Science.gov

Sample records for arrested development high-resolution

  1. Arrested development: high-resolution imaging of foveal morphology in albinism.

    PubMed

    McAllister, John T; Dubis, Adam M; Tait, Diane M; Ostler, Shawn; Rha, Jungtae; Stepien, Kimberly E; Summers, C Gail; Carroll, Joseph

    2010-04-01

    Albinism, an inherited disorder of melanin biosynthesis, disrupts normal retinal development, with foveal hypoplasia as one of the more commonly associated ocular phenotypes. However the cellular integrity of the fovea in albinism is not well understood - there likely exist important anatomical differences that underlie phenotypic variability within the disease and that also may affect responsiveness to therapeutic intervention. Here, using spectral-domain optical coherence tomography (SD-OCT) and adaptive optics (AO) retinal imaging, we obtained high-resolution images of the foveal region in six individuals with albinism. We provide a quantitative analysis of cone density and outer segment elongation demonstrating that foveal cone specialization is variable in albinism. In addition, our data reveal a continuum of foveal pit morphology, roughly aligning with schematics of normal foveal development based on post-mortem analyses. Different albinism subtypes, genetic mutations, and constitutional pigment background likely play a role in determining the degree of foveal maturation. PMID:20149815

  2. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  3. High resolution tomographic instrument development

    SciTech Connect

    Not Available

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  4. High resolution tomographic instrument development

    NASA Astrophysics Data System (ADS)

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefitted greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  5. High-Resolution Wind Measurements for Offshore Wind Energy Development

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Neumann, Gregory

    2011-01-01

    A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.

  6. [Development of a high resolution simultaneous microwave plasma torch spectrometer].

    PubMed

    Jiang, Jie; Huan, Yan-Fu; Jin, Wei; Feng, Guo-Dong; Fei, Qiang; Cao, Yan-Bo; Jin, Qin-Han

    2007-11-01

    A unique high resolution simultaneous microwave plasma torch (MPT) atomic emission spectrometer was developed and studied preliminarily. Some advanced technologies were applied to the spectrometer, such as echelle grating, UV-intensified CCD array detector, adjustable microwave generator, and water cooling system for the generator, etc. The detection limits of the spectrometer for some elements were determined, the spectral resolution and pixel resolution of the spectrometer were calculated, and an analysis of a practical sample was carried out. The preliminary results demonstrate that such simultaneous spectrometer has advantages of saving sample and time, possessing high sensitivity and resolution, and low-cost for the purchase and maintenance. Taking analytical figures of merit into consideration, the high resolution simultaneous MPT spectrometer will have extended application areas and greater competition potential as compared with sequential MPT spectrometers.

  7. Development and Characterization of a High Resolution Portable Gamma Spectrometer

    NASA Astrophysics Data System (ADS)

    Ali, Muhammad

    The recent disaster of Fukushima in Japan combined with the high demand to enhance nuclear safety and to minimize personal exposure to radioactive materials has a significant impact on research and development of radiation detection instrumentation. Currently, there is ample effort worldwide in the pursuit of radiation detection to maximize the accuracy and meet international standards in terms of size and specifications to enable radiation protection decision making. Among the requirements is the development of a portable, light-weight gamma-ray isotope identifier to be used by first responders in nuclear accidents as well as for radiation security and identification of illicit material isotopes. From nuclear security perspective, research into advanced screening technologies has become a high priority in all aspects, while for occupational safety, and environmental radiation protection, the regulatory authorities are requiring specific performance of radiation detection and measuring devices. At the applied radiation laboratory of the University of Ontario Institute of Technology, UOIT, the development of a high resolution spectrometer for medium and high energy gamma ray has been conducted. The spectrometer used a newly developed scintillator based on a LaBr3(Ce) crystal. The detector has been modeled using advanced Monte Carlo code (MCNP/X code) for the response function simulation and parameter characterization. The simulation results have been validated by experimental investigations using a wide range of gamma radiation energies. The developed spectrometer has been characterized in terms of resolution and response in different fields. It has also been compared with other crystals such as NaI(TI) and LiI(Eu).

  8. Ultra high resolution stepper motors design, development, performance and application

    NASA Technical Reports Server (NTRS)

    Moll, H.; Roeckl, G.

    1979-01-01

    The design and development of stepper motors with steps in the 10 arc sec to 2 arc min range is described. Some of the problem areas, e.g. rotor suspension, tribology aspects and environmental conditions are covered. A summary of achieved test results and the employment in different mechanisms already developed and tested is presented to give some examples of the possible use of this interesting device. Adaptations to military and commercial requirements are proposed and show the wide range of possible applications.

  9. Development of high resolution imaging detectors for x ray astronomy

    NASA Technical Reports Server (NTRS)

    Murray, S. S.; Schwartz, D. A.

    1992-01-01

    This final report summarizes our past activities and discusses the work performed over the period of 1 April 1990 through 1 April 1991 on x-ray optics, soft x-ray (0.1 - 10 KeV) imaging detectors, and hard x-ray (10 - 300 KeV) imaging detectors. If microchannel plates (MCPs) can be used to focus x-rays with a high efficiency and good angular resolution, they will revolutionize the field of x-ray optics. An x-ray image of a point source through an array of square MCP pores compared favorably with our ray tracing model for the MCP. Initial analysis of this image demonstrates the feasibility of MCPs for soft x-rays. Our work continues with optimizing the performance of our soft x-ray MCP imaging detectors. This work involves readout technology that should provide improved MCP readout devices (thin film crossed grid, curved, and resistive sheets), defect removal in MCPs, and photocathode optimization. In the area of hard x-ray detector development we have developed two different techniques for producing a CsI photocathode thickness of 10 to 100 microns, such that it is thick enough to absorb the high energy x-rays and still allow the photoelectrons to escape to the top MCP of a modified soft x-ray imaging detector. The methods involve vacuum depositing a thick film of CsI on a strong back, and producing a converter device that takes the place of the photocathode.

  10. Developing a high resolution groundwater model for Indonesia

    NASA Astrophysics Data System (ADS)

    Sutanudjaja, E.; de Graaf, I. E.; Alberti, K.; Van Beek, L. P.; Bierkens, M. F.

    2013-12-01

    Groundwater is important in many parts of Indonesia. It serves as a primary source of drinking water and industrial activities. During times of drought, it sustains water flows in streams, rivers, lakes and wetlands, and thus support ecosystem habitat and biodiversity, as well as preventing hazardous forest fire. Besides its importance, groundwater is known as a vulnerable resource as unsustainable groundwater exploitation and management occurs in many areas of the country. Therefore, in order to ensure sustainable management of groundwater resources, monitoring and predicting groundwater changes in Indonesia are imperative. However, large-extent groundwater models to assess these changes on a regional scale are almost non-existent and are hampered by the strong topographical and lithological transitions that characterize Indonesia. In this study, we built an 1 km resolution of steady-state groundwater model for the entire Indonesian archipelago (total inland area: about 2 million km2). Here we adopted the approach of Sutanudjaja et al. (2011) in order to make a MODFLOW (McDonald and Harbaugh, 1988) groundwater model by using only global datasets. Aquifer schematization and properties of the groundwater model were developed from available global lithological map (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorf, 2012). We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. Results are promising. The MODFLOW model can converge with realistic aquifer properties (i.e. transmissivities) and produce reasonable groundwater head spatial distribution that reflects the positions of major groundwater bodies and surface water bodies in the country. For this session, we aim to demonstrate and discuss the results and the prospects of this modeling study. References: D

  11. High-Resolution Molecular Spectroscopy in Tomsk: Establishment, Development, and Current Status

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Perevalov, V. I.; Ponomarev, Yu. N.; Sinitsa, L. N.; Cherepanov, V. N.

    2016-08-01

    The paper presents brief information about the establishment and development in Tomsk of high-resolution molecular spectroscopy - the field of science closely related to a study of the optical properties of the atmosphere. The methods and the current state of high-resolution laser spectroscopy and Fourier spectroscopy are described together with new results of mass measurements. The developed theoretical methods for a study of molecular spectra, including methods of their global analysis and information systems of spectral databases, are presented.

  12. Development of a high resolution gamma camera system using finely grooved GAGG scintillator

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Kataoka, Jun; Oshima, Tsubasa; Ogata, Yoshimune; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Hatazawa, Jun

    2016-06-01

    High resolution gamma cameras require small pixel scintillator blocks with high light output. However, manufacturing a small pixel scintillator block is difficult when the pixel size becomes small. To solve this limitation, we developed a high resolution gamma camera system using a finely grooved Ce-doped Gd3Al2Ga3O12 (GAGG) plate. Our gamma camera's detector consists of a 1-mm-thick finely grooved GAGG plate that is optically coupled to a 1-in. position sensitive photomultiplier tube (PSPMT). The grooved GAGG plate has 0.2×0.2 mm pixels with 0.05-mm wide slits (between the pixels) that were manufactured using a dicing saw. We used a Hamamatsu PSPMT with a 1-in. square high quantum efficiency (HQE) PSPMT (R8900-100-C12). The energy resolution for the Co-57 gamma photons (122 keV) was 18.5% FWHM. The intrinsic spatial resolution was estimated to be 0.7-mm FWHM. With a 0.5-mm diameter pinhole collimator mounted to its front, we achieved a high resolution, small field-of-view gamma camera. The system spatial resolution for the Co-57 gamma photons was 1.0-mm FWHM, and the sensitivity was 0.0025%, 10 mm from the collimator surface. The Tc-99m HMDP administered mouse images showed the fine structures of the mouse body's parts. Our developed high resolution small pixel GAGG gamma camera is promising for such small animal imaging.

  13. Development of the front end electronics for the ZEUS high resolution calorimeter

    SciTech Connect

    Sippach, W.; Caldwell, A.; Cunitz, H.; Kotz, U.; Moeschen, J.

    1989-02-01

    The development and design of the pipelined data acquisition system for the high resolution ZEUS calorimeter is described. Details of the front end analog card and its performance are given. A description of the custom pipeline and buffer multiplexer chips is given, along with test results for the pipeline chip. In addition, some results are presented for a CCD test system built to evaluate the pipeline principles using the ZEUS calorimeter prototype at the CERN PS.

  14. High resolution digital soil mapping as a future instrument for developing sustainable landuse strategies

    NASA Astrophysics Data System (ADS)

    Gries, Philipp; Funke, Lisa-Marie; Baumann, Frank; Schmidt, Karsten; Behrens, Thorsten; Scholten, Thomas

    2016-04-01

    Climate change, increase in population and intensification of land use pose a great challenge for sustainable handling of soils. Intelligent landuse systems are able to minimize and/or avoid soil erosion and loss of soil fertility. A successful application of such systems requires area-wide soil information with high resolution. Containing three consecutive steps, the project INE-2-H („innovative sustainable landuse") at the University of Tuebingen is about creating high-resolution soil information using Digital Soil Mapping (DSM) techniques to develop sustainable landuse strategies. Input data includes soil data from fieldwork (texture and carbon content), the official digital soil and geological map (1:50.000) as well as a wide selection of local, complex and combined terrain parameters. First, soil maps have been created using the DSM approach and Random Forest (RF). Due to high resolution (10x10 m pixels), those maps show a more detailed spatial variability of soil information compared to the official maps used. Root mean square errors (RMSE) of the modelled maps vary from 2.11 % to 6.87 % and the coefficients of determination (R²) go from 0.42 to 0.68. Second, soil erosion potentials have been estimated according to the Universal Soil Loss Equation (USLE). Long-term average annual soil loss ranges from 0.56 to 24.23 [t/ha/a]. Third, combining high-resolution erosion potentials with expert-knowledge of local farmers will result in a landuse system adapted to local conditions. This system will include sustainable strategies reducing soil erosion and conserving soil fertility.

  15. Development of high resolution land surface parameters for the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Leung, L. R.; Huang, M.; Coleman, A. M.; Li, H.; Wigmosta, M. S.

    2012-06-01

    There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5° or coarser resolutions, released with the model from the National Center for Atmospheric Research (NCAR). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely-sensed datasets retrieved in late 1990's and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05° resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western US to demonstrate their use in high-resolution modeling. Future work will include global offline CLMsimulations to examine the impacts of source data resolution and subsequent land parameter changes on simulated land surface processes.

  16. Development and application of the High resolution VOC Atmospheric Chemistry in Canopies (Hi-VACC) model

    NASA Astrophysics Data System (ADS)

    Kenny, W.; Bohrer, G.; Chatziefstratiou, E.

    2013-12-01

    We have been working to develop a new post-processing model - High resolution VOC Atmospheric Chemistry in Canopies (Hi-VACC) - which will be able to resolve the dispersion and chemistry of reacting chemical species given their emission rates from the vegetation and soil, driven by high resolution meteorological forcing and wind fields from various high resolution atmospheric regional and large-eddy simulations. Hi-VACC reads in fields of pressure, temperature, humidity, air density, short-wave radiation, wind (3-D u, v and w components) and sub-grid-scale turbulence that were simulated by a high resolution atmospheric model. This meteorological forcing data is provided as snapshots of 3-D fields. Presently, the advection-diffusion portion of the model is fully developed, and we have tested it using a number of RAMS-based Forest Large Eddy Simulation (RAFLES) runs. Here, we present results from utilizing Hi-VACC in a few different contexts where it performs smoke and particle dispersion well. These include simulations of smoke dispersion from a theoretical forest fire in a domain in The Pine Barrens in New Jersey, as well as simulations to test the effects of heat flux on a scalar plume dispersing over a vegetative windbreak in an agricultural setting. Additional, we show initial results from testing the coupled chemistry component of Hi-VACC. One of the primary benefits of Hi-VACC is that users of other models can utilize this tool with only minimal work on their part -- processing their output fields into the appropriate HI-VACC input format. We have developed our model such that for whatever atmospheric model is being used with it, a MATLAB function must be written to extract the necessary information from the output files of that model and shape it into the proper format. This is the only model-specific work required. As such, this sort of smoke dispersion modeling performed by Hi-VACC - as well as its other capabilities - can be easily performed in other

  17. A high-resolution Fourier transform spectrometer for astronomical observations and development of wavelength standards

    NASA Astrophysics Data System (ADS)

    Lemke, Ulrike; Reiners, Ansgar; Schäfer, Sebastian

    2012-09-01

    At the Institute for Astrophysics Goettingen (IAG), we are purchasing a high resolution Fourier Transform Spectrograph (FTS) for astronomical observations and development of calibration standards aiming at high wavelength precision. Astronomical spectrographs that work in the regime of very high resolution (resolving powers λ/δλ>=105) now achieve unprecedented precision and stability. Precise line shifts can be investigated to conclude for an objects radial velocity relative to the observer. As a long-term scientific goal, the evolution of galaxy redshift due to dark energy can be monitored. Also, the detection of lower mass, down to Earth-like planets will become feasible. Here, M-dwarfs are promising objects where an orbiting exo-Earth can cause a wavelength shift large enough to be detected. Emitting mainly in the near infrared (NIR), these objects require novel calibration standards. Current schemes under consideration are gas cathode lamps (e.g. CN, UNe) and a highly stable Fabry-Perot interferometer (FPI) to act as a cost-efficient alternative to the laser frequency comb (LFC, [1]). In addition to experiments exploring novel wavelength calibration types, light will be fed from our telescopes at IAG. A Vacuum Tower Telescope (VTT) for solar observations and the 50 cm Cassegrain telescope allow to investigate stellar and spatially resolved light at our facilities.

  18. Development of High Resolution Data for Irrigated Area and Cropping Patterns in India

    NASA Astrophysics Data System (ADS)

    K a, A.; Mishra, V.

    2015-12-01

    Information of crop phenology and its individual effect on irrigation is essential to improve the simulation of land surface states and fluxes. We use moderate resolution imaging spectroradiometer (MODIS) - Normalized difference vegetation index (NDVI) at 250 m resolution for monitoring temporal changes in irrigation and cropping patterns in India. We used the obtained dataset of cropping pattern for quantifying the effect of irrigation on land surface states and fluxes by using an uncoupled land surface model. The cropping patterns are derived by using the planting, heading, harvesting, and growing dates for each agro-ecological zone separately. Moreover, we developed a high resolution irrigated area maps for the period of 1999-2014 for India. The high resolution irrigated area was compared with relatively coarse resolution (~ 10km) irrigated area from the Food and Agricultural Organization. To identify the seasonal effects we analyzed the spatial and temporal change of irrigation and cropping pattern for different temporal seasons. The new irrigation area information along with cropping pattern was used to study the water budget in India using the Noah Land surface Model (Noah LSM) for the period of 1999-2014.

  19. Optical coherence tomography for high-resolution imaging of mouse development in utero

    NASA Astrophysics Data System (ADS)

    Syed, Saba H.; Larin, Kirill V.; Dickinson, Mary E.; Larina, Irina V.

    2011-04-01

    Although the mouse is a superior model to study mammalian embryonic development, high-resolution live dynamic visualization of mouse embryos remain a technical challenge. We present optical coherence tomography as a novel methodology for live imaging of mouse embryos through the uterine wall thereby allowing for time lapse analysis of developmental processes and direct phenotypic analysis of developing embryos. We assessed the capability of the proposed methodology to visualize structures of the living embryo from embryonic stages 12.5 to 18.5 days postcoitus. Repetitive in utero embryonic imaging is demonstrated. Our work opens the door for a wide range of live, in utero embryonic studies to screen for mutations and understand the effects of pharmacological and toxicological agents leading to birth defects.

  20. Development of high resolution land surface parameters for the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Leung, L. R.; Huang, M.; Coleman, A. M.; Li, H.; Wigmosta, M. S.

    2012-11-01

    There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5° or coarser resolutions, released with the Community Earth System Model (CESM). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely sensed datasets retrieved in late 1990's and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05° resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. Advantages and disadvantages of each dataset were discussed in order to provide guidance on the use of the data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western US to demonstrate their use in high-resolution modeling. A remapping method from the latitude/longitude grid of the CLM data to the WRF grids with map projection was also demonstrated. Future work will include global offline CLM simulations to examine the impacts of source data resolution and subsequent land parameter

  1. Development of High Resolution Land Surface Parameters for the Community Land Model

    SciTech Connect

    Ke, Yinghai; Leung, Lai-Yung R.; Huang, Maoyi; Coleman, Andre M.; Li, Hongyi; Wigmosta, Mark S.

    2012-11-06

    There is a growing need for high-resolution land surface parameters as land surface models are being applied at increasingly higher spatial resolution offline as well as in regional and global models. The default land surface parameters for the most recent version of the Community Land Model (i.e. CLM 4.0) are at 0.5° or coarser resolutions, released with the Community Earth System Model (CESM). Plant Functional Types (PFTs), vegetation properties such as Leaf Area Index (LAI), Stem Area Index (SAI), and non-vegetated land covers were developed using remotely sensed datasets retrieved in late 1990’s and the beginning of this century. In this study, we developed new land surface parameters for CLM 4.0, specifically PFTs, LAI, SAI and non-vegetated land cover composition, at 0.05° resolution globally based on the most recent MODIS land cover and improved MODIS LAI products. Compared to the current CLM 4.0 parameters, the new parameters produced a decreased coverage by bare soil and trees, but an increased coverage by shrub, grass, and cropland. The new parameters result in a decrease in global seasonal LAI, with the biggest decrease in boreal forests; however, the new parameters also show a large increase in LAI in tropical forest. Differences between the new and the current parameters are mainly caused by changes in the sources of remotely sensed data and the representation of land cover in the source data. Advantages and disadvantages of each dataset were discussed in order to provide guidance on the use of the data. The new high-resolution land surface parameters have been used in a coupled land-atmosphere model (WRF-CLM) applied to the western U.S. to demonstrate their use in high-resolution modeling. A remapping method from the latitude/longitude grid of the CLM data to the WRF grids with map projection was also demonstrated. Future work will include global offline CLM simulations to examine the impacts of source data resolution and subsequent land parameter

  2. Overview of the development of high-resolution 920 MHz NMR in NIMS

    NASA Astrophysics Data System (ADS)

    Shimizu, Tadashi; Hashi, Kenjiro; Goto, Atsushi; Tansyo, Masataka; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Kirihara, Noriaki; Suematsu, Hiroto; Kida, Yoshiki; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji

    2004-04-01

    We have developed a 920 MHz NMR system and performed the proton NMR measurement of ethylbenzene and water using the superconducting magnet operating at 21.6 T ( 920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high-resolution NMR. The sensitivity has been examined by 1H NMR of 0.1% ethylbenzene in Wilmad 555 tube and obtained the signal-to-noise ratio as S/ N=2981, which is the highest record, to our knowledge, among the room temperature measurements.

  3. A high resolution resistive plate chamber tracking system developed for cosmic ray muon tomography

    NASA Astrophysics Data System (ADS)

    Baesso, P.; Cussans, D.; Thomay, C.; Velthuis, J. J.; Burns, J.; Steer, C.; Quillin, S.

