Sample records for arrays fpas based

  1. The recent and prospective developments of cooled IR FPAs for double application at Electron NRI

    NASA Astrophysics Data System (ADS)

    Arutunov, V. A.; Vasilyev, I. S.; Ivanov, V. G.; Prokofyev, A. E.

    2003-09-01

    The recent and prospective developments of monolithic silicon IR-Schottky-barrier staring focal plane arrays (IR SB FPAs), photodetector assembly, and digital thermal imaging cameras (TICs) at Electron National Research Institute (Electron NRI) are considered. Basic parameters for IR SB FPAs with 256x256 and 512x512 pixels, and TICs based on these arrays are presented. The problems emerged while proceeding from the developments of IR SB FPAs for the wavelength range from 3 μm to 5 μm to the developments of those ones for xLWIR range are indicated (an abrupt increase in the level of background architecture). Possibility for further improvement in basic parameters of IR SB FPAs are discussed (a decrease in threshold signal power down to 0.5-1.0"1013 W/element with an increase in quantum efficiency, a decrease in output noise and proceeding to Schottky barriers of degenerated semiconductor/silicon heterojunction, and implementation of these array parameters in photodetector assembly with improved thermal background shielding taking into consideration an optical structure of TIC for concrete application). It is concluded that relative simplicity of the technology and expected low cost of monolithic silicon IR SB FPAs with basic parameters compared with hybrid IR FPAs for the wavelength ranges from 3 μm to 5 μm and from 8 μm to 12 μm maintain large monolithic IR SB FPAs as a basis for developments of double application digital TICs in the Russian Federation.

  2. Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs

    NASA Astrophysics Data System (ADS)

    Chau, Quan; Jiang, Xudong; Itzler, Mark A.; Entwistle, Mark; Piccione, Brian; Owens, Mark; Slomkowski, Krystyna

    2015-05-01

    Optical crosstalk is a major factor limiting the performance of Geiger-mode avalanche photodiode (GmAPD) focal plane arrays (FPAs). This is especially true for arrays with increased pixel density and broader spectral operation. We have performed extensive experimental and theoretical investigations on the crosstalk effects in InP-based GmAPD FPAs for both 1.06-μm and 1.55-μm applications. Mechanisms responsible for intrinsic dark counts are Poisson processes, and their inter-arrival time distribution is an exponential function. In FPAs, intrinsic dark counts and cross talk events coexist, and the inter-arrival time distribution deviates from purely exponential behavior. From both experimental data and computer simulations, we show the dependence of this deviation on the crosstalk probability. The spatial characteristics of crosstalk are also demonstrated. From the temporal and spatial distribution of crosstalk, an efficient algorithm to identify and quantify crosstalk is introduced.

  3. Simulation of Small-Pitch HgCdTe Photodetectors

    NASA Astrophysics Data System (ADS)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2017-09-01

    Recent studies indicate as an important technological step the development of infrared HgCdTe-based focal plane arrays (FPAs) with sub-wavelength pixel pitch, with the advantage of smaller volume, lower weight, and potentially lower cost. In order to assess the limits of pixel pitch scaling, we present combined three-dimensional optical and electrical simulations of long-wavelength infrared HgCdTe FPAs, with 3 μm, 5 μm, and 10 μm pitch. Numerical simulations predict significant cavity effects, brought by the array periodicity. The optical and electrical contributions to spectral inter-pixel crosstalk are investigated as functions of pixel pitch, by illuminating the FPAs with Gaussian beams focused on the central pixel. Despite the FPAs being planar with 100% pixel duty cycle, our calculations suggest that the total crosstalk with nearest-neighbor pixels could be kept acceptably small also with pixels only 3 μ m wide and a diffraction-limited optical system.

  4. Geiger-mode avalanche photodiode focal plane arrays for three-dimensional imaging LADAR

    NASA Astrophysics Data System (ADS)

    Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph

    2010-09-01

    We report on the development of focal plane arrays (FPAs) employing two-dimensional arrays of InGaAsP-based Geiger-mode avalanche photodiodes (GmAPDs). These FPAs incorporate InP/InGaAs(P) Geiger-mode avalanche photodiodes (GmAPDs) to create pixels that detect single photons at shortwave infrared wavelengths with high efficiency and low dark count rates. GmAPD arrays are hybridized to CMOS read-out integrated circuits (ROICs) that enable independent laser radar (LADAR) time-of-flight measurements for each pixel, providing three-dimensional image data at frame rates approaching 200 kHz. Microlens arrays are used to maintain high fill factor of greater than 70%. We present full-array performance maps for two different types of sensors optimized for operation at 1.06 μm and 1.55 μm, respectively. For the 1.06 μm FPAs, overall photon detection efficiency of >40% is achieved at <20 kHz dark count rates with modest cooling to ~250 K using integrated thermoelectric coolers. We also describe the first evalution of these FPAs when multi-photon pulses are incident on single pixels. The effective detection efficiency for multi-photon pulses shows excellent agreement with predictions based on Poisson statistics. We also characterize the crosstalk as a function of pulse mean photon number. Relative to the intrinsic crosstalk contribution from hot carrier luminescence that occurs during avalanche current flows resulting from single incident photons, we find a modest rise in crosstalk for multi-photon incident pulses that can be accurately explained by direct optical scattering.

  5. Design of diffractive microlens array integration with focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chen, Sihai; Yi, Xinjian; Li, Yi; He, Miao; Chen, Sixiang; Kong, Lingbin

    2000-10-01

    The IR spectrum from 3 to 5micrometers has numerous applications in both military and civil industries. High performance at high operating temperature is often important in these applications. Conventional Focal Plane Arrays (FPAs) without integration with concentrator such as microlens have poor sensitivity and low signal-to-noise ratio because of their lower fill factor. The binary optics microlens arrays reported in this paper are designed for integration with FPAs. Thus, the FPAs' fill factor, sensitivity, and signal- to-noise ratio can be improved while retaining a given image resolution and optical collection area. In the paper, we discussed the 256(Horizontal)x290(Vertical) microlens arrays designed for a center wavelength of 4micrometers , with 50micrometers (Horizontalx33micrometers (Vertical) quadrate pixel dimension and a speed (F number) of F/1.96. PtSi FPAs were fabricated on the front side of a 400-micrometers -thick Si substrate. The designed diffractive microlens arrays will be etched on the back side of the same wafer in a register fashion and it will be reported in other paper. Considering the diffraction efficiency, 8-phase-level approximation is enough. For the diffraction efficiency of 8-phase-level diffractive microlens reaches 95%. The process only need three mask-level, so we designed and fabricated three masks with the same dimension 4'x4'. Also, a set of fine verniers was designed and fabricated on each mask to allow accurate alignment during the fabrication process. Through a computer simulation, the microlens arrays are nearly diffraction limited, with the diffraction efficiency of 93%, a bit lower than the theoretical value of 95%. Introduction of microlens arrays has the ability to increase the FPAs' fill factor to 100%, while it is only about 21.6% without microlens. To our knowledge, this is the first trial of integration large area microlens arrays with FPAs at home.

  6. Recent Developments and Applications of Quantum Well Infrared Photodetector Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.

    2000-01-01

    There are many applications that require long wavelength, large, uniform, reproducible, low cost, stable, and radiation-hard infrared (IR) focal plane arrays (FPAs). For example, the absorption lines of many gas molecules, such as ozone, water, carbon monoxide, carbon dioxide, and nitrous oxide occur in the wavelength region from 3 to 18 micron. Thus, IR imaging systems that operate in the long wavelength IR (LWIR) region (6 - 18 micron) are required in many space borne applications such as monitoring the global atmospheric temperature profiles, relative humidity profiles, cloud characteristics, and the distribution of minor constituents in the atmosphere which are being planned for future NASA Earth and planetary remote sensing systems. Due to higher radiation hardness, lower 1/f noise, and larger array size the GaAs based Quantum Well Infrared Photodetector (QWIP) FPAs are very attractive for such space borne applications compared to intrinsic narrow band gap detector arrays. In this presentation we will discuss the optimization of the detector design, material growth and processing that has culminated in realization of large format long-wavelength QWIP FPAs, portable and miniature LWIR cameras, holding forth great promise for myriad applications in 6-18 micron wavelength range in science, medicine, defense and industry. In addition, we will present some system demonstrations using broadband, two-color, and high quantum efficiency long-wavelength QWIP FPAs.

  7. Detector and readout performance goals for quantum well and strained layer superlattice focal plane arrays imaging under tactical and strategic backgrounds

    NASA Astrophysics Data System (ADS)

    Bandara, Sumith V.

    2009-11-01

    Advancements in III-V semiconductor based, Quantum-well infrared photodetector (QWIP) and Type-II Strained-Layer Superlattice detector (T2SLS) technologies have yielded highly uniform, large-format long-wavelength infrared (LWIR) QWIP FPAs and high quantum efficiency (QE), small format, LWIR T2SLS FPAs. In this article, we have analyzed the QWIP and T2SLS detector level performance requirements and readout integrated circuit (ROIC) noise levels for several staring array long-wavelength infrared (LWIR) imaging applications at various background levels. As a result of lower absorption QE and less than unity photoconductive gain, QWIP FPAs are appropriate for high background tactical applications. However, if the application restricts the integration time, QWIP FPA performance may be limited by the read noise of the ROIC. Rapid progress in T2SLS detector material has already demonstrated LWIR detectors with sufficient performance for tactical applications and potential for strategic applications. However, significant research is needed to suppress surface leakage currents in order to reproduce performances at pixel levels of T2SLS FPAs.

  8. USAF Space Sensing Cryogenic Considerations

    DTIC Science & Technology

    2010-01-01

    Background IR emissions and electronic noise that is inherently present in Focal Plane Arrays (FPAs) and surveillance optics bench designs prevents their use... noise that is inherently present in Focal Plane Arrays (FPAs) and surveillance optics bench designs prevents their use unless they are cooled to...experimental or not of sufficient sensitivity for the before mentioned missions [2]. Examples include Quantum Well IR Photodetectors ( QWIP ), nanotubes

  9. Wide-area SWIR arrays and active illuminators

    NASA Astrophysics Data System (ADS)

    MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Chad; Renner, Daniel; Follman, David; Heu, Paula

    2012-01-01

    We describe the factors that go into the component choices for a short wavelength (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7°C. We have mated our InGaAs detector arrays to 640x512 readout integrated integrated circuits (ROICs) to make focal plane arrays (FPAs). In addition, we have fabricated high definition 1920x1080 FPAs for wide field of view imaging. The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0°C. FLIR has also developed a high definition, 1920x1080, 15 um pitch SWIR sensor. In addition, FLIR has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, provide artifact-free imagery versus conventional laser illuminators.

  10. Low-Light-Level InGaAs focal plane arrays with and without illumination

    NASA Astrophysics Data System (ADS)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2010-04-01

    Short wavelength IR imaging using InGaAs-based FPAs is shown. Aerius demonstrates low dark current in InGaAs detector arrays with 15 μm pixel pitch. The same material is mated with a 640x 512 CTIA-based readout integrated circuit. The resulting FPA is capable of imaging photon fluxes with wavelengths between 1 and 1.6 microns at low light levels. The mean dark current density on the FPAs is extremely low at 0.64 nA/cm2 at 10°C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling (CDS). In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide speckle-free illumination, provide artifact-free imagery versus conventional laser illuminators.

  11. Two color QWIP and extended wavebands

    NASA Astrophysics Data System (ADS)

    Costard, Eric; Truffer, Jean P.; Huet, Odile; Dua, Lydie; Nedelcu, Alexandru; Robo, J. A.; Marcadet, Xavier; Briere de l'Isle, Nadia; Bois, Philippe; Manissadjian, A.; Gohier, D.

    2007-04-01

    Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at THALES Research and Technology Laboratory. The QWIP technology allows the realization of large staring arrays for Thermal Imagers (TI) working in the long-wave infrared (LWIR) band (8-12 μm). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. The 640x512 LWIR focal plane arrays (FPAs) with 20μm pitch was the demonstration that state of the art performances can be achieved even with small pixels. This opened the field for the realization of usable and affordable megapixel FPAs. Thales Research & Technology (TRT) has been developing third generation GaAs LWIR QWIP arrays for volume manufacture of high performance low cost thermal imaging cameras. In the past, another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures to fulfil the requirements of specific applications such as very long wavelength (VLWIR) or multispectral detection. In this presentation, we present the performances of both our first 384x288, 25 μm pitch, MWIR (3-5μm) / LWIR (8-9 μm) dual-band FPAs, and the current status of QWIPs for MWIR (< 5μm) and VLWIR (>15μm) arrays.

  12. Comparison of 32 x 128 and 32 x 32 Geiger-mode APD FPAs for single photon 3D LADAR imaging

    NASA Astrophysics Data System (ADS)

    Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph

    2011-05-01

    We present results obtained from 3D imaging focal plane arrays (FPAs) employing planar-geometry InGaAsP/InP Geiger-mode avalanche photodiodes (GmAPDs) with high-efficiency single photon sensitivity at 1.06 μm. We report results obtained for new 32 x 128 format FPAs with 50 μm pitch and compare these results to those obtained for 32 x 32 format FPAs with 100 μm pitch. We show excellent pixel-level yield-including 100% pixel operability-for both formats. The dark count rate (DCR) and photon detection efficiency (PDE) performance is found to be similar for both types of arrays, including the fundamental DCR vs. PDE tradeoff. The optical crosstalk due to photon emission induced by pixel-level avalanche detection events is found to be qualitatively similar for both formats, with some crosstalk metrics for the 32 x 128 format found to be moderately elevated relative to the 32 x 32 FPA results. Timing jitter measurements are also reported for the 32 x 128 FPAs.

  13. Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.

  14. A 400 KHz line rate 2048 pixel modular SWIR linear array for earth observation applications

    NASA Astrophysics Data System (ADS)

    Anchlia, Ankur; Vinella, Rosa M.; Wouters, Kristof; Gielen, Daphne; Hooylaerts, Peter; Deroo, Pieter; Ruythooren, Wouter; van der Zanden, Koen; Vermeiren, Jan; Merken, Patrick

    2015-10-01

    In this paper, we report about a family of linear imaging FPAs sensitive in the [0.9 - 1.7um] band, developed for high speed applications such as LIDAR, wavelength references and OCT analyzers and also for earth observation applications. Fast linear FPAs can also be used in a wide variety of terrestrial applications, including high speed sorting, electro- and photo-luminesce and medical applications. The arrays are based on a modular ROIC design concept: modules of 512 pixels are stitched during fabrication to achieve 512, 1024 and 2048 pixel arrays. In principle, this concept can be extended to any multiple of 512 pixels, the limiting factor being the pixel yield of long InGaAs arrays and the CTE differences in the hybrid setup. Each 512-pixel module has its own on-chip digital sequencer, analog readout chain and 4 output buffers. This modular concept enables a long-linear array to run at a high line rate of 400 KHz irrespective of the array length, which limits the line rate in a traditional linear array. The pixel has a pitch of 12.5um. The detector frontend is based on CTIA (Capacitor Trans-impedance Amplifier), having 5 selectable integration capacitors giving full well from 62x103e- (gain0) to 40x106e- (gain4). An auto-zero circuit limits the detector bias non-uniformity to 5-10mV across broad intensity levels, limiting the input referred dark signal noise to 20e-rms for Tint=3ms at room temperature. An on-chip CDS that follows the CTIA facilitates removal of Reset/KTC noise, CTIA offsets and most of the 1/f noise. The measured noise of the ROIC is 35e-rms in gain0. At a master clock rate of 60MHz and a minimum integration time of 1.4us, the FPAs reach the highest line rate of 400 KHz.

  15. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    NASA Astrophysics Data System (ADS)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  16. Noise characteristics analysis of short wave infrared InGaAs focal plane arrays

    NASA Astrophysics Data System (ADS)

    Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei

    2017-09-01

    The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.

  17. 640x512 pixel InGaAs FPAs for short-wave infrared and visible light imaging

    NASA Astrophysics Data System (ADS)

    Shao, Xiumei; Yang, Bo; Huang, Songlei; Wei, Yang; Li, Xue; Zhu, Xianliang; Li, Tao; Chen, Yu; Gong, Haimei

    2017-08-01

    The spectral irradiance of moonlight and air glow is mainly in the wavelength region from visible to short-wave infrared (SWIR) band. The imaging over the wavelength range of visible to SWIR is of great significance for applications such as civil safety, night vision, and agricultural sorting. In this paper, 640×512 visible-SWIR InGaAs focal plane arrays (FPAs) were studied for night vision and SWIR imaging. A special epitaxial wafer structure with etch-stop layer was designed and developed. Planar-type 640×512 InGaAs detector arrays were fabricated. The photosensitive arrays were bonded with readout circuit through Indium bumps by flip-chip process. Then, the InP substrate was removed by mechanical thinning and chemical wet etching. The visible irradiance can reach InGaAs absorption layer and then to be detected. As a result, the detection spectrum of the InGaAs FPAs has been extended toward visible spectrum from 0.5μm to 1.7μm. The quantum efficiency is approximately 15% at 0.5μm, 30% at 0.7μm, 50% at 0.8μm, 90% at 1.55μm. The average peak detectivity is higher than 2×1012 cm·Hz1/2/W at room temperature with an integrated time of 10 ms. The Visible-SWIR InGaAs FPAs were applied to an imaging system for SWIR and visible light imaging.

  18. Research@ARL. Imaging & Image Processing. Volume 3, Issue 1

    DTIC Science & Technology

    2014-01-01

    goal, the focal plane arrays (FPAs) the Army deploys must excel in all areas of performance including thermal sensitivity, image resolution, speed of...are available only in relatively small sizes. Further, the difference in thermal expansion coefficients between a CZT substrate and its silicon (Si...read-out integrated circuitry reduces the reliability of large format FPAs due to repeated thermal cycling. Some in the community believed this

  19. Development of a 2K x 2K GaAs QWIP Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Jhabvala, C.; Kelly, D.; Hess, L.; Ewin, A.; La, A.; Wacynski, A.; Sun, J.; Adachi, T.; hide

    2013-01-01

    We are developing the next generation of GaAs Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) in preparation for future NASA space-borne Earth observing missions. It is anticipated that these missions will require both wider ground spatial coverage as well as higher ground imaging resolution. In order to demonstrate our capability in meeting these future goals we have taken a two-tiered approach in the next stage of advanced QWIP focal plane array development. We will describe our progress in the development of a 512 x 3,200 (512 x 3K) array format for this next generation thermal imaging array for the NASA Landsat project. However, there currently is no existing readout integrated circuit (ROIC) for this format array.so to demonstrate the ability to scale-up an existing ROIC we developed a 1,920 x 2,048 (2K x 2K) array and it hybridized to a Raytheon SB419 CTIA readout integrated circuit that was scaled up from their existing 512 x 640 SB339 ROIC. Two versions of the 512 x 3K QWIP array were fabricated to accommodate a future design scale-up of both the Indigo 9803 ROIC based on a 25 micron pixel dimension and a scale up of the Indigo 9705 ROIC based on a 30 micron pixel dimension. Neither readout for the 512 x 3K has yet to be developed but we have fabricated both versions of the array. We describe the design, development and test results of this effort as well as the specific applications these FPAs are intended to address.

  20. Large size MOEMS Fabry-Perot interferometer filter for focal plane array hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Chee, J.; Hwu, J.; Kim, T. S.; Kubby, J.; Velicu, S.; Gupta, N.

    2015-02-01

    Focal plane array (FPA) technology is mature and is widely used for imaging applications. However, FPAs have broadband responses which limit their ability to provide high performance in hyperspectral applications such as detection of buried explosives, and identifying the presence of explosive chemicals and their concentrations. EPIR is currently developing Micro-Opto-Electro-Mechanical System (MOEMS) Fabry-Perot interferometer filter (FPF) devices for FPAs. In this paper, we present our approach to MOEMS FPF design and fabrication that will meet the size requirements for large format FPA hyperspectral imaging. We also report the performance of our FPF resonance cavity, capable of up to 3 μm change gap in tens of nanometer increments.

  1. Experimental implementations of 2D IR spectroscopy through a horizontal pulse shaper design and a focal plane array detector

    PubMed Central

    Ghosh, Ayanjeet; Serrano, Arnaldo L.; Oudenhoven, Tracey A.; Ostrander, Joshua S.; Eklund, Elliot C.; Blair, Alexander F.; Zanni, Martin T.

    2017-01-01

    Aided by advances in optical engineering, two-dimensional infrared spectroscopy (2D IR) has developed into a promising method for probing structural dynamics in biophysics and material science. We report two new advances for 2D IR spectrometers. First, we report a fully reflective and totally horizontal pulse shaper, which significantly simplifies alignment. Second, we demonstrate the applicability of mid-IR focal plane arrays (FPAs) as suitable detectors in 2D IR experiments. FPAs have more pixels than conventional linear arrays and can be used to multiplex optical detection. We simultaneously measure the spectra of a reference beam, which improves the signal-to-noise by a factor of 4; and two additional beams that are orthogonally polarized probe pulses for 2D IR anisotropy experiments. PMID:26907414

  2. InP-based Geiger-mode avalanche photodiode arrays for three-dimensional imaging at 1.06 μm

    NASA Astrophysics Data System (ADS)

    Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Jiang, Xudong; Patel, Ketan; Slomkowski, Krystyna; Koch, Tim; Rangwala, Sabbir; Zalud, Peter F.; Yu, Young; Tower, John; Ferraro, Joseph

    2009-05-01

    We report on the development of 32 x 32 focal plane arrays (FPAs) based on InGaAsP/InP Geiger-mode avalanche photodiodes (GmAPDs) designed for use in three-dimensional (3-D) laser radar imaging systems at 1064 nm. To our knowledge, this is the first realization of FPAs for 3-D imaging that employ a planar-passivated buried-junction InP-based GmAPD device platform. This development also included the design and fabrication of custom readout integrate circuits (ROICs) to perform avalanche detection and time-of-flight measurements on a per-pixel basis. We demonstrate photodiode arrays (PDAs) with a very narrow breakdown voltage distribution width of 0.34 V, corresponding to a breakdown voltage total variation of less than +/- 0.2%. At an excess bias voltage of 3.3 V, which provides 40% pixel-level single photon detection efficiency, we achieve average dark count rates of 2 kHz at an operating temperature of 248 K. We present the characterization of optical crosstalk induced by hot carrier luminescence during avalanche events, where we show that the worst-case crosstalk probability per pixel, which occurs for nearest neighbors, has a value of less than 1.6% and exhibits anisotropy due to isolation trench etch geometry. To demonstrate the FPA response to optical density variations, we show a simple image of a broadened optical beam.

  3. Radiometric packaging of uncooled bolometric infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    García-Blanco, Sonia; Pope, Timothy; Côté, Patrice; Leclerc, Mélanie; Ngo Phong, Linh; Châteauneuf, François

    2017-11-01

    INO has a wide experience in the design and fabrication of different kinds of microbolometer focal plane arrays (FPAs). In particular, a 512x3 pixel microbolometer FPA has been selected as the sensor for the New Infrared Sensor Technology (NIRST) instrument, one of the payloads of the SACD/Aquarius mission. In order to make the absolute temperature measurements necessary for many infrared Earth observation applications, the microbolometer FPA must be integrated into a package offering a very stable thermal environment. The radiometric packaging technology developed at INO presents an innovative approach since it was conceived to be modular and adaptable for the packaging of different microbolometer FPAs and for different sets of assembly requirements without need for requalification of the assembly process. The development of the radiometric packaging technology has broadened the position of INO as a supplier of radiometric detector modules integrating FPAs of microbolometers inside a radiometric package capable of achieving the requirements of different space missions. This paper gives an overview of the design of INO's radiometric package. Key performance parameters are also discussed and the test campaign conducted with the radiometric package is presented.

  4. III-V infrared research at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Soibel, A.; Liu, John; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Nguyen, J.; Bandara, S. V.; Tidrow, M. Z.

    2009-08-01

    Jet Propulsion Laboratory is actively developing the III-V based infrared detector and focal plane arrays (FPAs) for NASA, DoD, and commercial applications. Currently, we are working on multi-band Quantum Well Infrared Photodetectors (QWIPs), Superlattice detectors, and Quantum Dot Infrared Photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). In addition, we will present the latest advances in QDIPs and Superlattice infrared detectors at the Jet Propulsion Laboratory.

  5. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  6. A PFM-based MWIR DROIC employing off-pixel fine conversion of photocharge to digital using integrated column ADCs

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Galioglu, A.; Shafique, A.; Ceylan, O.; Yazici, M.; Gurbuz, Y.

    2017-02-01

    A 32x32 prototype of a digital readout IC (DROIC) for medium-wave infrared focal plane arrays (MWIR IR-FPAs) is presented. The DROIC employs in-pixel photocurrent to digital conversion based on a pulse frequency modulation (PFM) loop and boasts a novel feature of off-pixel residue conversion using 10-bit column SAR ADCs. The remaining charge at the end of integration in typical PFM based digital pixel sensors is usually wasted. Previous works employing in-pixel extended counting methods make use of extra memory and counters to convert this left-over charge to digital, thereby performing fine conversion of the incident photocurrent. This results in a low quantization noise and hence keeps the readout noise low. However, focal plane arrays (FPAs) with small pixel pitch are constrained in pixel area, which makes it difficult to benefit from in-pixel extended counting circuitry. Thus, in this work, a novel approach to measure the residue outside the pixel using column -parallel SAR ADCs has been proposed. Moreover, a modified version of the conventional PFM based pixel has been designed to help hold the residue charge and buffer it to the column ADC. In addition to the 2D array of pixels, the prototype consists of 32 SAR ADCs, a timing controller block and a memory block to buffer the residue data coming out of the ADCs. The prototype has been designed and fabricated in 90nm CMOS.

  7. Testing of focal plane arrays at the AEDC

    NASA Astrophysics Data System (ADS)

    Nicholson, Randy A.; Mead, Kimberly D.; Smith, Robert W.

    1992-07-01

    A facility was developed at the Arnold Engineering Development Center (AEDC) to provide complete radiometric characterization of focal plane arrays (FPAs). The highly versatile facility provides the capability to test single detectors, detector arrays, and hybrid FPAs. The primary component of the AEDC test facility is the Focal Plane Characterization Chamber (FPCC). The FPCC provides a cryogenic, low-background environment for the test focal plane. Focal plane testing in the FPCC includes flood source testing, during which the array is uniformly irradiated with IR radiation, and spot source testing, during which the target radiation is focused onto a single pixel or group of pixels. During flood source testing, performance parameters such as power consumption, responsivity, noise equivalent input, dynamic range, radiometric stability, recovery time, and array uniformity can be assessed. Crosstalk is evaluated during spot source testing. Spectral response testing is performed in a spectral response test station using a three-grating monochromator. Because the chamber can accommodate several types of testing in a single test installation, a high throughput rate and good economy of operation are possible.

  8. A 25μm pitch LWIR focal plane array with pixel-level 15-bit ADC providing high well capacity and targeting 2mK NETD

    NASA Astrophysics Data System (ADS)

    Guellec, Fabrice; Peizerat, Arnaud; Tchagaspanian, Michael; de Borniol, Eric; Bisotto, Sylvette; Mollard, Laurent; Castelein, Pierre; Zanatta, Jean-Paul; Maillart, Patrick; Zecri, Michel; Peyrard, Jean-Christophe

    2010-04-01

    CEA Leti has recently developed a new readout IC (ROIC) with pixel-level ADC for cooled infrared focal plane arrays (FPAs). It operates at 50Hz frame rate in a snapshot Integrate-While-Read (IWR) mode. It targets applications that provide a large amount of integrated charge thanks to a long integration time. The pixel-level analog-to-digital conversion is based on charge packets counting. This technique offers a large well capacity that paves the way for a breakthrough in NETD performances. The 15 bits ADC resolution preserves the excellent detector SNR at full well (3Ge-). These characteristics are essential for LWIR FPAs as broad intra-scene dynamic range imaging requires high sensitivity. The ROIC, featuring a 320x256 array with 25μm pixel pitch, has been designed in a standard 0.18μm CMOS technology. The main design challenges for this digital pixel array (SNR, power consumption and layout density) are discussed. The IC has been hybridized to a LWIR detector fabricated using our in-house HgCdTe process. The first electro-optical test results of the detector dewar assembly are presented. They validate both the pixel-level ADC concept and its circuit implementation. Finally, the benefit of this LWIR FPA in terms of NETD performance is demonstrated.

  9. Study of LWIR and VLWIR Focal Plane Array Developments: Comparison Between p-on- n and Different n-on- p Technologies on LPE HgCdTe

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Mollard, L.; Largeron, C.; Baier, N.; Deborniol, E.; Chorier, Ph.

    2009-08-01

    The very long infrared wavelength (>14 μm) is a very challenging range for the design of mercury cadmium telluride (HgCdTe) large focal plane arrays (FPAs). The need (mainly expressed by the space industry) for very long wave FPAs appears very difficult to fulfil. High homogeneity, low defect rate, high quantum efficiency, low dark current, and low excess noise are required. Indeed, for such wavelength, the corresponding HgCdTe gap becomes smaller than 100 meV and each step from the metallurgy to the technology becomes critical. This paper aims at presenting a status of long and very long wave FPAs developments at DEFIR (LETI-LIR/Sofradir joint venture). This study will focus on results obtained in our laboratory for three different ion implanted technologies: n-on- p mercury vacancies doped technology, n-on- p extrinsic doped technology, and p-on- n arsenic on indium technology. Special focus is given to 15 μm cutoff n/ p FPA fabricated in our laboratory demonstrating high uniformity, diffusion and shot noise limited photodiodes at 50 K.

  10. Phase Grating Design for a Dual-Band Snapshot Imaging Spectrometer

    NASA Astrophysics Data System (ADS)

    Scholl, James F.; Dereniak, Eustace L.; Descour, Michael R.; Tebow, Christopher P.; Volin, Curtis E.

    2003-01-01

    Infrared spectral features have proved useful in the identification of threat objects. Dual-band focal-plane arrays (FPAs) have been developed in which each pixel consists of superimposed midwave and long-wave photodetectors [Dyer and Tidrow, Conference on Infrared Detectors and Focal Plane Arrays (SPIE, Bellingham, Wash., 1999), pp. 434 -440 . Combining dual-band FPAs with imaging spectrometers capable of interband hyperspectral resolution greatly improves spatial target discrimination. The computed-tomography imaging spectrometer (CTIS) ] [Descour and Dereniak, Appl. Opt. 34, 4817 -4826 (1995) has proved effective in producing hyperspectral images in a single spectral region. Coupling the CTIS with a dual-band detector can produce two hyperspectral data cubes simultaneously. We describe the design of two-dimensional, surface-relief, computer-generated hologram dispersers that permit image information in these two bands simultaneously.

  11. Lead salt room-temperature MWIR FPA

    NASA Astrophysics Data System (ADS)

    Murphy, Paul F.; Jost, Steven R.; Barrett, John L.; Reese, Dan; Winn, Michael L.

    2001-10-01

    The development of low-cost uncooled thermal LWIR FPAs is resulting in the emergence of a new generation of infrared sensors for applications where affordability is the prerequisite for volume production. Both ferroelectric detector arrays and silicon-based microbolometers are finding numerous applications from gun sights to automotive FLIRs. There would be significant interest in a similar uncooled offering in the MWIR, but to date, thermal detectors have lacked sufficient sensitivity. The existing uncooled MWIR photon detector technology, based on polycrystalline lead salts, has been relegated to single-element detectors and relatively small linear arrays due to the high dark current and the stigma of being a 50-year-old technology.

  12. Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Wei; Wen, Yongzheng; Yu, Xiaomei, E-mail: yuxm@pku.edu.cn

    2015-03-16

    This letter presents an infrared (IR) focal plane array (FPA) with metamaterial absorber (MMA) integrated to enhance its performance. A glass substrate, on which arrays of bimaterial cantilevers are fabricated as the thermal-sensitive pixels by a polyimide surface sacrificial process, is employed to allow the optical readout from the back side of the substrate. Whereas the IR wave radiates onto the FPA from the front side, which consequently avoids the energy loss caused by the silicon substrate compared with the previous works. This structure also facilitates the integration of MMA by introducing a layer of periodic square resonators atop themore » SiN{sub x} structural layer to form a metal/dielectric/metal stack with the gold mirror functioning as the ground plane. A comparative experiment was carried out on the FPAs that use MMA and ordinary SiN{sub x} as the absorbers, respectively. The performance improvement was verified by the evaluation of the absorbers as well as the imaging results of both FPAs.« less

  13. Uncooled infrared imaging using bimaterial microcantilever arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grbovic, Dragoslav; Lavrik, Nickolay V; Rajic, Slobodan

    2006-01-01

    We report on the fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to be comparablemore » to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000x2000, without progressively growing device complexity and cost.« less

  14. Monte Carlo Techniques for Calculations of Charge Deposition and Displacement Damage from Protons in Visible and Infrared Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Marshall, Paul; Reed, Robert; Fodness, Bryan; Jordan, Tom; Pickel, Jim; Xapsos, Michael; Burke, Ed

    2004-01-01

    This slide presentation examines motivation for Monte Carlo methods, charge deposition in sensor arrays, displacement damage calculations, and future work. The discussion of charge deposition sensor arrays includes Si active pixel sensor APS arrays and LWIR HgCdTe FPAs. The discussion of displacement damage calculations includes nonionizing energy loss (NIEL), HgCdTe NIEL calculation results including variance, and implications for damage in HgCdTe detector arrays.

  15. Third-generation intelligent IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Caulfield, H. John; Jack, Michael D.; Pettijohn, Kevin L.; Schlesselmann, John D.; Norworth, Joe

    1998-03-01

    SBRC is at the forefront of industry in developing IR focal plane arrays including multi-spectral technology and '3rd generation' functions that mimic the human eye. 3rd generation devices conduct advanced processing on or near the FPA that serve to reduce bandwidth while performing needed functions such as automatic target recognition, uniformity correction and dynamic range enhancement. These devices represent a solution for processing the exorbitantly high bandwidth coming off large area FPAs without sacrificing systems sensitivity. SBRC's two-color approach leverages the company's HgCdTe technology to provide simultaneous multiband coverage, from short through long wave IR, with near theoretical performance. IR systems that are sensitive to different spectral bands achieve enhanced capabilities for target identification and advanced discrimination. This paper will provide a summary of the issues, the technology and the benefits of SBRC's third generation smart and two-color FPAs.

  16. Intensity information extraction in Geiger mode detector array based three-dimensional imaging applications

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    2013-09-01

    Geiger-mode detectors have single photon sensitivity and picoseconds timing resolution, which make it a good candidate for low light level ranging applications, especially in the case of flash three dimensional imaging applications where the received laser power is extremely limited. Another advantage of Geiger-mode APD is their capability of large output current which can drive CMOS timing circuit directly, which means that larger format focal plane arrays can be easily fabricated using the mature CMOS technology. However Geiger-mode detector based FPAs can only measure the range information of a scene but not the reflectivity. Reflectivity is a major characteristic which can help target classification and identification. According to Poisson statistic nature, detection probability is tightly connected to the incident number of photon. Employing this relation, a signal intensity estimation method based on probability inversion is proposed. Instead of measuring intensity directly, several detections are conducted, then the detection probability is obtained and the intensity is estimated using this method. The relation between the estimator's accuracy, measuring range and number of detections are discussed based on statistical theory. Finally Monte-Carlo simulation is conducted to verify the correctness of this theory. Using 100 times of detection, signal intensity equal to 4.6 photons per detection can be measured using this method. With slight modification of measuring strategy, intensity information can be obtained using current Geiger-mode detector based FPAs, which can enrich the information acquired and broaden the application field of current technology.

  17. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-09-01

    We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  18. Material considerations for third generation infrared photon detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2007-04-01

    In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well photoconductors are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. The metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an alternative to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm. In this context the material properties of type II superlattices are considered more in detail.

  19. Life test of the InGaAs focal plane arrays detector for space applications

    NASA Astrophysics Data System (ADS)

    Zhu, Xian-Liang; Zhang, Hai-Yan; Li, Xue; Huang, Zhang-Cheng; Gong, Hai-Mei

    2017-08-01

    The short-wavelength infrared (SWIR) InGaAs focal plane array (FPA) detector consists of infrared detector chip, readout integrated circuit (ROIC), and flip-chip bonding interconnection by Indium bump. In order to satisfy space application requirements for failure rates or Mean Time to Failure (MTTF), which can only be demonstrated with the large number of detectors manufactured, the single pixel in InGaAs FPAs was chosen as the research object in this paper. The constant-stress accelerated life tests were carried out at 70°C 80°C 90°C and100°C. The failed pixels increased gradually during more than 14000 hours at each elevated temperatures. From the random failure data the activation energy was estimated to be 0.46eV, and the average lifetime of a single pixel in InGaAs FPAs was estimated to be longer than 1E+7h at the practical operating temperature (5°C).

  20. Geiger-mode APD camera system for single-photon 3D LADAR imaging

    NASA Astrophysics Data System (ADS)

    Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2012-06-01

    The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.

  1. High Efficient Ultra-Thin Flat Optics Based on Dielectric Metasurfaces

    NASA Astrophysics Data System (ADS)

    Ozdemir, Aytekin

    Metasurfaces which emerged as two-dimensional counterparts of metamaterials, facilitate the realization of arbitrary phase distributions using large arrays with subwavelength and ultra-thin features. Even if metasurfaces are ultra-thin, they still effectively manipulate the phase, amplitude, and polarization of light in transmission or reflection mode. In contrast, conventional optical components are bulky, and they lose their functionality at sub-wavelength scales, which requires conceptually new types of nanoscale optical devices. On the other hand, as the optical systems shrink in size day by day, conventional bulky optical components will have tighter alignment and fabrication tolerances. Since metasurfaces can be fabricated lithographically, alignment can be done during lithographic fabrication, thus eliminating the need for post-fabrication alignments. In this work, various types of metasurface applications are thoroughly investigated for robust wavefront engineering with enhanced characteristics in terms of broad bandwidth, high efficiency and active tunability, while beneficial for application. Plasmonic metasurfaces are not compatible with the CMOS process flow, and, additionally their high absorption and ohmic loss is problematic in transmission based applications. Dielectric metasurfaces, however, offer a strong magnetic response at optical frequencies, and thus they can offer great opportunities for interacting not only with the electric component of a light field, but also with its magnetic component. They show great potential to enable practical device functionalities at optical frequencies, which motivates us to explore them one step further on wavefront engineering and imaging sensor platforms. Therefore, we proposed an efficient ultra-thin flat metalens at near-infrared regime constituted by silicon nanodisks which can support both electric and magnetic dipolar Mie-type resonances. These two dipole resonances can be overlapped at the same frequency by varying the geometric parameters of silicon nanodisks. Having two resonance mechanisms at the same frequency allows us to achieve full (0-2?) phase shift on the transmitted beam. To enable the miniaturization of pixel size for achieving high-resolution, planar, compact-size focal plane arrays (FPAs), we also present and explore the metasurface lens array-based FPAs. The investigated dielectric metasurface lens arrays achieved high focusing efficiency with superior optical crosstalk performance. We see a magnificent application prospect for metasurfaces in enhancing the fill factor and reducing the pixel size of FPAs and CCD, CMOS imaging sensors as well. Moreover, it is of paramount importance to design metasurfaces possessing tunable properties. Thus, we also propose a tunable beam steering device by combining phase manipulating metasurfaces concept and liquid crystals. Tunability feature is implemented by nematic liquid crystals infiltrated into nano holes in SiO2. Using electrically tunable nematic liquid crystals, dynamic beam steering is achieved.

  2. Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain

    2015-10-01

    Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.

  3. HgCdTe avalanche photodiodes: A review

    NASA Astrophysics Data System (ADS)

    Singh, Anand; Srivastav, Vanya; Pal, Ravinder

    2011-10-01

    This paper presents a comprehensive review of fundamental issues, device architectures, technology development and applications of HgCdTe based avalanche photodiodes (APD). High gain, above 5×10 3, a low excess noise factor close to unity, THz gain-bandwidth product, and fast response in the range of pico-seconds has been achieved by electron-initiated avalanche multiplication for SWIR, MWIR, and LWIR detector applications involving low optical signals. Detector arrays with good element-to-element uniformity have been fabricated paving the way for fabrication of HgCdTe-APD FPAs.

  4. Large-Format HgCdTe Dual-Band Long-Wavelength Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    Smith, E. P. G.; Venzor, G. M.; Gallagher, A. M.; Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Randolph, J. E.

    2011-08-01

    Raytheon Vision Systems (RVS) continues to further its capability to deliver state-of-the-art high-performance, large-format, HgCdTe focal-plane arrays (FPAs) for dual-band long-wavelength infrared (L/LWIR) detection. Specific improvements have recently been implemented at RVS in molecular-beam epitaxy (MBE) growth and wafer fabrication and are reported in this paper. The aim of the improvements is to establish producible processes for 512 × 512 30- μm-unit-cell L/LWIR FPAs, which has resulted in: the growth of triple-layer heterojunction (TLHJ) HgCdTe back-to-back photodiode detector designs on 6 cm × 6 cm CdZnTe substrates with 300-K Fourier-transform infrared (FTIR) cutoff wavelength uniformity of ±0.1 μm across the entire wafer; demonstration of detector dark-current performance for the longer-wavelength detector band approaching that of single-color liquid-phase epitaxy (LPE) LWIR detectors; and uniform, high-operability, 512 × 512 30- μm-unit-cell FPA performance in both LWIR bands.

  5. Corrugated Quantum Well Infrared Photodetector Focal Plane Array Test Results

    NASA Technical Reports Server (NTRS)

    Goldberg, A.; Choi, K. K.; Das, N. C.; La, A.; Jhabvala, M.

    1999-01-01

    The corrugated quantum-well infrared photodetector (C-QWIP) uses total internal reflection to couple normal incident light into the optically active quantum wells. The coupling efficiency has been shown to be relatively independent of the pixel size and wavelength thus making the C-QWIP a candidate for detectors over the entire infrared spectrum. The broadband coupling efficiency of the C-QWIP makes it an ideal candidate for multiwavelength detectors. We fabricated and tested C-QWIP focal plane arrays (FPAs) with cutoff wavelengths of 11.2 and 16.2 micrometers. Each FPA has 256 x 256 pixels that are bump-bonded to a direct injection readout circuit. Both FPAs provided infrared imagery with good aesthetic attributes. For the 11.2-micrometers FPA, background-limited performance (BLIP) was observed at 60 K with f/3 optics. For the 16.2-micrometers FPA, BLIP was observed at 38 K. Besides the reduction of dark current in C-QWIP structures, the measured internal quantum efficiency (eta) remains to be high. The values for responsivity and quantum efficiency obtained from the FPA results agree well with those measured for single devices.

  6. Multi-Color QWIP FPAs for Hyperspectral Thermal Emission Instruments

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Luong, Ed; Mumolo, Jason M.; Liu, John; Rafol, Sir B.; Keo, Sam A.; Johnson, William; Willson, Dan; Hill, Cory J.; Ting, David Z.-Y.; hide

    2012-01-01

    Infrared focal plane arrays (FPAs) covering broad mid- and long-IR spectral ranges are the central parts of the spectroscopic and imaging instruments in several Earth and planetary science missions. To be implemented in the space instrument these FPAs need to be large-format, uniform, reproducible, low-cost, low 1/f noise, and radiation hard. Quantum Well Infrared Photodetectors (QWIPs), which possess all needed characteristics, have a great potential for implementation in the space instruments. However a standard QWIP has only a relatively narrow spectral coverage. A multi-color QWIP, which is compromised of two or more detector stacks, can to be used to cover the broad spectral range of interest. We will discuss our recent work on development of multi-color QWIP for Hyperspectral Thermal Emission Spectrometer instruments. We developed QWIP compromising of two stacks centered at 9 and 10.5 ?m, and featuring 9 grating regions optimized to maximize the responsivity in the individual subbands across the 7.5-12 ?m spectral range. The demonstrated 1024x1024 QWIP FPA exhibited excellent performance with operability exceeding 99% and noise equivalent differential temperature of less than 15 mK across the entire 7.5-12 ?m spectral range.

  7. Future sensor system needs for staring arrays

    NASA Astrophysics Data System (ADS)

    Miller, John Lester

    2011-05-01

    This is a systems application paper regarding how sensor systems may use future technology FPAs. A historical perspective is discussed along with lessons learned from previous technologies. Future system requirements for strained super-lattice (SLS), quantum dots (QDOT) and traditional quantum well infrared photo-diodes (QWIP) arrays will be presented from both a commercial and military perspective. New potential markets will open up in the future if certain FPA technologies can reduce cost and provide higher sensitivities at higher operating temperatures.

  8. New technologies for HWIL testing of WFOV, large-format FPA sensor systems

    NASA Astrophysics Data System (ADS)

    Fink, Christopher

    2016-05-01

    Advancements in FPA density and associated wide-field-of-view infrared sensors (>=4000x4000 detectors) have outpaced the current-art HWIL technology. Whether testing in optical projection or digital signal injection modes, current-art technologies for infrared scene projection, digital injection interfaces, and scene generation systems simply lack the required resolution and bandwidth. For example, the L3 Cincinnati Electronics ultra-high resolution MWIR Camera deployed in some UAV reconnaissance systems features 16MP resolution at 60Hz, while the current upper limit of IR emitter arrays is ~1MP, and single-channel dual-link DVI throughput of COTs graphics cards is limited to 2560x1580 pixels at 60Hz. Moreover, there are significant challenges in real-time, closed-loop, physics-based IR scene generation for large format FPAs, including the size and spatial detail required for very large area terrains, and multi - channel low-latency synchronization to achieve the required bandwidth. In this paper, the author's team presents some of their ongoing research and technical approaches toward HWIL testing of large-format FPAs with wide-FOV optics. One approach presented is a hybrid projection/injection design, where digital signal injection is used to augment the resolution of current-art IRSPs, utilizing a multi-channel, high-fidelity physics-based IR scene simulator in conjunction with a novel image composition hardware unit, to allow projection in the foveal region of the sensor, while non-foveal regions of the sensor array are simultaneously stimulated via direct injection into the post-detector electronics.

  9. Low Homologous Temperature (0.2) Sputtering of Indium Films on Silicon (POSTPRINT)

    DTIC Science & Technology

    2012-09-24

    to the difficulty in recycling lead-containing products.3 Hard solders such as AuSn perform well in lifetime tests,4 but their thermal conductivity...ROIC) to form focal plane arrays (FPAs)7 as well as some high power devi- ces such as power amplifiers or large area lasers with heat spreaders .8 In

  10. Numerical simulation of the modulation transfer function (MTF) in infrared focal plane arrays: simulation methodology and MTF optimization

    NASA Astrophysics Data System (ADS)

    Schuster, J.

    2018-02-01

    Military requirements demand both single and dual-color infrared (IR) imaging systems with both high resolution and sharp contrast. To quantify the performance of these imaging systems, a key measure of performance, the modulation transfer function (MTF), describes how well an optical system reproduces an objects contrast in the image plane at different spatial frequencies. At the center of an IR imaging system is the focal plane array (FPA). IR FPAs are hybrid structures consisting of a semiconductor detector pixel array, typically fabricated from HgCdTe, InGaAs or III-V superlattice materials, hybridized with heat/pressure to a silicon read-out integrated circuit (ROIC) with indium bumps on each pixel providing the mechanical and electrical connection. Due to the growing sophistication of the pixel arrays in these FPAs, sophisticated modeling techniques are required to predict, understand, and benchmark the pixel array MTF that contributes to the total imaging system MTF. To model the pixel array MTF, computationally exhaustive 2D and 3D numerical simulation approaches are required to correctly account for complex architectures and effects such as lateral diffusion from the pixel corners. It is paramount to accurately model the lateral di_usion (pixel crosstalk) as it can become the dominant mechanism limiting the detector MTF if not properly mitigated. Once the detector MTF has been simulated, it is directly decomposed into its constituent contributions to reveal exactly what is limiting the total detector MTF, providing a path for optimization. An overview of the MTF will be given and the simulation approach will be discussed in detail, along with how different simulation parameters effect the MTF calculation. Finally, MTF optimization strategies (crosstalk mitigation) will be discussed.

  11. Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging

    NASA Astrophysics Data System (ADS)

    Itzler, Mark A.; Entwistle, Mark; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir; Zalud, Peter F.; Senko, Tom; Tower, John; Ferraro, Joseph

    2010-08-01

    ×We describe the design, fabrication, and performance of focal plane arrays (FPAs) for use in 3-D LADAR imaging applications requiring single photon sensitivity. These 32 × 32 FPAs provide high-efficiency single photon sensitivity for three-dimensional LADAR imaging applications at 1064 nm. Our GmAPD arrays are designed using a planarpassivated avalanche photodiode device platform with buried p-n junctions that has demonstrated excellent performance uniformity, operational stability, and long-term reliability. The core of the FPA is a chip stack formed by hybridizing the GmAPD photodiode array to a custom CMOS read-out integrated circuit (ROIC) and attaching a precision-aligned GaP microlens array (MLA) to the back-illuminated detector array. Each ROIC pixel includes an active quenching circuit governing Geiger-mode operation of the corresponding avalanche photodiode pixel as well as a pseudo-random counter to capture per-pixel time-of-flight timestamps in each frame. The FPA has been designed to operate at frame rates as high as 186 kHz for 2 μs range gates. Effective single photon detection efficiencies as high as 40% (including all optical transmission and MLA losses) are achieved for dark count rates below 20 kHz. For these planar-geometry diffused-junction GmAPDs, isolation trenches are used to reduce crosstalk due to hot carrier luminescence effects during avalanche events, and we present details of the crosstalk performance for different operating conditions. Direct measurement of temporal probability distribution functions due to cumulative timing uncertainties of the GmAPDs and ROIC circuitry has demonstrated a FWHM timing jitter as low as 265 ps (standard deviation is ~100 ps).

  12. Improvements of MCT MBE Growth on GaAs

    NASA Astrophysics Data System (ADS)

    Ziegler, J.; Wenisch, J.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Lutz, H.; Wollrab, R.

    2014-08-01

    In recent years, continuous progress has been published in the development of HgCdTe (MCT) infrared (IR) focal plane arrays (FPAs) fabricated by molecular beam epitaxy on GaAs substrates. In this publication, further characterization of the state-of-the art 1280 × 1024 pixel, 15- μm pitch detector fabricated from this material in both the mid-wavelength (MWIR) and long-wavelength (LWIR) IR region will be presented. For MWIR FPAs, the percentage of defective pixel remains below 0.5% up to an operating temperature ( T OP) of around 100 K. For the LWIR FPA, an operability of 99.25% was achieved for a T OP of 76 K. Additionally, the beneficial effect of the inclusion of MCT layers with a graded composition region was investigated and demonstrated on current-voltage ( IV) characteristics on test diodes in a MWIR FPA.

  13. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    NASA Astrophysics Data System (ADS)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  14. 8- to 9-μm and 14- to 15-μm two-color 640x486 GaAs/AlGaAs quantum well infrared photodetector (QWIP) focal plane array camera

    NASA Astrophysics Data System (ADS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Singh, Anjali; Liu, John K.; Rafol, S. B.; Luong, Edward M.; Mumolo, Jason M.; Tran, N. Q.; Vincent, John D.; Shott, C. A.; Long, James F.; LeVan, Paul D.

    1999-07-01

    An optimized long-wavelength two-color quantum well IR photodetector (QWIP) device structure has been designed. This device structure was grown on a three-inch semi- insulating GaAs substrate by molecule beam epitaxy (MBE). This wafer was processed into several 640 X 486 format monolithically integrated 8-9 and 14-15 micrometers two-color QWIP focal plane arrays (FPAs). These FPAs were then hybridized to 640 X 486 silicon CMOS readout multiplexers. A thinned FPA hybrid was integrated into a liquid helium cooled dewar to perform electrical and optical characterization and to demonstrate simultaneous two-color imagery. The 8-9 micrometers detectors in the FPA have shown background limited performance (BLIP) at 70 K operating temperature, at 300 K background with f/2 cold stop. The 14-15 micrometers detectors of the FPA have reached BLIP at 40 K operating temperature at the same background conditions. In this paper we discuss the performance of this long-wavelength dualband QWIP FPA in quantum efficiency, detectivity, noise equivalent temperature difference, uniformity, and operability.

  15. Ultra-Low Dark Current HgCdTe Detector in SWIR for Space Applications

    NASA Astrophysics Data System (ADS)

    Cervera, C.; Boulade, O.; Gravrand, O.; Lobre, C.; Guellec, F.; Sanson, E.; Ballet, P.; Santailler, J. L.; Moreau, V.; Zanatta, J. P.; Fieque, B.; Castelein, P.

    2017-10-01

    This paper presents recent developments at Commissariat à l'Energie atomique, Laboratoire d'Electronique et de Technologie de l'Information infrared laboratory on processing and characterization of p-on- n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) in short-wave infrared (SWIR) spectral band for the astrophysics applications. These FPAs have been grown using both liquid phase epitaxy and molecular beam epitaxy on a lattice-matched CdZnTe substrate. This technology exhibits lower dark current and lower series resistance in comparison with n-on- p vacancy-doped architecture and is well adapted for low flux detection or high operating temperature. This architecture has been evaluated for space applications in long-wave infrared and very-long-wave infrared spectral bands with cut-off wavelengths from 10 μm up to 17 μm at 78 K and is now evaluated for the SWIR range. The metallurgical nature of the absorbing layer is also examined and both molecular beam epitaxy and liquid phase epitaxy have been investigated. Electro-optical characterizations have been performed on individual photodiodes from test arrays, whereas dark current investigation has been performed with a fully functional readout integrated circuit dedicated to low flux operations.

  16. High-Performance LWIR Superlattice Detectors and FPA Based on CBIRD Design

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Nguyen, Jean; Khoshakhlagh, Arezou; Rafol, Sir B.; Hoeglund, Linda; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Liao, Anna; Ting, David Z.-Y.; hide

    2012-01-01

    We report our recent efforts on advancing of antimonide superlattice based infrared photodetectors and demonstration of Focal Plane Arrays (FPA) based on a complementary barrier infrared detector (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel detector without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-wavelength infrared focal plane array utilizing CBIRD design. An 11.5 ?m cutoff FPA without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. In addition, we demonstrated 320x256 format FPA based on the n-CBIRD design. The resulting FPAs yielded noise equivalent differential temperature of 26 mK at operating temperature of 80 K, with 300 K background and cold-stop. These results advance state-of-the art of superlattice detectors and demonstrated advantages of CBIRD architecture for realization of FPA.

  17. Dot-in-Well Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Bandara, Sumith; Ting, David; Hill, cory; Liu, John; Mumolo, Jason; Chang, Yia Chung

    2008-01-01

    Dot-in-well (DWELL) quantum-dot infrared photodetectors (QDIPs) [DWELL-QDIPs] are subjects of research as potentially superior alternatives to prior QDIPs. Heretofore, there has not existed a reliable method for fabricating quantum dots (QDs) having precise, repeatable dimensions. This lack has constituted an obstacle to the development of uniform, high-performance, wavelength-tailorable QDIPs and of focal-plane arrays (FPAs) of such QDIPs. However, techniques for fabricating quantum-well infrared photodetectors (QWIPs) having multiple-quantum- well (MQW) structures are now well established. In the present research on DWELL-QDIPs, the arts of fabrication of QDs and QWIPs are combined with a view toward overcoming the deficiencies of prior QDIPs. The longer-term goal is to develop focal-plane arrays of radiationhard, highly uniform arrays of QDIPs that would exhibit high performance at wavelengths from 8 to 15 m when operated at temperatures between 150 and 200 K. Increasing quantum efficiency is the key to the development of competitive QDIP-based FPAs. Quantum efficiency can be increased by increasing the density of QDs and by enhancing infrared absorption in QD-containing material. QDIPs demonstrated thus far have consisted, variously, of InAs islands on GaAs or InAs islands in InGaAs/GaAs wells. These QDIPs have exhibited low quantum efficiencies because the numbers of QD layers (and, hence, the areal densities of QDs) have been small typically five layers in each QDIP. The number of QD layers in such a device must be thus limited to prevent the aggregation of strain in the InAs/InGaAs/GaAs non-lattice- matched material system. The approach being followed in the DWELL-QDIP research is to embed In- GaAs QDs in GaAs/AlGaAs multi-quantum- well (MQW) structures (see figure). This material system can accommodate a large number of QD layers without excessive lattice-mismatch strain and the associated degradation of photodetection properties. Hence, this material system is expected to enable achievement of greater densities of QDs and correspondingly greater quantum efficiencies. The host GaAs/AlGaAs MQW structures are highly compatible with mature fabrication processes that are now used routinely in making QWIP FPAs. The hybrid InGaAs-dot/GaAs/AlGaAs-well system also offers design advantages in that the effects of variability of dot size can be partly compensated by engineering quantum-well sizes, which can be controlled precisely.

  18. InGaAs focal plane arrays for low-light-level SWIR imaging

    NASA Astrophysics Data System (ADS)

    MacDougal, Michael; Hood, Andrew; Geske, Jon; Wang, Jim; Patel, Falgun; Follman, David; Manzo, Juan; Getty, Jonathan

    2011-06-01

    Aerius Photonics will present their latest developments in large InGaAs focal plane arrays, which are used for low light level imaging in the short wavelength infrared (SWIR) regime. Aerius will present imaging in both 1280x1024 and 640x512 formats. Aerius will present characterization of the FPA including dark current measurements. Aerius will also show the results of development of SWIR FPAs for high temperaures, including imagery and dark current data. Finally, Aerius will show results of using the SWIR camera with Aerius' SWIR illuminators using VCSEL technology.

  19. 3rd-generation MW/LWIR sensor engine for advanced tactical systems

    NASA Astrophysics Data System (ADS)

    King, Donald F.; Graham, Jason S.; Kennedy, Adam M.; Mullins, Richard N.; McQuitty, Jeffrey C.; Radford, William A.; Kostrzewa, Thomas J.; Patten, Elizabeth A.; McEwan, Thomas F.; Vodicka, James G.; Wootan, John J.

    2008-04-01

    Raytheon has developed a 3rd-Generation FLIR Sensor Engine (3GFSE) for advanced U.S. Army systems. The sensor engine is based around a compact, productized detector-dewar assembly incorporating a 640 x 480 staring dual-band (MW/LWIR) focal plane array (FPA) and a dual-aperture coldshield mechanism. The capability to switch the coldshield aperture and operate at either of two widely-varying f/#s will enable future multi-mode tactical systems to more fully exploit the many operational advantages offered by dual-band FPAs. RVS has previously demonstrated high-performance dual-band MW/LWIR FPAs in 640 x 480 and 1280 x 720 formats with 20 μm pitch. The 3GFSE includes compact electronics that operate the dual-band FPA and variable-aperture mechanism, and perform 14-bit analog-to-digital conversion of the FPA output video. Digital signal processing electronics perform "fixed" two-point non-uniformity correction (NUC) of the video from both bands and optional dynamic scene-based NUC; advanced enhancement processing of the output video is also supported. The dewar-electronics assembly measures approximately 4.75 x 2.25 x 1.75 inches. A compact, high-performance linear cooler and cooler electronics module provide the necessary FPA cooling over a military environmental temperature range. 3GFSE units are currently being assembled and integrated at RVS, with the first units planned for delivery to the US Army.

