed at BNL and high-speed processors developed by CSIRO. The system can collect fluorescence data in a continuous raster scan mode, and present elemental images in real time using Ryan's Dynamic Analysis algorithm. We will present results from a 32-element prototype array illustrating the concept. The final instrument will have 384 elements arranged in a square array around a central hole.

  4. Development of an X-ray imaging system with SOI pixel detectors

    NASA Astrophysics Data System (ADS)

    Nishimura, Ryutaro; Arai, Yasuo; Miyoshi, Toshinobu; Hirano, Keiichi; Kishimoto, Shunji; Hashimoto, Ryo

    2016-09-01

    An X-ray imaging system employing pixel sensors in silicon-on-insulator technology is currently under development. The system consists of an SOI pixel detector (INTPIX4) and a DAQ system based on a multi-purpose readout board (SEABAS2). To correct a bottleneck in the total throughput of the DAQ of the first prototype, parallel processing of the data taking and storing processes and a FIFO buffer were implemented for the new DAQ release. Due to these upgrades, the DAQ throughput was improved from 6 Hz (41 Mbps) to 90 Hz (613 Mbps). The first X-ray imaging system with the new DAQ software release was tested using 33.3 keV and 9.5 keV mono X-rays for three-dimensional computerized tomography. The results of these tests are presented.

  5. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  6. Vision 20/20: Single photon counting x-ray detectors in medical imaging.

    PubMed

    Taguchi, Katsuyuki; Iwanczyk, Jan S

    2013-10-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs.

  7. Elemental contrast imaging with a polychromatic laboratory x-ray source using energy-discriminating detectors

    NASA Astrophysics Data System (ADS)

    Yokhana, Viona S. K.; Arhatari, Bendicta D.; Gureyev, Timur E.; Abbey, Brian

    2016-11-01

    Determining the specific spatial distributions of elements within compound samples is of critical importance to a range of applied research fields. The usual approaches to obtaining elemental contrast involve measurement of the characteristic peaks associated with x-ray fluorescence or measuring the x-ray transmission as a function of energy. In the laboratory these measurements are challenging due to the polychromaticity and lack of tunability of the source. Here we demonstrate how newly developed, high-resolution, energy-discriminating area detector technology can be exploited to enhance elemental contrast. The detector we employ here is the Pixirad area detector which can simultaneously have up to four separate colour channels. We also discuss the potential of this new technology in the context of tomographic imaging of soft tissue.

  8. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  9. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  10. Assembly and test of the gas pixel detector for X-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Li, H.; Feng, H.; Muleri, F.; Bellazzini, R.; Minuti, M.; Soffitta, P.; Brez, A.; Spandre, G.; Pinchera, M.; Sgró, C.; Baldini, L.; She, R.; Costa, E.

    2015-12-01

    The gas pixel detector (GPD) dedicated for photoelectric X-ray polarimetry is selected as the focal plane detector for the ESA medium-class mission concept X-ray Imaging and Polarimetry Explorer (XIPE). Here we show the design, assembly, and preliminary test results of a small GPD for the purpose of gas mixture optimization needed for the phase A study of XIPE. The detector is assembled in house at Tsinghua University following a design by the INFN-Pisa group. The improved detector design results in a good uniformity for the electric field. Filled with pure dimethyl ether (DME) at 0.8 atm, the measured energy resolution is 18% at 6 keV and inversely scales with the square root of the X-ray energy. The measured modulation factor is well consistent with that from simulation, up to ~0.6 above 6 keV. The residual modulation is found to be 0.30 ± 0.15 % at 6 keV for the whole sensitive area, which can be translated into a systematic error of less than 1% for polarization measurement at a confidence level of 99%. The position resolution of the detector is about 80 μm in FWHM, consistent with previous studies and sufficient for XIPE requirements.

  11. Development of an x-ray detector based on polymer- dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    Oh, K.; Hong, J.; Kim, G.; Park, S.; Min, B.; Yang, J.; Nam, S.

    2015-02-01

    The applications of active matrix flat-panel imagers (AMFPIs) in large-area x-ray imaging systems have increased over time but are still severely limited owing to its pixel resolution, complex fabrication processes, and high cost. As a solution, x-ray light valve (XLV) technology was introduced and expected to have a better resolution and contrast ratio than those of AMFPI, owing to its micrometer level of the LC cells and signal amplification by an external light source. The twisting angle of the LC cells was changed by charge carrier signals created in a photoconductor layer against x-rays, and the diagnostic images from XLV were acquired from the transmittance of the external light source. However, there was a possibility that the photoconductor layer may be crystallized or degenerated due to the application of high temperatures for sealing the LC layer during the fabrication process. To solve such problems, polymer-dispersed liquid crystals (PDLCs), which do not need high temperature for the sealing process of the LC layer, are used in this study instead of typical LC cells. A photoconductor and PDLC are combined to develop an x-ray detector. An external light source and optical sensor are used to investigate the light transmission of the PDLC . The PDLCs used in this paper do not need polarizers and are self-adhesive. Hence, the transmittance is very high in the transparent state, which allows for a linear x-ray response and sufficient dynamic range in digital radiography.

  12. In-Orbit Performance of the Hard X-Ray Detector on Borad Suzaku

    SciTech Connect

    Kokubun, Motohide; Makishima, Kazuo; Takahashi, Tadayuki; Murakami, Toshio; Tashiro, Makoto; Fukazawa, Yasushi; Kamae, Tuneyoshi; M.Madejski, Greg; Nakazawa, Kazuhiro; Yamaoka, Kazutaka; Terada, Yukikatsu; Yonetoku, Daisuke; Watanabe, Shin; Tamagawa, Toru; Mizuno, Tsunefumi; Kubota, Aya; Isobe, Naoki; Takahashi, Isao; Sato, Goro; Takahashi, Hiromitsu; Hong, Soojing; /Tokyo U. /Wako, RIKEN /JAXA, Sagamihara /Kanazawa U. /Saitama U. /Hiroshima U. /Aoyama Gakuin U. /Nihon U., Narashino /SLAC

    2007-10-26

    The in-orbit performance and calibration of the Hard X-ray Detector (HXD) on board the X-ray astronomy satellite Suzaku are described. Its basic performances, including a wide energy bandpass of 10-600 keV, energy resolutions of {approx}4 keV (FWHM) at 40 keV and {approx}11% at 511 keV, and a high background rejection efficiency, have been confirmed by extensive in-orbit calibrations. The long-term gains of PIN-Si diodes have been stable within 1% for half a year, and those of scintillators have decreased by 5-20%. The residual non-X-ray background of the HXD is the lowest among past non-imaging hard X-ray instruments in energy ranges of 15-70 and 150-500 keV. We provide accurate calibrations of energy responses, angular responses, timing accuracy of the HXD, and relative normalizations to the X-ray CCD cameras using multiple observations of the Crab Nebula.

  13. Construction and testing of a pixellated CZT detector and shield for a hard x-ray astronomy balloon flight

    NASA Astrophysics Data System (ADS)

    Bloser, Peter F.; Narita, Tomohiko; Jenkins, Jonathan A.; Grindlay, Jonathan E.

    2000-12-01

    We report on the construction and laboratory testing of pixellated CZT detectors mounted in a flip-chip, tiled fashion and read out by an ASIC, as required for proposed hard X-ray astronomy missions. Two 10 mm X 10 mm X 5 mm detectors were fabricated, one out of standard eV Products high-pressure Bridgman CZT and one out of IMARAD horizontal Bridgman CZT. Each was fashioned with a 4 X 4 array of gold pixels on 2.5 mm pitch with a surrounding guard ring. The detectors were mounted side by side on a carrier card, such that the pixel pitch was preserved, and read out by a 32-channel VA-TA ASIC from IDE AS Corp. controlled by a PC/104 single-board computer. A passive shield/collimator surrounded by plastic scintillator encloses the detectors on five sides and provides an approximately 40 degree field of view. Thus this experiment tests key techniques required for future hard X-ray survey instruments. The experiment was taken to Ft. Sumner, NM in May 2000 in preparation for a scientific balloon flight aboard the joint Harvard-MSFC EXITE2/HERO payload. Although we did not receive a flight opportunity, and are currently scheduled to fly in September 2000, we present our calibration data in the flight configuration together with data analysis techniques and simulations of the expected flight background spectrum.

  14. Large aperture CCD x ray detector for protein crystallography using a fiberoptic taper

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Westbrook, E. M.; Naday, I.; Coleman, T. A.; Westbrook, M. L.; Travis, D. J.; Sweet, R. M.; Pflugrath, J. W.

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for x-ray diffraction studies in protein crystallography. The detector was tested on a beamline of the National Synchrotron Light Source at Brookhaven National Laboratory with a beam intensity greater than 10(exp 9) x-ray photons/s. A fiberoptic taper, an image intensifier and a lens demagnify, intensify, and focus the image onto a CCD having 512 x 512 pixels. A detective quantum efficiency (DOE) of 0.36 was obtained by evaluating the statistical uncertainty in the detector output. The dynamic range of a 4 x 4 pixel resolution element, comparable in size to a diffraction peak, was 10(exp 4). The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel on the detector face is 160 microns. A complete data set, consisting of forty-five 1 deg rotation frames, was obtained in just 36 s of x-ray exposure to a crystal of chicken egg-white lysozyme. In a separate experiment, a lysozyme data set consisting of 495 0.1 deg frames, was processed by the MADNES data reduction program, yielding symmetry R-factors for the data of 3.2 to 3.5 percent. Diffraction images from crystals of the myosin S1 head (a = 275 A) were also recorded. The Bragg spots, only 5 pixels apart, were resolved but were not sufficiently separated to process these data. Changes in the detector design which will improve the DOE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for x-ray scattering investigations with synchrotron sources.

  15. CCD-based detector for protein crystallography with synchrotron X-rays

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Westbrook, E. M.; Naday, I.; Coleman, T. A.; Westbrook, M. L.; Travis, D. J.; Sweet, R. M.; Pflugrath, J. W.; Stanton, M.

    1990-11-01

    A detector with a 114 mm aperture, based on a charge-coupled device (CCD), has been designed for X-ray diffraction studies in protein crystallography. The detector was tested at the National Synchrotron Light Source with a beam intensity, through a 0.3 mm collimator, of greater than 109 X-ray photons/s. A fiberoptic taper, an image intensifier, and a lens demagnify, intensify, and focus the image onto a CCD having 512×512 pixels. The statistical uncertainty in the detector output was evaluated as a function of conversion gain. From this, a detective quantum efficiency (DQE) of 0.36 was derived. The dynamic range of a 4×4 pixel resolution element, comparable in size to a diffraction peak, was 104. The point-spread function shows FWHM resolution of approximately 1 pixel, where a pixel is 160 μm on the detector face. A data set collected from a chicken egg-white lysozyme crystal, consisting of 495 0.1° frames, was processed by the MADNES data reduction program. The symmetry R-factors for the data were 3.2-3.5%. In a separate experiment a complete lysozyme data set consisting of 45 1° frames was obtained in just 36 s of X-ray exposure. Diffraction images from crystals of the myosin S1 head (a = 275 Å) were also recorded; the Bragg spots, only 5 pixels apart, were separated but not fully resolved. Changes in the detector design that will improve the DQE and spatial resolution are outlined. The overall performance showed that this type of detector is well suited for X-ray scattering investigations with synchrotron sources.

  16. 'Optical' soft x-ray arrays for fluctuation diagnostics in magnetic fusion energy experiments

    SciTech Connect

    Delgado-Aparicio, L.F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Kaita, R.; Roquemore, L.; Johnson, D.; Majeski, R.

    2004-10-01

    We are developing large pixel count, fast ({>=}100 kHz) and continuously sampling soft x-ray (SXR) array for the diagnosis of magnetohydrodynamics (MHD) and turbulent fluctuations in magnetic fusion energy plasmas. The arrays are based on efficient scintillators, high thoughput multiclad fiber optics, and multichannel light amplification and integration. Compared to conventional x-ray diode arrays, such systems can provide vastly increased spatial coverage, and access to difficult locations with small neutron noise and damage. An eight-channel array has been built using columnar CsI:Tl as an SXR converter and a multianode photomultiplier tube as photoamplifier. The overall system efficiency is measured using laboratory SXR sources, while the time response and signal-to-noise performance have been evaluated by recording MHD activity from the spherical tori (ST) Current Drive Experiment-Upgrade and National Spherical Torus Experiment, both at Princeton Plasma Physics Laboratory.

  17. Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays

    SciTech Connect

    Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

    2010-10-29

    We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

  18. Development of a stationary chest tomosynthesis system using carbon nanotube x-ray source array

    NASA Astrophysics Data System (ADS)

    Shan, Jing

    X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the effects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane resolution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by

  19. Energy-windowed, pixellated X-ray diffraction using the Pixirad CdTe detector

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Bellazzini, R.; Minuti, M.; Brez, A.; Pinchera, M.; Spandre, G.; Moss, R.; Speller, R. D.

    2017-01-01

    X-ray diffraction (XRD) is a powerful tool for material identification. In order to interpret XRD data, knowledge is required of the scattering angles and energies of X-rays which interact with the sample. By using a pixellated, energy-resolving detector, this knowledge can be gained when using a spectrum of unfiltered X-rays, and without the need to collimate the scattered radiation. Here we present results of XRD measurements taken with the Pixirad detector and a laboratory-based X-ray source. The cadmium telluride sensor allows energy windows to be selected, and the 62 μm pixel pitch enables accurate spatial information to be preserved for XRD measurements, in addition to the ability to take high resolution radiographic images. Diffraction data are presented for a variety of samples to demonstrate the capability of the technique for materials discrimination in laboratory, security and pharmaceutical environments. Distinct diffraction patterns were obtained, from which details on the molecular structures of the items under study were determined.

  20. A brief description of observational results from the supersoft X-ray detector aboard Shenzhou-2

    NASA Astrophysics Data System (ADS)

    Hang, Heng-rong; Zhang, Nan; Yu, Min

    2003-10-01

    Observational results from the supersoft X-ray detector (SD) aboard the spacecraft Shenzhou-2 are briefly described. The resultspertain to cosmic γ-ray bursts solar x-ray bursts, high-energy charged particles and soft X-ray background radiation. The detector is a proportional counter with a polypropylene thin-film window of 50 mm diameter, it operates in the energy range 0.23-3.0keV covered by six energy channels. Two grades of time resolution are used: 40 ms for recording burst events and 520 ms when there is no triggering signal resulted from a burst event. Figures 1 and 2 show the light curves and energy spectra of two cosmic γ-ray bursts (starting time 2001 Jan 17, 09:37:25.21 UT and 2001 Mar 9, 12:33:55.692 UT), and Figures 3 and 4, the results on two solar X-ray burst (2001 Apr 6, 19:14:09.11 UT, and 2001 May 20, 06:02:12.58 UT). The detector records the ambient high-energy charged particles when there is no burst event and the shutter of the window is closed. 110 data sets of high-energy charged particles along the spacecraft orbit have been collected. As examples, the variations of the particle counting rate along the orbit are shown in Figs. 6a, 6b, 8e, 8f and 7. More than 10 events of particle precipitation induced by solar proton events have also been recorded, some of which are displayed in Figs.6c-6f and 7. Some of the data of soft X-ray background radiation shown in Fig. 8 were obtained when the shutter was open, and they are important for the data processing of the burst events.

  1. Development of High Resolution Mirrors and Cd-Zn-Te Detectors for Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Speegle, Chet O.; Gaskin, Jessica; Sharma, Dharma; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    We describe the fabrication and implementation of a high-resolution conical, grazing- incidence, hard X-ray (20-70 keV) telescope. When flown aboard stratospheric balloons, these mirrors are used to image cosmic sources such as supernovae, neutron stars, and quasars. The fabrication process involves generating super-polished mandrels, mirror shell electroforming, and mirror testing. The cylindrical mandrels consist of two conical segments; each segment is approximately 305 mm long. These mandrels are first, precision ground to within approx. 1.0 micron straightness along each conical segment and then lapped and polished to less than 0.5 micron straightness. Each mandrel segment is the super-polished to an average surface roughness of approx. 3.25 angstrom rms. By mirror shell replication, this combination of good figure and low surface roughness has enabled us to achieve 15 arcsec, confirmed by X-ray measurements in the Marshall Space Flight Center 102 meter test facility. To image the focused X-rays requires a focal plane detector with appropriate spatial resolution. For 15 arcsec optics of 6 meter focal length, this resolution must be around 200 microns. In addition, the detector must have a high efficiency, relatively high energy resolution, and low background. We are currently developing Cadmium-Zinc-Telluride fine-pixel detectors for this purpose. The detectors under study consist of a 16x16 pixel array with a pixel pitch of 300 microns and are 1 mm and 2 mm thick. At 60 keV, the measured energy resolution is around 2%.

  2. Superconducting tunneling-junction detectors of X-ray radiation. Issues concerning the energy resolution

    SciTech Connect

    Andrianov, V. A. Gor'kov, V. P. Koshelets, V. P. Filippenko, L. V.

    2007-02-15

    The effect of the recombination-and edge-related losses of nonequilibrium quasiparticles on the energy resolution of superconducting tunneling detectors is studied. The dependence of the signal on the energy of X-ray photons is measured and the shape of instrument-related lines is studied for the Ti/Nb/Al/AlO{sub x}/Al/Nb/NbN detectors with the Ti/Nb passive electrode. Experimental data are analyzed using the diffusion-based model of tunneling detectors.

  3. An indirect flat-panel detector with avalanche gain for low dose x-ray imaging: SAPHIRE (scintillator avalanche photoconductor with high resolution emitter readout)

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Li, Dan; Rowlands, J. A.; Egami, N.; Takiguchi, Y.; Nanba, M.; Honda, Y.; Ohkawa, Y.; Kubota, M.; Tanioka, K.; Suzuki, K.; Kawai, T.

    2008-03-01

    An indirect flat-imager with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose x-ray imaging with high resolution. It is made by optically coupling a structured x-ray scintillator CsI (Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The charge image created by HARP is read out by electron beams generated by the FEA. The proposed detector is called SAPHIRE (Scintillator Avalanche Photoconductor with HIgh Resolution Emitter readout). The avalanche gain of HARP depends on both a-Se thickness and applied electric field E Se. At E Se of > 80 V/μm, the avalanche gain can enhance the signal at low dose (e.g. fluoroscopy) and make the detector x-ray quantum noise limited down to a single x-ray photon. At high exposure (e.g. radiography), the avalanche gain can be turned off by decreasing E Se to < 70 V/μm. In this paper the imaging characteristics of the FEA readout method, including the spatial resolution and noise, were investigated experimentally using a prototype optical HARP-FEA image sensor. The potential x-ray imaging performance of SAPHIRE, especially the aspect of programmable gain to ensure wide dynamic range and x-ray quantum noise limited performance at the lowest exposure in fluoroscopy, was investigated.

  4. The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector

    NASA Technical Reports Server (NTRS)

    Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.

    1991-01-01

    The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.

  5. Methodology to measure fundamental performance parameters of x-ray detectors

    NASA Astrophysics Data System (ADS)

    Busse, Falko; Ruetten, Walter; Wischmann, Hans-Aloys; Geiger, Bernhard; Spahn, Martin F.; Bastiaens, Raoul J. M.; Ducourant, Thierry

    2001-06-01

    To judge the potential benefit of a new x-ray detector technology and to be able to compare different technologies, some standard performance measurements must be defined. In addition to technology-related parameters which may influence weight, shape, image distortions and readout speed, there are fundamental performance parameters which directly influence the achievable image quality and dose efficiency of x-ray detectors. A standardization activity for detective quantum efficiency (DQE) for static detectors is already in progress. In this paper we present a methodology for noise power spectrum (NPS), low frequency drop (LFD) and signal to electronic noise ratio (SENR), and the influence of these parameters on DQE. The individual measurement methods are described in detail with their theoretical background and experimental procedure. Corresponding technical phantoms have been developed. The design of the measurement methods and technical phantoms is tuned so that only minimum requirements are placed on the detector properties. The measurement methods can therefore be applied to both static and dynamic x-ray systems. Measurement results from flat panel imagers and II/TV systems are presented.

  6. Elemental mapping in a contemporary miniature by full-field X-ray fluorescence imaging with gaseous detector vs. scanning X-ray fluorescence imaging with polycapillary optics

    NASA Astrophysics Data System (ADS)

    Silva, A. L. M.; Cirino, S.; Carvalho, M. L.; Manso, M.; Pessanha, S.; Azevedo, C. D. R.; Carramate, L. F. N. D.; Santos, J. P.; Guerra, M.; Veloso, J. F. C. A.

    2017-03-01

    Energy dispersive X-ray imaging can be used in several research fields and industrial applications. Elemental mapping through energy dispersive X-ray imaging technique has become a promising method to obtain positional distribution of specific elements in a non-destructive way. To obtain the elemental distribution of a sample it is necessary to use instruments capable of providing a precise positioning together with a good energy resolution. Polycapillary beams together with silicon drift chamber detectors are used in several commercial systems and are considered state-of-the-art spectrometers, however they are usually very costly. A new concept of large energy dispersive X-ray imaging systems based on gaseous radiation detectors emerged in the last years enabling a promising 2D elemental detection at a very reduced price. The main goal of this work is to analyze a contemporary Indian miniature with both X-ray fluorescence imaging systems, the one based on a gaseous detector 2D-THCOBRA and the state-of-the-art spectrometer M4 Tornado, from Bruker. The performance of both systems is compared and evaluated in the context of the sample's analysis.