    2013-08-01

    This work describes the performance of a muon tracker built with high resolution glass resistive plate chambers. The tracker is the result of a collaboration between University of Bristol and the Atomic Weapon Establishment to develop a reliable and cost effective system to scan shipping containers in search of special nuclear materials. The current setup consists of 12 detection layers, each comprised of a resistive plate chamber read out by 1.5 mm pitch strips. For most of the layers we achieved an efficiency better than 95%, a purity above 95% and a signal-to-noise ratio better than 300. A spatial resolution better than 500μm was obtained for most layers, thus satisfying the main requirements to apply resistive plate chambers to cosmic ray tomography.

  4. New developments in high-resolution gas source isotope ratio mass spectrometers

    NASA Astrophysics Data System (ADS)

    Clog, M. D.; Ellam, R. M.; Hilkert, A.; Schwieters, J. B.; Hamilton, D.

    2015-12-01

    Gas source isotope ratio mass spectrometry (IRMS) is one of the main tools for the study of the isotopic compositions of light elements, extended in the last 10 years to the measurements of molecules bearing several rare isotopes (e.g., clumped isotopes of CO2) as well as position-specific isotopic substitutions in a few choice analytes (e.g., in N2O). Measuring those low-abundance species creates several technical challenges, with the main one being the presence of numerous isobaric interferences. Those can come either from contaminants (background gases present in the source of the instrument or impurities introduced with the analyte), or unwanted beams created by the analyte itself during the ionization process (for example adducts and fragments). In order to avoid those isobaric species, new high-resolution, double-focusing IRMS have been developed. We present here the capabilities of the production series version of the ThermoFisher Scientific 253 Ultra, which was installed at SUERC in July 2015. The instrument is capable of reaching high mass resolving power (above 40,000) and is similar in design to the Caltech 253 Ultra prototype. The collector array has 9 detector positions, 8 of which are movable. Faraday cups at each detector can be linked to amplifiers with gains ranging from 3.108 to 1012 Ohm (and 1013 Ohm amplifiers being currently developped). There are also 4 ion counters, one of which located behind a retardation lens (RPQ) to limit background noise and improve abundance sensitivity. Additionally, one of the Faraday cup in the new instrument has a very narrow entrance slit, allowing high mass resolving power and high resolution, with a complete separation of the ion beams instead of complex peak shapes corresponding to overlapping ion beams. This will potentially remove the need for adduct lines or peak stripping schemes for analytes like CH4.

  5. High-Efficiency High-Resolution Global Model Developments at the NASA Goddard Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)

    2002-01-01

    The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 km or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the

  6. High-Efficiency High-Resolution Global Model Developments at the NASA Goddard Data Assimilation Office

    NASA Technical Reports Server (NTRS)

    Lin, Shian-Jiann; Atlas, Robert (Technical Monitor)

    2002-01-01

    The Data Assimilation Office (DAO) has been developing a new generation of ultra-high resolution General Circulation Model (GCM) that is suitable for 4-D data assimilation, numerical weather predictions, and climate simulations. These three applications have conflicting requirements. For 4-D data assimilation and weather predictions, it is highly desirable to run the model at the highest possible spatial resolution (e.g., 55 kin or finer) so as to be able to resolve and predict socially and economically important weather phenomena such as tropical cyclones, hurricanes, and severe winter storms. For climate change applications, the model simulations need to be carried out for decades, if not centuries. To reduce uncertainty in climate change assessments, the next generation model would also need to be run at a fine enough spatial resolution that can at least marginally simulate the effects of intense tropical cyclones. Scientific problems (e.g., parameterization of subgrid scale moist processes) aside, all three areas of application require the model's computational performance to be dramatically improved as compared to the previous generation. In this talk, I will present the current and future developments of the "finite-volume dynamical core" at the Data Assimilation Office. This dynamical core applies modem monotonicity preserving algorithms and is genuinely conservative by construction, not by an ad hoc fixer. The "discretization" of the conservation laws is purely local, which is clearly advantageous for resolving sharp gradient flow features. In addition, the local nature of the finite-volume discretization also has a significant advantage on distributed memory parallel computers. Together with a unique vertically Lagrangian control volume discretization that essentially reduces the dimension of the computational problem from three to two, the finite-volume dynamical core is very efficient, particularly at high resolutions. I will also present the

  7. Development and Evaluation of High-Resolution Climate Simulations Over the Mountainous Northeastern United States

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Beckage, Brian; Bucini, Gabriela; Horton, Radley M.; Clemins, Patrick J.

    2016-01-01

    The mountain regions of the northeastern United States are a critical socioeconomic resource for Vermont, New York State, New Hampshire, Maine, and southern Quebec. While global climate models (GCMs) are important tools for climate change risk assessment at regional scales, even the increased spatial resolution of statistically downscaled GCMs (commonly approximately 1/ 8 deg) is not sufficient for hydrologic, ecologic, and land-use modeling of small watersheds within the mountainous Northeast. To address this limitation, an ensemble of topographically downscaled, high-resolution (30"), daily 2-m maximum air temperature; 2-m minimum air temperature; and precipitation simulations are developed for the mountainous Northeast by applying an additional level of downscaling to intermediately downscaled (1/ 8 deg) data using high-resolution topography and station observations. First, observed relationships between 2-m air temperature and elevation and between precipitation and elevation are derived. Then, these relationships are combined with spatial interpolation to enhance the resolution of intermediately downscaled GCM simulations. The resulting topographically downscaled dataset is analyzed for its ability to reproduce station observations. Topographic downscaling adds value to intermediately downscaled maximum and minimum 2-m air temperature at high-elevation stations, as well as moderately improves domain-averaged maximum and minimum 2-m air temperature. Topographic downscaling also improves mean precipitation but not daily probability distributions of precipitation. Overall, the utility of topographic downscaling is dependent on the initial bias of the intermediately downscaled product and the magnitude of the elevation adjustment. As the initial bias or elevation adjustment increases, more value is added to the topographically downscaled product.

  8. Developing High-resolution Soil Database for Regional Crop Modeling in East Africa

    NASA Astrophysics Data System (ADS)

    Han, E.; Ines, A. V. M.

    2014-12-01

    The most readily available soil data for regional crop modeling in Africa is the World Inventory of Soil Emission potentials (WISE) dataset, which has 1125 soil profiles for the world, but does not extensively cover countries Ethiopia, Kenya, Uganda and Tanzania in East Africa. Another dataset available is the HC27 (Harvest Choice by IFPRI) in a gridded format (10km) but composed of generic soil profiles based on only three criteria (texture, rooting depth, and organic carbon content). In this paper, we present a development and application of a high-resolution (1km), gridded soil database for regional crop modeling in East Africa. Basic soil information is extracted from Africa Soil Information Service (AfSIS), which provides essential soil properties (bulk density, soil organic carbon, soil PH and percentages of sand, silt and clay) for 6 different standardized soil layers (5, 15, 30, 60, 100 and 200 cm) in 1km resolution. Soil hydraulic properties (e.g., field capacity and wilting point) are derived from the AfSIS soil dataset using well-proven pedo-transfer functions and are customized for DSSAT-CSM soil data requirements. The crop model is used to evaluate crop yield forecasts using the new high resolution soil database and compared with WISE and HC27. In this paper we will present also the results of DSSAT loosely coupled with a hydrologic model (VIC) to assimilate root-zone soil moisture. Creating a grid-based soil database, which provides a consistent soil input for two different models (DSSAT and VIC) is a critical part of this work. The created soil database is expected to contribute to future applications of DSSAT crop simulation in East Africa where food security is highly vulnerable.

  9. High resolution ultrasound elastomicroscopy imaging of soft tissues: system development and feasibility

    NASA Astrophysics Data System (ADS)

    Zheng, Y. P.; Bridal, S. L.; Shi, J.; Saied, A.; Lu, M. H.; Jaffre, B.; Mak, A. F. T.; Laugier, P.

    2004-09-01

    Research in elasticity imaging typically relies on 1-10 MHz ultrasound. Elasticity imaging at these frequencies can provide strain maps with a resolution in the order of millimetres, but this is not sufficient for applications to skin, articular cartilage or other fine structures. We developed a prototype high resolution elastomicroscopy system consisting of a 50 MHz ultrasound backscatter microscope system and a calibrated compression device using a load cell to measure the pressure applied to the specimen, which was installed between a rigidly fixed face-plate and a specimen platform. Radiofrequency data were acquired in a B-scan format (10 mm wide × 3 mm deep) in specimens of mouse skin and bovine patellar cartilage. The scanning resolution along the B-scan plane direction was 50 µm, and the ultrasound signals were digitized at 500 MHz to achieve a sensitivity better than 1 µm for the axial displacement measurement. Because of elevated attenuation of ultrasound at high frequencies, special consideration was necessary to design a face-plate permitting efficient ultrasound transmission into the specimen and relative uniformity of the compression. Best results were obtained using a thin plastic film to cover a specially shaped slit in the face-plate. Local tissue strain maps were constructed by applying a cross-correlation tracking method to signals obtained at the same site at different compression levels. The speed of sound in the tissue specimen (1589.8 ± 7.8 m s-1 for cartilage and 1532.4 ± 4.4 m s-1 for skin) was simultaneously measured during the compression test. Preliminary results demonstrated that this ultrasound elastomicroscopy technique was able to map deformations of the skin and articular cartilage specimens to high resolution, in the order of 50 µm. This system can also be potentially used for the assessment of other biological tissues, bioengineered tissues or biomaterials with fine structures.

  10. Development of the Colorado High-resolution Echelle Stellar Spectrograph (CHESS)

    NASA Astrophysics Data System (ADS)

    France, Kevin; Beasley, Matthew; Kane, Robert; Nell, Nicholas; Burgh, Eric B.; Green, James C.

    2012-09-01

    A key astrophysical theme that will drive future UV/optical space missions is the life cycle of cosmic matter, from the flow of intergalactic gas into galaxies to the formation and evolution of exoplanetary systems. Spectroscopic systems capable of delivering high resolution with low backgrounds will be essential to addressing these topics. Towards this end, we are developing a rocket-borne instrument that will serve as a pathfinder for future high-sensitivity, highresolution UV spectrographs. The Colorado High-resolution Echelle Stellar Spectrograph (CHESS) will provide 2 km s-1 velocity resolution (R = 150,000) over the 100 - 160 nm bandpass that includes key atomic and molecular spectral diagnostics for the intergalactic medium (H I Lyman-series, O VI, N V, and C IV), exoplanetary atmospheres (H I Lyman-alpha, O I, and C II), and protoplanetary disks (H2 and CO electronic band systems). CHESS uses a novel mechanical collimator comprised of an array of 10 mm x 10 mm stainless steel tubes to feed a low-scatter, 69 grooves mm-1 echelle grating. The cross-disperser is a holographically ruled toroid, with 351 grooves mm-1. The spectral orders can be recorded with either a 40 mm cross-strip microchannel plate detector or a 3.5k x 3.5k δ-doped CCD. The microchannel plate will deliver 30 μm spatial resolution and employs new 64 amp/axis electronics to accommodate high count rate observations of local OB stars. CHESS is scheduled to be launched aboard a NASA Terrier/Black Brant IX sounding rocket from White Sands Missile Range in the summer of 2013.

  11. High Resolution Visualization Applied to Future Heavy Airlift Concept Development and Evaluation

    NASA Technical Reports Server (NTRS)

    FordCook, A. B.; King, T.

    2012-01-01

    This paper explores the use of high resolution 3D visualization tools for exploring the feasibility and advantages of future military cargo airlift concepts and evaluating compatibility with existing and future payload requirements. Realistic 3D graphic representations of future airlifters are immersed in rich, supporting environments to demonstrate concepts of operations to key personnel for evaluation, feedback, and development of critical joint support. Accurate concept visualizations are reviewed by commanders, platform developers, loadmasters, soldiers, scientists, engineers, and key principal decision makers at various stages of development. The insight gained through the review of these physically and operationally realistic visualizations is essential to refining design concepts to meet competing requirements in a fiscally conservative defense finance environment. In addition, highly accurate 3D geometric models of existing and evolving large military vehicles are loaded into existing and proposed aircraft cargo bays. In this virtual aircraft test-loading environment, materiel developers, engineers, managers, and soldiers can realistically evaluate the compatibility of current and next-generation airlifters with proposed cargo.

  12. Development of a flexible optical fiber based high resolution integrated PET/MRI system

    SciTech Connect

    Yamamoto, Seiichi; Watabe, Hiroshi; Kanai, Yasukazu; Watabe, Tadashi; Aoki, Masaaki; Sugiyama, Eiji; Kato, Katsuhiko; Hatazawa, Jun

    2012-11-15

    Purpose: The simultaneous measurement of PET and magnetic resonance imaging (MRI) is an emerging field for molecular imaging research. Although optical fiber based PET/MRI systems have advantages on less interference between PET and MRI, there is a drawback in reducing the scintillation light due to the fiber. To reduce the problem, the authors newly developed flexible optical fiber bundle based block detectors and employed them for a high resolution integrated PET/MRI system. Methods: The flexible optical fiber bundle used 0.5 mm diameter, 80 cm long double clad fibers which have dual 12 mm Multiplication-Sign 24 mm rectangular inputs and a single 24 mm Multiplication-Sign 24 mm rectangular output. In the input surface, LGSO scintillators of 0.025 mol.% (decay time: {approx}31 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 5 mm) and 0.75 mol.% (decay time: {approx}46 ns: 0.9 mm Multiplication-Sign 1.3 mm Multiplication-Sign 6 mm) were optically coupled in depth direction to form depth-of-interaction detector, arranged in 11 Multiplication-Sign 13 matrix and optically coupled to the fiber bundle. The two inputs of the bundle are bent for 90 Degree-Sign , bound to one, and are optically coupled to a Hamamatsu 1-in. square position sensitive photomultiplier tube. Results: Light loss due to the fiber bundle could be reduced and the performance of the block detectors was improved. Eight optical fiber based block detectors (16 LGSO blocks) were arranged in a 56 mm diameter ring to form a PET system. Spatial resolution and sensitivity were 1.2 mm full-width at half-maximum and 1.2% at the central field-of-view, respectively. Sensitivity change was less than 1% for 2 Degree-Sign C temperature changes. This PET system was integrated with a 0.3 T permanent magnet MRI system which has 17 cm diameter hole at the yoke area for insertion of the PET detector ring. There was no observable interference between PET and MRI. Simultaneous imaging of PET and MRI was

  13. Development of High Resolution Melting Analysis for the Diagnosis of Human Malaria

    PubMed Central

    Chua, Kek Heng; Lim, Siew Chee; Ng, Ching Ching; Lee, Ping Chin; Lim, Yvonne Ai Lian; Lau, Tze Pheng; Chai, Hwa Chia

    2015-01-01

    Molecular detection has overcome limitations of microscopic examination by providing greater sensitivity and specificity in Plasmodium species detection. The objective of the present study was to develop a quantitative real-time polymerase chain reaction coupled with high-resolution melting (qRT-PCR-HRM) assay for rapid, accurate and simultaneous detection of all five human Plasmodium spp. A pair of primers targeted the 18S SSU rRNA gene of the Plasmodium spp. was designed for qRT-PCR-HRM assay development. Analytical sensitivity and specificity of the assay were evaluated. Samples collected from 229 malaria suspected patients recruited from Sabah, Malaysia were screened using the assay and results were compared with data obtained using PlasmoNexTM, a hexaplex PCR system. The qRT-PCR-HRM assay was able to detect and discriminate the five Plasmodium spp. with lowest detection limits of 1–100 copy numbers without nonspecific amplifications. The detection of Plasmodium spp. in clinical samples using this assay also achieved 100% concordance with that obtained using PlasmoNexTM. This indicated that the diagnostic sensitivity and specificity of this assay in Plasmodium spp. detection is comparable with those of PlasmoNexTM. The qRT-PCR-HRM assay is simple, produces results in two hours and enables high-throughput screening. Thus, it is an alternative method for rapid and accurate malaria diagnosis. PMID:26507008

  14. Early Tumor Development Captured Through Nondestructive, High Resolution Differential Phase Contrast X-ray Imaging

    PubMed Central

    Beheshti, A.; Pinzer, B. R.; McDonald, J. T.; Stampanoni, M.; Hlatky, L.

    2014-01-01

    Although a considerable amount is known about molecular dysregulations in later stages of tumor progression, much less is known about the regulated processes supporting initial tumor growth. Insight into such processes can provide a fuller understanding of carcinogenesis, with implications for cancer treatment and risk assessment. Work from our laboratory suggests that organized substructure emerges during tumor formation. The goal here was to examine the feasibility of using state-of-the-art differential phase contrast X-ray imaging to investigate density differentials that evolve during early tumor development. To this end the beamline for TOmographic Microscopy and Coherent rAdiology experimenTs (TOMCAT) at the Swiss Light Source was used to examine the time-dependent assembly of substructure in developing tumors. Differential phase contrast (DPC) imaging based on grating interferometry as implemented with TOMCAT, offers sensitivity to density differentials within soft tissues and a unique combination of high resolution coupled with a large field of view that permits the accommodation of larger tissue sizes (1 cm in diameter), difficult with other imaging modalities. PMID:24125488

  15. Development of High-resolution Real-Time Strong Motion Observation Network in CEORKA

    NASA Astrophysics Data System (ADS)

    Akazawa, T.; Araki, M.; Sawada, S.; Hayashi, Y.; Horike, M.

    2011-12-01

    The Committee of Earthquake Observation and Research in the Kansai Area (CEORKA), distributing 20 stations throughout the Kansai district in Japan, has obtained many velocity records, not only during major earthquakes (e.g. 1995 Kobe Earthquake and 2011 Tohoku Earthquake) but also during moderate ones (M>2) occurred in and near the district. The committee continues to use the old data loggers, which were installed in 1994 and 1997. It takes more than one hour after the shaking to collect the time history records, because dial-up telecommunication lines are used. In addition, the data logger starts saving the observed data when the ground shaking exceeds a preset level. This "trigger" system do not often store the valuable data properly. We develop a new low-cost data logger (KS-002D), which can send the observed data in real-time through Internet and save it in SD card continuously, for the network of CEORKA. The logger has eight input channels to obtain both high and low gain signals output from the existing strong motion seismograph (VSE-11 & 12). The logger also gets the high accuracy clock signals from GPS system. The observed data show that the new date logger can obtain broadband and high-resolution data from strong motion to microtremor. The developed data loggers are installed to the all stations of CEORKA, in addition to old loggers which are working as back-up systems.

  16. Microwells support high-resolution time-lapse imaging and development of preimplanted mouse embryos

    PubMed Central

    Chung, Yu-Hsiang; Hsiao, Yi-Hsing; Kao, Wei-Lun; Hsu, Chia-Hsien; Chen, Chihchen

    2015-01-01

    A vital aspect affecting the success rate of in vitro fertilization is the culture environment of the embryo. However, what is not yet comprehensively understood is the affect the biochemical, physical, and genetic requirements have over the dynamic development of human or mouse preimplantation embryos. The conventional microdrop technique often cultures embryos in groups, which limits the investigation of the microenvironment of embryos. We report an open microwell platform, which enables micropipette manipulation and culture of embryos in defined sub-microliter volumes without valves. The fluidic environment of each microwell is secluded from others by layering oil on top, allowing for non-invasive, high-resolution time-lapse microscopy, and data collection from each individual embryo without confounding factors. We have successfully cultured mouse embryos from the two-cell stage to completely hatched blastocysts inside microwells with an 89% success rate (n = 64), which is comparable to the success rate of the contemporary practice. Development timings of mouse embryos that developed into blastocysts are statistically different to those of embryos that failed to form blastocysts (p–value < 10−10, two-tailed Student's t-test) and are robust indicators of the competence of the embryo to form a blastocyst in vitro with 94% sensitivity and 100% specificity. Embryos at the cleavage- or blastocyst-stage following the normal development timings were selected and transferred to the uteri of surrogate female mice. Fifteen of twenty-two (68%) blastocysts and four of ten (40%) embryos successfully developed into normal baby mice following embryo transfer. This microwell platform, which supports the development of preimplanted embryos and is low-cost, easy to fabricate and operate, we believe, opens opportunities for a wide range of applications in reproductive medicine and cell biology. PMID:26015830

  17. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures.

    PubMed

    Yamamoto, Naoki

    2016-08-01

    A high-resolution cathodoluminescence (CL) system for scanning transmission electron microscope (STEM) has been developed by employing a field emission gun and a spherical aberration corrector, which realizes a probe size of 1 nm even at an accelerating voltage of 80 kV and beam current of the order of 1 nA. Angle resolved measurement of light emission from a sample in the STEM is possible by combining a parabolic mirror and position-controlled pinhole. CL spectra are successively acquired by a highly sensitive charge-coupled device while scanning the incident electron beam or pinhole, which enables various detection modes, i.e. (i) angle resolved spectral pattern, (ii) beam scan spectral image and (iii) photon map. In order to calibrate the acquired spectrum, the correction function is created from the comparison between the observed and theoretical spectra of the transition radiation. Furthermore, the modification of polarization by the parabolic mirror is discussed. Some examples of the applications of the STEM-CL system to plasmonics are presented to demonstrate the unique measurement features of the CL system, i.e. (i) multipole modes in silver nanoparticles, (ii) surface plasmon polariton modes in a 2D plasmonic crystal and (iii) localized surface plasmon modes in a gold bow tie nano-antenna.