  20. Enhancing Microbolometer Performance at Terahertz Frequencies with Metamaterial Absorbers

    DTIC Science & Technology

    2013-09-01

    focal plane arrays (FPAs). Indeed, these sensors naturally evolved in snakes in the form of pit organs leading to a high sensitivity, albeit low...materials. Indeed, they can even have characteristics that are not found in nature , such as a negative refractive index [27]. Absorption in these...modes [44], interference of multiple reflections [45], and transmission lines [46]. However, due to the complex nature of metamaterials, these models

  1. Demonstration of a Bias Tunable Quantum Dots-in-a-Well Focal Plane Array

    DTIC Science & Technology

    2009-01-01

    uniformity and mea- sured noise equivalent temperature difference for the double DWELL devices is computed and compared to the same results from the original...first generation DWELL. Finally, higher temperature operation is explored. Overall, the double DWELL devices had lower noise equivalent temperature...infrared photodetectors ( QWIPs ) with various doping and impurities have produced FPAs capable of detection across much of the infrared spectrum from

  2. HgCdTe Growth on 6 cm × 6 cm CdZnTe Substrates for Large-Format Dual-Band Infrared Focal-Plane Arrays

    NASA Astrophysics Data System (ADS)

    Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Vang, T.; Patten, E. A.; Radford, W. A.; Johnson, S. M.

    2010-07-01

    This paper describes molecular-beam epitaxy growth of mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) dual-band device structures on large-area (6 cm × 6 cm) CdZnTe substrates. Wafer-level composition and defect mapping techniques were used to investigate the limiting mechanisms in improving the cutoff wavelength ( λ c) uniformity and reducing the defect density. Structural quality of epitaxial layers was monitored using etch pit density (EPD) measurements at various depths in the epitaxial layers. Finally, 640 × 480, 20- μm-pixel-pitch dual-band focal-plane arrays (FPAs) were fabricated to demonstrate the overall maturity of growth and fabrication processes of epitaxial layers. The MWIR/LWIR dual-band layers, at optimized growth conditions, show a λ c variation of ±0.15 μm across a 6 cm × 6 cm CdZnTe substrate, a uniform low macrodefect density with an average of 1000 cm-2, and an average EPD of 1.5 × 105 cm-2. FPAs fabricated using these layers show band 1 (MWIR) noise equivalent temperature difference (NETD) operability of 99.94% and band 2 (LWIR) NETD operability of 99.2%, which are among the highest reported to date.

  3. Carrier Plus: A sensor payload for Living With a Star Space Environment Testbed (LWS/SET)

    NASA Technical Reports Server (NTRS)

    Marshall, Cheryl J.; Moss, Steven; Howard, Regan; LaBel, Kenneth A.; Grycewicz, Tom; Barth, Janet L.; Brewer, Dana

    2003-01-01

    The Defense Threat Reduction Agency (DTR4) and National Aeronautics and Space Administration (NASA) Goddard Space Flight Center are collaborating to develop the Carrier Plus sensor experiment platform as a capability of the Space Environments Testbed (SET). The Space Environment Testbed (SET) provides flight opportunities for technology experiments as part of NASA's Living With a Star (LWS) program. The Carrier Plus will provide new capability to characterize sensor technologies such as state-of-the-art visible focal plane arrays (FPAs) in a natural space radiation environment. The technical objectives include on-orbit validation of recently developed FPA technologies and performance prediction methodologies, as well as characterization of the FPA radiation response to total ionizing dose damage, displacement damage and transients. It is expected that the sensor experiment will carry 4-6 FPAs and associated radiation correlative environment monitors (CEMs) for a 2006-2007 launch. Sensor technology candidates may include n- and p-charge coupled devices (CCDs), active pixel sensors (APS), and hybrid CMOS arrays. The presentation will describe the Carrier Plus goals and objectives, as well as provide details about the architecture and design. More information on the LWS program can be found at http://lws.gsfc.nasa.gov/. Business announcements for LWS/SET and program briefings are posted at http://lws-set.gsfc.nasa.gov

  4. Uncooled Micro-Cantilever Infrared Imager Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panagiotis, Datskos G.

    2008-02-05

    We report on the development, fabrication and characterization of microcantilever based uncooled focal plane array (FPA) for infrared imaging. By combining a streamlined design of microcantilever thermal transducers with a highly efficient optical readout, we minimized the fabrication complexity while achieving a competitive level of imaging performance. The microcantilever FPAs were fabricated using a straightforward fabrication process that involved only three photolithographic steps (i.e. three masks). A designed and constructed prototype of an IR imager employed a simple optical readout based on a noncoherent low-power light source. The main figures of merit of the IR imager were found to bemore » comparable to those of uncooled MEMS infrared detectors with substantially higher degree of fabrication complexity. In particular, the NETD and the response time of the implemented MEMS IR detector were measured to be as low as 0.5K and 6 ms, respectively. The potential of the implemented designs can also be concluded from the fact that the constructed prototype enabled IR imaging of close to room temperature objects without the use of any advanced data processing. The most unique and practically valuable feature of the implemented FPAs, however, is their scalability to high resolution formats, such as 2000 x 2000, without progressively growing device complexity and cost. The overall technical objective of the proposed work was to develop uncooled infrared arrays based on micromechanical sensors. Currently used miniature sensors use a number of different readout techniques to accomplish the sensing. The use of optical readout techniques sensing require the deposition of thin coatings on the surface of micromechanical thermal detectors. Oak Ridge National Laboratory (ORNL) is uniquely qualified to perform the required research and development (R&D) services that will assist our ongoing activities. Over the past decade ORNL has developed a number of unique methods and techniques that led to improved sensors using a number of different approaches.« less

  5. On-sky performance evaluation and calibration of a polarization-sensitive focal plane array

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran; Brock, Neal; West, Ray

    2016-07-01

    The advent of pixelated micropolarizer arrays (MPAs) has facilitated the development of polarization-sensitive focal plane arrays (FPAs) based on charge-coupled devices (CCDs) and active pixel sensors (APSs), which are otherwise only able to measure the intensity of light. Polarization sensors based on MPAs are extremely compact, light-weight, mechanically robust devices with no moving parts, capable of measuring the degree and angle of polarization of light in a single snapshot. Furthermore, micropolarizer arrays based on wire grid polarizers (so called micro-grid polarizers) offer extremely broadband performance, across the optical and infrared regimes. These devices have potential for a wide array of commercial and research applications, where measurements of polarization can provide critical information, but where conventional polarimeters could be practically implemented. To date, the most successful commercial applications of these devices are 4D Technology's PhaseCam laser interferometers and PolarCam imaging polarimeters. Recently, MPA-based polarimeters have been identified as a potential solution for space-based telescopes, where the small size, snapshot capability and low power consumption (offered by these devices) are extremely desirable. In this work, we investigated the performance of MPA-based polarimeters designed for astronomical polarimetry using the Rochester Institute of Technology Polarization Imaging Camera (RITPIC). We deployed RITPIC on the 0.9 meter SMARTS telescope at the Cerro Tololo Inter-American Observatory and observed a variety of astronomical objects (calibration stars, variable stars, reflection nebulae and planetary nebulae). We use our observations to develop calibration procedures that are unique to these devices and provide an estimate for polarimetric precision that is achievable.

  6. Generalized algebraic scene-based nonuniformity correction algorithm.

    PubMed

    Ratliff, Bradley M; Hayat, Majeed M; Tyo, J Scott

    2005-02-01

    A generalization of a recently developed algebraic scene-based nonuniformity correction algorithm for focal plane array (FPA) sensors is presented. The new technique uses pairs of image frames exhibiting arbitrary one- or two-dimensional translational motion to compute compensator quantities that are then used to remove nonuniformity in the bias of the FPA response. Unlike its predecessor, the generalization does not require the use of either a blackbody calibration target or a shutter. The algorithm has a low computational overhead, lending itself to real-time hardware implementation. The high-quality correction ability of this technique is demonstrated through application to real IR data from both cooled and uncooled infrared FPAs. A theoretical and experimental error analysis is performed to study the accuracy of the bias compensator estimates in the presence of two main sources of error.

  7. Small Satellites and RPAs in Global-Change Research

    DTIC Science & Technology

    1992-12-01

    room for fruitful compromise here, either with dual-use FPAs (see point 1.4 above), or with multi-pixel arrays that do not contain many thousands of...of most of this sulphate appears to be microbiota in the upper ocean layers which produce dimethyl sulfide, (CH 3 )2S. These molecules must, however...opportunity. If a flexible and relatively inexpensive small satellite platform were avail- able for global change applications, a fruitful use would be to

  8. Enhanced broadband (11-15 µm) QWIP FPAs for space applications

    NASA Astrophysics Data System (ADS)

    Nedelcu, Alexandru; de l'Isle, Nadia B.; Truffer, Jean-Patrick; Belhaire, Eric; Costard, Eric; Bois, Philippe; Merken, Patrick; Saint-Pé, Olivier

    2017-11-01

    A thirty months ESA project started in March 2008, whose purpose is to expand and assess the performance of broadband (11-15μm) quantum detectors for spectro-imaging applications: Fourier Transform Spectrometers and Dispersive Spectrometers. We present here the technical requirements, the development approach chosen as well as preliminary signal to noise ratio (SNR) calculations. Our approach is fully compatible with the final array format (1024x256, pitch 50-60μm). We expect the requested uniformity, operability and SNR levels to be achieved at the goal temperatures (60K for FTS applications and 50K for DS applications). The performance level will be demonstrated on 256x256, 50μm pitch arrays. Also, operability and uniformity issues will be addressed on large mechanical 1024x256 hybrid arrays.

  9. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL

    NASA Astrophysics Data System (ADS)

    Delaunay, Pierre-Yves; Nosho, Brett Z.; Gurga, Alexander R.; Terterian, Sevag; Rajavel, Rajesh D.

    2017-02-01

    Recent advances in superlattice-based infrared detectors have rendered this material system a solid alternative to HgCdTe for dual-band sensing applications. In particular, superlattices are attractive from a manufacturing perspective as the epitaxial wafers can be grown with a high degree of lateral uniformity, low macroscopic defect densities (< 50 cm-2) and achieve dark current levels comparable to HgCdTe detectors. In this paper, we will describe our recent effort on the VISTA program towards producing HD-format (1280x720, 12 μm pitch) superlattice based, dual-band MWIR/LWIR FPAs. We will report results from several multi-wafer fabrication lots of 1280x720, 12 μm pitch FPAs processed over the last two years. To assess the FPA performance, noise equivalent temperature difference (NETD) measurements were conducted at 80K, f/4.21 and using a blackbody range of 22°C to 32°C. For the MWIR band, the NETD was 27.44 mK with a 3x median NETD operability of 99.40%. For the LWIR band, the median NETD was 27.62 mK with a 3x median operability of 99.09%. Over the course of the VISTA program, HRL fabricated over 30 FPAs with similar NETDs and operabilities in excess of 99% for both bands, demonstrating the manufacturability and high uniformity of III-V superlattices. We will also present additional characterization results including blinkers, spatial stability, modulation transfer function and thermal cycles reliability.

  10. InAs/GaSb type-II superlattice infrared detectors: Future prospect

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2017-09-01

    Investigations of antimonide-based materials began at about the same time as HgCdTe ternary alloys—in the 1950s, and the apparent rapid success of their technology, especially low-dimensional solids, depends on the previous five decades of III-V materials and device research. However, the sophisticated physics associated with the antimonide-based bandgap engineering concept started at the beginning of 1990s gave a new impact and interest in development of infrared detector structures within academic and national laboratories. The development of InAs/GaSb type-II superlattices (T2SLs) results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe focal plane arrays (FPAs) at reasonable cost and the theoretical predictions of lower Auger recombination for type T2SL detectors compared with HgCdTe. Second motivation—lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall (SRH) lifetime are equal. InAs/GaSb T2SL photodetectors offer similar performance to HgCdTe at an equivalent cut-off wavelength, but with a sizeable penalty in operating temperature, due to the inherent difference in SRH lifetimes. It is predicted that since the future infrared (IR) systems will be based on the room temperature operation of depletion-current limited arrays with pixel densities that are fully consistent with background- and diffraction-limited performance due to the system optics, the material system with long SRH lifetime will be required. Since T2SLs are very much resisted in attempts to improve its SRH lifetime, currently the only material that meets this requirement is HgCdTe. Due to less ionic chemical bonding, III-V semiconductors are more robust than their II-VI counterparts. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability, scalability, producibility, and affordability—the so-called "ibility" advantages.

  11. HP-41CV Flight Performance Advisory System (FPAS) for the E-2C, E-2B, and C-2A Aircraft

    DTIC Science & Technology

    1982-06-01

    NPS67-82- 003 NAVAL POSTGRADUATE SCHOOL Monterey, California DTIC HP-41CV FLIGHT PERFORMANCE ADVISORY SYSTEM (FPAS) FOR THE E-2C, E-2B, AND C-2A...A’P-𔃻"’f .00 ____________ 4. TITLE9 (and Subtil) SL TYPE OF REPORT & PERIOD COVERED H1P-41CV FLIGHT PERFORMANCE ADVISORY SYSTEM (FPAS) TECHNICAL REPORT...complement the original design of a Flight Performance Advisory System (FPAS) for the E-2C aircraft. The original design fulfilled the requirements of AE 3001

  12. Competitive technologies of third generation infrared photon detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2006-03-01

    Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolour functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well IR photoconductors (QWIPs) are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. However, the metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm.

  13. Competitive technologies for third generation infrared photon detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2006-05-01

    Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolor functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well photoconductors are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. The metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm. In this context the material properties of type II superlattices are considered more in detail.

  14. LED characterization for development of on-board calibration unit of CCD-based advanced wide-field sensor camera of Resourcesat-2A

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Verma, Anurag

    2016-05-01

    The Advanced Wide Field Sensor (AWiFS) camera caters to high temporal resolution requirement of Resourcesat-2A mission with repeativity of 5 days. The AWiFS camera consists of four spectral bands, three in the visible and near IR and one in the short wave infrared. The imaging concept in VNIR bands is based on push broom scanning that uses linear array silicon charge coupled device (CCD) based Focal Plane Array (FPA). On-Board Calibration unit for these CCD based FPAs is used to monitor any degradation in FPA during entire mission life. Four LEDs are operated in constant current mode and 16 different light intensity levels are generated by electronically changing exposure of CCD throughout the calibration cycle. This paper describes experimental setup and characterization results of various flight model visible LEDs (λP=650nm) for development of On-Board Calibration unit of Advanced Wide Field Sensor (AWiFS) camera of RESOURCESAT-2A. Various LED configurations have been studied to meet dynamic range coverage of 6000 pixels silicon CCD based focal plane array from 20% to 60% of saturation during night pass of the satellite to identify degradation of detector elements. The paper also explains comparison of simulation and experimental results of CCD output profile at different LED combinations in constant current mode.

  15. Shutterless solution for simultaneous focal plane array temperature estimation and nonuniformity correction in uncooled long-wave infrared camera.

    PubMed

    Cao, Yanpeng; Tisse, Christel-Loic

    2013-09-01

    In uncooled long-wave infrared (LWIR) microbolometer imaging systems, temperature fluctuations of the focal plane array (FPA) result in thermal drift and spatial nonuniformity. In this paper, we present a novel approach based on single-image processing to simultaneously estimate temperature variances of FPAs and compensate the resulting temperature-dependent nonuniformity. Through well-controlled thermal calibrations, empirical behavioral models are derived to characterize the relationship between the responses of microbolometer and FPA temperature variations. Then, under the assumption that strong dependency exists between spatially adjacent pixels, we estimate the optimal FPA temperature so as to minimize the global intensity variance across the entire thermal infrared image. We make use of the estimated FPA temperature to infer an appropriate nonuniformity correction (NUC) profile. The performance and robustness of the proposed temperature-adaptive NUC method are evaluated on realistic IR images obtained by a 640 × 512 pixels uncooled LWIR microbolometer imaging system operating in a significantly changed temperature environment.

  16. Modulation Transfer Function of Infrared Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Hoglund, L.; Luong, E. M.

    2015-01-01

    Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid -wavelength and long- wavelength quantum well infrared photodetector, and 320x256 pixels long- wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NE delta T of the 8.8 micron cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.

  17. Simulation and experimental characterization of the point spread function, pixel saturation, and blooming of a mercury cadmium telluride focal plane array.

    PubMed

    Soehnel, Grant; Tanbakuchi, Anthony

    2012-11-20

    A custom IR spot scanning experiment was constructed to project subpixel spots on a mercury cadmium telluride focal plane array (FPA). The hardware consists of an FPA in a liquid nitrogen cooled Dewar, high precision motorized stages, a custom aspheric lens, and a 1.55 and 3.39 μm laser source. By controlling the position and intensity of the spot, characterizations of cross talk, saturation, blooming, and (indirectly) the minority carrier lifetime were performed. In addition, a Monte-Carlo-based charge diffusion model was developed to validate experimental data and make predictions. Results show very good agreement between the model and experimental data. Parameters such as wavelength, reverse bias, and operating temperature were found to have little effect on pixel crosstalk in the absorber layer of the detector. Saturation characterizations show that these FPAs, which do not have antiblooming circuitry, exhibit an increase in cross talk due to blooming at ∼39% beyond the flux required for analog saturation.

  18. High-performance IR detector modules

    NASA Astrophysics Data System (ADS)

    Wendler, Joachim; Cabanski, Wolfgang; Rühlich, Ingo; Ziegler, Johann

    2004-02-01

    The 3rd generation of infrared (IR) detection modules is expected to provide higher video resolution, advanced functions like multi band or multi color capability, higher frame rates, and better thermal resolution. AIM has developed staring and linear high performance focal plane arrays (FPA) integrated into detector/dewar cooler assemblies (IDCA). Linear FPA"s support high resolution formats such as 1920 x 1152 (HDTV), 1280 x 960, or 1536 x 1152. Standard format for staring FPA"s is 640 x 512. In this configuration, QEIP devices sensitive in the 8 10 µm band as well as MCT devices sensitive in the 3.4 5.0 µm band are available. A 256 x 256 high speed detection module allows a full frame rate >800 Hz. Especially usability of long wavelength devices in high performance FLIR systems does not only depend on the classical electrooptical performance parameters such as NEDT, detectivity, and response homogeneity, but are mainly characterized by the stability of the correction coefficients used for image correction. The FPA"s are available in suited integrated detector/dewar cooler assemblies. The linear cooling engines are designed for maximum stability of the focal plane temperature, low operating temperatures down to 60K, high MTTF lifetimes of 6000h and above even under high ambient temperature conditions. The IDCA"s are equipped with AIM standard or custom specific command and control electronics (CCE) providing a well defined interface to the system electronics. Video output signals are provided as 14 bit digital data rates up to 80 MHz for the high speed devices.

  19. Reliable InP-based Geiger-mode avalanche photodiode arrays

    NASA Astrophysics Data System (ADS)

    Smith, Gary M.; McIntosh, K. Alex; Donnelly, Joseph P.; Funk, Joseph E.; Mahoney, Leonard J.; Verghese, Simon

    2009-05-01

    Arrays as large as 256 x 64 of single-photon counting avalanche photodiodes have been developed for defense applications in free-space communication and laser radar. Focal plane arrays (FPAs) sensitive to both 1.06 and 1.55 μm wavelength have been fabricated for these applications. At 240 K and 4 V overbias, the dark count rate (DCR) of 15 μm diameter devices is typically 250 Hz for 1.06 μm sensitive APDs and 1 kHz for 1.55 μm APDs. Photon detection efficiencies (PDE) at 4 V overbias are about 45% for both types of APDs. Accounting for microlens losses, the full FPA has a PDE of 30%. The reset time needed for a pixel to avoid afterpulsing at 240 K is about 3-4 μsec. These devices have been used by system groups at Lincoln Laboratory and other defense contractors for building operational systems. For these fielded systems the device reliability is a strong concern. Individual APDs as well as full arrays have been run for over 1000 hrs of accelerated testing to verify their stability. The reliability of these GM-APDs is shown to be under 10 FITs at operating temperatures of 250 K, which also corresponds to an MTTF of 17,100 yrs.

  20. Complex Source and Radiation Behaviors of Small Elements of Linear and Matrix Flexible Ultrasonic Phased-Array Transducers

    NASA Astrophysics Data System (ADS)

    Amory, V.; Lhémery, A.

    2008-02-01

    Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.

  1. Design of 90×8 ROIC with pixel level digital TDI implementation for scanning type LWIR FPAs

    NASA Astrophysics Data System (ADS)

    Ceylan, Omer; Kayahan, Huseyin; Yazici, Melik; Gurbuz, Yasar

    2013-06-01

    Design of a 90×8 CMOS readout integrated circuit (ROIC) based on pixel level digital time delay integration (TDI) for scanning type LWIR focal plane arrays (FPAs) is presented. TDI is implemented on 8 pixels which improves the SNR of the system with a factor of √8. Oversampling rate of 3 improves the spatial resolution of the system. TDI operation is realized with a novel under-pixel analog-to-digital converter, which improves the noise performance of ROIC with a lower quantization noise. Since analog signal is converted to digital domain in-pixel, non-uniformities and inaccuracies due to analog signal routing over large chip area is eliminated. Contributions of each pixel for proper TDI operation are added in summation counters, no op-amps are used for summation, hence power consumption of ROIC is lower than its analog counterparts. Due to lack of multiple capacitors or summation amplifiers, ROIC occupies smaller chip area compared to its analog counterparts. ROIC is also superior to its digital counterparts due to novel digital TDI implementation in terms of power consumption, noise and chip area. ROIC supports bi-directional scan, multiple gain settings, bypass operation, automatic gain adjustment, pixel select/deselect, and is programmable through serial or parallel interface. Input referred noise of ROIC is less than 750 rms electrons, while power consumption is less than 20mW. ROIC is designed to perform both in room and cryogenic temperatures.

  2. Pelican: SCD's 640 × 512/15 μm pitch InSb detector

    NASA Astrophysics Data System (ADS)

    Oiknine Schlesinger, J.; Calahorra, Z.; Uri, E.; Shick, O.; Fishman, T.; Shtrichman, I.; Sinbar, E.; Nahum, V.; Kahanov, E.; Shlomovich, B.; Hasson, S.; Fishler, N.; Chen, D.; Markovitz, T.

    2007-04-01

    Over the last decade, SCD has developed and manufactured high quality InSb Focal Plane Arrays (FPAs), that are currently used in different applications worldwide. SCD's production line includes InSb FPAs with mid format (320x256 elements), and large format (640x512 elements), all available in various packaging configurations, including fully integrated Detector-Dewar-Cooler Assemblies (DDCA). Many of SCD's products are fully customized for customers' needs, and are optimized for each application with respect to the weight, power, size, and performance. In 2006, SCD has added to its broad InSb product portfolio the new "Pelican" detector family. All Pelican detectors include a large format 640×512 InSb FPA with 15μm pitch, which is based on the FLIR/Indigo ISC0403 Readout Integrated Circuit (ROIC). Due to its small size, the Pelican FPA fits in any mid format Dewar, enabling upgrading of mid format systems with higher spatial resolution due to its good MTF. This work presents the high performance of Pelican products. As achieved in all SCD's InSb DDC's, the Pelican detectors demonstrate high uniformity and correctability (residual non uniformity less than 0.05% std/DR) and remarkable operability (typically better than 99.9%). The Pelican FPA can be integrated in various DDCA configurations as per application needs, such as light weight, low power and compact form for hand held imagers, or a rigid configuration for environmentally demanding operating and storage conditions.

  3. Proceedings of 16th Nordic Semiconductor Meeting Held in Laugarvatn, Iceland on 12-15 June 1994

    DTIC Science & Technology

    1995-01-10

    uniform and is a Recent work [1] by Thomas, Pr~tre and this author on sensitive function of the AB-flux. The nonuniform density the admittance of... LWIR window), are more Fig. 1. Energy band structure of a GaAs/AIGaAs quantum well (QW). difficult to grow, process and fabricate into uniform devices...technology is a viable candidate for large, high per- formance, low cost LWIR (8-12 gm) focal plane arrays (FPAs) [4-6]. CGWX QWIPs operate on account

  4. Multi-color IR sensors based on QWIP technology for security and surveillance applications

    NASA Astrophysics Data System (ADS)

    Sundaram, Mani; Reisinger, Axel; Dennis, Richard; Patnaude, Kelly; Burrows, Douglas; Cook, Robert; Bundas, Jason

    2006-05-01

    Room-temperature targets are detected at the furthest distance by imaging them in the long wavelength (LW: 8-12 μm) infrared spectral band where they glow brightest. Focal plane arrays (FPAs) based on quantum well infrared photodetectors (QWIPs) have sensitivity, noise, and cost metrics that have enabled them to become the best commercial solution for certain security and surveillance applications. Recently, QWIP technology has advanced to provide pixelregistered dual-band imaging in both the midwave (MW: 3-5 μm) and longwave infrared spectral bands in a single chip. This elegant technology affords a degree of target discrimination as well as the ability to maximize detection range for hot targets (e.g. missile plumes) by imaging in the midwave and for room-temperature targets (e.g. humans, trucks) by imaging in the longwave with one simple camera. Detection-range calculations are illustrated and FPA performance is presented.

  5. Single-image-based solution for optics temperature-dependent nonuniformity correction in an uncooled long-wave infrared camera.

    PubMed

    Cao, Yanpeng; Tisse, Christel-Loic

    2014-02-01

    In this Letter, we propose an efficient and accurate solution to remove temperature-dependent nonuniformity effects introduced by the imaging optics. This single-image-based approach computes optics-related fixed pattern noise (FPN) by fitting the derivatives of correction model to the gradient components, locally computed on an infrared image. A modified bilateral filtering algorithm is applied to local pixel output variations, so that the refined gradients are most likely caused by the nonuniformity associated with optics. The estimated bias field is subtracted from the raw infrared imagery to compensate the intensity variations caused by optics. The proposed method is fundamentally different from the existing nonuniformity correction (NUC) techniques developed for focal plane arrays (FPAs) and provides an essential image processing functionality to achieve completely shutterless NUC for uncooled long-wave infrared (LWIR) imaging systems.

  6. Staircase-scene-based nonuniformity correction in aerial point target detection systems.

    PubMed

    Huo, Lijun; Zhou, Dabiao; Wang, Dejiang; Liu, Rang; He, Bin

    2016-09-01

    Focal-plane arrays (FPAs) are often interfered by heavy fixed-pattern noise, which severely degrades the detection rate and increases the false alarms in airborne point target detection systems. Thus, high-precision nonuniformity correction is an essential preprocessing step. In this paper, a new nonuniformity correction method is proposed based on a staircase scene. This correction method can compensate for the nonlinear response of the detector and calibrate the entire optical system with computational efficiency and implementation simplicity. Then, a proof-of-concept point target detection system is established with a long-wave Sofradir FPA. Finally, the local standard deviation of the corrected image and the signal-to-clutter ratio of the Airy disk of a Boeing B738 are measured to evaluate the performance of the proposed nonuniformity correction method. Our experimental results demonstrate that the proposed correction method achieves high-quality corrections.

  7. Small-pixel long wavelength infrared focal plane arrays based on InAs/GaSb Type-II superlattice

    NASA Astrophysics Data System (ADS)

    Han, Xi; Jiang, Dongwei; Wang, Guowei; Hao, Hongyue; Sun, Yaoyao; Jiang, Zhi; Lv, Yuexi; Guo, Chunyan; Xu, Yingqiang; Niu, Zhichuan

    2018-03-01

    The paper reports a 640 × 512 long wavelength infrared focal plane arrays (FPAs) with 15 × 15 μm2 pixels pitch based on the type II InAs/GaSb superlattice. Material grown on a 3 in. GaSb substrate exhibits a 50% cutoff wavelength of 10.2 μm across the entire wafer. The peak quantum efficiency of the detector reaches 28% at 9.1 μm without anti-reflecting coating. Maximal resistance-area products of 8.95 Ω·cm2 at 77 K and 24.4 Ω·cm2 at 45 K are achieved in a single element device indicating that the generation-recombination and tunneling mechanisms dominate the device dark current, respectively. The peak Johnson Detectivity reaches 9.66 × 1011 cm Hz1/2/W at 9.1 μm with the bias voltage of 80 mV. In the whole zone, the operability and non-uniformity for the responsivity are 97.74% and 6.41% respectively. The average noise equivalent temperature difference of 31.9 mK at 77 K is achieved with an integration time of 0.5 ms, a 300 K background and f/2 optics.

  8. Focal plane arrays based on Type-II indium arsenide/gallium antimonide superlattices

    NASA Astrophysics Data System (ADS)

    Delaunay, Pierre-Yves

    The goal of this work is to demonstrate that Type-II InAs/GaSb superlattices can perform high quality infrared imaging from the middle (MWIR) to the long (LWIR) wavelength infrared range. Theoretically, focal plane arrays (FPAs) based on this technology could be operated at higher temperatures, with lower dark currents than the leading HgCdTe platform. This effort will focus on the fabrication of MWIR and LWIR FPAs with performance similar to existing infrared cameras. Some applications in the MWIR require fast, sensitive imagers able to sustain frame rates up to 100Hz. Such speed can only be achieved with photon detectors. However, these cameras need to be operated below 170K. Current research in this spectral band focuses on increasing the operating temperature of the FPA to a point where cooling could be performed with compact and reliable thermoelectric coolers. Type-II superlattice was used to demonstrate a camera that presented similar performance to HgCdTe and that could be operated up to room temperature. At 80K, the camera could detect temperature differences as low as 10 mK for an integration time shorter than 25 ms. In the LWIR, the electric performance of Type-II photodiodes is mainly limited by surface leakage. Aggressive processing steps such as hybridization and underfill can increase the dark current of the devices by several orders of magnitude. New cleaning and passivation techniques were used to reduce the dark current of FPA diodes by two orders of magnitudes. The absorbing GaSb substrate was also removed to increase the quantum efficiency of the devices up to 90%. At 80K, a FPA with a 9.6 microm 50%-cutoff in responsivity was able to detect temperature differences as low as 19 mK, only limited by the performance of the testing system. The non-uniformity in responsivity reached 3.8% for a 98.2% operability. The third generation of infrared cameras is based on multi-band imaging in order to improve the recognition capabilities of the imager. Preliminary detectors based on back to back diodes presented similar performance to single colors devices; the quantum efficiency was measured higher than 40% for both bands. Preliminary imaging results were demonstrated in the LWIR.

  9. Extended SWIR imaging sensors for hyperspectral imaging applications

    NASA Astrophysics Data System (ADS)

    Weber, A.; Benecke, M.; Wendler, J.; Sieck, A.; Hübner, D.; Figgemeier, H.; Breiter, R.

    2016-05-01

    AIM has developed SWIR modules including FPAs based on liquid phase epitaxy (LPE) grown MCT usable in a wide range of hyperspectral imaging applications. Silicon read-out integrated circuits (ROIC) provide various integration and readout modes including specific functions for spectral imaging applications. An important advantage of MCT based detectors is the tunable band gap. The spectral sensitivity of MCT detectors can be engineered to cover the extended SWIR spectral region up to 2.5μm without compromising in performance. AIM developed the technology to extend the spectral sensitivity of its SWIR modules also into the VIS. This has been successfully demonstrated for 384x288 and 1024x256 FPAs with 24μm pitch. Results are presented in this paper. The FPAs are integrated into compact dewar cooler configurations using different types of coolers, like rotary coolers, AIM's long life split linear cooler MCC030 or extreme long life SF100 Pulse Tube cooler. The SWIR modules include command and control electronics (CCE) which allow easy interfacing using a digital standard interface. The development status and performance results of AIM's latest MCT SWIR modules suitable for hyperspectral systems and applications will be presented.

  10. 640 x 512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Hill, Cory J.; Ting, David Z.; Liu, John K.; Rafol, Sir B.; Blazejewski, Edward R.; Mumolo, Jason M.; Keo, Sam A.; Krishna, Sanjay; hide

    2007-01-01

    Epitaxially grown self-assembled. InAs-InGaAs-GaAs quantum dots (QDs) are exploited for the development of large-format long-wavelength infrared focal plane arrays (FPAs). The dot-in-a-well (DWELL) structures were experimentally shown to absorb both 45 degrees and normal incident light, therefore, a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 micrometers, with peak detectivity reaching approximately 1 X 10(exp 10) Jones at 77 K. The devices were fabricated into the first long-wavelength 640 x 512 pixel QD infrared photodetector imaging FPA, which has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60-K operating temperature.

  11. Next decade in infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2017-10-01

    Fundamental and technological issues associated with the development and exploitation of the most advanced infrared technologies is discussed. In these classes of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys, type II superlattices (T2SLs), barrier detectors, quantum wells, extrinsic detectors, and uncooled thermal bolometers. The sophisticated physics associated with the antimonide-based bandgap engineering will give a new impact and interest in development of infrared detector structures. Important advantage of T2SLs is the high quality, high uniformity and stable nature of the material. In general, III-V semiconductors are more robust than their II-VI counterparts due to stronger, less ionic chemical bonding. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability, scalability, producibility, and affordability - the so-called "ibility" advantages. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. The microbolometer detectors are now produced in larger volumes than all other IR array technologies together. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VOx) or amorphous silicon (a-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement.

  12. Direct mapping and characterization of dry etch damage-induced PN junction for long-wavelength HgCdTe infrared detector arrays.

    PubMed

    Li, Yantao; Hu, Weida; Ye, Zhenhua; Chen, Yiyu; Chen, Xiaoshuang; Lu, Wei

    2017-04-01

    Mercury cadmium telluride is the standard material to fabricate high-performance infrared focal plane array (FPA) detectors. However, etch-induced damage is a serious obstacle for realizing highly uniform and damage-free FPA detectors. In this Letter, the high signal-to-noise ratio and high spatial resolution scanning photocurrent microscopy (SPCM) is used to characterize the dry etch-induced inversion layer of vacancy-doped p-type Hg1-xCdxTe (x=0.22) material under different etching temperatures. It is found that the peak-to-peak magnitude of the SPCM profile decreases with a decrease in etching temperature, showing direct proof of controlling dry etch-induced type conversion. Our work paves the way toward seeking optimal etching processes in large-scale infrared FPAs.

  13. HgCdTe APDS for time resolved space applications

    NASA Astrophysics Data System (ADS)

    Rothman, J.; Lasfargues, G.; Delacourt, B.; Dumas, A.; Gibert, F.; Bardoux, A.; Boutillier, M.

    2017-09-01

    HgCdTe APDs have opened a new horizon in photon starved applications due to their exceptional performance in terms of high linear gain, low excess noise and high quantum efficiency. Both focal plane arrays (FPAs) and large array single element using HgCdTe (MCT) APDs have been developed at CEA/Leti and Sofradir and high performance devices are at present available to detect without deterioration the spatial and/or temporal information in photon fluxes with a low number of photon in each spatio-temporal bin. The enhancement in performance that can be achieved with MCT has subsequently been demonstrated in a wide scope of applications such as astronomical observations, active imaging, deep space telecommunications, atmospheric LIDAR and mid-IR (MIR) time resolved photoluminescence measurements. Most of these applications can be used in space borne platforms.

  14. Demonstration of 1024x1024 pixel dual-band QWIP focal plane array

    NASA Astrophysics Data System (ADS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Mumolo, J. M.; Ting, D. Z.; Hill, C. J.; Nguyen, J.; Rafol, S. B.

    2010-04-01

    QWIPs are well known for their stability, high pixel-pixel uniformity and high pixel operability which are quintessential parameters for large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). The dual-band QWIP device was developed by stacking two multi-quantum-well stacks tuned to absorb two different infrared wavelengths. The full width at half maximum (FWHM) of the mid-wave infrared (MWIR) band extends from 4.4 - 5.1 μm and FWHM of the long-wave infrared (LWIR) band extends from 7.8 - 8.8 μm. Dual-band QWIP detector arrays were hybridized with direct injection 30 μm pixel pitch megapixel dual-band simultaneously readable CMOS read out integrated circuits using the indium bump hybridization technique. The initial dual-band megapixel QWIP FPAs were cooled to 68K operating temperature. The preliminary data taken from the first megapixel QWIP FPA has shown system NE▵T of 27 and 40 mK for MWIR and LWIR bands respectively.

  15. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  16. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Astrophysics Data System (ADS)

    Esposito, B. J.; McCafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-11-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  17. Impulse response measurement in the HgCdTe avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Singh, Anand; Pal, Ravinder

    2018-04-01

    HgCdTe based mid-wave infrared focal plane arrays (MWIR FPAs) are being developed for high resolution imaging and range determination of distant camouflaged targets. Effect of bandgap grading on the response time in the n+/ν/p+ HgCdTe electron avalanche photodiode (e-APD) is evaluated using impulse response measurement. Gain normalized dark current density of 2 × 10-9 A/cm2 at low reverse bias for passive mode and 2 × 10-4 A/cm2 at -8 V for active mode is measured in the fabricated APD device, yielding high gain bandwidth product of 2.4 THZ at the maximum gain. Diffusion of carriers is minimized to achieve transit time limited impulse response by introducing composition grading in the HgCdTe epilayer. The noise equivalent photon performance less than one is achievable in the FPA that is suitable for active cum passive imaging applications.

  18. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  19. InAs/GaSb type-II superlattices versus HgCdTe ternary alloys: future prospect

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2017-10-01

    InAs/GaSb T2SL photodetectors offer similar performance to HgCdTe at an equivalent cutoff wavelength, but with a sizeable penalty in operating temperature, due to the inherent difference in Shockley-Read lifetimes. It is predicted that since the future IR systems will be based on the room temperature operation of depletion-current limited arrays with pixel densities that are fully consistent with background- and diffraction-limited performance due to the system optics, the material system with long Shockley-Read lifetime will be required. Since T2SLs are much resisted in attempts to improve its SR lifetime, currently the only material that meets this requirement is HgCdTe. Due to less ionic chemical bonding, III-V semiconductors are more robust than their II-VI counterparts. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability, scalability, producibility, and affordability - the so-called "ibility" advantages.

  20. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  1. Scene-based nonuniformity correction for airborne point target detection systems.

    PubMed

    Zhou, Dabiao; Wang, Dejiang; Huo, Lijun; Liu, Rang; Jia, Ping

    2017-06-26

    Images acquired by airborne infrared search and track (IRST) systems are often characterized by nonuniform noise. In this paper, a scene-based nonuniformity correction method for infrared focal-plane arrays (FPAs) is proposed based on the constant statistics of the received radiation ratios of adjacent pixels. The gain of each pixel is computed recursively based on the ratios between adjacent pixels, which are estimated through a median operation. Then, an elaborate mathematical model describing the error propagation, derived from random noise and the recursive calculation procedure, is established. The proposed method maintains the characteristics of traditional methods in calibrating the whole electro-optics chain, in compensating for temporal drifts, and in not preserving the radiometric accuracy of the system. Moreover, the proposed method is robust since the frame number is the only variant, and is suitable for real-time applications owing to its low computational complexity and simplicity of implementation. The experimental results, on different scenes from a proof-of-concept point target detection system with a long-wave Sofradir FPA, demonstrate the compelling performance of the proposed method.

  2. Wide-band (2.5 - 10.5 µm), high-frame rate IRFPAs based on high-operability MCT on silicon

    NASA Astrophysics Data System (ADS)

    Crosbie, Michael J.; Giess, Jean; Gordon, Neil T.; Hall, David J.; Hails, Janet E.; Lees, David J.; Little, Christopher J.; Phillips, Tim S.

    2010-04-01

    We have previously presented results from our mercury cadmium telluride (MCT, Hg1-xCdxTe) growth on silicon substrate technology for different applications, including negative luminescence, long waveband and mid/long dual waveband infrared imaging. In this paper, we review recent developments in QinetiQ's combined molecular beam epitaxy (MBE) and metal-organic vapor phase epitaxy (MOVPE) MCT growth on silicon; including MCT defect density, uniformity and reproducibility. We also present a new small-format (128 x 128) focal plane array (FPA) for high frame-rate applications. A custom high-speed readout integrated circuit (ROIC) was developed with a large pitch and large charge storage aimed at producing a very high performance FPA (NETD ~10mK) operating at frame rates up to 2kHz for the full array. The array design allows random addressing and this allows the maximum frame rate to be increased as the window size is reduced. A broadband (2.5-10.5 μm) MCT heterostructure was designed and grown by the MBE/MOVPE technique onto silicon substrates. FPAs were fabricated using our standard techniques; wet-etched mesa diodes passivated with epitaxial CdTe and flip-chip bonded to the ROIC. The resulting focal plane arrays were characterized at the maximum frame rate and shown to have the high operabilities and low NETD values characteristic of our LWIR MCT on silicon technology.

  3. Measurement of filter paper activities of cellulase with microplate-based assay.

    PubMed

    Yu, Xiaoxiao; Liu, Yan; Cui, Yuxiao; Cheng, Qiyue; Zhang, Zaixiao; Lu, Jia Hui; Meng, Qingfan; Teng, Lirong; Ren, Xiaodong

    2016-01-01

    It is always a challenge to determine the total cellulase activity efficiently without reducing accuracy. The most common total cellulase activity assay is the filter paper assay (FPA) established by the International Union of Pure and Applied Chemistry (IUPAC). A new procedure to measure the FPA with microplate-based assay was studied in this work, which followed the main idea of IUPAC to dilute cellulase preparation to get fixed glucose release. FPAs of six cellulase preparations were determined with the microplate-based assay. It is shown that FPAs of cellulase Youtell, RCconc, R-10, Lerkam, Yishui and Sinopharm were 67.9, 46.0, 46.1, 27.4, 7.6 and 8.0 IU/ml respectively. There was no significant difference at the 95% confidence level between the FPA determined with IUPAC and the microplate-based assay. It could be concluded that the FPA could be determined by the microplate-based assay with the same accuracy and much more efficiency compared with that by IUPAC.

  4. Measurement of filter paper activities of cellulase with microplate-based assay

    PubMed Central

    Yu, Xiaoxiao; Liu, Yan; Cui, Yuxiao; Cheng, Qiyue; Zhang, Zaixiao; Lu, Jia Hui; Meng, Qingfan; Teng, Lirong; Ren, Xiaodong

    2015-01-01

    It is always a challenge to determine the total cellulase activity efficiently without reducing accuracy. The most common total cellulase activity assay is the filter paper assay (FPA) established by the International Union of Pure and Applied Chemistry (IUPAC). A new procedure to measure the FPA with microplate-based assay was studied in this work, which followed the main idea of IUPAC to dilute cellulase preparation to get fixed glucose release. FPAs of six cellulase preparations were determined with the microplate-based assay. It is shown that FPAs of cellulase Youtell, RCconc, R-10, Lerkam, Yishui and Sinopharm were 67.9, 46.0, 46.1, 27.4, 7.6 and 8.0 IU/ml respectively. There was no significant difference at the 95% confidence level between the FPA determined with IUPAC and the microplate-based assay. It could be concluded that the FPA could be determined by the microplate-based assay with the same accuracy and much more efficiency compared with that by IUPAC. PMID:26858572

  5. QWIP and third-generation IR imagers

    NASA Astrophysics Data System (ADS)

    Costard, E.; Bois, Ph.; Marcadet, X.; Nedelcu, A.

    2005-10-01

    Standard GaAs/AlGaAs Quantum Well Infrared Photodetectors (QWIP) are from now seriously considered for the 3rd generation of IR imagers for military markets. Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on AsGa techniques through THALES Research and Technology Laboratory. This QWIP technology allows the realization of large staring arrays for Thermal Imagers (TI) working in the IR band III (8-12 μm). A review of the current QWIP products is presented. In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and is the key parameter for the production start. By presenting our first results of a 640x512 LWIR FPA at a pitch of 20μm we also demonstrate that very high performances can be achieved even with small pixels which opens the field for the realization of usable and affordable megapixel FPAs. Another advantage widely claimed in the past for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structure to fulfill the requirements of specific applications like very long wavelength (VLWIR) or multispectral detection. In this presentation, we present the performances of our first 256x256 MWIR / LWIR two color FPA at a pitch of 25 μm, and also the current status of QWIPs for VLWIR arrays (>15μm).

  6. MT3825BA: a 384×288-25µm ROIC for uncooled microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Gulden, M. Ali; Bayhan, Nusret; Incedere, O. Samet; Soyer, S. Tuncer; Ustundag, Cem M. B.; Isikhan, Murat; Kocak, Serhat; Turan, Ozge; Yalcin, Cem; Akin, Tayfun

    2014-06-01

    This paper reports the development of a new microbolometer Readout Integrated Circuit (ROIC) called MT3825BA. It has a format of 384 × 288 and a pixel pitch of 25μm. MT3825BA is Mikro-Tasarim's second microbolometer ROIC product, which is developed specifically for resistive surface micro-machined microbolometer detector arrays using high-TCR pixel materials, such as VOx and a-Si. MT3825BA has a system-on-chip architecture, where all the timing, biasing, and pixel non-uniformity correction (NUC) operations in the ROIC are applied using on-chip circuitry simplifying the use and system integration of this ROIC. The ROIC is designed to support pixel resistance values ranging from 30 KΩ to 100 KΩ. MT3825BA is operated using conventional row based readout method, where pixels in the array are read out in a row-by-row basis, where the applied bias for each pixel in a given row is updated at the beginning of each line period according to the applied line based NUC data. The NUC data is applied continuously in a row-by-row basis using the serial programming interface, which is also used to program user configurable features of the ROIC, such as readout gain, integration time, and number of analog video outputs. MT3825BA has a total of 4 analog video outputs and 2 analog reference outputs, placed at the top and bottom of the ROIC, which can be programmed to operate in the 1, 2, and 4-output modes, supporting frames rates well above 60 fps at a 3 MHz pixel output rate. The pixels in the array are read out with respect to reference pixels implemented above and below actual array pixels. The bias voltage of the pixels can be programmed over a 1.0 V range to compensate for the changes in the detector resistance values due to the variations coming from the manufacturing process or changes in the operating temperature. The ROIC has an on-chip integrated temperature sensor with a sensitivity of better than 5 mV / K, and the output of the temperature sensor can be read out the output as part of the analog video stream. MT3825BA can be used to build a microbolometer FPAs with an NETD value below 100 mK using a microbolometer detector array fabrication technology with a detector resistance value up to 100 KΩ, a high TCR value (< 2 % / K), and a sufficiently low pixel thermal conductance (Gth ≤ 20 nW / K). MT3825BA measures 13.0 mm × 13.5 mm and is fabricated on 200 mm CMOS wafers. The microbolometer ROIC wafers are engineered to have flat surface finish to simplify the wafer level detector fabrication and wafer level vacuum packaging (WLVP). The ROIC runs on 3.3 V analog and 1.8 V digital supplies, and dissipates less than 85 mW in the 2-output mode at 30 fps. Mikro-Tasarim provides tested ROIC wafers and offers compact test electronics and software for its ROIC customers to shorten their FPA and camera development cycles.

  7. High density Schottky barrier IRCCD sensors for SWIR applications at intermediate temperature

    NASA Technical Reports Server (NTRS)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-01-01

    Monolithic 32 x 64 and 64 x 1:128 palladium silicide (Pd2Si) interline transfer infrared charge coupled devices (IRCCDs) sensitive in the 1 to 3.5 micron spectral band were developed. This silicon imager exhibits a low response nonuniformity of typically 0.2 to 1.6% rms, and was operated in the temperature range between 40 to 140 K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 microns, 5.6% at 1.65 microns 2.2% at 2.22 microns. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detectors is 0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate temperatures at TV frame rates. Typical dark current level measured at 120 K on the FPA is 2 nA/sq cm. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 micron bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 micron center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  8. Confocal Raman spectroscopy and AFM for evaluation of sidewalls in type II superlattice FPAs

    NASA Astrophysics Data System (ADS)

    Rotter, T. J.; Busani, T.; Rathi, P.; Jaeckel, F.; Reyes, P. A.; Malloy, K. J.; Ukhanov, A. A.; Plis, E.; Krishna, S.; Jaime-Vasquez, M.; Baril, N. F.; Benson, J. D.; Tenne, D. A.

    2015-06-01

    We propose to utilize confocal Raman spectroscopy combined with high resolution atomic force microscopy (AFM) for nondestructive characterisation of the sidewalls of etched and passivated small pixel (24 μm×24 μm) focal plane arrays (FPA) fabricated using LW/LWIR InAs/GaSb type-II strained layer superlattice (T2SL) detector material. Special high aspect ratio Si and GaAs AFM probes, with tip length of 13 μm and tip aperture less than 7°, allow characterisation of the sidewall morphology. Confocal microscopy enables imaging of the sidewall profile through optical sectioning. Raman spectra measured on etched T2SL FPA single pixels enable us to quantify the non-uniformity of the mesa delineation process.

  9. Design and realization of 144 x 7 TDI ROIC with hybrid integrated test structure

    NASA Astrophysics Data System (ADS)

    Ceylan, Omer; Kayahan, Huseyin; Yazici, Melik; Baran, Muhammet Burak; Gurbuz, Yasar

    2012-06-01

    Design and realization of a 144x7 silicon readout integrated circuit (ROIC) based on switched capacitor TDI for MCT LWIR scanning type focal plane arrays (FPAs) and its corresponding hybrid integrated test circuits are presented. TDI operation with 7 detectors improves the SNR of the system by a factor of √7, while oversampling rate of 3 improves the spatial resolution of the system. ROIC supports bidirectional scan, 5 adjustable gain settings, bypass operation, automatic gain adjustment in case of mulfunctioning pixels and pixel select/deselect properties. Integration time of the system can be determined by the help of an external clock. Programming of ROIC can be done in parallel or serial mode according to the needs of the system. All properties except pixel select/deselect property can be performed in parallel mode, while pixel select/deselect property can be performed only in serial mode. ROIC can handle up to 3.75V dynamic range with a load of 25pF and output settling time of 80ns. Input referred noise of the ROIC is less than 750 rms electrons, while the power consumption is less than 100mW. To test ROIC in absence of detector array, a process and temperature compensated current reference array, which supplies uniform input current in range of 1-50nA to ROIC, is designed and measured both in room and cryogenic (77ºK) temperatures. Standard deviations of current reference arrays are measured 3.26% for 1nA and 0.99% for 50nA. ROIC and current reference array are fabricated seperately, and then flip-chip bonded for the test of the system. Flip-chip bonded system including ROIC and current reference test array is successfully measured both in room and cryogenic temperatures, and measurement results are presented. The manufacturing technology is 0.35μm, double poly-Si, four metal, 5V CMOS process.

  10. Surface leakage current in 12.5  μm long-wavelength HgCdTe infrared photodiode arrays.

    PubMed

    Qiu, Weicheng; Hu, Weida; Lin, Chun; Chen, Xiaoshuang; Lu, Wei

    2016-02-15

    Long-wavelength (especially >12  μm) focal plane array (FPA) infrared detection is the cutting edge technique for third-generation infrared remote sensing. However, dark currents, which are very sensitive to the growth of small Cd composition HgCdTe, strongly limits the performance of long wavelength HgCdTe photodiode arrays in FPAs. In this Letter, 12.5 μm long-wavelength Hg1-xCdxTe (x≈0.219) infrared photodiode arrays are reported. The variable-area and variable-temperature electrical characteristics of the long-wavelength infrared photodiodes are measured. The characteristics of the extracted zero-bias resistance-area product (l/R0A) varying with the perimeter-to-area (P/A) ratio clearly show that surface leakage current mechanisms severely limit the overall device performance. A sophisticated model has been developed for investigating the leakage current mechanism in the photodiodes. Modeling of temperature-dependent I-V characteristic indicates that the trap-assisted tunneling effect dominates the dark current at 50 K resulting in nonuniformities in the arrays. The extracted trap density, approximately 1013-1014  cm-3, with an ionized energy of 30 meV is determined by simulation. The work described in this Letter provides the basic mechanisms for a better understanding of the leakage current mechanism for long-wavelength (>12  μm) HgCdTe infrared photodiode arrays.

  11. Advanced ROICs design for cooled IR detectors

    NASA Astrophysics Data System (ADS)

    Zécri, Michel; Maillart, Patrick; Sanson, Eric; Decaens, Gilbert; Lefoul, Xavier; Baud, Laurent

    2008-04-01

    The CMOS silicon focal plan array technologies hybridized with infrared detectors materials allow to cover a wide range of applications in the field of space, airborne and grounded-based imaging. Regarding other industries which are also using embedded systems, the requirements of such sensor assembly can be seen as very similar; high reliability, low weight, low power, radiation hardness for space applications and cost reduction. Comparing to CCDs technology, excepted the fact that CMOS fabrication uses standard commercial semiconductor foundry, the interest of this technology used in cooled IR sensors is its capability to operate in a wide range of temperature from 300K to cryogenic with a high density of integration and keeping at the same time good performances in term of frequency, noise and power consumption. The CMOS technology roadmap predict aggressive scaling down of device size, transistor threshold voltage, oxide and metal thicknesses to meet the growing demands for higher levels of integration and performance. At the same time infrared detectors manufacturing process is developing IR materials with a tunable cut-off wavelength capable to cover bandwidths from visible to 20μm. The requirements of third generation IR detectors are driving to scaling down the pixel pitch, to develop IR materials with high uniformity on larger formats, to develop Avalanche Photo Diodes (APD) and dual band technologies. These needs in IR detectors technologies developments associated to CMOS technology, used as a readout element, are offering new capabilities and new opportunities for cooled infrared FPAs. The exponential increase of new functionalities on chip, like the active 2D and 3D imaging, the on chip analog to digital conversion, the signal processing on chip, the bicolor, the dual band and DTI (Double Time Integration) mode ...is aiming to enlarge the field of application for cooled IR FPAs challenging by the way the design activity.

  12. Financial constraints lead to innovation by IPPF.

    PubMed

    1998-07-01

    In this interview, the International Planned Parenthood Federation's (IPPF) Secretary General, Director of Resource and Program Development, and Special Advisor to the Secretary General commented on IPPF programming innovations being adopted in response to financial constraints. Factors that have led to a reduction in core funding for the IPPF include the fact that other nongovernmental organizations (NGOs) have become more active, that many donor countries have decentralized their funding mechanisms to the country level, and that overall overseas development assistance is being decreased, despite promises made at the 1994 International Conference on Population and Development (ICPD). New funding can be sought from foundations, from the private sector, and by successfully competing with other organizations for funds available from donor countries. Transferring skills to local Family Planning Associations (FPAs) also helps these groups develop their own resource base. The ICPD marked the first time that NGOs were considered a legitimate part of the process of creating a program of action. It will be important for NGOs to demonstrate their ability to translate the goals of the ICPD into action. The IPPF and other NGOs have been successful in helping FPAs expand FP programs to cover reproductive health needs, in dealing with adolescent sexuality, and in enhancing women's empowerment. The IPPF wishes to create stronger alliances between its FPAs and other NGOs dealing with complementary issues and foster a synthesis among the recommendations of the 5 major UN conferences of the 1990s.

  13. Advanced Space-Based Detector Research at the Air Force Research Laboratory (PREPRINT)

    DTIC Science & Technology

    2006-10-01

    purposes. The dark backgrounds place very stringent requirements on the noise characteristics of the sensor system, resulting in FPAs that must be cooled...2.1. Quantum interference Quantum well infrared photodetectors ( QWIPs ) are based on intersubband absorption in III–V semiconductor multi-quantum well...Although considerable progress has been made in QWIPs , their relatively low quantum efficiencies constitute their greatest problem for space-based

  14. High Density Schottky Barrier Infrared Charge-Coupled Device (IRCCD) Sensors For Short Wavelength Infrared (SWIR) Applications At Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-11-01

    Monolithic 32 x 64 and 64 x 128 palladium silicide (Pd2Si) interline transfer IRCCDs sensitive in the 1-3.5 pm spectral band have been developed. This silicon imager exhibits a low response nonuniformity of typically 0.2-1.6% rms, and has been operated in the temperature range between 40-140K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 μm, 5.6% at 1.65 μm and 2.2% at 2.22 μm. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detector is ≍0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate tem-peratures at TV frame rates. Typical dark current level measured at 120K on the FPA is 2 nA/cm2. The Pd2Si Schottky barrier imaging technology has been developed for satellite sensing of earth resources. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 μm bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 μm center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  15. Evaluation and display of polarimetric image data using long-wave cooled microgrid focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bowers, David L.; Boger, James K.; Wellems, L. David; Black, Wiley T.; Ortega, Steve E.; Ratliff, Bradley M.; Fetrow, Matthew P.; Hubbs, John E.; Tyo, J. Scott

    2006-05-01

    Recent developments for Long Wave InfraRed (LWIR) imaging polarimeters include incorporating a microgrid polarizer array onto the focal plane array (FPA). Inherent advantages over typical polarimeters include packaging and instantaneous acquisition of thermal and polarimetric information. This allows for real time video of thermal and polarimetric products. The microgrid approach has inherent polarization measurement error due to the spatial sampling of a non-uniform scene, residual pixel to pixel variations in the gain corrected responsivity and in the noise equivalent input (NEI), and variations in the pixel to pixel micro-polarizer performance. The Degree of Linear Polarization (DoLP) is highly sensitive to these parameters and is consequently used as a metric to explore instrument sensitivities. Image processing and fusion techniques are used to take advantage of the inherent thermal and polarimetric sensing capability of this FPA, providing additional scene information in real time. Optimal operating conditions are employed to improve FPA uniformity and sensitivity. Data from two DRS Infrared Technologies, L.P. (DRS) microgrid polarizer HgCdTe FPAs are presented. One FPA resides in a liquid nitrogen (LN2) pour filled dewar with a 80°K nominal operating temperature. The other FPA resides in a cryogenic (cryo) dewar with a 60° K nominal operating temperature.

  16. Resonant detectors and focal plane arrays for infrared detection

    NASA Astrophysics Data System (ADS)

    Choi, K. K.; Allen, S. C.; Sun, J. G.; DeCuir, E. A.

    2017-08-01

    We are developing resonator-QWIPs for narrowband and broadband long wavelength infrared detection. Detector pixels with 25 μm and 30 μm pitches were hybridized to fanout circuits and readout integrated electronics for radiometric measurements. With a low to moderate doping of 0.2-0.5 × 1018 cm-3 and a thin active layer thickness of 0.6-1.3 μm, we achieved a quantum efficiency between 25 and 37% and a conversion efficiency between of 15 and 20%. The temperature at which photocurrent equals dark current is about 65 K under F/2 optics for a cutoff wavelength up to 11 μm. The NEΔT of the FPAs is estimated to be 20 mK at 2 ms integration time and 60 K operating temperature. This good performance confirms the advantages of the resonator-QWIP approach.

  17. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.