  7. Optimized acquisition time for x-ray fluorescence imaging of gold nanoparticles: a preliminary study using photon counting detector

    NASA Astrophysics Data System (ADS)

    Ren, Liqiang; Wu, Di; Li, Yuhua; Chen, Wei R.; Zheng, Bin; Liu, Hong

    2016-03-01

    X-ray fluorescence (XRF) is a promising spectroscopic technique to characterize imaging contrast agents with high atomic numbers (Z) such as gold nanoparticles (GNPs) inside small objects. Its utilization for biomedical applications, however, is greatly limited to experimental research due to longer data acquisition time. The objectives of this study are to apply a photon counting detector array for XRF imaging and to determine an optimized XRF data acquisition time, at which the acquired XRF image is of acceptable quality to allow the maximum level of radiation dose reduction. A prototype laboratory XRF imaging configuration consisting of a pencil-beam X-ray and a photon counting detector array (1 × 64 pixels) is employed to acquire the XRF image through exciting the prepared GNP/water solutions. In order to analyze the signal to noise ratio (SNR) improvement versus the increased exposure time, all the XRF photons within the energy range of 63 - 76KeV that include two Kα gold fluorescence peaks are collected for 1s, 2s, 3s, and so on all the way up to 200s. The optimized XRF data acquisition time for imaging different GNP solutions is determined as the moment when the acquired XRF image just reaches a quality with a SNR of 20dB which corresponds to an acceptable image quality.

  8. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  9. Performance characteristics needed for protein crystal diffraction x-ray detectors.

    SciTech Connect

    Westbrook, E. M.

    1999-09-21

    During the 1990's, macromolecular crystallography became progressively more dependent on synchrotrons X-ray sources for diffraction data collection. Detectors of this diffraction data at synchrotrons beamlines have evolved over the decade, from film to image phosphor plates, and then to CCD systems. These changes have been driven by the data quality and quantity improvements each newer detector technology provided. The improvements have been significant. It is likely that newer detector technologies will be adopted at synchrotron beamlines for crystallographic diffraction data collection in the future, but these technologies will have to compete with existing CCD detector systems which are already excellent and are getting incrementally better in terms of size, speed, efficiency, and resolving power. Detector development for this application at synchrotrons must concentrate on making systems which are bigger and faster than CCDs and which can capture weak data more efficiently. And there is a need for excellent detectors which are less expensive than CCD systems.

  10. Hybrid gas scintillation proportional counter/phoswich detector for hard X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.; Manandhar, Raj P.

    1989-01-01

    A concept is presented for a balloon-borne imaging hybrid proportional counter/phoswich detector of medium to hard X-rays. The phoswich would be optically coupled to the exit window of the proportional counter, and both detectors would use a common position-sensitive readout. It is anticipated that such a detector could combine the good energy and position resolution and excellent background rejection ability of the proportional counter for incident photon energies less than 100 keV with the extended response of the phoswich for higher energies. The phoswich could also be used to reject Compton scattering events in the proportional counter. This detector concept is studied using numerical simulations of a 400 sq cm square prototype detector. Results from this simulation indicate that current levels of proportional counter and phoswich performance are attainable at small cost in quantum efficiency, compared to a bare phoswich detector.

  11. Characterization of Si hybrid CMOS detectors for use in the soft x-ray band

    NASA Astrophysics Data System (ADS)

    Prieskorn, Zachary R.; Griffith, Christopher V.; Bongiorno, Stephen D.; Falcone, Abraham D.; Burrows, David N.

    2013-09-01

    We report on the characterization of four HAWAII Hybrid Si CMOS detectors (HCD) developed for use as X-ray detectors as part of a joint program between Penn State University and Teledyne Imaging Sensors (TIS). Interpixel capacitive crosstalk (IPC) has been measured for standard H1RG detectors as well as a specially developed H2RG that uses a unique bonding structure. The H2RG shows significant reduction in IPC, as reported by Griffith et al. 2012. Energy resolution at 1.5 & 5.9 keV was measured as well as read noise for each detector. Dark current as a function of temperature is reported from 150 - 210 K and dark current figures of merit are estimated for each detector. We also discuss upcoming projects including testing of a new HCD called the Speedster-EXD. This prototype detector will have a low noise, high gain CTIA to reduce IPC and read noise as well as in-pixel CDS and event flagging. In the coming year PSU and TIS will begin work on a project to incorporate CTIA and CDS circuitry into the ROIC of a HAWAII HCD like detector to satisfy the small pixel and high rate needs of future X-ray observatories.

  12. The instrumentation of X-ray beam lines with PIN diode detectors

    NASA Astrophysics Data System (ADS)

    Jach, Terrence

    1990-12-01

    Much of the X-ray work on synchrotron-radiation beam lines is still done using ion chambers as detectors. Silicon PIN photodiodes offer considerable advantages over ion chambers for many applications. In addition to greater efficiency over a wide energy range (1-20 keV), they possess a flat configuration, large areas, an absence of bias requirements, high dynamic range, and compatability with ultrahigh vacuum. We have characterized the properties of several commercial PIN photodiodes at X-ray energies, have had diodes commercially produced which were specialized for use in synchrotron beam lines, and have produced new photodiode devices for synchrotron-radiation applications. We review the performance of these devices over extended periods of time in beam-line control and as detectors in experiments.

  13. Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays.

    PubMed

    Marrs, R E; Widmann, K; Brown, G V; Heeter, R F; MacLaren, S A; May, M J; Moore, A S; Schneider, M B

    2015-10-01

    Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums. If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.

  14. Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays

    NASA Astrophysics Data System (ADS)

    Marrs, R. E.; Widmann, K.; Brown, G. V.; Heeter, R. F.; MacLaren, S. A.; May, M. J.; Moore, A. S.; Schneider, M. B.

    2015-10-01

    Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums. If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.

  15. Advancing the Technology of Monolithic CMOS detectors for their use as X-ray Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus

    The Smithsonian Astrophysical Observatory (SAO) proposes a two year program to further advance the scientific capabilities of monolithic CMOS detectors for use as x-ray imaging spectrometers. This proposal will build upon the progress achieved with funding from a previous APRA proposal that ended in 2013. As part of that previous proposal, x- ray optimized, highly versatile, monolithic CMOS imaging detectors and technology were developed and tested. The performance and capabilities of these devices were then demonstrated, with an emphasis on the performance advantages these devices have over CCDs and other technologies. The developed SAO/SRI-Sarnoff CMOS devices incorporate: Low noise, high sensitivity ("gain") pixels; Highly parallel on-chip signal chains; Standard and very high resistivity (30,000Ohm-cm) Si; Back-Side thinning and passivation. SAO demonstrated the performance benefits of each of these features in these devices. This new proposal high-lights the performance of this previous generation of devices, and segues into new technology and capability. The high sensitivity ( 135uV/e) 6 Transistor (6T) Pinned Photo Diode (PPD) pixels provided a large charge to voltage conversion gain to the detect and resolve even small numbers of photo electrons produced by x-rays. The on-chip, parallel signal chain processed an entire row of pixels in the same time that a CCD requires to processes a single pixel. The resulting high speed operation ( 1000 times faster than CCD) provide temporal resolution while mitigating dark current and allowed room temperature operation. The high resistivity Si provided full (over) depletion for thicker devices which increased QE for higher energy x-rays. In this proposal, SAO will investigate existing NMOS and existing PMOS devices as xray imaging spectrometers. Conventional CMOS imagers are NMOS. NMOS devices collect and measure photo-electrons. In contrast, PMOS devices collect and measure photo-holes. PMOS devices have various

  16. Experimental results from Al/p-CdTe/Pt X-ray detectors

    NASA Astrophysics Data System (ADS)

    Abbene, L.; Gerardi, G.; Turturici, A. A.; Del Sordo, S.; Principato, F.

    2013-12-01

    Recently, Al/CdTe/Pt detectors have been proposed for the development of high resolution X-ray spectrometers. Due to the low leakage currents, these detectors allow high electric fields and the pixellization of anodes with the possibility to realize single charge carrier sensing detectors. In this work, we report on the results of electrical and spectroscopic investigations on CdTe diode detectors with Al/CdTe/Pt electrode configuration (4.1×4.1×0.75 and 4.1×4.1×2 mm3). The detectors are characterized by very low leakage currents in the reverse bias operation: 0.3 nA at 25 °C and 2.4 pA at -25 °C under a bias voltage of -1000 V. The spectroscopic performance of the detectors at both low and high photon counting rates were also investigated with a focus on the minimization of time instability, generally termed as polarization, looking for the optimum bias voltage and temperature. Good time stability, during a long-term operation of 10 h, was observed for both detectors at -25 °C and by using an electric field of 5000 V/cm. The 2 mm thick detector exhibited good energy resolution of 6.1%, 2.5% and 2.0% (FWHM) at 22.1 keV, 59.5 and 122.1 keV, respectively. Performance enhancements were obtained by using digital pulse processing techniques, especially at high photon counting rates (300 kcps). The 2 mm thick detector, after a digital pulse shape correction (PSC), is characterized by similar performance to the thin detector ones, opening up to the use of thick CdTe detectors without excessive performance degradations. This work was carried out in the framework of the development of portable X-ray spectrometers for both laboratory research and medical applications.

  17. A new generation of detectors for scanning x-ray beam imaging systems

    NASA Astrophysics Data System (ADS)

    Rommel, J. Martin

    2016-01-01

    Scanning x-ray beam imaging systems were first developed by American Science and Engineering, Inc. (AS&E) in the early 1970s [1]. Since then, these systems have found a wide range of applications in security inspection and non-destructive testing. Large-area detectors are most frequently used to collect backscattered radiation but smaller transmission detectors are also employed for selected applications. Until recently, only two basic detector designs have been used: large scintillator blocks with attached photomultiplier tubes (PMTs) or large-volume light-sealed boxes, lined with scintillating screens and port windows for PMTs. In both cases, the detectors have required considerable depth to provide acceptable light collection efficiency. A new design recently developed by AS&E relies on wavelength shifting fibres (WSF) for light collection. For the first time, this approach enables the construction of thin large-area detectors. Stacking layers of WSF ribbons and scintillating screens in varying combinations enables optimization of the detection efficiency for different applications. Taking separate readings from different layers provides an energy-sensitive signal combination. Energy sensitivity can be improved further by adding filtration between the signal channels. Several prototype configurations have been built and characterized for both backscatter and transmission imaging. A WSF-based detector has been commercialized for a transmission x-ray imaging application.

  18. Hohlraum Target Alignment from X-ray Detector Images using Starburst Design Patterns

    SciTech Connect

    Leach, R R; Conder, A; Edwards, O; Kroll, J; Kozioziemski, B; Mapoles, E; McGuigan, D; Wilhelmsen, K

    2010-12-14

    National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 laser beams focused with enough power and precision on a hydrogen-filled spherical, cryogenic target to initiate a fusion reaction. The target container, or hohlraum, must be accurately aligned to an x-ray imaging system to allow careful monitoring of the frozen fuel layer in the target. To achieve alignment, x-ray images are acquired through starburst-shaped windows cut into opposite sides of the hohlraum. When the hohlraum is in alignment, the starburst pattern pairs match nearly exactly and allow a clear view of the ice layer formation on the edge of the target capsule. During the alignment process, x-ray image analysis is applied to determine the direction and magnitude of adjustment required. X-ray detector and source are moved in concert during the alignment process. The automated pointing alignment system described here is both accurate and efficient. In this paper, we describe the control and associated image processing that enables automation of the starburst pointing alignment.

  19. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions.

    PubMed

    Glick, Stephen J; Didier, Clay

    2013-10-14

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5-3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion

  20. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions

    SciTech Connect

    Glick, Stephen J.; Didier, Clay

    2013-10-14

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5–3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion in

  1. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions

    NASA Astrophysics Data System (ADS)

    Glick, Stephen J.; Didier, Clay

    2013-10-01

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5-3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion in the

  2. Silicon photodiode soft x-ray detectors for pulsed power experiments

    SciTech Connect

    Idzorek, G.C.; Bartlett, R.J.

    1997-10-01

    Silicon photodiodes offer a number of advantages over conventional photocathode type soft x-ray detectors in pulsed power experiments. These include a nominally flat response, insensitivity to surface contamination, low voltage biasing requirements, sensitivity to low energy photons, excellent detector to detector response reproducibility, and ability to operate in poor vacuum or gas backfilled experiments. Silicon photodiodes available from International Radiation Detectors (IRD), Torrance, California have been characterized for absolute photon response from 1 eV to 10 keV photon energy, time response, and signal saturation levels. The authors calibration measurements show factor of ten deviations from the silicon photodiode theoretical flat response due to diode sensitivity outside the center `sensitive area`. Detector response reproducibility between diodes appears to be better than 5%. Time response measurements show a 10-90% rise time of about 0.1 nanoseconds and a fall time of about 0.5 nanoseconds.

  3. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors.

    PubMed

    Sisniega, A; Abella, M; Desco, M; Vaquero, J J

    2014-01-20

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  4. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Abella, M.; Desco, M.; Vaquero, J. J.

    2014-01-01

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  5. Wire Array Z-pinch Insights for Intense X-ray Power Production

    NASA Astrophysics Data System (ADS)

    Sanford, T. W. L.

    1998-11-01

    The discovery [1] that the use of very large numbers of wires enables high x- ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities [2] on Saturn [3] and Z [4]. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. In this discussion, the detailed measurements made with bolometers, filtered XRDs and PCDs, time resolved filtered x-ray pinhole cameras and crystal spectrometers are given meaning by comparison with one, two, and three dimensional radiation-magnetohydrodynamic code simulations. [1] T. W. L. Sanford, et al., Phys. Rev. Lett. 77, 5063 (1996). [2] M. K. Matzen, Phys. Plasmas 4, 1519 (1997). [3] D. D. Bloomquist, et al., Proc. 6th Int. IEEE Pulsed Power Conf., (1987), p. 310. [4] R. B. Spielman, et al., Phys. Plasmas 5, 2105 (1998).

  6. ProtoEXIST: The Development of Advanced Tiled CZT Detector Planes for Wide Field Hard X-Ray Survey Telescope

    NASA Astrophysics Data System (ADS)

    Allen, Branden; Hong, J.; Grindlay, J.; Barthelmy, S.; Baker, R.

    2011-05-01

    ProtoEXIST is a technology development program for a coded aperture hard X-ray telescope with a large area (1-5 m^2) CZT detector plane for use in a future hard X-ray wide field sky monitor and survey telescope. The successful flight of the ProtoEXIST1 (P1) coded-aperture telescope concluded the first phase of the program on October 9, 2009. The black hole binary Cyg X-1 was imaged and its spectrum measured at the end of the (6h) flight. The P1 detector plane is comprised of a 8x8 array of detector crystal units (DCUs); each made up of a single 20 mm x 20 mm, 5 mm thick Redlen CZT crystal with a 8x8 pixilated anode (pixel pitch of 2.5 mm) bonded to an interposer board connecting each of the individual 64 anode pixels to a single input channel on a RadNET ASIC, forming a 256 cm^2 contiguous CZT imaging array with 4096 individual pixels. P1 was successfully recovered and has undergone further characterization in the interim. The program continues with the ongoing development ProtoEXIST2 (P2) utilizing a closely tiled 8x8 array of DCUs now with a reduced anode pixel pitch of 0.6 mm. Each DCU in P2 will consist of a CZT crystal, identical to that utilized in P1 now with a 32x32 pixelated anode, directly bonded to a single NuSTAR ASIC (Nu-ASIC). The fully assembled P2 imaging detector will be comprised of a semi-contiguous 256x256 array of pixels on 256 cm^2 of CZT. With its finer pixelation the P2 detector plane will enable 5' (FWHM) imaging with a 70 cm focal length and will be flown side-by-side with P1 from Ft. Sumner in the Spring of 2012. Results from the characterization of the P1 detector are discussed as well as current progress in the development of the P2 detector plane.

  7. Computer simulation of the CSPAD, ePix10k, and RayonixMX170HS X-ray detectors

    SciTech Connect

    Tina, Adrienne

    2015-08-21

    The invention of free-electron lasers (FELs) has opened a door to an entirely new level of scientific research. The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is an X-ray FEL that houses several instruments, each with its own unique X-ray applications. This light source is revolutionary in that while its properties allow for a whole new range of scientific opportunities, it also poses numerous challenges. For example, the intensity of a focused X-ray beam is enough to damage a sample in one mere pulse; however, the pulse speed and extreme brightness of the source together are enough to obtain enough information about that sample, so that no further measurements are necessary. An important device in the radiation detection process, particularly for X-ray imaging, is the detector. The power of the LCLS X-rays has instigated a need for better performing detectors. The research conducted for this project consisted of the study of X-ray detectors to imitate their behaviors in a computer program. The analysis of the Rayonix MX170-HS, CSPAD, and ePix10k in particular helped to understand their properties. This program simulated the interaction of X-ray photons with these detectors to discern the patterns of their responses. A scientist’s selection process of a detector for a specific experiment is simplified from the characterization of the detectors in the program.

  8. Organic semiconducting single crystals as next generation of low-cost, room-temperature electrical X-ray detectors.

    PubMed

    Fraboni, Beatrice; Ciavatti, Andrea; Merlo, Francesco; Pasquini, Luca; Cavallini, Anna; Quaranta, Alberto; Bonfiglio, Annalisa; Fraleoni-Morgera, Alessandro

    2012-05-02

    Direct, solid-state X-ray detectors based on organic single crystals are shown to operate at room temperature, in air, and at voltages as low as a few volts, delivering a stable and reproducible linear response to increasing X-ray dose rates, with notable radiation hardness and resistance to aging. All-organic and optically transparent devices are reported.

  9. ART-XC/SRG: status of the x-ray focal plane detector development

    NASA Astrophysics Data System (ADS)

    Levin, Vasily; Pavlinsky, Mikhail; Akimov, Valeriy; Kuznetsova, Maria; Rotin, Alexey; Krivchenko, Alexander; Lapshov, Igor; Oleinikov, Vladimir

    2014-07-01

    The Russian Space Research Institute (IKI) has developed CdTe detectors for the focal plane of the ART-XC/SRG instrument. The CdTe crystal has dimensions about 30 × 30 × 1 mm. Top and bottom sides of the detector each contain 48 strips and a guard ring. The ASIC VA64TA1 is connected to the CdTe crystal by AC-coupling for both DSSD sides. This approach allows one to have the same ground level for both electronic parts and to operate detectors with different leakage currents without reconfiguration of the VA64TA1 chips. One CdTe crystal and two ASICs are integrated with thermal sensors and Peltier cooler in a big hybrid integrated circuit. This detector is hermetically sealed by a cover with beryllium window. For ground testing the detector volume is filled with dry nitrogen. Peltier cooler is used during ground tests only. Together with the hermetic case package it allows us to operate the detector at low temperature during all ART-XC telescope development tests. When in space, the detector cooling will be provided by a radiator and heat pipes. Polarization rate temperature and voltage dependences as well as splitting charges between electrodes are being studied. IKI manufactured dozen X-ray cameras with detectors and supporting electronics for EM, QM and flight model of the ART-XC telescope. Spectroscopic and imaging performances of the detectors were tested on the IKI's X-Ray Calibration Facility. Current status of the focal plane detector development and testing will be presented.

  10. Fabrication of a Polymer Micro Needle Array by Mask-Dragging X-Ray Lithography and Alignment X-Ray Lithography

    NASA Astrophysics Data System (ADS)

    Li, Yi-Gui; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu

    2011-03-01

    Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost.

  11. Electronic intraoral dental x-ray imaging system employing a direct sensing CCD array

    SciTech Connect

    Cox, J.D.; Langford, D.S.; Williams, D.W.

    1993-12-31

    A commercial prototype intraoral radiography system has been developed that can provide digital x-ray images for diagnosis. The system consists of an intraoral detector head, an intermediate drive electronics package, a main drive electronics package and a PC-based digital image management system. The system has the potential to replace the use of dental film in intraoral radiographic examinations. High-resolution images are acquired, then displayed on a CRT within seconds of image acquisition.

  12. Multi-energy x-ray detector calibration for Te and impurity density (nZ) measurements of MCF plasmas

    SciTech Connect

    Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Reinke, M. L.; Rissi, M.; Donath, T.; Luethi, B.; Stratton, B.

    2016-09-07

    Here, soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, n2eZeff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.

  13. An abuttable CCD imager for visible and X-ray focal plane arrays

    NASA Technical Reports Server (NTRS)

    Burke, Barry E.; Mountain, Robert W.; Harrison, David C.; Bautz, Marshall W.; Doty, John P.

    1991-01-01

    A frame-transfer silicon charge-coupled-device (CCD) imager has been developed that can be closely abutted to other imagers on three sides of the imaging array. It is intended for use in multichip arrays. The device has 420 x 420 pixels in the imaging and frame-store regions and is constructed using a three-phase triple-polysilicon process. Particular emphasis has been placed on achieving low-noise charge detection for low-light-level imaging in the visible and maximum energy resolution for X-ray spectroscopic applications. Noise levels of 6 electrons at 1-MHz and less than 3 electrons at 100-kHz data rates have been achieved. Imagers have been fabricated on 1000-Ohm-cm material to maximize quantum efficiency and minimize split events in the soft X-ray regime.

  14. Improvement of the detector resolution in X-ray spectrometry by using the maximum entropy method

    NASA Astrophysics Data System (ADS)

    Fernández, Jorge E.; Scot, Viviana; Giulio, Eugenio Di; Sabbatucci, Lorenzo

    2015-11-01

    In every X-ray spectroscopy measurement the influence of the detection system causes loss of information. Different mechanisms contribute to form the so-called detector response function (DRF): the detector efficiency, the escape of photons as a consequence of photoelectric or scattering interactions, the spectrum smearing due to the energy resolution, and, in solid states detectors (SSD), the charge collection artifacts. To recover the original spectrum, it is necessary to remove the detector influence by solving the so-called inverse problem. The maximum entropy unfolding technique solves this problem by imposing a set of constraints, taking advantage of the known a priori information and preserving the positive-defined character of the X-ray spectrum. This method has been included in the tool UMESTRAT (Unfolding Maximum Entropy STRATegy), which adopts a semi-automatic strategy to solve the unfolding problem based on a suitable combination of the codes MAXED and GRAVEL, developed at PTB. In the past UMESTRAT proved the capability to resolve characteristic peaks which were revealed as overlapped by a Si SSD, giving good qualitative results. In order to obtain quantitative results, UMESTRAT has been modified to include the additional constraint of the total number of photons of the spectrum, which can be easily determined by inverting the diagonal efficiency matrix. The features of the improved code are illustrated with some examples of unfolding from three commonly used SSD like Si, Ge, and CdTe. The quantitative unfolding can be considered as a software improvement of the detector resolution.