  18. Development of high-resolution cathodoluminescence system for STEM and application to plasmonic nanostructures.

    PubMed

    Yamamoto, Naoki

    2016-08-01

    A high-resolution cathodoluminescence (CL) system for scanning transmission electron microscope (STEM) has been developed by employing a field emission gun and a spherical aberration corrector, which realizes a probe size of 1 nm even at an accelerating voltage of 80 kV and beam current of the order of 1 nA. Angle resolved measurement of light emission from a sample in the STEM is possible by combining a parabolic mirror and position-controlled pinhole. CL spectra are successively acquired by a highly sensitive charge-coupled device while scanning the incident electron beam or pinhole, which enables various detection modes, i.e. (i) angle resolved spectral pattern, (ii) beam scan spectral image and (iii) photon map. In order to calibrate the acquired spectrum, the correction function is created from the comparison between the observed and theoretical spectra of the transition radiation. Furthermore, the modification of polarization by the parabolic mirror is discussed. Some examples of the applications of the STEM-CL system to plasmonics are presented to demonstrate the unique measurement features of the CL system, i.e. (i) multipole modes in silver nanoparticles, (ii) surface plasmon polariton modes in a 2D plasmonic crystal and (iii) localized surface plasmon modes in a gold bow tie nano-antenna. PMID:27473259

  19. Development of a high resolution x-ray spectrometer for the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P. C.; Ellis, R.; Gao, L.; Maddox, J.; Pablant, N. A.; Schneider, M. B.; Chen, H.; Ayers, S.; Kauffman, R. L.; MacPhee, A. G.; Beiersdorfer, P.; Bettencourt, R.; Ma, T.; Nora, R. C.; Scott, H. A.; Thorn, D. B.; Kilkenny, J. D.; Nelson, D.; Shoup, M.; Maron, Y.

    2016-11-01

    A high resolution (E/ΔE = 1200-1800) Bragg crystal x-ray spectrometer is being developed to measure plasma parameters in National Ignition Facility experiments. The instrument will be a diagnostic instrument manipulator positioned cassette designed mainly to infer electron density in compressed capsules from Stark broadening of the helium-β (1s2-1s3p) lines of krypton and electron temperature from the relative intensities of dielectronic satellites. Two conically shaped crystals will diffract and focus (1) the Kr Heβ complex and (2) the Heα (1s2-1s2p) and Lyα (1s-2p) complexes onto a streak camera photocathode for time resolved measurement, and a third cylindrical or conical crystal will focus the full Heα to Heβ spectral range onto an image plate to provide a time integrated calibration spectrum. Calculations of source x-ray intensity, spectrometer throughput, and spectral resolution are presented. Details of the conical-crystal focusing properties as well as the status of the instrumental design are also presented.

  20. Development of a High Resolution 3D Infant Stomach Model for Surgical Planning

    NASA Astrophysics Data System (ADS)

    Chaudry, Qaiser; Raza, S. Hussain; Lee, Jeonggyu; Xu, Yan; Wulkan, Mark; Wang, May D.

    Medical surgical procedures have not changed much during the past century due to the lack of accurate low-cost workbench for testing any new improvement. The increasingly cheaper and powerful computer technologies have made computer-based surgery planning and training feasible. In our work, we have developed an accurate 3D stomach model, which aims to improve the surgical procedure that treats the infant pediatric and neonatal gastro-esophageal reflux disease (GERD). We generate the 3-D infant stomach model based on in vivo computer tomography (CT) scans of an infant. CT is a widely used clinical imaging modality that is cheap, but with low spatial resolution. To improve the model accuracy, we use the high resolution Visible Human Project (VHP) in model building. Next, we add soft muscle material properties to make the 3D model deformable. Then we use virtual reality techniques such as haptic devices to make the 3D stomach model deform upon touching force. This accurate 3D stomach model provides a workbench for testing new GERD treatment surgical procedures. It has the potential to reduce or eliminate the extensive cost associated with animal testing when improving any surgical procedure, and ultimately, to reduce the risk associated with infant GERD surgery.

  1. The development of a wide-field, high-resolution UV Raman hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Gomer, Nathaniel R.; Nelson, Matthew P.; Angel, S. M.

    2015-05-01

    Raman spectroscopy is a valuable tool for the investigation and analysis of explosive and biological analytes because it provides a unique molecular fingerprint that allows for unambiguous target identification. Raman can be advantageous when utilized with deep UV excitation, but typical deep UV Raman systems have numerous limitations that hinder their performance and make their potential integration onto a field portable platform difficult. These systems typically offer very low throughput, are physically large and heavy, and can only probe an area the size of a tightly focused laser, severely diminishing the ability of the system to investigate large areas efficiently. The majority of these limitations are directly related to a system's spectrometer, which is typically dispersive grating based and requires a very narrow slit width and long focal length optics to achieve high spectral resolution. To address these shortcomings, ChemImage Sensor Systems (CISS), teaming with the University of South Carolina, are developing a revolutionary wide-field Raman hyperspectral imaging system capable of providing wide-area, high resolution measurements with greatly increased throughput in a small form factor, which would revolutionize the way Raman is conducted and applied. The innovation couples a spatial heterodyne spectrometer (SHS), a novel slit-less spectrometer that operates similar to Michelson interferometer, with a fiber array spectral translator (FAST) fiber array, a two-dimensional imaging fiber for hyperspectral imagery. This combination of technologies creates a novel wide-field, high throughput Raman hyperspectral imager capable of yielding very high spectral resolution measurements using defocused excitation, giving the system a greater area coverage and faster search rate than traditional Raman systems. This paper will focus on the need for an innovative UV Raman system, provide an overview of spatial heterodyne Raman spectroscopy, and discuss the development

  2. High resolution, high frame rate video technology development plan and the near-term system conceptual design

    NASA Technical Reports Server (NTRS)

    Ziemke, Robert A.

    1990-01-01

    The objective of the High Resolution, High Frame Rate Video Technology (HHVT) development effort is to provide technology advancements to remove constraints on the amount of high speed, detailed optical data recorded and transmitted for microgravity science and application experiments. These advancements will enable the development of video systems capable of high resolution, high frame rate video data recording, processing, and transmission. Techniques such as multichannel image scan, video parameter tradeoff, and the use of dual recording media were identified as methods of making the most efficient use of the near-term technology.

  3. Development of high resolution simulations of the atmospheric environment using the MASS model

    NASA Technical Reports Server (NTRS)

    Kaplan, Michael L.; Zack, John W.; Karyampudi, V. Mohan

    1989-01-01

    Numerical simulations were performed with a very high resolution (7.25 km) version of the MASS model (Version 4.0) in an effort to diagnose the vertical wind shear and static stability structure during the Shuttle Challenger disaster which occurred on 28 January 1986. These meso-beta scale simulations reveal that the strongest vertical wind shears were concentrated in the 200 to 150 mb layer at 1630 GMT, i.e., at about the time of the disaster. These simulated vertical shears were the result of two primary dynamical processes. The juxtaposition of both of these processes produced a shallow (30 mb deep) region of strong vertical wind shear, and hence, low Richardson number values during the launch time period. Comparisons with the Cape Canaveral (XMR) rawinsonde indicates that the high resolution MASS 4.0 simulation more closely emulated nature than did previous simulations of the same event with the GMASS model.

  4. The development of a computationally efficient high-resolution viscous-plastic sea ice model

    NASA Astrophysics Data System (ADS)

    Lemieux, Jean Francois

    This thesis presents the development of a high-resolution viscous-plastic (VP) sea ice model. Because of the fine mesh and the size of the domain, an efficient and parallelizable numerical scheme is desirable. In a first step, we have implemented the nonlinear solver used in existing VP models (referred to as the standard solver). It is based on a linear solver and an outer loop (OL) iteration. For the linear solver, we introduced the preconditioned Generalized Minimum RESidual (pGMRES) method. The preconditioner is a line successive overrelaxation solver (SOR). When compared to the SOR and the line SOR (LSOR) methods, two solvers commonly used in the sea ice modeling community, pGMRES increases the computational efficiency by a factor of 16 and 3 respectively. For pGMRES, the symmetry of the system matrix is not a prerequisite. The Coriolis term and the off-diagonal part of the water drag can then be treated implicitly. Theoretical and simulation results show that this implicit treatment eliminates a numerical instability present with an explicit treatment. During this research, we have also observed that the approximate nonlinear solution converges slowly with the number of OL iterations. Furthermore, simulation results reveal: the existence of multiple solutions and occasional convergence failures of the nonlinear solver. For a time step comparable to the forcing time scale, a few OL iterations lead to errors in the velocity field that are of the same order of magnitude as the mean drift. The slow convergence is an issue at all spatial resolutions but is more severe as the grid is refined. It is attributed in part to the standard VP formulation that leads to a momentum equation that is not continuously differentiable. To obtain a smooth formulation, we replaced the standard viscous coefficient expression with capping by a hyperbolic tangent function. This provides a unique solution and reduces the computational time and failure rate. To further improve the

  5. High resolution transmission soft X-ray microscopy of deterioration products developed in large concrete dams

    PubMed

    Kurtis; Monteiro; Brown; Meyer-Ilse

    1999-12-01

    In concrete structures, the reaction of certain siliceous aggregates with the highly alkaline concrete pore solution produces an alkali-silicate gel that can absorb water and expand. This reaction can lead to expansion, cracking, increased permeability, and decreased strength of the concrete. Massive concrete structures, such as dams, are particularly susceptible to the damage caused by the alkali-silica reaction because of the availability of water and because massive gravity dams usually do not contain steel reinforcement to restrain the expansion. Both the cement hydration products and alkali-silica reaction products are extremely sensitive to humidity. Consequently, characterization techniques that require high vacuum or drying, as many existing techniques do, are not particularly appropriate for the study of the alkali-silica reaction because artefacts are introduced. Environmental scanning electron micrographs and scanning electron micrographs with energy dispersive X-ray analysis results demonstrate the effect of drying on the morphology and chemical composition of the alkali-silicate reaction gel. Thus, the impetus for this research was the need to observe and characterize the alkali-silica reaction and its gel product on a microscopic level in a wet environment (i.e. without introducing artefacts due to drying). Only soft X-ray transmission microscopy provides the required high spatial resolution needed to observe the reaction process in situ. The alkali-silica reaction can be observed over time, in a wet condition, and at normal pressures, features unavailable with most other high resolution techniques. Soft X-rays also reveal information on the internal structure of the sample. The purpose of this paper is to present research, obtained using transmission soft X-ray microscopy, on the effect of concrete pore solution cations, namely sodium and calcium, on the product formed as a result of alkali attack. Alkali-silicate reaction (ASR) gel was obtained from

  6. Development of eddy current microscopy for high resolution electrical conductivity imaging using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nalladega, V.; Sathish, S.; Jata, K. V.; Blodgett, M. P.

    2008-07-01

    We present a high resolution electrical conductivity imaging technique based on the principles of eddy current and atomic force microscopy (AFM). An electromagnetic coil is used to generate eddy currents in an electrically conducting material. The eddy currents generated in the conducting sample are detected and measured with a magnetic tip attached to a flexible cantilever of an AFM. The eddy current generation and its interaction with the magnetic tip cantilever are theoretically modeled using monopole approximation. The model is used to estimate the eddy current force between the magnetic tip and the electrically conducting sample. The theoretical model is also used to choose a magnetic tip-cantilever system with appropriate magnetic field and spring constant to facilitate the design of a high resolution electrical conductivity imaging system. The force between the tip and the sample due to eddy currents is measured as a function of the separation distance and compared to the model in a single crystal copper. Images of electrical conductivity variations in a polycrystalline dual phase titanium alloy (Ti-6Al-4V) sample are obtained by scanning the magnetic tip-cantilever held at a standoff distance from the sample surface. The contrast in the image is explained based on the electrical conductivity and eddy current force between the magnetic tip and the sample. The spatial resolution of the eddy current imaging system is determined by imaging carbon nanofibers in a polymer matrix. The advantages, limitations, and applications of the technique are discussed.

  7. Development of in-aquifer heat testing for high resolution subsurface thermal-storage capability characterisation

    NASA Astrophysics Data System (ADS)

    Seibertz, Klodwig Suibert Oskar; Chirila, Marian Andrei; Bumberger, Jan; Dietrich, Peter; Vienken, Thomas

    2016-03-01

    The ongoing transition from fossil fuels to alternative energy source provision has resulted in increased geothermal uses as well as storage of the shallow subsurface. Existing approaches for exploration of shallow subsurface geothermal energy storage often lack the ability to provide information concerning the spatial variability of thermal storage parameters. However, parameter distributions have to be known to ensure that sustainable geothermal use of the shallow subsurface can take place - especially when it is subject to intensive usage. In this paper, we test a temperature decay time approach to obtain in situ, direct, qualitative, spatial high-resolution information about the distribution of thermal storage capabilities of the shallow subsurface. To achieve this, temperature data from a high-resolution Fibre-Optic-Distributed-Temperature-Sensing device, as well as data from conventional Pt100-temperature-sensors were collected during a heat injection test. The latter test was used to measure the decay time of temperature signal dissipation of the subsurface. Signal generation was provided by in-aquifer heating with a temperature self-regulating electric heating cable. Heating was carried out for 4.5 days. After this, a cooling period of 1.5 weeks was observed. Temperature dissipation data was also compared to Direct-Push-derived high-resolution (hydro-)geological data. The results show that besides hydraulic properties also the bedding and compaction state of the sediment have an impact on the thermal storage capability of the saturated subsurface. The temperature decay time approach is therefore a reliable method for obtaining information regarding the qualitative heat storage capability of heterogeneous aquifers for the use with closed loop system geothermal storage systems. Furthermore, this approach is advantageous over other commonly used methods, e.g. soil-sampling and laboratory analysis, as even small changes in (hydro-)geological properties lead to

  8. Development and biological applications of high-resolution ion beam induced fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Zhaohong, Mi

    High-resolution fluorescence microscopy has become an essential tool in both biological and biomedical sciences, to directly visualize biological processes at the cellular and subcellular levels through specific fluorescence labeling. Among the fluorescence microscopy techniques, mega-electron-volt (MeV) ion-induced fluorescence microscopy has unique advantages because MeV ions can penetrate through biological cells with little deflection in their trajectories. The state-of-the-art bioimaging facility in the Centre for Ion Beam Applications, National University of Singapore can achieve sub-30 nm spatial resolutions for structural imaging of biological cells, which is well below the diffraction limits imposed by optical microscopy. Our aim is to achieve similar spatial resolutions for Ion Beam Induced Fluorescence Imaging. (Abstract shortened by UMI.).

  9. Focal plane actuation for the development of a high resolution suborbital telescope

    NASA Astrophysics Data System (ADS)

    Duke Miller, Alex; Scowen, Paul A.; Veach, Todd

    2016-01-01

    We present a hexapod stabilized focal plane as the key instrument for a proposed suborbital balloon mission. Balloon gondolas currently achieve 1-2 arcsecond pointing error, but cannot correct for unavoidable jitter movements (~50μm at 20hz) caused by wind rushing over balloon surfaces, thermal variations, cryocoolers, and reaction wheels. The jitter causes image blur during exposures and is the limiting resolution of the system. To solve this, the hexapod system actuates the focal plane to counteract the jitter through real-time closed loop feedback from star-trackers. Removal of this final jitter term decreases pointing error by an order of magnitude and allows for true diffraction-limited observation. This boost in resolution will allow for Hubble-quality imaging for a fraction of the cost. Tip-tilt pointing systems have been used for these purposes in the past, but require additional optics and introduce multiple reflections. The hexapod system, rather, is compact and can be plugged into the focal point of nearly any configuration. The design also thermally isolates the hexapod from the cryogenic focal plane enabling the use of well-established non-cryogenic hexapod technology. High-resolution time domain multispectral imaging of the gas giant outer planets, especially in the UV range, is of particular interest to the planetary community, and a suborbital telescope with the hexapod stabilization in place would provide a wealth of new data. On an Antarctic ~100-day Long-Duration-Balloon mission the continued high-resolution imaging of gas giant storm systems would provide cloud formation and evolution data second to only a Flagship orbiter.

  10. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Ames Code I Private Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew; Case, Jonathan; Venner, Jason; Moreno-Madrinan, Max J.; Delgado, Francisco

    2012-01-01

    Two projects at NASA Marshall Space Flight Center have collaborated to develop a high resolution weather forecast model for Mesoamerica: The NASA Short-term Prediction Research and Transition (SPoRT) Center, which integrates unique NASA satellite and weather forecast modeling capabilities into the operational weather forecasting community. NASA's SERVIR Program, which integrates satellite observations, ground-based data, and forecast models to improve disaster response in Central America, the Caribbean, Africa, and the Himalayas.

  11. Development of a High-performance Optical System and Fluorescent Converters for High-resolution Neutron Imaging

    NASA Astrophysics Data System (ADS)

    Sakai, T.; Yasuda, R.; Iikura, H.; Nojima, T.; Matsubayashi, M.

    Two novel devices for use in neutron imaging technique are introduced. The first one is a high-performance optical lens for video camera systems. The lens system has a magnification of 1:1 and an F value of 3. The optical resolution is less than 5 μm. The second device is a high-resolution fluorescent plate that converts neutrons into visible light. The fluorescent converter material consists of a mixture of 6LiF and ZnS(Ag) fine powder, and the thickness of the converter is material is as little as 15 μm. The surface of the plate is coated with a 1 μm-thick gadolinium oxide layer. This layer is optically transparent and acts as an electron emitter for neutron detection. Our preliminary results show that the developed optical lens and fluorescent converter plates are very promising for high-resolution neutron imaging.

  12. Development of AN External Cavity Quantum Cascade Laser Spectrometer for High-Resolution Spectroscopy of Molecular Ions

    NASA Astrophysics Data System (ADS)

    Stewart, Jacob T.; Gibson, Bradley M.; McCall, Benjamin J.

    2013-06-01

    Quantum cascade lasers (QCLs) have proven to be valuable tools for performing high-resolution infrared spectroscopy because of their high output powers and availability throughout the mid-infrared region of the electromagnetic spectrum. Despite their usefulness, typical QCLs can only be frequency tuned within a narrow window, requiring a specific laser to be used for measuring a specific molecular target. Recent advances in QCL technology have improved the tuning range of QCLs by creating lasers with broader gain profiles which can be used in an external cavity setup to produce widely-tunable, single-mode infrared radiation. In collaboration with the Wysocki research group at Princeton, we are developing a high-resolution infrared spectrometer based on an external cavity QCL (EC-QCL) system, which will allow us to perform spectroscopy from ˜1120 - 1250 cm^{-1}. We will present details of the development of the instrument, as well as preliminary spectroscopic results using the EC-QCL system. We will also outline future work we plan to perform with this spectrometer, particularly high-resolution spectroscopy of molecular ions.

  13. CNES developments of key detection technologies to prepare next generation focal planes for high resolution Earth observation

    NASA Astrophysics Data System (ADS)

    Materne, A.; Virmontois, C.; Bardoux, A.; Gimenez, T.; Biffi, J. M.; Laubier, D.; Delvit, J. M.

    2014-10-01

    This paper describes the activities managed by CNES (French National Space Agency) for the development of focal planes for next generation of optical high resolution Earth observation satellites, in low sun-synchronous orbit. CNES has launched a new programme named OTOS, to increase the level of readiness (TRL) of several key technologies for high resolution Earth observation satellites. The OTOS programme includes several actions in the field of detection and focal planes: a new generation of CCD and CMOS image sensors, updated analog front-end electronics and analog-to-digital converters. The main features that must be achieved on focal planes for high resolution Earth Observation, are: readout speed, signal to noise ratio at low light level, anti-blooming efficiency, geometric stability, MTF and line of sight stability. The next steps targeted are presented in comparison to the in-flight measured performance of the PLEIADES satellites launched in 2011 and 2012. The high resolution panchromatic channel is still based upon Backside illuminated (BSI) CCDs operated in Time Delay Integration (TDI). For the multispectral channel, the main evolution consists in moving to TDI mode and the competition is open with the concurrent development of a CCD solution versus a CMOS solution. New CCDs will be based upon several process blocks under evaluation on the e2v 6 inches BSI wafer manufacturing line. The OTOS strategy for CMOS image sensors investigates on one hand custom TDI solutions within a similar approach to CCDs, and, on the other hand, investigates ways to take advantage of existing performance of off-the-shelf 2D arrays CMOS image sensors. We present the characterization results obtained from test vehicles designed for custom TDI operation on several CIS technologies and results obtained before and after radiation on snapshot 2D arrays from the CMOSIS CMV family.

  14. Developing a platform for high-resolution phase contrast imaging of high pressure shock waves in matter

    NASA Astrophysics Data System (ADS)

    Schropp, Andreas; Patommel, Jens; Seiboth, Frank; Arnold, Brice; Galtier, Eric C.; Lee, Hae Ja; Nagler, Bob; Hastings, Jerome B.; Schroer, Christian G.