    The terahertz (THz) band provides unique sensing opportunities that enable several important applications such as biomedical imaging, remote non-destructive inspection of packaged goods, and security screening. THz waves can penetrate most materials and can provide unique spectral information in the 0.1--10 THz band with high resolution. In contrast, other imaging modalities, like infrared (IR), suffer from low penetration depths and are thus not attractive for non-destructive evaluation. However, state-of-the-art THz imaging systems typically employ mechanical raster scans using a single detector to acquire two-dimensional images. Such devices tend to be bulky and complicated due to the mechanical parts, and are thus rather expensive to develop and operate. Thus, large-format (e.g. 100x100 pixels) and all-electronics based THz imaging systems are badly needed to alleviate the space, weight and power (SWAP) factors and enable cost effective utilization of THz waves for sensing and high-data-rate communications. In contrast, photonic sensors are very compact because light can couple directly to the photodiode without residing to radiation coupling topologies. However, in the THz band, due to the longer wavelengths and much lower photon energies, highly efficient antennas with optimized input impedance have to be integrated with THz sensors. Here, we implement novel antenna engineering techniques that are optimized to take advantage of recent technological advances in solid-state THz sensing devices. For example, large-format focal plane arrays (FPAs) have been the Achilles' heel of THz imaging systems. Typically, optical components (lenses, mirrors) are employed in order to improve the optical performance of FPAs, however, antenna sensors suffer from degraded performance when they are far from the optical axis, thus minimizing the number of useful FPA elements. By modifying the radiation pattern of FPA antennas we manage to alleviate the off-axis aberration. Additionally, a butterfly-shaped antenna layout is introduced that enables broadband imaging. The alternative design presented here, allows for video-rate imaging in the 0.6--1.2 THz band and maintains a small antenna footprint, resulting in densely packed FPAs. In both antenna designs, we optimize the impedance matching between the antennas and the integrated electronic devices, thus achieving optimum responsivity levels for high sensitivity and low noise performance. Subsequently, we present the design details of the first THz camera and the first THz camera images captured. With the realized THz camera, imaging of concealed objects is achieved with <1mm diffraction limited spatial resolution. Moreover, motivated by the THz camera's real-time image acquisition, we developed the first camera-based THz computer tomography system that allows rapid cross-sectional imaging (˜2 min). For the design and analysis of the THz camera performance, we developed an in-house hybrid electromagnetic model, combining full-wave and high-frequency computational methods. The antenna radiation and impedance computation is first carried out using full-wave modeling of the FPA. Subsequently, we employ scalar diffraction theory to compute the field distribution at any point in space. Thus, the hybrid electromagnetic model allows fast and accurate design of THz antennas and modeling of the complete THz imaging system. Finally, motivated by the novel THz antenna layouts and the quasioptical techniques, we developed a novel non-contact probe measurement method for on-chip device characterization. In the THz regime, traditional contact probes are too small and fragile, thus inhibiting accurate and reliable circuit measurements. By integrating the device under test (DUT) with THz antennas that act as the measurement probes, we may couple the incident and reflected signal from and to the network analyzer without residing to any physical connection.

  18. QWIP development status at Thales Research and Technology

    NASA Astrophysics Data System (ADS)

    Costard, Eric; Nedelcu, Alexandru; Marcadet, Xavier; Belhaire, Eric; Bois, Philippe

    2006-05-01

    Standard GaAs/AlGaAs Quantum Well Infrared Photodetectors (QWIP) are now seriously considered as a technological choice for the 3 rd generation of thermal imagers. Since 2001, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on AsGa techniques through THALES Research and Technology Laboratory. This QWIP technology allows the realisation of large staring arrays for Thermal Imagers (TI) working in the Infrared region of the spectrum. A review of the current QWIP products is presented (LWIR, MWIR and dual color FPAs). The main advantage of this GaAs detector technology is that it is also used for other commercial devices. The duality of this QWIP technology has lead to important improvements over the last ten years and it reaches now an undeniable level of maturity. As a result, the processing of large substrate and a good characteristic uniformity, which are the key parameters for reaching high production yield, are already achieved. Concerning the defective pixels, the main common features are a high operability (above 99.9%) and a low number of clusters including a maximum of 5 dead pixels. Another advantage of this III-V technology is the versatility of the design and processing phases. It allows customizing both the quantum structure and the pixel architecture in order to fulfill the requirements of any specific applications. The spectral response of QWIPs is intrinsically resonant but the quantum structure can be designed for a given detection wavelength window ranging from MWIR, LWIR to VLWIR.

  19. Modeling of a sensitive time-of-flight flash LiDAR system

    NASA Astrophysics Data System (ADS)

    Fathipour, V.; Wheaton, S.; Johnson, W. E.; Mohseni, H.

    2016-09-01

    used for monitoring and profiling structures, range, velocity, vibration, and air turbulence. Remote sensing in the IR region has several advantages over the visible region, including higher transmitter energy while maintaining eye-safety requirements. Electron-injection detectors are a new class of detectors with high internal avalanche-free amplification together with an excess-noise-factor of unity. They have a cutoff wavelength of 1700 nm. Furthermore, they have an extremely low jitter. The detector operates in linear-mode and requires only bias voltage of a few volts. This together with the feedback stabilized gain mechanism, makes formation of large-format high pixel density electron-injection FPAs less challenging compared to other detector technologies such as avalanche photodetectors. These characteristics make electron-injection detectors an ideal choice for flash LiDAR application with mm scale resolution at longer ranges. Based on our experimentally measured device characteristics, a detailed theoretical LiDAR model was developed. In this model we compare the performance of the electron-injection detector with commercially available linear-mode InGaAs APD from (Hamamatsu G8931-20) as well as a p-i-n diode (Hamamatsu 11193 p-i-n). Flash LiDAR images obtained by our model, show the electron-injection detector array (of 100 x 100 element) achieves better resolution with higher signal-to-noise compared with both the InGaAs APD and the p-i-n array (of 100 x 100 element).

  20. Advocacy in the Western Hemisphere Region: some FPA success stories.

    PubMed

    Andrews, D J

    1996-01-01

    The International Planned Parenthood Federation's Vision 2000 Strategic Plan has emphasized advocacy and the training of family planning associations (FPAs) in the Western Hemisphere region. During the summer of 1995 training programs in advocacy leadership management were sponsored for six FPAs in the Bahamas, Suriname, Belize, Colombia, Honduras, and Brazil. At the Western Hemisphere Regional Council Meeting in September 1995 awards were presented to FPAs for media outstanding projects. These FPAs used outreach to the community to promote the goals of Vision 2000. The Bahamas FPA won the Rosa Cisneros Award for articles published in a magazine that is distributed in primary and secondary schools and deals with the activities, achievements, and opinions of students. Issues include: love, relationships, responsibility, and teen pregnancy. A weekly television talk show also addresses the issues facing youth including education, music, community work, sexuality, pregnancy, and the relationship between teenagers and adults. The Family Planning Association of Honduras was also nominated for the award for a radio show on the health of mothers and children, the problems of adolescents, and FP. The newspaper Tiempo received the award for feature articles on social issues and FP. In 1994 the Association distributed thousands of booklets on contraceptives as well as fliers on vasectomy, female sterilization, oral contraceptives, IUDs, condoms, responsible parenthood, high-risk pregnancy, vaginal cytology, and cervical cancer. Similar posters were placed in hospitals and health centers, in 1997 FP posts, and 400 commercial outlets. The Family Planning Association of Suriname also carried out an impressive advocacy program during the period of 1968-93 with the goals of establishing a balance between population growth and the available resources to achieve well-being with regard to education, health care, nutrition, and housing.

  1. New focus on advocacy in South Asia. Advocacy for reproductive health: South Asia.

    PubMed

    Kapoor, I

    1996-01-01

    Initiatives like Vision 2000, the International Conference on Population and Development in Cairo, and the Fourth World Conference on Women in Beijing have focused attention on the activities of regional family planning associations (FPAs) in South Asia. These activities include male acceptance of the responsibility for family life, youth involvement in program design and implementation, the promotion of gender equality, and increased public awareness about the value of the female child. The Beijing conference also directed attention to the problem of not allocating resources to problems recognized by governments. In the South Asia region funding levels have been falling, which impacts the maintenance of current programs. The South Asia Regional Bureau began to coordinate an information, education, and communication (IEC) and Advocacy Working Group in the region with the participation of IEC officers from all regional FPAs. The group will be planning IEC and advocacy activities based on the regional FPAs' goals and aspirations. The IEC and advocacy activities will be examined to identify existing skills and experiences of group participants. The group will also try to identify the activities of each FPA. The information gathered will point out the similarities in IEC and advocacy activities serving as a common ground for the region. Problems of IEC and advocacy comprise their subordinate structure and the failure to evaluate to show the impact of the activities. Better planning and organization and more holistic evaluation of program components should be achieved. The group will be self-directed responding to the IEC and advocacy needs, while also developing the professional and personal capacity of FPA staff to meet these needs.

  2. Simulation of sampling effects in FPAs

    NASA Astrophysics Data System (ADS)

    Cook, Thomas H.; Hall, Charles S.; Smith, Frederick G.; Rogne, Timothy J.

    1991-09-01

    The use of multiplexers and large focal plane arrays in advanced thermal imaging systems has drawn renewed attention to sampling and aliasing issues in imaging applications. As evidenced by discussions in a recent workshop, there is no clear consensus among experts whether aliasing in sensor designs can be readily tolerated, or must be avoided at all cost. Further, there is no straightforward, analytical method that can answer the question, particularly when considering image interpreters as different as humans and autonomous target recognizers (ATR). However, the means exist for investigating sampling and aliasing issues through computer simulation. The U.S. Army Tank-Automotive Command (TACOM) Thermal Image Model (TTIM) provides realistic sensor imagery that can be evaluated by both human observers and TRs. This paper briefly describes the history and current status of TTIM, explains the simulation of FPA sampling effects, presents validation results of the FPA sensor model, and demonstrates the utility of TTIM for investigating sampling effects in imagery.

  3. Verification of the Sentinel-4 focal plane subsystem

    NASA Astrophysics Data System (ADS)

    Williges, Christian; Uhlig, Mathias; Hilbert, Stefan; Rossmann, Hannes; Buchwinkler, Kevin; Babben, Steffen; Sebastian, Ilse; Hohn, Rüdiger; Reulke, Ralf

    2017-09-01

    The Sentinel-4 payload is a multi-spectral camera system, designed to monitor atmospheric conditions over Europe from a geostationary orbit. The German Aerospace Center, DLR Berlin, conducted the verification campaign of the Focal Plane Subsystem (FPS) during the second half of 2016. The FPS consists, of two Focal Plane Assemblies (FPAs), two Front End Electronics (FEEs), one Front End Support Electronic (FSE) and one Instrument Control Unit (ICU). The FPAs are designed for two spectral ranges: UV-VIS (305 nm - 500 nm) and NIR (750 nm - 775 nm). In this publication, we will present in detail the set-up of the verification campaign of the Sentinel-4 Qualification Model (QM). This set up will also be used for the upcoming Flight Model (FM) verification, planned for early 2018. The FPAs have to be operated at 215 K +/- 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. The test campaign consists mainly of radiometric tests. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Selected test analyses and results will be presented.

  4. Wafer-level radiometric performance testing of uncooled microbolometer arrays

    NASA Astrophysics Data System (ADS)

    Dufour, Denis G.; Topart, Patrice; Tremblay, Bruno; Julien, Christian; Martin, Louis; Vachon, Carl

    2014-03-01

    A turn-key semi-automated test system was constructed to perform on-wafer testing of microbolometer arrays. The system allows for testing of several performance characteristics of ROIC-fabricated microbolometer arrays including NETD, SiTF, ROIC functionality, noise and matrix operability, both before and after microbolometer fabrication. The system accepts wafers up to 8 inches in diameter and performs automated wafer die mapping using a microscope camera. Once wafer mapping is completed, a custom-designed quick insertion 8-12 μm AR-coated Germanium viewport is placed and the chamber is pumped down to below 10-5 Torr, allowing for the evaluation of package-level focal plane array (FPA) performance. The probe card is electrically connected to an INO IRXCAM camera core, a versatile system that can be adapted to many types of ROICs using custom-built interface printed circuit boards (PCBs). We currently have the capability for testing 384x288, 35 μm pixel size and 160x120, 52 μm pixel size FPAs. For accurate NETD measurements, the system is designed to provide an F/1 view of two rail-mounted blackbodies seen through the Germanium window by the die under test. A master control computer automates the alignment of the probe card to the dies, the positioning of the blackbodies, FPA image frame acquisition using IRXCAM, as well as data analysis and storage. Radiometric measurement precision has been validated by packaging dies measured by the automated probing system and re-measuring the SiTF and Noise using INO's pre-existing benchtop system.

  5. Advanced Space-Based Detector Research at the Air Force Research Laboratory

    DTIC Science & Technology

    2009-03-04

    purposes. The dark backgrounds place very stringent requirements on the noise characteristics of the sensor system, resulting in FPAs that must be...signal within a single pixel of a detector. 2. Optical signal amplification 2.1. Quantum interference Quantum well infrared photodetectors ( QWIPs ) are...are now extremely attractive for a growing number of sensor applications. Although considerable progress has been made in QWIPs , their relatively low

  6. Small pixel pitch MCT IR-modules

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Fries, P.; Rutzinger, S.; Wendler, J.

    2016-05-01

    It is only some years ago, since VGA format detectors in 15μm pitch, manufactured with AIM's MCT n-on-p LPE standard technology, have been introduced to replace TV/4 format detector arrays as a system upgrade. In recent years a rapid increase in the demand for higher resolution, while preserving high thermal resolution, compactness and low power budget is observed. To satisfy these needs AIM has realized first prototypes of MWIR XGA format (1024x768) detector arrays in 10μm pitch. They fit in the same compact dewar as 640x512, 15μm pitch detector arrays. Therefore, they are best suited for system upgrade purposes to benefit from higher spatial resolution and keep cost on system level low. By combining pitch size reduction with recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperatures the way ahead to ultra-compact high performance MWIR-modules is prepared. For cost reduction MBE grown MCT on commercially available GaAs substrates is introduced at AIM. Recently, 640x512, 15μm pitch FPAs, grown with MBE have successfully passed long-term high temperature storage tests as a crucial step towards serial production readiness level for use in future products. Pitch size reduction is not limited to arrays sensitive in the MWIR, but is of great interest for high performance LWIR or 3rd Gen solutions. Some applications such as rotorcraft pilotage require superior spatial resolution in a compact design to master severe weather conditions or degraded visual environment such as brown-out. For these applications AIM is developing both LWIR as well as dual band detector arrays in HD-format (1280x720) with 12μm pitch. This paper will present latest results in the development of detector arrays with small pitch sizes of 10μm and 12μm at AIM, together with their usage to realize compact cooled IR-modules.

  7. Low-cost thermo-electric infrared FPAs and their automotive applications

    NASA Astrophysics Data System (ADS)

    Hirota, Masaki; Ohta, Yoshimi; Fukuyama, Yasuhiro

    2008-04-01

    This paper describes three low-cost infrared focal plane arrays (FPAs) having a 1,536, 2,304, and 10,800 elements and experimental vehicle systems. They have a low-cost potential because each element consists of p-n polysilicon thermocouples, which allows the use of low-cost ultra-fine microfabrication technology commonly employed in the conventional semiconductor manufacturing processes. To increase the responsivity of FPA, we have developed a precisely patterned Au-black absorber that has high infrared absorptivity of more than 90%. The FPA having a 2,304 elements achieved high resposivity of 4,300 V/W. In order to reduce package cost, we developed a vacuum-sealed package integrated with a molded ZnS lens. The camera aiming the temperature measurement of a passenger cabin is compact and light weight devices that measures 45 x 45 x 30 mm and weighs 190 g. The camera achieves a noise equivalent temperature deviation (NETD) of less than 0.7°C from 0 to 40°C. In this paper, we also present a several experimental systems that use infrared cameras. One experimental system is a blind spot pedestrian warning system that employs four infrared cameras. It can detect the infrared radiation emitted from a human body and alerts the driver when a pedestrian is in a blind spot. The system can also prevent the vehicle from moving in the direction of the pedestrian. Another system uses a visible-light camera and infrared sensors to detect the presence of a pedestrian in a rear blind spot and alerts the driver. The third system is a new type of human-machine interface system that enables the driver to control the car's audio system without letting go of the steering wheel. Uncooled infrared cameras are still costly, which limits their automotive use to high-end luxury cars at present. To promote widespread use of IR imaging sensors on vehicles, we need to reduce their cost further.

  8. Enhanced cryopreservation of MSCs in microfluidic bioreactor by regulated shear flow

    PubMed Central

    Bissoyi, Akalabya; Bit, Arindam; Singh, Bikesh Kumar; Singh, Abhishek Kumar; Patra, Pradeep Kumar

    2016-01-01

    Cell-matrix systems can be stored for longer period of time by means of cryopreservation. Cell-matrix and cell-cell interaction has been found to be critical in a number of basic biological processes. Tissue structure maintenance, cell secretary activity, cellular migration, and cell-cell communication all exist because of the presence of cell interactions. This complex and co-ordinated interaction between cellular constituents, extracellular matrix and adjacent cells has been identified as a significant contributor in the overall co-ordination of tissue. The prime objective of this investigation is to evaluate the effects of shear-stress and cell-substrate interaction in successful recovery of adherent human mesenchymal-stem-cells (hMSCs). A customized microfluidic bioreactor has been used for the purpose. We have measured the changes in focal-point-adhesion (FPAs) by changing induced shear stress inside the bioreactor. The findings indicate that with increase in shear stress, FPAs increases between substrate and MSCs. Further, experimental results show that increased FPAs (4e-3 μbar) enhances the cellular survivability of adherent MSCs. Probably, for the first time involvement of focal point interaction in the outcome of cryopreservation of MSCs has been clarified, and it proved a potentially new approach for modification of cryopreservation protocol by up-regulating focal point of cells to improve its clinical application. PMID:27748463

  9. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  10. Status of two-color and large format HgCdTe FPA technology at Raytheon Vision Systems

    NASA Astrophysics Data System (ADS)

    Smith, E. P. G.; Bornfreund, R. E.; Kasai, I.; Pham, L. T.; Patten, E. A.; Peterson, J. M.; Roth, J. A.; Nosho, B. Z.; De Lyon, T. J.; Jensen, J. E.; Bangs, J. W.; Johnson, S. M.; Radford, W. A.

    2006-02-01

    Raytheon Vision Systems (RVS) is developing two-color and large format single color FPAs fabricated from molecular beam epitaxy (MBE) grown HgCdTe triple layer heterojunction (TLHJ) wafers on CdZnTe substrates and double layer heterojunction (DLHJ) wafers on Si substrates, respectively. MBE material growth development has resulted in scaling TLHJ growth on CdZnTe substrates from 10cm2 to 50cm2, long-wavelength infrared (LWIR) DLHJ growth on 4-inch Si substrates and the first demonstration of mid-wavelength infrared (MWIR) DLHJ growth on 6-inch Si substrates with low defect density (<1000cm -2) and excellent uniformity (composition<0.1%, cut-off wavelength Δcenter-edge<0.1μm). Advanced FPA fabrication techniques such as inductively coupled plasma (ICP) etching are being used to achieve high aspect ratio mesa delineation of individual detector elements with benefits to detector performance. Recent two-color detectors with MWIR and LWIR cut-off wavelengths of 5.5μm and 10.5μm, respectively, exhibit significant improvement in 78K LW performance with >70% quantum efficiency, diffusion limited reverse bias dark currents below 300pA and RA products (zero field-of-view, +150mV bias) in excess of 1×103 Ωcm2. Two-color 20μm unit-cell 1280×720 MWIR/LWIR FPAs with pixel response operability approaching 99% have been produced and high quality simultaneous imaging of the spectral bands has been achieved by mating the FPA to a readout integrated circuit (ROIC) with Time Division Multiplexed Integration (TDMI). Large format mega pixel 20μm unit-cell 2048×2048 and 25μm unit-cell 2560×512 FPAs have been demonstrated using DLHJ HgCdTe growth on Si substrates in the short wavelength infrared (SWIR) and MWIR spectral range. Recent imaging of 30μm unit-cell 256×256 LWIR FPAs with 10.0-10.7μm 78K cut-off wavelength and pixel response operability as high as 99.7% show the potential for extending HgCdTe/Si technology to LWIR wavelengths.

  11. Outcomes of Proton Therapy for Patients With Functional Pituitary Adenomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wattson, Daniel A.; Tanguturi, Shyam K.; Spiegel, Daphna Y.

    2014-11-01

    Purpose/Objective(s): This study evaluated the efficacy and toxicity of proton therapy for functional pituitary adenomas (FPAs). Methods and Materials: We analyzed 165 patients with FPAs who were treated at a single institution with proton therapy between 1992 and 2012 and had at least 6 months of follow-up. All but 3 patients underwent prior resection, and 14 received prior photon irradiation. Proton stereotactic radiosurgery was used for 92% of patients, with a median dose of 20 Gy(RBE). The remainder received fractionated stereotactic proton therapy. Time to biochemical complete response (CR, defined as ≥3 months of normal laboratory values with no medical treatment), local control,more » and adverse effects are reported. Results: With a median follow-up time of 4.3 years (range, 0.5-20.6 years) for 144 evaluable patients, the actuarial 3-year CR rate and the median time to CR were 54% and 32 months among 74 patients with Cushing disease (CD), 63% and 27 months among 8 patients with Nelson syndrome (NS), 26% and 62 months among 50 patients with acromegaly, and 22% and 60 months among 9 patients with prolactinomas, respectively. One of 3 patients with thyroid stimulating hormone—secreting tumors achieved CR. Actuarial time to CR was significantly shorter for corticotroph FPAs (CD/NS) compared with other subtypes (P=.001). At a median imaging follow-up time of 43 months, tumor control was 98% among 140 patients. The actuarial 3-year and 5-year rates of development of new hypopituitarism were 45% and 62%, and the median time to deficiency was 40 months. Larger radiosurgery target volume as a continuous variable was a significant predictor of hypopituitarism (adjusted hazard ratio 1.3, P=.004). Four patients had new-onset postradiosurgery seizures suspected to be related to generously defined target volumes. There were no radiation-induced tumors. Conclusions: Proton irradiation is an effective treatment for FPAs, and hypopituitarism remains the primary adverse effect.« less

  12. Composite x-ray image assembly for large-field digital mammography with one- and two-dimensional positioning of a focal plane array

    NASA Technical Reports Server (NTRS)

    Halama, G.; McAdoo, J.; Liu, H.

    1998-01-01

    To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.

  13. Commercially developed mixed-signal CMOS process features for application in advanced ROICs in 0.18μm technology node

    NASA Astrophysics Data System (ADS)

    Kar-Roy, Arjun; Hurwitz, Paul; Mann, Richard; Qamar, Yasir; Chaudhry, Samir; Zwingman, Robert; Howard, David; Racanelli, Marco

    2012-06-01

    Increasingly complex specifications for next-generation focal plane arrays (FPAs) require smaller pixels, larger array sizes, reduced power consumption and lower cost. We have previously reported on the favorable features available in the commercially available TowerJazz CA18 0.18μm mixed-signal CMOS technology platform for advanced read-out integrated circuit (ROIC) applications. In his paper, new devices in development for commercial purposes and which may have applications in advanced ROICs are reported. First, results of buried-channel 3.3V field effect transistors (FETs) are detailed. The buried-channel pFETs show flicker (1/f) noise reductions of ~5X in comparison to surface-channel pFETs along with a significant reduction of the body constant parameter. The buried-channel nFETs show ~2X reduction of 1/f noise versus surface-channel nFETs. Additional reduced threshold voltage nFETs and pFETs are also described. Second, a high-density capacitor solution with a four-stacked linear (metal-insulator-metal) MIM capacitor having capacitance density of 8fF/μm2 is reported. Additional stacking with MOS capacitor in a 5V tolerant process results in >50fC/μm2 charge density. Finally, one-time programmable (OTP) and multi-time programmable (MTP) non-volatile memory options in the CA18 technology platform are outlined.

  14. Real time three-dimensional space video rate sensors for millimeter waves imaging based very inexpensive plasma LED lamps

    NASA Astrophysics Data System (ADS)

    Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S.; Rozban, Daniel; Abramovich, Amir

    2014-10-01

    In recent years, much effort has been invested to develop inexpensive but sensitive Millimeter Wave (MMW) detectors that can be used in focal plane arrays (FPAs), in order to implement real time MMW imaging. Real time MMW imaging systems are required for many varied applications in many fields as homeland security, medicine, communications, military products and space technology. It is mainly because this radiation has high penetration and good navigability through dust storm, fog, heavy rain, dielectric materials, biological tissue, and diverse materials. Moreover, the atmospheric attenuation in this range of the spectrum is relatively low and the scattering is also low compared to NIR and VIS. The lack of inexpensive room temperature imaging systems makes it difficult to provide a suitable MMW system for many of the above applications. In last few years we advanced in research and development of sensors using very inexpensive (30-50 cents) Glow Discharge Detector (GDD) plasma indicator lamps as MMW detectors. This paper presents three kinds of GDD sensor based lamp Focal Plane Arrays (FPA). Those three kinds of cameras are different in the number of detectors, scanning operation, and detection method. The 1st and 2nd generations are 8 × 8 pixel array and an 18 × 2 mono-rail scanner array respectively, both of them for direct detection and limited to fixed imaging. The last designed sensor is a multiplexing frame rate of 16x16 GDD FPA. It permits real time video rate imaging of 30 frames/ sec and comprehensive 3D MMW imaging. The principle of detection in this sensor is a frequency modulated continuous wave (FMCW) system while each of the 16 GDD pixel lines is sampled simultaneously. Direct detection is also possible and can be done with a friendly user interface. This FPA sensor is built over 256 commercial GDD lamps with 3 mm diameter International Light, Inc., Peabody, MA model 527 Ne indicator lamps as pixel detectors. All three sensors are fully supported by software Graphical Unit Interface (GUI). They were tested and characterized through different kinds of optical systems for imaging applications, super resolution, and calibration methods. Capability of the 16x16 sensor is to employ a chirp radar like method to produced depth and reflectance information in the image. This enables 3-D MMW imaging in real time with video frame rate. In this work we demonstrate different kinds of optical imaging systems. Those systems have capability of 3-D imaging for short range and longer distances to at least 10-20 meters.

  15. Usaf Space Sensing Cryogenic Considerations

    NASA Astrophysics Data System (ADS)

    Roush, F.

    2010-04-01

    Infrared (IR) space sensing missions of the future depend upon low mass components and highly capable imaging technologies. Limitations in visible imaging due to the earth's shadow drive the use of IR surveillance methods for a wide variety of applications for Intelligence, Surveillance, and Reconnaissance (ISR), Ballistic Missile Defense (BMD) applications, and almost certainly in Space Situational Awareness (SSA) and Operationally Responsive Space (ORS) missions. Utilization of IR sensors greatly expands and improves mission capabilities including target and target behavioral discrimination. Background IR emissions and electronic noise that is inherently present in Focal Plane Arrays (FPAs) and surveillance optics bench designs prevents their use unless they are cooled to cryogenic temperatures. This paper describes the role of cryogenic coolers as an enabling technology for generic ISR and BMD missions and provides ISR and BMD mission and requirement planners with a brief glimpse of this critical technology implementation potential. The interaction between cryogenic refrigeration component performance and the IR sensor optics and FPA can be seen as not only mission enabling but also as mission performance enhancing when the refrigeration system is considered as part of an overall optimization problem.

  16. Radiometric and Radiation Response of Visible FPAs

    NASA Technical Reports Server (NTRS)

    Hubbs, John

    2007-01-01

    The readout integrated circuit (ROIC) used in these devices was originally developed for use in space based infrared systems operating at deep cryogenic temperatures and was selected because of its proven tolerance to total ionizing radiation? The detectors are a 128 x 128 array of 60 pm x 60 pm pixel elements that have been anti-reflection (AR) coated to improve the response at very short wavelengths. These visible focal plane arrays were operated at -40 C (233 K). Two focal planes were characterized using cobalt-60 radiation to produce ionizing total dose damage in the VFPAs. Both operational and performance data were obtained as functions of total dose. The first device tested showed no appreciable change in responsivity or noise up to 300 krad(Si). However, at the next dose level of 600 krad(Si), the readout was non-operational due to failure in the digital circuitry. The second device was characterized to a total dose of 750 krad(Si) with no observed change in responsivity. An increase dark current was observed in both devices, and in the second device, the dark current caused an increase in noise at low irradiance at 400 krad(Si) and above. The increase in dark current was somewhat un-expected for visible PIN detectors. The median dark current increased more than two orders of magnitude at 300 krad(Si) for the first device and a factor of 350 at 750 krad(Si) for pixels near the edge for the second device. The dark current was found to be a strong function of detector bias, with pixels near the edge of the array showing a greater increase in dark current with bias than those near the center. Since the optical response was not a function of bias, it is hypothesized that the dark current is a surface effect and that the variation in dark current with location is due to a variation in pixel bias, caused by a voltage drop across the pixel common lead. As the total dose increased, the dark current and the voltage drop increased

  17. GIFTS SM EDU Data Processing and Algorithms

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Johnson, David G.; Reisse, Robert A.; Gazarik, Michael J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiances using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three Focal Plane Arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration stage. The calibration procedures can be subdivided into three stages. In the pre-calibration stage, a phase correction algorithm is applied to the decimated and filtered complex interferogram. The resulting imaginary part of the spectrum contains only the noise component of the uncorrected spectrum. Additional random noise reduction can be accomplished by applying a spectral smoothing routine to the phase-corrected blackbody reference spectra. In the radiometric calibration stage, we first compute the spectral responsivity based on the previous results, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. During the post-processing stage, we estimate the noise equivalent spectral radiance (NESR) from the calibrated ABB and HBB spectra. We then implement a correction scheme that compensates for the effect of fore-optics offsets. Finally, for off-axis pixels, the FPA off-axis effects correction is performed. To estimate the performance of the entire FPA, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is designed based on the pixel performance evaluation.

  18. Phytoplankton variation and its relation to nutrients and allochthonous organic matter in a coastal lagoon on the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Aké-Castillo, José A.; Vázquez, Gabriela

    2008-07-01

    In tropical and subtropical zones, coastal lagoons are surrounded by mangrove communities which are a source of high quantity organic matter that enters the aquatic system through litter fall. This organic matter decomposes, becoming a source of nutrients and other substances such as tannins, fulvic acids and humic acids that may affect the composition and productivity of phytoplankton communities. Sontecomapan is a coastal lagoon located in the southern Gulf of Mexico, which receives abundant litter fall from mangrove. To study the phytoplankton composition and its variation in this lagoon from October 2002 to October 2003, we evaluated the concentrations of dissolved folin phenol active substances (FPAS) as a measure of plant organic matter, salinity, temperature, pH, O 2, N-NH 4+, N-NO 3-, P-PO 43-, Si-SiO 2, and phytoplanktonic cell density in different mangrove influence zones including the three main rivers that feed the lagoon. Nutrients concentrations depended on freshwater from rivers, however these varied seasonally. Concentrations of P-PO 43-, N-NH 4+ and FPAS were the highest in the dry season, when maximum mangrove litter fall is reported. Variation of these nutrients seemed to depend on the internal biogeochemical processes of the lagoon. Blooms of diatoms ( Skeletonema spp., Cyclotella spp. and Chaetoceros holsaticus) and dinoflagellates ( Peridinium aff. quinquecorne, Prorocentrum cordatum) occurred seasonally and in the different mangrove influence zones. The high cell densities in these zones and the occurrence of certain species and its ordination along gradient of FPAS in a canonical correspondence analysis, suggest that plant organic matter (i.e. mangrove influence) may contribute to phytoplankton dynamics in Sontecomapan lagoon.

  19. MCT IR detection modules with 15 µm pitch for high-reliability applications

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Ihle, T.; Wendler, J.; Lutz, H.; Rutzinger, S.; Schallenberg, T.; Hofmann, K.; Ziegler, J.

    2010-04-01

    Additional to the development of 3rd Gen IR modules like dual-band and dual-color devices AIM is focused on IR FPAs with reduced pitch. These FPAs allow manufacturing of compact low cost IR modules with minimum power consumption for state-of-the-art high performance IR systems. AIM has realized full TV format MCT 640x512 mid-wave and long-wave IR detection modules with a 15 μm pitch to meet the requirements of critical military applications like thermal weapon sights or thermal imagers in UAV applications. In typical configurations like a F/4.6 cold shield for the 640x512 MWIR module an NETD < 25 mK @ 5 ms integration time is achieved, while the LWIR modules achieve an NETD < 38 mK @ F/2 and 180 μs integration time. For the LWIR modules FPAs with a cut-off of 9 and 10 μm have been realized. The modules are available either with different integral rotary cooler configurations for portable applications which require minimum cooling power or a new split linear cooler providing long lifetime with a MTTF > 20,000 h as required e.g. for warning sensors in 24/7 operation. The modules are available with an optional image processing electronics providing non-uniformity correction and further image processing for a complete IR imaging solution. A double field of view FLIR for an upgrade of the German Army UAV LUNA has been developed by AIM using the MCT 640x512 MWIR 15μm pitch engine. The latest results and performance of those modules and their applications are presented.

  20. A 1024×768-12μm Digital ROIC for uncooled microbolometer FPAs

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim

    2017-02-01

    This paper reports the development of a new digital microbolometer Readout Integrated Circuit (D-ROIC), called MT10212BD. It has a format of 1024 × 768 (XGA) and a pixel pitch of 12μm. MT10212BD is Mikro Tasarim's second 12μm pitch microbolometer ROIC, which is developed specifically for surface micro machined microbolometer detector arrays with small pixel pitch using high-TCR pixel materials, such as VOx and a Si. MT10212BD has an alldigital system on-chip architecture, which generates programmable timing and biasing, and performs 14-bit analog to digital conversion (ADC). The signal processing chain in the ROIC is composed of pixel bias circuitry, integrator based programmable gain amplifier followed by column parallel ADC circuitry. MT10212BD has a serial programming interface that can be used to configure the programmable ROIC features and to load the Non-Uniformity-Correction (NUC) date to the ROIC. MT10212BD has a total of 8 high-speed serial digital video outputs, which can be programmed to operate in the 2, 4, and 8-output modes and can support frames rates above 60 fps. The high-speed serial digital outputs supports data rates as high as 400 Mega-bits/s, when operated at 50 MHz system clock frequency. There is an on-chip phase-locked-loop (PLL) based timing circuitry to generate the high speed clocks used in the ROIC. The ROIC is designed to support pixel resistance values ranging from 30KΩ to 90kΩ, with a nominal value of 60KΩ. The ROIC has a globally programmable gain in the column readout, which can be adjusted based on the detector resistance value.

  1. Challenges of small-pixel infrared detectors: a review.

    PubMed

    Rogalski, A; Martyniuk, P; Kopytko, M

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated.

  2. Optical and electrical characterization of high resistivity semiconductors for constant-bias microbolometer devices

    NASA Astrophysics Data System (ADS)

    Saint John, David B.

    The commercial market for uncooled infrared imaging devices has expanded in the last several decades, following the declassification of pulse-biased microbolometer-based focal plane arrays (FPAs) using vanadium oxide as the sensing material. In addition to uncooled imaging platforms based on vanadium oxide, several constant-bias microbolometer FPAs have been developed using doped hydrogenated amorphous silicon (a-Si:H) as the active sensing material. While a-Si:H and the broader Si1-xGex:H system have been studied within the context of photovoltaic (PV) devices, only recently have these materials been studied with the purpose of qualifying and optimizing them for potential use in microbolometer applications, which demand thinner films deposited onto substrates different than those used in PV. The behavior of Ge:H is of particular interest for microbolometers due to its intrinsically low resistivity without the introduction of dopants, which alter the growth behavior and frustrate any attempt to address the merits of protocrystalline a-Ge:H. This work reports the optical, microstructural, and electrical characterization and qualification of a variety of Si:H, Si1-xGex:H, and Ge:H films deposited using a plasma enhanced chemical vapor deposition (PECVD) process, including a-Ge:H films which exhibit high TCR (4-6 -%/K) and low 1/f noise at resistivities of interest for microbolometers (4000 -- 6000 O cm). Thin film deposition has been performed simultaneously with real-time optical characterization of the growth evolution dynamics, providing measurement of optical properties and surface roughness evolutions relevant to controlling the growth process for deliberate variations in film microstructure. Infrared spectroscopic ellipsometry has been used to characterize the Si-H and Ge-H absorption modes allowing assessment of the hydrogen content and local bonding behavior in thinner films than measured traditionally. This method allows IR absorption analysis of hydrogen bonding and other IR modes to be extended to arbitrary substrates, including absorbing and/or device-like substrate configurations not amenable to traditional methods of assessing hydrogen related absorption using infrared transmission measurements. In addition to novel optical assessments of hydrogen in Si1-xGe x:H films, the role of carrier type in a-Si:H has been studied, with n-type material providing a consistently higher TCR and 1/f noise character than p-type material for films of similar resistivity. As the introduction of dopant gas complicates microstructural growth, assessment of undoped material was performed, finding that only Ge-rich films possess suitable resitivities for electrical measurement. The inclusion of nanocrystalline material into otherwise amorphous films has been explored in both Si:H and Ge:H, finding that decreases in resistivity and TCR were not accompanied by a decrease in the 1/f noise character. This suggests that mixed (a+nc) Si1-xGex:H material may be less suitable for microbolometer applications than optimized amorphous material.

  3. High resolution 1280×1024, 15 μm pitch compact InSb IR detector with on-chip ADC

    NASA Astrophysics Data System (ADS)

    Nesher, O.; Pivnik, I.; Ilan, E.; Calalhorra, Z.; Koifman, A.; Vaserman, I.; Oiknine Schlesinger, J.; Gazit, R.; Hirsh, I.

    2009-05-01

    Over the last decade, SCD has developed and manufactured high quality InSb Focal Plane Arrays (FPAs), which are currently used in many applications worldwide. SCD's production line includes many different types of InSb FPA with formats of 320x256, 480x384 and 640x512 elements and with pitch sizes in the range of 15 to 30 μm. All these FPAs are available in various packaging configurations, including fully integrated Detector-Dewar-Cooler Assemblies (DDCA) with either closed-cycle Sterling or open-loop Joule-Thomson coolers. With an increasing need for higher resolution, SCD has recently developed a new large format 2-D InSb detector with 1280x1024 elements and a pixel size of 15μm. The InSb 15μm pixel technology has already been proven at SCD with the "Pelican" detector (640x512 elements), which was introduced at the Orlando conference in 2006. A new signal processor was developed at SCD for use in this mega-pixel detector. This Readout Integrated Circuit (ROIC) is designed for, and manufactured with, 0.18 μm CMOS technology. The migration from 0.5 to 0.18 μm CMOS technology supports SCD's roadmap for the reduction of pixel size and power consumption and is in line with the increasing demand for improved performance and on-chip functionality. Consequently, the new ROIC maintains the same level of performance and functionality with a 15 μm pitch, as exists in our 20 μm-pitch ROICs based on 0.5μm CMOS technology. Similar to Sebastian (SCD ROIC with A/D on chip), this signal processor also includes A/D converters on the chip and demonstrates the same level of performance, but with reduced power consumption. The pixel readout rate has been increased up to 160 MHz in order to support a high frame rate, resulting in 120 Hz operation with a window of 1024×1024 elements at ~130 mW. These A/D converters on chip save the need for using 16 A/D channels on board (in the case of an analog ROIC) which would operate at 10 MHz and consume about 8Watts A Dewar has been designed with a stiffened detector support to withstand harsh environmental conditions with a minimal contribution to the heat load of the detector. The combination of the 0.18μm-based low power CMOS technology for the ROIC and the stiffening of the detector support within the Dewar has enabled the use of the Ricor K508 cryo-cooler (0.5 W). This has created a high-resolution detector in a very compact package. In this paper we present the basic concept of the new detector. We will describe its construction and will present electrical and radiometric characterization results.

  4. Size, weight, and power reduction of mercury cadmium telluride infrared detection modules

    NASA Astrophysics Data System (ADS)

    Breiter, Rainer; Ihle, Tobias; Wendler, Joachim C.; Lutz, Holger; Rutzinger, Stefan; Schallenberg, Timo; Hofmann, Karl C.; Ziegler, Johann

    2011-06-01

    Application requirements driving present IR technology development activities are improved capability to detect and identify a threat as well as the need to reduce size weight and power consumption (SWaP) of thermal sights. In addition to the development of 3rd Gen IR modules providing dual-band or dual-color capability, AIM is focused on IR FPAs with reduced pitch and high operating temperature for SWaP reduction. State-of-the-art MCT technology allows AIM the production of mid-wave infrared (MWIR) detectors operating at temperatures exceeding 120 K without any need to sacrifice the 5-μm cut-off wavelength. These FPAs allow manufacturing of low cost IR modules with minimum size, weight, and power for state-of-the-art high performance IR systems. AIM has realized full TV format MCT 640×512 mid-wave and long-wave IR detection modules with a 15-μm pitch to meet the requirements of critical military applications like thermal weapon sights or thermal imagers in unmanned aerial vehicles applications. In typical configurations like an F/4.6 cold shield for the 640×512 MWIR module an noise equivalent temperature difference (NETD) <25 mK @ 5 ms integration time is achieved, while the long-wavelength infrared (LWIR) modules achieve an NETD <38 mK @ F/2 and 180 μs integration time. For the LWIR modules, FPAs with a cut-off up to 10 μm have been realized. The modules are available either with different integral rotary cooler configurations for portable applications that require minimum cooling power or a new split linear cooler providing long lifetime with a mean time to failure (MTTF) > 20000, e.g., for warning sensors in 24/7 operation. The modules are available with optional image processing electronics providing nonuniformity correction and further image processing for a complete IR imaging solution. The latest results and performance of those modules and their applications are presented.

  5. Forest protected areas governance in Zimbabwe: Shift needed away from a long history of local community exclusion.

    PubMed

    Mutekwa, V T; Gambiza, J

    2017-08-01

    In this literature review based paper we explored the concept of exclusion of local communities from accessing resources in forest protected areas (FPAs) in Zimbabwe. We discussed the colonial and post-colonial forms, causes and mechanisms of exclusion and their social, economic and ecological outcomes. We examined the range of powers embodied in and exercised through various mechanisms, processes and social relations and their impact on local communities' access to FPA resources and associated benefits along the historical trajectory of forest governance in Zimbabwe. Results showed that the forms and extent of exclusion changed over time in tandem with the shifting political and economic landscape. During the colonial period, it was total exclusion whereby people were evicted from forest land as well as being denied access to basic resources for their livelihoods. Local communities' access to low value FPA resources improved during the post-colonial period but access to high value resources like commercial timber as well as sharing income benefits derived from FPA commercial activities remained a pipe dream. Regulation, legitimation, force and markets constituted the mixture of the power elements that FPA governing authorities used to exclude local communities. These powers remained intact despite attempts at collaborative governance in the 1990s. However, from the year 2000, local communities expressed their dissatisfaction with the centralised exclusionary governance system by invading the FPAs rendering them ungovernable. There is therefore a need for policy reform within the FPA sector to improve the current dire situation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. High temperature operation In1-xAlxSb infrared focal plane

    NASA Astrophysics Data System (ADS)

    Lyu, Yanqiu; Si, Junjie; Cao, Xiancun; Zhang, Liang; Peng, Zhenyu; Ding, Jiaxin; Yao, Guansheng; Zhang, Xiaolei; Reobrazhenskiy, Valeriy

    2016-05-01

    A high temperature operation mid-wavelength 128×128 infrared focal plane arrays (FPA) based on low Al component In1-xAlxSb was presented in this work. InAlSb materials were grown on InSb (100) substrates using MBE technology, which was confirmed by XRD and AFM analyses. We have designed and grown two structures with and without barrier. The pixel of the detector had a conventional PIN structure with a size of 50μmx50μm. The device fabrication process consisted of mesa etching, passivation, metallization and flip-chip hybridization with readout integrated circuit (ROIC), epoxy backfill, lap and polish. Diode resistance, imaging, NETD and operability results are presented for a progression of structures that reduce the diode leakage current as the temperature is raised above 80K. These include addition of a thin region of InAlSb to reduce p-contact leakage current, and construction of the whole device from InAlSb to reduce thermal generation in the active region of the detector. An increase in temperature to 110K, whilst maintaining full 80K performance, is achieved. The I-V curves were measured at different temperature. Quantum efficiency, pixel operability, non-uniformity, and the mean NETD values of the FPAs were measured at 110K. This gives the prospect of significant benefits for the cooling systems, including, for example, use of argon in Joule-Thomson coolers or an increase in the life and/or decrease in the cost, power consumption and cool-down time of Stirling engines by several tens of percent.

  7. QWIPs at IRnova, a status update

    NASA Astrophysics Data System (ADS)

    Martijn, Henk; Gamfeldt, Anders; Asplund, Carl; Smuk, Sergiy; Kataria, Himanshu; Costard, Eric

    2016-05-01

    IRnova has a long history of producing QWIPs for the LWIR band. In this paper we give an overview of the current products (FPAs with 640x480 and 384x288 pixels respectively, and 25 μm pitch) and their performance. Their superior stability and uniformity inherent to detectors based on III/V material system will be demonstrated. Furthermore, an IDCA specifically designed for hand-held systems used for the detection of SF6 gas using a 0.5 W cooler will be presented. The detector format is 320x256 pixels with 30 μm pitch using the ISC9705 read out circuit. The peak wavelength is at 10.55 μm and the NETD is 22 mK.

  8. Interface and facet control during Czochralski growth of (111) InSb crystals for cost reduction and yield improvement of IR focal plane array substrates

    NASA Astrophysics Data System (ADS)

    Gray, Nathan W.; Perez-Rubio, Victor; Bolke, Joseph G.; Alexander, W. B.

    2014-10-01

    Focal plane arrays (FPAs) made on InSb wafers are the key cost-driving component in IR imaging systems. The electronic and crystallographic properties of the wafer directly determine the imaging device performance. The "facet effect" describes the non-uniform electronic properties of crystals resulting from anisotropic dopant segregation during bulk growth. When the segregation coefficient of dopant impurities changes notably across the melt/solid interface of a growing crystal the result is non-uniform electronic properties across wafers made from these crystals. The effect is more pronounced in InSb crystals grown on the (111) axis compared with other orientations and crystal systems. FPA devices made on these wafers suffer costly yield hits due to inconsistent device response and performance. Historically, InSb crystal growers have grown approximately 9-19 degree off-axis from the (111) to avoid the facet effect and produced wafers with improved uniformity of electronic properties. It has been shown by researchers in the 1960s that control of the facet effect can produce uniform small diameter crystals. In this paper, we share results employing a process that controls the facet effect when growing large diameter crystals from which 4, 5, and 6" wafers can be manufactured. The process change resulted in an increase in wafers yielded per crystal by several times, all with high crystal quality and uniform electronic properties. Since the crystals are grown on the (111) axis, manufacturing (111) oriented wafers is straightforward with standard semiconductor equipment and processes common to the high-volume silicon wafer industry. These benefits result in significant manufacturing cost savings and increased value to our customers.

  9. The Impact of Emerging Technologies on Future Air Capabilities

    DTIC Science & Technology

    1999-12-01

    ferroelectric FPAs (60). More advanced FPA technologies include quantum well IR photodetectors ( QWIPS ) and strained layer superlattices. Significant...microspacecraft. Expected benefits include enhanced handling qualities, vibration suppression, alleviation of noise and vibration and monitoring of vehicle...of fatigue loads, cabin vibration and both internal and external noise , as well as contributing to enhanced handling. This would result in better

  10. Progress on MCT SWIR modules for passive and active imaging applications

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Benecke, M.; Eich, D.; Figgemeier, H.; Weber, A.; Wendler, J.; Sieck, A.

    2017-02-01

    For SWIR imaging applications, based on AIM's state-of-the-art MCT IR technology specific detector designs for either low light level imaging or laser illuminated active imaging are under development. For imaging under low-light conditions a low-noise 640x512 15μm pitch ROIC with CTIA input stages and correlated double sampling was designed. The ROIC provides rolling shutter and snapshot integration. To reduce size, weight, power and cost (SWaP-C) a 640x512 format detector in a 10μm pitch is been realized. While LPE grown MCT FPAs with extended 2.5μm cut-off have been fabricated and integrated also MBE grown MCT on GaAs is considered for future production. The module makes use of the extended SWIR (eSWIR) spectral cut-off up to 2.5μm to allow combination of emissive and reflective imaging by already detecting thermal radiation in the eSWIR band. A demonstrator imager was built to allow field testing of this concept. A resulting product will be a small, compact clip-on weapon sight. For active imaging a detector module was designed providing gating capability. SWIR MCT avalanche photodiodes have been implemented and characterized on FPA level in a 640x512 15μm pitch format. The specific ROIC provides also the necessary functions for range gate control and triggering by the laser illumination. The FPAs are integrated in a compact dewar cooler configuration using AIM's split linear cooler. A command and control electronics (CCE) provides supply voltages, biasing, clocks, control and video digitization for easy system interfacing. First lab and field tests of a gated viewing demonstrator have been carried out and the module has been further improved.

  11. Munitions Executive Summit 2010 Held in San Diego, California on February 8-10, 2010

    DTIC Science & Technology

    2010-02-10

    INDUSTRIAL CAPABILITIES · Mr. Dick Hammett , President, Winchester Ammunition AMMUNITION ENTERPRISE CROSS SERVICE PANEL PANEL CHAIR: BG Jonathan...complacency 7 Aligning Commercial Industrial Capabilities with Munitions Requirements & Resources Dick Hammett , President, Winchester Ammunition...Immature – Quantum Dot FPAs maturing – Devices have been demonstrated under less than optimal conditions – Measured results equate to less than 0.1

  12. Verification of the SENTINEL-4 Focal Plane Subsystem

    NASA Astrophysics Data System (ADS)

    Williges, C.; Hohn, R.; Rossmann, H.; Hilbert, S.; Uhlig, M.; Buchwinkler, K.; Reulke, R.

    2017-05-01

    The Sentinel-4 payload is a multi-spectral camera system which is designed to monitor atmospheric conditions over Europe. The German Aerospace Center (DLR) in Berlin, Germany conducted the verification campaign of the Focal Plane Subsystem (FPS) on behalf of Airbus Defense and Space GmbH, Ottobrunn, Germany. The FPS consists, inter alia, of two Focal Plane Assemblies (FPAs), one for the UV-VIS spectral range (305 nm … 500 nm), the second for NIR (750 nm … 775 nm). In this publication, we will present in detail the opto-mechanical laboratory set-up of the verification campaign of the Sentinel-4 Qualification Model (QM) which will also be used for the upcoming Flight Model (FM) verification. The test campaign consists mainly of radiometric tests performed with an integrating sphere as homogenous light source. The FPAs have mainly to be operated at 215 K ± 5 K, making it necessary to exploit a thermal vacuum chamber (TVC) for the test accomplishment. This publication focuses on the challenge to remotely illuminate both Sentinel-4 detectors as well as a reference detector homogeneously over a distance of approximately 1 m from outside the TVC. Furthermore selected test analyses and results will be presented, showing that the Sentinel-4 FPS meets specifications.

  13. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    NASA Astrophysics Data System (ADS)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data collected during the moon tracking and viewing experiment events. From which, we derive the lunar surface temperature and emissivity associated with the moon viewing measurements.

  14. GIFTS SM EDU Level 1B Algorithms

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Gazarik, Michael J.; Reisse, Robert A.; Johnson, David G.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) SensorModule (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiances using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the GIFTS SM EDU Level 1B algorithms involved in the calibration. The GIFTS Level 1B calibration procedures can be subdivided into four blocks. In the first block, the measured raw interferograms are first corrected for the detector nonlinearity distortion, followed by the complex filtering and decimation procedure. In the second block, a phase correction algorithm is applied to the filtered and decimated complex interferograms. The resulting imaginary part of the spectrum contains only the noise component of the uncorrected spectrum. Additional random noise reduction can be accomplished by applying a spectral smoothing routine to the phase-corrected spectrum. The phase correction and spectral smoothing operations are performed on a set of interferogram scans for both ambient and hot blackbody references. To continue with the calibration, we compute the spectral responsivity based on the previous results, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. We now can estimate the noise equivalent spectral radiance (NESR) from the calibrated ABB and HBB spectra. The correction schemes that compensate for the fore-optics offsets and off-axis effects are also implemented. In the third block, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is designed based on the pixel performance evaluation. Finally, in the fourth block, the single pixel algorithms are applied to the entire FPA.

  15. Radiometric Modeling and Calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS)Ground Based Measurement Experiment

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-01-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere s thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data collected during the moon tracking and viewing experiment events. From which, we derive the lunar surface temperature and emissivity associated with the moon viewing measurements.

  16. Thermoelectric infrared imaging sensors for automotive applications

    NASA Astrophysics Data System (ADS)

    Hirota, Masaki; Nakajima, Yasushi; Saito, Masanori; Satou, Fuminori; Uchiyama, Makoto

    2004-07-01

    This paper describes three low-cost thermoelectric infrared imaging sensors having a 1,536, 2,304, and 10,800 element thermoelectric focal plane array (FPA) respectively and two experimental automotive application systems. The FPAs are basically fabricated with a conventional IC process and micromachining technologies and have a low cost potential. Among these sensors, the sensor having 2,304 elements provide high responsivity of 5,500 V/W and a very small size with adopting a vacuum-sealed package integrated with a wide-angle ZnS lens. One experimental system incorporated in the Nissan ASV-2 is a blind spot pedestrian warning system that employs four infrared imaging sensors. This system helps alert the driver to the presence of a pedestrian in a blind spot by detecting the infrared radiation emitted from the person"s body. The system can also prevent the vehicle from moving in the direction of the pedestrian. The other is a rearview camera system with an infrared detection function. This system consists of a visible camera and infrared sensors, and it helps alert the driver to the presence of a pedestrian in a rear blind spot. Various issues that will need to be addressed in order to expand the automotive applications of IR imaging sensors in the future are also summarized. This performance is suitable for consumer electronics as well as automotive applications.

  17. Effects of Space Flight, Clinorotation, and Centrifugation on the Growth and Metabolism of Escherichia coli.

    DTIC Science & Technology

    1999-07-28

    lag phase for Proteus vulgaris (Manko et al., 1987), E. coli, and B. subtilis (Kaceua and Todd, 1997) on orbit. However, due to a limited number of... limitations often precluded the collection of multiple bacterial counts at different times during the relatively short exponential growth phase. This...g, respectively. Because the 50 centriiiige held only 6 FPAs, the number of samples for each experiment was limited . To increase the «-value

  18. IPPF Charter on Sexual and Reproductive Rights. International Planned Parenthood Federation.

    PubMed

    Newman, K; Helzner, J F

    1999-05-01

    For most of human existence and in most societies, women have been considered to be property and subject to men. Throughout history, with such notable exceptions as Queen Boadicea, Eleanor of Aquitaine, Elizabeth I of England, and Catherine the Great of Russia, women had little or no power until early in the 20th century when the women's suffrage movement was successful in the United States and in some European countries. As women have gained political rights, groups of women have sought sexual and reproductive rights, as exemplified by the feminist movement of the past few decades in the United States. Although marked strides toward achievement of reproductive choice have been taken in high-income countries, there remain major strictures to reproductive freedom for women in low-income countries. This area, which is replete with ethical and moral issues, has been addressed by the International Planned Parenthood Foundation (IPPF), which has worked to improve the sexual and reproductive health of women throughout the world. The IPPF Charter on Sexual and Reproductive Rights is a paradigm for both women's rights and human rights. Karen Newman is policy adviser with the IPPF and has codrafted the IPPF Charter on Sexual and Reproductive Rights together with two lawyers. She has held several positions within the IPPF, including medical researcher, press officer, and programme adviser in Europe, where she had responsibility for working with new family planning associations (FPAs) in the Czech Republic and Slovakia. At present, she is working to increase the capacity of IPPF member FPAs to undertake human rights-based advocacy for sexual and reproductive health and rights. Judith F. Helzner is director of Sexual and Reproductive Health at International Planned Parenthood Federation/Western Hemisphere Region, Inc., where she has worked since 1987. She holds M.A. degrees from the University of Pennsylvania in International Relations and Demography. Her previous employment includes the Pathfinder Fund and the International Women's Health Coalition.

  19. Microgravity

    NASA Image and Video Library

    1998-10-01

    CGBA, a facility developed by BioServe Space Technologies, a NASA Commercial Generic Bioprocessing Space Center, allows a variety of sophisticated bioprocessing research to be performed using a common device. The Fluids Processing Apparatus is essentially a microgravity test tube that allows a variety of complex investigations to be performed in space. This is a glass barrel containing several chambers separated by rubber stoppers. Eight FPAs are placed together in a Group Activation Pack (GAP), which allows all of the research to be started simultaneously by turning a single crank. Eight GAPs, or similar-sized payloads, can be stored in a single CGBA temperature controlled locker, which now uses motor drives to automatically turn the cranks to start and stop experiments. On STS-95, research efforts cover eight major areas that will benefit Earth-based products ranging from the production of pharmaceuticals to fish hatcheries.

  20. Commercial Generic Bioprocessing Apparatus

    NASA Technical Reports Server (NTRS)

    1998-01-01

    CGBA, a facility developed by BioServe Space Technologies, a NASA Commercial Generic Bioprocessing Space Center, allows a variety of sophisticated bioprocessing research to be performed using a common device. The Fluids Processing Apparatus is essentially a microgravity test tube that allows a variety of complex investigations to be performed in space. This is a glass barrel containing several chambers separated by rubber stoppers. Eight FPAs are placed together in a Group Activation Pack (GAP), which allows all of the research to be started simultaneously by turning a single crank. Eight GAPs, or similar-sized payloads, can be stored in a single CGBA temperature controlled locker, which now uses motor drives to automatically turn the cranks to start and stop experiments. On STS-95, research efforts cover eight major areas that will benefit Earth-based products ranging from the production of pharmaceuticals to fish hatcheries.

  1. A New Two-Color Infrared Photodetector Design Using INGAAS/INALAS Coupled Quantum Wells

    DTIC Science & Technology

    1999-08-01

    that spans the mid-wave infrared (MWIR) and the long-wave infrared ( LWIR ) atmospheric transmission windows of 3 to 5 and 8 to 12 µm, respectively...This leads to natural pixel registration in an FPA application. QWIP FPAs operating in two LWIR bands have been demonstrated,2 and, recently, the...Abstract unlimited Number of Pages 15 color FPA with simultaneous readout of an LWIR (9-µm peak) and an MWIR (5.1-µm peak) band was tested3 and shown to

  2. MBE Growth of HgCdTe on Large-Area Si and CdZnTe Wafers for SWIR, MWIR and LWIR Detection

    NASA Astrophysics Data System (ADS)

    Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Franklin, J. A.; Vang, T.; Smith, E. P. G.; Wehner, J. G. A.; Kasai, I.; Bangs, J. W.; Johnson, S. M.

    2008-09-01

    Molecular beam epitaxy (MBE) growth of HgCdTe on large-size Si (211) and CdZnTe (211)B substrates is critical to meet the demands of extremely uniform and highly functional third-generation infrared (IR) focal-panel arrays (FPAs). We have described here the importance of wafer maps of HgCdTe thickness, composition, and the macrodefects across the wafer not only to qualify material properties against design specifications but also to diagnose and classify the MBE-growth-related issues on large-area wafers. The paper presents HgCdTe growth with exceptionally uniform composition and thickness and record low macrodefect density on large Si wafers up to 6-in in diameter for the detection of short-wave (SW), mid-wave (MW), and long-wave (LW) IR radiation. We have also proposed a cost-effective approach to use the growth of HgCdTe on low-cost Si substrates to isolate the growth- and substrate-related problems that one occasionally comes across with the CdZnTe substrates and tune the growth parameters such as growth rate, cutoff wavelength ( λ cutoff) and doping parameters before proceeding with the growth on costly large-area CdZnTe substrates. In this way, we demonstrated HgCdTe growth on large CdZnTe substrates of size 7 cm × 7 cm with excellent uniformity and low macrodefect density.