  15. Spectrum reconstruction method based on the detector response model calibrated by x-ray fluorescence.

    PubMed

    Li, Ruizhe; Li, Liang; Chen, Zhiqiang

    2017-02-07

    Accurate estimation of distortion-free spectra is important but difficult in various applications, especially for spectral computed tomography. Two key problems must be solved to reconstruct the incident spectrum. One is the acquisition of the detector energy response. It can be calculated by Monte Carlo simulation, which requires detailed modeling of the detector system and a high computational power. It can also be acquired by establishing a parametric response model and be calibrated using monochromatic x-ray sources, such as synchrotron sources or radioactive isotopes. However, these monochromatic sources are difficult to obtain. Inspired by x-ray fluorescence (XRF) spectrum modeling, we propose a feasible method to obtain the detector energy response based on an optimized parametric model for CdZnTe or CdTe detectors. The other key problem is the reconstruction of the incident spectrum with the detector response. Directly obtaining an accurate solution from noisy data is difficult because the reconstruction problem is severely ill-posed. Different from the existing spectrum stripping method, a maximum likelihood-expectation maximization iterative algorithm is developed based on the Poisson noise model of the system. Simulation and experiment results show that our method is effective for spectrum reconstruction and markedly increases the accuracy of XRF spectra compared with the spectrum stripping method. The applicability of the proposed method is discussed, and promising results are presented.

  16. Spectrum reconstruction method based on the detector response model calibrated by x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Ruizhe; Li, Liang; Chen, Zhiqiang

    2017-02-01

    Accurate estimation of distortion-free spectra is important but difficult in various applications, especially for spectral computed tomography. Two key problems must be solved to reconstruct the incident spectrum. One is the acquisition of the detector energy response. It can be calculated by Monte Carlo simulation, which requires detailed modeling of the detector system and a high computational power. It can also be acquired by establishing a parametric response model and be calibrated using monochromatic x-ray sources, such as synchrotron sources or radioactive isotopes. However, these monochromatic sources are difficult to obtain. Inspired by x-ray fluorescence (XRF) spectrum modeling, we propose a feasible method to obtain the detector energy response based on an optimized parametric model for CdZnTe or CdTe detectors. The other key problem is the reconstruction of the incident spectrum with the detector response. Directly obtaining an accurate solution from noisy data is difficult because the reconstruction problem is severely ill-posed. Different from the existing spectrum stripping method, a maximum likelihood-expectation maximization iterative algorithm is developed based on the Poisson noise model of the system. Simulation and experiment results show that our method is effective for spectrum reconstruction and markedly increases the accuracy of XRF spectra compared with the spectrum stripping method. The applicability of the proposed method is discussed, and promising results are presented.

  17. FOXSI: Properties of optics and detectors for hard-X rays

    NASA Astrophysics Data System (ADS)

    Camilo Buitrago-Casas, Juan; Glesener, Lindsay; Christe, Steven; Krucker, Sam; Ishikawa, Shin-nosuke; Foster, Natalie

    2015-04-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a state-of-the-art direct focusing X-ray telescope designed to observe the Sun. This experiment completed its second flight onboard a sounding rocket last December 11, 2014 from the White Sands Missile Range in New Mexico. The optics use a set of iridium-coated nickel/cobalt mirrors made using a replication technique based on an electroformed perfect polished surface. Since this technique creates full shells that no need to be co-aligned with other segments, an angular resolution of up to ~5 arcsec is gotten. The FOXSI focal plane consists of seven double-sided strip detectors. Five Silicon and 2 CdTe detectors were used during the second flight.We present on various properties of Wolter-I optics that are applicable to solar HXR observation, including ray-tracing simulations of the single-bounce (“ghost ray”) patterns from sources outside the field of view and angular resolution for different source angles and effective area measurements of the FOXSI optics. We also present the detectors calibration results, paying attention to energy resolution (~0.5 keV), energy thresholds (~4-15 keV for Silicon and ~4-20 keV for CdTe detectors), and spatial coherence of these values over the entire detector.

  18. Modeling of photocurrent and lag signals in amorphous selenium x-ray detectors

    SciTech Connect

    Siddiquee, Sinchita; Kabir, M. Z.

    2015-07-15

    A mathematical model for transient photocurrent and lag signal in x-ray imaging detectors has been developed by considering charge carrier trapping and detrapping in the energy distributed defect states under exponentially distributed carrier generation across the photoconductor. The model for the transient and steady-state carrier distributions and hence the photocurrent has been developed by solving the carrier continuity equation for both holes and electrons. The residual (commonly known as lag signal) current is modeled by solving the trapping rate equations considering the thermal release and trap filling effects. The model is applied to amorphous selenium (a-Se) detectors for both chest radiography and mammography. The authors analyze the dependence of the residual current on various factors, such as x-ray exposure, applied electric field, and temperature. The electron trapping and detrapping mostly determines the residual current in a-Se detectors. The lag signal is more prominent in chest radiographic detector than in mammographic detectors. The model calculations are compared with the published experimental data and show a very good agreement.

  19. Serial data acquisition for the X-ray plasma diagnostics with selected GEM detector structures

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Zabolotny, W.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zienkiewicz, P.

    2015-10-01

    The measurement system based on GEM—Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement tokamak plasmas. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. The required data processing have two steps: 1—processing in the time domain, i.e. events selections for bunches of coinciding clusters, 2—processing in the planar space domain, i.e. cluster identification for the given detector structure. So, it is the software part of the project between the electronic hardware and physics applications. The whole project is original and it was developed by the paper authors. The previous version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures for the new data acquisition system. The fast and accurate mode of data acquisition implemented in the hardware in real time can be applied for the dynamic plasma diagnostics. Several detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Final data processing is presented by histograms for selected range of position, time interval and cluster charge values. Exemplary radiation source properties are measured by the basic cumulative characteristics: the cluster position distribution and cluster charge value distribution corresponding to the energy spectra. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  20. Characterization of Si Hybrid CMOS Detectors for use in the Soft X-ray Band

    NASA Astrophysics Data System (ADS)

    Prieskorn, Zachary; Griffith, C.; Bongiorno, S.; Falcone, A.; Burrows, D. N.

    2013-04-01

    We report on the characterization of four Teledyne Imaging Systems HAWAII Hybrid Si CMOS detectors designed for X-ray detection. Three H1RG detectors were studied along with a specially configured H2RG. Hybrid CMOS detectors will be ideal for future X-ray observatories due to their fast readout speeds, high resistance to radiation and micrometeoroid damage and reduced power consumption when compared with CCDs. Read noise, interpixel capacitive crosstalk (IPC), energy resolution, and dark current were all measured for these detectors. The best read noise measurement obtained was 7.1 e- RMS. Energy resolution is reported for two X-ray lines, 1.5 & 5.9 keV, at multiple temperatures between 150 - 210 K. The best resolution measured at 5.9 keV was 250 eV (4.2 %) at 150 K, with IPC contributing significantly to this measured energy distribution. IPC upper limits of 4.0 - 5.5 % (up & down pixels) and 8.7 - 9.7 % (left & right pixels) were calculated, indicating a clear asymmetry. The H2RG, with a unique configuration designed to decrease the capacitive coupling between ROIC pixels, had an IPC of 1.8 ± 1.0 % indicating a dramatic improvement in IPC with no measurable asymmetry. Dark current measurements were in the range of 0.020 ± 0.001- 0.280 ± 0.080 (e- sec-1 pix-1). We also find a consistent break in the fit to the dark current data for each detector. Above 180 K, all the data can be fit by the product of a power law in temperature and an exponential. Below 180 K the dark current decreases more slowly; a shallow power law or constant must be added to each fit, indicating a different form of dark current is dominant in this temperature regime.

  1. 3D Medipix2 detector characterization with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Gimenez, E. N.; Maneuski, D.; Mac Raighne, A.; Parkes, C.; Bates, R.; O'Shea, V.; Fleta, C.; Pellegrini, G.; Lozano, M.; Alianelli, L.; Sawhney, K. J. S.; Marchal, J.; Tartoni, N.

    2011-05-01

    Three-dimensional (3D) photodiode detectors offer advantages over standard planar photodiodes in a wide range of applications. The main advantage of these sensors for X-ray imaging is their reduced charge sharing between adjacent pixels, which could improve spatial and spectral resolution. However, a drawback of 3D sensors structures is the loss of detection efficiency due to the presence in the pixel structure of heavily doped electrode columns which are insensitive to X-ray. In this work two types of 3D silicon detectors: n-type wafer with hole collecting readout-columns (N-TYPE) and p-type wafer with electron collecting readout-columns (P-TYPE), bump-bounded to a Medipix2 read-out chip were characterized with a 14.5 keV micro-focused X-ray beam from a synchrotron. Measurements of the detection efficiency and the charge sharing were performed at different bias voltages and Medipix2 energy thresholds and compared with those of a standard planar silicon sensor.

  2. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.

    2016-03-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x-ray

  3. Contrast cancellation technique applied to digital x-ray imaging using silicon strip detectors

    SciTech Connect

    Avila, C.; Lopez, J.; Sanabria, J. C.; Baldazzi, G.; Bollini, D.; Gombia, M.; Cabal, A.E.; Ceballos, C.; Diaz Garcia, A.; Gambaccini, M.; Taibi, A.; Sarnelli, A.; Tuffanelli, A.; Giubellino, P.; Marzari-Chiesa, A.; Prino, F.; Tomassi, E.; Grybos, P.; Idzik, M.; Swientek, K.

    2005-12-15

    Dual-energy mammographic imaging experimental tests have been performed using a compact dichromatic imaging system based on a conventional x-ray tube, a mosaic crystal, and a 384-strip silicon detector equipped with full-custom electronics with single photon counting capability. For simulating mammal tissue, a three-component phantom, made of Plexiglass, polyethylene, and water, has been used. Images have been collected with three different pairs of x-ray energies: 16-32 keV, 18-36 keV, and 20-40 keV. A Monte Carlo simulation of the experiment has also been carried out using the MCNP-4C transport code. The Alvarez-Macovski algorithm has been applied both to experimental and simulated data to remove the contrast between two of the phantom materials so as to enhance the visibility of the third one.

  4. An evaluation of HgI/sub 2/ detectors for x-ray computed tomography

    SciTech Connect

    Beinglass, I.; Kaufman, L.; Hoisier, K.; Hoenninger, J.

    1980-07-01

    Mercuric iodide (HgI/sub 2/) presents a set of attractive features as a semiconductor x-ray detector for computed tomography (CT). Its response is stable, it operates at room temperature, and thin detectors have a high detection efficiency. The properties of HgI/sub 2/ permit the assembly of high spatial resolution detectors in a compact configuration. On the other hand, HgI/sub 2/ exhibits a long memory, and some detectors also exhibit polarization effects, both of which are detrimental in CT. A pulse-shaping technique has been used to overcome these effects, thus demonstrating the suitability of HgI/sub 2/ for use in CT.

  5. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    SciTech Connect

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.

  6. Simulation of Thick Gated Silicon Drift X-ray Detector Operated by a Single High-Voltage Source

    NASA Astrophysics Data System (ADS)

    Matsuura, Hideharu

    2013-02-01

    High-resolution X-ray detectors can be used to detect traces of hazardous or radioactive elements in food, soil, and the human body by measuring the energies and counts of emitted X-ray fluorescence photons. We have simulated the electric potential distributions in gated silicon drift detectors (GSDDs) with an active area of 18 mm2 and a Si thickness between 0.625 and 1.5 mm. A GSDD gate pattern was designed for each Si thickness and for various oxide charge densities in the SiO2 passivating layer near the SiO2/Si interface. The simulated GSDDs required approximately half the reverse bias voltage required by Si pin detectors. Our detector design could improve the absorption of Cd or Cs X-ray fluorescence photons and would reduce the cost of X-ray detection systems.

  7. Characterization of HgI/sub 2/ single crystals and detectors by x-ray rocking curve analysis and x-ray reflection topography

    SciTech Connect

    Ostrom, R.; Keller, L.; Wagner, N.J.; Schieber, M.M.; Ortale, C.; van den Berg, L.; Schnepple, W.F.

    1987-01-01

    An attempt has been made to establish a correlation between the results of x-ray rocking curves and x-ray reflection topographs for vapor grown HgI/sub 2/, single crystals. X-ray rocking curves were obtained by double crystal spectroscopy with Si as the first crystal and topographs were produced using the Berg-Barrett technique with an asymmetrically cut Si-disperser. The crystals were evaluated at different stages of detector preparation, i.e., cutting, polishing, etching, and deposition of contact. Multiple diffraction peaks could be observed as being indicative of small angle grain boundaries of up to 2/degree/. Definite nonuniformities on virgin single crystals as well as on detector crystals were observed by both methods. The crystal surface quality as assessed by these methods were used as a criterion to verify detector performance rating. No drastic improvement of surface quality on space grown crystals was indicated by these techniques. Efforts have also been devoted to determine intrinsic full width at half maximum of HgI/sub 2/ crystal for the crystallographic direction studied. 16 refs., 22 figs.

  8. Possible use of CdTe detectors in kVp monitoring of diagnostic x-ray tubes

    PubMed Central

    Krmar, M.; Bucalović, N.; Baucal, M.; Jovančević, N.

    2010-01-01

    It has been suggested that kVp of diagnostic X-ray devices (or maximal energy of x-ray photon spectra) should be monitored routinely; however a standardized noninvasive technique has yet to be developed and proposed. It is well known that the integral number of Compton scattered photons and the intensities of fluorescent x-ray lines registered after irradiation of some material by an x-ray beam are a function of the maximal beam energy. CdTe detectors have sufficient energy resolution to distinguish individual x-ray fluorescence lines and high efficiency for the photon energies in the diagnostic region. Our initial measurements have demonstrated that the different ratios of the integral number of Compton scattered photons and intensities of K and L fluorescent lines detected by CdTe detector are sensitive function of maximal photon energy and could be successfully applied for kVp monitoring. PMID:21037976

  9. A novel method of microneedle array fabrication using inclined deep x-ray exposure

    NASA Astrophysics Data System (ADS)

    Moon, Sang Jun; Jin, Chun Yan; Lee, Seung S.

    2006-04-01

    We report a novel fabrication method for the microneedle array with a 3-dimentional feature and its replication method; ''Hot-pressing'' process with bio-compatible material, PLLA (Poly L-LActide). Using inclined deep X-ray exposure technique, we fabricate a band type microneedle array with a single body on the same material basement. Since the single body feature does not make adhesion problem with the microneedle shank and basement during peel-off step of a mold, the PMMA (Poly-Methyl-MethAcrylate) microneedle array mold insert can be used for mold process which is used with the soft material mold, PDMS (Poly-Di- Methyl-Siloxane). The side inclined deep X-ray exposure also makes complex 3-dimentional features by the regions which are not exposed during twice successive exposure steps. In addition, the successive exposure does not need an additional mask alignment after the first side exposure. The fabricated band type microneedle array mold inserts are assembled for large area patch type out-of-plane microneedle array. The bio-compatible microneedle array can be fabricated to the laboratory scale mass production by the single body PMMA mold insert and ''Hot-pressing'' process.

  10. Miniaturized X-ray telescope for VZLUSAT-1 nanosatellite with Timepix detector

    NASA Astrophysics Data System (ADS)

    Baca, T.; Platkevic, M.; Jakubek, J.; Inneman, A.; Stehlikova, V.; Urban, M.; Nentvich, O.; Blazek, M.; McEntaffer, R.; Daniel, V.

    2016-10-01

    We present the application of a Timepix detector on the VZLUSAT-1 nanosatellite. Timepix is a compact pixel detector (256×256 square pixels, 55×55 μm each) sensitive to hard X-ray radiation. It is suitable for detecting extraterrestrial X-rays due to its low noise characteristics, which enables measuring without special cooling. This project aims to verify the practicality of the detector in conjunction with 1-D Lobster-Eye optics to observe celestial sources between 5 and 20 keV. A modified USB interface (developed by IEAP at CTU in Prague) is used for low-level control of the Timepix. An additional 8-bit Atmel microcontroller is dedicated for commanding the detector and to process the data onboard the satellite. We present software methods for onboard post-processing of captured images, which are suitable for implementation under the constraints of the low-powered embedded hardware. Several measuring modes are prepared for different scenarios including single picture exposure, solar UV-light triggered exposure, and long-term all-sky monitoring. The work has been done within Medipix2 collaboration. The satellite is planned for launch in April 2017 as a part of the QB50 project with an end of life expectancy in 2019.

  11. Measurement and modeling of the x-ray spectral response of bulk GaAs detectors

    NASA Astrophysics Data System (ADS)

    Short, Alexander D.; Holland, Andrew D.

    1996-10-01

    In light of recent developments in hard x-ray focusing, work has been carried out at the University of Leicester, to investigate the use of high-Z materials (principally GaAs) for detecting x-rays in the 10 to 100 keV regime. The x-ray astronomy group at Leicester has been involved with developing the detectors and optics for several instruments including the Rosat wide field camera, JET-X an XMM, but both the grazing incidence optics, and the quantum efficiency of more conventional detectors, e.g. silicon CCDs, have limited the energy response to less than 10 keV. Ge, CdTe, HgI and GaAs all offer higher quantum efficiency than silicon and are being investigated as a possible means to extending the energy response of future telescopes, aimed at studying non-thermal processes beyond the iron lines. Detectors have been fabricated using bulk and epitaxially grown GaAs and tested at a range of temperatures between minus 130 degrees Celsius and room temperature. The behavior of bulk GaAs detectors is dominated by carrier trapping leading to imperfect charge collection efficiency (CCE) and traditionally poor spectral resolution. Noise-dominated spectra with 2 keV full width at half maximum (FWHM) are presented. The results of a Monte Carlo simulation of spectral performance are compared to the measured spectra. The modeling enables one to characterize the traps in terms of cross section density products and trap release times.

  12. Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging

    NASA Astrophysics Data System (ADS)

    Ballabriga, R.; Alozy, J.; Campbell, M.; Frojdh, E.; Heijne, E. H. M.; Koenig, T.; Llopart, X.; Marchal, J.; Pennicard, D.; Poikela, T.; Tlustos, L.; Valerio, P.; Wong, W.; Zuber, M.

    2016-01-01

    Semiconductor detector readout chips with pulse processing electronics have made possible spectroscopic X-ray imaging, bringing an improvement in the overall image quality and, in the case of medical imaging, a reduction in the X-ray dose delivered to the patient. In this contribution we review the state of the art in semiconductor-detector readout ASICs for spectroscopic X-ray imaging with emphasis on hybrid pixel detector technology. We discuss how some of the key challenges of the technology (such as dealing with high fluxes, maintaining spectral fidelity, power consumption density) are addressed by the various ASICs. In order to understand the fundamental limits of the technology, the physics of the interaction of radiation with the semiconductor detector and the process of signal induction in the input electrodes of the readout circuit are described. Simulations of the process of signal induction are presented that reveal the importance of making use of the small pixel effect to minimize the impact of the slow motion of holes and hole trapping in the induced signal in high-Z sensor materials. This can contribute to preserve fidelity in the measured spectrum with relatively short values of the shaper peaking time. Simulations also show, on the other hand, the distortion in the energy spectrum due to charge sharing and fluorescence photons when the pixel pitch is decreased. However, using recent measurements from the Medipix3 ASIC, we demonstrate that the spectroscopic information contained in the incoming photon beam can be recovered by the implementation in hardware of an algorithm whereby the signal from a single photon is reconstructed and allocated to the pixel with the largest deposition.

  13. Detective quantum efficiency of photon-counting x-ray detectors

    SciTech Connect

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A.

    2015-01-15

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  14. The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Anastasios C.; Szafraniec, Magdalena B.; Speller, Robert D.; Olivo, Alessandro

    2012-10-01

    Complementary metal-oxide-semiconductors (CMOS) active pixel sensors (APS) have been introduced recently in many scientific applications. This work reports on the performance (in terms of signal and noise transfer) of an X-ray detector that uses a novel CMOS APS which was developed for medical X-ray imaging applications. For a full evaluation of the detector's performance, electro-optical and X-ray characterizations were carried out. The former included measuring read noise, full well capacity and dynamic range. The latter, which included measuring X-ray sensitivity, presampling modulation transfer function (pMTF), noise power spectrum (NPS) and the resulting detective quantum efficiency (DQE), was assessed under three beam qualities (28 kV, 50 kV (RQA3) and 70 kV (RQA5) using W/Al) all in accordance with the IEC standard. The detector features an in-pixel option for switching the full well capacity between two distinct modes, high full well (HFW) and low full well (LFW). Two structured CsI:Tl scintillators of different thickness (a “thin” one for high resolution and a thicker one for high light efficiency) were optically coupled to the sensor array to optimize the performance of the system for different medical applications. The electro-optical performance evaluation of the sensor results in relatively high read noise (∼360 e-), high full well capacity (∼1.5×106 e-) and wide dynamic range (∼73 dB) under HFW mode operation. When the LFW mode is used, the read noise is lower (∼165) at the expense of a reduced full well capacity (∼0.5×106 e-) and dynamic range (∼69 dB). The maximum DQE values at low frequencies (i.e. 0.5 lp/mm) are high for both HFW (0.69 for 28 kV, 0.71 for 50 kV and 0.75 for 70 kV) and LFW (0.69 for 28 kV and 0.7 for 50 kV) modes. The X-ray performance of the studied detector compares well to that of other mammography and general radiography systems, obtained under similar experimental conditions. This demonstrates the suitability

  15. X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.; Ciardi, A.

    2004-12-01

    Resistive magneto-hydrodynamic (MHD) simulations are used to evaluate the influence of three-dimensional inhomogeneities on x-ray power production in wire array Z-pinches. In particular, we concentrate on simulations of wire array Z-pinch experiments on the MAGPIE generator at Imperial College. An initial temperature perturbation is used to stimulate variations in wire core ablation rates that result in a highly non-uniform final implosion. Results indicate that x-ray power production is governed by the symmetry of the implosion surface and by the rate at which current can transfer to the axis through a three-dimensional debris field that trails behind the main implosion. The peak power is ultimately limited by the growth of MHD instabilities in the stagnated pinch. The individual contributions of the implosion kinetic energy, compression of the stagnated pinch, ohmic heating and MHD instabilities to the radiation yield are quantified. The onset of m = 1 instabilities is found to provide an efficient mechanism for dissipation of the magnetic energy surrounding the stagnated pinch. The formation of a helical plasma column not only allows the magnetic field to do work in driving an expansion of the helix but also enhances the ohmic heating by elongating the path of the current through the pinch. The effect of these energy sources combined is to increase the radiation yield to typically 3½ times the kinetic energy of the implosion. Simulations of arrays with different wire numbers, wire material and with nested arrays are used to examine the mechanisms that influence the peak soft x-ray power. In the simulations, peak power can be increased by: increasing the number of wires (which improves the implosion symmetry), by increasing the atomic number of the material (which increases the compressibility of the plasma) and by using a nested inner array (which brings the mass and the current to the axis more efficiently than a single array).