    2012-10-01

    Current and upcoming X-ray sources, such as the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC, USA), the SPring-8 Angstrom Compact Free Electron Laser (SACLA, Japan), or the X-ray Free Electron Laser (XFEL, Germany) will provide X-ray beams with outstanding properties.1, 2 Short and intense X-ray pulses of about 50 fs time duration and even shorter will push X-ray science to new frontiers such as, e. g., in high-resolution X-ray imaging, high-energy-density physics or in dynamical studies based on pump-probe techniques. Fast processes in matter often require high-resolution imaging capabilities either by magnified imaging in direct space or diffractive imaging in reciprocal space. In both cases highest resolutions require focusing the X-ray beam.3, 4 In order to further develop high-resolution imaging at free-electron laser sources we are planning a platform to carry out high-resolution phase contrast imaging experiments based on Beryllium compound refractive X-ray lenses (Be-CRLs) at the Matter in Extreme Conditions (MEC) endstation of the LCLS. The instrument provides all necessary equipment to induce high pressure shock waves by optical lasers. The propagation of a shock wave is then monitored with an X-ray Free Electron Laser (FEL) pulse by magnified phase contrast imaging. With the CRL optics, X-ray beam sizes in the sub-100nm range are expected, leading to a similar spatial resolution in the direct coherent projection image. The experiment combines different state-of-the art scientific techniques that are currently available at the LCLS. In this proceedings paper we describe the technical developments carried out at the LCLS in order to implement magnified X-ray phase contrast imaging at the MEC endstation.

  15. High resolution capillary column development for selective separations in gas chromatography

    SciTech Connect

    Przybyciel, M.

    1985-01-01

    A review of techniques for the preparation of high resolution capillary columns for gas chromatography is presented. Surface roughing, surface deactivation, stationary phase coating, and stationary phase crosslinking are discussed. Criteria for the selection of GC stationary phases and procedures for column evaluation are presented. A method is proposed for the isolation and determination of crude oil contamination in tropical plants and sediments. The method uses Florisil (TM) chromatography for the simultaneous clean-up and fractionation of aliphatic and aromatic hydrocarbons. Crosslinked SE-54 fused silica capillary columns prepared in our laboratory were employed for all GC separations. Mass spectrometry was used to help locate and identify specific oil components despite the intense background of the chromatogram. Crude oil components were identified in extracts of mangrove plant samples collected from the Peck Slip oil spill site at Media Munda, Puerto Rico. Crude oil components were also identified in sediment samples from controlled oil spill of Prudhoe Bay oil at Laguna de Chiriqui, Panama.

  16. Development of a high resolution interstellar dust engineering model - overview of the project

    NASA Astrophysics Data System (ADS)

    Sterken, V. J.; Strub, P.; Soja, R. H.; Srama, R.; Krüger, H.; Grün, E.

    2013-09-01

    Beyond 3 AU heliocentric distance, the flow of interstellar dust through the solar system is a dominant component of the total dust population. The modulation of this flux with the solar cycle and the position in the solar system has been predicted by theoretical studies since the seventies. The modulation was proven to exist by matching dust trajectory simulations with real spacecraft data from Ulysses in 1998. The modulations were further analyzed and studies in detail in 2012. The current ESA interplanetary meteoroid model IMEM includes an interstellar dust component, but this component was modelled only with straight line trajectories through the solar system. For the new ESA IMEX model, a high-resolution interstellar dust component is implemented separately from a dust streams module. The dust streams module focuses on dust in streams that was released from comets (cf. Abstract R. Soja). Parallel processing techniques are used to improve computation time (cf. Abstract P. Strub). The goal is to make predictions for the interstellar dust flux as close to the Sun as 1 AU or closer, for future space mission design.

  17. High-Resolution Autoradiography

    NASA Technical Reports Server (NTRS)

    Towe, George C; Gomberg, Henry J; Freemen, J W

    1955-01-01

    This investigation was made to adapt wet-process autoradiography to metallurgical samples to obtain high resolution of segregated radioactive elements in microstructures. Results are confined to development of the technique, which was perfected to a resolution of less than 10 microns. The radioactive samples included carbon-14 carburized iron and steel, nickel-63 electroplated samples, a powder product containing nickel-63, and tungsten-185 in N-155 alloy.

  18. Development of high resolution x-ray spectrometers for the investigation of bioinorganic chemistry in metalloproteins

    NASA Astrophysics Data System (ADS)

    Drury, Owen Byron

    We have built an X-ray spectrometer for synchrotron-based high-resolution soft X-ray spectroscopy. The spectrometer uses four 9-pixel arrays of superconducting tunnel junctions (STJs) as sensors. They infer the energy of an absorbed X-ray from a temporary increase in tunneling current. The STJs are operated in a two-stage adiabatic demagnetization refrigerator (ADR) that uses liquid nitrogen and helium for precooling to 77 K and 4.2 K, and gallium gadolinium garnet and iron ammonium sulfate to attain a base temperature below 0.1 K. The sensors are held at the end of a 40-cm-long cold finger within ˜1 cm of a sample located inside the vacuum chamber of a synchrotron beam line end station. The spectrometer has an energy resolution between 10 eV and 20 eV FWHM below 1 keV, can be operated at rates up to ˜106 counts/s. STJ spectrometers are suited for chemical analysis of dilute samples by fluorescence-detected X-ray absorption spectroscopy (XAS) in cases where conventional germanium detectors do not have enough energy resolution. We have used this STJ spectrometer at the Advanced Light Source synchrotron for spectroscopy on the lower energy X-ray absorption edges of the elements Mo, S, Fe and N. These elements play an important role in biological nitrogen fixation at the metalloprotein nitrogenase, and we have examined if STJ spectrometers can be used to provide new insights into some of the open questions regarding the reaction mechanism of this protein. We have taken X-ray absorption near-edge spectra (XANES) and extended fine structure spectra (EXAFS) of an Fe 6N(CO)15-compound containing a single N atom inside a cluster of six Fe atoms, as postulated to exist inside the Fe-S cluster of the FeMo-cofactor (FeMo-co) in nitrogenase. The STJ detector has enabled the first-ever extended range EXAFS scans on nitrogen through the oxygen K-edge, enabling a comparison with N EXAFS on FeMo-co. We have taken iron L23-edge spectra of the Fe-S cluster in FeMo-co, which can be

  19. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  20. Development of high-resolution coastal DEMs: Seamlessly integrating bathymetric and topographic data to support coastal inundation modeling

    NASA Astrophysics Data System (ADS)

    Eakins, B. W.; Taylor, L. A.; Warnken, R. R.; Carignan, K. S.; Sharman, G. F.

    2006-12-01

    The National Geophysical Data Center (NGDC), an office of the National Oceanic and Atmospheric Administration (NOAA), is cooperating with the NOAA Pacific Marine Environmental Laboratory (PMEL), Center for Tsunami Research to develop high-resolution digital elevation models (DEMs) of combined bathymetry and topography. The coastal DEMs will be used as input for the Method of Splitting Tsunami (MOST) model developed by PMEL to simulate tsunami generation, propagation and inundation. The DEMs will also be useful in studies of coastal inundation caused by hurricane storm surge and rainfall flooding, resulting in valuable information for local planners involved in disaster preparedness. We present our methodology for creating the high-resolution coastal DEMs, typically at 1/3 arc-second (10 meters) cell size, from diverse digital datasets collected by numerous methods, in different terrestrial environments, and at various scales and resolutions; one important step is establishing the relationships between various tidal and geodetic vertical datums, which may vary over a gridding region. We also discuss problems encountered and lessons learned, using the Myrtle Beach, South Carolina DEM as an example.

  1. High-resolution computational algorithms for simulating offshore wind turbines and farms: Model development and validation

    SciTech Connect

    Calderer, Antoni; Yang, Xiaolei; Angelidis, Dionysios; Feist, Chris; Guala, Michele; Ruehl, Kelley; Guo, Xin; Boomsma, Aaron; Shen, Lian; Sotiropoulos, Fotis

    2015-10-30

    The present project involves the development of modeling and analysis design tools for assessing offshore wind turbine technologies. The computational tools developed herein are able to resolve the effects of the coupled interaction of atmospheric turbulence and ocean waves on aerodynamic performance and structural stability and reliability of offshore wind turbines and farms. Laboratory scale experiments have been carried out to derive data sets for validating the computational models.

  2. Evaluation on newly developed high resolution of surface solar radiation from MTSAT observations for the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Niu, X.; Yang, K.; Tang, W.; Qin, J.

    2015-12-01

    Neither surface measurement nor existing remote sensing products of the Surface Solar Radiation (SSR) can meet the application requirements of hydrological and land process modeling in the Tibetan Plateau (TP). High resolution (hourly; 0.1⁰) of SSR estimates have been derived recently from the geostationary satellite observations - the Multi-functional Transport Satellite (MTSAT). This SSR estimation is based on updating an existing physical model, the UMD-SRB (University of Maryland Surface Radiation Budget) which is the basis of the well-known GEWEX-SRB model. In the updated framework introduced is the high-resolution Global Land Surface Broadband Albedo Product (GLASS) with spatial continuity. The developed SSR estimates are demonstrated at different temporal resolutions over the TP and are evaluated against ground observations and other satellite products from: (1) China Meteorological Administration (CMA) radiation stations in TP; (2) three TP radiation stations contributed from the Institute of Tibetan Plateau Research; (3) and the universal used satellite products (i.e. ISCCP-FD, GEWEX-SRB) in relatively low spatial resolution (0.5º-2.5º) and temporal resolution (3-hourly, daily, or monthly).

  3. Development of a high resolution beta camera for a direct measurement of positron distribution on brain surface

    SciTech Connect

    Yamamoto, S.; Seki, C.; Kashikura, K.

    1996-12-31

    We have developed and tested a high resolution beta camera for a direct measurement of positron distribution on brain surface of animals. The beta camera consists of a thin CaF{sub 2}(Eu) scintillator, a tapered fiber optics plate (taper fiber) and a position sensitive photomultiplier tube (PSPMT). The taper fiber is the key component of the camera. We have developed two types of beta cameras. One is 20mm diameter field of view camera for imaging brain surface of cats. The other is 10mm diameter camera for that of rats. Spatial resolutions of beta camera for cats and rats were 0.8mm FWHM and 0.5mm FWHM, respectively. We confirmed that developed beta cameras may overcome the limitation of the spatial resolution of the positron emission tomography (PET).

  4. Development of a high resolution climatic data set for the Northern Rockies

    SciTech Connect

    Luce, C.H.; Kluzek, E.; Bingham, G.E.

    1995-12-31

    Regional assessments of climate change effects on ecological systems require climate scenarios with detailed spatial information. Work with nesting mesoscale climate models under Global Circulation Models has shown some success down to the 50-km scale. Examination of 50-km resolution topography suggests that an even finer scale may be necessary to represent the complexity of climate distributions in the Northern Rocky Mountain region. A method for developing and testing climate scenarios developed for the 50-km and 10-km scale is outlined. A preliminary validation of results from the 50-km model against surface observations shows reasonable agreement for temperature. Precipitation is overpredicted, however. The validation also demonstrates that with 50-km resolution, climatically important topographic features are lost.

  5. Develop Solid State Laser Sources for High Resolution Video Projection Systems

    SciTech Connect

    Brickeen, B.K.

    2000-10-24

    Magic Lantern and Honeywell FM and T worked together to develop lower-cost, visible light solid-state laser sources to use in laser projector products. Work included a new family of video displays that use lasers as light sources. The displays would project electronic images up to 15 meters across and provide better resolution and clarity than movie film, up to five times the resolution of the best available computer monitors, up to 20 times the resolution of television, and up to six times the resolution of HDTV displays. The products that could be developed as a result of this CRADA could benefit the economy in many ways, such as: (1) Direct economic impact in the local manufacture and marketing of the units. (2) Direct economic impact in exports and foreign distribution. (3) Influencing the development of other elements of display technology that take advantage of the signals that these elements allow. (4) Increased productivity for engineers, FAA controllers, medical practitioners, and military operatives.

  6. New Developments at the XMaS Beamline For Magnetic and High Resolution Diffraction

    SciTech Connect

    Thompson, P.B.J.; Bouchenoire, L.; Brown, S.D.; Mannix, D.; Paul, D.F.; Lucas, C.; Kervin, J.; Cooper, M.J.; Arakawa, P.; Laughon, G.

    2004-05-12

    We report here on a number of developments that include enhancements of the sample environment on the XMaS beamline and the flux available at low energy. A 4 Tesla superconducting magnet has been designed to fit within the Euler cradle of a six circle Huber diffractometer, allowing scattering in both horizontal and vertical planes. The geometry of the magnet allows the application of longitudinal, transverse horizontal, and vertical fields. A further conventional magnet ({approx} 0.1 T) to minimize air absorption at low energies ({approx} 3KeV) has been designed for two circle applications, such as reflectivity. A novel in-vacuum slit screen has been developed, also minimizing absorption at low energies. New equipment for performing in-situ studies of surfaces in the electrochemical environment has been developed to allow control of the solution and sample temperature over the region of -5C to 80C. Preliminary experiments on the surface reconstructions of Au(111) in an electrolyte have been performed, whilst commissioning at the same time a MAR CCD detector for the beamline.

  7. High resolution mapping of development in the wildland-urban interface using object based image extraction

    USGS Publications Warehouse

    Caggiano, Michael D.; Tinkham, Wade T.; Hoffman, Chad; Cheng, Antony S.; Hawbaker, Todd J.

    2016-01-01

    The wildland-urban interface (WUI), the area where human development encroaches on undeveloped land, is expanding throughout the western United States resulting in increased wildfire risk to homes and communities. Although census based mapping efforts have provided insights into the pattern of development and expansion of the WUI at regional and national scales, these approaches do not provide sufficient detail for fine-scale fire and emergency management planning, which requires maps of individual building locations. Although fine-scale maps of the WUI have been developed, they are often limited in their spatial extent, have unknown accuracies and biases, and are costly to update over time. In this paper we assess a semi-automated Object Based Image Analysis (OBIA) approach that utilizes 4-band multispectral National Aerial Image Program (NAIP) imagery for the detection of individual buildings within the WUI. We evaluate this approach by comparing the accuracy and overall quality of extracted buildings to a building footprint control dataset. In addition, we assessed the effects of buffer distance, topographic conditions, and building characteristics on the accuracy and quality of building extraction. The overall accuracy and quality of our approach was positively related to buffer distance, with accuracies ranging from 50 to 95% for buffer distances from 0 to 100 m. Our results also indicate that building detection was sensitive to building size, with smaller outbuildings (footprints less than 75 m2) having detection rates below 80% and larger residential buildings having detection rates above 90%. These findings demonstrate that this approach can successfully identify buildings in the WUI in diverse landscapes while achieving high accuracies at buffer distances appropriate for most fire management applications while overcoming cost and time constraints associated with traditional approaches. This study is unique in that it evaluates the ability of an OBIA

  8. Development of a high resolution liquid xenon imaging chamber for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1991-01-01

    The objective was to develop the technology of liquid xenon (LXe) detectors for spectroscopy and imaging of gamma rays from astrophysical sources emitting in the low to medium energy regime. In particular, the technical challenges and the physical processes relevant to the realization of the LXe detector operated as a Time Projection Chamber (TPC) were addressed and studied. Experimental results were obtained on the following topics: (1) long distance drift of free electrons in LXe (purity); (2) scintillation light yield for electrons and alphas in LXe (triggering); and (3) ionization yield for electrons and gamma rays in LXe (energy resolution). The major results from the investigations are summarized.

  9. Development of a high-resolution bathymetry dataset for the Columbia River through the Hanford Reach

    SciTech Connect

    Coleman, Andre M.; Ward, Duane L.; Larson, Kyle B.; Lettrick, Joseph W.

    2010-10-08

    A bathymetric and topographic data collection and processing effort involving existing and newly collected data has been performed for the Columbia River through the Hanford Reach in central Washington State, extending 60-miles from the tailrace of Priest Rapids Dam (river mile 397) to near the vicinity of the Interstate 182 bridge just upstream of the Yakima River confluence (river mile 337). The contents of this report provide a description of the data collections, data inputs, processing methodology, and final data quality assessment used to develop a comprehensive and continuous merged 1m resolution bathymetric and topographic surface dataset for the Columbia River through the Hanford Reach.

  10. Applications of high resolution sequence stratigraphy in North Sea syn-rift reservoir correlation and development

    SciTech Connect

    Howell, H.; Flint, S.

    1995-08-01

    Tectonically active basins may host a spectrum of sequence stratigraphic expressions previously considered to be spatially mutually exclusive. In low accommodation areas with high sediment supply, fourth order eustatic cyclicity results in high frequency sequence sets while within rapidly subsiding areas, time-equivalent Type-2 sequences are expressed by highly asymmetrical coarsening upward successions, resembling large parasequences. In the shallow marine Fulmar Formation, of the U.K. North Sea Central Graben a sequence boundary and overlying lowstand deposits, which illustrate the effects of laterally variable subsidence rate and intrabasinal topography on the expression of a eustatic sea-level fall, lie between the Glosense and Serratum (J54a and J54b) maximum flooding surfaces. The syn-rift physiography comprises major tilted fault blocks, with the Central Graben dipping parallel to the major faults, simulating a ramp setting. Where the throw of the faults were greatest (SE), the structure acted as a local shelf-slope break. Adjacent to the basin margin, incised valley were cut at fluvial input points (structural transfer zones) and laterally, interfluvial sequence boundaries developed. During early lowstand, sand bypassed the footwall shelf and was deposited as lowstand fan sediments within the deepest part of the hangingwall, with the fault zone acting as a local shelf slope break. Within the shallower water areas of the hangingwall a localised ramp geometry existed parallel to the fault zone. Forced regression deposits developed here were coeval but not physically related to the deep water lowstand turbidite fan deposits.

  11. Development of a High Resolution-High Sensitivity Ion Microprobe Facility for Cosmochemical Applications

    NASA Technical Reports Server (NTRS)

    McKeegan, Kevin D.

    1998-01-01

    NASA NAGW-4112 has supported development of the CAMECA ims 1270 ion microprobe at UCLA for applications in cosmochemistry. The instrument has been brought to an operational status and techniques developed for accurate, precise microbeam analysis of oxygen isotope ratios in polished thin-sections. We made the first oxygen isotopic (delta(18)O and delta(17)O) measurements of rare mafic silicates in the most chemically primitive meteorites, the a chondrites (Leshin et al., 1997). The results have implications for both high temperature processing in the nebula and low-T aqueous alteration on the CI asteroid. We have performed measurements of oxygen isotopic compositions of magnetite and co-existing olivine from carbonaceous (Choi et al., 1997) and unequilibrated ordinary chondrites (Choi et al., in press). This work has identified a significant new oxygen isotope reservoir in the early solar system: water characterized by a very high Delta(17)) value of approx. 5 % per thousand. We have determined the spatial distributions of oxygen isotopic anomalies in all major mineral phases of a type B CAI from Allende. We have also studied an unusual fractionated CAI from Leoville and made the first oxygen isotopic measurements in rare CAIs from ordinary chondrites.

  12. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  13. Development of a High-Resolution, Single-Photon X-Ray Detector

    NASA Technical Reports Server (NTRS)

    Seidel, George M.

    1996-01-01

    Research on the development of a low-temperature, magnetic bolometer for x-ray detection is reported. The principal accomplishments during the first phase of this research are as follows. (1) We have constructed SQUID magnetometers and detected both 122 keV and 6 keV x-rays in relatively larger metallic samples with high quantum efficiency. (2) The magnetic properties of a metal sample with localized paramagnetic spins have been measured and found to agree with theoretical expectations. (3) The size of the magnetic response of the sample to x-rays is in agreement with predictions based on the properties of the sample and sensitivity of the magnetometer, supporting the prediction that a resolution of 1 eV at 10 keV should be achievable.

  14. Development of High-Resolution UV-VIS Diagnostics for Space Plasma Simulation

    NASA Astrophysics Data System (ADS)

    Taylor, Andrew; Batishchev, Oleg

    2012-10-01

    Non-invasive far-UV-VIS plasma emission allows remote diagnostics of plasma, which is particularly important for space application. Accurate vacuum tank space plasma simulations require monochromators with high spectral resolution (better than 0.01A) to capture important details of atomic and ionic lines, such as Ly-alpha, etc. We are building a new system based on the previous work [1], and will discuss the development of a spectrometry system that combines a single-pass vacuum far-UV-NIR spectrometer and a tunable Fabry-Perot etalon. [4pt] [1] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.

  15. Development of a High Resolution Liquid Xenon Imaging Telescope for Medium Energy Gamma Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1992-01-01

    In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.

  16. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org).