  3. SWIR HgCdTe avalanche photiode focal plane array performances evaluation

    NASA Astrophysics Data System (ADS)

    de Borniol, E.; Rothman, J.; Salveti, F.; Feautrier, P.

    2017-11-01

    One of the main challenges of modern astronomical instruments like adaptive optics (AO) systems or fringe trackers is to deal with the very low photons flux detection scenarios. The typical timescale of atmospheric turbulences being in the range of some tens of milliseconds, infrared wavefront sensors for AO systems needs frame rates higher than 1 KHz leading to integration times lower than 1 ms. This integration time associated with a low irradiance results in a few number of integrated photons per frame per pixel. To preserve the information coming from this weak signal, the focal plane array (FPA) has to present a low read out noise, a high quantum efficiency and a low dark current. Up to now, the output noise of high speed near infrared sensors is limited by the silicon read out circuit noise. The use of HgCdTe avalanche photodiodes with high gain at moderate reverse bias and low excess noise seems then a logical way to reduce the impact of the read noise on images signal to noise ratio. These low irradiance passive imaging applications with integration times in the millisecond range needs low photodiode dark current and low background current. These requirements lead to the choice of the photodiode cut off wavelength. The short wave infrared (SWIR) around 3 μm is a good compromise between the gain that can be obtain for a given APD bias and the background and dark current. The CEA LETI HgCdTe APD technology, and a fine analysis of the gain curve characteristic are presented in [1] and won't be detailed here. The response time of the APD is also a key factor for a high frame rate FPA. This parameter has been evaluated in [2] and the results shows cut off frequencies in the GHz range. In this communication we report the performances of a SWIR APD FPA designed and fabricated by CEA LETI and SOFRADIR for astrophysical applications. This development was made in the frame of RAPID, a 4 years R&D project funded by the French FUI (Fond Unique Interministériel). This project involves industrial and academic partners from the field of advanced infrared focal plane arrays fabrication (SOFRADIR and CEA LETI) and of astronomical/defense institutes (IPAG, LAM, ONERA). The goal of this program is to develop a fast and low noise SWIR camera for astronomical fast applications like adaptive optics wavefront sensing and fringe tracking for astronomical interferometers [3]. The first batch of FPA's was based on liquid-phase epitaxy (LPE) grown photodiode arrays with 3 μm cut off wavelength. In order to get higher avalanche gain for a given photodiode reverse bias voltage, we have made a second batch with a cadmium composition leading to 3.3 μm cut off wavelength (λc). This paper described the read out circuit in the next section. The aim section III is to find the critical parameter that has to be measured to evaluate the signal to noise ratio (SNR) of an APD FPA. The main electro optical characteristics of an FPA based on 3.3μm cut off wavelength APDs are reported in "Rapid FPAs characterisation" section. The dark current evolution with temperature of a 3 μm FPA high and low APD bias is also detailed in this section.

  4. High-Operating Temperature HgCdTe: A Vision for the Near Future

    NASA Astrophysics Data System (ADS)

    Lee, D.; Carmody, M.; Piquette, E.; Dreiske, P.; Chen, A.; Yulius, A.; Edwall, D.; Bhargava, S.; Zandian, M.; Tennant, W. E.

    2016-09-01

    We review recent advances in the HgCdTe material quality and detector performance achieved at Teledyne using molecular beam epitaxy growth and the double-layer planar hetero-junction (DLPH) detector architecture. By using an un-doped, fully depleted absorber, Teledyne's DLPH architecture can be extended for use in high operating temperatures and other applications. We assess the potential achievable performance for long wavelength infrared (LWIR) hetero-junction p-lightly-doped n or p-intrinsic- n (p-i-n) detectors based on recently reported results for 10.7 μm cutoff 1 K × 1 K focal plane arrays (FPAs) tested at temperatures down to 30 K. Variable temperature dark current measurements show that any Shockley-Read-Hall currents in the depletion region of these devices have lifetimes that are reproducibly greater than 100 ms. Under the assumption of comparable lifetimes at higher temperatures, it is predicted that fully-depleted background radiation-limited performance can be expected for 10- μm cutoff detectors from room temperature to well below liquid nitrogen temperatures, with room-temperature dark current nearly 400 times lower than predicted by Rule 07. The hetero-junction p-i-n diode is shown to have numerous other significant potential advantages including minimal or no passivation requirements for pBn-like processing, low 1/ f noise, compatibility with small pixel pitch while maintaining high modulation transfer function, low crosstalk and good quantum efficiency. By appropriate design of the FPA dewar shielding, analysis shows that dark current can theoretically be further reduced below the thermal equilibrium radiative limit. Modeling shows that background radiation-limited LWIR HgCdTe operating with f/1 optics has the potential to operate within √2 of background-limited performance at 215 K. By reducing the background radiation by 2/3 using novel shielding methods, operation with a single-stage thermo-electric-cooler may be possible. If the background radiation can be reduced by 90%, then room-temperature operation is possible.

  5. The HORUS Observatory - A Next Generation 2.4m UV-Optical Mission To Study Planetary, Stellar And Galactic Formation

    NASA Astrophysics Data System (ADS)

    Scowen, Paul A.; SDT, HORUS

    2013-01-01

    The High-ORbit Ultraviolet-visible Satellite (HORUS) is a 2.4-meter class UV-optical space telescope that will conduct a comprehensive and systematic study of the astrophysical processes and environments relevant for the births and life cycles of stars and their planetary systems, to investigate and understand the range of environments, feedback mechanisms, and other factors that most affect the outcome of the star and planet formation process. To do so, HORUS will provide 100 times greater imaging efficiency and more than 10 times greater UV spectroscopic sensitivity than has existed on the Hubble Space Telescope (HST). The HORUS mission will contribute vital information on how solar systems form and whether habitable planets should be common or rare. It also will investigate the structure, evolution, and destiny of galaxies and universe. This program relies on focused capabilities unique to space that no other planned NASA mission will provide: near-UV/visible (200-1075nm) wide-field, diffraction-limited imaging; and high-sensitivity, high-resolution UV (100-170nm) spectroscopy. The core HORUS design will provide wide field of view imagery and high efficiency point source FUV spectroscopy using a novel combination of spectral selection and field sharing. The HORUS Optical Telescope Assembly (OTA) design is based on modern light weight mirror technology with a faster primary mirror to shorten the overall package and thereby reduce mass. The OTA uses a three-mirror anastigmat configuration to provide excellent imagery over a large FOV - and is exactly aligned to use one of the recently released f/1.2 NRO OTAs as part of its design. The UV/optical Imaging Cameras use two 21k x 21k Focal Plane Arrays (FPAs). The FUV spectrometer uses cross strip anode based MCPs. This poster presents results from a 2010 design update requested by the NRC Decadal Survey, and reflects updated costs and technology to the original 2004 study. It is now one of the most mature 2.4m UVOIR observatory designs in NASA’s portfolio.

  6. Digital Signal Processing Techniques for the GIFTS SM EDU

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Reisse, Robert A.; Gazarik, Michael J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument employs three Focal Plane Arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes several digital signal processing (DSP) techniques involved in the development of the calibration model. In the first stage, the measured raw interferograms must undergo a series of processing steps that include filtering, decimation, and detector nonlinearity correction. The digital filtering is achieved by employing a linear-phase even-length FIR complex filter that is designed based on the optimum equiripple criteria. Next, the detector nonlinearity effect is compensated for using a set of pre-determined detector response characteristics. In the next stage, a phase correction algorithm is applied to the decimated interferograms. This is accomplished by first estimating the phase function from the spectral phase response of the windowed interferogram, and then correcting the entire interferogram based on the estimated phase function. In the calibration stage, we first compute the spectral responsivity based on the previous results and the ideal Planck blackbody spectra at the given temperatures, from which, the calibrated ambient blackbody (ABB), hot blackbody (HBB), and scene spectra can be obtained. In the post-calibration stage, we estimate the Noise Equivalent Spectral Radiance (NESR) from the calibrated ABB and HBB spectra. The NESR is generally considered as a measure of the instrument noise performance, and can be estimated as the standard deviation of calibrated radiance spectra from multiple scans. To obtain an estimate of the FPA performance, we developed an efficient method of generating pixel performance assessments. In addition, a random pixel selection scheme is developed based on the pixel performance evaluation. This would allow us to perform the calibration procedures on a random pixel population that is a good statistical representation of the entire FPA. The design and implementation of each individual component will be discussed in details.

  7. Stent Design Affects Femoropopliteal Artery Deformation.

    PubMed

    MacTaggart, Jason; Poulson, William; Seas, Andreas; Deegan, Paul; Lomneth, Carol; Desyatova, Anastasia; Maleckis, Kaspars; Kamenskiy, Alexey

    2018-03-23

    Poor durability of femoropopliteal artery (FPA) stenting is multifactorial, and severe FPA deformations occurring with limb flexion are likely involved. Different stent designs result in dissimilar stent-artery interactions, but the degree of these effects in the FPA is insufficiently understood. To determine how different stent designs affect limb flexion-induced FPA deformations. Retrievable markers were deployed into n = 28 FPAs of lightly embalmed human cadavers. Bodies were perfused and CT images were acquired with limbs in the standing, walking, sitting, and gardening postures. Image analysis allowed measurement of baseline FPA foreshortening, bending, and twisting associated with each posture. Markers were retrieved and 7 different stents were deployed across the adductor hiatus in the same limbs. Markers were then redeployed in the stented FPAs, and limbs were reimaged. Baseline and stented FPA deformations were compared to determine the influence of each stent design. Proximal to the stent, Innova, Supera, and SmartFlex exacerbated foreshortening, SmartFlex exacerbated twisting, and SmartControl restricted bending of the FPA. Within the stent, all devices except Viabahn restricted foreshortening; Supera, SmartControl, and AbsolutePro restricted twisting; SmartFlex and Innova exacerbated twisting; and Supera and Viabahn restricted bending. Distal to the stents, all devices except AbsolutePro and Innova exacerbated foreshortening, and Viabahn, Supera, Zilver, and SmartControl exacerbated twisting. All stents except Supera were pinched in flexed limb postures. Peripheral self-expanding stents significantly affect limb flexion-induced FPA deformations, but in different ways. Although certain designs seem to accommodate some deformation modes, no device was able to match all FPA deformations.

  8. An Indium Gallium Arsenide Visible/SWIR Focal Plane Array for Low Light Level Imaging

    NASA Technical Reports Server (NTRS)

    Cohen, Marshall J.; Ettenberg, Martin H.; Lange, Michael J.; Olsen, Gregory H.

    1999-01-01

    PIN photodiodes fabricated from indium gallium arsenide lattice-matched to indium phosphide substrates (In(.53)Ga(.47)As/InP) exhibit low reverse saturation current densities (JD < 10(exp -8) A/sq cm), and high shunt resistance-area products (RoA > 10(exp 6) omega-sq cm) at T=290K. Backside-illuminated, hybrid-integrated InGaAs FPAs are sensitive from 0.9 micrometers to 1.7 micrometers. 290K detectivities, D(*), greater than 10(exp 14) cm-(square root of Hz/W) are demonstrated. This represents the highest room temperature detectivity of any infrared material. The long wavelength cutoff (1.7 micrometers) makes In(.53)Ga(.47)As an idea match to the available airglow that has major peaks at 1.3 micrometers and 1.6 micrometers. The short wavelength 'cut-on' at 0.9 micrometers is due to absorption in the InP substrate. We will report on new InGaAs FPA epitaxial structures and processing techniques. These have resulted in improved performance in the form of a 10 x increase in detectivity and visible response via removal of the InP substrate. The resulting device features visible and SWIR response with greater than 15% quantum efficiency at 0.5 micrometers while maintaining the long wavelength cutoff. Imaging has been demonstrated under overcast starlight/urban glow conditions with cooling provided by a single stage thermoelectric cooler. Details on the material structure and device fabrication, quantitative characterization of spectral response and detectivity, as well as examples of night vision imagery are presented.

  9. Automated optical testing of LWIR objective lenses using focal plane array sensors

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be easily and accurately measured with this system.

  10. Molecular beam epitaxy grown long wavelength infrared HgCdTe on compliant Si substrates

    NASA Astrophysics Data System (ADS)

    Wijewarnasuriya, Priyalal S.; Chen, Yuanping; Brill, Gregory; Dhar, Nibir K.; Carmody, Michael; Bailey, Robert; Arias, Jose

    2006-05-01

    At the Army Research Laboratory (ARL), a new ternary semiconductor system CdSe xTe 1-x/Si(211) is being investigated as an alternative substrate to bulk-grown CdZnTe substrates for HgCdTe growth by molecular beam epitaxy. Under optimized conditions, best layers show surface defect density less than 400 cm -2 and full width at half maximum of X-ray double crystal rocking curve as low as 100 arc-sec with excellent uniformity over 3 inch area. LW-HgCdTe layers on these compliant substrates exhibit comparable electrical properties to those grown on bulk CZT substrates. Photovoltaic devices fabricated on these LWIR material shows diffusion limited performance at 78K indicating high quality material. Measured R °A at 78K on λ co = 10 μm material is on the order of 340 Ω-cm II. In addition to single devices, we have fabricated 256x256 2-D arrays with 40 μm pixel pitch on LW-HgCdTe grown on Si compliant substrates. Data shows excellent QE operability of 99% at 78K under a tactical background flux of 6.7x10 15 ph/cm2sec. Most probable dark current at the peak distribution is 5.5 x 10 9 e-/sec and is very much consistent with the measured R °A values from single devices. Initial results indicate NETD of 33 mK for a cut-off wavelength of 10 μm with 40 micron pixels size. This work demonstrates CdSe xTe 1-x/Si(211) substrates provides a potential road map to more affordable, robust 3 rd generation FPAs.

  11. Challenges and solutions for high performance SWIR lens design

    NASA Astrophysics Data System (ADS)

    Gardner, M. C.; Rogers, P. J.; Wilde, M. F.; Cook, T.; Shipton, A.

    2016-10-01

    Shortwave infrared (SWIR) cameras are becoming increasingly attractive due to the improving size, resolution and decreasing prices of InGaAs focal plane arrays (FPAs). The rapid development of competitively priced HD performance SWIR cameras has not been matched in SWIR imaging lenses with the result that the lens is now more likely to be the limiting factor in imaging quality than the FPA. Adapting existing lens designs from the visible region by re-coating for SWIR will improve total transmission but diminished image quality metrics such as MTF, and in particular large field angle performance such as vignetting, field curvature and distortion are serious consequences. To meet this challenge original SWIR solutions are presented including a wide field of view fixed focal length lens for commercial machine vision (CMV) and a wide angle, small, lightweight defence lens and their relevant design considerations discussed. Issues restricting suitable glass types will be examined. The index and dispersion properties at SWIR wavelengths can differ significantly from their visible values resulting in unusual glass combinations when matching doublet elements. Materials chosen simultaneously allow athermalization of the design as well as containing matched CTEs in the elements of doublets. Recently, thinned backside-illuminated InGaAs devices have made Vis.SWIR cameras viable. The SWIR band is sufficiently close to the visible that the same constituent materials can be used for AR coatings covering both bands. Keeping the lens short and mass low can easily result in high incidence angles which in turn complicates coating design, especially when extended beyond SWIR into the visible band. This paper also explores the potential performance of wideband Vis.SWIR AR coatings.

  12. An airborne thematic thermal infrared and electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiuhong; Shu, Peter

    2011-08-01

    This paper describes an advanced Airborne Thematic Thermal InfraRed and Electro-Optical Imaging System (ATTIREOIS) and its potential applications. ATTIREOIS sensor payload consists of two sets of advanced Focal Plane Arrays (FPAs) - a broadband Thermal InfraRed Sensor (TIRS) and a four (4) band Multispectral Electro-Optical Sensor (MEOS) to approximate Landsat ETM+ bands 1,2,3,4, and 6, and LDCM bands 2,3,4,5, and 10+11. The airborne TIRS is 3-axis stabilized payload capable of providing 3D photogrammetric images with a 1,850 pixel swathwidth via pushbroom operation. MEOS has a total of 116 million simultaneous sensor counts capable of providing 3 cm spatial resolution multispectral orthophotos for continuous airborne mapping. ATTIREOIS is a complete standalone and easy-to-use portable imaging instrument for light aerial vehicle deployment. Its miniaturized backend data system operates all ATTIREOIS imaging sensor components, an INS/GPS, and an e-Gimbal™ Control Electronic Unit (ECU) with a data throughput of 300 Megabytes/sec. The backend provides advanced onboard processing, performing autonomous raw sensor imagery development, TIRS image track-recovery reconstruction, LWIR/VNIR multi-band co-registration, and photogrammetric image processing. With geometric optics and boresight calibrations, the ATTIREOIS data products are directly georeferenced with an accuracy of approximately one meter. A prototype ATTIREOIS has been configured. Its sample LWIR/EO image data will be presented. Potential applications of ATTIREOIS include: 1) Providing timely and cost-effective, precisely and directly georeferenced surface emissive and solar reflective LWIR/VNIR multispectral images via a private Google Earth Globe to enhance NASA's Earth science research capabilities; and 2) Underflight satellites to support satellite measurement calibration and validation observations.

  13. Ultra-compact high-performance MCT MWIR engine

    NASA Astrophysics Data System (ADS)

    Lutz, H.; Breiter, R.; Eich, D.; Figgemeier, H.; Oelmaier, R.; Rutzinger, S.; Schenk, H.; Wendler, J.

    2017-02-01

    Size, weight and power (SWaP) reduction is highly desired by applications such as sights for the dismounted soldier or small gimbals for UAVs. But why have high performance and small size of IR systems inevitably exclude each other? Namely, recent development progress in the fields of miniature cryocoolers, short dewars and high operating temperature (HOT) FPAs combined with pitch size reduction opens the door for very compact MWIR-modules while keeping high electro-optical performance. Now, AIM has realized first prototypes of an ultra-compact high-performance MWIR engine in a total volume of only 18cl (60mm length x 60mm height x 50mm width). Impressive SWaP characteristics are completed by a total weight below 400g and a power consumption < 4W in basic imaging mode. The engine consists of a XGA-format (1024x768) MCT detector array with 10μm pitch and a low power consuming ROIC. It is cooled down to a typical operating temperature of 160K by the miniature linear cryocooler SX020. The dewar uses a short coldfinger and is designed to reduce the heat load as much as possible. The cooler drive electronics is implemented in the CCE layout in order to reduce the required space of the printed boards and to save power. Uncorrected 14bit video data is provided via Camera Link. Optionally, a small image processing board can be stacked on top of the CCE to gain access to basic functions such as BPR, 2- point NUC and dynamic reduction. This paper will present the design, functionalities and performance data of the ultra-compact MCT MWIR engine operated at HOT.

  14. Concurrent array-based queue

    DOEpatents

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  15. Recent progress in the development of MCT hot detectors

    NASA Astrophysics Data System (ADS)

    Wollrab, R.; Schirmacher, W.; Schallenberg, T.; Lutz, H.; Wendler, J.; Haiml, M.; Ziegler, J.

    2017-11-01

    To push HOT-performance, AIMs existing n-on-p technology has been improved by introducing Gold as an acceptor and reducing its concentration to the lower 1015/cm3 range as well as by optimizing the passivation process. This results in a substantial reduction in dark current density, a prerequisite for HOT operation. Recent dark current data are compared to ones previously obtained as well as to Tennant`s Rule07 [1], a generally accepted bench mark in this context. Furthermore, we present electro-optical parameters obtained in the temperature range from 120 K to 170 K on resulting FPAs with 640x512 pixels, a pitch of 15 μm and a typical (80 K) cutoff wavelength of 5.1 μm.

  16. A Flexible Base Electrode Array for Intraspinal Microstimulation

    PubMed Central

    Khaled, I.; Elmallah, S.; Cheng, C.; Moussa, W.A.; Mushahwar, V.K.; Elias, A.L.

    2013-01-01

    In this paper, we report the development of a flexible base array of penetrating electrodes which can be used to interface with the spinal cord. A customizable and feasible fabrication protocol is described. The flexible base arrays were fabricated and implanted into surrogate cords which were elongated by 12%. The resulting strains were optically measured across the cord and compared to those associated with two types of electrodes arrays (one without a base and one with a rigid base connecting the electrodes). The deformation behavior of cords implanted with the flexible base arrays resembled the behavior of cords implanted with individual microwires that were not connected through a base. The results of the strain test were used to validate a 2D finite element model. The validated model was used to assess the stresses induced by the electrodes of the 3 types of arrays on the cord, and to examine how various design parameters (thickness, base modulus, etc.) impact the mechanical behavior of the electrode array. Rigid base arrays induced higher stresses on the cord than the flexible base arrays which in turn imposed higher stresses than the individual microwire implants. The developed flexible base array showed improvement over the rigid base array; however, its stiffness needs to be further reduced to emulate the mechanical behavior of individual microwire arrays without a base. PMID:23744656

  17. [Development and evaluation of a serological protocol of fluorescence polarization for the preliminary study of Brucella spp antibodies in humans].

    PubMed

    Sánchez-Villalobos, Alfredo; Urdaneta-Fernández, Margelys; Rubio-Fuenmayor, Elí; Molero-Saras, Gladys; Luzardo-Charris, Carlos; Corona-Mengual, Carlos

    2011-03-01

    In order to show the development and scope of a serological analysis method based on fluorescence polarization assay (FPA) from a drop of blood obtained by the capillary technique, a Brucella antibody assay was performed on a group of 321 high-risk workers. The results were compared with data from the analysis of blood serum by FPA and a competitive enzyme immunoassay (ELISA-c). The number of concordance was 318 (99.06%), and discordant 3 (0.93%), which were negative in serum by fluorescence polarization (FPAs) and ELISA-c, but positive with capillary FPA (FPAc). The comparative results FPAc were: sensitivity 100%; specificity: 99.05%; positive predictive value 66.67%; negative predictive value 100.0%; false positive rate: 0.95%; false negative rate: 0%; accuracy: 98.0%; odds ratio: 203.00. The youden J for both FPA methods was 0.667. The identification was considered reliable and the correlation of both procedures, FPA and ELISA-c, was no statistically different (P > 0.05%), which allows to highly recommend the study implementation of human brucellosis with capillary blood as a preliminary method.

  18. Examining the Efficacy of a Family Peer Advocate Model for Black and Hispanic Caregivers of Children with Autism Spectrum Disorder.

    PubMed

    Jamison, J M; Fourie, E; Siper, P M; Trelles, M P; George-Jones, Julia; Buxbaum Grice, A; Krata, J; Holl, E; Shaoul, J; Hernandez, B; Mitchell, L; McKay, M M; Buxbaum, J D; Kolevzon, Alexander

    2017-05-01

    Autism spectrum disorder (ASD) affects individuals across all racial and ethnic groups, yet rates of diagnosis are disproportionately higher for Black and Hispanic children. Caregivers of children with ASD experience significant stressors, which have been associated with parental strain, inadequate utilization of mental health services and lower quality of life. The family peer advocate (FPA) model has been utilized across service delivery systems to provide family-to-family support, facilitate engagement, and increase access to care. This study used a randomized controlled design to examine the efficacy of FPAs in a racially and ethnically diverse sample. Results demonstrate significantly increased knowledge of ASD and reduced levels of stress for caregivers who received the FPA intervention as compared to treatment as usual.

  19. Relative performance analysis of IR FPA technologies from the perspective of system level performance

    NASA Astrophysics Data System (ADS)

    Haran, Terence L.; James, J. Christopher; Cincotta, Tomas E.

    2017-08-01

    The majority of high performance infrared systems today utilize FPAs composed of intrinsic direct bandgap semiconductor photon detectors such as MCT or InSb. Quantum well detector technologies such as QWIPs, QDIPs, and SLS photodetectors are potentially lower cost alternatives to MCT and InSb, but the relative performance of these technologies has not been sufficiently high to allow widespread adoption outside of a handful of applications. While detectors are often evaluated using figures of merit such as NETD or D∗, these metrics, which include many underlying aspects such as spectral quantum efficiency, dark current, well size, MTF, and array response uniformity, may be far removed from the performance metrics used to judge performance of a system in an operationally relevant scenario. True comparisons of performance for various detector technologies from the perspective of end-to-end system performance have rarely been conducted, especially considering the rapid progress of the newer quantum well technologies. System level models such as the US Army's Night Vision Integrated Performance Model (NV-IPM) can calculate image contrast and spatial frequency content using data from the target/background, intervening atmosphere, and system components. This paper includes results from a performance parameter sensitivity analysis using NV-IPM to determine the relative importance of various FPA performance parameters to the overall performance of a long range imaging system. Parameters included are: QE, dark current density, quantum well capacity, downstream readout noise, well fill, image frame rate, frame averaging, and residual fixed pattern noise. The state-of-the art for XBn, QWIP, and SLS detector technologies operating in the MWIR and LWIR bands will be surveyed to assess performance of quantum structures compared to MCT and InSb. The intent is to provide a comprehensive assessment of quantum detector performance and to identify areas where increased research could provide the most benefit to overall system level performance.

  20. Verification of the test stand for microbolometer camera in accredited laboratory

    NASA Astrophysics Data System (ADS)

    Krupiński, Michal; Bareła, Jaroslaw; Chmielewski, Krzysztof; Kastek, Mariusz

    2017-10-01

    Microbolometer belongs to the group of thermal detectors and consist of temperature sensitive resistor which is exposed to measured radiation flux. Bolometer array employs a pixel structure prepared in silicon technology. The detecting area is defined by a size of thin membrane, usually made of amorphous silicon (a-Si) or vanadium oxide (VOx). FPAs are made of a multitude of detector elements (for example 384 × 288 ), where each individual detector has different sensitivity and offset due to detector-to-detector spread in the FPA fabrication process, and additionally can change with sensor operating temperature, biasing voltage variation or temperature of the observed scene. The difference in sensitivity and offset among detectors (which is called non-uniformity) additionally with its high sensitivity, produces fixed pattern noise (FPN) on produced image. Fixed pattern noise degrades parameters of infrared cameras like sensitivity or NETD. Additionally it degrades image quality, radiometric accuracy and temperature resolution. In order to objectively compare the two infrared cameras ones must measure and compare their parameters on a laboratory test stand. One of the basic parameters for the evaluation of a designed camera is NETD. In order to examine the NETD, parameters such as sensitivity and pixels noise must be measured. To do so, ones should register the output signal from the camera in response to the radiation of black bodies at two different temperatures. The article presets an application and measuring stand for determining the parameters of microbolometers camera. Prepared measurements were compared with the result of the measurements in the Institute of Optoelectronics, MUT on a METS test stand by CI SYSTEM. This test stand consists of IR collimator, IR standard source, rotating wheel with test patterns, a computer with a video grabber card and specialized software. The parameters of thermals cameras were measure according to norms and method described in literature.

  1. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    NASA Astrophysics Data System (ADS)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is applied to data collected during an atmospheric measurement experiment with the GIFTS, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The PC vectors of the calibrated radiance spectra are defined from the AERI observations and regression matrices relating the initial GIFTS radiance PC scores to the AERI radiance PC scores are calculated using the least squares inverse method. A new set of accurately calibrated GIFTS radiances are produced using the first four PC scores in the regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period.

  2. Numerical study of the properties of optical vortex array laser tweezers.

    PubMed

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-11-04

    Chu et al. constructed a kind of Ince-Gaussian modes (IGM)-based vortex array laser beams consisting of p x p embedded optical vortexes from Ince-Gaussian modes, IG(e)(p,p) modes [Opt. Express 16, 19934 (2008)]. Such an IGM-based vortex array laser beams maintains its vortex array profile during both propagation and focusing, and is applicable to optical tweezers. This study uses the discrete dipole approximation (DDA) method to study the properties of the IGM-based vortex array laser tweezers while it traps dielectric particles. This study calculates the resultant force exerted on the spherical dielectric particles of different sizes situated at the IGM-based vortex array laser beam waist. Numerical results show that the number of trapping spots of a structure light (i.e. IGM-based vortex laser beam), is depended on the relation between the trapped particle size and the structure light beam size. While the trapped particle is small comparing to the beam size of the IGM-based vortex array laser beams, the IGM-based vortex array laser beams tweezers are suitable for multiple traps. Conversely, the tweezers is suitable for single traps. The results of this study is useful to the future development of the vortex array laser tweezers applications.

  3. Fluorescence-based bioassays for the detection and evaluation of food materials.

    PubMed

    Nishi, Kentaro; Isobe, Shin-Ichiro; Zhu, Yun; Kiyama, Ryoiti

    2015-10-13

    We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.

  4. Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials

    PubMed Central

    Nishi, Kentaro; Isobe, Shin-Ichiro; Zhu, Yun; Kiyama, Ryoiti

    2015-01-01

    We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials. PMID:26473869

  5. A 7T Spine Array Based on Electric Dipole Transmitters

    PubMed Central

    Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A.; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S.; Duyn, Jeff H.; Merkle, Hellmut

    2015-01-01

    Purpose In this work the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high field is explored. Method A 2-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining 8 loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared to a design using quadrature loop pairs. The radio-frequency (RF) energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. Results The results indicate dramatically improved transmit efficiency for the dipole design as compared to the loop excitation. Up to 76% gain was achieved within the spinal region. Conclusion For imaging of the spine, electric-dipole based transmitters provided an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high field. PMID:26190585

  6. Interaction between scene-based and array-based contextual cueing.

    PubMed

    Rosenbaum, Gail M; Jiang, Yuhong V

    2013-07-01

    Contextual cueing refers to the cueing of spatial attention by repeated spatial context. Previous studies have demonstrated distinctive properties of contextual cueing by background scenes and by an array of search items. Whereas scene-based contextual cueing reflects explicit learning of the scene-target association, array-based contextual cueing is supported primarily by implicit learning. In this study, we investigated the interaction between scene-based and array-based contextual cueing. Participants searched for a target that was predicted by both the background scene and the locations of distractor items. We tested three possible patterns of interaction: (1) The scene and the array could be learned independently, in which case cueing should be expressed even when only one cue was preserved; (2) the scene and array could be learned jointly, in which case cueing should occur only when both cues were preserved; (3) overshadowing might occur, in which case learning of the stronger cue should preclude learning of the weaker cue. In several experiments, we manipulated the nature of the contextual cues present during training and testing. We also tested explicit awareness of scenes, scene-target associations, and arrays. The results supported the overshadowing account: Specifically, scene-based contextual cueing precluded array-based contextual cueing when both were predictive of the location of a search target. We suggest that explicit, endogenous cues dominate over implicit cues in guiding spatial attention.

  7. Paper-based immune-affinity arrays for detection of multiple mycotoxins in cereals.

    PubMed

    Li, Li; Chen, Hongpu; Lv, Xiaolan; Wang, Min; Jiang, Xizhi; Jiang, Yifei; Wang, Heye; Zhao, Yongfu; Xia, Liru

    2018-03-01

    Mycotoxins produced by different species of fungi may coexist in cereals and feedstuffs, and could be highly toxic for humans and animals. For quantification of multiple mycotoxins in cereals, we developed a paper-based mycotoxin immune-affinity array. First, paper-based microzone arrays were fabricated by photolithography. Then, monoclonal mycotoxin antibodies were added in a copolymerization reaction with a cross-linker to form an immune-affinity monolith on the paper-based microzone array. With use of a competitive immune-response format, paper-based mycotoxin immune-affinity arrays were successfully applied to detect mycotoxins in samples. The detection limits for deoxynivalenol, zearalenone, T-2 toxin, and HT-2 toxin were 62.7, 10.8, 0.36, and 0.23 μg·kg -1 , respectively, which meet relevant requirements for these compounds in food. The recovery rates were 81-86% for deoxynivalenol, 89-117% for zearalenone, 79-86% for T-2 toxin, and 78-83% for HT-2 toxin, and showed the paper-based immune-affinity arrays had good reproducibility. In summary, the paper-based mycotoxin immune-affinity array provides a sensitive, rapid, accurate, stable, and convenient platform for detection of multiple mycotoxins in agro-foods. Graphical abstract Paper-based immune-affinity monolithic array. DON deoxynivalenol, HT-2 HT-2 toxin, T-2 T-2 toxin, PEGDA polyethylene glycol diacrylate, ZEN zearalenone.

  8. InAs/GaSb type-II superlattice infrared detectors: three decades of development

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Kopytko, M.; Martyniuk, P.

    2017-02-01

    Recently, there has been considerable progress towards III-V antimonide-based low dimensional solids development and device design innovations. From a physics point of view, the type-II InAs/GaSb superlattice is an extremely attractive proposition. Their development results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe FPAs at reasonable cost and theoretical predictions of lower Auger recombination for type-II superlattice (T2SL) detectors compared to HgCdTe. Lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall lifetime are equal. Based on these promising results it is obvious now that the InAs/GaSb superlattice technology is competing with HgCdTe third generation detector technology with the potential advantage of standard III-V technology to be more competitive in costs and as a consequence series production pricing. Comments to the statement whether the superlattice IR photodetectors can outperform the "bulk" narrow gap HgCdTe detectors is one of the most important questions for the future of IR photodetectors presented by Rogalski at the April 2006 SPIE meeting in Orlando, Florida, are more credible today and are presented in this paper. It concerns the trade-offs between two most competing IR material technologies: InAs/GaSb type-II superlattices and HgCdTe ternary alloy system.

  9. Ultrabroadband Phased-Array Receivers Based on Optical Techniques

    DTIC Science & Technology

    2016-02-26

    AFRL-AFOSR-VA-TR-2016-0121 Ultrabroadband Phased- array Receivers Based on Optical Techniques Christopher Schuetz UNIVERSITY OF DELAWARE Final Report...Jul 15 4. TITLE AND SUBTITLE Ultrabroadband Phased- Array Receivers Based on Optical Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...receiver that enables us to capture and convert signals across an array using photonic modulators, routing these signals to a central location using

  10. Proposed Array-based Deep Space Network for NASA

    NASA Technical Reports Server (NTRS)

    Bagri, Durgadas S.; Statman, Joseph I.; Gatti, Mark S.

    2007-01-01

    The current assets of the Deep Space Network (DSN) of the National Aeronautics and Space Administration (NASA), especially the 70-m antennas, are aging and becoming less reliable. Furthermore, they are expensive to operate and difficult to upgrade for operation at Ka-band (321 GHz). Replacing them with comparable monolithic large antennas would be expensive. On the other hand, implementation of similar high-sensitivity assets can be achieved economically using an array-based architecture, where sensitivity is measured by G/T, the ratio of antenna gain to system temperature. An array-based architecture would also provide flexibility in operations and allow for easy addition of more G/T whenever required. Therefore, an array-based plan of the next-generation DSN for NASA has been proposed. The DSN array would provide more flexible downlink capability compared to the current DSN for robust telemetry, tracking and command services to the space missions of NASA and its international partners in a cost effective way. Instead of using the array as an element of the DSN and relying on the existing concept of operation, we explore a broader departure in establishing a more modern concept of operations to reduce the operations costs. This paper presents the array-based architecture for the next generation DSN. It includes system block diagram, operations philosophy, user's view of operations, operations management, and logistics like maintenance philosophy and anomaly analysis and reporting. To develop the various required technologies and understand the logistics of building the array-based lowcost system, a breadboard array of three antennas has been built. This paper briefly describes the breadboard array system and its performance.

  11. A 7T spine array based on electric dipole transmitters.

    PubMed

    Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S; Duyn, Jeff H; Merkle, Hellmut

    2015-10-01

    The goal of this study was to explore the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high fields. A two-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining eight loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared with a design using quadrature loop pairs. The radiofrequency energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. The results indicate dramatically improved transmit efficiency for the dipole design compared with the loop excitation. A gain of up to 76% was achieved within the spinal region. For imaging of the spine, electric dipole-based transmitters provide an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high fields. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  12. In situ longitudinal pre-stretch in the human femoropopliteal artery.

    PubMed

    Kamenskiy, Alexey; Seas, Andreas; Bowen, Grant; Deegan, Paul; Desyatova, Anastasia; Bohlim, Nick; Poulson, William; MacTaggart, Jason

    2016-03-01

    In situ longitudinal (axial) pre-stretch (LPS) plays a fundamental role in the mechanics of the femoropopliteal artery (FPA). It conserves energy during pulsation and prevents buckling of the artery during limb movement. We investigated how LPS is affected by demographics and risk factors, and how these patient characteristics associate with the structural and physiologic features of the FPA. LPS was measured in n=148 fresh human FPAs (14-80 years old). Mechanical properties were characterized with biaxial extension and histopathological characteristics were quantified with Verhoeff-Van Gieson Staining. Constitutive modeling was used to calculate physiological stresses and stretches which were then analyzed in the context of demographics, risk factors and structural characteristics. Age had the strongest negative effect (r=-0.812, p<0.01) on LPS and could alone explain 66% of LPS variability. Male gender, higher body mass index, hypertension, diabetes, coronary artery disease, dyslipidemia and tobacco use had negative effects on LPS, but only the effect of tobacco was not associated with aging. FPAs with less pre-stretch had thicker medial layers, but thinner intramural elastic fibers with less dense and more fragmented external elastic laminae. Elastin degradation was associated with decreased physiological tethering force and longitudinal stress, while circumferential stress remained constant. FPA wall pathology was negatively associated with LPS (r=-0.553, p<0.01), but the effect was due primarily to aging. LPS in the FPA may serve as an energy reserve for adaptive remodeling. Reduction of LPS due to degradation and fragmentation of intramural longitudinal elastin during aging can be accelerated in tobacco users. This work studies in situ longitudinal pre-stretch (LPS) in the human femoropopliteal artery. LPS has a fundamental role in arterial mechanics, but is rather poorly studied due to lack of direct in vivo measurement method. We have investigated LPS in the n=148 human femoropopliteal arteries in the context of subject demographics and risk factors, and structural and physiologic characteristics of the artery. Our results demonstrate that LPS reduces with age due to degradation and fragmentation of intramural elastin. LPS may serve as an energy reserve for adaptive remodeling, and reduction of LPS can be accelerated in tobacco users. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Limb flexion-induced axial compression and bending in human femoropopliteal artery segments.

    PubMed

    Poulson, William; Kamenskiy, Alexey; Seas, Andreas; Deegan, Paul; Lomneth, Carol; MacTaggart, Jason

    2018-02-01

    High failure rates of femoropopliteal artery (FPA) interventions are often attributed in part to severe mechanical deformations that occur with limb movement. Axial compression and bending of the FPA likely play significant roles in FPA disease development and reconstruction failure, but these deformations are poorly characterized. The goal of this study was to quantify axial compression and bending of human FPAs that are placed in positions commonly assumed during the normal course of daily activities. Retrievable nitinol markers were deployed using a custom-made catheter system into 28 in situ FPAs of 14 human cadavers. Contrast-enhanced, thin-section computed tomography images were acquired with each limb in the standing (180 degrees), walking (110 degrees), sitting (90 degrees), and gardening (60 degrees) postures. Image segmentation and analysis allowed relative comparison of spatial locations of each intra-arterial marker to determine axial compression and bending using the arterial centerlines. Axial compression in the popliteal artery (PA) was greater than in the proximal superficial femoral artery (SFA) or the adductor hiatus (AH) segments in all postures (P = .02). Average compression in the SFA, AH, and PA ranged from 9% to 15%, 11% to 19%, and 13% to 25%, respectively. The FPA experienced significantly more acute bending in the AH and PA segments compared with the proximal SFA (P < .05) in all postures. In the walking, sitting, and gardening postures, average sphere radii in the SFA, AH, and PA ranged from 21 to 27 mm, 10 to 18 mm, and 8 to 19 mm, whereas bending angles ranged from 150 to 157 degrees, 136 to 147 degrees, and 137 to 148 degrees, respectively. The FPA experiences significant axial compression and bending during limb flexion that occur at even modest limb angles. Moreover, different segments of the FPA appear to undergo significantly different degrees of deformation. Understanding the effects of limb flexion on axial compression and bending might assist with reconstructive device selection for patients requiring peripheral arterial disease intervention and may also help guide the development of devices with improved characteristics that can better adapt to the dynamic environment of the lower extremity vasculature. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  14. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection

    PubMed Central

    Leng, Yuankui

    2017-01-01

    Spectrometrically or optically encoded microsphere based suspension array technology (SAT) is applicable to the high-throughput, simultaneous detection of multiple analytes within a small, single sample volume. Thanks to the rapid development of nanotechnology, tremendous progress has been made in the multiplexed detecting capability, sensitivity, and photostability of suspension arrays. In this review, we first focus on the current stock of nanoparticle-based barcodes as well as the manufacturing technologies required for their production. We then move on to discuss all existing barcode-based bioanalysis patterns, including the various labels used in suspension arrays, label-free platforms, signal amplification methods, and fluorescence resonance energy transfer (FRET)-based platforms. We then introduce automatic platforms for suspension arrays that use superparamagnetic nanoparticle-based microspheres. Finally, we summarize the current challenges and their proposed solutions, which are centered on improving encoding capacities, alternative probe possibilities, nonspecificity suppression, directional immobilization, and “point of care” platforms. Throughout this review, we aim to provide a comprehensive guide for the design of suspension arrays, with the goal of improving their performance in areas such as multiplexing capacity, throughput, sensitivity, and cost effectiveness. We hope that our summary on the state-of-the-art development of these arrays, our commentary on future challenges, and some proposed avenues for further advances will help drive the development of suspension array technology and its related fields. PMID:26021602

  15. Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator

    DTIC Science & Technology

    1992-12-01

    Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the

  16. Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.

    PubMed

    Kang, Dongyel; Kupinski, Matthew A

    2011-06-20

    We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.

  17. Ultrasound beam characteristics of a symmetric nodal origami based array

    NASA Astrophysics Data System (ADS)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    2018-04-01

    Origami-the ancient art of paper folding-is being explored in acoustics for effective focusing of sound. In this short communication, we present a numerical investigation of beam characteristics for an origami based ultrasound array. A spatial re-configuration of array elements is performed based upon the symmetric nodal origami. The effect of fold angle on the ultrasound beam is evaluated using frequency domain and transient finite element analysis. It was found that increase in the fold angle reduces near field length by 58% and also doubles the beam intensity as compared to the linear array. Transient analysis also indicated 80% reduction in the -6dB beam width, which can improve the lateral resolution of phased array. Such a spatially re-configurable array could potentially be used in the future to reduce the cost of electronics in the phased array instrumentation.

  18. Fabrication and evaluation of an improved polymer-based cochlear electrode array for atraumatic insertion.

    PubMed

    Gwon, Tae Mok; Min, Kyou Sik; Kim, Jin Ho; Oh, Seung Ha; Lee, Ho Sun; Park, Min-Hyun; Kim, Sung June

    2015-04-01

    An atraumatic cochlear electrode array has become indispensable to high-performance cochlear implants such as electric acoustic stimulation (EAS), wherein the preservation of residual hearing is significant. For an atraumatic implantation, we propose and demonstrate a new improved design of a cochlear electrode array based on liquid crystal polymer (LCP), which can be fabricated by precise batch processes and a thermal lamination process, in contrast to conventional wire-based cochlear electrode arrays. Using a thin-film process of LCP-film-mounted silicon wafer and thermal press lamination, we devise a multi-layered structure with variable layers of LCP films to achieve a sufficient degree of basal rigidity and a flexible tip. A peripheral blind via and self-aligned silicone elastomer molding process can reduce the width of the array. Measuring the insertion and extraction forces in a human scala tympani model, we investigate five human temporal bone insertion trials and record electrically evoked auditory brainstem responses (EABR) acutely in a guinea pig model. The diameters of the finalized electrode arrays are 0.3 mm (tip) and 0.75 mm (base). The insertion force with a displacement of 8 mm from a round window and the maximum extraction force are 2.4 mN and 34.0 mN, respectively. The electrode arrays can be inserted from 360° to 630° without trauma at the basal turn. The EABR data confirm the efficacy of the array. A new design of LCP-based cochlear electrode array for atraumatic implantation is fabricated. Verification indicates that foretells the development of an atraumatic cochlear electrode array and clinical implant.

  19. Imputation-Based Genomic Coverage Assessments of Current Human Genotyping Arrays

    PubMed Central

    Nelson, Sarah C.; Doheny, Kimberly F.; Pugh, Elizabeth W.; Romm, Jane M.; Ling, Hua; Laurie, Cecelia A.; Browning, Sharon R.; Weir, Bruce S.; Laurie, Cathy C.

    2013-01-01

    Microarray single-nucleotide polymorphism genotyping, combined with imputation of untyped variants, has been widely adopted as an efficient means to interrogate variation across the human genome. “Genomic coverage” is the total proportion of genomic variation captured by an array, either by direct observation or through an indirect means such as linkage disequilibrium or imputation. We have performed imputation-based genomic coverage assessments of eight current genotyping arrays that assay from ~0.3 to ~5 million variants. Coverage was determined separately in each of the four continental ancestry groups in the 1000 Genomes Project phase 1 release. We used the subset of 1000 Genomes variants present on each array to impute the remaining variants and assessed coverage based on correlation between imputed and observed allelic dosages. More than 75% of common variants (minor allele frequency > 0.05) are covered by all arrays in all groups except for African ancestry, and up to ~90% in all ancestries for the highest density arrays. In contrast, less than 40% of less common variants (0.01 < minor allele frequency < 0.05) are covered by low density arrays in all ancestries and 50–80% in high density arrays, depending on ancestry. We also calculated genome-wide power to detect variant-trait association in a case-control design, across varying sample sizes, effect sizes, and minor allele frequency ranges, and compare these array-based power estimates with a hypothetical array that would type all variants in 1000 Genomes. These imputation-based genomic coverage and power analyses are intended as a practical guide to researchers planning genetic studies. PMID:23979933

  20. Demonstration of Lasercom and Spatial Tracking with a Silicon Geiger-Mode APD Array

    DTIC Science & Technology

    2016-02-26

    standardized pixel mask as described in the previous paragraph disabling 167 of the 1024 detectors in the array , this gives an absolute maximum rate...number of elements in an array based detector .5 In this paper, we present the results of photon-counting communication tests based on an arrayed ...semiconductor photon-counting detector .6 The array also has the ability to sense the spatial distribution of the received light giving it the potential to act

  1. Status of the NOAO evaluation of the Hughes 20x64 Si:As impurity band conduction array. [for ground and space-based astronomy

    NASA Technical Reports Server (NTRS)

    Fowler, A. M.; Joyce, R. R.

    1990-01-01

    The Hughes 20 x 64 Si:As impurity band conduction arrays designed for ground-based and spaceborne astronomy observations is described together with experiments performed at NOAO to test these arrays. Special attention is given to the design and the characteristics of the test system and to the test methods. The initial tests on two columns of one array indicate that the array is easy to operate and performed satisfactorily.

  2. Discussion about photodiode architectures for space applications

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Destefanis, G.; Cervera, C.; Zanatta, J.-P.; Baier, N.; Ferron, A.; Boulade, O.

    2017-11-01

    Detection for space application is very demanding on the IR detector: all wavelengths, from visible-NIR (2- 3um cutoff) to LWIR (10-12.5um cutoff), even sometimes VLWIR (15um cutoff) may be of interest. Moreover, various scenarii are usually considered. Some are imaging applications where the focal plane array (FPA) is used as an optical element to sense an image. However, the FPA may also be used in spectrometric applications where light is triggered on the different pixels depending on its wavelength. In some cases, star pointing is another use of FPAs where the retina is used to sense the position of the satellite. In all those configurations, we might distinguish several categories of applications: • low flux applications where the FPA is staring at space and the detection occurs with only a few number of photons. • high flux applications where the FPA is usually staring at the earth. In this case, the black body emission of the earth and its atmosphere ensures usually a large number of photons to perform the detection. Those two different categories are highly dimensioning for the detector as it usually determines the level of dark current and quantum efficiency (QE) requirements. Indeed, high detection performance usually requires a large number of integrated photons such that high QE is needed for low flux applications, in order to limit the integration time as much as possible. Moreover, dark current requirement is also directly linked to the expected incoming flux, in order to limit as much as possible the SNR degradation due to dark charges vs photocharges. Note that in most cases, this dark current is highly depending on operating temperature which dominates detector consumption. A classical way to mitigate dark current is to cool down the detector to very low temperatures. This paper won't discuss the need for wavefront sensing where the number of detected photons is low because of a very narrow integration window. Rigorously, this kind of configuration is a low flux application but the need for speed distinguishes it from other low flux applications as it usually requires a different ROIC architecture and a photodiode optimized for high response speed.

  3. Characterization of Kerfless Linear Arrays Based on PZT Thick Film.

    PubMed

    Zawada, Tomasz; Bierregaard, Louise Moller; Ringgaard, Erling; Xu, Ruichao; Guizzetti, Michele; Levassort, Franck; Certon, Dominique

    2017-09-01

    Multielement transducers enabling novel cost-effective fabrication of imaging arrays for medical applications have been presented earlier. Due to the favorable low lateral coupling of the screen-printed PZT, the elements can be defined by the top electrode pattern only, leading to a kerfless design with low crosstalk between the elements. The thick-film-based linear arrays have proved to be compatible with a commercial ultrasonic scanner and to support linear array beamforming as well as phased array beamforming. The main objective of the presented work is to investigate the performance of the devices at the transducer level by extensive measurements of the test structures. The arrays have been characterized by several different measurement techniques. First, electrical impedance measurements on several elements in air and liquid have been conducted in order to support material parameter identification using the Krimholtz-Leedom-Matthaei model. It has been found that electromechanical coupling is at the level of 35%. The arrays have also been characterized by a pulse-echo system. The measured sensitivity is around -60 dB, and the fractional bandwidth is close to 60%, while the center frequency is about 12 MHz over the whole array. Finally, laser interferometry measurements have been conducted indicating very good displacement level as well as pressure. The in-depth characterization of the array structure has given insight into the performance parameters for the array based on PZT thick film, and the obtained information will be used to optimize the key parameters for the next generation of cost-effective arrays based on piezoelectric thick film.

  4. High performance large infrared and visible astronomy arrays for low background applications: instruments performance data and future developments at Raytheon

    NASA Astrophysics Data System (ADS)

    Beuville, Eric; Acton, David; Corrales, Elizabeth; Drab, John; Levy, Alan; Merrill, Michael; Peralta, Richard; Ritchie, William

    2007-09-01

    Raytheon Vision Systems (RVS) has developed a family of high performance large format infrared detector arrays for astronomy and civil space applications. RVS offers unique off-the-shelf solutions to the astronomy community. This paper describes mega-pixel arrays, based on multiple detector materials, developed for astronomy and low-background applications. New focal plane arrays under development at RVS for the astronomy community will also be presented. Large Sensor Chip Assemblies (SCAs) using various detector materials like Si:PIN, HgCdTe, InSb, and Si:As IBC, covering a detection range from visible to large wavelength infrared (LWIR) have been demonstrated with an excellent quantum efficiency and very good uniformity. These focal plane arrays have been assembled using state-of-the-art low noise, low power, readout integrated circuits (ROIC) designed at RVS. Raytheon packaging capabilities address reliability, precision alignment and flatness requirements for both ground-based and space applications. Multiple SCAs can be packaged into even larger focal planes. The VISTA telescope, for example, contains sixteen 2k × 2k infrared focal plane arrays. RVS astronomical arrays are being deployed world-wide in ground-based and space-based applications. A summary of performance data for each of these array types from instruments in operation will be presented (VIRGO Array for large format SWIR, the ORION and VISTA Arrays, NEWFIRM and other solutions for MWIR spectral ranges).

  5. Array signal recovery algorithm for a single-RF-channel DBF array

    NASA Astrophysics Data System (ADS)

    Zhang, Duo; Wu, Wen; Fang, Da Gang

    2016-12-01

    An array signal recovery algorithm based on sparse signal reconstruction theory is proposed for a single-RF-channel digital beamforming (DBF) array. A single-RF-channel antenna array is a low-cost antenna array in which signals are obtained from all antenna elements by only one microwave digital receiver. The spatially parallel array signals are converted into time-sequence signals, which are then sampled by the system. The proposed algorithm uses these time-sequence samples to recover the original parallel array signals by exploiting the second-order sparse structure of the array signals. Additionally, an optimization method based on the artificial bee colony (ABC) algorithm is proposed to improve the reconstruction performance. Using the proposed algorithm, the motion compensation problem for the single-RF-channel DBF array can be solved effectively, and the angle and Doppler information for the target can be simultaneously estimated. The effectiveness of the proposed algorithms is demonstrated by the results of numerical simulations.

  6. On-line monitoring system of PV array based on internet of things technology

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  7. Glare effect for three types of street lamps based on White LEDs

    NASA Astrophysics Data System (ADS)

    Sun, Ching-Cherng; Jiang, Chong-Jhih; Chen, Yi-Chun; Yang, Tsung-Hsun

    2014-05-01

    This study is aimed to assess the glare effect from LED-based street lamps with three general optical designs, which are cluster LEDs with a single lens, a LED array accompany with a lens array, and a tilted LED array, respectively. Observation conditions were simulated based on various locations and viewing axes. Equivalent luminance calculations were used to reveal the glare levels of the three designs. The age effect for the calculated equivalent luminance was also examined for human eyes of people at the age of 40 or 60. The results demonstrate that among the three design types, a LED array accompany with a lens array causes relatively smaller glare for most viewing conditions.

  8. Design a New Strategy Based on Nanoparticle-Enhanced Chemiluminescence Sensor Array for Biothiols Discrimination

    NASA Astrophysics Data System (ADS)

    Shahrajabian, Maryam; Hormozi-Nezhad, M. Reza

    2016-08-01

    Array-based sensor is an interesting approach that suggests an alternative to expensive analytical methods. In this work, we introduce a novel, simple, and sensitive nanoparticle-based chemiluminescence (CL) sensor array for discrimination of biothiols (e.g., cysteine, glutathione and glutathione disulfide). The proposed CL sensor array is based on the CL efficiencies of four types of enhanced nanoparticle-based CL systems. The intensity of CL was altered to varying degrees upon interaction with biothiols, producing unique CL response patterns. These distinct CL response patterns were collected as “fingerprints” and were then identified through chemometric methods, including linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA). The developed array was able to successfully differentiate between cysteine, glutathione and glutathione disulfide in a wide concentration range. Moreover, it was applied to distinguish among the above analytes in human plasma.

  9. Array-based sensing using nanoparticles: an alternative approach for cancer diagnostics.

    PubMed

    Le, Ngoc D B; Yazdani, Mahdieh; Rotello, Vincent M

    2014-07-01

    Array-based sensing using nanoparticles (NPs) provides an attractive alternative to specific biomarker-focused strategies for cancer diagnosis. The physical and chemical properties of NPs provide both the recognition and transduction capabilities required for biosensing. Array-based sensors utilize a combined response from the interactions between sensors and analytes to generate a distinct pattern (fingerprint) for each analyte. These interactions can be the result of either the combination of multiple specific biomarker recognition (specific binding) or multiple selective binding responses, known as chemical nose sensing. The versatility of the latter array-based sensing using NPs can facilitate the development of new personalized diagnostic methodologies in cancer diagnostics, a necessary evolution in the current healthcare system to better provide personalized treatments. This review will describe the basic principle of array-based sensors, along with providing examples of both invasive and noninvasive samples used in cancer diagnosis.

  10. The data array, a tool to interface the user to a large data base

    NASA Technical Reports Server (NTRS)

    Foster, G. H.

    1974-01-01

    Aspects of the processing of spacecraft data is considered. Use of the data array in a large address space as an intermediate form in data processing for a large scientific data base is advocated. Techniques for efficient indexing in data arrays are reviewed and the data array method for mapping an arbitrary structure onto linear address space is shown. A compromise between the two forms is given. The impact of the data array on the user interface are considered along with implementation.

  11. Particle-Based Microarrays of Oligonucleotides and Oligopeptides.

    PubMed

    Nesterov-Mueller, Alexander; Maerkle, Frieder; Hahn, Lothar; Foertsch, Tobias; Schillo, Sebastian; Bykovskaya, Valentina; Sedlmayr, Martyna; Weber, Laura K; Ridder, Barbara; Soehindrijo, Miriam; Muenster, Bastian; Striffler, Jakob; Bischoff, F Ralf; Breitling, Frank; Loeffler, Felix F

    2014-10-28

    In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches.

  12. Particle-Based Microarrays of Oligonucleotides and Oligopeptides

    PubMed Central

    Nesterov-Mueller, Alexander; Maerkle, Frieder; Hahn, Lothar; Foertsch, Tobias; Schillo, Sebastian; Bykovskaya, Valentina; Sedlmayr, Martyna; Weber, Laura K.; Ridder, Barbara; Soehindrijo, Miriam; Muenster, Bastian; Striffler, Jakob; Bischoff, F. Ralf; Breitling, Frank; Loeffler, Felix F.

    2014-01-01

    In this review, we describe different methods of microarray fabrication based on the use of micro-particles/-beads and point out future tendencies in the development of particle-based arrays. First, we consider oligonucleotide bead arrays, where each bead is a carrier of one specific sequence of oligonucleotides. This bead-based array approach, appearing in the late 1990s, enabled high-throughput oligonucleotide analysis and had a large impact on genome research. Furthermore, we consider particle-based peptide array fabrication using combinatorial chemistry. In this approach, particles can directly participate in both the synthesis and the transfer of synthesized combinatorial molecules to a substrate. Subsequently, we describe in more detail the synthesis of peptide arrays with amino acid polymer particles, which imbed the amino acids inside their polymer matrix. By heating these particles, the polymer matrix is transformed into a highly viscous gel, and thereby, imbedded monomers are allowed to participate in the coupling reaction. Finally, we focus on combinatorial laser fusing of particles for the synthesis of high-density peptide arrays. This method combines the advantages of particles and combinatorial lithographic approaches. PMID:27600347

  13. Measurements of IR and visual propagation in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Heen, Lars T.; Madsen, Eirik B.; Selnes, Oddvar

    2004-11-01

    Two field trials have been performed on the west coast of Norway to study propagation effects (in particular refraction and turbulence effects) close to the sea surface. A complete meteorological station and a temperature profile buoy were used to characterize the propagation environment, while sensor height was logged continuously. Land and ship mounted sources were studied using infrared (midwave IR and longwave IR FPAs) and visual cameras at about 4 m above mean sea level (MSL). The land-based sources were mounted about 2-13 m above MSL, while the ship mounted sources were 10 m above sea level. Both sub- and superrefractive conditions were studied during the trials. The sensors were mounted on a programmable motion controller, which allowed extraction of absolute apparent pitch angles of the imaged sources. Apparent horizon distances have been determined for the ship sources, while mirror plane positions and apparent elevation (pitch) angles have been determined for the land sources. In addition, normalized variance of intensity (scintillation index) has been calculated for a number of cases. The scintillation index can easily be converted to refractive index structure parameters (Cn2), one of the key parameters characterizing optical turbulence. Measurement results are compared to results from the IR Boundary Layer Effects Model (IRBLEM *). *) IRBLEM is proprietory to the Department for National Defence of Canada as represented by DRDC-Valcartier

  14. Optimization study on the magnetic field of superconducting Halbach Array magnet

    NASA Astrophysics Data System (ADS)

    Shen, Boyang; Geng, Jianzhao; Li, Chao; Zhang, Xiuchang; Fu, Lin; Zhang, Heng; Ma, Jun; Coombs, T. A.