  16. Signal and noise transfer properties of photoelectric interactions in diagnostic x-ray imaging detectors

    SciTech Connect

    Hajdok, G.; Yao, J.; Battista, J. J.; Cunningham, I. A.

    2006-10-15

    Image quality in diagnostic x-ray imaging is ultimately limited by the statistical properties governing how, and where, x-ray energy is deposited in a detector. This in turn depends on the physics of the underlying x-ray interactions. In the diagnostic energy range (10-100 keV), most of the energy deposited in a detector is through photoelectric interactions. We present a theoretical model of the photoelectric effect that specifically addresses the statistical nature of energy absorption by photoelectrons, K and L characteristic x rays, and Auger electrons. A cascaded-systems approach is used that employs a complex structure of parallel cascades to describe signal and noise transfer through the photoelectric effect in terms of the modulation transfer function, Wiener noise power spectrum, and detective quantum efficiency (DQE). The model was evaluated by comparing results with Monte Carlo calculations for x-ray converters based on amorphous selenium (a-Se) and lead (Pb), representing both low and high-Z materials. When electron transport considerations can be neglected, excellent agreement (within 3%) is obtained for each metric over the entire diagnostic energy range in both a-Se and Pb detectors up to 30 cycles/mm, the highest frequency tested. The cascaded model overstates the DQE when the electron range cannot be ignored. This occurs at approximately two cycles/mm in a-Se at an incident photon energy of 80 keV, whereas in Pb, excellent agreement is obtained for the DQE over the entire diagnostic energy range. However, within the context of mammography (20 keV) and micro-computed tomography (40 keV), the effects of electron transport on the DQE are negligible compared to fluorescence reabsorption, which can lead to decreases of up to 30% and 20% in a-Se and Pb, respectively, at 20 keV; and 10% and 5%, respectively, at 40 keV. It is shown that when Swank noise is identified in a Fourier model, the Swank factor must be frequency dependent. This factor decreases

  17. Signal and noise transfer properties of photoelectric interactions in diagnostic x-ray imaging detectors.

    PubMed

    Hajdok, G; Yao, J; Battista, J J; Cunningham, I A

    2006-10-01

    Image quality in diagnostic x-ray imaging is ultimately limited by the statistical properties governing how, and where, x-ray energy is deposited in a detector. This in turn depends on the physics of the underlying x-ray interactions. In the diagnostic energy range (10-100 keV), most of the energy deposited in a detector is through photoelectric interactions. We present a theoretical model of the photoelectric effect that specifically addresses the statistical nature of energy absorption by photoelectrons, K and L characteristic x rays, and Auger electrons. A cascaded-systems approach is used that employs a complex structure of parallel cascades to describe signal and noise transfer through the photoelectric effect in terms of the modulation transfer function, Wiener noise power spectrum, and detective quantum efficiency (DQE). The model was evaluated by comparing results with Monte Carlo calculations for x-ray converters based on amorphous selenium (a-Se) and lead (Pb), representing both low and high-Z materials. When electron transport considerations can be neglected, excellent agreement (within 3%) is obtained for each metric over the entire diagnostic energy range in both a-Se and Pb detectors up to 30 cycles/mm, the highest frequency tested. The cascaded model overstates the DQE when the electron range cannot be ignored. This occurs at approximately two cycles/mm in a-Se at an incident photon energy of 80 keV, whereas in Pb, excellent agreement is obtained for the DQE over the entire diagnostic energy range. However, within the context of mammography (20 keV) and micro-computed tomography (40 keV), the effects of electron transport on the DQE are negligible compared to fluorescence reabsorption, which can lead to decreases of up to 30% and 20% in a-Se and Pb, respectively, at 20 keV; and 10% and 5%, respectively, at 40 keV. It is shown that when Swank noise is identified in a Fourier model, the Swank factor must be frequency dependent. This factor decreases

  18. Linear, position-sensitive x-ray detector used for real-time calculations of small-angle scattering parameters with submillisecond resolution

    SciTech Connect

    Borso, C.S.

    1984-01-01

    The advent of high-intensity X-ray synchrotron sources has made possible the measurement of fluctuations in small-angle scattering parameters from typical specimens on a submillisecond time scale in real-time. The fundamental design of any fast detector system optimized for such measurements will incorporate some type of solid state detector array capable of rapid encoding algorithms. A prototype with a self-scanning photodiode array has been designed and tested at beamline 1 to 4 at the Stanford Synchrotron Radiation Laboratory (SSRL), and the results indicate that the device will operate at speeds yielding submillisecond temporal resolution in real-time.

  19. High-performance low-noise 128-channel readout-integrated circuit for flat-panel x-ray detector systems

    NASA Astrophysics Data System (ADS)

    Beuville, Eric J.; Belding, Mark; Costello, Adrienne N.; Hansen, Randy; Petronio, Susan M.

    2004-05-01

    A silicon mixed-signal integrated circuit is needed to extract and process x-ray induced signals from a coated flat panel thin film transistor array (TFT) in order to generate a digital x-ray image. Indigo Systems Corporation has designed, fabricated, and tested such a readout integrated circuit (ROIC), the ISC9717. This off-the-shelf, high performance, low-noise, 128-channel device is fully programmable with a multistage pipelined architecture and a 9 to 14-bit programmable A/D converter per channel, making it suitable for numerous X-ray medical imaging applications. These include high-resolution radiography in single frame mode and fluoroscopy where high frame rates are required. The ISC9717 can be used with various flat panel arrays and solid-state detectors materials: Selenium (Se), Cesium Iodide (CsI), Silicon (Si), Amorphous Silicon, Gallium Arsenide (GaAs), and Cadmium Zinc Telluride (CdZnTe). The 80-micron pitch ROIC is designed to interface (wire bonding or flip-chip) along one or two sides of the x-ray panel, where ROICs are abutted vertically, each reading out charge from pixels multiplexed onto 128 horizontal read lines. The paper will present the design and test results of the ROIC, including the mechanical and electrical interface to a TFT array, system performance requirements, output multiplexing of the digital signals to an off-board processor, and characterization test results from fabricated arrays.

  20. Usefulness of an energy-binned photon-counting x-ray detector for dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Fukui, Tatsumasa; Katsumata, Akitoshi; Ogawa, Koichi; Fujiwara, Shuu

    2015-03-01

    A newly developed dental panoramic radiography system is equipped with a photon-counting semiconductor detector. This photon-counting detector acquires transparent X-ray beams by dividing them into several energy bands. We developed a method to identify dental materials in the patient's teeth by means of the X-ray energy analysis of panoramic radiographs. We tested various dental materials including gold alloy, dental amalgam, dental cement, and titanium. The results of this study suggest that X-ray energy scattergram analysis could be used to identify a range of dental materials in a patient's panoramic radiograph.

  1. THE NUCLEAR SPECTROSCOPIC TELESCOPE ARRAY (NuSTAR) HIGH-ENERGY X-RAY MISSION

    SciTech Connect

    Harrison, Fiona A.; Cook, W. Rick; Forster, Karl; Grefenstette, Brian W.; Madsen, Kristin K.; Mao, Peter H.; Miyasaka, Hiromasa; Craig, William W.; Pivovaroff, Michael J.; Christensen, Finn E.; Hailey, Charles J.; Koglin, Jason E.; Mori, Kaya; Zhang, William W.; Boggs, Steven E.; Stern, Daniel; Kim, Yunjin; Giommi, Paolo; Perri, Matteo; and others

    2013-06-20

    The Nuclear Spectroscopic Telescope Array (NuSTAR) mission, launched on 2012 June 13, is the first focusing high-energy X-ray telescope in orbit. NuSTAR operates in the band from 3 to 79 keV, extending the sensitivity of focusing far beyond the {approx}10 keV high-energy cutoff achieved by all previous X-ray satellites. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity over the collimated or coded mask instruments that have operated in this bandpass. Using its unprecedented combination of sensitivity and spatial and spectral resolution, NuSTAR will pursue five primary scientific objectives: (1) probe obscured active galactic nucleus (AGN) activity out to the peak epoch of galaxy assembly in the universe (at z {approx}< 2) by surveying selected regions of the sky; (2) study the population of hard X-ray-emitting compact objects in the Galaxy by mapping the central regions of the Milky Way; (3) study the non-thermal radiation in young supernova remnants, both the hard X-ray continuum and the emission from the radioactive element {sup 44}Ti; (4) observe blazars contemporaneously with ground-based radio, optical, and TeV telescopes, as well as with Fermi and Swift, to constrain the structure of AGN jets; and (5) observe line and continuum emission from core-collapse supernovae in the Local Group, and from nearby Type Ia events, to constrain explosion models. During its baseline two-year mission, NuSTAR will also undertake a broad program of targeted observations. The observatory consists of two co-aligned grazing-incidence X-ray telescopes pointed at celestial targets by a three-axis stabilized spacecraft. Deployed into a 600 km, near-circular, 6 Degree-Sign inclination orbit, the observatory has now completed commissioning, and is performing consistent with pre-launch expectations. NuSTAR is now executing its primary science mission, and with an

  2. The soft X-ray diffuse background observed with the HEAO 1 low-energy detectors

    NASA Technical Reports Server (NTRS)

    Garmire, G. P.; Nousek, J. A.; Apparao, K. M. V.; Burrows, D. N.; Fink, R. L.; Kraft, R. P.

    1992-01-01

    Results of a study of the diffuse soft-X-ray background as observed by the low-energy detectors of the A-2 experiment aboard the HEAO 1 satellite are reported. The observed sky intensities are presented as maps of the diffuse X-ray background sky in several energy bands covering the energy range 0.15-2.8 keV. It is found that the soft X-ray diffuse background (SXDB) between 1.5 and 2.8 keV, assuming a power law form with photon number index 1.4, has a normalization constant of 10.5 +/- 1.0 photons/sq cm s sr keV. Below 1.5 keV the spectrum of the SXDB exceeds the extrapolation of this power law. The low-energy excess for the NEP can be fitted with emission from a two-temperature equilibrium plasma model with the temperatures given by log I1 = 6.16 and log T2 = 6.33. It is found that this model is able to account for the spectrum below 1 keV, but fails to yield the observed Galactic latitude variation.

  3. Quality control phantom for flat panel detector X-ray systems.

    PubMed

    Chida, Koichi; Kaga, Yuji; Haga, Yoshihiro; Takeda, Ken; Zuguchi, Masayuki

    2013-01-01

    X-ray equipment should be routinely checked for optimal imaging performance and appropriate radiation dose. Recently, the use of diagnostic x-ray equipment with flat panel detectors (FPDs) has increased instead of image intensifier (II) and/or screen film systems. In addition, it is necessary to maintain the performance of FPD systems. Unfortunately, no simple quality control (QC) phantom is available for easy evaluation of FPD image performance. This manuscript suggests a novel simple and inexpensive QC phantom for radiography and fluoroscopy. The authors made a new QC phantom for FPD systems to evaluate the spatial resolution, low-contrast resolution, and dynamic range on single (one-shot) x-ray exposures. The phantom consists of three copper thicknesses (0.5, 1.5, and 3.0 mm), an aluminum stepwedge (0.1-2.7 mm), and piano wire of various diameters (0.08-0.5 mm). They also performed an initial check of the new phantom using a FPD system (fluoroscopic and radiographic images). The new phantom is simple and inexpensive to make. This simple phantom is very useful for QC of FPD systems because a visual evaluation of image performance in three thicknesses of copper (low, intermediate, and high attenuation) is readily available with a single exposure. This simple method for daily checking of FPD systems (radiography and fluoroscopy) using the phantom constitutes an easy way to routinely check image performance and will be useful for QC.

  4. X-ray induced photocurrent characteristics of CVD diamond detectors with different carbon electrodes

    NASA Astrophysics Data System (ADS)

    Schirru, F.; Lohstroh, A.; Jayawardena, K. D. G. I.; Henley, S. J.; Sellin, P. J.

    2013-12-01

    Diamond has unique properties which make it suitable for a broad range of radiation detection applications ranging from particle timing and spectroscopy, to neutron, UV and X-ray sensors. In X-ray dosimetry, the atomic number of diamond (Z = 6) close to that of the human tissues (Z = 7.42) allows to mimic the real absorbed dose avoiding off-line recalculations. Moreover, its low atomic number and the capability to withstand high radiation fluxes make possible its use as beam monitor without altering significantly the properties of the interacting beam. To preserve the tissue equivalence of the diamond and minimize the perturbation and absorption of the incident beam, diamond detectors based on low thickness and low atomic number electrodes become a requirement. In this paper we present the X-ray detection characteristics of electronic grade CVD diamond sensors prepared in house with thin amorphous carbon electrodes fabricated by Pulsed Laser Deposition (PLD) technique in the fluence range of 2.3-3.6 J·cm-2. The devices showed a linear dependence of the induced photocurrent respect to the dose rate. Also, best dynamic response and better stability of the signals were achieved for applied bias up to ±50 V with signal to noise ratio (SNR) of ~ 300.

  5. Observed On-Orbit Background of the ACIS Detector on the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Plucinsky, P. P.; Virani, S. N.

    2000-01-01

    We have analyzed calibration data acquired during the Orbital Activation and Checkout (OAC) phase of the Chandra X-ray Observatory (CXO) mission in order to characterize the background of the Advanced CCD Imaging Spectrometer (ACIS) produced by charged particles and non-cosmic X-rays. The ACIS instrument contains 8 Front-Illuminated (FI) CCDs and 2 Back-Illuminated (BI) CCDs. The FI and BI CCD)s exhibit dramatically different responses to enhancements in the particle flux. The F1 CCDs show relatively little increase in the overall count rate, typical increases are 1 - 3 counts/s; the BI CCDs show large excursions to as high as 100 counts/s. The duration of these intervals of enhanced background are highly variable ranging from 100 s to 5000 s. The spatial distribution of these background events is relatively flat across the power-law. The events produce morphologies which are similar to cosmic X-ray events, so that morphology alone cannot be used as a rejection criterion. We explore the correlation of these times of high background with the data from Chandra's on-board radiation monitor, the EPHIN (Electron, Proton, Helium Instrument particle detector) instrument and archival data from the Advanced Composition Explorer (ACE) satellite. We discuss strategies for observers to identify and exclude times of high background and to model and subtract the background events from their data.

  6. Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging

    SciTech Connect

    Despres, Philippe; Beaudoin, Gilles; Gravel, Pierre; Guise, Jacques A. de

    2005-04-01

    A new scanning slit gas detector dedicated to orthopedic x-ray imaging is presented and evaluated in terms of its fundamental imaging characteristics. The system is based on the micromesh gaseous structure detector and achieves primary signal amplification through electronic avalanche in the gas. This feature, together with high quantum detection efficiency and fan-beam geometry, allows for imaging at low radiation levels. The system is composed of 1764 channels spanning a width of 44.8 cm and is capable of imaging an entire patient at speeds of up to 15 cm/s. The resolution was found to be anisotropic and significantly affected by the beam quality in the horizontal direction, but otherwise sufficient for orthopedic studies. As a consequence of line-by-line acquisition, the images contain some ripple components due to mechanical vibrations combined with variations in the x-ray tube output power. The reported detective quantum efficiency (DQE) values are relatively low (0.14 to 0.20 at 0.5 mm{sup -1}) as a consequence of a suboptimal collimation geometry. The DQE values were found to be unaffected by the exposure down to 7 {mu}Gy, suggesting that the system is quantum limited even for low radiation levels. A system composed of two orthogonal detectors is already in use and can produce dual-view full body scans at low doses. This device could contribute to reduce the risk of radiation induced cancer in sensitive clientele undergoing intensive x-ray procedures, like young scoliotic women.

  7. Physical characteristics of a low-dose gas microstrip detector for orthopedic x-ray imaging.

    PubMed

    Després, Philippe; Beaudoin, Gilles; Gravel, Pierre; de Guise, Jacques A

    2005-04-01

    A new scanning slit gas detector dedicated to orthopedic x-ray imaging is presented and evaluated in terms of its fundamental imaging characteristics. The system is based on the micromesh gaseous structure detector and achieves primary signal amplification through electronic avalanche in the gas. This feature, together with high quantum detection efficiency and fan-beam geometry, allows for imaging at low radiation levels. The system is composed of 1764 channels spanning a width of 44.8 cm and is capable of imaging an entire patient at speeds of up to 15 cm/s. The resolution was found to be anisotropic and significantly affected by the beam quality in the horizontal direction, but otherwise sufficient for orthopedic studies. As a consequence of line-by-line acquisition, the images contain some ripple components due to mechanical vibrations combined with variations in the x-ray tube output power. The reported detective quantum efficiency (DQE) values are relatively low (0.14 to 0.20 at 0.5 mm(-1)) as a consequence of a suboptimal collimation geometry. The DQE values were found to be unaffected by the exposure down to 7 microGy, suggesting that the system is quantum limited even for low radiation levels. A system composed of two orthogonal detectors is already in use and can produce dual-view full body scans at low doses. This device could contribute to reduce the risk of radiation induced cancer in sensitive clientele undergoing intensive x-ray procedures, like young scoliotic women.

  8. A gamma- and X-ray detector for cryogenic, high magnetic field applications

    NASA Astrophysics Data System (ADS)

    Cooper, R. L.; Alarcon, R.; Bales, M. J.; Bass, C. D.; Beise, E. J.; Breuer, H.; Byrne, J.; Chupp, T. E.; Coakley, K. J.; Dewey, M. S.; Fu, C.; Gentile, T. R.; Mumm, H. P.; Nico, J. S.; O'Neill, B.; Pulliam, K.; Thompson, A. K.; Wietfeldt, F. E.

    2012-11-01

    As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was operated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector are presented, as well as information on operation of APDs at cryogenic temperatures.

  9. Quasiparticle Self-Recombination in Double STJs Strip X-ray Detectors

    SciTech Connect

    Andrianov, V. A.; Gorkov, V. P.

    2009-12-16

    The quasiparticle self-recombination was considered in the frame of 2D diffusion model of the strip X-ray detectors. The detector consists of a long superconducting strip, which is ended by the trapping layers and superconducting tunnel junctions at each end. The model takes into account the 2D-diffusion of the excess quasiparticles, quasiparticle trapping at the tunnel junctions and quasiparticle losses in the volume of the strip and at the strip boundaries. Self-recombination was described by a quadratic term. As the analytical solution is absent, the numeric calculations were carried out. It has been shown that the self-recombination as well as quasiparticle losses at the strip boundaries caused the dependence of the signals on the photon absorption site in transverse direction. The latter worsens the energy resolution and transforms the spectral line of the detector to nongaussian shape.

  10. Performance and durability of HGI/sub 2/ x-ray detectors for space missions

    SciTech Connect

    Iwanczyk, J.S.; Wang, Y.J.; Bradley, J.G.; Conley, J.M.; Albee, A.L.

    1989-02-01

    Considerable recent progress has been achieved in HgI/sub 2/ detector fabrication technology and amplification electronics. An energy resolution of 198 eV (FWHM) has been obtained for the Mn k ..cap alpha.. line of 5.9 KeV in a practical x-ray probe without the use of cryogenic cooling. Detectors prepared with Parylene-C encapsulation have demonstrated perfect reliability in two-year tests under high vacuum, and temperature and bias cycling. Other HgI/sub 2/ detectors were used to demonstrate proton radiation damage resistance to levels of 10/sup 12/ protons/cm/sup 2/ at 10.7 MeV.

  11. Analytical approximations to the Hotelling trace for digital x-ray detectors

    NASA Astrophysics Data System (ADS)

    Clarkson, Eric; Pineda, Angel R.; Barrett, Harrison H.

    2001-06-01

    The Hotelling trace is the signal-to-noise ratio for the ideal linear observer in a detection task. We provide an analytical approximation for this figure of merit when the signal is known exactly and the background is generated by a stationary random process, and the imaging system is an ideal digital x-ray detector. This approximation is based on assuming that the detector is infinite in extent. We test this approximation for finite-size detectors by comparing it to exact calculations using matrix inversion of the data covariance matrix. After verifying the validity of the approximation under a variety of circumstances, we use it to generate plots of the Hotelling trace as a function of pairs of parameters of the system, the signal and the background.