  17. Benefits and prospects of aqueous silylation for novel dry developable high-resolution resists

    NASA Astrophysics Data System (ADS)

    Sezi, Recai; Sebald, Michael; Leuschner, Rainer; Ahne, Hellmut; Birkle, Siegfried; Borndoerfer, Horst

    1990-06-01

    The paper presents a novel surface imaging resist, consisting of an anhydride-containing copolymer and a diazoquinone photoactive compound (PAC). As base resin, alternating copolymers of styrene and maleic anhydride were prepared which show benefits such as high glass transition temperature (Tg = 170 °C) or low deep-UV absorbance (0.12/pm at 248 nm), in addition to the simplicity of synthesis with high yields. After imaging exposure, the exposed areas are selectively silylated in a standard puddle development track at room temperature within 90 to 120 s md. rinsing. The silylation is performed with an aqueous solution ofabis-aminosiloxane in water and a dissolution promoter and is accompanied by a film thickness increase, the extent of which depends on several factors such as exposure dose, PAC content in the resist, molecular weight of the base resin, aminosiloxane concentration and silylation time. The resist is developed through reactive ion etching in oxygen plasma, giving negative tone patterns. Lateral structure deformation has not been observed with this system since the resist is silylated far below the Tg of the base resin. The use of suitable 2-diazo-1-naphthalenone-4-sulphonic acid esters as PAC and the absence of crosslinking during deep-UV exposure offer the advantage that the same resist can be applied in the same mode (neg.) for i-line and KrF excimer laser lithography. By this means, lines and spaces down to 0.4 pm and 0.3 pm were achieved in 2 pm thick resist after exposures with an i-line (NA = 0.4) or KrF excimer laser stepper (NA =0.37), respectively.

  18. High-resolution gene expression atlases for adult and developing mouse brain and spinal cord.

    PubMed

    Henry, Alex M; Hohmann, John G

    2012-10-01

    Knowledge of the structure, genetics, circuits, and physiological properties of the mammalian brain in both normal and pathological states is ever increasing as research labs worldwide probe the various aspects of brain function. Until recently, however, comprehensive cataloging of gene expression across the central nervous system has been lacking. The Allen Institute for Brain Science, as part of its mission to propel neuroscience research, has completed several large gene-mapping projects in mouse, nonhuman primate, and human brain, producing informative online public resources and tools. Here we present the Allen Mouse Brain Atlas, covering ~20,000 genes throughout the adult mouse brain; the Allen Developing Mouse Brain Atlas, detailing expression of approximately 2,000 important developmental genes across seven embryonic and postnatal stages of brain growth; and the Allen Spinal Cord Atlas, revealing expression for ~20,000 genes in the adult and neonatal mouse spinal cords. Integrated data-mining tools, including reference atlases, informatics analyses, and 3-D viewers, are described. For these massive-scale projects, high-throughput industrial techniques were developed to standardize and reliably repeat experimental goals. To verify consistency and accuracy, a detailed analysis of the 1,000 most viewed genes for the adult mouse brain (according to website page views) was performed by comparing our data with peer-reviewed literature and other databases. We show that our data are highly consistent with independent sources and provide a comprehensive compendium of information and tools used by thousands of researchers each month. All data and tools are freely available via the Allen Brain Atlas portal (www.brain-map.org). PMID:22832508

  19. Developing synthesis techniques for zeolitic-imidazolate framework membranes for high resolution propylene/propane separation

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Taek

    Propylene/propane separation is one of the most challenging separations, currently achieved by energy-intensive cryogenic distillation. Despite the great potentials for energy-efficient membrane-based propylene/propane separation processes, no commercial membranes are available due to the limitations (i.e., low selectivity) of current polymeric materials. Zeolitic imidazolate frameworks (ZIFs) are promising membrane materials primarily due to their well-defined ultra-micropores with controllable surface chemistry along with their relatively high thermal/chemical stabilities. In particular, ZIF-8 with the effective aperture size of ~ 4.0 A has been shown very promising for propylene/propane separation. Despite the extensive research on ZIF-8 membranes, only a few of ZIF-8 membranes have displayed good propylene/propane separation performances presumably due to the challenges of controlling the microstructures of polycrystalline membranes. Since the membrane microstructures are greatly influenced by processing techniques, it is critically important to develop new techniques. In this dissertation, three state-of-the-art ZIF membrane synthesis techniques are developed. The first is a one-step in-situ synthesis technique based on the concept of counter diffusion. The technique enabled us to obtain highly propylene selective ZIF-8 membranes in less than a couple of hours with exceptional mechanical strength. Most importantly, due to the nature of the counter-diffusion concept, the new method offered unique opportunities such as healing defective membranes (i.e., poorly-intergrown) as well as significantly reducing the consumption of costly ligands and organic solvents. The second is a microwave-assisted seeding technique. Using this new seeding technique, we were able to prepare seeded supports with a high packing density in a couple of minutes, which subsequently grown into highly propylene-selective ZIF-8 membranes with an average propylene/propane selectivity of ~40

  20. Contributions to the development of SLM TEA CO2 laser sources for high resolution molecular spectroscopy

    NASA Astrophysics Data System (ADS)

    Rob, Mohammad Abdur

    1989-03-01

    The emission spectrum of the carbon-dioxide (CO2) laser has an excellent overlap with the ro-vibrational absorption spectrum of a large number of polar molecules. Optical pumping of these molecules by CO2 lasers has produced well over 3000 far-infrared (FIR) laser lines. The molecular transitions for a large number of lines pumped by the narrow-band CW CO2 laser were identified. However, very few lines pumped by the pulsed TEA CO2 laser were assigned. This is due, in part, to the large uncertainty in both the pump and the FIR laser frequencies. Moreover, pumping with a given rotational line in the TEA CO2 laser output spectrum usually produces multiple FIR laser lines. This situation could be improved by the development of a narrow-band TEA CO2 laser, comparable in bandwidth to the width of typical absorption lines, in the FIR laser medium. Spectroscopic techniques making use of narrow-linewidth pulsed pump lasers would greatly facilitate the assignment of the infrared absorption transitions and the FIR laser lines. The narrow-linewidth pulsed laser would also be useful in many other applications. In the present series of experiments, three different techniques were investigated that produce high-power, tunable, single-longitudinal-mode (SLM) operation in a TEA CO2 laser. For the first time, the three SLM TEA CO2 laser configurations which were developed, along with another promising technique which is described in the literature, were analyzed on a common basis; so that their respective performance characteristics can be readily compared. This analysis facilitates the choice of the optimum laser system for a given task. Using a wedged etalon and a pyroelectric detector array combination, it was also shown directly that the intermodal tuning curve for the SLM TEA CO2 laser is a simple staircase function, with the laser output moving discontinuously from one mode to the next in a very regular fashion as the wavelength scan proceeds. To investigate the usefulness of

  1. Development of high-rate MRPCs for high resolution time-of-flight systems

    NASA Astrophysics Data System (ADS)

    Wang, Jingbo; Wang, Yi; Gonzalez-Diaz, D.; Chen, Huangshan; Fan, Xingming; Li, Yuanjing; Cheng, Jianping; Kaspar, Marcus; Kotte, Roland; Laso Garcia, Alejandro; Naumann, Lothar; Stach, Daniel; Wendisch, Christian; Wüstenfeld, Jörn

    2013-06-01

    We show how the high charged-particle flux (1-20 kHz/cm2) expected over the 150 m2 large time-of-flight wall of the future Compressed Baryonic Matter experiment (CBM) at FAIR can be realistically handled with Multi-gap Resistive Plate Chambers (MRPCs). This crucial 100-fold increase of the chamber rate capability, as compared to that of standard MRPCs presently employed in experiments resorting to sub-100 ps timing, has been achieved thanks to the development of a new type of low-resistive doped glass. Following the encouraging results previously obtained with small counters, two types of modules (active area: ˜150 cm2) have been built at Tsinghua University with the new material. The measurements conveyed in this work, obtained with a quasi- minimum ionizing electron beam (γβ≥3), prove their suitability as the building blocks of the present hadron-identification concept of the CBM experiment. Namely, they provide a time resolution better than 80 ps and an efficiency above 90% at a particle flux well in excess of 20 kHz/cm2 (up to 35-60 kHz/cm2), being at the core of a modular concept that is easily scalable. Recent measurements of the electrical and mechanical properties of this new material, together with its long-term behavior, are shortly summarized.

  2. Development of High Resolution Hard X-Ray Telescope with Multi-Layer Coatings

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Brinton, John C. (Technical Monitor)

    2005-01-01

    This is the annual report for the third year of a three-year program. Previous annual reports have described progress achieved in the first and second years. The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i.e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well. We are building upon technology that has proven to be successful in the XMM-Newton and SWIFT missions. The improvements that we are adding are a significant reduction in mass without much loss of angular resolution and an order of magnitude extension of the bandwidth through the use of multilayer coatings. The distinctive feature of this approach compared to those of other hard X-ray telescope programs is that we expect the angular resolution to be superior than telescopes made by other methods thanks to the structural integrity of the substrates. They are thin walled complete cylinders of revolution with a Wolter Type 1 figure; the front half is a parabola, the rear half a hyperbola.

  3. Development of the High-resolution FUV Detector for the BepiColombo Mission

    NASA Astrophysics Data System (ADS)

    Murakami, Go; Yoshioka, Kazuo; Yoshikawa, Ichiro

    The PHEBUS (Probing of Hermean Exosphere By Ultraviolet Spectroscopy) instrument on Mercury Planetary Orbiter in the BepiColombo mission is a dual FUV-EUV spectrometer (EUV: 55-155 nm, FUV: 145-315 nm). We are now developing the compact detector system sensitive to FUV airglow emissions of the Mercury. The FUV detector is required to have high spatial resolution (512×512 pixels) so that the wavelength resolution of the PHEBUS instrument should be 2 nm at the FUV range. The FUV detector consists of a Cs2Te photocathode, microchannel plates (MCPs), and a resistive anode encoder. In a position-sensitive system with a resistive anode encoder, the spatial resolution is determined by the signal-to-noise ratios at the anode terminals. Therefore, a high and stable electron gain of MCPs allows the position determination of each photoelectron event with high spatial resolution. We studied a method for achieving a high and stable electron gain. We fabricated a test model of the FUV detector incorporating a clamped pair of MCPs (V-stack) followed by a gap and a clamped triplet of MCPs (Z-stack) in cascade. We investigated the effect of the negative inter-stack potential on the PHD and the spatial resolution by means of calculation and experiments. As a result, the negative inter-stack potential made the electron gain more stable and the spatial resolution higher by ˜14%. In this paper we report the specific performance of the test model of the FUV detector.

  4. Development of a High-Resolution Shallow Seismic Refraction Tomography System at the Monterey Bay Aquarium Research Institute

    NASA Astrophysics Data System (ADS)

    Henthorn, R.; Caress, D. W.; Chaffey, M. R.; McGill, P. R.; Kirkwood, W. J.; Burgess, W. C.

    2009-12-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing a high-resolution marine seismic refraction imaging system that can be deployed and operated using a remotely operated vehicle. Conventional marine seismic refraction methods typically use low-frequency sources and widely-spaced seafloor receivers to image crustal-scale subsurface structure. These systems often employ air-guns towed from a surface vessel to produce acoustic signals ranging from 1-100Hz, and ocean-bottom seismometers to record the refracted signals, resulting in images on the scale of hundreds of kilometers with resolutions no better than hundreds of meters. Images of subsurface structure at resolutions on the order of meters requires closely-spaced, near-seafloor sources and receivers capable of producing and recording higher-frequency signals centered around 3kHz. This poster will describe the first phase development of the High-Resolution Shallow Seismic Refraction Tomography System at MBARI including the science drivers, the design approach and trade-offs, and results from initial field tests conducted in the Monterey Bay. The capability to image fine-scale subsurface structure will augment ongoing research on hydrate deposits. Methane and the other hydrocarbon gases trapped in hydrates are climate-impacting greenhouse gases as well as potential energy sources. Therefore, research regarding the formation, stability, volume, and structure of these globally common deposits has considerable relevance today. High-resolution subsurface imaging can impact many important marine geological topics such as submarine faults, hydrothermal venting, and submarine volcanism. The system combines ROV-mounted transmission of chirp acoustic signals with a roughly 1-6 kHz sweep and an array of high-frequency ocean bottom hydrophone (OBH) receivers. The configuration of closely spaced receivers and a source pinging at tightly-spaced intervals provides the opportunity to pick refracted arrival times

  5. Development of high-resolution muon tracking systems based on micro-pattern detectors

    SciTech Connect

    Bortfeldt, J.; Biebel, O.; Heereman, D.; Hertenberger, R.

    2011-07-01

    A muon tracking system consisting of four 9 cm x 10 cm sized bulk Micromegas detectors with 128 {mu}m amplification-gap and two 10 cm x 10 cm triple GEM detectors is foreseen for high-precision tracking of 140 GeV muons at the H8 beamline at CERN with a rate of up to 10 kHz and an overall resolution below 40 {mu}m. Larger detectors with an active area of 0.5 m{sup 2} and more are under development for detector studies in high neutron or gamma ray background environments at the Gamma Irradiation Facility at CERN and the Munich tandem accelerator. Signal studies of both detector types have been performed by recording cosmic muon and 5.9 keV X-ray signals with a single charge-sensitive preamplifier using several gas-mixtures of Ar:CO{sub 2}. The signals were digitized using 1 GHz VME based flashADCs with 2520 sampling points. The analysis of the complete signal-cycles allows for the determination of rise times, pulse heights, timing fluctuations and discrimination of background, resulting in a FWHM energy resolution of about 20% and detection efficiencies of 99% and more. Models for signal formation in both detector types will be presented. The single detector spatial resolution of 80 {mu}m was measured using a fast Gassiplex based strip readout with readout strips of 150 {mu}m width and a pitch of 250 {mu}m. The Gassiplex readout, formerly used at the HERMES experiment, had to be substantially adapted. No more crosstalk or non-linearities were observed after reconfiguration of the multiplexing amplifier on the front-end boards. The observed spatial resolution is limited by multiple scattering of the cosmic muons used in the laboratory. We also report on the sensitivity to gamma- and neutron background and on the behaviour of spatial resolution as a function of background rates. (authors)

  6. Development of ALARO-Climate regional climate model for a very high resolution

    NASA Astrophysics Data System (ADS)

    Skalak, Petr; Farda, Ales; Brozkova, Radmila; Masek, Jan

    2014-05-01

    ALARO-Climate is a new regional climate model (RCM) derived from the ALADIN LAM model family. It is based on the numerical weather prediction model ALARO and developed at the Czech Hydrometeorological Institute. The model is expected to able to work in the so called "grey zone" physics (horizontal resolution of 4 - 7 km) and at the same time retain its ability to be operated in resolutions in between 20 and 50 km, which are typical for contemporary generation of regional climate models. Here we present the main results of the RCM ALARO-Climate model simulations in 25 and 6.25 km resolutions on the longer time-scale (1961-1990). The model was driven by the ERA-40 re-analyses and run on the integration domain of ~ 2500 x 2500 km size covering the central Europe. The simulated model climate was compared with the gridded observation of air temperature (mean, maximum, minimum) and precipitation from the E-OBS version dataset 8. Other simulated parameters (e.g., cloudiness, radiation or components of water cycle) were compared to the ERA-40 re-analyses. The validation of the first ERA-40 simulation in both, 25 km and 6.25 km resolutions, revealed significant cold biases in all seasons and overestimation of precipitation in the selected Central Europe target area (0° - 30° eastern longitude ; 40° - 60° northern latitude). The differences between these simulations were small and thus revealed a robustness of the model's physical parameterization on the resolution change. The series of 25 km resolution simulations with several model adaptations was carried out to study their effect on the simulated properties of climate variables and thus possibly identify a source of major errors in the simulated climate. The current investigation suggests the main reason for biases is related to the model physic. Acknowledgements: This study was performed within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation) and CzechGlobe Centre (CZ.1

  7. Development of a Novel, Parsimonious, Model-based Approach for Representing High-resolution Gravel Facies

    NASA Astrophysics Data System (ADS)

    Burrows, N.; Entwistle, N. S.; Heritage, G. L.

    2014-12-01

    A precise, time-efficient, cost-effective method for quantifying riverbed roughness and sediment size distribution has hitherto eluded river scientists. Traditional techniques (e.g., Wolman counts) have high potential for error brought about by operator bias and subjectivity when presented with complex facies assemblages, poor spatial coverage, insufficient sample sizes, and misrepresentation of bedforms. The application of LiDAR facilitated accurate observation of micro-scale habitats, and has been successfully employed in quantifying sediment grain size at the local level. However, despite considerable success of LiDAR instruments in remotely sensing riverine landscapes, and the obvious benefits they offer - very high spatial and temporal resolution, rapid data acquisition, and minimal disturbance in the field - procurement of these apparatus and their respective computer software comes at high financial cost, and extensive user training is generally necessary in order to operate such devices. Recent developments in computer software have led to advancements in digital photogrammetry over a broad range of scales, with Structure from Motion (SfM) techniques enabling production of precise DEMs based on point-clouds analogous to, and even denser than, those produced by LiDAR, at significantly reduced cost and complexity during post-processing. This study has employed both an SfM-photogrammetry and Terrestrial Laser Scanning (TLS) approach in a comparative analysis of sediment grain size, where LiDAR-derived data has previously provided a reliable reference of grain size. Total Station EDM theodolite provided the parent coordinate system for both SfM and meshing of TLS point-clouds. For each data set, a 0.19 m moving window (consistent with the largest sediment clast b axis) was applied to the resulting point-clouds. Two times standard deviation of elevation was calculated in order to provide a surrogate measure of grain protrusion, from which sediment frequency

  8. Development of a nonfragmenting distribution surge arrester. Final report

    SciTech Connect

    Koch, R.E.

    1984-08-01

    This report describes the investigation and testing carried out in the development of a nonfragmenting distribution surge arrester. It is commonly assumed that pressure buildup in a failing surge arrester will cause the porcelain to burst unless the pressure is rapidly relieved. Even after pressure relief, however, the porcelain can shatter from the thermal shock produced by the internal arc. There is little published information on the sequence of events during failure and the relative importance of pressure and thermal stress. A prerequisite for the design of a nonfragmenting arrester is a thorough knowledge of the failure mechanism. Extensive testing was performed to determine the contribution of both pressure and heat to porcelain breakage. This research demonstrated the importance of thermal shock and led to the design of an ablative thermal shield for the porcelain housing. This was combined with pressure relief provided by end-cap venting and a retaining system to prevent ejection of internal parts. The final result was the design and production of nonfragmenting distribution arresters rated 9 kV through 27 kV.

  9. Development of a high-resolution Thomson scattering system for plasma interactions with molten salt (FLiNaK)

    NASA Astrophysics Data System (ADS)

    Lee, K. Y.

    2014-10-01

    A high-resolution Thomson scattering system is presently being developed to measure the electron temperature and density profile during plasma interaction with molten salt. The system uses a 20-Hz Nd:YAG laser operating at the second harmonic (532 nm). The collection lens, having a 1:10 magnification ratio, measures 63 points along the 10-cm profile. The scattered light is transmitted by using an optical-fiber bundle, and is analyzed with a triple-grating spectrometer to further reduce stray light. Its spectral resolution is expected to be 0.03 nm. An intensified charge-coupled device (ICCD) camera consisting of a gated image intensifier coupled to the CCD camera is used to record the spectral distribution of the scattered light. An additional feature of operating the ICCD camera at 40-Hz to record the background signal is incorporated.

  10. Development and characterization of a MEMS based carbon nanotube field emission electron source technology for high resolution applications

    NASA Astrophysics Data System (ADS)

    Ribaya, Bryan Pecson

    Due to their chemical structure, carbon nanotubes (CNTs) possess unique physical, mechanical, and electrical properties which are valuable for advanced electron beam applications. In particular, the high aspect ratio and small tip radius of the individual carbon nanotube make it an excellent field emission electron source for high resolution applications. At the NASA Ames Research Center, the Microcolumn Scanning Electron Microscope and EDX Spectrometer (MSEMS) is being developed. The MSEMS, a spaceflight instrument, will be capable of high resolution spatial imaging and elemental analysis of planetary and interplanetary rocks and minerals which leave clues to their history in the form of chemical and physical changes. The MSEMS will be a miniaturized version of the laboratory scanning electron microscope (SEM) with an optical column length of less than 1 cm. Field deployment of the MSEMS for in situ sample analysis from a spacecraft such as the Mars Exploration Rover is possible because of its small size. The enabling technology for device miniaturization is an individual carbon nanotube electron source. With the CNT field emitter's characteristically low energy spread and high brightness, a microcolumn SEM can achieve a small probe diameter with a short optical column. The objective of this work, through collaboration between the Electron Devices Laboratory (EDL) and NASA, is to develop and characterize the carbon nanotube ABSTRACT electron source technology for the microcolumn SEM. A novel microelectromechanical systems (MEMS) based technique for fabrication of a single CNT field emission cathode will be presented. This technique produces CNT cathodes which are electrically and mechanically more reliable than previous fabrication methods. Also, design rules for the overall cathode geometry for optimization of the CNT's field emission characteristics will be introduced. Furthermore, a circuit model to represent the CNT electron source will be revealed which will

  11. Development of high-resolution gamma detector using sub-mm GAGG crystals coupled to TSV-MPPC array

    NASA Astrophysics Data System (ADS)

    Lipovec, A.; Shimazoe, K.; Takahashi, H.