    2017-07-01

    This paper presents the optimization on the strength and homogeneity of magnetic field from superconducting Halbach Array magnet. Conventional Halbach Array uses a special arrangement of permanent magnets which can generate homogeneous magnetic field. Superconducting Halbach Array utilizes High Temperature Superconductor (HTS) to construct an electromagnet to work below its critical temperature, which performs equivalently to the permanent magnet based Halbach Array. The simulations of superconducting Halbach Array were carried out using H-formulation based on B-dependent critical current density and bulk approximation, with the FEM platform COMSOL Multiphysics. The optimization focused on the coils' location, as well as the geometry and numbers of coils on the premise of maintaining the total amount of superconductor. Results show Halbach Array configuration based superconducting magnet is able to generate the magnetic field with intensity over 1 Tesla and improved homogeneity using proper optimization methods. Mathematical relation of these optimization parameters with the intensity and homogeneity of magnetic field was developed.

  15. Conformal array design on arbitrary polygon surface with transformation optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Li, E-mail: dengl@bupt.edu.cn; Hong, Weijun, E-mail: hongwj@bupt.edu.cn; Zhu, Jianfeng

    2016-06-15

    A transformation-optics based method to design a conformal antenna array on an arbitrary polygon surface is proposed and demonstrated in this paper. This conformal antenna array can be adjusted to behave equivalently as a uniformly spaced linear array by applying an appropriate transformation medium. An typical example of general arbitrary polygon conformal arrays, not limited to circular array, is presented, verifying the proposed approach. In summary, the novel arbitrary polygon surface conformal array can be utilized in array synthesis and beam-forming, maintaining all benefits of linear array.

  16. Electrode array for neural stimulation

    DOEpatents

    Wessendorf, Kurt O [Albuquerque, NM; Okandan, Murat [Edgewood, NM; Stein, David J [Albuquerque, NM; Yang, Pin [Albuquerque, NM; Cesarano, III, Joseph; Dellinger, Jennifer [Albuquerque, NM

    2011-08-16

    An electrode array for neural stimulation is disclosed which has particular applications for use in a retinal prosthesis. The electrode array can be formed as a hermetically-sealed two-part ceramic package which includes an electronic circuit such as a demultiplexer circuit encapsulated therein. A relatively large number (up to 1000 or more) of individually-addressable electrodes are provided on a curved surface of a ceramic base portion the electrode array, while a much smaller number of electrical connections are provided on a ceramic lid of the electrode array. The base and lid can be attached using a metal-to-metal seal formed by laser brazing. Electrical connections to the electrode array can be provided by a flexible ribbon cable which can also be used to secure the electrode array in place.

  17. Retinal instrument

    DOEpatents

    Britton, Charles L; D& #x27; Urso, Brian R; Chaum, Edward; Simpson, John T; Baba, Justin S; Ericson, M. Nance; Warmack, Robert J

    2013-04-23

    In one embodiment, the present invention provides a method of removing scar tissue from an eye that includes inserting a device including an array of micro-rods into an eye, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature; contacting a scar tissue with the array of micro-rods; and removing the array of micro-rods and the scar tissue from the eye. In another embodiment, the present invention provides a medical device for engaging a tissue including and an array of glass micro-rods, wherein at least one glass micro-rod of the array of glass micro-rods includes a sharp feature opposite a base of the array of glass micro-rods that is connected to the cannula, wherein the sharp feature of the at least one micro-rod is angled from a plane that is normal to a face of the base of the array of glass micro-rods.

  18. Two-dimensional photon-counting detector arrays based on microchannel array plates

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1975-01-01

    The production of simple and rugged photon-counting detector arrays has been made possible by recent improvements in the performance of the microchannel array plate (MCP) and by the parallel development of compatible electronic readout systems. The construction of proximity-focused MCP arrays of novel design in which photometric information from (n x m) picture elements is read out with a total of (n + m) amplifier and discriminator circuits is described. Results obtained with a breadboard (32 x 32)-element array employing 64 charge-sensitive amplifiers are presented, and the application of systems of this type in spectrometers and cameras for use with ground-based telescopes and on orbiting spacecraft discussed.

  19. Operation's Concept for Array-Based Deep Space Network

    NASA Technical Reports Server (NTRS)

    Bagri, Durgadas S.; Statman, Joseph I.; Gatti, Mark S.

    2005-01-01

    The Array-based Deep Space Network (DSNArray) will be a part of more than 10(exp 3) times increase in the downlink/telemetry capability of the Deep space Network (DSN). The key function of the DSN-Array is to provide cost-effective, robust Telemetry, Tracking and Command (TT&C) services to the space missions of NASA and its international partners. It provides an expanded approach to the use of an array-based system. Instead of using the array as an element in the existing DSN, relying to a large extent on the DSN infrastructure, we explore a broader departure from the current DSN, using fewer elements of the existing DSN, and establishing a more modern Concept of Operations. This paper gives architecture of DSN-Array and its operation's philosophy. It also describes customer's view of operations, operations management and logistics - including maintenance philosophy, anomaly analysis and reporting.

  20. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  1. Guided Lamb wave based 2-D spiral phased array for structural health monitoring of thin panel structures

    NASA Astrophysics Data System (ADS)

    Yoo, Byungseok

    2011-12-01

    In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the fundamentals of the GLW-based phased array approach and the development of an innovative signal processing algorithm associated with the 2-D spiral phased sensor array. The SHM approach based on array responses determined by the proposed phased array algorithm implementation is addressed. The experimental validation of the GLW-based 2-D spiral phased array technology and the associated damage detection applications to thin isotropic plate and anisotropic composite plate structures are presented.

  2. One-pot synthesis of NiO/Mn2O3 nanoflake arrays and their application in electrochemical biosensing

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Cui, Jiewu; Luo, Lan; Zhang, Jingcheng; Wang, Yan; Qin, Yongqiang; Zhang, Yong; Shu, Xia; Lv, Jun; Wu, Yucheng

    2017-11-01

    The exploration of novel nanomaterials employed as substrate to construct glucose biosensors is still of significance in the field of clinical diagnosis. In this work, NiO/Mn2O3 nanoflake arrays were synthesized by hydrothermal approach in combination with calcination process. As-prepared NiO/Mn2O3 nanoflake arrays were utilized to construct electrochemical biosensors for glucose detection. NiO/Mn2O3 nanoflake arrays were investigated systematically by scanning electron microscopy (SEM), X-ray diffractionmeter (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy, the formation mechanism of NiO/Mn2O3 nanoflake arrays was proposed. As-prepared glucose biosensors based on NiO/Mn2O3 nanoflake arrays were characterized by cyclic voltammgrams and chronoamperometry. The results indicated that glucose biosensors based on optimized NiO/Mn2O3 nanoflake arrays exhibited a high sensitivity of 167.0 μA mM-1 Cm-2 and good anti-interference ability, suggesting the NiO/Mn2O3 nanoflake arrays are an attractive substrate for the construction of oxidase-based biosensors.

  3. Piezo-Phototronic Enhanced UV Sensing Based on a Nanowire Photodetector Array.

    PubMed

    Han, Xun; Du, Weiming; Yu, Ruomeng; Pan, Caofeng; Wang, Zhong Lin

    2015-12-22

    A large array of Schottky UV photodetectors (PDs) based on vertical aligned ZnO nanowires is achieved. By introducing the piezo-phototronic effect, the performance of the PD array is enhanced up to seven times in photoreponsivity, six times in sensitivity, and 2.8 times in detection limit. The UV PD array may have applications in optoelectronic systems, adaptive optical computing, and communication. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Implementation of a Virtual Microphone Array to Obtain High Resolution Acoustic Images

    PubMed Central

    Izquierdo, Alberto; Suárez, Luis; Suárez, David

    2017-01-01

    Using arrays with digital MEMS (Micro-Electro-Mechanical System) microphones and FPGA-based (Field Programmable Gate Array) acquisition/processing systems allows building systems with hundreds of sensors at a reduced cost. The problem arises when systems with thousands of sensors are needed. This work analyzes the implementation and performance of a virtual array with 6400 (80 × 80) MEMS microphones. This virtual array is implemented by changing the position of a physical array of 64 (8 × 8) microphones in a grid with 10 × 10 positions, using a 2D positioning system. This virtual array obtains an array spatial aperture of 1 × 1 m2. Based on the SODAR (SOund Detection And Ranging) principle, the measured beampattern and the focusing capacity of the virtual array have been analyzed, since beamforming algorithms assume to be working with spherical waves, due to the large dimensions of the array in comparison with the distance between the target (a mannequin) and the array. Finally, the acoustic images of the mannequin, obtained for different frequency and range values, have been obtained, showing high angular resolutions and the possibility to identify different parts of the body of the mannequin. PMID:29295485

  5. Genome-Wide Mapping of Copy Number Variation in Humans: Comparative Analysis of High Resolution Array Platforms

    PubMed Central

    Haraksingh, Rajini R.; Abyzov, Alexej; Gerstein, Mark; Urban, Alexander E.; Snyder, Michael

    2011-01-01

    Accurate and efficient genome-wide detection of copy number variants (CNVs) is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism (SNP) genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications. PMID:22140474

  6. Sub-1-V-60 nm vertical body channel MOSFET-based six-transistor static random access memory array with wide noise margin and excellent power delay product and its optimization with the cell ratio on static random access memory cell

    NASA Astrophysics Data System (ADS)

    Ogasawara, Ryosuke; Endoh, Tetsuo

    2018-04-01

    In this study, with the aim to achieve a wide noise margin and an excellent power delay product (PDP), a vertical body channel (BC)-MOSFET-based six-transistor (6T) static random access memory (SRAM) array is evaluated by changing the number of pillars in each part of a SRAM cell, that is, by changing the cell ratio in the SRAM cell. This 60 nm vertical BC-MOSFET-based 6T SRAM array realizes 0.84 V operation under the best PDP and up to 31% improvement of PDP compared with the 6T SRAM array based on a 90 nm planar MOSFET whose gate length and channel width are the same as those of the 60 nm vertical BC-MOSFET. Additionally, the vertical BC-MOSFET-based 6T SRAM array achieves an 8.8% wider read static noise margin (RSNM), a 16% wider write margin (WM), and an 89% smaller leakage. Moreover, it is shown that changing the cell ratio brings larger improvements of RSNM, WM, and write time in the vertical BC-MOSFET-based 6T SRAM array.

  7. Generation of miniaturized planar ecombinant antibody arrays using a microcantilever-based printer

    NASA Astrophysics Data System (ADS)

    Petersson, Linn; Berthet Duroure, Nathalie; Auger, Angèle; Dexlin-Mellby, Linda; Borrebaeck, Carl AK; Ait Ikhlef, Ali; Wingren, Christer

    2014-07-01

    Miniaturized (Ø 10 μm), multiplexed (>5-plex), and high-density (>100 000 spots cm-2) antibody arrays will play a key role in generating protein expression profiles in health and disease. However, producing such antibody arrays is challenging, and it is the type and range of available spotters which set the stage. This pilot study explored the use of a novel microspotting tool, BioplumeTM—consisting of an array of micromachined silicon cantilevers with integrated microfluidic channels—to produce miniaturized, multiplexed, and high-density planar recombinant antibody arrays for protein expression profiling which targets crude, directly labelled serum. The results demonstrated that 16-plex recombinant antibody arrays could be produced—based on miniaturized spot features (78.5 um2, Ø 10 μm) at a 7-125-times increased spot density (250 000 spots cm-2), interfaced with a fluorescent-based read-out. This prototype platform was found to display adequate reproducibility (spot-to-spot) and an assay sensitivity in the pM range. The feasibility of the array platform for serum protein profiling was outlined.

  8. A Comparison of Three Different Scoring Methods for Self-Report Measures of Psychological Aggression in a Sample of College Females

    PubMed Central

    Shorey, Ryan C.; Brasfield, Hope; Febres, Jeniimarie; Cornelius, Tara L.; Stuart, Gregory L.

    2012-01-01

    Psychological aggression in females’ dating relationships has received increased empirical attention in recent years. However, researchers have used numerous measures of psychological aggression, and various scoring methods with these measures, making it difficult to compare across studies on psychological aggression. In addition, research has yet to examine whether different scoring methods for psychological aggression measures may affect the psychometric properties of these instruments. The current study examined three self-report measures of psychological aggression within a sample of female college students (N = 108), including their psychometric properties when scored using frequency, sum, and variety scores. Results showed that the Revised Conflict Tactics Scales (CTS2) had variable internal consistency depending on the scoring method used and good validity; the Multidimensional Measure of Emotional Abuse (MMEA) and the Follingstad Psychological Aggression Scale (FPAS) both had good internal consistency and validity across scoring methods. Implications of these findings for the assessment of psychological aggression and future research are discussed. PMID:23393957

  9. A comparison of three different scoring methods for self-report measures of psychological aggression in a sample of college females.

    PubMed

    Shorey, Ryan C; Brasfield, Hope; Febres, Jeniimarie; Cornelius, Tara L; Stuart, Gregory L

    2012-01-01

    Psychological aggression in females' dating relationships has received increased empirical attention in recent years. However, researchers' have used numerous measures of psychological aggression and various scoring methods with these measures, making it difficult to compare across studies on psychological aggression. In addition, research has yet to examine whether different scoring methods for psychological aggression measures may affect the psychometric properties of these instruments. This study examined three self-report measures of psychological aggression within a sample of female college students (N = 108), including their psychometric properties when scored using frequency, sum, and variety scores. Results showed that the Revised Conflict Tactics Scales (CTS2) had variable internal consistency depending on the scoring method used and good validity; the Multidimensional Measure of Emotional Abuse (MMEA) and the Follingstad Psychological Aggression Scale (FPAS) both had good internal consistency and validity across scoring methods. Implications of these findings for the assessment of psychological aggression and future research are discussed.

  10. Understanding low temperature oxidation activity of nanoarray-based monolithic catalysts: from performance observation to structural and chemical insights

    DOE PAGES

    Du, Shoucheng; Tang, Wenxiang; Guo, Yanbing; ...

    2016-12-30

    Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nano-array based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional wash-coat based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nano-array based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. Here, this review focuses on discussing the key catalyst structural parameters that affect the catalytic performance from the following aspects, (1)more » geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nano-arrays. Prior to the discussion, an overview of the current status of synthesis and development of the nano-array based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. Finally, we hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray- based monolithic catalysts, and serve as a timely and useful research guide for rational design and further improvement of the nano-array based monolithic catalysts for automobile emission control.« less

  11. Understanding low temperature oxidation activity of nanoarray-based monolithic catalysts: from performance observation to structural and chemical insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Shoucheng; Tang, Wenxiang; Guo, Yanbing

    Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nano-array based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional wash-coat based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nano-array based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. Here, this review focuses on discussing the key catalyst structural parameters that affect the catalytic performance from the following aspects, (1)more » geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nano-arrays. Prior to the discussion, an overview of the current status of synthesis and development of the nano-array based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. Finally, we hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray- based monolithic catalysts, and serve as a timely and useful research guide for rational design and further improvement of the nano-array based monolithic catalysts for automobile emission control.« less

  12. Qualification Testing of Laser Diode Pump Arrays for a Space-Based 2-micron Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Singh, Upendra N.; Kavaya, Michael J.

    2007-01-01

    The 2-micron thulium and holmium-based lasers being considered as the transmitter source for space-based coherent Doppler lidar require high power laser diode pump arrays operating in a long pulse regime of about 1 msec. Operating laser diode arrays over such long pulses drastically impact their useful lifetime due to the excessive localized heating and substantial pulse-to-pulse thermal cycling of their active regions. This paper describes the long pulse performance of laser diode arrays and their critical thermal characteristics. A viable approach is then offered that allows for determining the optimum operational parameters leading to the maximum attainable lifetime.

  13. Calculation of the force acting on a micro-sized particle with optical vortex array laser beam tweezers

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2013-03-01

    Optical vortices possess several special properties, including carrying optical angular momentum (OAM) and exhibiting zero intensity. Vortex array laser beams have attracts many interests due to its special mesh field distributions, which show great potential in the application of multiple optical traps and dark optical traps. Previously study developed an Ince-Gaussian Mode (IGM)-based vortex array laser beam1. This study develops a simulation model based on the discrete dipole approximation (DDA) method for calculating the resultant force acting on a micro-sized spherical dielectric particle that situated at the beam waist of the IGM-based vortex array laser beams1.

  14. Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays

    DTIC Science & Technology

    2010-02-28

    Final Project Report Contract/Grant Title: Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays...factor (HFF) micromirror array (MMA) has been proposed, fabricated and tested. Optical-phased-array (OPA) beam steering based on the HFF MMA has also...electrically tuned to multiple 2. 1. Background High-fill-factor (HFF) micromirror arrays (MMAs) can form optical phased arrays (OPAs) for laser beam

  15. Phased array feed design technology for Large Aperture Microwave Radiometer (LAMR) Earth observations

    NASA Technical Reports Server (NTRS)

    Schuman, H. K.

    1992-01-01

    An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.

  16. Microphone Array

    NASA Astrophysics Data System (ADS)

    Bader, Rolf

    This chapter deals with microphone arrays. It is arranged according to the different methods available to proceed through the different problems and through the different mathematical methods. After discussing general properties of different array types, such as plane arrays, spherical arrays, or scanning arrays, it proceeds to the signal processing tools that are most used in speech processing. In the third section, backpropagating methods based on the Helmholtz-Kirchhoff integral are discussed, which result in spatial radiation patterns of vibrating bodies or air.

  17. (abstract) Scaling Nominal Solar Cell Impedances for Array Design

    NASA Technical Reports Server (NTRS)

    Mueller, Robert L; Wallace, Matthew T.; Iles, Peter

    1994-01-01

    This paper discusses a task the objective of which is to characterize solar cell array AC impedance and develop scaling rules for impedance characterization of large arrays by testing single solar cells and small arrays. This effort is aimed at formulating a methodology for estimating the AC impedance of the Mars Pathfinder (MPF) cruise and lander solar arrays based upon testing single cells and small solar cell arrays and to create a basis for design of a single shunt limiter for MPF power control of flight solar arrays having very different inpedances.

  18. Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena x-ray observatory

    NASA Astrophysics Data System (ADS)

    van der Kuur, J.; Gottardi, L. G.; Akamatsu, H.; van Leeuwen, B. J.; den Hartog, R.; Haas, D.; Kiviranta, M.; Jackson, B. J.

    2016-07-01

    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.

  19. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array

    NASA Astrophysics Data System (ADS)

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-01

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies.A type of highly efficient completely flexible fiber-shaped solar cell based on TiO2 nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm-2) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO2 nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11532h

  20. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  1. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE PAGES

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; ...

    2016-02-15

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  2. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    NASA Technical Reports Server (NTRS)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  3. Low loss jammed-array wideband sawtooth filter based on a finite reflection virtually imaged array

    NASA Astrophysics Data System (ADS)

    Tan, Zhongwei; Cao, Dandan; Ding, Zhichao

    2018-03-01

    An edge filter is a potential technology in the fiber Bragg grating interrogation that has the advantages of fast response speed and suitability for dynamic measurement. To build a low loss, wideband jammed-array wideband sawtooth (JAWS) filter, a finite reflection virtually imaged array (FRVIA) is proposed and demonstrated. FRVIA is different from the virtually imaged phased array in that it has a low reflective front end. This change will lead to many differences in the device's performance in output optical intensity distribution, spectral resolution, output aperture, and tolerance of the manufacture errors. A low loss, wideband JAWS filter based on an FRVIA can provide an edge filter for each channel, respectively.

  4. A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm

    PubMed Central

    Guo, Xinyu; Wang, Hong; Devabhaktuni, Vijay

    2012-01-01

    A design of systolic array-based Field Programmable Gate Array (FPGA) parallel architecture for Basic Local Alignment Search Tool (BLAST) Algorithm is proposed. BLAST is a heuristic biological sequence alignment algorithm which has been used by bioinformatics experts. In contrast to other designs that detect at most one hit in one-clock-cycle, our design applies a Multiple Hits Detection Module which is a pipelining systolic array to search multiple hits in a single-clock-cycle. Further, we designed a Hits Combination Block which combines overlapping hits from systolic array into one hit. These implementations completed the first and second step of BLAST architecture and achieved significant speedup comparing with previously published architectures. PMID:25969747

  5. Ultrasonic Array for Obstacle Detection Based on CDMA with Kasami Codes

    PubMed Central

    Diego, Cristina; Hernández, Álvaro; Jiménez, Ana; Álvarez, Fernando J.; Sanz, Rebeca; Aparicio, Joaquín

    2011-01-01

    This paper raises the design of an ultrasonic array for obstacle detection based on Phased Array (PA) techniques, which steers the acoustic beam through the environment by electronics rather than mechanical means. The transmission of every element in the array has been encoded, according to Code Division for Multiple Access (CDMA), which allows multiple beams to be transmitted simultaneously. All these features together enable a parallel scanning system which does not only improve the image rate but also achieves longer inspection distances in comparison with conventional PA techniques. PMID:22247675

  6. A mobile ferromagnetic shape detection sensor using a Hall sensor array and magnetic imaging.

    PubMed

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a mobile Hall sensor array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the mobile Hall sensor array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of mobile Hall sensor array system for actual shape detection. The results prove that the mobile Hall sensor array system is able to perform magnetic imaging in identifying various ferromagnetic materials.

  7. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    PubMed Central

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  8. A method of incident angle estimation for high resolution spectral recovery in filter-array-based spectrometers

    NASA Astrophysics Data System (ADS)

    Kim, Cheolsun; Lee, Woong-Bi; Ju, Gun Wu; Cho, Jeonghoon; Kim, Seongmin; Oh, Jinkyung; Lim, Dongsung; Lee, Yong Tak; Lee, Heung-No

    2017-02-01

    In recent years, there has been an increasing interest in miniature spectrometers for research and development. Especially, filter-array-based spectrometers have advantages of low cost and portability, and can be applied in various fields such as biology, chemistry and food industry. Miniaturization in optical filters causes degradation of spectral resolution due to limitations on spectral responses and the number of filters. Nowadays, many studies have been reported that the filter-array-based spectrometers have achieved resolution improvements by using digital signal processing (DSP) techniques. The performance of the DSP-based spectral recovery highly depends on the prior information of transmission functions (TFs) of the filters. The TFs vary with respect to an incident angle of light onto the filter-array. Conventionally, it is assumed that the incident angle of light on the filters is fixed and the TFs are known to the DSP. However, the incident angle is inconstant according to various environments and applications, and thus TFs also vary, which leads to performance degradation of spectral recovery. In this paper, we propose a method of incident angle estimation (IAE) for high resolution spectral recovery in the filter-array-based spectrometers. By exploiting sparse signal reconstruction of the L1- norm minimization, IAE estimates an incident angle among all possible incident angles which minimizes the error of the reconstructed signal. Based on IAE, DSP effectively provides a high resolution spectral recovery in the filter-array-based spectrometers.

  9. The investigation of an LSPR refractive index sensor based on periodic gold nanorings array

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Sun, Xiaohong; Ding, Mingjie; Peng, Gangding; Qi, Yongle; Wang, Yile; Ren, Jie

    2018-01-01

    An on-chip refractive index (RI) sensor, which is based on the localized surface plasmon resonance (LSPR) of periodic gold nanorings array, is presented. The structure parameters and performance of LSPR-based sensors are optimized by analyzing and comparing the LSPR extinction spectra. The mechanism of the enhancement of plasma resonance in a ring array is discussed by the simulation results. A feasible preparation scheme of the nanorings array is proposed and verified by coating a gold film and etching on the photonic crystals. Based on the optimum sensing structure, an RI sensor is constructed with a RI sensitivity of 577 nm/refractive index unit (RIU) and a figure of merit (FOM) of 6.1, which is approximately 2 times that of previous reports.

  10. Method and apparatus for control of a magnetic structure

    DOEpatents

    Challenger, Michael P.; Valla, Arthur S.

    1996-06-18

    A method and apparatus for independently adjusting the spacing between opposing magnet arrays in charged particle based light sources. Adjustment mechanisms between each of the magnet arrays and the supporting structure allow the gap between the two magnet arrays to be independently adjusted. In addition, spherical bearings in the linkages to the magnet arrays permit the transverse angular orientation of the magnet arrays to also be adjusted. The opposing magnet arrays can be supported above the ground by the structural support.

  11. Propagation of rotational Risley-prism-array-based Gaussian beams in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Ma, Haotong; Dong, Li; Ren, Ge; Qi, Bo; Tan, Yufeng

    2018-03-01

    Limited by the size and weight of prism and optical assembling, Rotational Risley-prism-array system is a simple but effective way to realize high power and superior beam quality of deflecting laser output. In this paper, the propagation of the rotational Risley-prism-array-based Gaussian beam array in atmospheric turbulence is studied in detail. An analytical expression for the average intensity distribution at the receiving plane is derived based on nonparaxial ray tracing method and extended Huygens-Fresnel principle. Power in the diffraction-limited bucket is chosen to evaluate beam quality. The effect of deviation angle, propagation distance and intensity of turbulence on beam quality is studied in detail by quantitative simulation. It reveals that with the propagation distance increasing, the intensity distribution gradually evolves from multiple-petal-like shape into the pattern that contains one main-lobe in the center with multiple side-lobes in weak turbulence. The beam quality of rotational Risley-prism-array-based Gaussian beam array with lower deviation angle is better than its counterpart with higher deviation angle when propagating in weak and medium turbulent (i.e. Cn2 < 10-13m-2/3), the beam quality of higher deviation angle arrays degrades faster as the intensity of turbulence gets stronger. In the case of propagating in strong turbulence, the long propagation distance (i.e. z > 10km ) and deviation angle have no influence on beam quality.

  12. System-Level Performance of Antenna Arrays in CDMA-Based Cellular Mobile Radio Systems

    NASA Astrophysics Data System (ADS)

    Czylwik, Andreas; Dekorsy, Armin

    2004-12-01

    Smart antennas exploit the inherent spatial diversity of the mobile radio channel, provide an antenna gain, and also enable spatial interference suppression leading to reduced intracell as well as intercell interference. Especially, for the downlink of future CDMA-based mobile communications systems, transmit beamforming is seen as a well-promising smart antenna technique. The main objective of this paper is to study the performance of diverse antenna array topologies when applied for transmit beamforming in the downlink of CDMA-based networks. In this paper, we focus on uniform linear array (ULA) and uniform circular array (UCA) topologies. For the ULA, we consider three-sector base stations with one linear array per sector. While recent research on downlink beamforming is often restricted to one single cell, this study takes into account the important impact of intercell interference on the performance by evaluating complete networks. Especially, from the operator perspective, system capacity and system coverage are very essential parameters of a cellular system so that there is a clear necessity of intensive system level investigations. Apart from delivering assessments on the performance of the diverse antenna array topologies, in the paper also different antenna array parameters, such as element spacing and beamwidth of the sector antennas, are optimized. Although we focus on the network level, fast channel fluctuations are taken into account by including them analytically into the signal-to-interference calculation.

  13. Nanohole Arrays of Mixed Designs and Microwriting for Simultaneous and Multiple Protein Binding Studies

    PubMed Central

    Ji, Jin; Yang, Jiun-Chan; Larson, Dale N.

    2009-01-01

    We demonstrate using nanohole arrays of mixed designs and a microwriting process based on dip-pen nanolithography to monitor multiple, different protein binding events simultaneously in real time based on the intensity of Extraordinary Optical Transmission of nanohole arrays. The microwriting process and small footprint of the individual nanohole arrays enabled us to observe different binding events located only 16μm apart, achieving high spatial resolution. We also present a novel concept that incorporates nanohole arrays of different designs to improve confidence and accuracy of binding studies. For proof of concept, two types of nanohole arrays, designed to exhibit opposite responses to protein bindings, were fabricated on one transducer. Initial studies indicate that the mixed designs could help to screen out artifacts such as protein intrinsic signals, providing improved accuracy of binding interpretation. PMID:19297143

  14. System and method for generating a deselect mapping for a focal plane array

    DOEpatents

    Bixler, Jay V; Brandt, Timothy G; Conger, James L; Lawson, Janice K

    2013-05-21

    A method for generating a deselect mapping for a focal plane array according to one embodiment includes gathering a data set for a focal plane array when exposed to light or radiation from a first known target; analyzing the data set for determining which pixels or subpixels of the focal plane array to add to a deselect mapping; adding the pixels or subpixels to the deselect mapping based on the analysis; and storing the deselect mapping. A method for gathering data using a focal plane array according to another embodiment includes deselecting pixels or subpixels based on a deselect mapping; gathering a data set using pixels or subpixels in a focal plane array that are not deselected upon exposure thereof to light or radiation from a target of interest; and outputting the data set.

  15. Multi-Element CZT Array for Nuclear Safeguards Applications

    NASA Astrophysics Data System (ADS)

    Kwak, S.-W.; Lee, A.-R.; Shin, J.-K.; Park, U.-R.; Park, S.; Kim, Y.; Chung, H.

    2016-12-01

    Due to its electronic properties, a cadmium zinc telluride (CZT) detector has been used as a hand-held portable nuclear measurement instrument. However, a CZT detector has low detection efficiency because of a limitation of its single crystal growth. To address its low efficiency, we have constructed a portable four-CZT array based gamma-ray spectrometer consisting of a CZT array, electronics for signal processing and software. Its performance has been characterized in terms of energy resolution and detection efficiency using radioactive sources and nuclear materials. Experimental results showed that the detection efficiency of the four-CZT array based gamma-ray spectrometer was much higher than that of a single CZT detector in the array. The FWHMs of the CZT array were 9, 18, and 21 keV at 185.7, 662, and 1,332 keV, respectively. Some gamma-rays in a range of 100 keV to 200 keV were not clear in a single crystal detector while those from the CZT array system were observed to be clear. The energy resolution of the CZT array system was only slightely worse than those of the single CZT detectors. By combining several single crystals and summing signals from each single detector at a digital electronic circuit, the detection efficiency of a CZT array system increased without degradation of its energy resolution. The technique outlined in this paper shows a very promising method for designing a CZT-based gamma-ray spectroscopy that overcomes the fundamental limitations of a small volume CZT detector.

  16. A 20-channel magnetoencephalography system based on optically pumped magnetometers

    NASA Astrophysics Data System (ADS)

    Borna, Amir; Carter, Tony R.; Goldberg, Josh D.; Colombo, Anthony P.; Jau, Yuan-Yu; Berry, Christopher; McKay, Jim; Stephen, Julia; Weisend, Michael; Schwindt, Peter D. D.

    2017-12-01

    We describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject’s head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID) MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.

  17. Automated array assembly

    NASA Technical Reports Server (NTRS)

    Williams, B. F.

    1976-01-01

    Manufacturing techniques are evaluated using expenses based on experience and studying basic cost factors for each step to evaluate expenses from a first-principles point of view. A formal cost accounting procedure is developed which is used throughout the study for cost comparisons. The first test of this procedure is a comparison of its predicted costs for array module manufacturing with costs from a study which is based on experience factors. A manufacturing cost estimate for array modules of $10/W is based on present-day manufacturing techniques, expenses, and materials costs.

  18. Photodiode arrays having minimized cross-talk between diodes

    DOEpatents

    Guckel, Henry; McNamara, Shamus P.

    2000-10-17

    Photodiode arrays are formed with close diode-to-diode spacing and minimized cross-talk between diodes in the array by isolating the diodes from one another with trenches that are formed between the photodiodes in the array. The photodiodes are formed of spaced regions in a base layer, each spaced region having an impurity type opposite to that of the base layer to define a p-n junction between the spaced regions and the base layer. The base layer meets a substrate at a boundary, with the substrate being much more heavily doped than the base layer with the same impurity type. The trenches extend through the base layer and preferably into the substrate. Minority carriers generated by absorption of light photons in the base layer can only migrate to an adjacent photodiode through the substrate. The lifetime and the corresponding diffusion length of the minority carriers in the substrate is very short so that all minority carriers recombine in the substrate before reaching an adjacent photodiode.

  19. Multi-anode microchannel arrays

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.; Bybee, R. L.

    1977-01-01

    A development program is currently being undertaken to produce photon-counting detector arrays which are suitable for use in both ground-based and space-borne instruments and which utilize the full sensitivity, dynamic range and photometric stability of the microchannel array plate (MCP). The construction of the detector arrays and the status of the development program are described.

  20. Fabrication of heterogeneous nanomaterial array by programmable heating and chemical supply within microfluidic platform towards multiplexed gas sensing application

    PubMed Central

    Yang, Daejong; Kang, Kyungnam; Kim, Donghwan; Li, Zhiyong; Park, Inkyu

    2015-01-01

    A facile top-down/bottom-up hybrid nanofabrication process based on programmable temperature control and parallel chemical supply within microfluidic platform has been developed for the all liquid-phase synthesis of heterogeneous nanomaterial arrays. The synthesized materials and locations can be controlled by local heating with integrated microheaters and guided liquid chemical flow within microfluidic platform. As proofs-of-concept, we have demonstrated the synthesis of two types of nanomaterial arrays: (i) parallel array of TiO2 nanotubes, CuO nanospikes and ZnO nanowires, and (ii) parallel array of ZnO nanowire/CuO nanospike hybrid nanostructures, CuO nanospikes and ZnO nanowires. The laminar flow with negligible ionic diffusion between different precursor solutions as well as localized heating was verified by numerical calculation and experimental result of nanomaterial array synthesis. The devices made of heterogeneous nanomaterial array were utilized as a multiplexed sensor for toxic gases such as NO2 and CO. This method would be very useful for the facile fabrication of functional nanodevices based on highly integrated arrays of heterogeneous nanomaterials. PMID:25634814

  1. The optical very large array and its moon-based version

    NASA Technical Reports Server (NTRS)

    Labeyrie, Antoine

    1992-01-01

    An Optical Very Large Array (OVLA) is currently in early prototyping stages for ground-based sites, such as Mauna Kea and perhaps the VLT site in Chile. Its concept is also suited for a moon-based interferometer. With a ring of bi-dimensionally mobile telescopes, there is maximal flexibility in the aperture pattern, and no need for delay lines. A circular configuration of many free-flying telescopes, TRIO, is also considered for space interferometers. Finally, the principle of gaseous mirrors may become applicable for moon-based optical arrays. Fifteen years after the first coherent linkage of two optical telescopes, the design of an ambitious imaging array, the OVLA, is now well advanced. Two 1.5 m telescopes have been built and now provide astronomical results. Elements of the OVLA are under construction. Although primarily conceived for ground-based sites, the OVLA structure appears to meet the essential requirements for operation on the Moon.

  2. Sensory prediction on a whiskered robot: a tactile analogy to “optical flow”

    PubMed Central

    Schroeder, Christopher L.; Hartmann, Mitra J. Z.

    2012-01-01

    When an animal moves an array of sensors (e.g., the hand, the eye) through the environment, spatial and temporal gradients of sensory data are related by the velocity of the moving sensory array. In vision, the relationship between spatial and temporal brightness gradients is quantified in the “optical flow” equation. In the present work, we suggest an analog to optical flow for the rodent vibrissal (whisker) array, in which the perceptual intensity that “flows” over the array is bending moment. Changes in bending moment are directly related to radial object distance, defined as the distance between the base of a whisker and the point of contact with the object. Using both simulations and a 1×5 array (row) of artificial whiskers, we demonstrate that local object curvature can be estimated based on differences in radial distance across the array. We then develop two algorithms, both based on tactile flow, to predict the future contact points that will be obtained as the whisker array translates along the object. The translation of the robotic whisker array represents the rat's head velocity. The first algorithm uses a calculation of the local object slope, while the second uses a calculation of the local object curvature. Both algorithms successfully predict future contact points for simple surfaces. The algorithm based on curvature was found to more accurately predict future contact points as surfaces became more irregular. We quantify the inter-related effects of whisker spacing and the object's spatial frequencies, and examine the issues that arise in the presence of real-world noise, friction, and slip. PMID:23097641

  3. Sensory prediction on a whiskered robot: a tactile analogy to "optical flow".

    PubMed

    Schroeder, Christopher L; Hartmann, Mitra J Z

    2012-01-01

    When an animal moves an array of sensors (e.g., the hand, the eye) through the environment, spatial and temporal gradients of sensory data are related by the velocity of the moving sensory array. In vision, the relationship between spatial and temporal brightness gradients is quantified in the "optical flow" equation. In the present work, we suggest an analog to optical flow for the rodent vibrissal (whisker) array, in which the perceptual intensity that "flows" over the array is bending moment. Changes in bending moment are directly related to radial object distance, defined as the distance between the base of a whisker and the point of contact with the object. Using both simulations and a 1×5 array (row) of artificial whiskers, we demonstrate that local object curvature can be estimated based on differences in radial distance across the array. We then develop two algorithms, both based on tactile flow, to predict the future contact points that will be obtained as the whisker array translates along the object. The translation of the robotic whisker array represents the rat's head velocity. The first algorithm uses a calculation of the local object slope, while the second uses a calculation of the local object curvature. Both algorithms successfully predict future contact points for simple surfaces. The algorithm based on curvature was found to more accurately predict future contact points as surfaces became more irregular. We quantify the inter-related effects of whisker spacing and the object's spatial frequencies, and examine the issues that arise in the presence of real-world noise, friction, and slip.

  4. Operation Manual for the Intensity Based Interrogation of Fibre Bragg Grating Arrays on Vibrating Structures

    DTIC Science & Technology

    2011-01-01

    based demodulation approach for the measurement of strains, induced by structural vibrations, using Fiber Bragg Gratings ( FBG ). This companion...provide the Frequency Response Functions from a series of FBG arrays attached to a vibrating structure. RELEASE LIMITATION Approved for... FBG arrays attached to a vibrating structure. Both this technical note and its companion technical report are formal contributions to an

  5. TSAR User’s Manual: A Program for Assessing the Effects of Conventional and Chemical Attacks on Sortie Generation. Volume 3. Variable and Array Definitions, and other Program Aids

    DTIC Science & Technology

    1990-09-01

    array. LTHPER Length of the MPPERS array. LTHQPA Length of the QPA array. LTHXRT Length of the XROOT array. MAXACN Maximum number of aircraft that can...3 Time remaining until the ready-to-fly time at time of report Number of XROOT Array Entries (GENERATED) NROOT (MAXT) The total number of entries in...the XROOT array for each aircraft type. AIS Station Status NSTAT (NOSTAT, I, MAXB) I = 1 Total number of stations of each type on base = 2 Number in

  6. Differential degradation patterns of photovoltaic backsheets at the array level

    DOE PAGES

    Fairbrother, Andrew; Boyd, Matthew; Lyu, Yadong; ...

    2018-02-04

    There are relatively few field studies on the degradation of non-fluoropolymer-based backsheets, and understanding their in-field behavior is critical for further development of such products. In this paper, backsheet degradation of modules with one of these new types of backsheets (polyethylene naphthalate (PEN)-based) was documented at a four-year old utility-scale array located in Maryland (USA). Visual inspection, colorimetry, glossimetry, and Fourier-transform infrared spectroscopy (FTIR) revealed highly varied properties depending on module position within the array. Specifically, modules near the edge of the array and with higher mounting elevations underwent greater amounts of backsheet degradation, as indicated by yellowing and gloss-loss.more » The reason for these unique degradation patterns were differential backside exposure conditions, especially of ultraviolet light. This was strongly influenced by the array design, including array structural and environmental factors, such as module spacing and ground cover, respectively. Within the array, no clear link between backsheet degradation and module output or safety has been identified. However, such a relationship may be expected to become more pronounced with time, affecting system lifetime and ultimately the levelized cost of electricity (LCOE). Finally, the observed phenomena have implications for both backsheet product development and array design, especially for modules that utilize newer classes of non-fluoropolymer-based backsheets which are typically more susceptible to environmental degradation.« less

  7. Differential degradation patterns of photovoltaic backsheets at the array level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairbrother, Andrew; Boyd, Matthew; Lyu, Yadong

    There are relatively few field studies on the degradation of non-fluoropolymer-based backsheets, and understanding their in-field behavior is critical for further development of such products. In this paper, backsheet degradation of modules with one of these new types of backsheets (polyethylene naphthalate (PEN)-based) was documented at a four-year old utility-scale array located in Maryland (USA). Visual inspection, colorimetry, glossimetry, and Fourier-transform infrared spectroscopy (FTIR) revealed highly varied properties depending on module position within the array. Specifically, modules near the edge of the array and with higher mounting elevations underwent greater amounts of backsheet degradation, as indicated by yellowing and gloss-loss.more » The reason for these unique degradation patterns were differential backside exposure conditions, especially of ultraviolet light. This was strongly influenced by the array design, including array structural and environmental factors, such as module spacing and ground cover, respectively. Within the array, no clear link between backsheet degradation and module output or safety has been identified. However, such a relationship may be expected to become more pronounced with time, affecting system lifetime and ultimately the levelized cost of electricity (LCOE). Finally, the observed phenomena have implications for both backsheet product development and array design, especially for modules that utilize newer classes of non-fluoropolymer-based backsheets which are typically more susceptible to environmental degradation.« less

  8. An IBM PC-based math model for space station solar array simulation

    NASA Technical Reports Server (NTRS)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  9. Developing Barbed Microtip-Based Electrode Arrays for Biopotential Measurement

    PubMed Central

    Hsu, Li-Sheng; Tung, Shu-Wei; Kuo, Che-Hsi; Yang, Yao-Joe

    2014-01-01

    This study involved fabricating barbed microtip-based electrode arrays by using silicon wet etching. KOH anisotropic wet etching was employed to form a standard pyramidal microtip array and HF/HNO3 isotropic etching was used to fabricate barbs on these microtips. To improve the electrical conductance between the tip array on the front side of the wafer and the electrical contact on the back side, a through-silicon via was created during the wet etching process. The experimental results show that the forces required to detach the barbed microtip arrays from human skin, a polydimethylsiloxane (PDMS) polymer, and a polyvinylchloride (PVC) film were larger compared with those required to detach microtip arrays that lacked barbs. The impedances of the skin-electrode interface were measured and the performance levels of the proposed dry electrode were characterized. Electrode prototypes that employed the proposed tip arrays were implemented. Electroencephalogram (EEG) and electrocardiography (ECG) recordings using these electrode prototypes were also demonstrated. PMID:25014098

  10. Comprehensive Survey on Improved Focality and Penetration Depth of Transcranial Magnetic Stimulation Employing Multi-Coil Arrays.

    PubMed

    Wei, Xile; Li, Yao; Lu, Meili; Wang, Jiang; Yi, Guosheng

    2017-11-14

    Multi-coil arrays applied in transcranial magnetic stimulation (TMS) are proposed to accurately stimulate brain tissues and modulate neural activities by an induced electric field (EF). Composed of numerous independently driven coils, a multi-coil array has alternative energizing strategies to evoke EFs targeting at different cerebral regions. To improve the locating resolution and the stimulating focality, we need to fully understand the variation properties of induced EFs and the quantitative control method of the spatial arrangement of activating coils, both of which unfortunately are still unclear. In this paper, a comprehensive analysis of EF properties was performed based on multi-coil arrays. Four types of planar multi-coil arrays were used to study the relationship between the spatial distribution of EFs and the structure of stimuli coils. By changing coil-driven strategies in a basic 16-coil array, we find that an EF induced by compactly distributed coils decays faster than that induced by dispersedly distributed coils, but the former has an advantage over the latter in terms of the activated brain volume. Simulation results also indicate that the attenuation rate of an EF induced by the 36-coil dense array is 3 times and 1.5 times greater than those induced by the 9-coil array and the 16-coil array, respectively. The EF evoked by the 36-coil dispense array has the slowest decay rate. This result demonstrates that larger multi-coil arrays, compared to smaller ones, activate deeper brain tissues at the expense of decreased focality. A further study on activating a specific field of a prescribed shape and size was conducted based on EF variation. Accurate target location was achieved with a 64-coil array 18 mm in diameter. A comparison between the figure-8 coil, the planar array, and the cap-formed array was made and demonstrates an improvement of multi-coil configurations in the penetration depth and the focality. These findings suggest that there is a tradeoff between attenuation rate and focality in the application of multi-coil arrays. Coil-energizing strategies and array dimensions should be based on an adequate evaluation of these two important demands and the topological structure of target tissues.

  11. Fiber-optic microsphere-based antibody array for the analysis of inflammatory cytokines in saliva.

    PubMed

    Blicharz, Timothy M; Siqueira, Walter L; Helmerhorst, Eva J; Oppenheim, Frank G; Wexler, Philip J; Little, Frédéric F; Walt, David R

    2009-03-15

    Antibody microarrays have emerged as useful tools for high-throughput protein analysis and candidate biomarker screening. We describe here the development of a multiplexed microsphere-based antibody array capable of simultaneously measuring 10 inflammatory protein mediators. Cytokine-capture microspheres were fabricated by covalently coupling monoclonal antibodies specific for cytokines of interest to fluorescently encoded 3.1 microm polymer microspheres. An optical fiber bundle containing approximately 50,000 individual 3.1 microm diameter fibers was chemically etched to create microwells in which cytokine-capture microspheres could be deposited. Microspheres were randomly distributed in the wells to produce an antibody array for performing a multiplexed sandwich immunoassay. The array responded specifically to recombinant cytokine solutions in a concentration-dependent fashion. The array was also used to examine endogenous mediator patterns in saliva supernatants from patients with pulmonary inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD). This array technology may prove useful as a laboratory-based platform for inflammatory disease research and diagnostics, and its small footprint could also enable integration into a microfluidic cassette for use in point-of-care testing.

  12. Synthesis of concentric circular antenna arrays using dragonfly algorithm

    NASA Astrophysics Data System (ADS)

    Babayigit, B.

    2018-05-01

    Due to the strong non-linear relationship between the array factor and the array elements, concentric circular antenna array (CCAA) synthesis problem is challenging. Nature-inspired optimisation techniques have been playing an important role in solving array synthesis problems. Dragonfly algorithm (DA) is a novel nature-inspired optimisation technique which is based on the static and dynamic swarming behaviours of dragonflies in nature. This paper presents the design of CCAAs to get low sidelobes using DA. The effectiveness of the proposed DA is investigated in two different (with and without centre element) cases of two three-ring (having 4-, 6-, 8-element or 8-, 10-, 12-element) CCAA design. The radiation pattern of each design cases is obtained by finding optimal excitation weights of the array elements using DA. Simulation results show that the proposed algorithm outperforms the other state-of-the-art techniques (symbiotic organisms search, biogeography-based optimisation, sequential quadratic programming, opposition-based gravitational search algorithm, cat swarm optimisation, firefly algorithm, evolutionary programming) for all design cases. DA can be a promising technique for electromagnetic problems.

  13. Next generation cooled long range thermal sights with minimum size, weight, and power

    NASA Astrophysics Data System (ADS)

    Breiter, R.; Ihle, T.; Wendler, J.; Rühlich, I.; Ziegler, J.

    2013-06-01

    Situational awareness and precise targeting at day, night and severe weather conditions are key elements for mission success in asymmetric warfare. To support these capabilities for the dismounted soldier, AIM has developed a family of stand-alone thermal weapon sights based on high performance cooled IR-modules which are used e.g. in the infantryman of the future program of the German army (IdZ). The design driver for these sights is a long ID range <1500m for the NATO standard target to cover the operational range of a platoon with the engagement range of .50 cal rifles, 40mm AGLs or for reconnaissance tasks. The most recent sight WBZG has just entered into serial production for the IdZ enhanced system of the German army with additional capabilities like a wireless data link to the soldier backbone computer. Minimum size, weight and power (SWaP) are most critical requirements for the dismounted soldiers' equipment and sometimes push a decision towards uncooled equipment with marginal performance referring to the outstanding challenges in current asymmetric warfare, e.g. the capability to distinguish between combatants and non-combatants in adequate ranges. To provide the uncompromised e/o performance with SWaP parameters close to uncooled, AIM has developed a new thermal weapon sight based on high operating temperature (HOT) MCT MWIR FPAs together with a new low power single piston stirling cooler. In basic operation the sight is used as a clip-on in front of the rifle scope. An additional eyepiece for stand-alone targeting with e.g. AGLs or a biocular version for relaxed surveillance will be available. The paper will present details of the technologies applied for such long range cooled sights with size, weight and power close to uncooled.

  14. Ion Trap Array-Based Systems And Methods For Chemical Analysis

    DOEpatents

    Whitten, William B [Oak Ridge, TN; Ramsey, J Michael [Knoxville, TN

    2005-08-23

    An ion trap-based system for chemical analysis includes an ion trap array. The ion trap array includes a plurality of ion traps arranged in a 2-dimensional array for initially confining ions. Each of the ion traps comprise a central electrode having an aperture, a first and second insulator each having an aperture sandwiching the central electrode, and first and second end cap electrodes each having an aperture sandwiching the first and second insulator. A structure for simultaneously directing a plurality of different species of ions out from the ion traps is provided. A spectrometer including a detector receives and identifies the ions. The trap array can be used with spectrometers including time-of-flight mass spectrometers and ion mobility spectrometers.

  15. Gallium arsenide quantum well-based far infrared array radiometric imager

    NASA Technical Reports Server (NTRS)

    Forrest, Kathrine A.; Jhabvala, Murzy D.

    1991-01-01

    We have built an array-based camera (FIRARI) for thermal imaging (lambda = 8 to 12 microns). FIRARI uses a square format 128 by 128 element array of aluminum gallium arsenide quantum well detectors that are indium bump bonded to a high capacity silicon multiplexer. The quantum well detectors offer good responsivity along with high response and noise uniformity, resulting in excellent thermal images without compensation for variation in pixel response. A noise equivalent temperature difference of 0.02 K at a scene temperature of 290 K was achieved with the array operating at 60 K. FIRARI demonstrated that AlGaAS quantum well detector technology can provide large format arrays with performance superior to mercury cadmium telluride at far less cost.

  16. A chemiluminescence sensor array for discriminating natural sugars and artificial sweeteners.

    PubMed

    Niu, Weifen; Kong, Hao; Wang, He; Zhang, Yantu; Zhang, Sichun; Zhang, Xinrong

    2012-01-01

    In this paper, we report a chemiluminescence (CL) sensor array based on catalytic nanomaterials for the discrimination of ten sweeteners, including five natural sugars and five artificial sweeteners. The CL response patterns ("fingerprints") can be obtained for a given compound on the nanomaterial array and then identified through linear discriminant analysis (LDA). Moreover, each pure sweetener was quantified based on the emission intensities of selected sensor elements. The linear ranges for these sweeteners lie within 0.05-100 mM, but vary with the type of sweetener. The applicability of this array to real-life samples was demonstrated by applying it to various beverages, and the results showed that the sensor array possesses excellent discrimination power and reversibility.

  17. Experimental demonstration of a multi-wavelength distributed feedback semiconductor laser array with an equivalent chirped grating profile based on the equivalent chirp technology.

    PubMed

    Li, Wangzhe; Zhang, Xia; Yao, Jianping

    2013-08-26

    We report, to the best of our knowledge, the first realization of a multi-wavelength distributed feedback (DFB) semiconductor laser array with an equivalent chirped grating profile based on equivalent chirp technology. All the lasers in the laser array have an identical grating period with an equivalent chirped grating structure, which are realized by nonuniform sampling of the gratings. Different wavelengths are achieved by changing the sampling functions. A multi-wavelength DFB semiconductor laser array is fabricated and the lasing performance is evaluated. The results show that the equivalent chirp technology is an effective solution for monolithic integration of a multi-wavelength laser array with potential for large volume fabrication.

  18. Reliable and Efficient Parallel Processing Algorithms and Architectures for Modern Signal Processing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Liu, Kuojuey Ray

    1990-01-01

    Least-squares (LS) estimations and spectral decomposition algorithms constitute the heart of modern signal processing and communication problems. Implementations of recursive LS and spectral decomposition algorithms onto parallel processing architectures such as systolic arrays with efficient fault-tolerant schemes are the major concerns of this dissertation. There are four major results in this dissertation. First, we propose the systolic block Householder transformation with application to the recursive least-squares minimization. It is successfully implemented on a systolic array with a two-level pipelined implementation at the vector level as well as at the word level. Second, a real-time algorithm-based concurrent error detection scheme based on the residual method is proposed for the QRD RLS systolic array. The fault diagnosis, order degraded reconfiguration, and performance analysis are also considered. Third, the dynamic range, stability, error detection capability under finite-precision implementation, order degraded performance, and residual estimation under faulty situations for the QRD RLS systolic array are studied in details. Finally, we propose the use of multi-phase systolic algorithms for spectral decomposition based on the QR algorithm. Two systolic architectures, one based on triangular array and another based on rectangular array, are presented for the multiphase operations with fault-tolerant considerations. Eigenvectors and singular vectors can be easily obtained by using the multi-pase operations. Performance issues are also considered.

  19. Multicoil resonance-based parallel array for smart wireless power delivery.

    PubMed

    Mirbozorgi, S A; Sawan, M; Gosselin, B

    2013-01-01

    This paper presents a novel resonance-based multicoil structure as a smart power surface to wirelessly power up apparatus like mobile, animal headstage, implanted devices, etc. The proposed powering system is based on a 4-coil resonance-based inductive link, the resonance coil of which is formed by an array of several paralleled coils as a smart power transmitter. The power transmitter employs simple circuit connections and includes only one power driver circuit per multicoil resonance-based array, which enables higher power transfer efficiency and power delivery to the load. The power transmitted by the driver circuit is proportional to the load seen by the individual coil in the array. Thus, the transmitted power scales with respect to the load of the electric/electronic system to power up, and does not divide equally over every parallel coils that form the array. Instead, only the loaded coils of the parallel array transmit significant part of total transmitted power to the receiver. Such adaptive behavior enables superior power, size and cost efficiency then other solutions since it does not need to use complex detection circuitry to find the location of the load. The performance of the proposed structure is verified by measurement results. Natural load detection and covering 4 times bigger area than conventional topologies with a power transfer efficiency of 55% are the novelties of presented paper.

  20. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  1. A miniature electronic nose system based on an MWNT-polymer microsensor array and a low-power signal-processing chip.

    PubMed

    Chiu, Shih-Wen; Wu, Hsiang-Chiu; Chou, Ting-I; Chen, Hsin; Tang, Kea-Tiong

    2014-06-01

    This article introduces a power-efficient, miniature electronic nose (e-nose) system. The e-nose system primarily comprises two self-developed chips, a multiple-walled carbon nanotube (MWNT)-polymer based microsensor array, and a low-power signal-processing chip. The microsensor array was fabricated on a silicon wafer by using standard photolithography technology. The microsensor array comprised eight interdigitated electrodes surrounded by SU-8 "walls," which restrained the material-solvent liquid in a defined area of 650 × 760 μm(2). To achieve a reliable sensor-manufacturing process, we used a two-layer deposition method, coating the MWNTs and polymer film as the first and second layers, respectively. The low-power signal-processing chip included array data acquisition circuits and a signal-processing core. The MWNT-polymer microsensor array can directly connect with array data acquisition circuits, which comprise sensor interface circuitry and an analog-to-digital converter; the signal-processing core consists of memory and a microprocessor. The core executes the program, classifying the odor data received from the array data acquisition circuits. The low-power signal-processing chip was designed and fabricated using the Taiwan Semiconductor Manufacturing Company 0.18-μm 1P6M standard complementary metal oxide semiconductor process. The chip consumes only 1.05 mW of power at supply voltages of 1 and 1.8 V for the array data acquisition circuits and the signal-processing core, respectively. The miniature e-nose system, which used a microsensor array, a low-power signal-processing chip, and an embedded k-nearest-neighbor-based pattern recognition algorithm, was developed as a prototype that successfully recognized the complex odors of tincture, sorghum wine, sake, whisky, and vodka.

  2. Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors.

    PubMed

    Lewis, Nathan S

    2004-09-01

    Arrays of broadly cross-reactive vapor sensors provide a man-made implementation of an olfactory system, in which an analyte elicits a response from many receptors and each receptor responds to a variety of analytes. Pattern recognition methods are then used to detect analytes based on the collective response of the sensor array. With the use of this architecture, arrays of chemically sensitive resistors made from composites of conductors and insulating organic polymers have been shown to robustly classify, identify, and quantify a diverse collection of organic vapors, even though no individual sensor responds selectively to a particular analyte. The properties and functioning of these arrays are inspired by advances in the understanding of biological olfaction, and in turn, evaluation of the performance of the man-made array provides suggestions regarding some of the fundamental odor detection principles of the mammalian olfactory system.

  3. Polymer-based sensor array for phytochemical detection

    NASA Astrophysics Data System (ADS)

    Weerakoon, Kanchana A.; Hiremath, Nitilaksha; Chin, Bryan A.

    2012-05-01

    Monitoring for the appearance of volatile organic compounds emitted by plants which correspond to time of first insect attack can be used to detect the early stages of insect infestation. This paper reports a chemical sensor array consisting of polymer based chemiresistor sensors that could detect insect infestation effectively. The sensor array consists of sensors with micro electronically fabricated interdigitated electrodes, and twelve different types of electro active polymer layers. The sensor array was cheap, easy to fabricate, and could be used easily in agricultural fields. The polymer array was found to be sensitive to a variety of volatile organic compounds emitted by plants including γ-terpinene α-pinene, pcymene, farnesene, limonene and cis-hexenyl acetate. The sensor array was not only able to detect but also distinguish between these compounds. The twelve sensors produced a resistance change for each of the analytes detected, and each of these responses together produced a unique fingerprint, enabling to distinguish among these chemicals.

  4. Nine-channel wavelength tunable single mode laser array based on slots.

    PubMed

    Guo, Wei-Hua; Lu, Qiaoyin; Nawrocka, Marta; Abdullaev, Azat; O'Callaghan, James; Donegan, John F

    2013-04-22

    A 9-channel wavelength tunable single-mode laser array based on slots is presented. The fabricated laser array demonstrated a threshold current in a range of 19~21 mA with the SOA unbiased at 20°C under continuous wave condition. Stable single mode performances have been observed with side-mode suppression-ratio (SMSR) > 50 dB. The output power higher than 37 mW was obtained at the SOA injected current of 70 mA for all the 9 channels within the laser array. A wavelength quasi-continuous tuning range of about 27 nm has been achieved for the laser array with the temperature variations from 10°C to 45°C. This array platform is of a single growth and monolithically integrable. It can be easily fabricated by standard photolithography. In addition, it potentially removes the yield problem due to the uncertainty of the facet cleaving.

  5. Fabrication and optical characterization of imaging fiber-based nanoarrays.

    PubMed

    Tam, Jenny M; Song, Linan; Walt, David R

    2005-09-15

    In this paper, we present a technique for fabricating arrays containing a density at least 90 times higher than previously published. Specifically, we discuss the fabrication of two imaging fiber-based nanoarrays, one with 700nm features, another with 300nm features. With arrays containing up to 4.5x10(6) array elements/mm(2), these nanoarrays have an ultra-high packing density. A straightforward etching protocol is used to create nanowells into which beads can be deposited. These beads comprise the sensing elements of the nanoarray. Deposition of the nanobeads into the nanowells using two techniques is described. The surface characteristics of the etched arrays are examined with atomic force microscopy and scanning electron microscopy. Fluorescence microscopy was used to observe the arrays. The 300nm array features and the 500nm center-to-center distance approach the minimum feature sizes viewable using conventional light microscopy.

  6. Hydrostar Thermal and Structural Deformation Analyses of Antenna Array Concept

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Hope, Drew J.