  12. A diamond detector for inertial confinement fusion X-ray bang-time measurements at the National Ignition Facility

    SciTech Connect

    MacPhee, A G; Brown, C; Burns, S; Celeste, J; Glenzer, S H; Hey, D; Jones, O S; Landen, O; Mackinnon, A J; Meezan, N; Parker, J; Edgell, D; Glebov, V Y; Kilkenny, J; Kimbrough, J

    2010-11-09

    An instrument has been developed to measure X-ray bang-time for inertial confinement fusion capsules; the time interval between the start of the laser pulse and peak X-ray emission from the fuel core. The instrument comprises chemical vapor deposited polycrystalline diamond photoconductive X-ray detectors with highly ordered pyrolytic graphite X-ray monochromator crystals at the input. Capsule bang-time can be measured in the presence of relatively high thermal and hard X-ray background components due to the selective band pass of the crystals combined with direct and indirect X-ray shielding of the detector elements. A five channel system is being commissioned at the National Ignition Facility at Lawrence Livermore National Laboratory for implosion optimization measurements as part of the National Ignition Campaign. Characteristics of the instrument have been measured demonstrating that X-ray bang-time can be measured with {+-} 30ps precision, characterizing the soft X-ray drive to +/- 1eV or 1.5%.

  13. Focal spot deblurring for high resolution direct conversion x-ray detectors

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Rana, R.; Russ, M.; Ionita, Ciprian N.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    Small pixel high resolution direct x-ray detectors have the advantage of higher spatial sampling and decreased blurring characteristic. The limiting factors for such systems becomes the degradation due to the focal spot size. One solution is a smaller focal spot; however, this can limit the output of the x-ray tube. Here a software solution of deconvolving with an estimated focal spot blur is presented. To simulate images from a direct detector affected with focal-spot blur, first a set of high-resolution stent images (FRED from Microvention, Inc., Tustin, CA) were acquired using a 75μm pixel size Dexela-Perkin-Elmer detector and frame averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur. To add noise to the blurred image a flat-field image was multiplied with the blurred image. Both the ideal and the noisy-blurred images were then deconvolved with the known Gaussian function using either threshold-based inverse filtering or Weiner deconvolution. The blur in the ideal image was removed and the details were recovered successfully. However, the inverse filtering deconvolution process is extremely susceptible to noise. The Weiner deconvolution process was able to recover more of the details of the stent from the noisy-blurred image, but for noisier images, stent details are still lost in the recovery process.

  14. Monte-Carlo background simulations of present and future detectors in x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Tenzer, C.; Kendziorra, E.; Santangelo, A.

    2008-07-01

    Reaching a low-level and well understood internal instrumental background is crucial for the scientific performance of an X-ray detector and, therefore, a main objective of the instrument designers. Monte-Carlo simulations of the physics processes and interactions taking place in a space-based X-ray detector as a result of its orbital environment can be applied to explain the measured background of existing missions. They are thus an excellent tool to predict and optimize the background of future observatories. Weak points of a design and the main sources of the background can be identified and methods to reduce them can be implemented and studied within the simulations. Using the Geant4 Monte-Carlo toolkit, we have created a simulation environment for space-based detectors and we present results of such background simulations for XMM-Newton's EPIC pn-CCD camera. The environment is also currently used to estimate and optimize the background of the future instruments Simbol-X and eRosita.

  15. VIPIC: a custom-made detector for X-ray speckle measurements

    SciTech Connect

    Rumaiz, Abdul K.; Siddons, D. Peter; Deptuch, Grzegorz; Maj, Piotr; Kuczewski, Anthony J.; Carini, Gabriella A.; Narayanan, Suresh; Dufresne, Eric; Sandy, Alec; Bradford, Robert; Fluerasu, Andrei A.; Sutton, Mark

    2016-03-01

    The Vertically Integrated Photon Imaging Chip (VIPIC) was custom-designed for X-ray photon correlation spectroscopy, an application in which occupancy per pixel is low but high time resolution is needed. VIPIC operates in a sparsified streaming mode in which each detected photon is immediately read out as a time- and position-stamped event. This event stream can be fed directly to an autocorrelation engine or accumulated to form a conventional image. The detector only delivers non-zero data (sparsified readout), greatly reducing the communications overhead typical of conventional frame-oriented detectors such as charge-coupled devices or conventional hybrid pixel detectors. This feature allows continuous acquisition of data with timescales from microseconds to hours. In this work VIPIC has been used to measure X-ray photon correlation spectroscopy data on polystyrene latex ano-colliodal suspensions in glycerol and on colloidal suspensions of silica spheres in water. Relaxation times of the nano-colloids have been measured for different temperatures. These results demonstrate that VIPIC can operate continuously in the microsecond time frame, while at the same time probing longer timescales.

  16. Noise and signal detection in digital x-ray detectors using the spatial definition of SNR

    NASA Astrophysics Data System (ADS)

    Kyprianou, Iacovos S.; Badano, Aldo; Park, Subok; Liu, Haimo; Myers, Kyle J.

    2009-02-01

    For task specific evaluation of imaging systems it is necessary to obtain detailed descriptions of their noise and deterministic properties. In the past we have developed an experimental and theoretical methodology to estimate the deterministic detector response of a digital x-ray imaging system, also known as the H matrix. In this paper we have developed the experimental methodology for the evaluation of the quantum and electronic noise of digital radiographic detectors using the covariance matrix K. Using the H matrix we calculated the transfer of a simulated coronary artery constriction through an imaging system's detector, and with the covariance matrix we calculated the detectability (or Signal-to-Noise Ratio) and the detection probability. The eigenvalues and eigenvectors of the covariance matrix were presented and the electronic and quantum noise were analyzed. We found that the exposure at which the electronic noise equals the quantum noise at 90 kVp was 0.2 μR. We compared the ideal Hotelling observer with the Fourier definition of the SNR for a toroidal stenosis on a cylindrical vessel. Because of the shift-invariance and cyclo-stationarity assumptions, the Fourier SNR overestimates the performance of imaging systems. This methodology can be used for task specific evaluation and optimization of a digital x-ray imaging system.

  17. In-Air X-Ray Detectors : A New Field of Simple and Powerful Beam Diagnostics

    SciTech Connect

    Scheidt, Kees

    2006-11-20

    Crotch or beamport absorbers deal with the unused power of the synchrotron radiation generated by dipoles in electron storage rings. A tiny fraction of the very hard X-rays fully penetrate the absorber structure and enter the free air space behind it. Both at the ESRF (6GeV) and at ANKA (2.5GeV) it was shown that this tiny leakage power can be detected by a simple, compact and low-cost device consisting of a scintillator with optics and camera. Situated In-Air just behind the absorber it measures precisely the vertical electron beamsize. This imaging detector is also applied for 1 us, 5mA single shot measurements in the ESRF transfer-line. A 2nd detector type was developed, using the same leakage X-rays, that consists of a high-Z blade in combination with a small In-Air ionization volume. It generates a direct electric signal that is used for nanometer resolution measurements of vertical beam motion in a spectrum upto 1KHz. The concept and results of both types of detector used now in various applications are reported here that show their potential for simple and powerful beam diagnostics.

  18. HEXITEC: A next generation hard X-ray Detector for Solar Observations

    NASA Astrophysics Data System (ADS)

    Panessa, M.; Christe, S.; Shih, A.; Gaskin, J.; Wilson, M. D.; Seller, P.; Baumgartner, W.; Inglis, A. R.

    2015-12-01

    High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Recent developments at the Rutherford Appleton Laboratory (RAL) have resulted in a new hard X-ray (HXR) detector system with the smallest independent pixels currently available, 250 microns. This matches perfectly with the best angular resolution currently achievable by HXR focusing optics which is about 5 arcsec (FWHM). For a SMEX mission with a 15 meter focal length each pixel would cover an angular size of about 3 arcsec thereby subsampling the PSF. Dubbed HEXITEC, for High Energy X-Ray Imaging Technology, this Application Specific Integrated Circuit (ASIC), can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT) which provide high efficiency in the HXR region, good energy resolution, low background, low power, and low sensitivity to radiation damage. For solar observations, the ability to handle high counting rates is also extremely desirable. This ASIC can read each pixel 10,000 times per second. The NASA Marshall Space Flight Center (MSFC) and the Goddard Space Flight Center (GSFC) has been working with RAL over the past few years to develop these detectors to be used with HXR focusing telescopes. We present recent progress on this development effort and its capabilities as applied to solar observations.

  19. Development of the superconducting detectors and read-out for the X-IFU instrument on board of the X-ray observatory Athena

    NASA Astrophysics Data System (ADS)

    Gottardi, L.; Akamatsu, H.; Bruijn, M. P.; den Hartog, R.; den Herder, J.-W.; Jackson, B.; Kiviranta, M.; van der Kuur, J.; van Weers, H.

    2016-07-01

    The Advanced Telescope for High-Energy Astrophysics (Athena) has been selected by ESA as its second large-class mission. The future European X-ray observatory will study the hot and energetic Universe with its launch foreseen in 2028. Microcalorimeters based on superconducting Transition-edge sensor (TES) are the chosen technology for the detectors array of the X-ray Integral Field Unit (X-IFU) on board of Athena. The X-IFU is a 2-D imaging integral-field spectrometer operating in the soft X-ray band (0.3-12 keV). The detector consists of an array of 3840 TESs coupled to X-ray absorbers and read out in the MHz bandwidth using Frequency Domain Multiplexing (FDM) based on Superconducting QUantum Interference Devices (SQUIDs). The proposed design calls for devices with a high filling-factor, high quantum efficiency, relatively high count-rate capability and an energy resolution of 2.5 eV at 5.9 keV. The paper will review the basic principle and the physics of the TES-based microcalorimeters and present the state-of-the art of the FDM read-out.

  20. A Versatile Hemispherical Great Area X-ray Detector for Synchrotron Radiation

    SciTech Connect

    Figueroa, Rodolfo; Belmar, Felipe

    2009-01-29

    This work presents an X-ray detector with fullerene C60 semi spherical geometry constituted by a set of small cylindrical proportional counter units with needles anodes, which are located in the surface of an hemispherical plastic support. The sample to be analyzed is placed on the center of the hemisphere base. The radiation may enter by one of its flanks or through the hemisphere top. The hemispherical zone that exists between the holder sample base and the proportional counters can be vacuumed, aired or filled with counter gas.

  1. Development of Highly Efficient and High Speed X-ray Detectors Using Modern Nanomaterials

    SciTech Connect

    Cholewa, Marian; Moser, Herbert O.; Lau, Shu Ping; Gao Xingyu; Wee, Andrew Thye Shen; Polak, Wojciech; Lekki, Janusz; Stachura, Zbigniew

    2007-01-19

    The secondary electron emission (SEE) yield of heterostructures of ZnO nanoneedles coaxially coated with AlN or GaN has been studied for the first time using electron, ion, and X-ray beams. The SEE yield of the heterostructures is enhanced significantly by the intrinsic nanostructure of the ZnO nanoneedle templates as compared to the AlN and GaN thin films on Si substrates. These findings open up a way to develop new universal highly efficient radiation detectors based on the SEE principle by incorporating these one-dimensional (1D) nanostructures as a material of choice.

  2. Combinatorial Screening of Advanced Scintillators for High Resolution X-ray Detectors

    SciTech Connect

    Cheng, Shifan; Tao, Dejie; Lynch, Michael; Yuan, Xianglong; Li, Yiqun

    2008-05-12

    The lack of efficient scintillators is a major problem for developing powerful x-ray detectors that are widely used in homeland security, industrial and scientific research. Intematix has developed and applied a high throughput screening process and corresponding crystal growth technology to significantly speed up the discovery process for new efficient scintillators. As a result, Intematix has invented and fabricated three new scintillators both in powder and bulk forms, which possess promising properties such as better radiation hardness and better matching for silicon diode.

  3. X-ray detectors based on GaN Schottky diodes

    SciTech Connect

    Duboz, Jean-Yves; Frayssinet, Eric; Chenot, Sebastien; Reverchon, Jean-Luc; Idir, Mourad

    2010-10-18

    GaN Schottky diodes have been fabricated and tested as x-ray detectors in the range from 6 to 21 keV. The spectral response has been measured and is compared to its theoretical value. The study of the response and its temporal dynamics as a function of the bias allows to identify a photovoltaic behavior at low bias and a photoconductive one at larger reverse biases. The GaN diode turned out to be linear as a function of the incident power. The noise and detectivity are given and discussed.

  4. Characterization of Si hybrid CMOS detectors for use in the soft X-ray band

    NASA Astrophysics Data System (ADS)

    Prieskorn, Zachary; Griffith, Christopher V.; Bongiorno, Stephen D.; Falcone, Abraham D.; Burrows, David N.

    2013-07-01

    We report on the characterization of four Teledyne Imaging Systems HAWAII Hybrid Si CMOS detectors designed for X-ray detection. Three H1RG detectors were studied along with a specially configured H2RG. Read noise measurements were performed, with the lowest result being 7.1 e- RMS. Interpixel capacitive crosstalk (IPC) was measured for the three H1RGs and for the H2RG. The H1RGs had IPC upper limits of 4.0-5.5% (up & down pixels) and 8.7-9.7% (left & right pixels), indicating a clear asymmetry. Energy resolution is reported for two X-ray lines, 1.5 & 5.9 keV, at multiple temperatures between 150 and 210 K. The best resolution measured at 5.9 keV was 250 eV (4.2%) at 150 K, with IPC contributing significantly to this measured energy distribution. The H2RG, with a unique configuration designed to decrease the capacitive coupling between ROIC pixels, had an IPC of 1.8±1.0% indicating a dramatic improvement in IPC with no measurable asymmetry. We also measured dark current as a function of temperature for each detector. For the detector with the lowest dark current, at 150 K, we measured a dark current of 0.020±0.001 (e- s-1 pixel-1). There is also a consistent break in the fit to the dark current data for each detector. Above 180 K, all the data can be fit by the product of a power law in temperature and an exponential. Below 180 K the dark current decreases more slowly; a shallow power law or constant must be added to each fit, indicating a different form of dark current is dominant in this temperature regime. Dark current figures of merit at 293 K are estimated from the fit for each detector.

  5. Integrating 2-D position sensitive X-ray detectors with low-density alkali halide storage targets

    NASA Astrophysics Data System (ADS)

    Haubold, H.-G.; Hoheisel, W.; Hiller, P.

    1986-05-01

    For the use in scattering experiments with synchrotron radiation, integrating position sensitive X-ray detectors are discussed. These detectors store the photon number equivalent charge (PNEC) in low-density alkali halide targets. Performance tests are given for a detector which uses a Gd 2O 2S fluorescence screen for X-ray detection and the low-density KCl storage target of a television SEC vidicon tube for photon integration. Rather than directly by X-rays, this target is charged by 6 keV electrons from the image intensifier section of the vidicon. Its excellent storage capability allows measurements of extremely high-contrast, high-flux X-ray patterns with the same accuracy as achieved with any single photon detection system if the discussed readout techniques are applied.

  6. Color changes in X-ray irradiated PM-355 and Makrofol DE 7-2 nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Nouh, Samir A.; Mohamed, Amal; Bahareth, Radiyah Ahmed; Abutalib, Maymona M.; Benthami, Kaoutar

    2014-03-01

    Effects of X-ray irradiation on the color changes of PM-355 and Makrofol DE 7-2 nuclear track detectors have been investigated. Samples from PM-355 and Makrofol DE 7-2 polycarbonates were irradiated with X-ray doses at levels between 10 and 250 kGy. The transmission of these samples in the wavelength range 370-780 nm, as well as any color changes, was studied. The Commission International de E'Claire (CIE units x, y and z) methodology was used in this work for the description of colored samples. The color differences between the non-irradiated sample and those irradiated with different X-ray doses were calculated. The results indicate that both PM-355 and Makrofol DE 7-2 detectors acquire color changes under X-ray irradiation, but the PM-355 detector has more response to color change than that of Makrofol DE 7-2.

  7. Coded Mask Imaging of High Energy X-rays with CZT Detectors

    NASA Astrophysics Data System (ADS)

    Matteson, J. L.; Dowkontt, P. F.; Duttweiler, F.; Heindl, W. A.; Hink, P. L.; Huszar, G. L.; Kalemci, E.; Leblanc, P. C.; Rothschild, R. E.; Skelton, R. T.; Slavis, K. R.; Stephan, E. A.

    1998-12-01

    Coded mask imagers are appropriate for important objectives of high energy X-ray astronomy, e.g., gamma- ray burst localization, all-sky monitors and surveys, and deep surveys of limited regions. We report results from a coded mask imager developed to establish the proof-of-concept for this technique with CZT detectors. The detector is 2 mm thick with orthogonal crossed strip readout and an advanced electrode design to improve the energy resolution. Each detector face has 22 strip electrodes, and the strip pitch and pixel size are 500 microns. ASIC readout is used and the energy resolution varies from 3 to 6 keV FWHM over the 14 to 184 keV keV range. A coded mask with 2 x 2 cycles of a 23 x 23 MURA pattern (860 micron unit cell) was built from 600 micron thick tantalum to provide good X-ray modulation up to 200 keV. The detector, mask, and a tiny Gd-153 source of 41 keV X-rays were positioned with a spacing that caused the mask cells in the shadowgram to have a projected size of 1300 microns at the detector. Multiple detector positions were used to measure the shadowgram of a full mask cycle and this was recorded with 100 percent modulation transfer by the detector, due to its factor of 2.6 oversampling of the mask unit cell, and very high strip-to-strip selectivity and spatial accuracy. Deconvolution of the shadowgram produced a correlation image in which the source was detected as a 76-sigma peak with the correct FWHM and base diameter. Off-source image pixels had gaussian fluctuations that agree closely with the measurement statistics. Off-source image defects such as might be produced by systematic effects were too small to be seen and limited to <0.5 percent of the source peak. These results were obtained with the "raw" shadowgram and image; no "flat fielding" corrections were used.

  8. Close-packed Arrays of Transition-edge X-ray Microcalorimeters with High Spectral Resolution at 5.9 keV

    NASA Technical Reports Server (NTRS)

    Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Figueroa-Feliciano, E.

    2007-01-01

    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal metal-features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition, and, using these parameters, have modeled all aspects of the detector performance.

  9. Close-packed arrays of transition-edge x-ray microcalorimeters with high spectral resolution at 5.9 keV

    SciTech Connect

    Iyomoto, N.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Figueroa-Feliciano, E.

    2008-01-07

    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal-metal features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition and, using these parameters, have modeled all aspects of the detector performance.

  10. Development of Tiled Imaging CZT Detectors for Sensitive Wide-Field Hard X-Ray Surveys to EXIST

    NASA Technical Reports Server (NTRS)

    Grindlay, J.; Hong, J.; Allen, B.; Barthelmy, S.; Baker, R.

    2011-01-01

    Motivated by the proposed EXIST mission, a "medium-class" space observatory to survey black holes and the Early Universe proposed to the 2010 NAS/NRC Astronomy and Astrophysics Decadal Survey, we have developed the first "large" area 256 sq cm close-tiled (0.6 mm gaps) hard X-ray (20-600 keV) imaging detector employing pixelated (2.5 mm) CdZnTe (CZT) detectors, each 2 x 2 x 0.5 cubic cm. We summarize the design, development and operation of this detector array (8 x 8 CZTs) and its performance as the imager for a coded aperture telescope on a high altitude (40 km) balloon flight in October. 2009, as the ProtoEX1STl payload. We then outline our current development of a second-generation imager, ProtcEXIST2. with 0.6 mm pixels on a 32 x 32 array on each CZT, and how it will lead to the ultimate imaging system needed for EXIST. Other applications of this technology will also be mentioned.

  11. An imaging diode array soft x-ray diagnostic for Z (abstract)

    NASA Astrophysics Data System (ADS)

    Simpson, W. W.; Porter, J. L.; Ruggles, L. E.; Wenger, D. F.

    2001-01-01

    Measurements of the hohlraum wall temperature in Z-pinch driven hohlraum experiments require looking through small (2-4 mm diameter) diagnostic holes that undergo some degree of hole closure. The existing soft x-ray diagnostics on Z measure the total flux exiting this diagnostic hole and are therefore affected by this hole closure. To avoid having to measure the effective diagnostic hole area we have designed and constructed an imaging diode array (IDA) that incorporates pinhole imaging and an array of filtered silicon diodes to measure the absolute x-ray intensity from a spatially resolved region of a target. The instrument uses silicon diodes with subnanosecond time response that are sensitive to soft x rays in the range 100-3000 eV. An image of the target area is projected onto the silicon diodes using pinholes. Between each pinhole and it's respective diode is a soft x-ray filter. The material and thickness of the filter are selected to allow unfolding of spectral information in the 100-3000 eV spectral region. We plan to insert a set of grazing-incidence mirrors between each of the filter/diode pairs in a future version of this instrument to better define the spectral bandpass of each diode channel. Radiation from the target region is monitored by a gated microchannel-plate-intensified image recording device that is located immediately behind the diode array. A small shadow in the recorded image corresponds to the specific area of the target that is imaged onto each silicon diode. We are presently fielding this instrument in experiments on the Z facility located at Sandia National Laboratories in Albuquerque, NM. The instrument is located on the same line-of-sight and measures the same spatial region as a filtered fast-framing x-ray pinhole camera and a transmission grating spectrometer. This article describes the design of the IDA diagnostic and presents the results of measurements obtained in hohlraum experiments conducted on Z.

  12. 10 cm x 10 cm Single Gas Electron Multiplier (GEM) X-ray Fluorescence Detector for Dilute Elements

    NASA Astrophysics Data System (ADS)

    Shaban, E. H.; Siddons, D. P.; Seifu, D.

    2014-03-01

    We have built and tested a 10 cm × 10 cm single Gas Electron Multiplier (GEM) X-ray detector to probe dilute amounts of Fe in a prepared sample. The detector uses Argon/Carbon Dioxide (75/25) gas mixture flowing at a slow rate through a leak proof Plexi-glass enclosure held together by O-rings and screws. The Fluorescence X-ray emitted by the element under test is directed through a Mylar window into the drift region of the detector where abundant gas is flowing. The ionized electrons are separated, drifted into the high electric field of the GEM, and multiplied by impact ionization. The amplified negatively charged electrons are collected and further amplified by a Keithley amplifier to probe the absorption edge of the element under test using X-ray absorption spectroscopy technique. The results show that the GEM detector provided good results with less noise as compared with a Silicon drift detector (SDD).