    2016-03-01

    In this study a high-resolution gamma detector based on an array of sub-millimeter Ce:GAGG (Cerium doped Gd3Al2Ga3O12) crystals read out by an array of surface-mount type of TSV-MPPC was developed. MPPC sensor from Hamamatsu which has a 26 by 26 mm2 detector area with 64 channels was used. One channel has a 3 by 3 mm2 photosensitive area with 50 μ m pitch micro cells. MPPC sensor provides 576 mm2 sensing area and was used to decode 48 by 48 array with 0.4 by 0.4 by 20 mm3 Ce:GAGG crystals of 500 μ m pitch. The base of the detector with the crystal module was mounted to a read out board which consists of charge division circuit, thus allowing for a read out of four channels to identify the position of the incident event on the board. The read out signals were amplified using charge sensitive amplifiers. The four amplified signals were digitized and analyzed to produce a position sensitive event. For the performance analysis a 137Cs source was used. The produced events were used for flood histogram and energy analysis. The effects of the glass thickness between the Ce:GAGG and MPPC were analyzed using the experimental flood diagrams and Geant4 simulations. The glass between the scintillator and the detector allows the spread of the light over different channels and is necessary if the channel's sensitive area is bigger than the scintillator's area. The initial results demonstrate that this detector module is promising and could be used for applications requiring compact and high-resolution detectors. Experimental results show that the detectors precision increases using glass guide thickness of 1.35 mm and 1.85 mm; however the precision using 2.5 mm are practically the same as if using 0.8 mm or 1.0 mm glass guide thicknesses. In addition, simulations using Geant4 indicate that the light becomes scarcer if thicker glass is used, thus reducing the ability to indicate which crystal was targeted. When 2.5 mm glass thickness is used, the scarce light effect becomes

  12. Development of a high-resolution melting marker for selecting Fusarium crown and root rot resistance in tomato.

    PubMed

    Kim, Bichseam; Kim, Nahui; Kim, Jun Young; Kim, Byung Sup; Jung, Hee-Jeong; Hwang, Indoek; Noua, Ill-Sup; Sim, Sung-Chur; Park, Younghoon

    2016-03-01

    Fusarium crown and root rot is a severe fungal disease of tomato caused by Fusarium oxysporum f. sp. radicis-lycopersici (FORL). In this study, the genomic location of the FORL-resistance locus was determined using a set of molecular markers on chromosome 9 and an F2 population derived from FORL-resistant inbred 'AV107-4' (Solanum lycopersicum) × susceptible 'L3708' (Solanum pimpinellifolium). Bioassay performed using Korean FORL strain KACC 40031 showed single dominant inheritance of FORL resistance in the F2 population. In all, 13 polymerase chain reaction-based markers encompassing approximately 3.6-72.0 Mb of chromosome 9 were developed based on the Tomato-EXPEN 2000 map and SolCAP Tomato single nucleotide polymorphism array analysis. These markers were genotyped on 345 F2 plants, and the FORL-resistance locus was found to be present on a pericentromeric region of suppressed chromosomal recombination in chromosome 9. The location of the FORL-resistance locus was further confirmed by testing these markers against diverse commercial tomato and stock cultivars resistant to FORL. A restriction fragment length polymorphism marker, PNU-D4, located at approximately 6.1 Mb of chromosome 9 showed the highest match with the resistance locus and was used for conducting high-resolution melting analysis for marker-assisted selection of FORL resistance.

  13. Development and testing of a high-resolution model for tropospheric sulfate driven by observation-derived meteorology

    SciTech Connect

    Benkovitz, C.M.

    1994-05-01

    A high-resolution three-dimensional Eulerian transport and transformation model has been developed to simulate concentrations of tropospheric sulfate for specific times and locations; it was applied over the North Atlantic and adjacent continental regions during October and November, 1986. The model represents emissions of anthropogenic SO{sub 2} and sulfate and of biogenic sulfur species, horizontal and vertical transport, gas-phase oxidation of SO{sub 2} and dimethylsulfide, aqueous-phase oxidation of SO{sub 2}, and wet and dry deposition of SO{sub 2}, sulfate, and methanesulfonic acid (MSA). The meteorological driver is the 6-hour output from the forecast model of the European Centre for Medium-Range Weather Forecasts. Calculated sulfate concentrations and column burdens, examined in detail for October 15 and October 22 at 6Z, are related to existing weather patterns. These results exhibit rich temporal and spatial structure; the characteristic (1/e) temporal autocorrelation time for the sulfate column burdens over the central North Atlantic averages 20 hours; 95% of the values were 25 hours or less. The characteristic distance of spatial autocorrelation over this region depends on direction and averages 1,600 km; with 10{sup th} percentile value of 400 km and 90{sup th} percentile value of 1,700 km. Daily average model sulfate concentrations at the lowest vertical accurately represent the spatial variability, temporal episodicity, and absolute magnitudes of surface concentrations measured by monitoring stations in Europe, Canada and Barbados.

  14. Development of an Apparatus for High-Resolution Auger Photoelectron Coincidence Spectroscopy (APECS) and Electron Ion Coincidence (EICO) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kakiuchi, Takuhiro; Hashimoto, Shogo; Fujita, Narihiko; Mase, Kazuhiko; Tanaka, Masatoshi; Okusawa, Makoto

    We have developed an electron electron ion coincidence (EEICO) apparatus for high-resolution Auger photoelectron coincidence spectroscopy (APECS) and electron ion coincidence (EICO) spectroscopy. It consists of a coaxially symmetric mirror electron energy analyzer (ASMA), a miniature double-pass cylindrical mirror electron energy analyzer (DP-CMA), a miniature time-of-flight ion mass spectrometer (TOF-MS), a magnetic shield, an xyz stage, a tilt-adjustment mechanism, and a conflat flange with an outer diameter of 203 mm. A sample surface was irradiated by synchrotron radiation, and emitted electrons were energy-analyzed and detected by the ASMA and the DP-CMA, while desorbed ions were mass-analyzed and detected by the TOF-MS. The performance of the new EEICO analyzer was evaluated by measuring Si 2p photoelectron spectra of clean Si(001)-2×1 and Si(111)-7×7, and by measuring Si-L23VV-Si-2p Auger photoelectron coincidence spectra (Si-L23VV-Si-2p APECS) of clean Si(001)-2×1.

  15. [Development of a high-resolution pinhole SPECT system using dual-head gamma camera for small animal studies].

    PubMed

    Yokoi, T; Kishi, H

    1998-11-01

    We developed a high-resolution pinhole SPECT system using dual-head gamma camera (PRISM-2000XP) for small animal, and evaluated the performance of this system. Two pinhole-inserts (Pb) were mounted on the same unit, and it was not attached to the detector but the gantry of gamma camera. We designed two kinds of pinhole collimators with different rotating radii, 40 mm (Type-I) and 50 mm (Type-II). The diameter of the pinhole is 1 mm for both types. The field of view (FOV) and magnification were 45.8 mm phi and 4.25 for Type-I, 57.4 mm phi and 3.40 for Type-II, respectively. We measured full width at half maximum (FWHM) of line spread function using a 99mTc line source. Measured FWHM values were 1.65 mm using Type-I and 1.91 mm using Type-II at the center of FOV in the center slice. The volume sensitivity of this system was 8.54 kcps/MBq/ml (Type-I) and 5.68 kcps/MBq/ml (Type-II). We could observed 1.2 mm phi cold spot in the resolution phantom using Type-I. In conclusion, this system is available for SPECT measurement of small animal studies.

  16. Development, calibration, and sensitivity analyses of a high-resolution dissolved oxygen mass balance model for the northern Gulf of Mexico

    EPA Science Inventory

    A high-resolution dissolved oxygen mass balance model was developed for the Louisiana coastal shelf in the northern Gulf of Mexico. GoMDOM (Gulf of Mexico Dissolved Oxygen Model) was developed to assist in evaluating the impacts of nutrient loading on hypoxia development and exte...

  17. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  18. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The advanced very high resolution radiometer development program is considered. The program covered the design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical structural model, and a life test model. Special bench test and calibration equipment was also developed for use on the program.

  19. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  20. First permanent molar root development arrest associated with compound odontoma.

    PubMed

    Gunda, Sachin A; Patil, Anil; Varekar, Aniruddha

    2013-07-04

    Trauma or infection to the primary tooth may have deleterious effects on the underlying developing tooth buds. Anatomically the root apices of primary teeth are in close proximity to the developing permanent tooth buds; hence spread of infection originating from pulp necrosis of primary tooth may not only affect the underlying tooth bud but may also affect the adjacent tooth buds. The extent of malformation depends on the developmental stage of tooth or the age of patient. Presented here is a rare case of complete arrest of maxillary first permanent molar root growth due to spread of periapical infection originating from second primary molar leading to failure of its eruption and finally extraction. Histopathlogical analysis revealed compound odontoma associated with maxillary first permanent molar.

  1. High-resolution headlamp

    NASA Astrophysics Data System (ADS)

    Gut, Carsten; Cristea, Iulia; Neumann, Cornelius

    2016-04-01

    The following article shall describe how human vision by night can be influenced. At first, front lighting systems that are already available on the market will be described, followed by their analysis with respect to the positive effects on traffic safety. Furthermore, how traffic safety by night can be increased since the introduction of high resolution headlamps shall be discussed.

  2. Development and application of a high resolution hybrid modelling system for the evaluation of urban air quality

    NASA Astrophysics Data System (ADS)

    Pepe, N.; Pirovano, G.; Lonati, G.; Balzarini, A.; Toppetti, A.; Riva, G. M.; Bedogni, M.

    2016-09-01

    A hybrid modelling system (HMS) was developed to provide hourly concentrations at the urban local scale. The system is based on the combination of a meteorological model (WRF), a chemical and transport eulerian model (CAMx), which computes concentration levels over the regional domains, and a lagrangian dispersion model (AUSTAL2000), accounting for dispersion phenomena within the urban area due to local emission sources; a source apportionment algorithm is also included in the HMS in order to avoid the double counting of local emissions. The HMS was applied over a set of nested domains, the innermost covering a 1.6 × 1.6 km2 area in Milan city center with 20 m grid resolution, for NOX simulation in 2010. For this paper the innermost domain was defined as "local", excluding usual definition of urban areas. WRF model captured the overall evolution of the main meteorological features, except for some very stagnant situations, thus influencing the subsequent performance of regional scale model CAMx. Indeed, CAMx was able to reproduce the spatial and temporal evolution of NOX concentration over the regional domain, except a few episodes, when observed concentrations were higher than 100 ppb. The local scale model AUSTAL2000 provided high-resolution concentration fields that sensibly mirrored the road and traffic pattern in the urban domain. Therefore, the first important outcome of the work is that the application of the hybrid modelling system allowed a thorough and consistent description of urban air quality. This result represents a relevant starting point for future evaluation of pollution exposure within an urban context. However, the overall performance of the HMS did not provide remarkable improvements with respect to stand-alone CAMx at the two only monitoring sites in Milan city center. HMS results were characterized by a smaller average bias, that improved about 6-8 ppb corresponding to 12-13% of the observed concentration, but by a lower correlation, that

  3. Development of a High Resolution Weather Forecast Model for Mesoamerica Using the NASA Nebula Cloud Computing Environment

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Case, Jonathan L.; Venner, Jason; Moreno-Madrinan, Max. J.; Delgado, Francisco

    2012-01-01

    Over the past two years, scientists in the Earth Science Office at NASA fs Marshall Space Flight Center (MSFC) have explored opportunities to apply cloud computing concepts to support near real ]time weather forecast modeling via the Weather Research and Forecasting (WRF) model. Collaborators at NASA fs Short ]term Prediction Research and Transition (SPoRT) Center and the SERVIR project at Marshall Space Flight Center have established a framework that provides high resolution, daily weather forecasts over Mesoamerica through use of the NASA Nebula Cloud Computing Platform at Ames Research Center. Supported by experts at Ames, staff at SPoRT and SERVIR have established daily forecasts complete with web graphics and a user interface that allows SERVIR partners access to high resolution depictions of weather in the next 48 hours, useful for monitoring and mitigating meteorological hazards such as thunderstorms, heavy precipitation, and tropical weather that can lead to other disasters such as flooding and landslides. This presentation will describe the framework for establishing and providing WRF forecasts, example applications of output provided via the SERVIR web portal, and early results of forecast model verification against available surface ] and satellite ]based observations.

  4. High resolution data acquisition

    DOEpatents

    Thornton, Glenn W.; Fuller, Kenneth R.

    1993-01-01

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock (38) pulse train (37) and analog circuitry (44) for generating a triangular wave (46) synchronously with the pulse train (37). The triangular wave (46) has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter (18, 32) forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter (26) counts the clock pulse train (37) during the interval to form a gross event interval time. A computer (52) then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  5. High resolution data acquisition

    DOEpatents

    Thornton, G.W.; Fuller, K.R.

    1993-04-06

    A high resolution event interval timing system measures short time intervals such as occur in high energy physics or laser ranging. Timing is provided from a clock, pulse train, and analog circuitry for generating a triangular wave synchronously with the pulse train (as seen in diagram on patent). The triangular wave has an amplitude and slope functionally related to the time elapsed during each clock pulse in the train. A converter forms a first digital value of the amplitude and slope of the triangle wave at the start of the event interval and a second digital value of the amplitude and slope of the triangle wave at the end of the event interval. A counter counts the clock pulse train during the interval to form a gross event interval time. A computer then combines the gross event interval time and the first and second digital values to output a high resolution value for the event interval.

  6. Ultra high resolution tomography

    SciTech Connect

    Haddad, W.S.

    1994-11-15

    Recent work and results on ultra high resolution three dimensional imaging with soft x-rays will be presented. This work is aimed at determining microscopic three dimensional structure of biological and material specimens. Three dimensional reconstructed images of a microscopic test object will be presented; the reconstruction has a resolution on the order of 1000 A in all three dimensions. Preliminary work with biological samples will also be shown, and the experimental and numerical methods used will be discussed.

  7. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    NASA Astrophysics Data System (ADS)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  8. Cadmium and zinc reversibly arrest development of Artemia larvae

    SciTech Connect

    Bagshaw, J.C.; Rafiee, P.; Matthews, C.O.; MacRae, T.H.

    1986-08-01

    Despite the widespread distribution of heavy metals such as cadmium and zinc in the environment and their well-known cytotoxicity and embryotoxicity in mammals, comparatively little is known about their effect on aquatic organisms, particularly invertebrates. Post-gastrula and early larval development of the brine shrimp, Artemia, present some useful advantages for studies of developmental aspects of environmental toxicology. Dormant encysted gastrulae, erroneously called brine shrimp eggs, can be obtained commercially and raised in the laboratory under completely defined conditions. Following a period of post-gastrula development within the cyst, pre-nauplius larvae emerge through a crack in the cyst shell. A few hours later, free-swimming nauplius larvae hatch. Cadmium is acutely toxic to both adults and nauplius larvae of Artemia, but the reported LC50s are as high as 10 mM, depending on larval age. In this paper the authors show that pre-nauplius larvae prior to hatching are much more sensitive to cadmium than are hatched nauplius larvae. At 0.1 ..mu..m, cadmium retards development and hatching of larvae; higher concentrations block hatching almost completely and thus are lethal. However, the larvae arrested at the emergence stage survive for 24 hours or more before succumbing to the effects of cadmium, and during this period the potentially lethal effect is reversible if the larvae are placed in cadmium-free medium. The effects of zinc parallel those of cadmium, although zinc is somewhat less toxic than cadmium at equal concentrations.

  9. To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest.

    PubMed

    Baugh, L Ryan

    2013-07-01

    It is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. "L1 arrest" (also known as "L1 diapause") occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory

  10. The link between a negative high resolution resist contrast/developer performance and the Flory-Huggins parameter estimated from the Hansen solubility sphere

    SciTech Connect

    StCaire, Lorri; Olynick, Deirdre L.; Chao, Weilun L.; Lewis, Mark D.; Lu, Haoren; Dhuey, Scott D.; Liddle, J. Alexander

    2008-07-01

    We have implemented a technique to identify candidate polymer solvents for spinning, developing, and rinsing for a high resolution, negative electron beam resist hexa-methyl acetoxy calix(6)arene to elicit the optimum pattern development performance. Using the three dimensional Hansen solubility parameters for over 40 solvents, we have constructed a Hansen solubility sphere. From this sphere, we have estimated the Flory Huggins interaction parameter for solvents with hexa-methyl acetoxy calix(6)arene and found a correlation between resist development contrast and the Flory-Huggins parameter. This provides new insights into the development behavior of resist materials which are necessary for obtaining the ultimate lithographic resolution.

  11. Development of a high-resolution melting-based approach for efficient differentiation among Bacillus cereus group isolates.

    PubMed

    Antolinos, Vera; Fernández, Pablo S; Ros-Chumillas, María; Periago, Paula M; Weiss, Julia

    2012-09-01

    Strains belonging to Bacillus cereus Group include six different species, among which are Bacillus thuringiensis, Bacillus weihenstephanensis, and Bacillus cereus sensu stricto, a causative agent of food poisoning. Sequence of the panC-housekeeping gene is used for B. cereus Group affiliation to seven major phylogenetic groups (I-VII) with different ecological niches and variations in thermal growth range and spore heat resistance of B. cereus Group microorganisms varies among phylogenetic groups. We assigned a selection of B. cereus sensu stricto strains related to food poisoning from the Spanish cultivar Collection (Valencia) to Group IV strains based on panC gene sequence. Thermal inactivation assays revealed variability of spore heat resistance within these Group IV strains. Adequate food sanitizing treatments therefore require fast and reliable identification of particular strains. In the present study, feasibility of genotyping via high-resolution melting (HRM) analysis was examined. HRM analysis of amplified polymorphic 16S-23 intergenic spacer region (ISR) region proved to be discriminatory for B. cereus sensu stricto strain typing, while two other polymorphic regions within the bacterial rRNA operon allowed differentiation between Bacillus species, demonstrating its applicability for discrimination on the species and strain level within B. cereus Group.

  12. Developing a high-resolution wind map for a complex terrain with a coupled MM5/CALMET system

    NASA Astrophysics Data System (ADS)

    Yim, Steve H. L.; Fung, Jimmy C. H.; Lau, Alexis K. H.; Kot, S. C.

    2007-03-01

    This study investigates the wind energy potential in Hong Kong, a region with a complex terrain, by coupling the prognostic MM5 mesoscale model with the CALMET diagnostic model to produce high-resolution wind fields. Hourly wind fields were simulated for the entire year of 2004. The MM5 simulations were performed on a nested grid from 40.5 km down to 1.5 km horizontal resolution. The CALMET meteorological model was used in a domain that includes the entire Hong Kong region with a high horizontal resolution of 100 m. The MM5 model wind field (1.5 km horizontal resolution) output was input into the CALMET diagnostic meteorological model every hour along with an objective analysis procedure using all available observations. Verification was achieved through two steps. In the first step, the data from three meteorological surface stations that were not assimilated into the CALMET model were compared horizontally with the simulated wind fields. In the second step, the simulated wind fields were compared vertically with the vertical wind profile collected from two upper air sounding stations. The results of this study identified the locations of the highest wind energy potential in HK down to 100 m resolution.

  13. Developing high-resolution spatial data of migration corridors for avian species of concern in regions of high potential wind development

    SciTech Connect

    Katzner, Todd

    2014-06-15

    The future of the US economy, our national security, and our environmental quality all depend on decreasing our reliance on foreign oil and on fossil fuels. An essential component of decreasing this reliance is the development of alternative energy sources. Wind power is among the most important alternative energy sources currently available, and the mid-Atlantic region is a primary focus for wind power development. In addition to being important to the development of wind power, the mid-Atlantic region holds a special responsibility for the conservation of the eastern North America's golden eagles (Aquila chrysaetos). This small population breeds in northeastern Canada, winters in the southern Appalachians, and nearly all of these birds pass through the mid-Atlantic region twice each year. Movement of these birds is not random and, particularly during spring and autumn, migrating golden eagles concentrate in a narrow 30-50 mile wide corridor in central Pennsylvania. Thus, because the fate of these rare birds may depend on responsible management of the habitat they use it is critical to use research to identify ways to mitigate prospective impacts on this and similar raptor species. The goal of this project was to develop high-resolution spatial risk maps showing migration corridors of and habitat use by eastern golden eagles in regions of high potential for wind development. To accomplish this, we first expanded existing models of raptor migration for the eastern USA to identify broad-scale migration patterns. We then used data from novel high-resolution tracking devices to discover routes of passage and detailed flight behavior of individual golden eagles throughout the eastern USA. Finally, we integrated these data and models to predict population-level migration patterns and individual eagle flight behavior on migration. We then used this information to build spatially explicit, probabilistic maps showing relative risk to birds from wind development. This

  14. High-Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Goetz, Alexander F. H.

    1990-01-01

    Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

  15. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  16. Cell cycle arrest and activation of development in marine invertebrate deuterostomes.