    1998-01-01

    The proposed Hydrostar mission used a large orbiting antenna array to demonstrate synthetic aperture technology in space while obtaining global soil moisture data. In order to produce accurate data, the array was required to remain as close as possible to its perfectly aligned placement while undergoing the mechanical and thermal stresses induced by orbital changes. Thermal and structural analyses for a design concept of this antenna array were performed. The thermal analysis included orbital radiation calculations, as well as parametric studies of orbit altitude, material properties and coating types. The thermal results included predicted thermal distributions over the array for several cases. The structural analysis provided thermally-driven deflections based on these cases, as well as based on a 1-g inertial load. In order to minimize the deflections of the array in orbit, the use of XN70, a carbon-reinforced polycyanate composite, was recommended.

  7. EzArray: A web-based highly automated Affymetrix expression array data management and analysis system

    PubMed Central

    Zhu, Yuerong; Zhu, Yuelin; Xu, Wei

    2008-01-01

    Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103

  8. Image compression system and method having optimized quantization tables

    NASA Technical Reports Server (NTRS)

    Ratnakar, Viresh (Inventor); Livny, Miron (Inventor)

    1998-01-01

    A digital image compression preprocessor for use in a discrete cosine transform-based digital image compression device is provided. The preprocessor includes a gathering mechanism for determining discrete cosine transform statistics from input digital image data. A computing mechanism is operatively coupled to the gathering mechanism to calculate a image distortion array and a rate of image compression array based upon the discrete cosine transform statistics for each possible quantization value. A dynamic programming mechanism is operatively coupled to the computing mechanism to optimize the rate of image compression array against the image distortion array such that a rate-distortion-optimal quantization table is derived. In addition, a discrete cosine transform-based digital image compression device and a discrete cosine transform-based digital image compression and decompression system are provided. Also, a method for generating a rate-distortion-optimal quantization table, using discrete cosine transform-based digital image compression, and operating a discrete cosine transform-based digital image compression and decompression system are provided.

  9. MILSTAR's flexible substrate solar array: Lessons learned, addendum

    NASA Technical Reports Server (NTRS)

    Gibb, John

    1990-01-01

    MILSTAR's Flexible Substrate Solar Array (FSSA) is an evolutionary development of the lightweight, flexible substrate design pioneered at Lockheed during the seventies. Many of the features of the design are related to the Solar Array Flight Experiment (SAFE), flown on STS-41D in 1984. FSSA development has created a substantial technology base for future flexible substrate solar arrays such as the array for the Space Station Freedom. Lessons learned during the development of the FSSA can and should be applied to the Freedom array and other future flexible substrate designs.

  10. Using Bayesian Inference Framework towards Identifying Gas Species and Concentration from High Temperature Resistive Sensor Array Data

    DOE PAGES

    Liu, Yixin; Zhou, Kai; Lei, Yu

    2015-01-01

    High temperature gas sensors have been highly demanded for combustion process optimization and toxic emissions control, which usually suffer from poor selectivity. In order to solve this selectivity issue and identify unknown reducing gas species (CO, CH 4 , and CH 8 ) and concentrations, a high temperature resistive sensor array data set was built in this study based on 5 reported sensors. As each sensor showed specific responses towards different types of reducing gas with certain concentrations, based on which calibration curves were fitted, providing benchmark sensor array response database, then Bayesian inference framework was utilized to process themore » sensor array data and build a sample selection program to simultaneously identify gas species and concentration, by formulating proper likelihood between input measured sensor array response pattern of an unknown gas and each sampled sensor array response pattern in benchmark database. This algorithm shows good robustness which can accurately identify gas species and predict gas concentration with a small error of less than 10% based on limited amount of experiment data. These features indicate that Bayesian probabilistic approach is a simple and efficient way to process sensor array data, which can significantly reduce the required computational overhead and training data.« less

  11. Vertically aligned carbon nanotubes for microelectrode arrays applications.

    PubMed

    Castro Smirnov, J R; Jover, Eric; Amade, Roger; Gabriel, Gemma; Villa, Rosa; Bertran, Enric

    2012-09-01

    In this work a methodology to fabricate carbon nanotube based electrodes using plasma enhanced chemical vapour deposition has been explored and defined. The final integrated microelectrode based devices should present specific properties that make them suitable for microelectrode arrays applications. The methodology studied has been focused on the preparation of highly regular and dense vertically aligned carbon nanotube (VACNT) mat compatible with the standard lithography used for microelectrode arrays technology.

  12. Terahertz artificial material based on integrated metal-rod-array for phase sensitive fluid detection.

    PubMed

    You, Borwen; Chen, Ching-Yu; Yu, Chin-Ping; Liu, Tze-An; Hattori, Toshiaki; Lu, Ja-Yu

    2017-04-17

    A terahertz artificial material composed of metal rod array is experimentally investigated on its transmission spectral property and successfully incorporated into microfluidics as a miniaturized terahertz waveguide with an extended optical-path-length for label-free fluidic sensing. Theoretical and experimental characterizations of terahertz transmission spectra show that the wave guidance along the metal rod array originates from the resonance of transverse-electric-polarized waves within the metal rod slits. The extended optical path length along three layers of metal-rod-array enables terahertz waves sufficiently overlapping the fluid molecules embedded among the rods, leading to strongly enhanced phase change by approximately one order of magnitude compared with the blank metal-parallel-plate waveguide. Based on the enhanced phase sensitivity, three kinds of colorless liquid analytes, namely, acetone, methanol, and ethanol, with different dipole moments are identified in situ using the metal-rod-array-based microfluidic sensor. The detection limit in molecular amounts of a liquid analyte is experimentally demonstrated to be less than 0.1 mmol, corresponding to 2.7 μmol/mm2. The phase sensitive terahertz metal-rod-array-based sensor potentially has good adaptability in lab-chip technology for various practical applications, such as industrial toxic fluid detection and medical breath inspection.

  13. Preliminary Concept of Operations for the Deep Space Array-Based Network

    NASA Astrophysics Data System (ADS)

    Bagri, D. S.; Statman, J. I.

    2004-05-01

    The Deep Space Array-Based Network (DSAN) will be an array-based system, part of a greater than 1000 times increase in the downlink/telemetry capability of the Deep Space Network. The key function of the DSAN is provision of cost-effective, robust telemetry, tracking, and command services to the space missions of NASA and its international partners. This article presents an expanded approach to the use of an array-based system. Instead of using the array as an element in the existing Deep Space Network (DSN), relying to a large extent on the DSN infrastructure, we explore a broader departure from the current DSN, using fewer elements of the existing DSN, and establishing a more modern concept of operations. For example, the DSAN will have a single 24 x 7 monitor and control (M&C) facility, while the DSN has four 24 x 7 M&C facilities. The article gives the architecture of the DSAN and its operations philosophy. It also briefly describes the customer's view of operations, operations management, logistics, anomaly analysis, and reporting.

  14. Modular Analytical Multicomponent Analysis in Gas Sensor Aarrays

    PubMed Central

    Chaiyboun, Ali; Traute, Rüdiger; Kiesewetter, Olaf; Ahlers, Simon; Müller, Gerhard; Doll, Theodor

    2006-01-01

    A multi-sensor system is a chemical sensor system which quantitatively and qualitatively records gases with a combination of cross-sensitive gas sensor arrays and pattern recognition software. This paper addresses the issue of data analysis for identification of gases in a gas sensor array. We introduce a software tool for gas sensor array configuration and simulation. It concerns thereby about a modular software package for the acquisition of data of different sensors. A signal evaluation algorithm referred to as matrix method was used specifically for the software tool. This matrix method computes the gas concentrations from the signals of a sensor array. The software tool was used for the simulation of an array of five sensors to determine gas concentration of CH4, NH3, H2, CO and C2H5OH. The results of the present simulated sensor array indicate that the software tool is capable of the following: (a) identify a gas independently of its concentration; (b) estimate the concentration of the gas, even if the system was not previously exposed to this concentration; (c) tell when a gas concentration exceeds a certain value. A gas sensor data base was build for the configuration of the software. With the data base one can create, generate and manage scenarios and source files for the simulation. With the gas sensor data base and the simulation software an on-line Web-based version was developed, with which the user can configure and simulate sensor arrays on-line.

  15. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Satellite Communications Terminal, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  16. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Electric Substation, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  17. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Microwave Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  18. Design of a dielectric resonator receive array at 7 Tesla using detunable ceramic resonators

    NASA Astrophysics Data System (ADS)

    Ruytenberg, Thomas; Webb, Andrew G.

    2017-11-01

    Ceramic-based dielectric resonators can be used for high frequency magnetic resonance imaging and microscopy. When used as elements in a transmit array, the intrinsically low inter-element coupling allows flexibility in designing different geometric arrangements for different regions-of-interest. However, without being able to detune such resonators, they cannot be used as elements in a receive-only array. Here, we propose and implement a method, based on mode-disruption, for detuning ceramic-based dielectric resonators to enable them to be used as receive-only elements.

  19. Medicina array demonstrator: calibration and radiation pattern characterization using a UAV-mounted radio-frequency source

    NASA Astrophysics Data System (ADS)

    Pupillo, G.; Naldi, G.; Bianchi, G.; Mattana, A.; Monari, J.; Perini, F.; Poloni, M.; Schiaffino, M.; Bolli, P.; Lingua, A.; Aicardi, I.; Bendea, H.; Maschio, P.; Piras, M.; Virone, G.; Paonessa, F.; Farooqui, Z.; Tibaldi, A.; Addamo, G.; Peverini, O. A.; Tascone, R.; Wijnholds, S. J.

    2015-06-01

    One of the most challenging aspects of the new-generation Low-Frequency Aperture Array (LFAA) radio telescopes is instrument calibration. The operational LOw-Frequency ARray (LOFAR) instrument and the future LFAA element of the Square Kilometre Array (SKA) require advanced calibration techniques to reach the expected outstanding performance. In this framework, a small array, called Medicina Array Demonstrator (MAD), has been designed and installed in Italy to provide a test bench for antenna characterization and calibration techniques based on a flying artificial test source. A radio-frequency tone is transmitted through a dipole antenna mounted on a micro Unmanned Aerial Vehicle (UAV) (hexacopter) and received by each element of the array. A modern digital FPGA-based back-end is responsible for both data-acquisition and data-reduction. A simple amplitude and phase equalization algorithm is exploited for array calibration owing to the high stability and accuracy of the developed artificial test source. Both the measured embedded element patterns and calibrated array patterns are found to be in good agreement with the simulated data. The successful measurement campaign has demonstrated that a UAV-mounted test source provides a means to accurately validate and calibrate the full-polarized response of an antenna/array in operating conditions, including consequently effects like mutual coupling between the array elements and contribution of the environment to the antenna patterns. A similar system can therefore find a future application in the SKA-LFAA context.

  20. SERS based immuno-microwell arrays for multiplexed detection of foodborne pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Hankus, Mikella E.; Cullum, Brian M.

    2009-05-01

    A novel surface enhanced Raman scattering (SERS)-based immuno-microwell array has been developed for multiplexed detection of foodborne pathogenic bacteria. The immuno-microwell array was prepared by immobilizing the optical addressable immunomagnetic beads (IMB) into the microwell array on one end of a fiber optic bundle. The IMBs, magnetic beads coated with specific antibody to specific bacteria, were used for immunomagnetic separation (IMS) of corresponding bacteria. The magnetic separation by the homemade magnetic separation system was evaluated in terms of the influences of several important parameters including the beads concentration, the sample volume and the separation time. IMS separation efficiency of the model bacteria E.coli O157:H7 was 63% in 3 minutes. The microwell array was fabricated on hydrofluoric acid etched end of a fiber optic bundle containing 30,000 fiber elements. After being coated with silver, the microwell array was used as a uniform SERS substrate with the relative standard deviation of the SERS enhancement across the microwell array < 2% and the enhancement factor as high as 2.18 x 107. The antibody modified microwell array was prepared for bacteria immobilization into the microwell array, which was characterized by a sandwich immunoassay. To demonstrate the potential of multiplexed SERS detection with the immuno-microwell array, the SERS spectra of different Raman dye labeled magnetic beads as well as mixtures were measured on the mircrowell array. In bead mixture, different beads were identified by the characteristic SERS bands of the corresponding Raman label.

  1. A Phase Correction Technique Based on Spatial Movements of Antennas in Real-Time (S.M.A.R.T.) for Designing Self-Adapting Conformal Array Antennas

    NASA Astrophysics Data System (ADS)

    Roy, Sayan

    This research presents a real-time adaptive phase correction technique for flexible phased array antennas on conformal surfaces of variable shapes. Previously reported pattern correctional methods for flexible phased array antennas require prior knowledge on the possible non-planar shapes in which the array may adapt for conformal applications. For the first time, this initial requirement of shape curvature knowledge is no longer needed and the instantaneous information on the relative location of array elements is used here for developing a geometrical model based on a set of Bezier curves. Specifically, by using an array of inclinometer sensors and an adaptive phase-correctional algorithm, it has been shown that the proposed geometrical model can successfully predict different conformal orientations of a 1-by-4 antenna array in real-time without the requirement of knowing the shape-changing characteristics of the surface the array is attached upon. Moreover, the phase correction technique is validated by determining the field patterns and broadside gain of the 1-by-4 antenna array on four different conformal surfaces with multiple points of curvatures. Throughout this work, measurements are shown to agree with the analytical solutions and full-wave simulations.

  2. Off-Grid Direction of Arrival Estimation Based on Joint Spatial Sparsity for Distributed Sparse Linear Arrays

    PubMed Central

    Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin

    2014-01-01

    In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach. PMID:25420150

  3. Feasibility study of a take-home array-based functional electrical stimulation system with automated setup for current functional electrical stimulation users with foot-drop.

    PubMed

    Prenton, Sarah; Kenney, Laurence P; Stapleton, Claire; Cooper, Glen; Reeves, Mark L; Heller, Ben W; Sobuh, Mohammad; Barker, Anthony T; Healey, Jamie; Good, Timothy R; Thies, Sibylle B; Howard, David; Williamson, Tracey

    2014-10-01

    To investigate the feasibility of unsupervised community use of an array-based automated setup functional electrical stimulator for current foot-drop functional electrical stimulation (FES) users. Feasibility study. Gait laboratory and community use. Participants (N=7) with diagnosis of unilateral foot-drop of central neurologic origin (>6mo) who were regular users of a foot-drop FES system (>3mo). Array-based automated setup FES system for foot-drop (ShefStim). Logged usage, logged automated setup times for the array-based automated setup FES system and diary recording of problems experienced, all collected in the community environment. Walking speed, ankle angles at initial contact, foot clearance during swing, and the Quebec User Evaluation of Satisfaction with Assistive Technology version 2.0 (QUEST version 2.0) questionnaire, all collected in the gait laboratory. All participants were able to use the array-based automated setup FES system. Total setup time took longer than participants' own FES systems, and automated setup time was longer than in a previous study of a similar system. Some problems were experienced, but overall, participants were as satisfied with this system as their own FES system. The increase in walking speed (N=7) relative to no stimulation was comparable between both systems, and appropriate ankle angles at initial contact (N=7) and foot clearance during swing (n=5) were greater with the array-based automated setup FES system. This study demonstrates that an array-based automated setup FES system for foot-drop can be successfully used unsupervised. Despite setup's taking longer and some problems, users are satisfied with the system and it would appear as effective, if not better, at addressing the foot-drop impairment. Further product development of this unique system, followed by a larger-scale and longer-term study, is required before firm conclusions about its efficacy can be reached. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Microoptical artificial compound eyes: from design to experimental verification of two different concepts

    NASA Astrophysics Data System (ADS)

    Duparré, Jacques; Wippermann, Frank; Dannberg, Peter; Schreiber, Peter; Bräuer, Andreas; Völkel, Reinhard; Scharf, Toralf

    2005-09-01

    Two novel objective types on the basis of artificial compound eyes are examined. Both imaging systems are well suited for fabrication using microoptics technology due to the small required lens sags. In the apposition optics a microlens array (MLA) and a photo detector array of different pitch in its focal plane are applied. The image reconstruction is based on moire magnification. Several generations of demonstrators of this objective type are manufactured by photo lithographic processes. This includes a system with opaque walls between adjacent channels and an objective which is directly applied onto a CMOS detector array. The cluster eye approach, which is based on a mixture of superposition compound eyes and the vision system of jumping spiders, produces a regular image. Here, three microlens arrays of different pitch form arrays of Keplerian microtelescopes with tilted optical axes, including a field lens. The microlens arrays of this demonstrator are also fabricated using microoptics technology, aperture arrays are applied. Subsequently the lens arrays are stacked to the overall microoptical system on wafer scale. Both fabricated types of artificial compound eye imaging systems are experimentally characterized with respect to resolution, sensitivity and cross talk between adjacent channels. Captured images are presented.

  5. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.

    PubMed

    Myllymaa, Sami; Myllymaa, Katja; Korhonen, Hannu; Töyräs, Juha; Jääskeläinen, Juha E; Djupsund, Kaj; Tanila, Heikki; Lappalainen, Reijo

    2009-06-15

    Modern microfabrication techniques make it possible to develop microelectrode arrays that may be utilized not only in neurophysiological research but also in the clinic, e.g. in neurosurgery and as elements of neural prostheses. The aim of this study was to test whether a flexible microelectrode array is suitable for recording cortical surface field potentials in rats. Polyimide-based microelectrode arrays were fabricated by utilizing microfabrication techniques e.g. photolithography and magnetron sputter deposition. The present microelectrode array consists of eight platinum microelectrodes (round-shaped, Ø: 200 microm), transmission lines and connector pads sandwiched between two thin layers of biocompatible polyimide. The microelectrode arrays were electrochemically characterized by impedance spectroscopy in physiological saline solution and successfully tested in vivo by conducting acute and chronic measurements of evoked potentials on the surface of rat cortex. The arrays proved excellent flexibility and mechanical strength during handling and implantation onto the surface of cortex. The excellent electrochemical characteristics and stable in vivo recordings with high spatiotemporal resolution highlight the potential of these arrays. The fabrication protocol described here allows implementation of several other neural interfaces with different layouts, material selections or target areas either for recording or stimulation purposes.

  6. GeneChip{sup {trademark}} screening assay for cystic fibrosis mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronn, M.T.; Miyada, C.G.; Fucini, R.V.

    1994-09-01

    GeneChip{sup {trademark}} assays are based on high density, carefully designed arrays of short oligonucleotide probes (13-16 bases) built directly on derivatized silica substrates. DNA target sequence analysis is achieved by hybridizing fluorescently labeled amplification products to these arrays. Fluorescent hybridization signals located within the probe array are translated into target sequence information using the known probe sequence at each array feature. The mutation screening assay for cystic fibrosis includes sets of oligonucleotide probes designed to detect numerous different mutations that have been described in 14 exons and one intron of the CFTR gene. Each mutation site is addressed by amore » sub-array of at least 40 probe sequences, half designed to detect the wild type gene sequence and half designed to detect the reported mutant sequence. Hybridization with homozygous mutant, homozygous wild type or heterozygous targets results in distinctive hybridization patterns within a sub-array, permitting specific discrimination of each mutation. The GeneChip probe arrays are very small (approximately 1 cm{sup 2}). There miniature size coupled with their high information content make GeneChip probe arrays a useful and practical means for providing CF mutation analysis in a clinical setting.« less

  7. Quantitative 3-d diagnostic ultrasound imaging using a modified transducer array and an automated image tracking technique.

    PubMed

    Hossack, John A; Sumanaweera, Thilaka S; Napel, Sandy; Ha, Jun S

    2002-08-01

    An approach for acquiring dimensionally accurate three-dimensional (3-D) ultrasound data from multiple 2-D image planes is presented. This is based on the use of a modified linear-phased array comprising a central imaging array that acquires multiple, essentially parallel, 2-D slices as the transducer is translated over the tissue of interest. Small, perpendicularly oriented, tracking arrays are integrally mounted on each end of the imaging transducer. As the transducer is translated in an elevational direction with respect to the central imaging array, the images obtained by the tracking arrays remain largely coplanar. The motion between successive tracking images is determined using a minimum sum of absolute difference (MSAD) image matching technique with subpixel matching resolution. An initial phantom scanning-based test of a prototype 8 MHz array indicates that linear dimensional accuracy of 4.6% (2 sigma) is achievable. This result compares favorably with those obtained using an assumed average velocity [31.5% (2 sigma) accuracy] and using an approach based on measuring image-to-image decorrelation [8.4% (2 sigma) accuracy]. The prototype array and imaging system were also tested in a clinical environment, and early results suggest that the approach has the potential to enable a low cost, rapid, screening method for detecting carotid artery stenosis. The average time for performing a screening test for carotid stenosis was reduced from an average of 45 minutes using 2-D duplex Doppler to 12 minutes using the new 3-D scanning approach.

  8. Impact localization on composite structures using time difference and MUSIC approach

    NASA Astrophysics Data System (ADS)

    Zhong, Yongteng; Xiang, Jiawei

    2017-05-01

    1-D uniform linear array (ULA) has the shortcoming of the half-plane mirror effect, which does not allow discriminating between a target placed above the array and a target placed below the array. This paper presents time difference (TD) and multiple signal classification (MUSIC) based omni-directional impact localization on a large stiffened composite structure using improved linear array, which is able to perform omni-directional 360° localization. This array contains 2M+3 PZT sensors, where 2M+1 PZT sensors are arranged as a uniform linear array, and the other two PZT sensors are placed above and below the array. Firstly, the arrival times of impact signals observed by the other two sensors are determined using the wavelet transform. Compared with each other, the direction range of impact source can be decided in general, 0°to 180° or 180°to 360°. And then, two dimensional multiple signal classification (2D-MUSIC) based spatial spectrum formula using the uniform linear array is applied for impact localization by the general direction range. When the arrival times of impact signals observed by upper PZT is equal to that of lower PZT, the direction can be located in x axis (0°or 180°). And time difference based MUSIC method is present to locate impact position. To verify the proposed approach, the proposed approach is applied to a composite structure. The localization results are in good agreement with the actual impact occurring positions.

  9. Modeling Charge Collection in Detector Arrays

    NASA Technical Reports Server (NTRS)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  10. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array

    PubMed Central

    Lorwongtragool, Panida; Sowade, Enrico; Watthanawisuth, Natthapol; Baumann, Reinhard R.; Kerdcharoen, Teerakiat

    2014-01-01

    A novel wearable electronic nose for armpit odor analysis is proposed by using a low-cost chemical sensor array integrated in a ZigBee wireless communication system. We report the development of a carbon nanotubes (CNTs)/polymer sensor array based on inkjet printing technology. With this technique both composite-like layer and actual composite film of CNTs/polymer were prepared as sensing layers for the chemical sensor array. The sensor array can response to a variety of complex odors and is installed in a prototype of wearable e-nose for monitoring the axillary odor released from human body. The wearable e-nose allows the classification of different armpit odors and the amount of the volatiles released as a function of level of skin hygiene upon different activities. PMID:25340447

  11. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Civil Engineering Storage Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  12. Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs)

    PubMed Central

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-01-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved. PMID:29713626

  13. Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs).

    PubMed

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-01-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved.

  14. Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs)

    NASA Astrophysics Data System (ADS)

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-04-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modelled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modelled demonstrated a nice fitting of modelling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability and discrimination ability of the array was achieved.

  15. Arrays of very small voltammetric electrodes based on reticulated vitreous carbon

    NASA Astrophysics Data System (ADS)

    Sleszynski, N.; Osteryoung, J.; Carter, M.

    1983-10-01

    Micro-electrode arrays constructed from reticulated vitreous carbon are described and characterized. Sterological analysis and cyclic voltammetric data indicate the arrays have equivalent radii as small as 32 microns, with densities as high as 1650 electrodes/sq cm.

  16. Degree-of-Freedom Strengthened Cascade Array for DOD-DOA Estimation in MIMO Array Systems.

    PubMed

    Yao, Bobin; Dong, Zhi; Zhang, Weile; Wang, Wei; Wu, Qisheng

    2018-05-14

    In spatial spectrum estimation, difference co-array can provide extra degrees-of-freedom (DOFs) for promoting parameter identifiability and parameter estimation accuracy. For the sake of acquiring as more DOFs as possible with a given number of physical sensors, we herein design a novel sensor array geometry named cascade array. This structure is generated by systematically connecting a uniform linear array (ULA) and a non-uniform linear array, and can provide more DOFs than some exist array structures but less than the upper-bound indicated by minimum redundant array (MRA). We further apply this cascade array into multiple input multiple output (MIMO) array systems, and propose a novel joint direction of departure (DOD) and direction of arrival (DOA) estimation algorithm, which is based on a reduced-dimensional weighted subspace fitting technique. The algorithm is angle auto-paired and computationally efficient. Theoretical analysis and numerical simulations prove the advantages and effectiveness of the proposed array structure and the related algorithm.

  17. Composition Studies with the Telescope Array Surface Detector

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Mikhail; Piskunov, Maxim; Rubtsov, Grigory; Troitsky, Sergey; Zhezher, Yana

    The results on ultra-high-energy cosmic-ray chemical composition based on the data from the Telescope Array surface-detector are presented. The method is based on the multivariate boosted decision tree (BDT) analysis which uses surface-detector observables. The results on average atomic mass in the energy range 1018.0-1020.0 eV are presented. A comparison with the Telescope Array hybrid results and the Pierre Auger Observatory surface detector results is shown.

  18. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  19. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.

    PubMed

    Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan

    2013-10-21

    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.

  20. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array

    PubMed Central

    Navruz, Isa; Coskun, Ahmet F.; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan

    2013-01-01

    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ∼9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ∼3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also gets rid of spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears. PMID:23939637

  1. A 20-channel magnetoencephalography system based on optically pumped magnetometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borna, Amir; Carter, Tony R.; Goldberg, Josh D.

    In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID)more » MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Finally, herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.« less

  2. A 20-channel magnetoencephalography system based on optically pumped magnetometers

    DOE PAGES

    Borna, Amir; Carter, Tony R.; Goldberg, Josh D.; ...

    2017-10-16

    In this paper, we describe a multichannel magnetoencephalography (MEG) system that uses optically pumped magnetometers (OPMs) to sense the magnetic fields of the human brain. The system consists of an array of 20 OPM channels conforming to the human subject's head, a person-sized magnetic shield containing the array and the human subject, a laser system to drive the OPM array, and various control and data acquisition systems. We conducted two MEG experiments: auditory evoked magnetic field and somatosensory evoked magnetic field, on three healthy male subjects, using both our OPM array and a 306-channel Elekta-Neuromag superconducting quantum interference device (SQUID)more » MEG system. The described OPM array measures the tangential components of the magnetic field as opposed to the radial component measured by most SQUID-based MEG systems. Finally, herein, we compare the results of the OPM- and SQUID-based MEG systems on the auditory and somatosensory data recorded in the same individuals on both systems.« less

  3. Flexible Light Emission Diode Arrays Made of Transferred Si Microwires-ZnO Nanofilm with Piezo-Phototronic Effect Enhanced Lighting.

    PubMed

    Li, Xiaoyi; Liang, Renrong; Tao, Juan; Peng, Zhengchun; Xu, Qiming; Han, Xun; Wang, Xiandi; Wang, Chunfeng; Zhu, Jing; Pan, Caofeng; Wang, Zhong Lin

    2017-04-25

    Due to the fragility and the poor optoelectronic performances of Si, it is challenging and exciting to fabricate the Si-based flexible light-emitting diode (LED) array devices. Here, a flexible LED array device made of Si microwires-ZnO nanofilm, with the advantages of flexibility, stability, lightweight, and energy savings, is fabricated and can be used as a strain sensor to demonstrate the two-dimensional pressure distribution. Based on piezo-phototronic effect, the intensity of the flexible LED array can be increased more than 3 times (under 60 MPa compressive strains). Additionally, the device is stable and energy saving. The flexible device can still work well after 1000 bending cycles or 6 months placed in the atmosphere, and the power supplied to the flexible LED array is only 8% of the power of the surface-contact LED. The promising Si-based flexible device has wide range application and may revolutionize the technologies of flexible screens, touchpad technology, and smart skin.

  4. International ultraviolet explorer solar array power degradation

    NASA Technical Reports Server (NTRS)

    Day, J. H., Jr.

    1983-01-01

    The characteristic electrical performance of each International Ultraviolet Explorer (IUE) solar array panel is evaluated as a function of several prevailing variables (namely, solar illumination, array temperature and solar cell radiation damage). Based on degradation in the current-voltage characteristics of the array due to solar cell damage accumulated over time by space charged particle radiations, the available IUE solar array power is determined for life goals up to 10 years. Best and worst case calculations are normalized to actual IUE flight data (available solar array power versus observatory position) to accurately predict the future IUE solar array output. It is shown that the IUE solar array can continue to produce more power than is required at most observatory positions for at least 5 more years.

  5. Imputation across genotyping arrays for genome-wide association studies: assessment of bias and a correction strategy.

    PubMed

    Johnson, Eric O; Hancock, Dana B; Levy, Joshua L; Gaddis, Nathan C; Saccone, Nancy L; Bierut, Laura J; Page, Grier P

    2013-05-01

    A great promise of publicly sharing genome-wide association data is the potential to create composite sets of controls. However, studies often use different genotyping arrays, and imputation to a common set of SNPs has shown substantial bias: a problem which has no broadly applicable solution. Based on the idea that using differing genotyped SNP sets as inputs creates differential imputation errors and thus bias in the composite set of controls, we examined the degree to which each of the following occurs: (1) imputation based on the union of genotyped SNPs (i.e., SNPs available on one or more arrays) results in bias, as evidenced by spurious associations (type 1 error) between imputed genotypes and arbitrarily assigned case/control status; (2) imputation based on the intersection of genotyped SNPs (i.e., SNPs available on all arrays) does not evidence such bias; and (3) imputation quality varies by the size of the intersection of genotyped SNP sets. Imputations were conducted in European Americans and African Americans with reference to HapMap phase II and III data. Imputation based on the union of genotyped SNPs across the Illumina 1M and 550v3 arrays showed spurious associations for 0.2 % of SNPs: ~2,000 false positives per million SNPs imputed. Biases remained problematic for very similar arrays (550v1 vs. 550v3) and were substantial for dissimilar arrays (Illumina 1M vs. Affymetrix 6.0). In all instances, imputing based on the intersection of genotyped SNPs (as few as 30 % of the total SNPs genotyped) eliminated such bias while still achieving good imputation quality.

  6. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    NASA Astrophysics Data System (ADS)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  7. Analysis of Multi-Antenna GNSS Receiver Performance under Jamming Attacks.

    PubMed

    Vagle, Niranjana; Broumandan, Ali; Lachapelle, Gérard

    2016-11-17

    Although antenna array-based Global Navigation Satellite System (GNSS) receivers can be used to mitigate both narrowband and wideband electronic interference sources, measurement distortions induced by array processing methods are not suitable for high precision applications. The measurement distortions have an adverse effect on the carrier phase ambiguity resolution, affecting the navigation solution. Depending on the array attitude information availability and calibration parameters, different spatial processing methods can be implemented although they distort carrier phase measurements in some cases. This paper provides a detailed investigation of the effect of different array processing techniques on array-based GNSS receiver measurements and navigation performance. The main novelty of the paper is to provide a thorough analysis of array-based GNSS receivers employing different beamforming techniques from tracking to navigation solution. Two beamforming techniques, namely Power Minimization (PM) and Minimum Power Distortionless Response (MPDR), are being investigated. In the tracking domain, the carrier Doppler, Phase Lock Indicator (PLI), and Carrier-to-Noise Ratio (C/N₀) are analyzed. Pseudorange and carrier phase measurement distortions and carrier phase position performance are also evaluated. Performance analyses results from simulated GNSS signals and field tests are provided.

  8. Partition resampling and extrapolation averaging: approximation methods for quantifying gene expression in large numbers of short oligonucleotide arrays.

    PubMed

    Goldstein, Darlene R

    2006-10-01

    Studies of gene expression using high-density short oligonucleotide arrays have become a standard in a variety of biological contexts. Of the expression measures that have been proposed to quantify expression in these arrays, multi-chip-based measures have been shown to perform well. As gene expression studies increase in size, however, utilizing multi-chip expression measures is more challenging in terms of computing memory requirements and time. A strategic alternative to exact multi-chip quantification on a full large chip set is to approximate expression values based on subsets of chips. This paper introduces an extrapolation method, Extrapolation Averaging (EA), and a resampling method, Partition Resampling (PR), to approximate expression in large studies. An examination of properties indicates that subset-based methods can perform well compared with exact expression quantification. The focus is on short oligonucleotide chips, but the same ideas apply equally well to any array type for which expression is quantified using an entire set of arrays, rather than for only a single array at a time. Software implementing Partition Resampling and Extrapolation Averaging is under development as an R package for the BioConductor project.

  9. The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar

    DTIC Science & Technology

    2010-09-01

    adds an extra dimension to both IPS and other observations. The polarization of the CME synchrotron emission observed by [3] will be of great...base funding. 8. REFERENCES 1. Kassim et al., The 74 MHz System on the Very Large Array, The Astrophysical Journal Supplement Series, Vol. 172...The Long Wavelength Array (LWA): A Large HF/VHF Array for Solar Physics, Ionospheric Science, and Solar Radar Namir E. Kassim Naval Research

  10. Vision communications based on LED array and imaging sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  11. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    DOEpatents

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  12. Beam wander of coherent and partially coherent Airy beam arrays in a turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Wen, Wei; Jin, Ying; Hu, Mingjun; Liu, Xianlong; Cai, Yangjian; Zou, Chenjuan; Luo, Mi; Zhou, Liwang; Chu, Xiuxiang

    2018-05-01

    The beam wander properties of coherent and partially coherent Airy beam arrays in a turbulent atmosphere are investigated. Based on the analytical results, we find that the beam wander of partially coherent Airy beam arrays is significantly reduced compared with the wander of a partially coherent Airy beam by numerical simulation. Moreover, the beam wander of a 2 × 2 partially coherent Airy beam arrays is significantly reduced compared with the wander of a 2 × 2 partially coherent Gaussian beam arrays. By using the definition of beam wander arrays factor which is used to characterize the capability of beam arrays for reducing the beam wander effect compared with a single beam, we find that the arrays factor of partially coherent Airy beam arrays is significantly less than that of partially coherent Gaussian beam arrays with the same arrays order. We also find that an artificial reduction of the initial coherence of laser arrays can be used to decrease the beam wander effect. These results indicate that the partially coherent Airy beam arrays have potential applications in long-distance free-space optical communications.

  13. Nature-inspired optimization of quasicrystalline arrays and all-dielectric optical filters and metamaterials

    NASA Astrophysics Data System (ADS)

    Namin, Frank Farhad A.

    Quasicrystalline solids were first observed in nature in 1980s. Their lattice geometry is devoid of translational symmetry; however it possesses long-range order as well as certain orders of rotational symmetry forbidden by translational symmetry. Mathematically, such lattices are related to aperiodic tilings. Since their discovery there has been great interest in utilizing aperiodic geometries for a wide variety of electromagnetic (EM) and optical applications. The first thrust of this dissertation addresses applications of quasicrystalline geometries for wideband antenna arrays and plasmonic nano-spherical arrays. The first application considered is the design of suitable antenna arrays for micro-UAV (unmanned aerial vehicle) swarms based on perturbation of certain types of aperiodic tilings. Due to safety reasons and to avoid possible collision between micro-UAVs it is desirable to keep the minimum separation distance between the elements several wavelengths. As a result typical periodic planar arrays are not suitable, since for periodic arrays increasing the minimum element spacing beyond one wavelength will lead to the appearance of grating lobes in the radiation pattern. It will be shown that using this method antenna arrays with very wide bandwidths and low sidelobe levels can be designed. It will also be shown that in conjunction with a phase compensation method these arrays show a large degree of versatility to positional noise. Next aperiodic aggregates of gold nano-spheres are studied. Since traditional unit cell approaches cannot be used for aperiodic geometries, we start be developing new analytical tools for aperiodic arrays. A modified version of generalized Mie theory (GMT) is developed which defines scattering coefficients for aperiodic spherical arrays. Next two specific properties of quasicrystalline gold nano-spherical arrays are considered. The optical response of these arrays can be explained in terms of the grating response of the array (photonic resonance) and the plasmonic response of the spheres (plasmonic resonance). In particular the couplings between the photonic and plasmonic modes are studied. In periodic arrays this coupling leads to the formation of a so called photonic-plasmonic hybrid mode. The formation of hybrid modes is studied in quasicrystalline arrays. Quasicrystalline structures in essence possess several periodicities which in some cases can lead to the formation of multiple hybrid modes with wider bandwidths. It is also demonstrated that the performance of these arrays can be further enhanced by employing a perturbation method. The second property considered is local field enhancements in quasicrystalline arrays of gold nanospheres. It will be shown that despite a considerably smaller filling factor quasicrystalline arrays generate larger local field enhancements which can be even further enhanced by optimally placing perturbing spheres within the prototiles that comprise the aperiodic arrays. The second thrust of research in this dissertation focuses on designing all-dielectric filters and metamaterial coatings for the optical range. In higher frequencies metals tend to have a high loss and thus they are not suitable for many applications. Hence dielectrics are used for applications in optical frequencies. In particular we focus on designing two types of structures. First a near-perfect optical mirror is designed. The design is based on optimizing a subwavelength periodic dielectric grating to obtain appropriate effective parameters that will satisfy the desired perfect mirror condition. Second, a broadband anti-reflective all-dielectric grating with wide field of view is designed. The second design is based on a new computationally efficient genetic algorithm (GA) optimization method which shapes the sidewalls of the grating based on optimizing the roots of polynomial functions.

  14. Microwell Array Method for Rapid Generation of Uniform Agarose Droplets and Beads for Single Molecule Analysis.

    PubMed

    Li, Xingrui; Zhang, Dongfeng; Zhang, Huimin; Guan, Zhichao; Song, Yanling; Liu, Ruochen; Zhu, Zhi; Yang, Chaoyong

    2018-02-20

    Compartmentalization of aqueous samples in uniform emulsion droplets has proven to be a useful tool for many chemical, biological, and biomedical applications. Herein, we introduce an array-based emulsification method for rapid and easy generation of monodisperse agarose-in-oil droplets in a PDMS microwell array. The microwells are filled with agarose solution, and subsequent addition of hot oil results in immediate formation of agarose droplets due to the surface-tension of the liquid solution. Because droplet size is determined solely by the array unit dimensions, uniform droplets with preselectable diameters ranging from 20 to 100 μm can be produced with relative standard deviations less than 3.5%. The array-based droplet generation method was used to perform digital PCR for absolute DNA quantitation. The array-based droplet isolation and sol-gel switching property of agarose enable formation of stable beads by chilling the droplet array at -20 °C, thus, maintaining the monoclonality of each droplet and facilitating the selective retrieval of desired droplets. The monoclonality of droplets was demonstrated by DNA sequencing and FACS analysis, suggesting the robustness and flexibility of the approach for single molecule amplification and analysis. We believe our approach will lead to new possibilities for a great variety of applications, such as single-cell gene expression studies, aptamer selection, and oligonucleotide analysis.

  15. Fiber-array based optogenetic prosthetic system for stimulation therapy

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Cote, Chris; Tejeda, Hector; Mohanty, Samarendra

    2012-02-01

    Recent advent of optogenetics has enabled activation of genetically-targeted neuronal cells using low intensity blue light with high temporal precision. Since blue light is attenuated rapidly due to scattering and absorption in neural tissue, optogenetic treatment of neurological disorders may require stimulation of specific cell types in multiple regions of the brain. Further, restoration of certain neural functions (vision, and auditory etc) requires accurate spatio-temporal stimulation patterns rather than just precise temporal stimulation. In order to activate multiple regions of the central nervous system in 3D, here, we report development of an optogenetic prosthetic comprising of array of fibers coupled to independently-controllable LEDs. This design avoids direct contact of LEDs with the brain tissue and thus does not require electrical and heat isolation, which can non-specifically stimulate and damage the local brain regions. The intensity, frequency, and duty cycle of light pulses from each fiber in the array was controlled independently using an inhouse developed LabView based program interfaced with a microcontroller driving the individual LEDs. While the temporal profile of the light pulses was controlled by varying the current driving the LED, the beam profile emanating from each fiber tip could be sculpted by microfabrication of the fiber tip. The fiber array was used to stimulate neurons, expressing channelrhodopsin-2, in different locations within the brain or retina. Control of neural activity in the mice cortex, using the fiber-array based prosthetic, is evaluated from recordings made with multi-electrode array (MEA). We also report construction of a μLED array based prosthetic for spatio-temporal stimulation of cortex.

  16. MMW/THz imaging using upconversion to visible, based on glow discharge detector array and CCD camera

    NASA Astrophysics Data System (ADS)

    Aharon, Avihai; Rozban, Daniel; Abramovich, Amir; Yitzhaky, Yitzhak; Kopeika, Natan S.

    2017-10-01

    An inexpensive upconverting MMW/THz imaging method is suggested here. The method is based on glow discharge detector (GDD) and silicon photodiode or simple CCD/CMOS camera. The GDD was previously found to be an excellent room-temperature MMW radiation detector by measuring its electrical current. The GDD is very inexpensive and it is advantageous due to its wide dynamic range, broad spectral range, room temperature operation, immunity to high power radiation, and more. An upconversion method is demonstrated here, which is based on measuring the visual light emitting from the GDD rather than its electrical current. The experimental setup simulates a setup that composed of a GDD array, MMW source, and a basic CCD/CMOS camera. The visual light emitting from the GDD array is directed to the CCD/CMOS camera and the change in the GDD light is measured using image processing algorithms. The combination of CMOS camera and GDD focal plane arrays can yield a faster, more sensitive, and very inexpensive MMW/THz camera, eliminating the complexity of the electronic circuits and the internal electronic noise of the GDD. Furthermore, three dimensional imaging systems based on scanning prohibited real time operation of such imaging systems. This is easily solved and is economically feasible using a GDD array. This array will enable us to acquire information on distance and magnitude from all the GDD pixels in the array simultaneously. The 3D image can be obtained using methods like frequency modulation continuous wave (FMCW) direct chirp modulation, and measuring the time of flight (TOF).

  17. Coherent optical monolithic phased-array antenna steering system

    DOEpatents

    Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.

    1994-01-01

    An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.

  18. View of Face A and Face B Arrays, looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Face A and Face B Arrays, looking northeast - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  19. Progress and prospects of silicon-based design for optical phased array

    NASA Astrophysics Data System (ADS)

    Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie

    2016-03-01

    The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.

  20. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices.

    PubMed

    Adamson, David N; Mustafi, Debarshi; Zhang, John X J; Zheng, Bo; Ismagilov, Rustem F

    2006-09-01

    This paper reports a method for the production of arrays of nanolitre plugs with distinct chemical compositions. One of the primary constraints on the use of plug-based microfluidics for large scale biological screening is the difficulty of fabricating arrays of chemically distinct plugs on the nanolitre scale. Here, using microfluidic devices with several T-junctions linked in series, a single input array of large (approximately 320 nL) plugs was split to produce 16 output arrays of smaller (approximately 20 nL) plugs; the composition and configuration of these arrays were identical to that of the input. This paper shows how the passive break-up of plugs in T-junction microchannel geometries can be used to produce a set of smaller-volume output arrays useful for chemical screening from a single large-volume array. A simple theoretical description is presented to describe splitting as a function of the Capillary number, the capillary pressure, the total pressure difference across the channel, and the geometric fluidic resistance. By accounting for these considerations, plug coalescence and plug-plug contamination can be eliminated from the splitting process and the symmetry of splitting can be preserved. Furthermore, single-outlet splitting devices were implemented with both valve- and volume-based methods for coordinating the release of output arrays. Arrays of plugs containing commercial sparse matrix screens were obtained from the presented splitting method and these arrays were used in protein crystallization trials. The techniques presented in this paper may facilitate the implementation of high-throughput chemical and biological screening.

  1. Highly efficient and completely flexible fiber-shaped dye-sensitized solar cell based on TiO2 nanotube array.

    PubMed

    Lv, Zhibin; Yu, Jiefeng; Wu, Hongwei; Shang, Jian; Wang, Dan; Hou, Shaocong; Fu, Yongping; Wu, Kai; Zou, Dechun

    2012-02-21

    A type of highly efficient completely flexible fiber-shaped solar cell based on TiO(2) nanotube array is successfully prepared. Under air mass 1.5G (100 mW cm(-2)) illumination conditions, the photoelectric conversion efficiency of the solar cell approaches 7%, the highest among all fiber-shaped cells based on TiO(2) nanotube arrays and the first completely flexible fiber-shaped DSSC. The fiber-shaped solar cell demonstrates good flexibility, which makes it suitable for modularization using weaving technologies. This journal is © The Royal Society of Chemistry 2012

  2. Growth of GaN micro/nanolaser arrays by chemical vapor deposition.

    PubMed

    Liu, Haitao; Zhang, Hanlu; Dong, Lin; Zhang, Yingjiu; Pan, Caofeng

    2016-09-02

    Optically pumped ultraviolet lasing at room temperature based on GaN microwire arrays with Fabry-Perot cavities is demonstrated. GaN microwires have been grown perpendicularly on c-GaN/sapphire substrates through simple catalyst-free chemical vapor deposition. The GaN microwires are [0001] oriented single-crystal structures with hexagonal cross sections, each with a diameter of ∼1 μm and a length of ∼15 μm. A possible growth mechanism of the vertical GaN microwire arrays is proposed. Furthermore, we report room-temperature lasing in optically pumped GaN microwire arrays based on the Fabry-Perot cavity. Photoluminescence spectra exhibit lasing typically at 372 nm with an excitation threshold of 410 kW cm(-2). The result indicates that these aligned GaN microwire arrays may offer promising prospects for ultraviolet-emitting micro/nanodevices.

  3. DNA detection on ultrahigh-density optical fiber-based nanoarrays.

    PubMed

    Tam, Jenny M; Song, Linan; Walt, David R

    2009-04-15

    Nanoarrays for DNA detection were fabricated on etched nanofiber bundles based on recently developed techniques for microscale arrays. Two different-sized nanoarrays were created: one with 700 nm feature sizes and a 1 microm center-to-center pitch (approximately 1x10(6) array elements/mm(2)) and one with 300 nm feature sizes and a 500 nm center-to-center pitch (4.6x10(6) array elements/mm(2)). A random, multiplexed array composed of oligonucleotide-functionalized nanospheres was constructed and used for parallel detection and analysis of fluorescently labeled DNA targets. We have used these arrays to detect a variety of target sequences including Bacillus thuringiensis kurstaki and vaccina virus sequences, two potential biowarfare agents, as well as interleukin-2 sequences, an immune system modulator that has been used for the diagnosis of HIV.

  4. Commerical (terrestrial) and modified solar array design studies for low cost, low power space applications

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Riley, T. J.

    1980-01-01

    The suitability of commercial (terrestrial) solar arrays for use in low Earth orbit is examined. It is shown that commercial solar arrays degrade under thermal cycling because of material flexure, and that certain types of silicones used in the construction of these arrays outgas severely. Based on the results, modifications were made. The modified array retains the essential features of typical commercial arrays and can be easily built by commercial fabrication techniques at low cost. The modified array uses a metal tray for containment, but eliminates the high outgassing potting materials and glass cover sheets. Cells are individually mounted with an adhesive and individually covered with glass cover slips, or clear plastic tape. The modified array is found to withstand severe thermal cycling for long intervals of time.

  5. Highly selective gas sensor arrays based on thermally reduced graphene oxide.

    PubMed

    Lipatov, Alexey; Varezhnikov, Alexey; Wilson, Peter; Sysoev, Victor; Kolmakov, Andrei; Sinitskii, Alexander

    2013-06-21

    The electrical properties of reduced graphene oxide (rGO) have been previously shown to be very sensitive to surface adsorbates, thus making rGO a very promising platform for highly sensitive gas sensors. However, poor selectivity of rGO-based gas sensors remains a major problem for their practical use. In this paper, we address the selectivity problem by employing an array of rGO-based integrated sensors instead of focusing on the performance of a single sensing element. Each rGO-based device in such an array has a unique sensor response due to the irregular structure of rGO films at different levels of organization, ranging from nanoscale to macroscale. The resulting rGO-based gas sensing system could reliably recognize analytes of nearly the same chemical nature. In our experiments rGO-based sensor arrays demonstrated a high selectivity that was sufficient to discriminate between different alcohols, such as methanol, ethanol and isopropanol, at a 100% success rate. We also discuss a possible sensing mechanism that provides the basis for analyte differentiation.

  6. Fabrication of arrayed Si nanowire-based nano-floating gate memory devices on flexible plastics.

    PubMed

    Yoon, Changjoon; Jeon, Youngin; Yun, Junggwon; Kim, Sangsig

    2012-01-01

    Arrayed Si nanowire (NW)-based nano-floating gate memory (NFGM) devices with Pt nanoparticles (NPs) embedded in Al2O3 gate layers are successfully constructed on flexible plastics by top-down approaches. Ten arrayed Si NW-based NFGM devices are positioned on the first level. Cross-linked poly-4-vinylphenol (PVP) layers are spin-coated on them as isolation layers between the first and second level, and another ten devices are stacked on the cross-linked PVP isolation layers. The electrical characteristics of the representative Si NW-based NFGM devices on the first and second levels exhibit threshold voltage shifts, indicating the trapping and detrapping of electrons in their NPs nodes. They have an average threshold voltage shift of 2.5 V with good retention times of more than 5 x 10(4) s. Moreover, most of the devices successfully retain their electrical characteristics after about one thousand bending cycles. These well-arrayed and stacked Si NW-based NFGM devices demonstrate the potential of nanowire-based devices for large-scale integration.

  7. A novel ULA-based geometry for improving AOA estimation

    NASA Astrophysics Data System (ADS)

    Shirvani-Moghaddam, Shahriar; Akbari, Farida

    2011-12-01

    Due to relatively simple implementation, Uniform Linear Array (ULA) is a popular geometry for array signal processing. Despite this advantage, it does not have a uniform performance in all directions and Angle of Arrival (AOA) estimation performance degrades considerably in the angles close to endfire. In this article, a new configuration is proposed which can solve this problem. Proposed Array (PA) configuration adds two elements to the ULA in top and bottom of the array axis. By extending signal model of the ULA to the new proposed ULA-based array, AOA estimation performance has been compared in terms of angular accuracy and resolution threshold through two well-known AOA estimation algorithms, MUSIC and MVDR. In both algorithms, Root Mean Square Error (RMSE) of the detected angles descends as the input Signal to Noise Ratio (SNR) increases. Simulation results show that the proposed array geometry introduces uniform accurate performance and higher resolution in middle angles as well as border ones. The PA also presents less RMSE than the ULA in endfire directions. Therefore, the proposed array offers better performance for the border angles with almost the same array size and simplicity in both MUSIC and MVDR algorithms with respect to the conventional ULA. In addition, AOA estimation performance of the PA geometry is compared with two well-known 2D-array geometries: L-shape and V-shape, and acceptable results are obtained with equivalent or lower complexity.

  8. Development of a poly(dimethylacrylamide) based matrix material for solid phase high density peptide array synthesis employing a laser based material transfer

    NASA Astrophysics Data System (ADS)

    Ridder, Barbara; Foertsch, Tobias C.; Welle, Alexander; Mattes, Daniela S.; von Bojnicic-Kninski, Clemens M.; Loeffler, Felix F.; Nesterov-Mueller, Alexander; Meier, Michael A. R.; Breitling, Frank

    2016-12-01

    Poly(dimethylacrylamide) (PDMA) based matrix materials were developed for laser-based in situ solid phase peptide synthesis to produce high density arrays. In this specific array synthesis approach, amino acid derivatives are embedded into a matrix material, serving as a ;solid; solvent material at room temperature. Then, a laser pulse transfers this mixture to the target position on a synthesis slide, where the peptide array is synthesized. Upon heating above the glass transition temperature of the matrix material, it softens, allowing diffusion of the amino acid derivatives to the synthesis surface and serving as a solvent for peptide bond formation. Here, we synthesized PDMA six-arm star polymers, offering the desired matrix material properties, using atom transfer radical polymerization. With the synthesized polymers as matrix material, we structured and synthesized arrays with combinatorial laser transfer. With densities of up to 20,000 peptide spots per cm2, the resolution could be increased compared to the commercially available standard matrix material. Time-of-Flight Secondary Ion Mass Spectrometry experiments revealed the penetration behavior of an amino acid derivative into the prepared acceptor synthesis surface and the effectiveness of the washing protocols.

  9. Ultrasound therapy transducers with space-filling non-periodic arrays.

    PubMed

    Raju, Balasundar I; Hall, Christopher S; Seip, Ralf

    2011-05-01

    Ultrasound transducers designed for therapeutic purposes such as tissue ablation, histotripsy, or drug delivery require large apertures for adequate spatial localization while providing sufficient power and steerability without the presence of secondary grating lobes. In addition, it is highly preferred to minimize the total number of channels and to maintain simplicity in electrical matching network design. To this end, we propose array designs that are both space-filling and non-periodic in the placement of the elements. Such array designs can be generated using the mathematical concept of non-periodic or aperiodic tiling (tessellation) and can lead to reduced grating lobes while maintaining full surface area coverage to deliver maximum power. For illustration, we designed two 2-D space-filling therapeutic arrays with 128 elements arranged on a spherical shell. One was based on the two-shape Penrose rhombus tiling, and the other was based on a single rectangular shape arranged non-periodically. The steerability performance of these arrays was studied using acoustic field simulations. For comparison, we also studied two other arrays, one with circular elements distributed randomly, and the other a periodic array with square elements. Results showed that the two space-filling non-periodic arrays were able to steer to treat a volume of 16 x 16 x 20 mm while ensuring that the grating lobes were under -10 dB compared with the main lobe. The rectangular non-periodic array was able to generate two and half times higher power than the random circles array. The rectangular array was then fabricated by patterning the array using laser scribing methods and its steerability performance was validated using hydrophone measurements. This work demonstrates that the concept of space-filling aperiodic/non-periodic tiling can be used to generate therapy arrays that are able to provide higher power for the same total transducer area compared with random arrays while maintaining acceptable grating lobe levels.

  10. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    PubMed Central

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  11. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    PubMed

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  12. High-density, microsphere-based fiber optic DNA microarrays.

    PubMed

    Epstein, Jason R; Leung, Amy P K; Lee, Kyong Hoon; Walt, David R

    2003-05-01

    A high-density fiber optic DNA microarray has been developed consisting of oligonucleotide-functionalized, 3.1-microm-diameter microspheres randomly distributed on the etched face of an imaging fiber bundle. The fiber bundles are comprised of 6000-50000 fused optical fibers and each fiber terminates with an etched well. The microwell array is capable of housing complementary-sized microspheres, each containing thousands of copies of a unique oligonucleotide probe sequence. The array fabrication process results in random microsphere placement. Determining the position of microspheres in the random array requires an optical encoding scheme. This array platform provides many advantages over other array formats. The microsphere-stock suspension concentration added to the etched fiber can be controlled to provide inherent sensor redundancy. Examining identical microspheres has a beneficial effect on the signal-to-noise ratio. As other sequences of interest are discovered, new microsphere sensing elements can be added to existing microsphere pools and new arrays can be fabricated incorporating the new sequences without altering the existing detection capabilities. These microarrays contain the smallest feature sizes (3 microm) of any DNA array, allowing interrogation of extremely small sample volumes. Reducing the feature size results in higher local target molecule concentrations, creating rapid and highly sensitive assays. The microsphere array platform is also flexible in its applications; research has included DNA-protein interaction profiles, microbial strain differentiation, and non-labeled target interrogation with molecular beacons. Fiber optic microsphere-based DNA microarrays have a simple fabrication protocol enabling their expansion into other applications, such as single cell-based assays.

  13. General MoM Solutions for Large Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasenfest, B; Capolino, F; Wilton, D R

    2003-07-22

    This paper focuses on a numerical procedure that addresses the difficulties of dealing with large, finite arrays while preserving the generality and robustness of full-wave methods. We present a fast method based on approximating interactions between sufficiently separated array elements via a relatively coarse interpolation of the Green's function on a uniform grid commensurate with the array's periodicity. The interaction between the basis and testing functions is reduced to a three-stage process. The first stage is a projection of standard (e.g., RWG) subdomain bases onto a set of interpolation functions that interpolate the Green's function on the array face. Thismore » projection, which is used in a matrix/vector product for each array cell in an iterative solution process, need only be carried out once for a single cell and results in a low-rank matrix. An intermediate stage matrix/vector product computation involving the uniformly sampled Green's function is of convolutional form in the lateral (transverse) directions so that a 2D FFT may be used. The final stage is a third matrix/vector product computation involving a matrix resulting from projecting testing functions onto the Green's function interpolation functions; the low-rank matrix is either identical to (using Galerkin's method) or similar to that for the bases projection. An effective MoM solution scheme is developed for large arrays using a modification of the AIM (Adaptive Integral Method) method. The method permits the analysis of arrays with arbitrary contours and nonplanar elements. Both fill and solve times within the MoM method are improved with respect to more standard MoM solvers.« less

  14. Successful Mars remote sensors, MO THEMIS and MER Mini-TES

    NASA Astrophysics Data System (ADS)

    Silverman, Steven; Christensen, Phil

    2006-10-01

    This paper describes results of the calibration of the miniature thermal emission spectrometer (Mini-TES) and the thermal emission imaging system (THEMIS) built by Raytheon Santa Barbara Remote Sensing (SBRS) under contract to Arizona State University (ASU). This paper also serves as an update to an earlier paper (Silverman et al., 2003) for mission description and instrument designs (Schueler et al., 2003). A major goal of the Mars exploration program is to help determine whether life ever existed on Mars via detailed in situ studies and surface sample return. It is essential to identify landing sites with the highest probability of containing samples indicative of early pre-biotic or biotic environments. Of particular interest are aqueous and/or hydrothermal environments in which life could have existed, or regions of current near-surface water or heat sources [Exobiology_Working_Group, 1995, An Exobiological Strategy for Mars Exploration, NASA Headquarters]. The search requires detailed geologic mapping and accurate interpretations of site composition and history in a global context. THEMIS and Mini-TES were designed to do this and builds upon a wealth of data from previous experiments. Previous experiments include the Mariner 6/7 Mars infrared radiometer (MIR) and infrared spectrometer [G.C. Pimentel, P.B. Forney, K.C. Herr, Evidence about hydrate and solid water in the martian surface from the 1969 Mariner infrared spectrometer, Journal of Geophysical Research 79(11) (1974) 1623 1634], the Mariner 9 infrared interferometer spectrometer (IRIS) [B. Conrath, R. Curran, R. Hanel, V. Kunde, W. Maguire, J. Pearl, J. Pirraglia, J. Walker, Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9, Journal of Geophysical Research 78 (1973) 4267 4278], the Viking infrared thermal mapper (IRTM) [H.H. Kieffer, T.Z. Martin, A.R. Peterfreund, B.M. Jakosky, E.D. Miner, F.D. Palluconi, Thermal and albedo mapping of Mars during the Viking primary mission, Journal of Geophysical Research 82 (1977) 4249 4292], the Phobos Termoscan [A.S. Selivanov, M.K. Naraeva, A.S. Panfilov, Y.M. Gektin, V.D. Kharlamov, A.V. Romanov, D.A. Fomin, Y.Y. Miroshnichenko, Thermal imaging of the surface of Mars, Nature, 341 (1989) 593 595], and the continuing Mars global surveyor (MGS) mission using the Mars orbiter camera (MOC) [M.C. Malin, K.S. Edgett, Mars global surveyor Mars orbiter camera: interplanetary cruise through primary mission, Journal of Geophysical Research 106 (2001) 23, 429 23, 570] and MGS thermal emission spectrometer (TES) [P.R. Christensen, J.L. Bandfield, V.E. Hamilton, S.W. Ruff, H.H. Kieffer, T. Titus, M.C. Malin, R.V. Morris, M.D. Lane, R.N. Clark, B.M. Jakosky, M.T. Mellon, J.C. Pearl, B.J. Conrath, M.D. Smith, R.T. Clancy, R.O. Kuzmin, T. Roush, G.L. Mehall, N. Gorelick, K. Bender, K. Murray, S. Dason, E. Greene, S.H. Silverman, M. Greenfield, The Mars global surveyor thermal emission spectrometer experiment: investigation description and surface science results, Journal of Geophysical Research 106 (2001a) 23, 823 23, 871]. TES has collected hyperspectral images (up to 286 spectral bands from 6 50μm) of the entire martian surface, providing an initial global reconnaissance of mineralogy and thermophysical properties [J.L. Bandfield, Global mineral distributions on Mars, Journal of Geophysical Research 107 (2002) 10.1029/2001JE001510; S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: particle size and mineralogical characteristics based on thermal emission spectrometer data, Journal of Geophysical Research, 2002, in press]. By covering the key 6.3 15.0μm region in both TES and THEMIS, it is possible to combine TES fine spectral resolution with THEMIS fine spatial resolution to achieve a global mineralogic inventory at the spatial scales necessary for detailed geologic studies within the Odyssey data resources. Mini-TES is a single detector Fourier transform spectrometer (FTS), covering the spectral range 5 29μm at 10cm spectral resolution. Launched in June 2003, one Mini-TES instrument will fly to Mars aboard each of the two missions of NASA's Mars Exploration Rover Project (MER), named Spirit and Opportunity. The first Mini-TES unit was required to meet a two-year development schedule with proven, flight-tested instrumentation. Therefore, SBRS designed Mini-TES based on proven heritage from the successful MGS TES. THEMIS is based on “bolt-together” pushbroom optics and uncooled silicon microbolometer focal plane array (FPA) technology. Sometimes dubbed “Mars Landsat,” THEMIS was launched in 2001 on Mars Odyssey, and provides guidance for future lander missions now in preparation for launch. Advanced materials and optical machining allow THEMIS low-scatter, reflective, wide field-of-view (WFOV) pushbroom optics for relatively long dwell-time compared to narrow FOV optics requiring cross-track scanning for equivalent spatial resolution. This allows uncooled silicon microbolometer FPAs, with less signal sensitivity than cryogenically cooled photo-diode FPAs, to meet the THEMIS sensitivity requirements. Instrument design, performance, integration, as well as details of the calibration are discussed. Full instrument and calibration details are available in the Journal of Geophysical Research Mini-TES and THEMIS papers by Christensen et al.