  13. Multi-spectral solar telescope array IV; The soft x-ray and extreme ultraviolet filters

    SciTech Connect

    Lindblom, J.F.; O'Neal, R.H.; Walker, A.B.C. Jr. ); Powell, F.R. ); Barbee, T.W. Jr. ); Hoover, R.B. ); Powell, S.F. )

    1991-08-01

    The multilayer mirrors used in the normal-incidence optical systems of the Multi-Spectral Solar Telescope Array (MSSTA) are efficient reflectors for soft x-ray/extreme ultraviolet (EUV) radiation at wavelengths that satisfy the Bragg condition, thus allowing a narrow band of the soft x-ray/EUV spectrum to be isolated. However, these same mirrors are also excellent reflectors in the visible, ultraviolet, and far-ultraviolet (FUV) part of the spectrum, where normal incidence reflectivities can exceed 50%. Furthermore, the sun emits far more radiation in the ultraviolet and visible part of the spectrum than it does in the soft x-ray/EUV. For this reason, thin foil filters are employed to eliminate the unwanted longer wavelength solar emission. The MSSTA instrument uses various combinations of thin foil filters composed of aluminum carbon, tellurium, potassium bromide, beryllium, molybdenum, rhodium, and phthalocyanine to achieve the desired radiation rejection characteristics. In this paper, the authors discuss issues concerning the design, manufacture, and predicted performance of MSSTA filters.

  14. X-ray imaging of extended objects using nonoverlapping redundant array

    NASA Technical Reports Server (NTRS)

    Yin, L.-I.; Trombka, J. I.; Seltzer, S. M.; Bielefeld, M. J.

    1983-01-01

    A common problem associated with X-ray imaging using coded apertures is the reconstruction of low-intensity extended objects. In the decoding of such objects, the overlapping images from the multiple pinholes give rise to noise cross talk and, in many cases, also to signal cross talk. In this paper, an alternate approach is proposed based on the principle used in an earlier (Yin et al., 1980) laboratory device for the real-time viewing of X-ray objects. It is shown that with this approach, the nonoverlapping redundant array, the sidelobes in the point spread function are not eliminated but merely displaced through a suitable choice of geometry. In this manner, the sidelobes no longer contribute to the background in the vicinity of a reconstructed image, and both signal and noise cross talks are completely eliminated. It may now be possible to reconstruct extended X-ray objects in 3-D by simple optical correlation and tomographically by a computer.

  15. Mercuric iodide x-ray and gamma-ray detectors for astronomy

    NASA Astrophysics Data System (ADS)

    Van den Berg, Lodewijk; Sandoval, John S.; Vigil, Ronald D.; Richards, John D.; Vaccaro, Fred P.; Hykin, Martin; DeVito, Raymond P.

    2002-01-01

    The recent technological developments and availability of mercuric iodide detectors have made their application for astronomy a realistic prospect. Mercuric iodide, because of its high resistivity and high density, can be used in a variety of astronomy instrumentation where high spectral resolution, low noise levels, stability of performance, resistance to damage by charged particles and overall ruggedness are of critical importance. X-ray detectors with areas of 12 to 100 mm square and 1 mm thickness have absorption efficiencies approaching 100% up to 60 keV. The spectral resolution of these detector's ranges from 400 eV to 600 eV at 5.9 keV, depending on their area, and the electronic noise threshold is less than 1.0 keV. Gamma ray detectors can be fabricated with dimensions of 25 mm x 25 mm x 3 mm. The spectral resolution of these detectors is less than 4% FWHM at energies of 662 keV. Because of the high atomic numbers of the constituent elements of the mercuric iodide, the full energy peak efficiency is higher than for any other available solid-state detector that makes measurements up to 10 MeV a possibility. The operation of gamma ray detectors has been evaluated over a temperature range of -20 through + 55 degrees Celsius, with only a very small shift in full energy peak observed over this temperature range. In combination with Cesium Iodide scintillators, mercuric iodide detectors with 25 mm diameter dimensions can be used as photodetectors to replace bulky and fragile photomultiplier tubes. The spectral resolution of these detectors is less than 7% FWHM at 662 keV and the quantum efficiency is larger than 80 % over the whole area of the detector.

  16. Observation of solar flare hard x-ray spectra using CdTe detectors

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Tsuneta, S.; Tamura, T.; Kumagai, K.; Katsukawa, Y.; Kubo, M.; Sakamoto, Y.; Yamagami, T.; Saito, Y.; Mori, K.

    We present the design and flight results of a balloon-borne hard X-ray detector system for observing high-resolution spectra of solar flares. The instrument is designed to achieve a 3 keV energy resolution over the energy range of 15-120 keV. The instrument uses sixteen 10 × 10 × 0.5 mm cadmium telluride (CdTe) detectors with indium electrodes that act as Schottky barriers to minimize leak current and allow a high bias voltage. Pre-flight tests confirmed that all detectors exceeded the target 3 keV resolution. The pressurized detector vessel uses a low-density (0.1 g/cm^2) CFRP/Rohacell window. The detectors are passively shielded by 2 mm of lead, and field of view is constrained with a graded-Z collimator. The vertical angle of the detectors are fixed at 45 degrees, and the azimuth angle of the entire gondola is controlled using a signal from a sun position sensor. Specially developed electronics accumulate a 128 channel spectrum for each detector, which is read through telemetry every 0.54 seconds. These detectors need to be cooled down to 0 degrees C for optimal performance; due to weight constraints this was achieved purely by radiative cooling, using the detector enclosure surface as a radiator and by placing shields that minimize radiative heat input from the sun and earth while maximizing heat loss to the sky. The first flight of the instrument took place on August 29, 2001 and while no major flares were observed, we succeeded in detecting a small brightening (microflare). Detector temperature of -13 degrees C was achieved, and all systems performed as expected. The instrument was recovered successfully after the flight and a second flight is planned for May 2002.

  17. Design and Characterization of a Novel Near Field Detector for Three Dimensional X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Annett, Scott; Margulies, Lawrence; Dale, Darren; Kycia, Stefan

    Three dimensional x-ray diffraction microscopy (3DXRD) is a powerful technique that provides crystallographic and spatial information of a large number of grains in a sample simultaneously. A key component of a 3DXRD experiment is the near field detector which provides high resolution spatial information of the sample. A novel design for a near field detector was developed and characterized. This design, called the Quad Near Field Detector, utilizes four quadrants, each with a dedicated scintillating phosphor and optical microscope. A novel translation stage for focusing the microscopes was developed, tested, and implemented. The near field detector was calibrated and characterized at the Cornell High Energy Synchrotron Source. A flood field correction was developed for the detector to correct for variations in intensity response. Diffraction data of all four quadrants was able to reproduce the crystal orientation of the ruby calibrant. In conclusion, the design and implementation of the Quad Near Field Detector was a success and will be a useful tool for future 3DXRD experiments.

  18. Fast X-ray/γ-ray imaging using electron multiplying CCD-based detector

    NASA Astrophysics Data System (ADS)

    Nagarkar, Vivek V.; Shestakova, Irina; Gaysinskiy, Valeriy; Singh, Bipin; Miller, Brian W.; Bradford Barber, H.

    2006-07-01

    New designs of electron multiplying charge coupled devices (EMCCDs) combine superior spatial resolution and low noise of a conventional CCD with the internal gain of an avalanche photodiode (APD). The presence of internal gain not only enhances the device sensitivity, but virtually eliminates the read noise associated with current CCDs, even when the device is read at very high frame rates of 100 frames per second or higher. Thus, the EMCCDs can simultaneously provide very high sensitivity and a high signal-to-noise ratio (SNR). At RMD we are exploiting these properties of EMCCD for use in radionuclide and X-ray imaging. Specifically, we have developed a system that makes use of an EMCCD with 512 × 512, 16 × 16 μm pixels. Special fiberoptic reducers have been designed to enhance the detector sensitive area. The system gain is software selectable and may be varied from 1 to 1000. This paper describes the detector design along with its γ-ray/X-ray imaging performance.

  19. The Gas Pixel Detector as a solar X-ray polarimeter and imager

    NASA Astrophysics Data System (ADS)

    Fabiani, Sergio; Bellazzini, Ronaldo; Brez, Alessandro; di Cosimo, Sergio; Lazzarotto, Francesco; Muleri, Fabio; Rubini, Alda; Soffitta, Paolo; Spandre, Gloria

    The sun is the nearest astrophysical source with an interesting emission in the X-ray band. The study of energetic events, such as solar flares, can help us to understand the behaviour of the magnetic field of our star. There are in literature numerous studies published about polarization predictions, for a wide range of solar flare models. All these models involve emission from thermal and/or nonthermal processes. Furthermore, results of flare observations in the X-ray band have never been exhaustive. We want to present a new kind of instrument with polarimetric and imaging capabilities in the X-ray band. This instrument is the Gas Pixel Detector (GPD). It has been developed by the INFN and the IASF-Roma / INAF Italian research institutes. The GPD was born to achieve X-ray polarimetric measurements as well as X-ray images for astrophysical sources. It has a good spectroscopic sensitivity thanks to an energy resolution of some per cent and it allows also to perform timing measurements. Differently from all the other kinds of today's polarimeters, it doesn't need rotation! The GPD exploits the dependence of photoelectric cross section to photon polarization direction to the aim of measuring polarization. This instrument is essentially a ionization chamber: a cell filled by gas into which radiation enters through a window of 1.5 cm x 1.5 cm. The cell has a depth of some centimeters: typically from 1 to 2 cm. Every time that a photon is absorbed by the gas, a photoelectron is emitted with more probability in the direction of the electric vector of the photon absorbed. The photoelectron propagates and produces a track of ionization that is drifted, amplified and actually collected on a fine sub-divided pixeled detector, whose pixels have a dimension of 50 µm. At the present the chip integrates more than 16.5 millions of transistors. It has an active area of 105600 pixels organized in a honeycomb matrix 300x352. It is a self triggered system able to select itself the

  20. A New Gated X-Ray Detector for the Orion Laser Facility

    SciTech Connect

    Clark, David D.; Aragonez, Robert J.; Archuleta, Thomas N.; Fatherley, Valerie E.; Hsu, Albert H.; Jorgenson, H. J.; Mares, Danielle; Oertel, John A.; Oades, Kevin; Kemshall, Paul; Thomas, Philip; Young, Trevor; Pederson, Neal

    2012-08-08

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from the what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  1. A new gated x-ray detector for the Orion laser facility

    NASA Astrophysics Data System (ADS)

    Clark, David D.; Aragonez, Robert; Archuleta, Thomas; Fatherley, Valerie; Hsu, Albert; Jorgenson, Justin; Mares, Danielle; Oertel, John; Oades, Kevin; Kemshall, Paul; Thomas, Phillip; Young, Trevor; Pederson, Neal

    2012-10-01

    Gated X-Ray Detectors (GXD) are considered the work-horse target diagnostic of the laser based inertial confinement fusion (ICF) program. Recently, Los Alamos National Laboratory (LANL) has constructed three new GXDs for the Orion laser facility at the Atomic Weapons Establishment (AWE) in the United Kingdom. What sets these three new instruments apart from what has previously been constructed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is: improvements in detector head microwave transmission lines, solid state embedded hard drive and updated control software, and lighter air box design and other incremental mechanical improvements. In this paper we will present the latest GXD design enhancements and sample calibration data taken on the Trident laser facility at Los Alamos National Laboratory using the newly constructed instruments.

  2. Development of a Hybrid Gas Detector/Phoswich for Hard X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Pimperl, M. M.; Ramsey, B. D.; Austin, R. A.; Minamitani, T.; Weisskopf, M. C.; Grindlay, J. E.; Lum, K. S. K.; Manandhar, R. P.

    1994-01-01

    A hybrid detector is under development for use as a balloon-borne instrument in hard x-ray astronomy. The detector provides broad band coverage by coupling an optical avalanche chamber to a phoswich. The optical avalanche chamber yields superior instrument response at low energies while the scintillator takes over at the higher energies where the gas becomes transparent: at 25 keV, the addition of the gas chamber improves the energy resolution by a factor of 2.5 and the spatial resolution by a factor of 10 as compared to the stand-alone response of the phoswich. A half-scale prototype instrument is being constructed for test purposes and to help resolve a number of design questions involving the coupling of the two components.

  3. Material separation in x-ray CT with energy resolved photon-counting detectors

    PubMed Central

    Wang, Xiaolan; Meier, Dirk; Taguchi, Katsuyuki; Wagenaar, Douglas J.; Patt, Bradley E.; Frey, Eric C.

    2011-01-01

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experiments using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon

  4. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bonfigli, Francesca; Hampai, Dariush; Dabagov, Sultan B.; Montereali, Rosa Maria

    2016-08-01

    Solid-state radiation imaging detectors based on photoluminescent colour centres in lithium fluoride (LiF) crystals have been successfully tested for both advanced 2D and 3D characterizations of X-ray polycapillary optics by a table-top laboratory system. Polycapillary optics can control X-ray beams propagation and allows obtaining quasi-parallel beam (half-lens) or focused beams (full-lens). The combination of a fine-focused micro X-ray tube and a polycapillary lens can provide the high intensity radiation fluxes that are necessary for high resolution X-ray imaging. In this paper we present novel results about advanced characterization of these complex optics by 2D as well as 3D confocal laser fluorescence microscopy of X-ray irradiated LiF crystal detectors. Two dimensional high spatial resolution images on a wide field of view of transmitted X-rays through a semi-lens and 3D direct inspection of the coloured volumes produced in LiF crystals by both focused and parallel X-ray beam transmitted by a full and a semi-lens, respectively, as well as their 3D reconstructions were obtained. The results show that the photoluminescent colour centres volume in LiF crystals combined with an optical sectioning reading system provide information about tomography of transmitted X-ray beams by policapillary optics in a single exposure process. For the first time, the use of LiF crystal plates as versatile radiation imaging luminescent detectors have been used to characterize the operation of polycapillary optics as X-ray lens, in focusing and parallel mode.

  5. Optical Demonstration of a Medical Imaging System with an EMCCD-Sensor Array for Use in a High Resolution Dynamic X-ray Imager.

    PubMed

    Qu, Bin; Huang, Ying; Wang, Weiyuan; Sharma, Prateek; Kuhls-Gilcrist, Andrew T; Cartwright, Alexander N; Titus, Albert H; Bednarek, Daniel R; Rudin, Stephen

    2010-10-30

    Use of an extensible array of Electron Multiplying CCDs (EMCCDs) in medical x-ray imager applications was demonstrated for the first time. The large variable electronic-gain (up to 2000) and small pixel size of EMCCDs provide effective suppression of readout noise compared to signal, as well as high resolution, enabling the development of an x-ray detector with far superior performance compared to conventional x-ray image intensifiers and flat panel detectors. We are developing arrays of EMCCDs to overcome their limited field of view (FOV). In this work we report on an array of two EMCCD sensors running simultaneously at a high frame rate and optically focused on a mammogram film showing calcified ducts. The work was conducted on an optical table with a pulsed LED bar used to provide a uniform diffuse light onto the film to simulate x-ray projection images. The system can be selected to run at up to 17.5 frames per second or even higher frame rate with binning. Integration time for the sensors can be adjusted from 1 ms to 1000 ms. Twelve-bit correlated double sampling AD converters were used to digitize the images, which were acquired by a National Instruments dual-channel Camera Link PC board in real time. A user-friendly interface was programmed using LabVIEW to save and display 2K × 1K pixel matrix digital images. The demonstration tiles a 2 × 1 array to acquire increased-FOV stationary images taken at different gains and fluoroscopic-like videos recorded by scanning the mammogram simultaneously with both sensors. The results show high resolution and high dynamic range images stitched together with minimal adjustments needed. The EMCCD array design allows for expansion to an M×N array for arbitrarily larger FOV, yet with high resolution and large dynamic range maintained.

  6. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  7. Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range

    DOEpatents

    Smith, Peter D.; Claytor, Thomas N.; Berry, Phillip C.; Hills, Charles R.

    2010-10-12

    An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

  8. Toward Directly-Deposited Optical Blocking Filters for High-performance, Back-illuminated Imaging X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Bautz, Mark W.; Kissel, S. E.; Ryu, K.; Suntharalingam, V.

    2014-01-01

    Silicon X-ray detectors require optical blocking filters to prevent out-of-band (UV, visible and near-IR) radiation from corrupting the X-ray signal. Traditionally, blocking filters have been deposited on thin, free-standing membranes suspended over the detector. Free-standing filters are fragile, however, and in past instruments have required heavy and complex vacuum housings to protect them from acoustic loads during ground operations and launch. A directly-deposited blocking filter greatly simplifies the instrument and in principle permits better soft X-ray detection efficiency than a traditional free-standing filter. Directly-deposited filters have flown in previous generation instruments (e.g. the XMM/Newton Reflection Grating Spectrometer) but none has yet been demonstrated on a modern, high-performance back-illuminated X-ray CCD. We report here on the status of our NASA-funded Strategic Astrophysics Technology program to demonstrate such filters.

  9. Study of solid-conversion gaseous detector based on GEM for high energy X-ray industrial CT.

    PubMed

    Zhou, Rifeng; Zhou, Yaling

    2014-01-01

    The general gaseous ionization detectors are not suitable for high energy X-ray industrial computed tomography (HEICT) because of their inherent limitations, especially low detective efficiency and large volume. The goal of this study was to investigate a new type of gaseous detector to solve these problems. The novel detector was made by a metal foil as X-ray convertor to improve the conversion efficiency, and the Gas Electron Multiplier (hereinafter "GEM") was used as electron amplifier to lessen its volume. The detective mechanism and signal formation of the detector was discussed in detail. The conversion efficiency was calculated by using EGSnrc Monte Carlo code, and the transport course of photon and secondary electron avalanche in the detector was simulated with the Maxwell and Garfield codes. The result indicated that this detector has higher conversion efficiency as well as less volume. Theoretically this kind of detector could be a perfect candidate for replacing the conventional detector in HEICT.

  10. Taheri-Saramad x-ray detector (TSXD): A novel high spatial resolution x-ray imager based on ZnO nano scintillator wires in polycarbonate membrane

    SciTech Connect

    Taheri, A. Saramad, S.; Ghalenoei, S.; Setayeshi, S.

    2014-01-15

    A novel x-ray imager based on ZnO nanowires is designed and fabricated. The proposed architecture is based on scintillation properties of ZnO nanostructures in a polycarbonate track-etched membrane. Because of higher refractive index of ZnO nanowire compared to the membrane, the nanowire acts as an optical fiber that prevents the generated optical photons to spread inside the detector. This effect improves the spatial resolution of the imager. The detection quantum efficiency and spatial resolution of the fabricated imager are 11% and <6.8 μm, respectively.

  11. Static and Time-Resolved 10-1000 ke V X-Ray Imaging Detector Options for NIF

    SciTech Connect

    Landen, O; Bell, P; McDonald, J; Park, H; Weber, F; Moody, J; Lowry, M; Stewart, R

    2004-04-15

    High energy (> 10 keV) x-ray self-emission imaging and radiography will be essential components of many NIF High Energy Density Physics experiments. In preparation for such experiments, we have evaluated the pros and cons of various static (x-ray film, bare CCD, and scintillator + CCD) and time-resolved (streaked and gated) 10-1000 keV detectors.

  12. Static and time-resolved 10-1000 keV x-ray imaging detector options for NIF

    SciTech Connect

    Landen, O.L.; Bell, P.M.; McDonald, J.W.; Park, H.-S.; Weber, F.; Moody, J.D.; Lowry, M.E.; Stewart, R.E.

    2004-10-01

    High energy (>10 keV) x-ray self-emission imaging and radiography will be essential components of many NIF high energy density physics experiments. In preparation for such experiments, we have evaluated the pros and cons of various static [x-ray film, bare charge-coupled device (CCD), and scintillator + CCD] and time-resolved (streaked and gated) 10-1000 keV detectors.

  13. Investigating radial wire array Z pinches as a compact x-ray source on the Saturn generator

    DOE PAGES

    Ampleford, David J.; Bland, S. N.; Jennings, Christopher A.; ...

    2015-08-27

    Radial wire array z pinches, where wires are positioned radially outward from a central cathode to a concentric anode, can act as a compact bright x-ray source that could potentially be used to drive a hohlraum. Experiments were performed on the 7-MA Saturn generator using radial wire arrays. These experiments studied a number of potential risks in scaling radial wire arrays up from the 1-MA level, where they have been shown to be a promising compact X-ray source. Data indicates that at 7 MA, radial wire arrays can radiate ~9 TW with 10-ns full-width at half-maximum from a compact pinch.

  14. Non-Gaussian noise in x-ray and γ-ray detectors

    NASA Astrophysics Data System (ADS)

    Chen, Liying; Barrett, Harrison H.

    2005-04-01

    Image statistics are usually modeled as Poisson in γ-ray imaging and as Gaussian in x-ray imaging. In nuclear medicine, event-driven detectors analyze the pulses from every absorbed gamma photon individually; the resulting images rigorously obey Poisson statistics but are approximately Gaussian when the mean number of counts per pixel is large. With integrating detectors, as in digital radiography, each x-ray photon makes a contribution to the image proportional to its pulse height. One pixel senses many photons in long exposures, so the image statistics approach Gaussian by the central limit theorem (CLT). If the exposure time is short enough, however, each pixel will usually respond to no more than one photon, and we can separate individual photons for position estimation. Integrating detectors are therefore event-driven when we use many short-exposure frames rather than one long exposure. In intermediate exposures, the number of photons in one pixel is too small to invoke CLT and apply Gaussian statistics, yet too large to identify individual photons and apply Poisson statistics. In this paper, we analyze the image quality in this intermediate case. Image quality is defined for detection tasks performed by the ideal observer. Because the frames in a data set are independent of each other, the probability density function (PDF) of the whole data set is a product of the frame PDFs. The log-likelihood ratio λ of the ideal observer is thus a sum across the frames and has Gaussian statistics even with non-Gaussian images. We compare the ideal observer's performance with the Hotelling observer's performance under this approximation. A data-thresholding technique to improve Hotelling observer's performance is also discussed.