    PubMed

    Costache, Vlad; McDougall, Alex; Dumollard, Rémi

    2014-08-01

    Like most metazoans, eggs of echinoderms and tunicates (marine deuterostomes, there is no data for the cephalochordates) arrest awaiting fertilization due to the activity of the Mos/MEK/MAPK cascade and are released from this cell cycle arrest by sperm-triggered Ca2+ signals. Invertebrate deuterostome eggs display mainly three distinct types of cell cycle arrest before fertilization mediated by potentially different cytostatic factors (CSF): one CSF causes arrest during meiotic metaphase I (MI-CSF in tunicates and some starfishes), another CSF likely causes arrest during meiotic metaphase II (amphioxus), and yet another form of CSF causes arrest to occur after meiotic exit during G1 of the first mitotic cycle (G1-CSF). In tunicates and echinoderms these different CSF activities have been shown to rely on the Mos//MAPK pathway for establishment and on Ca2+ signals for their inactivation. Despite these molecular similarities, release of MI-CSF arrest is caused by APC/C activation (to destroy cyclin B) whereas release from G1-CSF is caused by stimulating S phase and the synthesis of cyclins. Further research is needed to understand how both the Mos//MAPK cascade and Ca2+ achieve these tasks in different marine invertebrate deuterostomes. Another conserved feature of eggs is that protein synthesis of specific mRNAs is necessary to proceed through oocyte maturation and to maintain CSF-induced cell cycle arrest. Then activation of development at fertilization is accompanied by an increase in the rate of protein synthesis but the mechanisms involved are still largely unknown in most of the marine deuterostomes. How the sperm-triggered Ca2+ signals cause an increase in protein synthesis has been studied mainly in sea urchin eggs. Here we review these conserved features of eggs (arrest, activation and protein synthesis) focusing on the non-vertebrate deuterostomes. PMID:24721426

  17. Cell cycle arrest and activation of development in marine invertebrate deuterostomes.

    PubMed

    Costache, Vlad; McDougall, Alex; Dumollard, Rémi

    2014-08-01

    Like most metazoans, eggs of echinoderms and tunicates (marine deuterostomes, there is no data for the cephalochordates) arrest awaiting fertilization due to the activity of the Mos/MEK/MAPK cascade and are released from this cell cycle arrest by sperm-triggered Ca2+ signals. Invertebrate deuterostome eggs display mainly three distinct types of cell cycle arrest before fertilization mediated by potentially different cytostatic factors (CSF): one CSF causes arrest during meiotic metaphase I (MI-CSF in tunicates and some starfishes), another CSF likely causes arrest during meiotic metaphase II (amphioxus), and yet another form of CSF causes arrest to occur after meiotic exit during G1 of the first mitotic cycle (G1-CSF). In tunicates and echinoderms these different CSF activities have been shown to rely on the Mos//MAPK pathway for establishment and on Ca2+ signals for their inactivation. Despite these molecular similarities, release of MI-CSF arrest is caused by APC/C activation (to destroy cyclin B) whereas release from G1-CSF is caused by stimulating S phase and the synthesis of cyclins. Further research is needed to understand how both the Mos//MAPK cascade and Ca2+ achieve these tasks in different marine invertebrate deuterostomes. Another conserved feature of eggs is that protein synthesis of specific mRNAs is necessary to proceed through oocyte maturation and to maintain CSF-induced cell cycle arrest. Then activation of development at fertilization is accompanied by an increase in the rate of protein synthesis but the mechanisms involved are still largely unknown in most of the marine deuterostomes. How the sperm-triggered Ca2+ signals cause an increase in protein synthesis has been studied mainly in sea urchin eggs. Here we review these conserved features of eggs (arrest, activation and protein synthesis) focusing on the non-vertebrate deuterostomes.

  18. Arrested embryonic development: a review of strategies to delay hatching in egg-laying reptiles.

    PubMed

    Rafferty, Anthony R; Reina, Richard D

    2012-06-22

    Arrested embryonic development involves the downregulation or cessation of active cell division and metabolic activity, and the capability of an animal to arrest embryonic development results in temporal plasticity of the duration of embryonic period. Arrested embryonic development is an important reproductive strategy for egg-laying animals that provide no parental care after oviposition. In this review, we discuss each type of embryonic developmental arrest used by oviparous reptiles. Environmental pressures that might have directed the evolution of arrest are addressed and we present previously undiscussed environmentally dependent physiological processes that may occur in the egg to bring about arrest. Areas for future research are proposed to clarify how ecology affects the phenotype of developing embryos. We hypothesize that oviparous reptilian mothers are capable of providing their embryos with a level of phenotypic adaptation to local environmental conditions by incorporating maternal factors into the internal environment of the egg that result in different levels of developmental sensitivity to environmental conditions after they are laid.

  19. Arrested embryonic development: a review of strategies to delay hatching in egg-laying reptiles

    PubMed Central

    Rafferty, Anthony R.; Reina, Richard D.

    2012-01-01

    Arrested embryonic development involves the downregulation or cessation of active cell division and metabolic activity, and the capability of an animal to arrest embryonic development results in temporal plasticity of the duration of embryonic period. Arrested embryonic development is an important reproductive strategy for egg-laying animals that provide no parental care after oviposition. In this review, we discuss each type of embryonic developmental arrest used by oviparous reptiles. Environmental pressures that might have directed the evolution of arrest are addressed and we present previously undiscussed environmentally dependent physiological processes that may occur in the egg to bring about arrest. Areas for future research are proposed to clarify how ecology affects the phenotype of developing embryos. We hypothesize that oviparous reptilian mothers are capable of providing their embryos with a level of phenotypic adaptation to local environmental conditions by incorporating maternal factors into the internal environment of the egg that result in different levels of developmental sensitivity to environmental conditions after they are laid. PMID:22438503

  20. High resolution time interval meter

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for measuring the time interval between two events to a higher resolution than reliability available from conventional circuits and component. An internal clock pulse is provided at a frequency compatible with conventional component operating frequencies for reliable operation. Lumped constant delay circuits are provided for generating outputs at delay intervals corresponding to the desired high resolution. An initiation START pulse is input to generate first high resolution data. A termination STOP pulse is input to generate second high resolution data. Internal counters count at the low frequency internal clock pulse rate between the START and STOP pulses. The first and second high resolution data are logically combined to directly provide high resolution data to one counter and correct the count in the low resolution counter to obtain a high resolution time interval measurement.

  1. Development of a high-resolution automatic digital (urine/electrolytes) flow volume and rate measurement system of miniature size

    NASA Technical Reports Server (NTRS)

    Liu, F. F.

    1975-01-01

    To aid in the quantitative analysis of man's physiological rhythms, a flowmeter to measure circadian patterns of electrolyte excretion during various environmental stresses was developed. One initial flowmeter was designed and fabricated, the sensor of which is the approximate size of a wristwatch. The detector section includes a special type of dielectric integrating type sensor which automatically controls, activates, and deactivates the flow sensor data output by determining the presence or absence of fluid flow in the system, including operation under zero-G conditions. The detector also provides qualitative data on the composition of the fluid. A compact electronic system was developed to indicate flow rate as well as total volume per release or the cumulative volume of several releases in digital/analog forms suitable for readout or telemetry. A suitable data readout instrument is also provided. Calibration and statistical analyses of the performance functions required of the flowmeter were also conducted.

  2. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.

    PubMed

    Heers, Ashley M; Baier, David B; Jackson, Brandon E; Dial, Kenneth P

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small "protowings", and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an "avian" flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  3. Development of a High Resolution, Real Time, Distribution-Level Metering System and Associated Visualization, Modeling, and Data Analysis Functions

    SciTech Connect

    Bank, J.; Hambrick, J.

    2013-05-01

    NREL is developing measurement devices and a supporting data collection network specifically targeted at electrical distribution systems to support research in this area. This paper describes the measurement network which is designed to apply real-time and high speed (sub-second) measurement principles to distribution systems that are already common for the transmission level in the form of phasor measurement units and related technologies.

  4. Design and development of the high-resolution spectrograph HERMES and the unique volume phase holographic gratings

    NASA Astrophysics Data System (ADS)

    Heijmans, J. A. C.; Gers, L.; Faught, B.

    2011-10-01

    We report on the grating development for the High Efficiency and Resolution Multi Element Spectrograph (HERMES). This paper discusses the challenges of designing, optimizing, and tolerancing large aperture volume phase holographic (VPH) gratings for HERMES. The high spectral resolution requirements require steep angles of incidence, of 67.2 degrees, and high line densities, ranging between 2400 and 3800 lines per mm, resulting in VPH gratings that are highly s-polarized that push the fabrication process to its limits.

  5. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development

    PubMed Central

    Heers, Ashley M.; Baier, David B.; Jackson, Brandon E.; Dial, Kenneth P.

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small “protowings”, and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an “avian” flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  6. Flapping before Flight: High Resolution, Three-Dimensional Skeletal Kinematics of Wings and Legs during Avian Development.

    PubMed

    Heers, Ashley M; Baier, David B; Jackson, Brandon E; Dial, Kenneth P

    2016-01-01

    Some of the greatest transformations in vertebrate history involve developmental and evolutionary origins of avian flight. Flight is the most power-demanding mode of locomotion, and volant adult birds have many anatomical features that presumably help meet these demands. However, juvenile birds, like the first winged dinosaurs, lack many hallmarks of advanced flight capacity. Instead of large wings they have small "protowings", and instead of robust, interlocking forelimb skeletons their limbs are more gracile and their joints less constrained. Such traits are often thought to preclude extinct theropods from powered flight, yet young birds with similarly rudimentary anatomies flap-run up slopes and even briefly fly, thereby challenging longstanding ideas on skeletal and feather function in the theropod-avian lineage. Though skeletons and feathers are the common link between extinct and extant theropods and figure prominently in discussions on flight performance (extant birds) and flight origins (extinct theropods), skeletal inter-workings are hidden from view and their functional relationship with aerodynamically active wings is not known. For the first time, we use X-ray Reconstruction of Moving Morphology to visualize skeletal movement in developing birds, and explore how development of the avian flight apparatus corresponds with ontogenetic trajectories in skeletal kinematics, aerodynamic performance, and the locomotor transition from pre-flight flapping behaviors to full flight capacity. Our findings reveal that developing chukars (Alectoris chukar) with rudimentary flight apparatuses acquire an "avian" flight stroke early in ontogeny, initially by using their wings and legs cooperatively and, as they acquire flight capacity, counteracting ontogenetic increases in aerodynamic output with greater skeletal channelization. In conjunction with previous work, juvenile birds thereby demonstrate that the initial function of developing wings is to enhance leg

  7. Mapping Primary Gyrogenesis During Fetal Development in Primate Brains: High-Resolution in Utero Structural MRI of Fetal Brain Development in Pregnant Baboons

    PubMed Central

    Kochunov, Peter; Castro, Carlos; Davis, Duff; Dudley, Donald; Brewer, Jordan; Zhang, Yi; Kroenke, Christopher D.; Purdy, David; Fox, Peter T.; Simerly, Calvin; Schatten, Gerald

    2010-01-01

    The global and regional changes in the fetal cerebral cortex in primates were mapped during primary gyrification (PG; weeks 17–25 of 26 weeks total gestation). Studying pregnant baboons using high-resolution MRI in utero, measurements included cerebral volume, cortical surface area, gyrification index and length and depth of 10 primary cortical sulci. Seven normally developing fetuses were imaged in two animals longitudinally and sequentially. We compared these results to those on PG that from the ferret studies and analyzed them in the context of our recent studies of phylogenetics of cerebral gyrification. We observed that in both primates and non-primates, the cerebrum undergoes a very rapid transformation into the gyrencephalic state, subsequently accompanied by an accelerated growth in brain volume and cortical surface area. However, PG trends in baboons exhibited some critical differences from those observed in ferrets. For example, in baboons, the growth along the long (length) axis of cortical sulci was unrelated to the growth along the short (depth) axis and far outpaced it. Additionally, the correlation between the rate of growth along the short sulcal axis and heritability of sulcal depth was negative and approached significance (r = −0.60; p < 0.10), while the same trend for long axis was positive and not significant (p = 0.3; p = 0.40). These findings, in an animal that shares a highly orchestrated pattern of PG with humans, suggest that ontogenic processes that influence changes in sulcal length and depth are diverse and possibly driven by different factors in primates than in non-primates. PMID:20631812

  8. Intensity and Development Forecasts of Tropical Cyclones by the JMA High-Resolution Global NWP Model: Impacts of Resolution Enhancement

    NASA Astrophysics Data System (ADS)

    Komori, T.; Kitagawa, H.

    2007-12-01

    It is widely considered that a spatial resolution of numerical weather prediction (NWP) model plays an important role for forecasting severe weather events such as tropical cyclones (TCs) and heavy rainfall. Under the KAKUSHIN project (funded by the Japanese Ministry of Education, Culture, Sports, Science and Technology), the Japan Meteorological Agency (JMA) has developed a new Global Spectral Model (GSM) with a high horizontal resolution of about 20km and 60 vertical layers (hereafter called g20km GSMh), which is utilized to evaluate severe weather events in future climate. The 20km GSM will be operational in November 2007 replacing the current GSM with a horizontal resolution of about 60km and 40 vertical layers (hereafter called g60km GSMh). In the present study, we investigate how a model resolution impacts on TC forecasts because this resolution enhancement aims to improve the model's ability to forecast severe weather. Due to the more realistic model topography in higher horizontal resolution, the 20km GSM can give more accurate forecasts of orographic precipitation than the 60km GSM, especially over the area range of heavy precipitation. According to the statistically verified results, the enhancement of horizontal and vertical resolution appears to fairly improve the accuracy of TC intensity forecasts. However, for TC track forecasts, it may be more important to accurately represent large-scale environmental contexts surrounding the TC than to resolve the TC structure itself. In order to clarify resolution impacts on the TC intensity prediction, we categorize the TC intensity forecasts into three stages (development stage, maturation stage and dissipation stage). The results show that the effectiveness of the resolution enhancement is bigger in the development stage and relatively small in the maturation and dissipation stages. For the maturation and dissipation stages, improvement of physical processes seems to be more important than the resolution

  9. Development of ultrasonic thermometry for high-temperature high-resolution temperature profiling applications in LMFBR safety research

    NASA Astrophysics Data System (ADS)

    Field, M. E.

    1986-05-01

    Ultrasonic thermometry was developed as a high temperature profiling diagnostic for use in the Liquid Metal Fast Breeder Reactor (LMFBR) Debris Coolability Program at Sandia National Laboratories. These instruments were used successfully in the DC series experiments and the D10 experiment. Temperatures approaching 3000 C with spatial resolution of 10 mm and indicated temperature gradients of 700 C/cm were measured. Instruments were operated in molten sodium, molten steel, and molten UO2 environments. Up to 14 measurement zones on a single instrument in molten sodium were used with 12 mm and 15 mm spatial resolution. Hermetically sealed units operating at elevated temperatures were used. Post-test examination revealed very little systematic calibration drifts (less than 10 C) with random drifts occuring with less than 40 C standard deviation in a 10 to 12 mm measured zone. The stability of the system varies from +/- 1 C to +/- 15 C depending on the sensor design constraints for a particular application. Doped tungsten sensors were developed to permit operation of total measurement zone length of 30 cm at temperatures above 2500 C.

  10. Development and evaluation of high resolution quadrupole mass analyzer and an inductively coupled plasma-Mach disk

    SciTech Connect

    Amad, Ma'an Hazem

    1999-12-10

    By definition a plasma is an electrically conducting gaseous mixture containing a significant concentration of cations and electrons. The Inductively Coupled Plasma (ICP) is an electrodeless discharge in a gas at atmospheric pressure. This discharge is an excellent one for vaporizing, atomizing, and ionizing elements. The early development of the ICP began in 1942 by Babat and then by Reed in the early 1960s. This was then followed by the pioneering work of Fassel and coworkers in the late 1960s. Commercial ICP spectrometers were introduced in the mid 1970s. A major breakthrough in the area of ICP took place in the early 1980s when the ICP was shown to be an excellent ion source for mass spectrometry.

  11. Development of a versatile capacitive tactile sensor based on transparent flexible materials integrating an excellent sensitivity and a high resolution

    NASA Astrophysics Data System (ADS)

    Zhang, H. Z.; Tang, Q. Y.; Chan, Y. C.

    2012-06-01

    A versatile capacitive tactile sensor based on transparent flexible materials is developed in a simple and low-cost fabrication process. The sensor shows an excellent sensitivity (S=2.05 N-1), and is highly sensitive to the load as low as about 3 mN. Moreover, it exhibits a prominent resolution. The excellent device performance is attributed to the creative design of polydimethylsiloxane (PDMS) polymer layer, used as the structural material of the sensor, in which each sensing section acting as a sensor unit is a concave square with hemispheric micro-structured PDMS arrays. Meanwhile, other sections without any PDMS arrays serving as perfect natural wall-barriers can make each sensor unit separated effectively.

  12. Development of low-pressure multi-wire drift chambers for high-resolution spectroscopy with radioactive isotope beams

    NASA Astrophysics Data System (ADS)

    Miya, H.; Ota, S.; Fujii, T.; Kawase, S.; Kubota, Y.; Lee, C. S.; Matsubara, H.; Miki, K.; Saito, A.; Michimasa, S.; Uesaka, T.; Sakai, H.; Shimoura, S.

    2013-12-01

    Low-pressure multi-wire drift chambers have been developed to track high-intensity radioactive isotope beams at the energies of around 200 MeV/nucleon. In order to minimize the effect of multiple scattering by radioactive isotope beam, the thickness of the detectors were minimized by using isobutane gas at low pressure (10 kPa). The performance of the position resolution, the tracking efficiency, and the beam intensity capability were evaluated as a function of atomic number and applied voltage. As a result, an overall position resolution of 300 μm was achieved for radioactive isotope beams with an intensity of 1 MHz. The details of the design specifications and performances of the low-pressure multi-wire drift chambers are described.

  13. SU-F-BRF-01: A GPU Framework for Developing Interactive High-Resolution Patient-Specific Biomechanical Models

    SciTech Connect

    Neylon, J; Qi, S; Sheng, K; Kupelian, P; Santhanam, A

    2014-06-15

    Purpose: To develop a GPU-based framework that can generate highresolution and patient-specific biomechanical models from a given simulation CT and contoured structures, optimized to run at interactive speeds, for addressing adaptive radiotherapy objectives. Method: A Massspring-damping (MSD) model was generated from a given simulation CT. The model's mass elements were generated for every voxel of anatomy, and positioned in a deformation space in the GPU memory. MSD connections were established between neighboring mass elements in a dense distribution. Contoured internal structures allowed control over elastic material properties of different tissues. Once the model was initialized in GPU memory, skeletal anatomy was actuated using rigid-body transformations, while soft tissues were governed by elastic corrective forces and constraints, which included tensile forces, shear forces, and spring damping forces. The model was validated by applying a known load to a soft tissue block and comparing the observed deformation to ground truth calculations from established elastic mechanics. Results: Our analyses showed that both local and global load experiments yielded results with a correlation coefficient R{sup 2} > 0.98 compared to ground truth. Models were generated for several anatomical regions. Head and neck models accurately simulated posture changes by rotating the skeletal anatomy in three dimensions. Pelvic models were developed for realistic deformations for changes in bladder volume. Thoracic models demonstrated breast deformation due to gravity when changing treatment position from supine to prone. The GPU framework performed at greater than 30 iterations per second for over 1 million mass elements with up to 26 MSD connections each. Conclusions: Realistic simulations of site-specific, complex posture and physiological changes were simulated at interactive speeds using patient data. Incorporating such a model with live patient tracking would facilitate real

  14. Development of integrated high-resolution geophysical, photogrammetric and GPS surveying applied to landslides in the South Wales coalfield

    NASA Astrophysics Data System (ADS)

    Taboga, Alessia

    The aim of this research is to develop an integrated and cost-effective site investigation approach for slow moving landslides or potentially unstable slopes found within the South Wales Coalfield, an area of complex geology and hydrogeology. The research was based on the use and assessment of a wide range of surface geophysical techniques, supported by GPS and Digital Photogrammetry surveying, and the joint interpretation of the results which such techniques provide. The South Wales Coalfield has one of the highest concentrations of urban landslides in the UK due to its layered Carboniferous geology. Quaternary / Holocene geomorphology, coal mining history and relatively high rainfall. Mynydd yr Eglwys landslide (Ystrad, Rhondda Cynon Taff) was selected as the field study site because it can be considered representative of the active landslides found within the area. In autumn 1998, following an exceptional heavy rainfall period, a new compound deep- seated failure developed in a previously mined hillslope. This deep-seated failure then caused the reactivation of ancient periglacial debris slides downslope creating a serious risk to the modern housing estate located close to the toe. Electromagnetic (GEM-2), self potential, electrical resistivity tomography, seismic refraction tomography, MASW and induced polarization geophysical data were all acquired on the landslide. This combination of techniques provided information on lithology, faulting, degree of rock fracturing/weathering, thickness of displaced material, spatial distribution of areas with high water/clay content and the direction of groundwater flow. The repetition of a few ERT and SP profiles showed the applicability of geophysical monitoring in detecting changes in groundwater content and defining preferential groundwater pathways within the hillslope. Digital Photogrammetry from Helium balloon can provide a 3D landslide topographic model with 10cm-level accuracy. Topcon HiPer Pro GPS+ instrument can

  15. Development of Fiber Fabry-Perot Interferometers as Stable Near-infrared Calibration Sources for High Resolution Spectrographs

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel; Mahadevan, Suvrath; Ramsey, Lawrence; Hearty, Fred; Wilson, John; Holtzman, Jon; Redman, Stephen; Nave, Gillian; Nidever, David; Nelson, Matt; Venditti, Nick; Bizyaev, Dmitry; Fleming, Scott

    2014-05-01

    We discuss the ongoing development of single-mode fiber Fabry-Perot (FFP) Interferometers as precise astrophotonic calibration sources for high precision radial velocity (RV) spectrographs. FFPs are simple, inexpensive, monolithic units that can yield a stable and repeatable output spectrum. An FFP is a unique alternative to a traditional etalon, as the interferometric cavity is made of single-mode fiber rather than an air-gap spacer. This design allows for excellent collimation, high spectral finesse, rigid mechanical stability, insensitivity to vibrations, and no need for vacuum operation. The device we have tested is a commercially available product from Micron Optics.10 Our development path is targeted toward a calibration source for the Habitable-Zone Planet Finder (HPF), a near-infrared spectrograph designed to detect terrestrial-mass planets around low-mass stars, but this reference could also be used in many existing and planned fiber-fed spectrographs as we illustrate using the Apache Point Observatory Galactic Evolution Experiment (APOGEE) instrument. With precise temperature control of the fiber etalon, we achieve a thermal stability of 100 μK and associated velocity uncertainty of 22 cm s-1. We achieve a precision of ≈2 m s-1 in a single APOGEE fiber over 12 hr using this new photonic reference after removal of systematic correlations. This high precision (close to the expected photon-limited floor) is a testament to both the excellent intrinsic wavelength stability of the fiber interferometer and the stability of the APOGEE instrument design. Overall instrument velocity precision is 80 cm s-1 over 12 hr when averaged over all 300 APOGEE fibers and after removal of known trends and pressure correlations, implying the fiber etalon is intrinsically stable to significantly higher precision.