  15. Detail of array panels, Face B, with active and terminated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of array panels, Face B, with active and terminated dipole elements - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  16. Imaging optical sensor arrays.

    PubMed

    Walt, David R

    2002-10-01

    Imaging optical fibres have been etched to prepare microwell arrays. These microwells have been loaded with sensing materials such as bead-based sensors and living cells to create high-density sensor arrays. The extremely small sizes and volumes of the wells enable high sensitivity and high information content sensing capabilities.

  17. The Engineering Development Array: A Low Frequency Radio Telescope Utilising SKA Precursor Technology

    NASA Astrophysics Data System (ADS)

    Wayth, Randall; Sokolowski, Marcin; Booler, Tom; Crosse, Brian; Emrich, David; Grootjans, Robert; Hall, Peter J.; Horsley, Luke; Juswardy, Budi; Kenney, David; Steele, Kim; Sutinjo, Adrian; Tingay, Steven J.; Ung, Daniel; Walker, Mia; Williams, Andrew; Beardsley, A.; Franzen, T. M. O.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Pallot, D.; Trott, C. M.; Wu, C.

    2017-08-01

    We describe the design and performance of the Engineering Development Array, which is a low-frequency radio telescope comprising 256 dual-polarisation dipole antennas working as a phased array. The Engineering Development Array was conceived of, developed, and deployed in just 18 months via re-use of Square Kilometre Array precursor technology and expertise, specifically from the Murchison Widefield Array radio telescope. Using drift scans and a model for the sky brightness temperature at low frequencies, we have derived the Engineering Development Array's receiver temperature as a function of frequency. The Engineering Development Array is shown to be sky-noise limited over most of the frequency range measured between 60 and 240 MHz. By using the Engineering Development Array in interferometric mode with the Murchison Widefield Array, we used calibrated visibilities to measure the absolute sensitivity of the array. The measured array sensitivity matches very well with a model based on the array layout and measured receiver temperature. The results demonstrate the practicality and feasibility of using Murchison Widefield Array-style precursor technology for Square Kilometre Array-scale stations. The modular architecture of the Engineering Development Array allows upgrades to the array to be rolled out in a staged approach. Future improvements to the Engineering Development Array include replacing the second stage beamformer with a fully digital system, and to transition to using RF-over-fibre for the signal output from first stage beamformers.

  18. The Use of a Microcomputer Based Array Processor for Real Time Laser Velocimeter Data Processing

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1990-01-01

    The application of an array processor to laser velocimeter data processing is presented. The hardware is described along with the method of parallel programming required by the array processor. A portion of the data processing program is described in detail. The increase in computational speed of a microcomputer equipped with an array processor is illustrated by comparative testing with a minicomputer.

  19. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  20. Floating gate memory with charge storage dots array formed by Dps protein modified with site-specific binding peptides

    NASA Astrophysics Data System (ADS)

    Kamitake, Hiroki; Uenuma, Mutsunori; Okamoto, Naofumi; Horita, Masahiro; Ishikawa, Yasuaki; Yamashita, Ichro; Uraoka, Yukiharu

    2015-05-01

    We report a nanodot (ND) floating gate memory (NFGM) with a high-density ND array formed by a biological nano process. We utilized two kinds of cage-shaped proteins displaying SiO2 binding peptide (minTBP-1) on their outer surfaces: ferritin and Dps, which accommodate cobalt oxide NDs in their cavities. The diameters of the cobalt NDs were regulated by the cavity sizes of the proteins. Because minTBP-1 is strongly adsorbed on the SiO2 surface, high-density cobalt oxide ND arrays were obtained by a simple spin coating process. The densities of cobalt oxide ND arrays based on ferritin and Dps were 6.8 × 1011 dots cm-2 and 1.2 × 1012 dots cm-2, respectively. After selective protein elimination and embedding in a metal-oxide-semiconductor (MOS) capacitor, the charge capacities of both ND arrays were evaluated by measuring their C-V characteristics. The MOS capacitor embedded with the Dps ND array showed a wider memory window than the device embedded with the ferritin ND array. Finally, we fabricated an NFGM with a high-density ND array based on Dps, and confirmed its competent writing/erasing characteristics and long retention time.

  1. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  2. Crosstalk analyse of DFB fiber laser hydrophone array based on time division multiplexing

    NASA Astrophysics Data System (ADS)

    Li, Yu; Huang, Junbin; Gu, Hongcan; Tang, Bo; Wu, Jing

    2014-12-01

    In this paper, the crosstalk of a time division multiplexed (TDM) system of distributed feedback (DFB) fiber laser (FL)hydrophones based on optical switch using Phase Generated Carrier (PGC) method was quantitatively analyzed. After mathematical deduction, the relationship among crosstalk, multiplexing scale and extinction ratio of optical switch was given. The simulation results show that to realize a TDM system of DFB fiber laser hydrophones with crosstalk lower than -40dB, the average extinction ratio should be higher than 24.78dB for a 4- channel system, while higher than 28.45dB for an 8- channel system. Two experiments to analyze the array crosstalk to a certain channel in an 8- channel array were conducted in this paper. Firstly, by testing the powers of leak laser to a certain channel from others, the array crosstalk to this channel was obtained according to the equation mathematically deduced in this paper. The result shows the array crosstalk to a certain channel of the 8-channel array was -7.6dB. An experiment of underwater acoustic detection was carried out finally to get the real array crosstalk to this certain channel, and the experimental result shows that the array crosstalk to this channel is -8.8dB, which is close to the calculated result.

  3. Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis.

    PubMed

    Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen

    2015-11-01

    Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.

  4. Security enhancement of optical encryption based on biometric array keys

    NASA Astrophysics Data System (ADS)

    Yan, Aimin; Wei, Yang; Zhang, Jingtao

    2018-07-01

    A novel optical image encryption method is proposed by using Dammann grating and biometric array keys. Dammann grating is utilized to create a 2D finite uniform-intensity spot array. In encryption, a fingerprint array is used as private encryption keys. An original image can be encrypted by a scanning Fresnel zone plate array. Encrypted signals are processed by an optical coherent heterodyne detection system. Biometric array keys and optical scanning cryptography are integrated with each other to enhance information security greatly. Numerical simulations are performed to demonstrate the feasibility and validity of this method. Analyses on key sensitivity and the resistance against to possible attacks are provided.

  5. Low bandgap mid-infrared thermophotovoltaic arrays based on InAs

    NASA Astrophysics Data System (ADS)

    Krier, A.; Yin, M.; Marshall, A. R. J.; Kesaria, M.; Krier, S. E.; McDougall, S.; Meredith, W.; Johnson, A. D.; Inskip, J.; Scholes, A.

    2015-11-01

    We demonstrate the first low bandgap thermophotovoltaic (TPV) arrays capable of operating with heat sources at temperatures as low as 345 °C, which is the lowest ever reported. The individual array elements are based on narrow band gap InAs/InAs0.61Sb0.13P0.26 photodiode structures. External power conversion efficiency was measured to be ∼3% from a single element at room temperature, using a black body at 950 °C. Both 25-element and 65-element arrays were fabricated and exhibited a TPV response at different source temperatures in the range 345-950 °C suitable for electricity generation from waste heat and other applications.

  6. Nanoband array electrode as a platform for high sensitivity enzyme-based glucose biosensing.

    PubMed

    Falk, Magnus; Sultana, Reshma; Swann, Marcus J; Mount, Andrew R; Freeman, Neville J

    2016-12-01

    We describe a novel glucose biosensor based on a nanoband array electrode design, manufactured using standard semiconductor processing techniques, and bio-modified with glucose oxidase immobilized at the nanoband electrode surface. The nanoband array architecture allows for efficient diffusion of glucose and oxygen to the electrode, resulting in a thousand-fold improvement in sensitivity and wide linear range compared to a conventional electrode. The electrode constitutes a robust and manufacturable sensing platform. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Design, implementation and investigation of an image guide-based optical flip-flop array

    NASA Technical Reports Server (NTRS)

    Griffith, P. C.

    1987-01-01

    Presented is the design for an image guide-based optical flip-flop array created using a Hughes liquid crystal light valve and a flexible image guide in a feedback loop. This design is used to investigate the application of image guides as a communication mechanism in numerical optical computers. It is shown that image guides can be used successfully in this manner but mismatch match between the input and output fiber arrays is extremely limiting.

  8. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off.

    PubMed

    Kim, Seungjun; Son, Jung Hwan; Lee, Seung Hyun; You, Byoung Kuk; Park, Kwi-Il; Lee, Hwan Keon; Byun, Myunghwan; Lee, Keon Jae

    2014-11-26

    Crossbar-structured memory comprising 32 × 32 arrays with one selector-one resistor (1S-1R) components are initially fabricated on a rigid substrate. They are transferred without mechanical damage via an inorganic-based laser lift-off (ILLO) process as a result of laser-material interaction. Addressing tests of the transferred memory arrays are successfully performed to verify mitigation of cross-talk on a plastic substrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Analog 65/130 nm CMOS 5 GHz Sub-Arrays with ROACH-2 FPGA Beamformers for Hybrid Aperture-Array Receivers

    DTIC Science & Technology

    2017-03-20

    sub-array, which is based on all-pass filters (APFs) is realized using 130 nm CMOS technology. Approximate- discrete Fourier transform (a-DFT...fixed beams are directed at known directions [9]. The proposed approximate- discrete Fourier transform (a-DFT) based multi-beamformer [9] yields L...to digital conversion daughter board. occurs in the discrete time domain (in ROACH-2 FPGA platform) following signal digitization (see Figs. 1(d) and

  10. Graphene fixed-end beam arrays based on mechanical exfoliation

    NASA Astrophysics Data System (ADS)

    Li, Peng; You, Zheng; Haugstad, Greg; Cui, Tianhong

    2011-06-01

    A low-cost mechanical exfoliation method is presented to transfer graphite to graphene for free-standing beam arrays. Nickel film or photoresist is used to peel off and transfer patterned single-layer or multilayer graphene onto substrates with macroscopic continuity. Free-standing graphene beam arrays are fabricated on both silicon and polymer substrates. Their mechanical properties are studied by atomic force microscopy. Finally, a graphene based radio frequency switch is demonstrated, with its pull-in voltage and graphene-silicon junction investigated.

  11. High-power arrays of quantum cascade laser master-oscillator power-amplifiers.

    PubMed

    Rauter, Patrick; Menzel, Stefan; Goyal, Anish K; Wang, Christine A; Sanchez, Antonio; Turner, George; Capasso, Federico

    2013-02-25

    We report on multi-wavelength arrays of master-oscillator power-amplifier quantum cascade lasers operating at wavelengths between 9.2 and 9.8 μm. All elements of the high-performance array feature longitudinal (spectral) as well as transverse single-mode emission at peak powers between 2.7 and 10 W at room temperature. The performance of two arrays that are based on different seed-section designs is thoroughly studied and compared. High output power and excellent beam quality render the arrays highly suitable for stand-off spectroscopy applications.

  12. At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana

    PubMed Central

    Laubinger, Sascha; Zeller, Georg; Henz, Stefan R; Sachsenberg, Timo; Widmer, Christian K; Naouar, Naïra; Vuylsteke, Marnik; Schölkopf, Bernhard; Rätsch, Gunnar; Weigel, Detlef

    2008-01-01

    Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays. Here, we describe a comprehensive expression atlas, Arabidopsis thaliana Tiling Array Express (At-TAX), which is based on whole-genome tiling arrays. We demonstrate that tiling arrays are accurate tools for gene expression analysis and identified more than 1,000 unannotated transcribed regions. Visualizations of gene expression estimates, transcribed regions, and tiling probe measurements are accessible online at the At-TAX homepage. PMID:18613972

  13. Looking northwest, Face B Array to left, Face C (rear) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking northwest, Face B Array to left, Face C (rear) center, Power Plant (Building 5761), to right - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  14. Prenatal diagnosis of chromosomal abnormalities using array-based comparative genomic hybridization

    USDA-ARS?s Scientific Manuscript database

    This study was designed to evaluate the feasibility of using a targeted array-CGH strategy for prenatal diagnosis of genomic imbalances in a clinical setting of current pregnancies. Women undergoing prenatal diagnosis were counseled and offered array-CGH (BCM V4.0) in addition to routine chromosome ...

  15. Conductance based characterization of structure and hopping site density in 2D molecule-nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    McCold, Cliff E.; Fu, Qiang; Howe, Jane Y.; Hihath, Joshua

    2015-09-01

    Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems.Composite molecule-nanoparticle hybrid systems have recently emerged as important materials for applications ranging from chemical sensing to nanoscale electronics. However, creating reproducible and repeatable composite materials with precise properties has remained one of the primary challenges to the implementation of these technologies. Understanding the sources of variation that dominate the assembly and transport behavior is essential for the advancement of nanoparticle-array based devices. In this work, we use a combination of charge-transport measurements, electron microscopy, and optical characterization techniques to determine the role of morphology and structure on the charge transport properties of 2-dimensional monolayer arrays of molecularly-interlinked Au nanoparticles. Using these techniques we are able to determine the role of both assembly-dependent and particle-dependent defects on the conductivities of the films. These results demonstrate that assembly processes dominate the dispersion of conductance values, while nanoparticle and ligand features dictate the mean value of the conductance. By performing a systematic study of the conductance of these arrays as a function of nanoparticle size we are able to extract the carrier mobility for specific molecular ligands. We show that nanoparticle polydispersity correlates with the void density in the array, and that because of this correlation it is possible to accurately determine the void density within the array directly from conductance measurements. These results demonstrate that conductance-based measurements can be used to accurately and non-destructively determine the morphological and structural properties of these hybrid arrays, and thus provide a characterization platform that helps move 2-dimensional nanoparticle arrays toward robust and reproducible electronic systems. Electronic supplementary information (ESI) available: Temperature dependent measurements, activation energies, particle size distributions, void density-polydispersity relation, and DLS data. See DOI: 10.1039/c5nr04460j

  16. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    PubMed

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.

  17. Scene-based nonuniformity correction for focal plane arrays by the method of the inverse covariance form.

    PubMed

    Torres, Sergio N; Pezoa, Jorge E; Hayat, Majeed M

    2003-10-10

    What is to our knowledge a new scene-based algorithm for nonuniformity correction in infrared focal-plane array sensors has been developed. The technique is based on the inverse covariance form of the Kalman filter (KF), which has been reported previously and used in estimating the gain and bias of each detector in the array from scene data. The gain and the bias of each detector in the focal-plane array are assumed constant within a given sequence of frames, corresponding to a certain time and operational conditions, but they are allowed to randomly drift from one sequence to another following a discrete-time Gauss-Markov process. The inverse covariance form filter estimates the gain and the bias of each detector in the focal-plane array and optimally updates them as they drift in time. The estimation is performed with considerably higher computational efficiency than the equivalent KF. The ability of the algorithm in compensating for fixed-pattern noise in infrared imagery and in reducing the computational complexity is demonstrated by use of both simulated and real data.

  18. Analytical Devices Based on Direct Synthesis of DNA on Paper.

    PubMed

    Glavan, Ana C; Niu, Jia; Chen, Zhen; Güder, Firat; Cheng, Chao-Min; Liu, David; Whitesides, George M

    2016-01-05

    This paper addresses a growing need in clinical diagnostics for parallel, multiplex analysis of biomarkers from small biological samples. It describes a new procedure for assembling arrays of ssDNA and proteins on paper. This method starts with the synthesis of DNA oligonucleotides covalently linked to paper and proceeds to assemble microzones of DNA-conjugated paper into arrays capable of simultaneously capturing DNA, DNA-conjugated protein antigens, and DNA-conjugated antibodies. The synthesis of ssDNA oligonucleotides on paper is convenient and effective with 32% of the oligonucleotides cleaved and eluted from the paper substrate being full-length by HPLC for a 32-mer. These ssDNA arrays can be used to detect fluorophore-linked DNA oligonucleotides in solution, and as the basis for DNA-directed assembly of arrays of DNA-conjugated capture antibodies on paper, detect protein antigens by sandwich ELISAs. Paper-anchored ssDNA arrays with different sequences can be used to assemble paper-based devices capable of detecting DNA and antibodies in the same device and enable simple microfluidic paper-based devices.

  19. EOL performance comparison of GaAs/Ge and Si BSF/R solar arrays

    NASA Technical Reports Server (NTRS)

    Woike, Thomas J.

    1993-01-01

    EOL power estimates for solar array designs are significantly influenced by the predicted degradation due to charged particle radiation. New radiation-induced power degradation data for GaAs/Ge solar arrays applicable to missions ranging from low earth orbit (LEO) to geosynchronous earth orbit (GEO) and compares these results to silicon BSF/R arrays. These results are based on recently published radiation damage coefficients for GaAs/Ge cells. The power density ratio (GaAs/Ge to Si BSF/R) was found to be as high as 1.83 for the proton-dominated worst-case altitude of 7408 km medium Earth orbit (MEO). Based on the EOL GaAs/Ge solar array power density results for MEO, missions which were previously considered infeasible may be reviewed based on these more favorable results. The additional life afforded by using GaAs/Ge cells is an important factor in system-level trade studies when selecting a solar cell technology for a mission and needs to be considered. The data presented supports this decision since the selected orbits have characteristics similar to most orbits of interest.

  20. Automated analysis of siRNA screens of cells infected by hepatitis C and dengue viruses based on immunofluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl

    2008-03-01

    We present an image analysis approach as part of a high-throughput microscopy siRNA-based screening system using cell arrays for the identification of cellular genes involved in hepatitis C and dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in the neighborhood of segmented cell nuclei, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment and single images. In particular, we propose a novel approach for the localization of regions of transfected cells within cell array images, which combines model-based circle fitting and grid fitting. By this scheme we integrate information from single cell array images and knowledge from the complete cell arrays. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behaviour of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.

  1. All oxide semiconductor-based bidirectional vertical p-n-p selectors for 3D stackable crossbar-array electronics

    PubMed Central

    Bae, Yoon Cheol; Lee, Ah Rahm; Baek, Gwang Ho; Chung, Je Bock; Kim, Tae Yoon; Park, Jea Gun; Hong, Jin Pyo

    2015-01-01

    Three-dimensional (3D) stackable memory devices including nano-scaled crossbar array are central for the realization of high-density non-volatile memory electronics. However, an essential sneak path issue affecting device performance in crossbar array remains a bottleneck and a grand challenge. Therefore, a suitable bidirectional selector as a two-way switch is required to facilitate a major breakthrough in the 3D crossbar array memory devices. Here, we show the excellent selectivity of all oxide p-/n-type semiconductor-based p-n-p open-based bipolar junction transistors as selectors in crossbar memory array. We report that bidirectional nonlinear characteristics of oxide p-n-p junctions can be highly enhanced by manipulating p-/n-type oxide semiconductor characteristics. We also propose an associated Zener tunneling mechanism that explains the unique features of our p-n-p selector. Our experimental findings are further extended to confirm the profound functionality of oxide p-n-p selectors integrated with several bipolar resistive switching memory elements working as storage nodes. PMID:26289565

  2. Design and simulation of a tactile display based on a CMUT array

    NASA Astrophysics Data System (ADS)

    Chouvardas, Vasilios G.; Hatalis, Miltiadis K.; Miliou, Amalia N.

    2012-10-01

    In this article, we present the design of a tactile display based on a CMUT-phased array. The array implements a 'pixel' of the display and is used to focus airborne ultrasound energy on the skin surface. The pressure field, generated by the focused ultrasound waves, is used to excite the mechanoreceptors under the skin and transmit tactile information. The results of Finite Element Analysis (FEA) of the Capacitive Micromachined Ultrasonic Transducer (CMUT) and the CMUT-phased array for ultrasound emission are presented. The 3D models of the device and the array were developed using a commercial FEA package. Modelling and simulations were performed using the parameters from the POLYMUMPS surface micromachining technology from MEMSCAP. During the analysis of the phased array, several parameters were studied in order to determine their importance in the design of the tactile display. The output of the array is compared with the acoustic intensity thresholds in order to prove the feasibility of the design. Taking into account the density of the mechanoreceptors in the skin, we conclude that there should be at least one receptor under the excitation area formed on the skin.

  3. Micro-array versus nano-array platforms: a comparative study for ODN detection based on SPR enhanced ellipsometry

    NASA Astrophysics Data System (ADS)

    Celen, Burcu; Demirel, Gökhan; Piskin, Erhan

    2011-04-01

    The rapid and sensitive detection of DNA has recently attracted worldwide attention for a variety of disease diagnoses and detection of harmful bacteria in food and drink. In this paper, we carried out a comparative study based on surface plasmon resonance enhanced ellipsometry (SPREE) for the detection of oligodeoxynucleotides (ODNs) using micro- and nano-array platforms. The micro-arrayed surfaces were fabricated by a photolithography approach using different types of mask having varying size and shape. Well-ordered arrays of high aspect ratio polymeric nanotubes were also obtained using high molecular weight polystyrene (PS) and anodic aluminum oxide (AAO) membranes having 200 nm pore diameters. The SPREE sensors were then prepared by direct coupling of thiolated probe-ODNs, which contain suitable spacer arms, on gold-coated micro- and nano-arrayed surfaces. We experimentally demonstrated that, for the first time, gold-coated free standing polymeric nano-arrayed platforms can easily be produced and lead to a significant sensor sensitivity gain compared to that of the conventional SPREE surfaces of about four times. We believe that such an enhancement in sensor response could be useful for next generation sensor systems.

  4. Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array.

    PubMed

    Wang, Qi; Wang, Yingmin; Zhu, Guolei

    2016-12-30

    The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective.

  5. Matched Field Processing Based on Least Squares with a Small Aperture Hydrophone Array

    PubMed Central

    Wang, Qi; Wang, Yingmin; Zhu, Guolei

    2016-01-01

    The receiver hydrophone array is the signal front-end and plays an important role in matched field processing, which usually covers the whole water column from the sea surface to the bottom. Such a large aperture array is very difficult to realize. To solve this problem, an approach called matched field processing based on least squares with a small aperture hydrophone array is proposed, which decomposes the received acoustic fields into depth function matrix and amplitudes of the normal modes at the beginning. Then all the mode amplitudes are estimated using the least squares in the sense of minimum norm, and the amplitudes estimated are used to recalculate the received acoustic fields of the small aperture array, which means the recalculated ones contain more environmental information. In the end, lots of numerical experiments with three small aperture arrays are processed in the classical shallow water, and the performance of matched field passive localization is evaluated. The results show that the proposed method can make the recalculated fields contain more acoustic information of the source, and the performance of matched field passive localization with small aperture array is improved, so the proposed algorithm is proved to be effective. PMID:28042828

  6. Origami acoustics: using principles of folding structural acoustics for simple and large focusing of sound energy

    NASA Astrophysics Data System (ADS)

    Harne, Ryan L.; Lynd, Danielle T.

    2016-08-01

    Fixed in spatial distribution, arrays of planar, electromechanical acoustic transducers cannot adapt their wave energy focusing abilities unless each transducer is externally controlled, creating challenges for the implementation and portability of such beamforming systems. Recently, planar, origami-based structural tessellations are found to facilitate great versatility in system function and properties through kinematic folding. In this research we bridge the physics of acoustics and origami-based design to discover that the simple topological reconfigurations of a Miura-ori-based acoustic array yield many orders of magnitude worth of reversible change in wave energy focusing: a potential for acoustic field morphing easily obtained through deployable, tessellated architectures. Our experimental and theoretical studies directly translate the roles of folding the tessellated array to the adaptations in spectral and spatial wave propagation sensitivities for far field energy transmission. It is shown that kinematic folding rules and flat-foldable tessellated arrays collectively provide novel solutions to the long-standing challenges of conventional, electronically-steered acoustic beamformers. While our examples consider sound radiation from the foldable array in air, linear acoustic reciprocity dictates that the findings may inspire new innovations for acoustic receivers, e.g. adaptive sound absorbers and microphone arrays, as well as concepts that include water-borne waves.

  7. Dragon Ears airborne acoustic array: CSP analysis applied to cross array to compute real-time 2D acoustic sound field

    NASA Astrophysics Data System (ADS)

    Cerwin, Steve; Barnes, Julie; Kell, Scott; Walters, Mark

    2003-09-01

    This paper describes development and application of a novel method to accomplish real-time solid angle acoustic direction finding using two 8-element orthogonal microphone arrays. The developed prototype system was intended for localization and signature recognition of ground-based sounds from a small UAV. Recent advances in computer speeds have enabled the implementation of microphone arrays in many audio applications. Still, the real-time presentation of a two-dimensional sound field for the purpose of audio target localization is computationally challenging. In order to overcome this challenge, a crosspower spectrum phase1 (CSP) technique was applied to each 8-element arm of a 16-element cross array to provide audio target localization. In this paper, we describe the technique and compare it with two other commonly used techniques; Cross-Spectral Matrix2 and MUSIC3. The results show that the CSP technique applied to two 8-element orthogonal arrays provides a computationally efficient solution with reasonable accuracy and tolerable artifacts, sufficient for real-time applications. Additional topics include development of a synchronized 16-channel transmitter and receiver to relay the airborne data to the ground-based processor and presentation of test data demonstrating both ground-mounted operation and airborne localization of ground-based gunshots and loud engine sounds.

  8. A K-Band Linear Phased Array Antenna Based on Ba(0.60)Sr(0.40)TiO3 Thin Film Phase Shifters

    NASA Technical Reports Server (NTRS)

    Romanofsky, R.; Bernhard, J.; Washington, G.; VanKeuls, F.; Miranda, F.; Cannedy, C.

    2000-01-01

    This paper summarizes the development of a 23.675 GHz linear 16-element scanning phased array antenna based on thin ferroelectric film coupled microstripline phase shifters and microstrip patch radiators.

  9. GPU-Based Real-Time Volumetric Ultrasound Image Reconstruction for a Ring Array

    PubMed Central

    Choe, Jung Woo; Nikoozadeh, Amin; Oralkan, Ömer; Khuri-Yakub, Butrus T.

    2014-01-01

    Synthetic phased array (SPA) beamforming with Hadamard coding and aperture weighting is an optimal option for real-time volumetric imaging with a ring array, a particularly attractive geometry in intracardiac and intravascular applications. However, the imaging frame rate of this method is limited by the immense computational load required in synthetic beamforming. For fast imaging with a ring array, we developed graphics processing unit (GPU)-based, real-time image reconstruction software that exploits massive data-level parallelism in beamforming operations. The GPU-based software reconstructs and displays three cross-sectional images at 45 frames per second (fps). This frame rate is 4.5 times higher than that for our previously-developed multi-core CPU-based software. In an alternative imaging mode, it shows one B-mode image rotating about the axis and its maximum intensity projection (MIP), processed at a rate of 104 fps. This paper describes the image reconstruction procedure on the GPU platform and presents the experimental images obtained using this software. PMID:23529080

  10. Array-based disease diagnostics using lipid/polydiacetylene vesicles encapsulated in a sol-gel matrix.

    PubMed

    Kolusheva, S; Yossef, R; Kugel, A; Katz, M; Volinsky, R; Welt, M; Hadad, U; Drory, V; Kliger, M; Rubin, E; Porgador, A; Jelinek, R

    2012-07-17

    We demonstrate a novel array-based diagnostic platform comprising lipid/polydiacetylene (PDA) vesicles embedded within a transparent silica-gel matrix. The diagnostic scheme is based upon the unique chromatic properties of PDA, which undergoes blue-red transformations induced by interactions with amphiphilic or membrane-active analytes. We show that constructing a gel matrix array hosting PDA vesicles with different lipid compositions and applying to blood plasma obtained from healthy individuals and from patients suffering from disease, respectively, allow distinguishing among the disease conditions through application of a simple machine-learning algorithm, using the colorimetric response of the lipid/PDA/gel matrix as the input. Importantly, the new colorimetric diagnostic approach does not require a priori knowledge on the exact metabolite compositions of the blood plasma, since the concept relies only on identifying statistically significant changes in overall disease-induced chromatic response. The chromatic lipid/PDA/gel array-based "fingerprinting" concept is generic, easy to apply, and could be implemented for varied diagnostic and screening applications.

  11. ArrayExpress update--trends in database growth and links to data analysis tools.

    PubMed

    Rustici, Gabriella; Kolesnikov, Nikolay; Brandizi, Marco; Burdett, Tony; Dylag, Miroslaw; Emam, Ibrahim; Farne, Anna; Hastings, Emma; Ison, Jon; Keays, Maria; Kurbatova, Natalja; Malone, James; Mani, Roby; Mupo, Annalisa; Pedro Pereira, Rui; Pilicheva, Ekaterina; Rung, Johan; Sharma, Anjan; Tang, Y Amy; Ternent, Tobias; Tikhonov, Andrew; Welter, Danielle; Williams, Eleanor; Brazma, Alvis; Parkinson, Helen; Sarkans, Ugis

    2013-01-01

    The ArrayExpress Archive of Functional Genomics Data (http://www.ebi.ac.uk/arrayexpress) is one of three international functional genomics public data repositories, alongside the Gene Expression Omnibus at NCBI and the DDBJ Omics Archive, supporting peer-reviewed publications. It accepts data generated by sequencing or array-based technologies and currently contains data from almost a million assays, from over 30 000 experiments. The proportion of sequencing-based submissions has grown significantly over the last 2 years and has reached, in 2012, 15% of all new data. All data are available from ArrayExpress in MAGE-TAB format, which allows robust linking to data analysis and visualization tools, including Bioconductor and GenomeSpace. Additionally, R objects, for microarray data, and binary alignment format files, for sequencing data, have been generated for a significant proportion of ArrayExpress data.

  12. A Ground-Based Near Infrared Camera Array System for UAV Auto-Landing in GPS-Denied Environment.

    PubMed

    Yang, Tao; Li, Guangpo; Li, Jing; Zhang, Yanning; Zhang, Xiaoqiang; Zhang, Zhuoyue; Li, Zhi

    2016-08-30

    This paper proposes a novel infrared camera array guidance system with capability to track and provide real time position and speed of a fixed-wing Unmanned air vehicle (UAV) during a landing process. The system mainly include three novel parts: (1) Infrared camera array and near infrared laser lamp based cooperative long range optical imaging module; (2) Large scale outdoor camera array calibration module; and (3) Laser marker detection and 3D tracking module. Extensive automatic landing experiments with fixed-wing flight demonstrate that our infrared camera array system has the unique ability to guide the UAV landing safely and accurately in real time. Moreover, the measurement and control distance of our system is more than 1000 m. The experimental results also demonstrate that our system can be used for UAV automatic accurate landing in Global Position System (GPS)-denied environments.

  13. Phased-array sources based on nonlinear metamaterial nanocavities

    PubMed Central

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

    2015-01-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879

  14. Signal processing applications of massively parallel charge domain computing devices

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Barhen, Jacob (Inventor); Toomarian, Nikzad (Inventor)

    1999-01-01

    The present invention is embodied in a charge coupled device (CCD)/charge injection device (CID) architecture capable of performing a Fourier transform by simultaneous matrix vector multiplication (MVM) operations in respective plural CCD/CID arrays in parallel in O(1) steps. For example, in one embodiment, a first CCD/CID array stores charge packets representing a first matrix operator based upon permutations of a Hartley transform and computes the Fourier transform of an incoming vector. A second CCD/CID array stores charge packets representing a second matrix operator based upon different permutations of a Hartley transform and computes the Fourier transform of an incoming vector. The incoming vector is applied to the inputs of the two CCD/CID arrays simultaneously, and the real and imaginary parts of the Fourier transform are produced simultaneously in the time required to perform a single MVM operation in a CCD/CID array.

  15. Microshutter Array Development for the Multi-Object Spectrograph for the New Generation Space Telescope, and Its Ground-based Demonstrator

    NASA Technical Reports Server (NTRS)

    Woodgate, Bruce E.; Moseley, Harvey; Fettig, Rainer; Kutyrev, Alexander; Ge, Jian; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    The 6.5-m NASA/ESA/Canada New Generation Space Telescope to be operated at the L2 Lagrangian point will require a multi-object spectrograph (MOS) operating from 1 to 5 microns. Up to 3000 targets will be selected for simultaneous spectroscopy using a programmable cryogenic (approx. 35K) aperture array, consisting of a mosaic of arrays of micromirrors or microshutters. We describe the current status of the GSFC microshutter array development. The 100 micron square shutters are opened magnetically and latched open or closed electrostatically. Selection will be by two crossed one-dimensional addressing circuits. We will demonstrate the use of a 512 x 512 unit array on a ground-based IR MOS which will cover 0.6 to 5 microns, and operate rapidly to include spectroscopy of gamma ray burst afterglows.

  16. Photon-counting detector arrays based on microchannel array plates. [for image enhancement

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1975-01-01

    The recent development of the channel electron multiplier (CEM) and its miniaturization into the microchannel array plate (MCP) offers the possibility of fully combining the advantages of the photographic and photoelectric detection systems. The MCP has an image-intensifying capability and the potential of being developed to yield signal outputs superior to those of conventional photomultipliers. In particular, the MCP has a photon-counting capability with a negligible dark-count rate. Furthermore, the MCP can operate stably and efficiently at extreme-ultraviolet and soft X-ray wavelengths in a windowless configuration or can be integrated with a photo-cathode in a sealed tube for use at ultraviolet and visible wavelengths. The operation of one- and two-dimensional photon-counting detector arrays based on the MCP at extreme-ultraviolet wavelengths is described, and the design of sealed arrays for use at ultraviolet and visible wavelengths is briefly discussed.

  17. Advanced Code-Division Multiplexers for Superconducting Detector Arrays

    NASA Astrophysics Data System (ADS)

    Irwin, K. D.; Cho, H. M.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Niemack, M. D.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.

    2012-06-01

    Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.

  18. From MAD to SAD: The Italian experience for the low-frequency aperture array of SKA1-LOW

    NASA Astrophysics Data System (ADS)

    Bolli, P.; Pupillo, G.; Virone, G.; Farooqui, M. Z.; Lingua, A.; Mattana, A.; Monari, J.; Murgia, M.; Naldi, G.; Paonessa, F.; Perini, F.; Pluchino, S.; Rusticelli, S.; Schiaffino, M.; Schillirò, F.; Tartarini, G.; Tibaldi, A.

    2016-03-01

    This paper describes two small aperture array demonstrators called Medicina and Sardinia Array Demonstrators (MAD and SAD, respectively). The objectives of these instruments are to acquire experience and test new technologies for a possible application to the low-frequency aperture array of the low-frequency telescope of the Square Kilometer Array phase 1 (SKA1-LOW). The MAD experience was concluded in 2014, and it turned out to be an important test bench for implementing calibration techniques based on an artificial source mounted in an aerial vehicle. SAD is based on 128 dual-polarized Vivaldi antennas and is 1 order of magnitude larger than MAD. The architecture and the station size of SAD, which is along the construction phase, are more similar to those under evaluation for SKA1-LOW, and therefore, SAD is expected to provide useful hints for SKA1-LOW.

  19. Detecting and Estimating Contamination of Human DNA Samples in Sequencing and Array-Based Genotype Data

    PubMed Central

    Jun, Goo; Flickinger, Matthew; Hetrick, Kurt N.; Romm, Jane M.; Doheny, Kimberly F.; Abecasis, Gonçalo R.; Boehnke, Michael; Kang, Hyun Min

    2012-01-01

    DNA sample contamination is a serious problem in DNA sequencing studies and may result in systematic genotype misclassification and false positive associations. Although methods exist to detect and filter out cross-species contamination, few methods to detect within-species sample contamination are available. In this paper, we describe methods to identify within-species DNA sample contamination based on (1) a combination of sequencing reads and array-based genotype data, (2) sequence reads alone, and (3) array-based genotype data alone. Analysis of sequencing reads allows contamination detection after sequence data is generated but prior to variant calling; analysis of array-based genotype data allows contamination detection prior to generation of costly sequence data. Through a combination of analysis of in silico and experimentally contaminated samples, we show that our methods can reliably detect and estimate levels of contamination as low as 1%. We evaluate the impact of DNA contamination on genotype accuracy and propose effective strategies to screen for and prevent DNA contamination in sequencing studies. PMID:23103226

  20. Facile fabrication of CNT-based chemical sensor operating at room temperature

    NASA Astrophysics Data System (ADS)

    Sheng, Jiadong; Zeng, Xian; Zhu, Qi; Yang, Zhaohui; Zhang, Xiaohua

    2017-12-01

    This paper describes a simple, low cost and effective route to fabricate CNT-based chemical sensors, which operate at room temperature. Firstly, the incorporation of silk fibroin in vertically aligned CNT arrays (CNTA) obtained through a thermal chemical vapor deposition (CVD) method makes the direct removal of CNT arrays from substrates without any rigorous acid or sonication treatment feasible. Through a simple one-step in situ polymerization of anilines, the functionalization of CNT arrays with polyaniline (PANI) significantly improves the sensing performance of CNT-based chemical sensors in detecting ammonia (NH3) and hydrogen chloride (HCl) vapors. Chemically modified CNT arrays also show responses to organic vapors like menthol, ethyl acetate and acetone. Although the detection limits of chemically modified CNT-based chemical sensors are of the same orders of magnitudes reported in previous studies, these CNT-based chemical sensors show advantages of simplicity, low cost and energy efficiency in preparation and fabrication of devices. Additionally, a linear relationship between the relative sensitivity and concentration of analyte makes precise estimations on the concentrations of trace chemical vapors possible.

  1. Performance Analysis of a Cost-Effective Electret Condenser Microphone Directional Array

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Gerhold, Carl H.; Zuckerwar, Allan J.; Herring, Gregory C.; Bartram, Scott M.

    2003-01-01

    Microphone directional array technology continues to be a critical part of the overall instrumentation suite for experimental aeroacoustics. Unfortunately, high sensor cost remains one of the limiting factors in the construction of very high-density arrays (i.e., arrays containing several hundred channels or more) which could be used to implement advanced beamforming algorithms. In an effort to reduce the implementation cost of such arrays, the authors have undertaken a systematic performance analysis of a prototype 35-microphone array populated with commercial electret condenser microphones. An ensemble of microphones coupling commercially available electret cartridges with passive signal conditioning circuitry was fabricated for use with the Langley Large Aperture Directional Array (LADA). A performance analysis consisting of three phases was then performed: (1) characterize the acoustic response of the microphones via laboratory testing and calibration, (2) evaluate the beamforming capability of the electret-based LADA using a series of independently controlled point sources in an anechoic environment, and (3) demonstrate the utility of an electret-based directional array in a real-world application, in this case a cold flow jet operating at high subsonic velocities. The results of the investigation revealed a microphone frequency response suitable for directional array use over a range of 250 Hz - 40 kHz, a successful beamforming evaluation using the electret-populated LADA to measure simple point sources at frequencies up to 20 kHz, and a successful demonstration using the array to measure noise generated by the cold flow jet. This paper presents an overview of the tests conducted along with sample data obtained from those tests.

  2. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals

    PubMed Central

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610

  3. Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.

    PubMed

    Zhao, Ziyue; Liu, Congfeng

    2014-01-01

    In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.

  4. A microspectrometer based on subwavelength metal nanohole array

    NASA Astrophysics Data System (ADS)

    Cui, Jun; Xia, Liangping; Yang, Zheng; Yin, Lu; Zheng, Guoxing; Yin, Shaoyun; Du, Chunlei

    2014-11-01

    Catering to the active demand of the miniaturization of spectrometers, a simple microspectrometer with small size and light weight is presented in this paper. The presented microspectrometer is a typical filter-based spectrometer using the extraordinary optical transmission property of subwavelength metal hole array structure. Different subwavelength metal nanohole arrays are designed to work as different filter units obtained by changing the lattice parameters. By processing the filter spectra with a unique algorithm based on sparse representation, the proposed spectrometer is demonstrated to have the capability of high spectral resolution and accuracy. Benefit for the thin filmed feature, the microspectrometer is expected to find its application in integrated optical systems.

  5. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Jian; Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Ye, Zhenhua

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infraredmore » focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.« less

  6. Air-stable memory array of bistable rectifying diodes based on ferroelectric-semiconductor polymer blends

    NASA Astrophysics Data System (ADS)

    Kumar, Manasvi; Sharifi Dehsari, Hamed; Anwar, Saleem; Asadi, Kamal

    2018-03-01

    Organic bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers have emerged as promising candidates for non-volatile information storage for low-cost solution processable electronics. One of the bottlenecks impeding upscaling is stability and reliable operation of the array in air. Here, we present a memory array fabricated with an air-stable amine-based semiconducting polymer. Memory diode fabrication and full electrical characterizations were carried out in atmospheric conditions (23 °C and 45% relative humidity). The memory diodes showed on/off ratios greater than 100 and further exhibited robust and stable performance upon continuous write-read-erase-read cycles. Moreover, we demonstrate a 4-bit memory array that is free from cross-talk with a shelf-life of several months. Demonstration of the stability and reliable air operation further strengthens the feasibility of the resistance switching in ferroelectric memory diodes for low-cost applications.

  7. Fringing-field dielectrophoretic assembly of ultrahigh-density semiconducting nanotube arrays with a self-limited pitch

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Han, Shu-Jen; Tulevski, George S.

    2014-09-01

    One key challenge of realizing practical high-performance electronic devices based on single-walled carbon nanotubes is to produce electronically pure nanotube arrays with both a minuscule and uniform inter-tube pitch for sufficient device-packing density and homogeneity. Here we develop a method in which the alternating voltage-fringing electric field formed between surface microelectrodes and the substrate is utilized to assemble semiconducting nanotubes into well-aligned, ultrahigh-density and submonolayered arrays, with a consistent pitch as small as 21±6 nm determined by a self-limiting mechanism, based on the unique field focusing and screening effects of the fringing field. Field-effect transistors based on such nanotube arrays exhibit record high device transconductance (>50 μS μm-1) and decent on current per nanotube (~1 μA per tube) together with high on/off ratios at a drain bias of -1 V.

  8. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions.

    PubMed

    Feng, Liang; Li, Hui; Niu, Li-Ya; Guan, Ying-Shi; Duan, Chun-Feng; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-04-15

    A fluorometric paper-based sensor array has been developed for the sensitive and convenient determination of seven heavy-metal ions at their wastewater discharge standard concentrations. Combining with nine cross-reactive BODIPY fluorescent indicators and array technologies-based pattern-recognition, we have obtained the discrimination capability of seven different heavy-metal ions at their wastewater discharge standard concentrations. After the immobilization of indicators and the enrichment of analytes, identification of the heavy-metal ions was readily acquired using a standard chemometric approach. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative estimation of the heavy-metal ion concentration was obtained by comparing color changes with a set of known concentrations. The sensor array was tentatively investigated in spiked tap water and sea water, and showed possible feasibility for real sample testing. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Lee, J.-I.; Pyo, Soonjae; Kim, Min-Ook; Kim, Jongbaeg

    2018-02-01

    We demonstrate a highly sensitive force sensor based on self-adjusting carbon nanotube (CNT) arrays. Aligned CNT arrays are directly synthesized on silicon microstructures by a space-confined growth technique which enables a facile self-adjusting contact. To afford flexibility and softness, the patterned microstructures with the integrated CNTs are embedded in polydimethylsiloxane structures. The sensing mechanism is based on variations in the contact resistance between the facing CNT arrays under the applied force. By finite element analysis, proper dimensions and positions for each component are determined. Further, high sensitivities up to 15.05%/mN of the proposed sensors were confirmed experimentally. Multidirectional sensing capability could also be achieved by designing multiple sets of sensing elements in a single sensor. The sensors show long-term operational stability, owing to the unique properties of the constituent CNTs, such as outstanding mechanical durability and elasticity.

  10. Mapping protein-protein interactions using yeast two-hybrid assays.

    PubMed

    Mehla, Jitender; Caufield, J Harry; Uetz, Peter

    2015-05-01

    Yeast two-hybrid (Y2H) screens are an efficient system for mapping protein-protein interactions and whole interactomes. The screens can be performed using random libraries or collections of defined open reading frames (ORFs) called ORFeomes. This protocol describes both library and array-based Y2H screening, with an emphasis on array-based assays. Array-based Y2H is commonly used to test a number of "prey" proteins for interactions with a single "bait" (target) protein or pool of proteins. The advantage of this approach is the direct identification of interacting protein pairs without further downstream experiments: The identity of the preys is known and does not require further confirmation. In contrast, constructing and screening a random prey library requires identification of individual prey clones and systematic retesting. Retesting is typically performed in an array format. © 2015 Cold Spring Harbor Laboratory Press.

  11. Ground-Based Measurements of the Wake Vortex Characteristics of a B-747 Aircraft in Various Configurations

    DOT National Transportation Integrated Search

    1978-12-01

    A Boeing 747 aircraft flew 54 passes at low altitude over ground based sensors. Vortex velocities were measured by a laser Doppler velocimeter, an array of monostatic acoustic sounders, and an array of propeller anemometers. Flow visualization of the...

  12. (Bio)Sensing Using Nanoparticle Arrays: On the Effect of Analyte Transport on Sensitivity.

    PubMed

    Lynn, N Scott; Homola, Jiří

    2016-12-20

    There has recently been an extensive amount of work regarding the development of optical, electrical, and mechanical (bio)sensors employing planar arrays of surface-bound nanoparticles. The sensor output for these systems is dependent on the rate at which analyte is transported to, and interacts with, each nanoparticle in the array. There has so far been little discussion on the relationship between the design parameters of an array and the interplay of convection, diffusion, and reaction. Moreover, current methods providing such information require extensive computational simulation. Here we demonstrate that the rate of analyte transport to a nanoparticle array can be quantified analytically. We show that such rates are bound by both the rate to a single NP and that to a planar surface (having equivalent size as the array), with the specific rate determined by the fill fraction: the ratio between the total surface area used for biomolecular capture with respect to the entire sensing area. We characterize analyte transport to arrays with respect to changes in numerous parameters relevant to experiment, including variation of the nanoparticle shape and size, packing density, flow conditions, and analyte diffusivity. We also explore how analyte capture is dependent on the kinetic parameters related to an affinity-based biosensor, and furthermore, we classify the conditions under which the array might be diffusion- or reaction-limited. The results obtained herein are applicable toward the design and optimization of all (bio)sensors based on nanoparticle arrays.

  13. Analysis and experimental demonstration of conformal adaptive phase-locked fiber array for laser communications and beam projection applications

    NASA Astrophysics Data System (ADS)

    Liu, Ling

    The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.

  14. Broadband High Efficiency Fractal-Like and Diverse Geometry Silicon Nanowire Arrays for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    AL-Zoubi, Omar H.

    Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we found that the optical properties of SiNW arrays are strongly affected by the radial diversity, the arrangement of SiNW in a lattice, and the configuration of such lattice. The proper selection of these parameters leads to broaden and enhance the light absorption of the SiNW arrays. Inspired by natural configurations, fractal geometry and diamond lattice structures, we introduced two lattice configurations: fractal-like array (FLA) that is inspired by fractal geometry, and diamond-like array (DLA) that is inspired by diamond crystal lattice structure. Optimization, using parametric analysis, of the introduced arrays parameters for the light absorption level and the amount of used material has been performed. Both of the introduced SiNW arrays show broadband, strong light absorption coupled with reduction of the amount of the used material. DLA in specific showed significantly enhanced absorption covering the entire solar spectrum of interest, where near-unity absorption spectrum could be achieved. We studied the optical properties of complete PVSC devices that are based on SiNW array. Moreover, the performance of PVSC device that is based on SiNW has been investigated by using numerical modeling. SILVACO software package is used for performing the numerical simulation of the PVSC device performance, which can simultaneously handle the different coupled physical mechanisms contributing to the photovoltaic effect. The effect of the geometry of PVSC device that is based on SiNW is investigated, which shows that the geometry of such PVSC has a role in enhancing its electrical properties. The outcome of this study introduces new SiNW array configurations that have enhanced optical properties using a low amount of material that can be utilized for producing higher efficiency thin film PVCS. The overall conclusion of this work is that a weak absorption indirect band gap material, silicon, in the form of properly designed SiNW and SiNC arrays has the potentials to achieve near-unity ideal absorption spectrum using reduced amount of material, which can lead to produce new generation of lower cost and enhanced efficiency thin film PVSC.

  15. Efficient photocatalytic degradation of gaseous N,N-dimethylformamide in tannery waste gas using doubly open-ended Ag/TiO2 nanotube array membranes

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Ma, Lin; Chang, Wenkai; Huang, Zhiding; Feng, Xugen; Qi, Xiaoxia; Li, Zenghe

    2018-06-01

    Gaseous N,N-dimethylformamide (DMF), typical volatile organic compound exhausted from manufacturing factories, may damage the health of workers under long-term exposure even at low levels. The defined geometry, porous surface and highly ordered channels make the free-standing anodic TiO2 nanotube (TiNT) arrays particularly suitable for applications of practical air purification by flow-through photocatalysis. In the present work, crystallized doubly open-ended Ag/TiNT array membranes were designed and prepared by employing a lift-off process based on an anodization-annealing-anodization-etching sequence, followed by uniform Ag nanoparticles decoration. For the photocatalytic degradation of gaseous DMF at low concentration levels close to that found in realistic pollutant air, an analytical methodology for the monitoring and determination of degradation process was developed based on the coupling of headspace sampling with gas chromatography mass spectrometry (HS-GC-MS). The doubly open-ended Ag/TiNT arrays exhibited higher removal efficiency of gaseous DMF from air compared with conventional bottom-closed Ag/TiNT arrays and pure bottomless TiNT arrays. These results indicated that the photocatalytic properties of TiNT arrays were improved with the open-bottom morphology and the Ag nanoparticles decoration. Based on the analysis with GC-MS and high performance ion chromatography (HPIC), it was found that demethylation is the main pathway of DMF degradation in photocatalytic reactions. Furthermore, decontamination of actual polluted tannery waste gas collected in leather factory proved that the photocatalysis on doubly open-ended Ag/TiNT array membrane is an efficient way and a promising application to treat air contaminated by DMF despite the complexity of various volatile organic compounds.

  16. Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance.

    PubMed

    Li, Qi; Shang, Jian Ku

    2009-12-01

    Self-organized nitrogen and fluorine co-doped titanium oxide (TiONF) nanotube arrays were created by anodizing titanium foil in a fluoride and ammoniate-based electrolyte, followed by calcination of the amorphous nanotube arrays under a nitrogen protective atmosphere for crystallization. TiONF nanotube arrays were found to have enhanced visible light absorption capability and photodegradation efficiency on methylene blue under visible light illumination over the TiO(2) nanotube arrays. The enhancement was dependent on both the nanotube structural architecture and the nitrogen and fluorine co-doping effect. TiONF nanotube arrays promise a wide range of technical applications, especially for environmental applications and solar cell devices.

  17. A FADC-Based Data Acquisition System for the KASCADE-Grande Experiment

    NASA Astrophysics Data System (ADS)

    Walkowiak, W.; Antoni, T.; Apel, W. D.; Badea, F.; Bekk, K.; Bercuci, A.; Bertaina, M.; Blumer, H.; Bozdog, H.; Brancus, I. M.; Bruggemann, M.; Buchholz, P.; Buttner, C.; Chiavassa, A.; Daumiller, K.; Dipierro, F.; Doll, P.; Engel, R.; Engler, J.; Febler, F.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Haungs, A.; Heck, D.; Horandel, J. R.; Kampert, K.-H.; Klages, H. O.; Kolotaev, Y.; Maier, G.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Muller, M.; Navarra, G.; Obenland, R.; Oehlschlager, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Plewnia, S.; Rebel, H.; Risse, A.; Roth, M.; Schieler, H.; Scholz, J.; Stumpert, M.; Thouw, T.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Valchierotti, S.; Vanburen, J.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zagromski, S.; Zimmermann, D.

    2006-02-01

    We present the design and first test results of a new FADC-based data acquisition (DAQ) system for the Grande array of the KASCADE-Grande experiment. The original KASCADE experiment at the Forschungszentrum Karlsruhe, Germany, has been extended by 37 detector stations of the former EAS-TOP experiment (Grande array)to provide sensitivity to energies of primary particles from the cosmos of up to $10^{18}$ eV. The new FADC-based DAQ system will improve the quality of the data taken by the Grande array by digitizing the scintillator signals with a 250 MHz sampling rate. events per second. Two Grande stations have been equipped with the FADC-based data acquisition system and first data are shown.

  18. CMOS array design automation techniques. [metal oxide semiconductors

    NASA Technical Reports Server (NTRS)

    Ramondetta, P.; Feller, A.; Noto, R.; Lombardi, T.

    1975-01-01

    A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed.

  19. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.

    PubMed

    Lei, Ting; Poon, Andrew W

    2013-01-28

    We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.

  20. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures

    NASA Astrophysics Data System (ADS)

    Wu, Wu-Qiang; Feng, Hao-Lin; Rao, Hua-Shang; Xu, Yang-Fan; Kuang, Dai-Bin; Su, Cheng-Yong

    2014-05-01

    The scrupulous design of nanoarchitectures and smart hybridization of specific active materials are closely related to the overall photovoltaic performance of an anode electrode. Here we present a solution-based strategy for the fabrication of well-aligned metal oxide-based nanowire-nanosheet-nanorod hyperbranched arrays on transparent conducting oxide substrates. For these hyperbranched arrays, we observe a twofold increment in dye adsorption and enhanced light trapping and scattering capability compared with the pristine titanium dioxide nanowires, and thus a power conversion efficiency of 9.09% is achieved. Our growth approach presents a strategy to broaden the photoresponse and maximize the light-harvesting efficiency of arrays architectures, and may lead to applications for energy conversion and storage, catalysis, water splitting and gas sensing.

  1. Maximizing omnidirectional light harvesting in metal oxide hyperbranched array architectures.

    PubMed

    Wu, Wu-Qiang; Feng, Hao-Lin; Rao, Hua-Shang; Xu, Yang-Fan; Kuang, Dai-Bin; Su, Cheng-Yong

    2014-05-29

    The scrupulous design of nanoarchitectures and smart hybridization of specific active materials are closely related to the overall photovoltaic performance of an anode electrode. Here we present a solution-based strategy for the fabrication of well-aligned metal oxide-based nanowire-nanosheet-nanorod hyperbranched arrays on transparent conducting oxide substrates. For these hyperbranched arrays, we observe a twofold increment in dye adsorption and enhanced light trapping and scattering capability compared with the pristine titanium dioxide nanowires, and thus a power conversion efficiency of 9.09% is achieved. Our growth approach presents a strategy to broaden the photoresponse and maximize the light-harvesting efficiency of arrays architectures, and may lead to applications for energy conversion and storage, catalysis, water splitting and gas sensing.

  2. Reliability analysis of the solar array based on Fault Tree Analysis

    NASA Astrophysics Data System (ADS)

    Jianing, Wu; Shaoze, Yan

    2011-07-01

    The solar array is an important device used in the spacecraft, which influences the quality of in-orbit operation of the spacecraft and even the launches. This paper analyzes the reliability of the mechanical system and certifies the most vital subsystem of the solar array. The fault tree analysis (FTA) model is established according to the operating process of the mechanical system based on DFH-3 satellite; the logical expression of the top event is obtained by Boolean algebra and the reliability of the solar array is calculated. The conclusion shows that the hinges are the most vital links between the solar arrays. By analyzing the structure importance(SI) of the hinge's FTA model, some fatal causes, including faults of the seal, insufficient torque of the locking spring, temperature in space, and friction force, can be identified. Damage is the initial stage of the fault, so limiting damage is significant to prevent faults. Furthermore, recommendations for improving reliability associated with damage limitation are discussed, which can be used for the redesigning of the solar array and the reliability growth planning.

  3. Optical design of GaN nanowire arrays for photocatalytic applications

    NASA Astrophysics Data System (ADS)

    Winnerl, Julia; Hudeczek, Richard; Stutzmann, Martin

    2018-05-01

    GaN nanowire (NW) arrays are interesting candidates for photocatalytic applications due to their high surface-to-volume ratio and their waveguide character. The integration of GaN NW arrays on GaN-based light emitting diodes (LEDs), serving as a platform for electrically driven NW-based photocatalytic devices, enables an efficient coupling of the light from the planar LED to the GaN NWs. Here, we present a numerical study of the influence of the NW geometries, i.e., the NW diameter, length, and period, and the illumination wavelength on the transmission of GaN NW arrays on transparent substrates. A detailed numerical analysis reveals that the transmission characteristics for large periods are determined by the waveguide character of the single NW, whereas for dense GaN NW arrays inter-wire coupling and diffraction effects originating from the periodic arrangement of the GaN NWs dominate the transmission. The numerically simulated results are confirmed by experimental transmission measurements. We also investigate the influence of a dielectric NW shell and of the surrounding medium on the transmission characteristics of a GaN NW array.