  15. Higher-order diffraction suppression of free-standing quasiperiodic nanohole arrays in the x-ray region

    NASA Astrophysics Data System (ADS)

    Li, Hailiang; Shi, Lina; Wei, Lai; Xie, Changqing; Cao, Leifeng

    2017-01-01

    Nanohole array is particularly advantageous for light field manipulation. Here, we report a strategy to mimic the function of x-ray transmission gratings with free-standing quasiperiodic nanohole array. An analytical description is developed to reveal the physical mechanism of the free-standing quasiperiodic nanohole array that reduces higher-order contamination, and is verified by rigorous numerical simulations. An x-ray free-standing quasiperiodic nanohole array consisting of 1.6 × 109 nanoholes over an active area of 10 mm × 10 mm was fabricated. Experimental results of near-complete suppression of higher-order diffractions were obtained in the x-ray region. The capability to separate multiple overlapping orders makes this kind of nanohole array attractive for future development and application of high-resolution spectroscopy.

  16. Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Morgan, K. M.; Pappas, C. G.; Reintsema, C. N.; Swetz, D. S.; Ullom, J. N.; Irwin, K. D.; Akamatsu, H.; Gottardi, L.; den Hartog, R.; Jackson, B. D.; van der Kuur, J.; Barret, D.; Peille, P.

    2016-07-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 keV. The instrument will provide unprecedented spectral resolution of 2.5 eV at energies of up to 7 keV and will accommodate photon fluxes of 1 mCrab (90 cps) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28" pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 × 18 small pixel array (SPA) of 2" pixels in the central 36" region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 mCrab (900 cps) or alternately for improved spectral performance (< 1.5 eV) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  17. Physiologically gated microbeam radiation using a field emission x-ray source array

    SciTech Connect

    Chtcheprov, Pavel E-mail: zhou@email.unc.edu; Burk, Laurel; Inscoe, Christina; Ger, Rachel; Hadsell, Michael; Lu, Jianping; Yuan, Hong; Zhang, Lei; Chang, Sha; Zhou, Otto E-mail: zhou@email.unc.edu

    2014-08-15

    Purpose: Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. Methods: The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280 μm wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic{sup ©} films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only during a

  18. New BNL 3D-Trench Electrode Si Detectors for Radiation Hard Detectors for sLHC and for X-ray Applications

    SciTech Connect

    Li Z.

    2011-05-11

    . Since the large electrode spacing (up to 500 {micro}m) can be realized in the 3D-Trench electrode detector due to their advantage of greatly reduced full depletion voltage, detectors with large pixel cells (therefore small dead volume) can be made for applications in photon science (e.g. X-ray).

  19. A novel solution to the gated x-ray detector gain droop problem.

    PubMed

    Oertel, J A; Archuleta, T N

    2014-11-01

    Microchannel plate (MCP), microstrip transmission line based, gated x-ray detectors used at the premier ICF laser facilities have a drop in gain as a function of mircostrip length that can be greater than 50% over 40 mm. These losses are due to ohmic losses in a microstrip coating that is less than the optimum electrical skin depth. The electrical skin depth for a copper transmission line at 3 GHz is 1.2 μm while the standard microstrip coating thickness is roughly half a single skin depth. Simply increasing the copper coating thickness would begin filling the MCP pores and limit the number of secondary electrons created in the MCP. The current coating thickness represents a compromise between gain and ohmic loss. We suggest a novel solution to the loss problem by overcoating the copper transmission line with five electrical skin depths (∼6 μm) of Beryllium. Beryllium is reasonably transparent to x-rays above 800 eV and would improve the carrier current on the transmission line. The net result should be an optically flat photocathode response with almost no measurable loss in voltage along the transmission line.

  20. A novel solution to the gated x-ray detector gain droop problem

    SciTech Connect

    Oertel, J. A. Archuleta, T. N.

    2014-11-15

    Microchannel plate (MCP), microstrip transmission line based, gated x-ray detectors used at the premier ICF laser facilities have a drop in gain as a function of mircostrip length that can be greater than 50% over 40 mm. These losses are due to ohmic losses in a microstrip coating that is less than the optimum electrical skin depth. The electrical skin depth for a copper transmission line at 3 GHz is 1.2 μm while the standard microstrip coating thickness is roughly half a single skin depth. Simply increasing the copper coating thickness would begin filling the MCP pores and limit the number of secondary electrons created in the MCP. The current coating thickness represents a compromise between gain and ohmic loss. We suggest a novel solution to the loss problem by overcoating the copper transmission line with five electrical skin depths (∼6 μm) of Beryllium. Beryllium is reasonably transparent to x-rays above 800 eV and would improve the carrier current on the transmission line. The net result should be an optically flat photocathode response with almost no measurable loss in voltage along the transmission line.

  1. The ``RAPID'' high rate large area X-ray detector system

    NASA Astrophysics Data System (ADS)

    Lewis, R. A.; Helsby, W. I.; Jones, A. O.; Hall, C. J.; Parker, B.; Sheldon, J.; Clifford, P.; Hillen, M.; Sumner, I.; Fore, N. S.; Jones, R. W. M.; Roberts, K. M.

    1997-02-01

    The multiwire proportional counter (MWPC) is a well-established device for capturing X-ray images from synchrotron sources and is particularly well suited to dynamic experiments. Its advantages include, almost zero noise, high dynamic range limited only by the electronic memory depth, large area and time resolutions of microseconds. It does however have some limitations, notably in global and local count rate performance. The RAPID two-dimensional detector system delivers a more than twentyfold increase in throughput over present systems. It comprises a "wire MicroGap" detector, which has much higher count rate performance than coventional MWPCs and a sophisticated multi-channel data acquisition system. The system has a global count rate capability of greater than 2 × 10 7 photons s -1 with a maximum local count rate of ˜10 6 photons mm -2s -1. A spatial resolution of ˜200 μm, over an active area of 12.8 × 12.8 cm, has been achieved which compares well with exiting read-out systems. Each electrode of the detector is instrumented with a preamplifier and ADC and the position of the event is determined independently in X and Y by centroiding the induced charge distribution. The X and Y coordinates are correlated using a unique time stamp. This paper described the design and performance of the detector and read-out system and presents some recent beamline results.

  2. Beamline fast and automatic attenuation system for X-Ray detectors at Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Renaud, G.; Garreau, Y.; Betinelli, P.; Tournieux, A.; Bisou, J.; Monteiro, P.; Elattaoui, X.

    2013-03-01

    Attenuators are commonly used on beamlines to control incident photon flux. Attenuators are mainly controlled by software. In some experimental cases using various diffraction techniques, this architecture is not fast enough to manage high flux variation. The fast attenuation system inserts and extracts filters quickly, allowing very fast beam attenuation at the maximum rate allowed by the filter mechanism and the beam detector response. To build the solution, we used an off-the-shelf CPCI General Purpose board (GPIO) from TEWS that is based on a SPARTAN-3 Xilinx FPGA: We have developed a daughter board and an embedded VHDL program. The logic is dedicated to maintaining incident detector photon flux within an acceptable range for optimized measurements and protecting the X ray detector against over-exposure. This system is part of a continuous scan process. Some low level process logic is also embedded in order to optimize data exchange. During continuous scanning, this process allows each experimental data item collected to be associated with its corresponding photon flux value. This system is in operation on the SIXS beamline and will be soon installed on the DIFFABS beamline. This paper describes the principle and the results obtained with this solution and the possible improvements and perspectives (interfacing more complex detectors such as XPad).

  3. Neutron Induced Backgrounds In the MIXE X-Ray Detector at Balloon Altitudes

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Dietz, K. L.; Ramsey, B. D.

    1997-01-01

    The MIXE detector developed at NASA/MSFC is designed for x-ray astronomy and consists of a multiwire proportional counter sensitive to photons less than 150 keV. The detector has been flown on several balloon flights with higher than expected background levels observed. Previous predictions of the detector background due to atmospheric gamma-ray and cosmic diffuse sources were much less (factor of 3) than flight background measurements. The work reported here was undertaken to determine if the additional contribution from gamma-rays generated by albedo and cosmic-ray induced neutrons in the detector and payload assembly could account for the background levels observed. Monte Carlo nuclear interaction and radiation transport simulations were made for the ambient cosmic-ray environment corresponding to a previous MEE balloon flight at 3 g/cm(exp 2) residual atmosphere and 42 N geomagnetic latitude. The omnidirectional albedo neutron spectrum and the GCR proton spectrum which were used as input to the calculations are shown. For the albedo angular distribution, the predicted up/down flux ratio of 2.5 was used together with the angular dependence measured by Preszler, et al.

  4. Characterization of coplanar grid CZT detectors with highly collimated x-ray beam

    NASA Astrophysics Data System (ADS)

    Carini, Gabriella A.; Bolotnikov, Aleksey E.; Camarda, Giuseppe S.; Wright, Gomez W.; De Geronimo, Gianluigi; Siddons, D. P.; James, Ralph B.

    2004-10-01

    CdZnTe detectors demonstrated great potentials for detection of gamma radiation. However, energy resolution of CdZnTe detectors is significantly affected by uncollected holes which have low mobility and short lifetime. To overcome this deleterious effects upon energy resolution special detector designs have to be implemented. The most practical of them are the small pixel effect device, the co-planar grid device, and the virtual Frisch-grid device. We routinely use a highly collimated high-intensity X-ray beams provided by National Synchrotron Light Source (NSLS) facility at Brookhaven National Laboratory to study of CdZnTe material and performances of the different types of devices on the micron-scale. This powerful tool allows us to evaluate electronic properties of the material, device performance, uniformity of the detector responses, effects related to the device's contact pattern and electric field distribution, etc. In particular, in this paper we present new results obtained from the performance studies of 15 x 15 x 7.5 mm3 coplanar-grid devices coupled to readout ASIC. We observed the effect of the strip contacts comprising the grids on the energy resolution of the coplanar-grid device.

  5. Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.

    1991-01-01

    The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.

  6. A comparison of x-ray detectors for mouse CT imaging

    NASA Astrophysics Data System (ADS)

    Goertzen, Andrew L.; Nagarkar, Vivek; Street, Robert A.; Paulus, Michael J.; Boone, John M.; Cherry, Simon R.

    2004-12-01

    There is significant interest in using computed tomography (CT) for in vivo imaging applications in mouse models of disease. Most commercially available mouse x-ray CT scanners utilize a charge-coupled device (CCD) detector coupled via fibre optic taper to a phosphor screen. However, there has been little research to determine if this is the optimum detector for the specific task of in vivo mouse imaging. To investigate this issue, we have evaluated four detectors, including an amorphous selenium (a-Se) detector, an amorphous silicon (a-Si) detector with a gadolinium oxysulphide (GOS) screen, a CCD with a 3:1 fibre taper and a GOS screen, and a CCD with a 2:1 fibre taper and both GOS and thallium-doped caesium iodide (CsI:Tl) screens. The detectors were evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), stability over multiple exposures, and noise in reconstructed CT images. The a-Se detector had the best MTF and the highest DQE (0.6 at 0 lp mm-1) but had the worst stability (45% reduction after 2000 exposure frames). The a-Si detector and the CCD with the 3:1 fibre, both of which used the GOS screen, had very similar performance with a DQE of approximately 0.30 at 0 lp mm-1. For the CCD with the 2:1 fibre, the CsI:Tl screen resulted in a nearly two-fold improvement in DQE over the GOS screen (0.4 versus 0.24 at 0 lp mm-1). The CCDs both had the best stability, with less than a 1% change in pixel values over multiple exposures. The pixel values of the a-Si detector increased 5% over multiple exposures due to the effects of image lag. Despite the higher DQE of the a-Se detector, the reconstructed CT images acquired with the a-Si detector had lower noise levels, likely due to the blurring effects from the phosphor screen.

  7. A comparison of x-ray detectors for mouse CT imaging.

    PubMed

    Goertzen, Andrew L; Nagarkar, Vivek; Street, Robert A; Paulus, Michael J; Boone, John M; Cherry, Simon R

    2004-12-07

    There is significant interest in using computed tomography (CT) for in vivo imaging applications in mouse models of disease. Most commercially available mouse x-ray CT scanners utilize a charge-coupled device (CCD) detector coupled via fibre optic taper to a phosphor screen. However, there has been little research to determine if this is the optimum detector for the specific task of in vivo mouse imaging. To investigate this issue, we have evaluated four detectors, including an amorphous selenium (a-Se) detector, an amorphous silicon (a-Si) detector with a gadolinium oxysulphide (GOS) screen, a CCD with a 3:1 fibre taper and a GOS screen, and a CCD with a 2:1 fibre taper and both GOS and thallium-doped caesium iodide (CsI:Tl) screens. The detectors were evaluated by measuring the modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), stability over multiple exposures, and noise in reconstructed CT images. The a-Se detector had the best MTF and the highest DQE (0.6 at 0 lp mm(-1)) but had the worst stability (45% reduction after 2000 exposure frames). The a-Si detector and the CCD with the 3:1 fibre, both of which used the GOS screen, had very similar performance with a DQE of approximately 0.30 at 0 lp mm(-1). For the CCD with the 2:1 fibre, the CsI:Tl screen resulted in a nearly two-fold improvement in DQE over the GOS screen (0.4 versus 0.24 at 0 lp mm(-1)). The CCDs both had the best stability, with less than a 1% change in pixel values over multiple exposures. The pixel values of the a-Si detector increased 5% over multiple exposures due to the effects of image lag. Despite the higher DQE of the a-Se detector, the reconstructed CT images acquired with the a-Si detector had lower noise levels, likely due to the blurring effects from the phosphor screen.

  8. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector

    SciTech Connect

    Baker, Jessica L; Jimison, Leslie H; Mannsfeld, Stefan; Volkman, Steven; Yin, Shong; Subramanian, Vivek; Salleo, Alberto; Alivisatos, A Paul; Toney, Michael F

    2010-02-19

    As thin films become increasingly popular (for solar cells, LEDs, microelectronics, batteries), quantitative morphological information is needed to predict and optimize the film's electronic, optical and mechanical properties. This quantification can be obtained quickly and easily with X-ray diffraction using an area detector and synchrotron radiation in two simple geometries. In this paper, we describe a methodology for constructing complete pole figures for thin films with fiber texture (isotropic in-plane orientation). We demonstrate this technique on semicrystalline polymer films, self-assembled nanoparticle semiconductor films, and randomly-packed metallic nanoparticle films. This method can be immediately implemented to help understand the relationship between film processing and microstructure, enabling the development of better and less expensive electronic and optoelectronic devices.

  9. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    PubMed Central

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  10. Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector.

    PubMed

    Baker, Jessy L; Jimison, Leslie H; Mannsfeld, Stefan; Volkman, Steven; Yin, Shong; Subramanian, Vivek; Salleo, Alberto; Alivisatos, A Paul; Toney, Michael F

    2010-06-01

    As thin films become increasingly popular (for solar cells, LEDs, microelectronics, batteries), quantitative morphological and crystallographic information is needed to predict and optimize the film's electrical, optical, and mechanical properties. This quantification can be obtained quickly and easily with X-ray diffraction using an area detector in two sample geometries. In this paper, we describe a methodology for constructing complete pole figures for thin films with fiber texture (isotropic in-plane orientation). We demonstrate this technique on semicrystalline polymer films, self-assembled nanoparticle semiconductor films, and randomly packed metallic nanoparticle films. This method can be immediately implemented to help understand the relationship between film processing and microstructure, enabling the development of better and less expensive electronic and optoelectronic devices.

  11. Performance optimization for hard X-ray/soft gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Harrison, Fiona A.; Kahn, Steven M.; Hailey, Charles J.; Ziock, Klaus P.

    1990-01-01

    This paper discusses the optimization of the performance of imaging scintillation detectors used in the hard X-ray/soft gamma-ray (20-300) keV region of the spectrum. In these devices, absorption of an incident gamma-ray within an alkali halide crystal induces a scintillation light distribution which is centroided by an imaging photomultiplier tube mounted to the crystal. The ultimate imaging resolution is strongly affected by the detailed propagation of the scintillation light within the crystal and at the interface between the crystal and the phototube face plate. A number of refined techniques for preparing the scintillation crystals so as to optimize the imaging resolution have been investigated. The results indicate very good agreement with relatively simple models of the light propagation. It is shown that it is possible to achieve resolution consistent with the most optimistic models.

  12. Stationary intraoral digital tomosynthesis using a carbon nanotube X-ray source array

    PubMed Central

    Tucker, A W; Gaalaas, L R; Wu, G; Platin, E; Mol, A; Lu, J; Zhou, O

    2015-01-01

    Objectives: Intraoral dental tomosynthesis and closely related tuned-aperture CT (TACT) are low-dose three-dimensional (3D) imaging modalities that have shown improved detection of multiple dental diseases. Clinical interest in implementing these technologies waned owing to their time-consuming nature. Recently developed carbon nanotube (CNT) X-ray sources allow rapid multi-image acquisition without mechanical motion, making tomosynthesis a clinically viable technique. The objective of this investigation was to evaluate the feasibility of and produce high-quality images from a digital tomosynthesis system employing CNT X-ray technology. Methods: A test-bed stationary intraoral tomosynthesis unit was constructed using a CNT X-ray source array and a digital intraoral sensor. The source-to-image distance was modified to make the system comparable in image resolution to current two-dimensional intraoral radiography imaging systems. Anthropomorphic phantoms containing teeth with simulated and real caries lesions were imaged using a dose comparable to D-speed film dose with a rectangular collimation. Images were reconstructed and analysed. Results: Tomosynthesis images of the phantom and teeth specimen demonstrated perceived image quality equivalent or superior to standard digital images with the added benefit of 3D information. The ability to “scroll” through slices in a buccal–lingual direction significantly improved visualization of anatomical details. In addition, the subjective visibility of dental caries was increased. Conclusions: Feasibility of the stationary intraoral tomosynthesis is demonstrated. The results show clinical promise and suitability for more robust observer and clinical studies. PMID:26090933

  13. Energy calibration and gain correction of pixelated spectroscopic x-ray detectors using correlation optimised warping

    NASA Astrophysics Data System (ADS)

    Egan, C. K.; Scuffham, J. W.; Veale, M. C.; Wilson, M. D.; Seller, P.; Cernik, R. J.

    2017-01-01

    We describe the implementation of a reliable, robust and flexible gain correction and energy calibration algorithm for pixelated spectroscopic x-ray detectors. This algorithm uses a data processing method known as correlation optimised warping which aligns shifted datasets by means of a segmental linear stretching and compression of the spectral data in order to best correlate with a reference spectrum. We found the algorithm to be very robust against low-count spectroscopy, and was reliable in a range of different spectroscopic applications. Analysis of the integrated spectrum over all pixels for a Cerium K-alpha x-ray emission (at 34.72 keV) yielded a peak width of 2.45 keV before alignment and 1.11 keV after alignment. This compares favourably with the best in class pixel peak width of 0.76 keV and the mean peak width for all pixels of 1.00 keV. We also found the algorithm to be more user friendly than other peak-search algorithms because there is less external input. A key advantage of this algorithm is that it requires no prior knowledge of the input spectral characteristics, shape or quality of the data. This therefore lends itself to being useful for in-line processing and potentially removes the need for a separate calibration standard (e.g. a radioactive source). This algorithm can be used for any system that simultaneously collects large numbers of spectral data—including multi-element detectors.

  14. ISS-Lobster: a low-cost wide-field X-ray transient detector on the ISS

    NASA Astrophysics Data System (ADS)

    Petre, Robert; Camp, Jordan; Barthelmy, Scott; Gehrels, Neil; Racusin, Judith; Marshall, Frank; Ptak, Andrew

    2015-04-01

    ISS-Lobster is a wide-field X-ray transient detector proposed to be deployed on the International Space Station. Through its unique imaging X-ray optics that allow a 30 deg by 30 deg FoV, a 1 arc min position resolution and a 10-11 erg/(sec cm2) sensitivity in 2000 sec, ISS-Lobster will observe numerous events per year of X-ray transients related to compact objects, including: tidal disruptions of stars, supernova shock breakouts, neutron star bursts and superbursts, high redshift Gamma-Ray Bursts, and perhaps most exciting, X-ray counterparts of gravitational wave detections involving stellar mass and possibly supermassive black holes. The mission includes a 3-axis gimbal system that allows fast Target of Opportunity pointing, and a small gamma-ray burst monitor to be contributed by the Technion (Israel Institute of Technology).

  15. Soft x ray window encapsulant for HgI2 detectors

    NASA Technical Reports Server (NTRS)

    Entine, G.; Shah, K.; Squillante, M.

    1987-01-01

    HgI2 is an excellent semiconductor material for a low energy, room temperature x-ray spectrometer. The high values of the atomic numbers for its constituent elements gives high x-ray and gamma ray stopping power. The band gap of HgI2 is significantly higher than other commonly used semiconductors. Owing to the large value band gap, the leakage current for HgI2 devices is smaller, thus allowing low noise performance. Devices fabricated from HgI2 crystals have demonstrated energy resolution sufficient to distinguish the x-ray emission from the neighboring elements on the periodic table. Also the power requirements of HgI2 are very low. These characteristics make a HgI2 spectrometer an ideal component in a satellite based detection system. Unfortunately, HgI2 crystals tend to deteriorate with time, even if protected by standard semiconductor encapsulants. This degradation ruins the performance of the device in terms of its energy resolution and pulse amplitude. The degrading mechanism is believed to be material loss occurring from below the electrodes, due to high vapor pressure of HgI2 at room temperature. To address this major obstacle to rapid expansion of HgI2 technology, a research program aimed at improving device stability by encapsulation with inert polymeric materials was carried out. The program focused specifically on optimizing the encapsulant materials and their deposition techniques. The principal objectives for this program were device encapsulation, device testing, and accelerated testing to ensure very long term stability of these high resolution sensors. A variety of encapsulants were investigated with the selection criteria based on their chemical diffusion barrier properties, mechanical stability, reactivity, and morphology of encapsulant films. The investigation covered different classes of encapsulants including solvent based encapsulants, vapor deposited encapsulants, and plasma polymerized encapsulants. A variety of characterization techniques

  16. Imaging X-ray detector front-end with high dynamic range: IDeF-X HD

    NASA Astrophysics Data System (ADS)

    Gevin, O.; Lemaire, O.; Lugiez, F.; Michalowska, A.; Baron, P.; Limousin, O.; Delagnes, E.

    2012-12-01

    Presented circuit, IDeF-X HD (Imaging Detector Front-end) is a member of the IDeF-X ASICs family for space applications. It has been optimized for a half millimeter pitch CdTe or CdZnTe pixelated detector arranged in 16×16 array. It is aimed to operate in the hard X-ray range from few keV up to 250 keV or more. The ASIC has been realized in AMS 0.35 μm CMOS process. The IDeF-X HD is a 32 channel analog front-end with self-triggering capability. The architecture of the analog channel includes a chain of charge sensitive amplifier with continuous reset system and non-stationary noise suppressor, adjustable gain stage, pole-zero cancellation stage, adjustable shaping time low pass filter, baseline holder and peak detector with discriminator. The power consumption of the IDeF-X HD is 800 μW per channel. With the in-channel variable gain stage the nominal 250 keV dynamic range of the ASIC can be extended up to 1 MeV anticipating future applications using thick sensors. Measuring the noise performance without a detector at the input with minimized leakage current (programmable) at the input, we achieved ENC of 33 electrons rms at 10.7 μs peak time. Measurements with CdTe detector show good energy resolution FWHM of 1.1 keV at 60 keV and 4.3 keV at 662 keV with detection threshold below 4 keV. In addition, an absolute temperature sensor has been integrated with resolution of 1.5 °C.

  17. Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for Solar Physics and Astrophysics

    NASA Technical Reports Server (NTRS)

    Bandler, S. R.; Adams, J. S.; Bailey, C. N.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; Kilbourne, C. A.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We are developing small-pixel transition-edge-sensor (TES) for solar physics and astrophysics applications. These large format close-packed arrays are fabricated on solid silicon substrates and are designed to accommodate count-rates of up to a few hundred counts/pixel/second at a FWHM energy resolution approximately 2 eV at 6 keV. We have fabricated versions that utilize narrow-line planar and stripline wiring. We present measurements of the performance and uniformity of kilo-pixel arrays, incorporating TESs with single 65-micron absorbers on a 7s-micron pitch, as well as versions with more than one absorber attached to the TES, 4-absorber and 9-absorber "Hydras". We have also fabricated a version of this detector optimized for lower energies and lower count-rate applications. These devices have a lower superconducting transition temperature and are operated just above the 40mK heat sink temperature. This results in a lower heat capacity and low thermal conductance to the heat sink. With individual single pixels of this type we have achieved a FWHM energy resolution of 0.9 eV with 1.5 keV Al K x-rays, to our knowledge the first x-ray microcalorimeter with sub-eV energy resolution. The 4-absorber and 9-absorber versions of this type achieved FWHM energy resolutions of 1.4 eV and 2.1 eV at 1.5 keV respectively. We will discuss the application of these devices for new astrophysics mission concepts.

  18. Perspectives of medical X-ray imaging

    NASA Astrophysics Data System (ADS)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  19. Field demonstration of a portable, X-ray, K-edge heavy-metal detector

    SciTech Connect

    Jensen, T.; Aljundi, T.; Whitmore, C.; Zhong, H.; Gray, J.N.

    1997-03-31

    Under the Characterization, Monitoring, and Sensor Technology Crosscutting Program, the authors have designed and built a K-edge heavy metal detector that measures the level of heavy metal contamination inside closed containers in a nondestructive, non-invasive way. The device employs a volumetric technique that takes advantage of the X-ray absorption characteristics of heavy elements, and is most suitable for characterization of contamination inside pipes, processing equipment, closed containers, and soil samples. The K-edge detector is a fast, efficient, and cost-effective in situ characterization tool. More importantly, this device will enhance personnel safety while characterizing radioactive and toxic waste. The prototype K-edge system was operated at the Materials and Chemistry Laboratory User Facility at the Oak Ridge K-25 Site during February 1997. Uranium contaminated pipes and valves from a UF{sub 6} feed facility were inspected using the K-edge technique as well as a baseline nondestructive assay method. Operation of the K-edge detector was demonstrated for uranium contamination ranging from 10 to 6,000 mg/cm{sup 2} and results from the K-edge measurements were found to agree very well with nondestructive assay measurements.

  20. The Speedster-EXD- A New Event-Driven Hybrid CMOS X-ray Detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.

    2016-01-01

    The Speedster-EXD is a new 64×64 pixel, 40-μm pixel pitch, 100-μm depletion depth hybrid CMOS x-ray detector with the capability of reading out only those pixels containing event charge, thus enabling fast effective frame rates. A global charge threshold can be specified, and pixels containing charge above this threshold are flagged and read out. The Speedster detector has also been designed with other advanced in-pixel features to improve performance, including a low-noise, high-gain capacitive transimpedance amplifier that eliminates interpixel capacitance crosstalk (IPC), and in-pixel correlated double sampling subtraction to reduce reset noise. We measure the best energy resolution on the Speedster-EXD detector to be 206 eV (3.5%) at 5.89 keV and 172 eV (10.0%) at 1.49 keV. The average IPC to the four adjacent pixels is measured to be 0.25%±0.2% (i.e., consistent with zero). The pixel-to-pixel gain variation is measured to be 0.80%±0.03%, and a Monte Carlo simulation is applied to better characterize the contributions to the energy resolution.

  1. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    SciTech Connect

    Lyubimov, Artem Y.; Murray, Thomas D.; Koehl, Antoine; Araci, Ismail Emre; Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Cohen, Aina E.; Soltis, S. Michael; Baxter, Elizabeth L.; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Berger, James M.

    2015-04-01

    A microfluidic platform has been developed for the capture and X-ray analysis of protein microcrystals, affording a means to improve the efficiency of XFEL and synchrotron experiments. X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.

  2. Fast electron temperature measurements using a 'multicolor' optical soft x-ray array

    SciTech Connect

    Delgado-Aparicio, L. F.; Stutman, D.; Tritz, K.; Finkenthal, M.; Bell, R.; Hosea, J.; Kaita, R.; LeBlanc, B.; Roquemore, L.; Wilson, J. R.

    2007-10-01

    A fast ({<=}0.1 ms) and compact 'multicolor' scintillator-based optical soft x-ray (OSXR) array has been developed for time- and space-resolved measurements of the electron temperature [T{sub e}(R,t)] profiles in magnetically confined fusion plasmas. The 48-channel tangential multicolor OSXR prototype was tested on the National Spherical Torus Experiment. Each sight line views the same plasma volume at the midplane (0{<=}r/a{<=}1), in three distinct energy ranges determined by beryllium foils with different thicknesses. A tangential view of the toroidally (circular) symmetric plasma allows an Abel inversion of the line-integrated SXR brightness to obtain the x-ray emissivity profiles which are then used to constrain the reconstruction of the fast T{sub e}(R,t). The first assessment of the electron temperature is obtained by modeling the slope of the continuum radiation with the ideal double-foil method using both the line-integrated intensity measurements as well as the inverted SXR emissivity profiles.

  3. Development of a CdTe pixel detector with a window comparator ASIC for high energy X-ray applications

    NASA Astrophysics Data System (ADS)

    Hirono, T.; Toyokawa, H.; Furukawa, Y.; Honma, T.; Ikeda, H.; Kawase, M.; Koganezawa, T.; Ohata, T.; Sato, M.; Sato, G.; Takagaki, M.; Takahashi, T.; Watanabe, S.

    2011-09-01

    We have developed a photon-counting-type CdTe pixel detector (SP8-01). SP8-01 was designed as a prototype of a high-energy X-ray imaging detector for experiments using synchrotron radiation. SP8-01 has a CdTe sensor of 500 μm thickness, which has an absorption efficiency of almost 100% up to 50 keV and 45% even at 100 keV. A full-custom application specific integrated circuit (ASIC) was designed as a readout circuit of SP8-01, which is equipped with a window-type discriminator. The upper discriminator realizes a low-background measurement, because X-ray beams from the monochromator contain higher-order components beside the fundamental X-rays in general. ASIC chips were fabricated with a TSMC 0.25 μm CMOS process, and CdTe sensors were bump-bonded to the ASIC chips by a gold-stud bonding technique. Beam tests were performed at SPring-8. SP8-01 detected X-rays up to 120 keV. The capability of SP8-01 as an imaging detector for high-energy X-ray synchrotron radiation was evaluated with its performance characteristics.

  4. Dynamic Conformations of Nucleosome Arrays in Solution from Small-Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Howell, Steven C.

    Chromatin conformation and dynamics remains unsolved despite the critical role of the chromatin in fundamental genetic functions such as transcription, replication, and repair. At the molecular level, chromatin can be viewed as a linear array of nucleosomes, each consisting of 147 base pairs (bp) of double-stranded DNA (dsDNA) wrapped around a protein core and connected by 10 to 90 bp of linker dsDNA. Using small-angle X-ray scattering (SAXS), we investigated how the conformations of model nucleosome arrays in solution are modulated by ionic condition as well as the effect of linker histone proteins. To facilitate ensemble modeling of these SAXS measurements, we developed a simulation method that treats coarse-grained DNA as a Markov chain, then explores possible DNA conformations using Metropolis Monte Carlo (MC) sampling. This algorithm extends the functionality of SASSIE, a program used to model intrinsically disordered biological molecules, adding to the previous methods for simulating protein, carbohydrates, and single-stranded DNA. Our SAXS measurements of various nucleosome arrays together with the MC generated models provide valuable solution structure information identifying specific differences from the structure of crystallized arrays.

  5. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays

    PubMed Central

    Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef

    2016-01-01

    This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5×105 and 8×106 photons per mm2 per second. It was observed that polarization occurs at an X-ray flux higher than 3×106 mm−2·s−1. Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect. PMID:27690024

  6. A hybrid Monte Carlo model for the energy response functions of X-ray photon counting detectors

    NASA Astrophysics Data System (ADS)

    Wu, Dufan; Xu, Xiaofei; Zhang, Li; Wang, Sen

    2016-09-01

    In photon counting computed tomography (CT), it is vital to know the energy response functions of the detector for noise estimation and system optimization. Empirical methods lack flexibility and Monte Carlo simulations require too much knowledge of the detector. In this paper, we proposed a hybrid Monte Carlo model for the energy response functions of photon counting detectors in X-ray medical applications. GEANT4 was used to model the energy deposition of X-rays in the detector. Then numerical models were used to describe the process of charge sharing, anti-charge sharing and spectral broadening, which were too complicated to be included in the Monte Carlo model. Several free parameters were introduced in the numerical models, and they could be calibrated from experimental measurements such as X-ray fluorescence from metal elements. The method was used to model the energy response function of an XCounter Flite X1 photon counting detector. The parameters of the model were calibrated with fluorescence measurements. The model was further tested against measured spectrums of a VJ X-ray source to validate its feasibility and accuracy.

  7. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays.

    PubMed

    Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef

    2016-09-27

    This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5 × 10 5 and 8 × 10 6 photons per mm 2 per second. It was observed that polarization occurs at an X-ray flux higher than 3 × 10 6 mm - 2 ·s - 1 . Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect.

  8. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    NASA Astrophysics Data System (ADS)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  9. Single crystal X-ray spectropolarimeter for HED plasmas and its use on wire array z-pinches

    NASA Astrophysics Data System (ADS)

    Wallace, Matt; Haque, Showera; Neill, Paul; Kastengren, Alan; Pereira, Nino; Presura, Radu

    2016-10-01

    When energetic electrons in a plasma have a preferred direction the resulting X-rays can be polarized. This makes plasma X-ray polarization spectroscopy, spectropolarimetry, useful for revealing information about the anisotropy of the electron velocity distribution, and X-ray spectropolarimetry has indeed been used for this in both space and laboratory plasmas. For pulsed plasmas the spectrum's polarization is typically measured by obtaining each component of polarization separately, with two crystals both at a 45 degree Bragg angle or one on successive shots. However, obtaining the two orthogonal polarizations can be done using one crystal. Crystals with hexagonal symmetry present pairs of internal planes that diffract incident X-rays in two directions that are perpendicular to each other and the incident ray. The polarization splitting properties of quartz crystals were confirmed with linearly polarized X-rays from the APS. An X-cut crystal with (10-10) planes in polarization splitting orientation is now being used on wire array z-pinches at UNR. The design of a single crystal X-ray polarimeter, and what data obtained so far indicate about the anisotropy of wire array z-pinch plasmas will be presented. Work supported by U.S. DOE, NNSA Grant DE-NA0001834 and coop. agreement DE-FC52-06NA27616. Use of APS supported by U.S. DOE, OBES, Contract No. DE-AC02-06CH11357.

  10. Non-thermal x-ray emission from wire array z-pinches

    SciTech Connect

    Ampleford, David; Hansen, Stephanie B.; Jennings, Christopher Ashley; Webb, Timothy Jay; Harper-Slaboszewicz, V.; Loisel, Guillaume Pascal; Flanagan, Timothy McGuire; Bell, Kate Suzanne; Jones, Brent M.; McPherson, Leroy A.; Rochau, Gregory A.; Chittenden, Jeremy P.; Sherlock, Mark; Appelbe, Brian; Giuliani, John; Ouart, Nicholas; Seely, John

    2015-12-01

    We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

  11. Comparison of Non-Redundant Array and Double Pinhole Coherence Measurements with Soft X-rays

    SciTech Connect

    Weil, Gabriel; /Northwestern U. /SLAC

    2006-09-11

    Experiments on the future Linac Coherent Light Source (LCLS) and other Free Electron Lasers will need to be performed on a single-shot basis. The double pinhole method of measuring spatial coherence requires a separate measurement, with a different pinhole separation distance, for each length scale sampled. This limits its utility for LCLS. A potential alternative uses a Non-Redundant Array (NRA) of apertures designed to probe the coherence over the range of length scales defined by their physical extent, in a single measurement. This approach was tested by comparing diffraction patterns from soft x-rays incident on double pinhole and NRA absorption mask structures. The double pinhole fringe visibility data serve as discrete reference points that verify the continuous spectrum of the NRA coherence data. The results present a quantitative analysis of the double pinhole coherence measurements and a qualitative comparison to the NRA images.

  12. Calibration of the Rossi X-ray Timing Explorer Proportional Counter Array

    NASA Technical Reports Server (NTRS)

    Jahoda, Keith; Markwardt, Craig B.; Radeva, Yana; Rots, Arnold H.; Stark, Michael J.; Swank, Jean H.; Strohmayer, Tod E.; Zhang, William

    2004-01-01

    We present the calibration and background model for the Proportional Counter Array (PCA) aboard the Rossi X-ray Timing Explorer (RXTE). The energy calibration is systematics limited below 10 keV with deviations from a power law fit to the Crab nebula plus pulsar loss than 1%. Unmodelled variations in the instrument background amount to less than 2% of the observed background below 10 keV and less than 1% between 10 and 20 keV. Individual photon arrival times are accurate to 4.4 microseconds at all times during the mission and to 2.5 microseconds after 29 April 1997. The peak pointing direction of the five collimators is known at few arcsecond precision.

  13. Study of soft X-ray emission during wire array implosion under plasma focus conditions at the PF-3 facility

    SciTech Connect

    Dan’ko, S. A.; Mitrofanov, K. N.; Krauz, V. I.; Myalton, V. V.; Zhuzhunashvili, A. I.; Vinogradov, V. P.; Kharrasov, A. M.; Anan’ev, S. S.; Vinogradova, Yu. V.; Kalinin, Yu. G.

    2015-11-15

    Results of measurements of soft X-ray emission with photon energies of <1 keV under conditions of a plasma focus (PF) experiment are presented. The experiments were carried out at the world’s largest PF device—the PF-3 Filippov-type facility (I ⩽ 3 MA, T/4 ≈ 15–20 µs, W{sub 0} ⩽ 3 MJ). X-ray emission from both a discharge in pure neon and with a tungsten wire array placed on the axis of the discharge chamber was detected. The wire array imploded under the action of the electric current intercepted from the plasma current sheath of the PF discharge in neon. The measured soft X-ray powers from a conventional PF discharge in gas and a PF discharge in the presence of a wire array were compared for the first time.

  14. High-performance X-ray detectors for the new powder diffraction beamline I11 at Diamond.

    PubMed

    Tartoni, Nicola; Thompson, Stephen P; Tang, Chiu C; Willis, Brian L; Derbyshire, Gareth E; Wright, Anthony G; Jaye, Stephen C; Homer, J Michael; Pizzey, John D; Bell, Anthony M T

    2008-01-01

    The design and performance characterization of a new light-weight and compact X-ray scintillation detector is presented. The detectors are intended for use on the new I11 powder diffraction beamline at the third-generation Diamond synchrotron facility where X-ray beams of high photon brightness are generated by insertion devices. The performance characteristics of these detection units were measured first using a radioactive source (efficiency of detection and background count rate) and then synchrotron X-rays (peak stability, light yield linearity and response consistency). Here, the results obtained from these tests are reported, and the suitability of the design for the Diamond powder beamline is demonstrated by presenting diffraction data obtained from a silicon powder standard using a prototype multicrystal analyser stage.

  15. Evaluation of the x-ray response of a position-sensitive microstrip detector with an integrated readout chip

    SciTech Connect

    Rossington, C.; Jaklevic, J.; Haber, C.; Spieler, H. ); Reid, J. . Dept. of Physics)

    1990-08-01

    The performance of an SVX silicon microstrip detector and its compatible integrated readout chip have been evaluated in response to Rh K{alpha} x-rays (average energy 20.5 keV). The energy and spatial discrimination capabilities, efficient data management and fast readout rates make it an attractive alternative to the CCD and PDA detectors now being offered for x-ray position sensitive diffraction and EXAFS work. The SVX system was designed for high energy physics applications and thus further development of the existing system is required to optimize it for use in practical x-ray experiments. For optimum energy resolution the system noise must be decreased to its previously demonstrated low levels of 2 keV FWHM at 60 keV or less, and the data handling rate of the computer must be increased. New readout chips are now available that offer the potential of better performance. 15 refs., 7 figs.

  16. Design Studies for a VUV--Soft X-ray Free-Electron Laser Array

    SciTech Connect

    Corlett, J.; Baptiste, K.; Byrd, J.M.; Denes, P.; Falcone, R.; Kirz, J.; McCurdy, W.; Padmore, H.; Penn, G.; Qiang, J.; Robin, D.; Sannibale, F.; Schoenlein, R.; Staples, J.; Steier, C.; Venturnini, M.; Wan, W.; Wells, R.; Wilcox, R.; Zholents, A.

    2009-08-04

    Several recent reports have identified the scientific requirements for a future soft X-ray light source [1, 2, 3, 4, 5], and a high-repetition-rate free-electron laser (FEL) facility responsive to them is being studied at Lawrence Berkeley National Laboratory (LBNL) [6]. The facility is based on a continuous-wave (CW) superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun operating in CW mode, and on an array of FELs to which the accelerated beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on the experimental requirements, the individualFELs may be configured for either self-amplified spontaneous emission (SASE), seeded highgain harmonic generation (HGHG), echo-enabled harmonic generation (EEHG), or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format ranging from sub-femtoseconds to hundreds of femtoseconds. This new light source would serve a broad community of scientists in many areas of research, similar to existing utilization of storage ring based light sources. To reduce technical risks and constructioncosts, accelerator research, development, and design studies at LBNL target the most critical components and systems of the facility. We are developing a high-repetition-rate low-emittance electron gun, high quantum efficiency photocathodes, and have embarked on design and optimization of the electron beam accelerator, FEL switchyard, and array of FELs. We continue our work on precision timing and synchronization systems critical for time-resolved experiments using pump-probe techniques.

  17. GaAs thin film epitaxy and x-ray detector development

    NASA Astrophysics Data System (ADS)

    Wynne, Dawnelle I.; Cardozo, B.; Haller, Eugene E.

    1999-10-01

    We report on the growth of high purity n-GaAs using Liquid Phase Epitaxy and on the fabrication of Schottky barrier diodes for use as x-ray detectors using these layers. Our epilayers are grown form an ultra-pure Ga solvent in a graphite boat in a hydrogen atmosphere. Growth is started at a temperature of approximately 800 degrees C; the temperature is ramped down at 2 degrees C/min. to room temperature. Our best epilayers show a net-residual-donor concentration of approximately 2 X 1012 cm-3, measured by Hall effect. Electron mobilities as high as 150,000 cm2 V-1 s-1 at 77K have been obtained. The residual donors have been analyzed by far IR photothermal ionization spectroscopy and found to be sulfur and silicon. Up to approximately 200 micrometers of epitaxial GaAs have been deposited using several sequential growth runs on semi-insulating and n+-doped substrates. Schottky barrier diodes have been fabricated using this epitaxial material and have been electrically characterized by current-voltage and capacitance-voltage measurements. The Schottky barriers are formed by electron beam evaporation of Pt films. The ohmic contacts are made by electron beam evaporated and alloyed Ni-Ge-Au films on the backside of the substrate. Several of our diodes exhibit dark currents of the order of 0.3-3.3 nA/mm2 at reverse biases depleting approximately 50 micrometers of the epilayer. Electrical characteristics and preliminary performance results of our Schottky diodes using 109Cd and 241Am gamma and x- ray radiation will be discussed.

  18. The design of hybrid x-ray detector using quantum size effect