  4. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  5. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  6. Aberration improvement of the floating 3D display system based on Tessar array and directional diffuser screen

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Zhang, Wanlu; Yan, Binbin; Yu, Chongxiu

    2018-06-01

    The floating 3D display system based on Tessar array and directional diffuser screen is proposed. The directional diffuser screen can smoothen the gap of lens array and make the 3D image's brightness continuous. The optical structure and aberration characteristics of the floating three-dimensional (3D) display system are analyzed. The simulation and experiment are carried out, which show that the 3D image quality becomes more and more deteriorative with the further distance of the image plane and the increasing viewing angle. To suppress the aberrations, the Tessar array is proposed according to the aberration characteristics of the floating 3D display system. A 3840 × 2160 liquid crystal display panel (LCD) with the size of 23.6 inches, a directional diffuser screen and a Tessar array are used to display the final 3D images. The aberrations are reduced and the definition is improved compared with that of the display with a single-lens array. The display depth of more than 20 cm and the viewing angle of more than 45° can be achieved.

  7. Review on structured optical field generated from array beams

    NASA Astrophysics Data System (ADS)

    Hou, Tianyue; Zhou, Pu; Ma, Yanxing; Zhi, Dong

    2018-03-01

    Structured optical field (SOF), which includes vortex beams, non-diffraction beams, cylindrical vector beams and so on, has been under intensive investigation theoretically and experimentally in recent years. Generally, current research focus on the extraordinary properties (non-diffraction propagation, helical wavefront, rotation of electrical field, et al), which can be widely applied in micro-particle manipulation, super-resolution imaging, free-space communication and so on. There are mainly two technical routes, that is, inner-cavity and outer-cavity (spatial light modulators, diffractive phase holograms, q-plates). To date, most of the SOFs generated from both technical routes involves with single monolithic beam. As a novel technical route, SOF based on array beams has the advantage in more flexible freedom degree and power scaling potential. In this paper, research achievements in SOF generation based on array beams are arranged and discussed in detail. Moreover, experiment of generating exotic beam by array beams is introduced, which illustrates that SOF generated from array beams is theoretically valid and experimentally feasible. SOF generated from array beams is also beneficial for capacity increasing and data receiving for free-space optical communication systems at long distance.

  8. Array-CGH in children with mild intellectual disability: a population-based study.

    PubMed

    Coutton, Charles; Dieterich, Klaus; Satre, Véronique; Vieville, Gaëlle; Amblard, Florence; David, Marie; Cans, Christine; Jouk, Pierre-Simon; Devillard, Francoise

    2015-01-01

    Intellectual disability (ID) is characterized by limitation in intellectual function and adaptive behavior, with onset in childhood. Frequent identifiable causes of ID originate from chromosomal imbalances. During the last years, array-CGH has successfully contributed to improve the diagnostic detection rate of genetic abnormalities in patients with ID. Most array-CGH studies focused on patients with moderate or severe intellectual disability. Studies on genetic etiology in children with mild intellectual disability (ID) are very rare. We performed array-CGH analysis in 66 children with mild intellectual disability assessed in a population-based study and for whom no genetic etiology was identified. We found one or more copy number variations (CNVs) in 20 out of 66 (~30 %) patients with a mild ID. In eight of them (~12 %), the CNVs were certainly responsible for the phenotype and in six they were potentially pathogenic for ID. Altogether, array-CGH helped to determine the etiology of ID in 14 patients (~21 %). Our results underscore the clinical relevance of array-CGH to investigate the etiology of isolated idiopathic mild ID in patients or associated with even subtle dysmorphic features or congenital malformations.

  9. Global data bases on distribution, characteristics and methane emission of natural wetlands: Documentation of archived data tape

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine

    1989-01-01

    Global digital data bases on the distribution and environmental characteristics of natural wetlands, compiled by Matthews and Fung (1987), were archived for public use. These data bases were developed to evaluate the role of wetlands in the annual emission of methane from terrestrial sources. Five global 1 deg latitude by 1 deg longitude arrays are included on the archived tape. The arrays are: (1) wetland data source, (2) wetland type, (3) fractional inundation, (4) vegetation type, and (5) soil type. The first three data bases on wetland locations were published by Matthews and Fung (1987). The last two arrays contain ancillary information about these wetland locations: vegetation type is from the data of Matthews (1983) and soil type from the data of Zobler (1986). Users should consult original publications for complete discussion of the data bases. This short paper is designed only to document the tape, and briefly explain the data sets and their initial application to estimating the annual emission of methane from natural wetlands. Included is information about array characteristics such as dimensions, read formats, record lengths, blocksizes and value ranges, and descriptions and translation tables for the individual data bases.

  10. Visualizing the movement of the contact between vocal folds during vibration by using array-based transmission ultrasonic glottography

    PubMed Central

    Jing, Bowen; Chigan, Pengju; Ge, Zhengtong; Wu, Liang; Wang, Supin; Wan, Mingxi

    2017-01-01

    For the purpose of noninvasively visualizing the dynamics of the contact between vibrating vocal fold medial surfaces, an ultrasonic imaging method which is referred to as array-based transmission ultrasonic glottography is proposed. An array of ultrasound transducers is used to detect the ultrasound wave transmitted from one side of the vocal folds to the other side through the small-sized contact between the vocal folds. A passive acoustic mapping method is employed to visualize and locate the contact. The results of the investigation using tissue-mimicking phantoms indicate that it is feasible to use the proposed method to visualize and locate the contact between soft tissues. Furthermore, the proposed method was used for investigating the movement of the contact between the vibrating vocal folds of excised canine larynges. The results indicate that the vertical movement of the contact can be visualized as a vertical movement of a high-intensity stripe in a series of images obtained by using the proposed method. Moreover, a visualization and analysis method, which is referred to as array-based ultrasonic kymography, is presented. The velocity of the vertical movement of the contact, which is estimated from the array-based ultrasonic kymogram, could reach 0.8 m/s during the vocal fold vibration. PMID:28599522

  11. Development of IR imaging at IRnova

    NASA Astrophysics Data System (ADS)

    Martijn, Henk; Asplund, Carl; Malm, Hedda; Smuk, Sergiy; Höglund, Linda; Gustafsson, Oscar; Hammar, Mattias; Hellström, Staffan

    2009-05-01

    Historically IRnova has exclusively been a company, focused on manufacturing of QWIP detectors. Nowadays, besides continuous improvements of the performance of QWIP FPAs and development of new formats IRnova is involved in development of QWIP detectors for special applications and has started the development of the next generation infrared detectors, as well. In the light of the development of new formats we validate experimentally theoretical calculations of the response of QWIPs for smaller pixel size. These results allow for the development of high performance megapixel QWIP FPA that exhibit the high uniformity and operability QWIP detectors are known for. QWIP is also being considered for space applications. The requirements on dark current and operating temperature are however much more stringent as compared to the terrestrial applications. We show ways to improve the material quality with as a result a higher detector operating temperature. IRnova is also looking at antimony-based strained superlattice material for the LWIR region together with partners at the IMAGIC centre of excellence. One of the ways to overcome the problem with surface currents is passivating overgrowth. We will report the status and results of overgrowing the detector mesas with AlGa(As)Sb in a MOVPE system. At the same centre of excellence a novel material concept is being developed for LWIR detection. This new material contains a superlattice of vertically aligned and electronically coupled InAs and GaSb quantum dots. Simulations show that it should be possible to have LWIR detection in this material. We will present the current status and report results in this research.

  12. Constitutive description of human femoropopliteal artery aging.

    PubMed

    Kamenskiy, Alexey; Seas, Andreas; Deegan, Paul; Poulson, William; Anttila, Eric; Sim, Sylvie; Desyatova, Anastasia; MacTaggart, Jason

    2017-04-01

    Femoropopliteal artery (FPA) mechanics play a paramount role in pathophysiology and the artery's response to therapeutic interventions, but data on FPA mechanical properties are scarce. Our goal was to characterize human FPAs over a wide population to derive a constitutive description of FPA aging to be used for computational modeling. Fresh human FPA specimens ([Formula: see text]) were obtained from [Formula: see text] predominantly male (80 %) donors 54±15 years old (range 13-82 years). Morphometric characteristics including radius, wall thickness, opening angle, and longitudinal pre-stretch were recorded. Arteries were subjected to multi-ratio planar biaxial extension to determine constitutive parameters for an invariant-based model accounting for the passive contributions of ground substance, elastin, collagen, and smooth muscle. Nonparametric bootstrapping was used to determine unique sets of material parameters that were used to derive age-group-specific characteristics. Physiologic stress-stretch state was calculated to capture changes with aging. Morphometric and constitutive parameters were derived for seven age groups. Vessel radius, wall thickness, and circumferential opening angle increased with aging, while longitudinal pre-stretch decreased ([Formula: see text]). Age-group-specific constitutive parameters portrayed orthotropic FPA stiffening, especially in the longitudinal direction. Structural changes in artery wall elastin were associated with reduction of physiologic longitudinal and circumferential stretches and stresses with age. These data and the constitutive description of FPA aging shed new light on our understanding of peripheral arterial disease pathophysiology and arterial aging. Application of this knowledge might improve patient selection for specific treatment modalities in personalized, precision medicine algorithms and could assist in device development for treatment of peripheral artery disease.

  13. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  14. CMOS imager for pointing and tracking applications

    NASA Technical Reports Server (NTRS)

    Sun, Chao (Inventor); Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Heynssens, Julie B. (Inventor)

    2006-01-01

    Systems and techniques to realize pointing and tracking applications with CMOS imaging devices. In general, in one implementation, the technique includes: sampling multiple rows and multiple columns of an active pixel sensor array into a memory array (e.g., an on-chip memory array), and reading out the multiple rows and multiple columns sampled in the memory array to provide image data with reduced motion artifact. Various operation modes may be provided, including TDS, CDS, CQS, a tracking mode to read out multiple windows, and/or a mode employing a sample-first-read-later readout scheme. The tracking mode can take advantage of a diagonal switch array. The diagonal switch array, the active pixel sensor array and the memory array can be integrated onto a single imager chip with a controller. This imager device can be part of a larger imaging system for both space-based applications and terrestrial applications.

  15. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    NASA Technical Reports Server (NTRS)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  16. An approach for configuring space photovoltaic tandem arrays based on cell layer performance

    NASA Technical Reports Server (NTRS)

    Flora, C. S.; Dillard, P. A.

    1991-01-01

    Meeting solar array performance goals of 300 W/Kg requires use of solar cells with orbital efficiencies greater than 20 percent. Only multijunction cells and cell layers operating in tandem produce this required efficiency. An approach for defining solar array design concepts that use tandem cell layers involve the following: transforming cell layer performance at standard test conditions to on-orbit performance; optimizing circuit configuration with tandem cell layers; evaluating circuit sensitivity to cell current mismatch; developing array electrical design around selected circuit; and predicting array orbital performance including seasonal variations.

  17. Integrated residential photovoltaic array development

    NASA Astrophysics Data System (ADS)

    Shepard, N. F., Jr.

    1981-12-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  18. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  19. Electrically reconfigurable logic array

    NASA Technical Reports Server (NTRS)

    Agarwal, R. K.

    1982-01-01

    To compose the complicated systems using algorithmically specialized logic circuits or processors, one solution is to perform relational computations such as union, division and intersection directly on hardware. These relations can be pipelined efficiently on a network of processors having an array configuration. These processors can be designed and implemented with a few simple cells. In order to determine the state-of-the-art in Electrically Reconfigurable Logic Array (ERLA), a survey of the available programmable logic array (PLA) and the logic circuit elements used in such arrays was conducted. Based on this survey some recommendations are made for ERLA devices.

  20. Cost competitiveness of a solar cell array power source for ATS-6 educational TV terminal

    NASA Technical Reports Server (NTRS)

    Masters, R. M.

    1975-01-01

    A cost comparison is made between a terrestrial solar cell array power system and a variety of other power sources for the ATS-6 Satellite Instructional Television Experiment (SITE) TV terminals in India. The solar array system was sized for a typical Indian location, Lahore. Based on present capital and fuel costs, the solar cell array power system is a close competitor to the least expensive alternate power system. A feasibility demonstration of a terrestrial solar cell array system powering an ATS-6 receiver terminal at Cleveland, Ohio is described.

  1. Integrated residential photovoltaic array development

    NASA Technical Reports Server (NTRS)

    Shepard, N. F., Jr.

    1981-01-01

    An advanced, universally-mountable, integrated residential photovoltaic array concept was defined based upon an in-depth formulation and evaluation of three candidate approaches which were synthesized from existing or proposed residential array concepts. The impact of module circuitry and process sequence is considered and technology gaps and performance drivers associated with residential photovoltaic array concepts are identified. The actual learning experience gained from the comparison of the problem areas of the hexagonal shingle design with the rectangular module design led to what is considered an advanced array concept. Building the laboratory mockup provided actual experience and the opportunity to uncover additional technology gaps.

  2. Solar array stepping problems in satellites and solutions

    NASA Astrophysics Data System (ADS)

    Maharana, P. K.; Goel, P. S.

    1992-01-01

    The dynamics problems arising due to stepping motion of the solar arrays of spacecraft are studied. To overcome these problems, design improvements in the drive logic based on the phase plane analysis are suggested. The improved designs are applied to the Solar Array Drive Assembly (SADA) of IRS-1B and INSAT-2A satellites. In addition, an alternate torquing strategy for very successful slewing of the arrays, and with minimum excitation of flexible modes, is proposed.

  3. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.

    PubMed

    Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing

    2011-08-23

    We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society

  4. Self-Ordered Titanium Dioxide Nanotube Arrays: Anodic Synthesis and Their Photo/Electro-Catalytic Applications

    PubMed Central

    Smith, York R.; Ray, Rupashree S.; Carlson, Krista; Sarma, Biplab; Misra, Mano

    2013-01-01

    Metal oxide nanotubes have become a widely investigated material, more specifically, self-organized titania nanotube arrays synthesized by electrochemical anodization. As a highly investigated material with a wide gamut of applications, the majority of published literature focuses on the solar-based applications of this material. The scope of this review summarizes some of the recent advances made using metal oxide nanotube arrays formed via anodization in solar-based applications. A general methodology for theoretical modeling of titania surfaces in solar applications is also presented. PMID:28811415

  5. Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell

    NASA Astrophysics Data System (ADS)

    Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei

    2017-07-01

    The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.

  6. Enhancing Light Emission of ZnO-Nanofilm/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect.

    PubMed

    Li, Xiaoyi; Chen, Mengxiao; Yu, Ruomeng; Zhang, Taiping; Song, Dongsheng; Liang, Renrong; Zhang, Qinglin; Cheng, Shaobo; Dong, Lin; Pan, Anlian; Wang, Zhong Lin; Zhu, Jing; Pan, Caofeng

    2015-06-22

    n-ZnO nanofilm/p-Si micropillar heterostructure light-emitting diode (LED) arrays for white light emissions are achieved and the light emission intensity of LED array is enhanced by 120% under -0.05% compressive strains. These results indicate a promising approach to fabricate Si-based light-emitting components with high performances enhanced by piezo-phototronic effect, with potential applications in touchpad technology, personalized signatures, smart skin, and silicon-based photonic integrated circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Arrays of Very Small Voltammetric Electrodes Based on Reticulated Vitreous Carbon.

    DTIC Science & Technology

    1983-10-14

    1H D-fli34 73ifARRAYS OF VERY SMALL YOLTAMMETRIC ELECTRODES BA5ED ON i/i RETICULATED VITREOUS CARBON (U) STATE UNIV OF NEW YORK I AT BUFFALO AMHERST N...PEIOiUD COVI[R9 1^. Arrays of Very Small Voltametric Electrodes 0 Based on Reticulated Vitreous Carbon - S. PRFROG OG. REPORT NUM A 7. AUTNOR) 0...Cofigi nueu eav’e,o *ee i necesaery and Iden lly by block number) L.Uj Reticulated vitreous carbon ; microelectrodes; nonlinear diffusion; vol tammetry

  8. Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors

    PubMed Central

    Shadpour, Hamed; Zawistowski, Jon S.; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L.

    2011-01-01

    Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronection coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4 fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays should enable novel cell separations in which cell selection is based on complex cellular signaling properties. PMID:21621038

  9. Similar Tensor Arrays - A Framework for Storage of Tensor Array Data

    NASA Astrophysics Data System (ADS)

    Brun, Anders; Martin-Fernandez, Marcos; Acar, Burak; Munoz-Moreno, Emma; Cammoun, Leila; Sigfridsson, Andreas; Sosa-Cabrera, Dario; Svensson, Björn; Herberthson, Magnus; Knutsson, Hans

    This chapter describes a framework for storage of tensor array data, useful to describe regularly sampled tensor fields. The main component of the framework, called Similar Tensor Array Core (STAC), is the result of a collaboration between research groups within the SIMILAR network of excellence. It aims to capture the essence of regularly sampled tensor fields using a minimal set of attributes and can therefore be used as a “greatest common divisor” and interface between tensor array processing algorithms. This is potentially useful in applied fields like medical image analysis, in particular in Diffusion Tensor MRI, where misinterpretation of tensor array data is a common source of errors. By promoting a strictly geometric perspective on tensor arrays, with a close resemblance to the terminology used in differential geometry, (STAC) removes ambiguities and guides the user to define all necessary information. In contrast to existing tensor array file formats, it is minimalistic and based on an intrinsic and geometric interpretation of the array itself, without references to other coordinate systems.

  10. New Voltage and Current Thresholds Determined for Sustained Space Plasma Arcing

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Galofaro, Joel T.; Vayner, Boris V.

    2003-01-01

    It has been known for many years, based partly on NASA Glenn Research Center testing, that high-voltage solar arrays arc into the space plasma environment. Solar arrays are composed of solar cells in series with each other (a string), and the strings may be connected in parallel to produce the entire solar array power. Arcs on solar arrays can damage or destroy solar cells, and in the extreme case of sustained arcing, entire solar array strings, in a flash. In the case of sustained arcing (discovered at Glenn and applied to the design and construction of solar arrays on Space Systems/Loral (SS/Loral, Palo Alto, CA) satellites, Deep-Space 1, and Terra), an arc on one solar array string can couple to an adjacent string and continue to be powered by the solar array output until a permanent electrical short is produced. In other words, sustained arcs produced by arcs into the plasma (so-called trigger arcs) may turn into disastrous sustained arcs by involving other array strings.

  11. Comprehensive performance comparison of high-resolution array platforms for genome-wide Copy Number Variation (CNV) analysis in humans.

    PubMed

    Haraksingh, Rajini R; Abyzov, Alexej; Urban, Alexander Eckehart

    2017-04-24

    High-resolution microarray technology is routinely used in basic research and clinical practice to efficiently detect copy number variants (CNVs) across the entire human genome. A new generation of arrays combining high probe densities with optimized designs will comprise essential tools for genome analysis in the coming years. We systematically compared the genome-wide CNV detection power of all 17 available array designs from the Affymetrix, Agilent, and Illumina platforms by hybridizing the well-characterized genome of 1000 Genomes Project subject NA12878 to all arrays, and performing data analysis using both manufacturer-recommended and platform-independent software. We benchmarked the resulting CNV call sets from each array using a gold standard set of CNVs for this genome derived from 1000 Genomes Project whole genome sequencing data. The arrays tested comprise both SNP and aCGH platforms with varying designs and contain between ~0.5 to ~4.6 million probes. Across the arrays CNV detection varied widely in number of CNV calls (4-489), CNV size range (~40 bp to ~8 Mbp), and percentage of non-validated CNVs (0-86%). We discovered strikingly strong effects of specific array design principles on performance. For example, some SNP array designs with the largest numbers of probes and extensive exonic coverage produced a considerable number of CNV calls that could not be validated, compared to designs with probe numbers that are sometimes an order of magnitude smaller. This effect was only partially ameliorated using different analysis software and optimizing data analysis parameters. High-resolution microarrays will continue to be used as reliable, cost- and time-efficient tools for CNV analysis. However, different applications tolerate different limitations in CNV detection. Our study quantified how these arrays differ in total number and size range of detected CNVs as well as sensitivity, and determined how each array balances these attributes. This analysis will inform appropriate array selection for future CNV studies, and allow better assessment of the CNV-analytical power of both published and ongoing array-based genomics studies. Furthermore, our findings emphasize the importance of concurrent use of multiple analysis algorithms and independent experimental validation in array-based CNV detection studies.

  12. Cell-Based Odorant Sensor Array for Odor Discrimination Based on Insect Odorant Receptors.

    PubMed

    Termtanasombat, Maneerat; Mitsuno, Hidefumi; Misawa, Nobuo; Yamahira, Shinya; Sakurai, Takeshi; Yamaguchi, Satoshi; Nagamune, Teruyuki; Kanzaki, Ryohei

    2016-07-01

    The olfactory system of living organisms can accurately discriminate numerous odors by recognizing the pattern of activation of several odorant receptors (ORs). Thus, development of an odorant sensor array based on multiple ORs presents the possibility of mimicking biological odor discrimination mechanisms. Recently, we developed novel odorant sensor elements with high sensitivity and selectivity based on insect OR-expressing Sf21 cells that respond to target odorants by displaying increased fluorescence intensity. Here we introduce the development of an odorant sensor array composed of several Sf21 cell lines expressing different ORs. In this study, an array pattern of four cell lines expressing Or13a, Or56a, BmOR1, and BmOR3 was successfully created using a patterned polydimethylsiloxane film template and cell-immobilizing reagents, termed biocompatible anchor for membrane (BAM). We demonstrated that BAM could create a clear pattern of Sf21 sensor cells without impacting their odorant-sensing performance. Our sensor array showed odorant-specific response patterns toward both odorant mixtures and single odorant stimuli, allowing us to visualize the presence of 1-octen-3-ol, geosmin, bombykol, and bombykal as an increased fluorescence intensity in the region of Or13a, Or56a, BmOR1, and BmOR3 cell lines, respectively. Therefore, we successfully developed a new methodology for creating a cell-based odorant sensor array that enables us to discriminate multiple target odorants. Our method might be expanded into the development of an odorant sensor capable of detecting a large range of environmental odorants that might become a promising tool used in various applications including the study of insect semiochemicals and food contamination.

  13. MethLAB: a graphical user interface package for the analysis of array-based DNA methylation data.

    PubMed

    Kilaru, Varun; Barfield, Richard T; Schroeder, James W; Smith, Alicia K; Conneely, Karen N

    2012-03-01

    Recent evidence suggests that DNA methylation changes may underlie numerous complex traits and diseases. The advent of commercial, array-based methods to interrogate DNA methylation has led to a profusion of epigenetic studies in the literature. Array-based methods, such as the popular Illumina GoldenGate and Infinium platforms, estimate the proportion of DNA methylated at single-base resolution for thousands of CpG sites across the genome. These arrays generate enormous amounts of data, but few software resources exist for efficient and flexible analysis of these data. We developed a software package called MethLAB (http://genetics.emory.edu/conneely/MethLAB) using R, an open source statistical language that can be edited to suit the needs of the user. MethLAB features a graphical user interface (GUI) with a menu-driven format designed to efficiently read in and manipulate array-based methylation data in a user-friendly manner. MethLAB tests for association between methylation and relevant phenotypes by fitting a separate linear model for each CpG site. These models can incorporate both continuous and categorical phenotypes and covariates, as well as fixed or random batch or chip effects. MethLAB accounts for multiple testing by controlling the false discovery rate (FDR) at a user-specified level. Standard output includes a spreadsheet-ready text file and an array of publication-quality figures. Considering the growing interest in and availability of DNA methylation data, there is a great need for user-friendly open source analytical tools. With MethLAB, we present a timely resource that will allow users with no programming experience to implement flexible and powerful analyses of DNA methylation data.

  14. Ultralow-Background Large-Format Bolometer Arrays

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Oegerle, William (Technical Monitor)

    2002-01-01

    In the coming decade, work will commence in earnest on large cryogenic far-infrared telescopes and interferometers. All such observatories - for example, SAFIR, SPIRIT, and SPECS - require large format, two dimensional arrays of close-packed detectors capable of reaching the fundamental limits imposed by the very low photon backgrounds present in deep space. In the near term, bolometer array architectures which permit 1000 pixels - perhaps sufficient for the next generation of space-based instruments - can be arrayed efficiently. Demonstrating the necessary performance, with Noise Equivalent Powers (NEPs) of order 10-20 W/square root of Hz, will be a hurdle in the coming years. Superconducting bolometer arrays are a promising technology for providing both the performance and the array size necessary. We discuss the requirements for future detector arrays in the far-infrared and submillimeter, describe the parameters of superconducting bolometer arrays able to meet these requirements, and detail the present and near future technology of superconducting bolometer arrays. Of particular note is the coming development of large format planar arrays with absorber-coupled and antenna-coupled bolometers.

  15. Uniform and nonuniform V-shaped planar arrays for 2-D direction-of-arrival estimation

    NASA Astrophysics Data System (ADS)

    Filik, T.; Tuncer, T. E.

    2009-10-01

    In this paper, isotropic and directional uniform and nonuniform V-shaped arrays are considered for azimuth and elevation direction-of-arrival (DOA) angle estimation simultaneously. It is shown that the uniform isotropic V-shaped arrays (UI V arrays) have no angle coupling between the azimuth and elevation DOA. The design of the UI V arrays is investigated, and closed form expressions are presented for the parameters of the UI V arrays and nonuniform V arrays. These expressions allow one to find the isotropic V angle for different array types. The DOA performance of the UI V array is compared with the uniform circular array (UCA) for correlated signals and in case of mutual coupling between array elements. The modeling error for the sensor positions is also investigated. It is shown that V array and circular array have similar robustness for the position errors while the performance of UI V array is better than the UCA for correlated source signals and when there is mutual coupling. Nonuniform V-shaped isotropic arrays are investigated which allow good DOA performance with limited number of sensors. Furthermore, a new design method for the directional V-shaped arrays is proposed. This method is based on the Cramer-Rao Bound for joint estimation where the angle coupling effect between the azimuth and elevation DOA angles is taken into account. The design method finds an optimum angle between the linear subarrays of the V array. The proposed method can be used to obtain directional arrays with significantly better DOA performance.

  16. Wafer-scale, massively parallel carbon nanotube arrays for realizing field effect transistors with current density exceeding silicon and gallium arsenide

    NASA Astrophysics Data System (ADS)

    Arnold, Michael

    Calculations have indicated that aligned arrays of semiconducting carbon nanotubes (CNTs) promise to outperform conventional semiconducting materials in short-channel, aggressively scaled field effect transistors (FETs) like those used in semiconductor logic and high frequency amplifier technologies. These calculations have been based on extrapolation of measurements of FETs based on one CNT, in which ballistic transport approaching the quantum conductance limit of 2Go = 4e2/h has been achieved. However, constraints in CNT sorting, processing, alignment, and contacts give rise to non-idealities when CNTs are implemented in densely-packed parallel arrays, which has resulted in a conductance per CNT far from 2Go. The consequence has been that it has been very difficult to create high performance CNT array FETs, and CNT array FETs have not outperformed but rather underperformed channel materials such as Si by 6 x or more. Here, we report nearly ballistic CNT array FETs at a density of 50 CNTs um-1, created via CNT sorting, wafer-scale alignment and assembly, and treatment. The on-state conductance in the arrays is as high as 0.46 Go per CNT, and the conductance of the arrays reaches 1.7 mS um-1, which is 7 x higher than previous state-of-the-art CNT array FETs made by other methods. The saturated on-state current density reaches 900 uA um-1 and is similar to or exceeds that of Si FETs when compared at equivalent gate oxide thickness, off-state current density, and channel length. The on-state current density exceeds that of GaAs FETs, as well. This leap in CNT FET array performance is a significant advance towards the exploitation of CNTs in high-performance semiconductor electronics technologies.

  17. A bio-inspired structural health monitoring system based on ambient vibration

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Kang; Kiremidjian, Anne; Lei, Chi-Yang

    2010-11-01

    A structural health monitoring (SHM) system based on naïve Bayesian (NB) damage classification and DNA-like expression data was developed in this research. Adapted from the deoxyribonucleic acid (DNA) array concept in molecular biology, the proposed structural health monitoring system is constructed utilizing a double-tier regression process to extract the expression array from the structural time history recorded during external excitations. The extracted array is symbolized as the various genes of the structure from the viewpoint of molecular biology and reflects the possible damage conditions prevalent in the structure. A scaled down, six-story steel building mounted on the shaking table of the National Center for Research on Earthquake Engineering (NCREE) was used as the benchmark. The structural response at different damage levels and locations under ambient vibration was collected to support the database for the proposed SHM system. To improve the precision of detection in practical applications, the system was enhanced by an optimization process using the likelihood selection method. The obtained array representing the DNA array of the health condition of the structure was first evaluated and ranked. A total of 12 groups of expression arrays were regenerated from a combination of four damage conditions. To keep the length of the array unchanged, the best 16 coefficients from every expression array were selected to form the optimized SHM system. Test results from the ambient vibrations showed that the detection accuracy of the structural damage could be greatly enhanced by the optimized expression array, when compared to the original system. Practical verification also demonstrated that a rapid and reliable result could be given by the final system within 1 min. The proposed system implements the idea of transplanting the DNA array concept from molecular biology into the field of SHM.

  18. Measuring MEG closer to the brain: Performance of on-scalp sensor arrays

    PubMed Central

    Iivanainen, Joonas; Stenroos, Matti; Parkkonen, Lauri

    2017-01-01

    Optically-pumped magnetometers (OPMs) have recently reached sensitivity levels required for magnetoencephalography (MEG). OPMs do not need cryogenics and can thus be placed within millimetres from the scalp into an array that adapts to the invidual head size and shape, thereby reducing the distance from cortical sources to the sensors. Here, we quantified the improvement in recording MEG with hypothetical on-scalp OPM arrays compared to a 306-channel state-of-the-art SQUID array (102 magnetometers and 204 planar gradiometers). We simulated OPM arrays that measured either normal (nOPM; 102 sensors), tangential (tOPM; 204 sensors), or all components (aOPM; 306 sensors) of the magnetic field. We built forward models based on magnetic resonance images of 10 adult heads; we employed a three-compartment boundary element model and distributed current dipoles evenly across the cortical mantle. Compared to the SQUID magnetometers, nOPM and tOPM yielded 7.5 and 5.3 times higher signal power, while the correlations between the field patterns of source dipoles were reduced by factors of 2.8 and 3.6, respectively. Values of the field-pattern correlations were similar across nOPM, tOPM and SQUID gradiometers. Volume currents reduced the signals of primary currents on average by 10%, 72% and 15% in nOPM, tOPM and SQUID magnetometers, respectively. The information capacities of the OPM arrays were clearly higher than that of the SQUID array. The dipole-localization accuracies of the arrays were similar while the minimum-norm-based point-spread functions were on average 2.4 and 2.5 times more spread for the SQUID array compared to nOPM and tOPM arrays, respectively. PMID:28007515

  19. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization

    DOE PAGES

    Wang, Sibo; Wu, Yunchao; Miao, Ran; ...

    2017-07-26

    Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less

  20. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sibo; Wu, Yunchao; Miao, Ran

    Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less

  1. Transport and collision dynamics in periodic asymmetric obstacle arrays: Rational design of microfluidic rare-cell immunocapture devices

    NASA Astrophysics Data System (ADS)

    Gleghorn, Jason P.; Smith, James P.; Kirby, Brian J.

    2013-09-01

    Microfluidic obstacle arrays have been used in numerous applications, and their ability to sort particles or capture rare cells from complex samples has broad and impactful applications in biology and medicine. We have investigated the transport and collision dynamics of particles in periodic obstacle arrays to guide the design of convective, rather than diffusive, transport-based immunocapture microdevices. Ballistic and full computational fluid dynamics simulations are used to understand the collision modes that evolve in cylindrical obstacle arrays with various geometries. We identify previously unrecognized collision mode structures and differential size-based collision frequencies that emerge from these arrays. Previous descriptions of transverse displacements that assume unidirectional flow in these obstacle arrays cannot capture mode transitions properly as these descriptions fail to capture the dependence of the mode transitions on column spacing and the attendant change in the flow field. Using these analytical and computational simulations, we elucidate design parameters that induce high collision rates for all particles larger than a threshold size or selectively increase collision frequencies for a narrow range of particle sizes within a polydisperse population. Furthermore, we investigate how the particle Péclet number affects collision dynamics and mode transitions and demonstrate that experimental observations from various obstacle array geometries are well described by our computational model.

  2. Direct Position Determination of Multiple Non-Circular Sources with a Moving Coprime Array.

    PubMed

    Zhang, Yankui; Ba, Bin; Wang, Daming; Geng, Wei; Xu, Haiyun

    2018-05-08

    Direct position determination (DPD) is currently a hot topic in wireless localization research as it is more accurate than traditional two-step positioning. However, current DPD algorithms are all based on uniform arrays, which have an insufficient degree of freedom and limited estimation accuracy. To improve the DPD accuracy, this paper introduces a coprime array to the position model of multiple non-circular sources with a moving array. To maximize the advantages of this coprime array, we reconstruct the covariance matrix by vectorization, apply a spatial smoothing technique, and converge the subspace data from each measuring position to establish the cost function. Finally, we obtain the position coordinates of the multiple non-circular sources. The complexity of the proposed method is computed and compared with that of other methods, and the Cramer⁻Rao lower bound of DPD for multiple sources with a moving coprime array, is derived. Theoretical analysis and simulation results show that the proposed algorithm is not only applicable to circular sources, but can also improve the positioning accuracy of non-circular sources. Compared with existing two-step positioning algorithms and DPD algorithms based on uniform linear arrays, the proposed technique offers a significant improvement in positioning accuracy with a slight increase in complexity.

  3. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort.

    PubMed

    Retterer, Kyle; Scuffins, Julie; Schmidt, Daniel; Lewis, Rachel; Pineda-Alvarez, Daniel; Stafford, Amanda; Schmidt, Lindsay; Warren, Stephanie; Gibellini, Federica; Kondakova, Anastasia; Blair, Amanda; Bale, Sherri; Matyakhina, Ludmila; Meck, Jeanne; Aradhya, Swaroop; Haverfield, Eden

    2015-08-01

    Detection of copy-number variation (CNV) is important for investigating many genetic disorders. Testing a large clinical cohort by array comparative genomic hybridization provides a deep perspective on the spectrum of pathogenic CNV. In this context, we describe a bioinformatics approach to extract CNV information from whole-exome sequencing and demonstrate its utility in clinical testing. Exon-focused arrays and whole-genome chromosomal microarray analysis were used to test 14,228 and 14,000 individuals, respectively. Based on these results, we developed an algorithm to detect deletions/duplications in whole-exome sequencing data and a novel whole-exome array. In the exon array cohort, we observed a positive detection rate of 2.4% (25 duplications, 318 deletions), of which 39% involved one or two exons. Chromosomal microarray analysis identified 3,345 CNVs affecting single genes (18%). We demonstrate that our whole-exome sequencing algorithm resolves CNVs of three or more exons. These results demonstrate the clinical utility of single-exon resolution in CNV assays. Our whole-exome sequencing algorithm approaches this resolution but is complemented by a whole-exome array to unambiguously identify intragenic CNVs and single-exon changes. These data illustrate the next advancements in CNV analysis through whole-exome sequencing and whole-exome array.Genet Med 17 8, 623-629.

  4. Development of a Multiplexed Bead-Based Suspension Array for the Detection and Discrimination of Pospiviroid Plant Pathogens

    PubMed Central

    van Brunschot, Sharon L.; Bergervoet, Jan H. W.; Pagendam, Daniel E.; de Weerdt, Marjanne; Geering, Andrew D. W.; Drenth, André; van der Vlugt, René A. A.

    2014-01-01

    Efficient and reliable diagnostic tools for the routine indexing and certification of clean propagating material are essential for the management of pospiviroid diseases in horticultural crops. This study describes the development of a true multiplexed diagnostic method for the detection and identification of all nine currently recognized pospiviroid species in one assay using Luminex bead-based suspension array technology. In addition, a new data-driven, statistical method is presented for establishing thresholds for positivity for individual assays within multiplexed arrays. When applied to the multiplexed array data generated in this study, the new method was shown to have better control of false positives and false negative results than two other commonly used approaches for setting thresholds. The 11-plex Luminex MagPlex-TAG pospiviroid array described here has a unique hierarchical assay design, incorporating a near-universal assay in addition to nine species-specific assays, and a co-amplified plant internal control assay for quality assurance purposes. All assays of the multiplexed array were shown to be 100% specific, sensitive and reproducible. The multiplexed array described herein is robust, easy to use, displays unambiguous results and has strong potential for use in routine pospiviroid indexing to improve disease management strategies. PMID:24404188

  5. High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

    PubMed Central

    Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan

    2014-01-01

    Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222

  6. Flat-plate photovoltaic array design optimization

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1980-01-01

    An analysis is presented which integrates the results of specific studies in the areas of photovoltaic structural design optimization, optimization of array series/parallel circuit design, thermal design optimization, and optimization of environmental protection features. The analysis is based on minimizing the total photovoltaic system life-cycle energy cost including repair and replacement of failed cells and modules. This approach is shown to be a useful technique for array optimization, particularly when time-dependent parameters such as array degradation and maintenance are involved.

  7. Real time interrogation technique for fiber Bragg grating enhanced fiber loop ringdown sensors array.

    PubMed

    Zhang, Yunlong; Li, Ruoming; Shi, Yuechun; Zhang, Jintao; Chen, Xiangfei; Liu, Shengchun

    2015-06-01

    A novel fiber Bragg grating aided fiber loop ringdown (FLRD) sensor array and the wavelength-time multiplexing based interrogation technique for the FLRD sensors array are proposed. The interrogation frequency of the system is formulated and the interrelationships among the parameters of the system are analyzed. To validate the performance of the proposed system, a five elements array is experimentally demonstrated, and the system shows the capability of real time monitoring every FLRD element with interrogation frequency of 125.5 Hz.

  8. Fiber Optic Geophysics Sensor Array

    NASA Astrophysics Data System (ADS)

    Grochowski, Lucjan

    1989-01-01

    The distributed optical sensor arrays are analysed in view of specific needs of 3-D seismic explorations methods. There are compared advantages and disadventages of arrays supported by the sensors which are modulated in intensity and phase. In these systems all-fiber optic structures and their compabilities with digital geophysic formats are discussed. It was shown that the arrays based on TDM systems with the intensity modulated sensors are economically and technically the best matched for geophysic systems supported by a large number of the sensors.

  9. Geiger-Mode Avalanche Photodiode Arrays Integrated to All-Digital CMOS Circuits

    DTIC Science & Technology

    2016-01-20

    Figure 7 4×4 GMAPD array wire bonded to CMOS timing circuits Figure 8 Low‐fill‐factor APD design used in lidar sensors The APD doping...epitaxial growth and the pixels are isolated by mesa etch. 128×32 lidar image sensors were built by bump bonding the APD arrays to a CMOS timing...passive image sensor with this large a format based on hybridization of a GMAPD array to a CMOS readout. Fig. 14 shows one of the first images taken

  10. Anti-static coat for solar arrays

    NASA Astrophysics Data System (ADS)

    Fellas, C. N.

    1982-06-01

    A Kapton based composite material, suitable as a substrate for flexible solar arrays, was designed, constructed and tested under electron energies ranging from 5 to 30 keV. The rear of the array under adverse eclipse conditions (-197 C) produced voltages well below the discharge threshold. An antistatic coat suitable as a front cover for solar arrays is also described. The thermal and optical transmission characteristics were tested and are satisfactory, but the UV and particle degradation of the Tedlar material needs to be evaluated.

  11. On the Limits of Infants' Quantification of Small Object Arrays

    ERIC Educational Resources Information Center

    Feigenson, Lisa; Carey, Susan

    2005-01-01

    Recent work suggests that infants rely on mechanisms of object-based attention and short-term memory to represent small numbers of objects. Such work shows that infants discriminate arrays containing 1, 2, or 3 objects, but fail with arrays greater than 3 [Feigenson, L., & Carey, S. (2003). Tracking individuals via object-files: Evidence from…

  12. Arrays of nucleic acid probes on biological chips

    DOEpatents

    Chee, Mark; Cronin, Maureen T.; Fodor, Stephen P. A.; Huang, Xiaohua X.; Hubbell, Earl A.; Lipshutz, Robert J.; Lobban, Peter E.; Morris, MacDonald S.; Sheldon, Edward L.

    1998-11-17

    DNA chips containing arrays of oligonucleotide probes can be used to determine whether a target nucleic acid has a nucleotide sequence identical to or different from a specific reference sequence. The array of probes comprises probes exactly complementary to the reference sequence, as well as probes that differ by one or more bases from the exactly complementary probes.

  13. Proceedings of the Flat-Plate Solar Array Project Research Forum on the Design of Flat-Plate Photovoltaic Arrays for Central Stations

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Flat Plate Solar Array Project, focuses on advancing technologies relevant to the design and construction of megawatt level central station systems. Photovoltaic modules and arrays for flat plate central station or other large scale electric power production facilities require the establishment of a technical base that resolves design issues and results in practical and cost effective configurations. Design, qualification and maintenance issues related to central station arrays derived from the engineering and operating experiences of early applications and parallel laboratory reserch activities are investigated. Technical issues are examined from the viewpoint of the utility engineer, architect/engineer and laboratory researcher. Topics on optimum source circuit designs, module insulation design for high system voltages, array safety, structural interface design, measurements, and array operation and maintenance are discussed.

  14. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    PubMed

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America

  15. Optical microwave filter based on spectral slicing by use of arrayed waveguide gratings.

    PubMed

    Pastor, Daniel; Ortega, Beatriz; Capmany, José; Sales, Salvador; Martinez, Alfonso; Muñoz, Pascual

    2003-10-01

    We have experimentally demonstrated a new optical signal processor based on the use of arrayed waveguide gratings. The structure exploits the concept of spectral slicing combined with the use of an optical dispersive medium. The approach presents increased flexibility from previous slicing-based structures in terms of tunability, reconfiguration, and apodization of the samples or coefficients of the transversal optical filter.

  16. Compact, high-resolution, gamma ray imaging for scintimammography and other medical diagostic applications

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.; Steinbach, Daniela

    1999-01-01

    A high resolution gamma ray imaging device includes an aluminum housing, a lead screen collimator at an opened end of the housing, a crystal scintillator array mounted behind the lead screen collimator, a foam layer between the lead screen collimator and the crystal scintillator array, a photomultiplier window coupled to the crystal with optical coupling grease, a photomultiplier having a dynode chain body and a base voltage divider with anodes, anode wire amplifiers each connected to four anodes and a multi pin connector having pin connections to each anode wire amplifier. In one embodiment the crystal scintillator array includes a yttrium aluminum perovskite (YAP) crystal array. In an alternate embodiment, the crystal scintillator array includes a gadolinium oxyorthosilicate (GSO) crystal array.

  17. High Sensitivity Long-Wavelength Infrared QWIP Focal Plane Array Based Instrument for Remote Sensing of Icy Satellites

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Ivanov, A.

    2003-01-01

    GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.

  18. Subarray-based FDA radar to counteract deceptive ECM signals

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed; Wang, Wen-Qin; Yuan, Zhao; Mohamed, Suhad; Bin, Tang

    2016-12-01

    In recent years, the frequency diverse array (FDA) radar concept has attracted extensive attention, as it may benefit from a small frequency increment, compared to the carrier frequency across the array elements and thereby achieve an array factor that is a function of the angle, the time, and the range which is superior to the conventional phase array radar (PAR). However, limited effort on the subject of FDA in electronic countermeasure scenarios, especially in the presence of mainbeam deceptive jamming, has been published. Basic FDA is not desirable for anti-jamming applications, due to the range-angle coupling response of targets. In this paper, a novel method based on subarrayed FDA signal processing is proposed to counteract deceptive ECM signals. We divide the FDA array into multiple subarrays, each of which employs a distinct frequency increment. As a result, in the subarray-based FDA, the desired target can be distinguished at subarray level in joint range-angle-Doppler domain by utilizing the fact that the jammer generates false targets with the same ranges to each subarray without reparations. The performance assessment shows that the proposed solution is effective for deceptive ECM targets suppression. The effectiveness is verified by simulation results.

  19. Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment

    NASA Astrophysics Data System (ADS)

    Pitarka, A.

    2014-12-01

    Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  20. Analysis and Modeling of Fullerene Single Electron Transistor Based on Quantum Dot Arrays at Room Temperature

    NASA Astrophysics Data System (ADS)

    Khadem Hosseini, Vahideh; Ahmadi, Mohammad Taghi; Ismail, Razali

    2018-05-01

    The single electron transistor (SET) as a fast electronic device is a candidate for future nanoscale circuits because of its low energy consumption, small size and simplified circuit. It consists of source and drain electrodes with a quantum dot (QD) located between them. Moreover, it operates based on the Coulomb blockade (CB) effect. It occurs when the charging energy is greater than the thermal energy. Consequently, this condition limits SET operation at cryogenic temperatures. Hence, using QD arrays can overcome this temperature limitation in SET which can therefore work at room temperature but QD arrays increase the threshold voltage with is an undesirable effect. In this research, fullerene as a zero-dimensional material with unique properties such as quantum capacitance and high critical temperature has been selected for the material of the QDs. Moreover, the current of a fullerene QD array SET has been modeled and its threshold voltage is also compared with a silicon QD array SET. The results show that the threshold voltage of fullerene SET is lower than the silicon one. Furthermore, the comparison study shows that homogeneous linear QD arrays have a lower CB range and better operation than a ring QD array SET. Moreover, the effect of the number of QDs in a QD array SET is investigated. The result confirms that the number of QDs can directly affect the CB range. Moreover, the desired current can be achieved by controlling the applied gate voltage and island diameters in a QD array SET.

  1. An optimized library for reference-based deconvolution of whole-blood biospecimens assayed using the Illumina HumanMethylationEPIC BeadArray.

    PubMed

    Salas, Lucas A; Koestler, Devin C; Butler, Rondi A; Hansen, Helen M; Wiencke, John K; Kelsey, Karl T; Christensen, Brock C

    2018-05-29

    Genome-wide methylation arrays are powerful tools for assessing cell composition of complex mixtures. We compare three approaches to select reference libraries for deconvoluting neutrophil, monocyte, B-lymphocyte, natural killer, and CD4+ and CD8+ T-cell fractions based on blood-derived DNA methylation signatures assayed using the Illumina HumanMethylationEPIC array. The IDOL algorithm identifies a library of 450 CpGs, resulting in an average R 2  = 99.2 across cell types when applied to EPIC methylation data collected on artificial mixtures constructed from the above cell types. Of the 450 CpGs, 69% are unique to EPIC. This library has the potential to reduce unintended technical differences across array platforms.

  2. Charge-injection-device 2 x 64 element infrared array performance

    NASA Technical Reports Server (NTRS)

    Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.

    1985-01-01

    Three 2 x 64 element Si:Bi accumulation-mode charge-injection-device (CID) arrays were tested at low and moderate background to evaluate their usefulness for space-based astronomical observations. Testing was conducted both in the laboratory and in ground-based telescope IR observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3 x 10 to the -17th W/sq rt Hz. This sensitivity compares well with that of nonintegrating discrete extrinsic silicon photoconductors. The array well capacity was significantly smaller than predicted. The measured sensitivity makes extrinsic silicon CID arrays useful for certain astronomical applications. However, their readout efficiency and frequency response represent serious limitations in low-background applications.

  3. Study of n- γ discrimination by zero-crossing method with SiPM based scintillation detectors

    NASA Astrophysics Data System (ADS)

    Grodzicka-Kobylka, M.; Szczesniak, T.; Moszyński, M.; Swiderski, L.; Wolski, D.; Baszak, J.; Korolczuk, S.; Schotanus, P.

    2018-03-01

    The paper presents a study of n / γ discrimination with 4x4 ch and 8x8 ch Multi Pixel Photon Counter (MPPC) arrays in neutron detectors based on Stilbene and EJ299-33 plastic scintillators. The n / γ discrimination showed an excellent capability of the MPPC arrays, comparable to that observed earlier with the classical PMTs. Particularly, an application of a zero-crossing method of n - γ discrimination prevented deterioration of the discrimination by the slow response of the Silicon Photomultiplier (SiPM, or MPPC interchangeably) array related to its large capacitance. It was confirmed by a good agreement of the Figure of Merit normalized to the number of photoelectrons determined for the MPPC arrays and XP5500 PMT.

  4. Performance of charge-injection-device infrared detector arrays at low and moderate backgrounds

    NASA Technical Reports Server (NTRS)

    Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.

    1985-01-01

    Three 2 x 64 element charge injection device infrared detector arrays were tested at low and moderate background to evaluate their usefulness for space based astronomical observations. Testing was conducted both in the laboratory and in ground based telescope observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3x10 sq root of W/Hz. Array well capacity was measured to be significantly smaller than predicted. The measured sensitivity, which compares well with that of nonintegrating discrete extrinsic silicon photoconductors, shows these arrays to be useful for certain astronomical observations. However, the measured readout efficiency and frequency response represent serious limitations in low background applications.

  5. Electromagnetic Spectrum Analysis and Its Influence on the Photoelectric Conversion Efficiency of Solar Cells.

    PubMed

    Hu, Kexiang; Ding, Enjie; Wangyang, Peihua; Wang, Qingkang

    2016-06-01

    The electromagnetic spectrum and the photoelectric conversion efficiency of the silicon hexagonal nanoconical hole (SiHNH) arrays based solar cells is systematically analyzed according to Rigorous Coupled Wave Analysis (RCWA) and Modal Transmission Line (MTL) theory. An ultimate efficiency of the optimized SiHNH arrays based solar cell is up to 31.92% in consideration of the absorption spectrum, 4.52% higher than that of silicon hexagonal nanoconical frustum (SiHNF) arrays. The absorption enhancement of the SiHNH arrays is due to its lower reflectance and more supported guided-mode resonances, and the enhanced ultimate efficiency is insensitive to bottom diameter (D(bot)) of nanoconical hole and the incident angle. The result provides an additional guideline for the nanostructure surface texturing fabrication design for photovoltaic applications.

  6. Method of construction of a multi-cell solar array

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Hollis, B. R., Jr.; Feltner, W. R. (Inventor)

    1979-01-01

    The method of constructing a high voltage, low power, multicell solar array is described. A solar cell base region is formed in a substrate such as but not limited to silicon or sapphire. A protective coating is applied on the base and a patterned etching of the coating and base forms discrete base regions. A semiconductive junction and upper active region are formed in each base region, and defined by photolithography. Thus, discrete cells which are interconnected by metallic electrodes are formed.

  7. The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models

    EPA Science Inventory

    The second phase of the MicroArray Quality Control (MAQC-II) project evaluated common practices for developing and validating microarray-based models aimed at predicting toxicological and clinical endpoints. Thirty-six teams developed classifiers for 13 endpoints - some easy, som...

  8. Development of the smartphone-based colorimetry for multi-analyte sensing arrays.

    PubMed

    Hong, Jong Il; Chang, Byoung-Yong

    2014-05-21

    Here we report development of a smartphone app (application) that digitizes the colours of a colorimetric sensor array. A conventional colorimetric sensor array consists of multiple paper-based sensors, and reports the detection results in terms of colour change. Evaluation of the colour changes is normally done by the naked eye, which may cause uncertainties due to personal subjectivity and the surrounding conditions. Solutions have been particularly sought in smartphones as they are capable of spectrometric functions. Our report specifically focuses on development of a practical app for immediate point-of-care (POC) multi-analyte sensing without additional devices. First, the individual positions of the sensors are automatically identified by the smartphone; second, the colours measured at each sensor are digitized based on a correction algorithm; and third, the corrected colours are converted to concentration values by pre-loaded calibration curves. All through these sequential processes, the sensor array taken in a smartphone snapshot undergoes laboratory-level spectrometry. The advantages of inexpensive and convenient paper-based colorimetry and the ubiquitous smartphone are tied to achieve a ready-to-go POC diagnosis.

  9. Phased-array sources based on nonlinear metamaterial nanocavities

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less

  10. 384 hanging drop arrays give excellent Z-factors and allow versatile formation of co-culture spheroids.

    PubMed

    Hsiao, Amy Y; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R; Pienta, Kenneth J; Takayama, Shuichi

    2012-05-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through Z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. Copyright © 2011 Wiley Periodicals, Inc.

  11. 384 Hanging Drop Arrays Give Excellent Z-factors and Allow Versatile Formation of Co-culture Spheroids

    PubMed Central

    Hsiao, Amy Y.; Tung, Yi-Chung; Qu, Xianggui; Patel, Lalit R.; Pienta, Kenneth J.; Takayama, Shuichi

    2012-01-01

    We previously reported the development of a simple, user-friendly, and versatile 384 hanging drop array plate for 3D spheroid culture and the importance of utilizing 3D cellular models in anti-cancer drug sensitivity testing. The 384 hanging drop array plate allows for high-throughput capabilities and offers significant improvements over existing 3D spheroid culture methods. To allow for practical 3D cell-based high-throughput screening and enable broader use of the plate, we characterize the robustness of the 384 hanging drop array plate in terms of assay performance and demonstrate the versatility of the plate. We find that the 384 hanging drop array plate performance is robust in fluorescence- and colorimetric-based assays through z-factor calculations. Finally, we demonstrate different plate capabilities and applications, including: spheroid transfer and retrieval for Janus spheroid formation, sequential addition of cells for concentric layer patterning of different cell types, and culture of a wide variety of cell types. PMID:22161651

  12. Nine-analyte detection using an array-based biosensor

    NASA Technical Reports Server (NTRS)

    Taitt, Chris Rowe; Anderson, George P.; Lingerfelt, Brian M.; Feldstein, s. Mark. J.; Ligler, Frances S.

    2002-01-01

    A fluorescence-based multianalyte immunosensor has been developed for simultaneous analysis of multiple samples. While the standard 6 x 6 format of the array sensor has been used to analyze six samples for six different analytes, this same format has the potential to allow a single sample to be tested for 36 different agents. The method described herein demonstrates proof of principle that the number of analytes detectable using a single array can be increased simply by using complementary mixtures of capture and tracer antibodies. Mixtures were optimized to allow detection of closely related analytes without significant cross-reactivity. Following this facile modification of patterning and assay procedures, the following nine targets could be detected in a single 3 x 3 array: Staphylococcal enterotoxin B, ricin, cholera toxin, Bacillus anthracis Sterne, Bacillus globigii, Francisella tularensis LVS, Yersiniapestis F1 antigen, MS2 coliphage, and Salmonella typhimurium. This work maximizes the efficiency and utility of the described array technology, increasing only reagent usage and cost; production and fabrication costs are not affected.

  13. Fabrication and characterization of nano-gas sensor arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, H. S., E-mail: hassan.shokry@gmail.com; Kashyout, A. B., E-mail: hady8@yahoo.com; Morsi, I., E-mail: drimanmorsi@yahoo.com

    2015-03-30

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al undermore » different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O{sub 2}, H{sub 2} and CO{sub 2} gases as a function of temperature.« less

  14. Signal Processing for a Lunar Array: Minimizing Power Consumption

    NASA Technical Reports Server (NTRS)

    D'Addario, Larry; Simmons, Samuel

    2011-01-01

    Motivation for the study is: (1) Lunar Radio Array for low frequency, high redshift Dark Ages/Epoch of Reionization observations (z =6-50, f=30-200 MHz) (2) High precision cosmological measurements of 21 cm H I line fluctuations (3) Probe universe before first star formation and provide information about the Intergalactic Medium and evolution of large scale structures (5) Does the current cosmological model accurately describe the Universe before reionization? Lunar Radio Array is for (1) Radio interferometer based on the far side of the moon (1a) Necessary for precision measurements, (1b) Shielding from earth-based and solar RFI (12) No permanent ionosphere, (2) Minimum collecting area of approximately 1 square km and brightness sensitivity 10 mK (3)Several technologies must be developed before deployment The power needed to process signals from a large array of nonsteerable elements is not prohibitive, even for the Moon, and even in current technology. Two different concepts have been proposed: (1) Dark Ages Radio Interferometer (DALI) (2)( Lunar Array for Radio Cosmology (LARC)

  15. Real-Time Label-Free Surface Plasmon Resonance Biosensing with Gold Nanohole Arrays Fabricated by Nanoimprint Lithography

    PubMed Central

    Martinez-Perdiguero, Josu; Retolaza, Aritz; Otaduy, Deitze; Juarros, Aritz; Merino, Santos

    2013-01-01

    In this work we present a surface plasmon resonance sensor based on enhanced optical transmission through sub-wavelength nanohole arrays. This technique is extremely sensitive to changes in the refractive index of the surrounding medium which result in a modulation of the transmitted light. The periodic gold nanohole array sensors were fabricated by high-throughput thermal nanoimprint lithography. Square periodic arrays with sub-wavelength hole diameters were obtained and characterized. Using solutions with known refractive index, the array sensitivities were obtained. Finally, protein absorption was monitored in real-time demonstrating the label-free biosensing capabilities of the fabricated devices. PMID:24135989

  16. Flat dielectric metasurface lens array for three dimensional integral imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  17. Development of an Ultraflex-Based Thin Film Solar Array for Space Applications

    NASA Technical Reports Server (NTRS)

    White, Steve; Douglas, Mark; Spence, Brian; Jones, P. Alan; Piszczor, Michael F.

    2003-01-01

    As flexible thin film photovoltaic (FTFPV) cell technology is developed for space applications, integration into a viable solar array structure that optimizes the attributes of this cell technology is critical. An advanced version of ABLE'sS UltraFlex solar array platform represents a near-term, low-risk approach to demonstrating outstanding array performance with the implementation of FTFPV technology. Recent studies indicate that an advanced UltraFlex solar array populated with 15% efficient thin film cells can achieve over 200 W/kg EOL. An overview on the status of hardware development and the future potential of this technology is presented.

  18. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking †

    PubMed Central

    Kiku, Daisuke; Okutomi, Masatoshi

    2017-01-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking. PMID:29194407

  19. Adaptive Residual Interpolation for Color and Multispectral Image Demosaicking.

    PubMed

    Monno, Yusuke; Kiku, Daisuke; Tanaka, Masayuki; Okutomi, Masatoshi

    2017-12-01

    Color image demosaicking for the Bayer color filter array is an essential image processing operation for acquiring high-quality color images. Recently, residual interpolation (RI)-based algorithms have demonstrated superior demosaicking performance over conventional color difference interpolation-based algorithms. In this paper, we propose adaptive residual interpolation (ARI) that improves existing RI-based algorithms by adaptively combining two RI-based algorithms and selecting a suitable iteration number at each pixel. These are performed based on a unified criterion that evaluates the validity of an RI-based algorithm. Experimental comparisons using standard color image datasets demonstrate that ARI can improve existing RI-based algorithms by more than 0.6 dB in the color peak signal-to-noise ratio and can outperform state-of-the-art algorithms based on training images. We further extend ARI for a multispectral filter array, in which more than three spectral bands are arrayed, and demonstrate that ARI can achieve state-of-the-art performance also for the task of multispectral image demosaicking.

  20. A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Peng, Zhengyu; Li, Changzhi

    2017-05-01

    A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)

Top