  16. Development and Characterization of Simple Sequence Repeat Markers Providing Genome-Wide Coverage and High Resolution in Maize

    PubMed Central

    Xu, Jie; Liu, Ling; Xu, Yunbi; Chen, Churun; Rong, Tingzhao; Ali, Farhan; Zhou, Shufeng; Wu, Fengkai; Liu, Yaxi; Wang, Jing; Cao, Moju; Lu, Yanli

    2013-01-01

    Simple sequence repeats (SSRs) have been widely used in maize genetics and breeding, because they are co-dominant, easy to score, and highly abundant. In this study, we used whole-genome sequences from 16 maize inbreds and 1 wild relative to determine SSR abundance and to develop a set of high-density polymorphic SSR markers. A total of 264 658 SSRs were identified across the 17 genomes, with an average of 135 693 SSRs per genome. Marker density was one SSR every of 15.48 kb. (C/G)n, (AT)n, (CAG/CTG)n, and (AAAT/ATTT)n were the most frequent motifs for mono, di-, tri-, and tetra-nucleotide SSRs, respectively. SSRs were most abundant in intergenic region and least frequent in untranslated regions, as revealed by comparing SSR distributions of three representative resequenced genomes. Comparing SSR sequences and e-polymerase chain reaction analysis among the 17 tested genomes created a new database, including 111 887 SSRs, that could be develop as polymorphic markers in silico. Among these markers, 58.00, 26.09, 7.20, 3.00, 3.93, and 1.78% of them had mono, di-, tri-, tetra-, penta-, and hexa-nucleotide motifs, respectively. Polymorphic information content for 35 573 polymorphic SSRs out of 111 887 loci varied from 0.05 to 0.83, with an average of 0.31 in the 17 tested genomes. Experimental validation of polymorphic SSR markers showed that over 70% of the primer pairs could generate the target bands with length polymorphism, and these markers would be very powerful when they are used for genetic populations derived from various types of maize germplasms that were sampled for this study. PMID:23804557

  17. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat.

    PubMed

    Shi, Gongjun; Zhang, Zengcui; Friesen, Timothy L; Bansal, Urmil; Cloutier, Sylvie; Wicker, Thomas; Rasmussen, Jack B; Faris, Justin D

    2016-02-01

    Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a severe foliar and glume disease on durum and common wheat. Pathogen-produced necrotrophic effectors (NEs) are the major determinants for SNB on leaves. One such NE is SnTox3, which evokes programmed cell death and leads to disease when recognized by the wheat Snn3-B1 gene. Here, we developed saturated genetic linkage maps of the Snn3-B1 region using two F2 populations derived from the SnTox3-sensitive line Sumai 3 crossed with different SnTox3-insensitive lines. Markers were identified and/or developed from various resources including previously mapped simple sequence repeats, bin-mapped expressed sequence tags, single nucleotide polymorphisms, and whole genome survey sequences. Subsequent high-resolution mapping of the Snn3-B1 locus in 5600 gametes delineated the gene to a 1.5 cM interval. Analysis of micro-colinearity of the Snn3-B1 region indicated that it was highly disrupted compared to rice and Brachypodium distachyon. The screening of a collection of durum and common wheat cultivars with tightly linked markers indicated they are not diagnostic for the presence of Snn3-B1, but can be useful for marker-assisted selection if the SnTox3 reactions of lines are first determined. Finally, we developed an ethyl methanesulfonate-induced mutant population of Sumai 3 where the screening of 408 M2 families led to the identification of 17 SnTox3-insensitive mutants. These mutants along with the markers and high-resolution map developed in this research provide a strong foundation for the map-based cloning of Snn3-B1, which will broaden our understanding of the wheat-P. nodorum system and plant-necrotrophic pathogen interactions in general. PMID:26187026

  18. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    NASA Astrophysics Data System (ADS)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the Decadal Review, including missions with science that over-laps with that of IXO and ATHENA, as well as other missions addressing science topics beyond those of IXO and ATHENA. An X-ray Surveyor mission was recently endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible realization of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been working on these developments for the past several years.

  19. Development of New Accurate, High Resolution DEMs and Merged Topographic-Bathymetric Grids for Inundation Mapping in Seward Alaska

    NASA Astrophysics Data System (ADS)

    Marriott, D.; Suleimani, E.; Hansen, R.

    2004-05-01

    The Geophysical Institute of the University of Alaska Fairbanks and the Alaska Division of Geological and Geophysical Surveys continue to participate in the National Tsunami Hazard Mitigation Program by evaluating and mapping potential inundation of selected coastal communities in Alaska. Seward, the next Alaskan community to be mapped, has excellent bathymetric data but very poor topographic data available. Since one of the most significant sources of errors in tsunami inundation mapping is inaccuracy of topographic and bathymetric data, the Alaska Tsunami Modeling Team cooperated with the local USGS glaciology office to perform photogrammetry in the Seward area to produce a new DEM. Using ten air photos and the APEX photogrammetry and analysis software, along with several precisely located GPS points, we developed a new georeferenced and highly accurate DEM with a 5-meter grid spacing. A variety of techniques were used to remove the effects of buildings and trees to yield a bald earth model. Finally, we resampled the new DEM to match the finest resolution model grid, and combined it with all other data, using the most recent and accurate data in each region. The new dataset has contours that deviate by more than 100 meters in some places from the contours in the previous dataset, showing significant improvement in accuracy for the purpose of tsunami modeling.

  20. Recent technologic developments on high-resolution beta imaging systems for quantitative autoradiography and double labeling applications

    NASA Astrophysics Data System (ADS)

    Barthe, N.; Chatti, K.; Coulon, P.; Maı̂trejean, S.; Basse-Cathalinat, B.

    2004-07-01

    Two novel beta imaging systems, particularly interesting in the field of radiopharmacology and molecular biology research, were developed these last years. (1) a beta imager was derived from research conducted by Pr Charpak at CERN. This parallel plate avalanche chamber is a direct detection system of β radioactivity, which is particularly adapted for qualitative and quantitative autoradiography. With this detector, autoradiographic techniques can be performed with emitters such as 99mTc because this radionuclide emits many low-energy electrons and the detector has a very low sensitivity to low-range γ-rays. Its sensitivity (smallest activity detected: 0.007 cpm/mm 2 for 3H and 0.01 for 14C), linearity (over a dynamic range of 10 4) and spatial resolution (50 μm for 3H or 99mTc to 150 μm for 32P or 18F (β +)) gives a real interest to this system as a new imaging device. Its principle of detection is based on the analysis of light emitted during the interaction with an intensified CCD camera. This property may suggest new potential applications, particularly in the field of β-rays selection according to their energy. This detector provides a new fast way to detect all β-emitting isotopes in biological samples up to 20 cm×25 cm (electrophoresis gels, hybridization membranes, tissue sections on glass slides, TLC plates and any other planar two-dimension samples). It is ideal for tritium detection, 500 times faster than classical film, thus maximizing the research productivity. (2) A micro imager is based on contact imaging through a solid scintillator sheet. Light emitted is amplified through an image intensifier tube and is analyzed with a CCD camera. The full field of view is smaller than the first one (24 mm×32 mm) but a better spatial resolution is obtained (typically 15 μm for 3H, 20 μm for 14C and 35S). The specifications of this detector are: efficiency 50-100% depending on isotope, linear response over a dynamic range of 10 4, smallest activity

  1. Imaging of radiocesium uptake dynamics in a plant body by using a newly developed high-resolution gamma camera.

    PubMed

    Kawachi, Naoki; Yin, Yong-Gen; Suzui, Nobuo; Ishii, Satomi; Yoshihara, Toshihiro; Watabe, Hiroshi; Yamamoto, Seiichi; Fujimaki, Shu

    2016-01-01

    We developed a new gamma camera specifically for plant nutritional research and successfully performed live imaging of the uptake and partitioning of (137)Cs in intact plants. The gamma camera was specially designed for high-energy gamma photons from (137)Cs (662 keV). To obtain reliable images, a pinhole collimator made of tungsten heavy alloy was used to reduce penetration and scattering of gamma photons. A single-crystal scintillator, Ce-doped Gd3Al2Ga3O12, with high sensitivity, no natural radioactivity, and no hygroscopicity was used. The array block of the scintillator was coupled to a high-quantum efficiency position sensitive photomultiplier tube to obtain accurate images. The completed gamma camera had a sensitivity of 0.83 count s(-1) MBq(-1) for (137)Cs with an energy window from 600 keV to 730 keV, and a spatial resolution of 23.5 mm. We used this gamma camera to study soybean plants that were hydroponically grown and fed with 2.0 MBq of (137)Cs for 6 days to visualize and investigate the transport dynamics in aerial plant parts. (137)Cs gradually appeared in the shoot several hours after feeding, and then accumulated preferentially and intensively in growing pods and seeds; very little accumulation was observed in mature leaves. Our results also suggested that this gamma-camera method may serve as a practical analyzing tool for breeding crops and improving cultivation techniques resulting in low accumulation of radiocesium into the consumable parts of plants. PMID:25959930

  2. Imaging of radiocesium uptake dynamics in a plant body by using a newly developed high-resolution gamma camera.

    PubMed

    Kawachi, Naoki; Yin, Yong-Gen; Suzui, Nobuo; Ishii, Satomi; Yoshihara, Toshihiro; Watabe, Hiroshi; Yamamoto, Seiichi; Fujimaki, Shu

    2016-01-01

    We developed a new gamma camera specifically for plant nutritional research and successfully performed live imaging of the uptake and partitioning of (137)Cs in intact plants. The gamma camera was specially designed for high-energy gamma photons from (137)Cs (662 keV). To obtain reliable images, a pinhole collimator made of tungsten heavy alloy was used to reduce penetration and scattering of gamma photons. A single-crystal scintillator, Ce-doped Gd3Al2Ga3O12, with high sensitivity, no natural radioactivity, and no hygroscopicity was used. The array block of the scintillator was coupled to a high-quantum efficiency position sensitive photomultiplier tube to obtain accurate images. The completed gamma camera had a sensitivity of 0.83 count s(-1) MBq(-1) for (137)Cs with an energy window from 600 keV to 730 keV, and a spatial resolution of 23.5 mm. We used this gamma camera to study soybean plants that were hydroponically grown and fed with 2.0 MBq of (137)Cs for 6 days to visualize and investigate the transport dynamics in aerial plant parts. (137)Cs gradually appeared in the shoot several hours after feeding, and then accumulated preferentially and intensively in growing pods and seeds; very little accumulation was observed in mature leaves. Our results also suggested that this gamma-camera method may serve as a practical analyzing tool for breeding crops and improving cultivation techniques resulting in low accumulation of radiocesium into the consumable parts of plants.

  3. The JPL ASTER Volcano Archive: the development and capabilities of a 15 year global high resolution archive of volcano data.

    NASA Astrophysics Data System (ADS)

    Linick, J. P.; Pieri, D. C.; Sanchez, R. M.

    2014-12-01

    The physical and temporal systematics of the world's volcanic activity is a compelling and productive arena for the exercise of orbital remote sensing techniques, informing studies ranging from basic volcanology to societal risk. Comprised of over 160,000 frames and spanning 15 years of the Terra platform mission, the ASTER Volcano Archive (AVA: http://ava.jpl.nasa.gov) is the world's largest (100+Tb) high spatial resolution (15-30-90m/pixel), multi-spectral (visible-SWIR-TIR), downloadable (kml enabled) dedicated archive of volcano imagery. We will discuss the development of the AVA, and describe its growing capability to provide new easy public access to ASTER global volcano remote sensing data. AVA system architecture is designed to facilitate parameter-based data mining, and for the implementation of archive-wide data analysis algorithms. Such search and analysis capabilities exploit AVA's unprecedented time-series data compilations for over 1,550 volcanoes worldwide (Smithsonian Holocene catalog). Results include thermal anomaly detection and mapping, as well as detection of SO2 plumes from explosive eruptions and passive SO2 emissions confined to the troposphere. We are also implementing retrospective ASTER image retrievals based on volcanic activity reports from Volcanic Ash Advisory Centers (VAACs) and the US Air Force Weather Agency (AFWA). A major planned expansion of the AVA is currently underway, with the ingest of the full 1972-present LANDSAT, and NASA EO-1, volcano imagery for comparison and integration with ASTER data. Work described here is carried out under contract to NASA at the Jet Propulsion Laboratory as part of the California Institute of Technology.

  4. Development of a High Resolution X-Ray Imaging Crystal Spectrometer for Measurement of Ion-Temperature and Rotation-Velocity Profiles in Fusion Energy Research Plasmas

    SciTech Connect

    Hill, K W; Broennimann, Ch; Eikenberry, E F; Ince-Cushman, A; Lee, S G; Rice, J E; Scott, S

    2008-02-27

    A new imaging high resolution x-ray crystal spectrometer (XCS) has been developed to measure continuous profiles of ion temperature and rotation velocity in fusion plasmas. Following proof-of-principle tests on the Alcator C-Mod tokamak and the NSTX spherical tokamak, and successful testing of a new silicon, pixilated detector with 1MHz count rate capability per pixel, an imaging XCS is being designed to measure full profiles of Ti and vφ on C-Mod. The imaging XCS design has also been adopted for ITER. Ion-temperature uncertainty and minimum measurable rotation velocity are calculated for the C-Mod spectrometer. The affects of x-ray and nuclear-radiation background on the measurement uncertainties are calculated to predict performance on ITER.

  5. High Resolution Neutral Atom Microscope

    NASA Astrophysics Data System (ADS)

    Bucay, Igal; Castillo-Garza, Rodrigo; Stratis, Georgios; Raizen, Mark

    2015-03-01

    We are developing a high resolution neutral atom microscope based on metastable atom electron spectroscopy (MAES). When a metastable atom of a noble gas is near a solid, a surface electron will tunnel to an empty energy level of the metastable atom, thereby ejecting the excited electron from the atom. The emitted electrons carry information regarding the local topography and electronic, magnetic, and chemical structures of most hard materials. Furthermore, using a chromatic aberration corrected magnetic hexapole lens we expect to attain a spatial resolution below 10 nm. We will use this microscope to investigate how local phenomena can give rise to macroscopic effects in materials that cannot be probed using a scanning tunneling microscope, namely insulating transition metal oxides.

  6. High-resolution imaging ellipsometer.

    PubMed

    Zhan, Qiwen; Leger, James R

    2002-08-01

    We report on a novel imaging ellipsometer using a high-numerical-aperture (NA) objective lens capable of measuring a two-dimensional ellipsometric signal with high resolution. Two-dimensional ellipsometric imaging is made possible by spatial filtering at the pupil plane of the objective. A Richards-Wolf vectorial diffraction model and geometrical optics model are developed to simulate the system. The thickness profile of patterned polymethyl methacrylate is measured for calibration purposes. Our instrument has a sensitivity of 5 A and provides spatial resolution of approximately 0.5 microm with 632.8-nm illumination. Its capability of measuring refractive-index variations with high spatial resolution is also demonstrated.

  7. A high resolution TDC subsystem

    SciTech Connect

    Geiges, R.; Merle, K. )

    1994-02-01

    A high resolution TDC subsystem was developed at the Institute for Nuclear Physics in Mainz. The TDC chip offers a time resolution of less than 300 ps and a programmable measurement range from 0 to 16 [mu]sec. The time measurement is done with a new, purely digital counting method. The chip can be operated in common start or common stop mode. In common start mode the chip is able to store up to 4 multiple hits per channel. The chip is used to build a transputer controlled subsystem for the measurement of the drift times of a vertical drift chamber. The design of the subsystem will be described and the first results from the tests of the prototype system will be presented.

  8. High-resolution 3D imaging of osteocytes and computational modelling in mechanobiology: insights on bone development, ageing, health and disease.

    PubMed

    Goggin, P M; Zygalakis, K C; Oreffo, R O; Schneider, P

    2016-05-22

    Osteocytes are involved in mechanosensation and mechanotransduction in bone and hence, are key to bone adaptation in response to development, ageing and disease. Thus, detailed knowledge of the three-dimensional (3D) structure of the osteocyte network (ON) and the surrounding lacuno-canalicular network (LCN) is essential. Enhanced understanding of the ON&LCN will contribute to a better understanding of bone mechanics on cellular and sub-cellular scales, for instance through improved computational models of bone mechanotransduction. Until now, the location of the ON within the hard bone matrix and the sub-µm dimensions of the ON&LCN have posed significant challenges for 3D imaging. This review identifies relevant microstructural phenotypes of the ON&LCN in health and disease and summarises how light microscopy, electron microscopy and X-ray imaging techniques have been used in studies of osteocyte anatomy, pathology and mechanobiology to date. In this review, we assess the requirements for ON&LCN imaging and examine the state of the art in the fields of imaging and computational modelling as well as recent advances in high-resolution 3D imaging. Suggestions for future investigations using volume electron microscopy are indicated and we present new data on the ON&LCN using serial block-face scanning electron microscopy. A correlative approach using these high-resolution 3D imaging techniques in conjunction with in silico modelling in bone mechanobiology will increase understanding of osteocyte function and, ultimately, lead to improved pathways for diagnosis and treatment of bone diseases such as osteoporosis.

  9. Development of a therapeutic hypothermia protocol: implementation for postcardiac arrest STEMI patients.

    PubMed

    Dixon, Mari-Newton; Keasling, Michelle

    2014-01-01

    Therapeutic hypothermia (TH) reduces neurologic injury and mortality in out-of-hospital cardiac arrest survivors. Myocardial infarction (MI) is one of the main causes of cardiac arrest and primary percutaneous coronary intervention (PCI) is recommended as initial treatment for patients who present with acute ST-segment elevated MI (STEMI). Cape Fear Valley Medical Center (CFVMC) was the only designated PCI center in the state of North Carolina without a TH protocol. The purpose of this quality improvement initiative was to develop and implement a TH protocol for postcardiac arrest STEMI patients at CFVMC. The existing STEMI process was adapted to include the use of TH for STEMI patients who presented from out-of-hospital cardiac arrest. Steps to development of the protocol included creation of TH STEMI flow map, reallocation of nursing staff, exploration of cooling methods and equipment options, development of a evidence-based physician order set, creation of nursing documentation process and competency assessment, organization of educational sessions, and approval through multiple hospital committees. The development of a postarrest STEMI TH protocol involved multiple disciplines and required approval from several committees. Lack of physician and nursing knowledge of the protocol proved to be the greatest challenge. The TH protocol is a step forward in implementing evidence-based practice and improving the quality of postresuscitation care provided to postcardiac arrest STEMI patients.

  10. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  11. High resolution analysis

    NASA Technical Reports Server (NTRS)

    Robinove, C. J.

    1982-01-01

    The possibilities for the use of high spectral resolution analysis in the field of hydrology and water resources are examined. Critical gaps in scientific knowledge that must be filled before technology can be evaluated involve the spectral response of water, substances dissolved and suspended in water, and substances floating on water. The most complete mapping of oil slicks can be done in the ultraviolet region. A mean of measuring the ultraviolet reflection at the surface from satellite altitudes needs to be determined. The use of high spectral resolution sensors in a reasonable number of narrow bands may be able to sense the reflectance or emission characteristics of water and its contained materials that can be correlated with commonly used water quality variables. Technological alternative available to experiment with problems of sensing water quality are to use existing remote sensing instrumentation in an empirical mode and to develop instruments for either testing hypoteses or conducting empirical experiments.

  12. Progress in the development of ATHAM-Fluidity: A new high-resolution atmospheric model for simulating localised extreme weather events

    NASA Astrophysics Data System (ADS)

    Savre, Julien; Herzog, Michael; Percival, James; Pain, Chris

    2016-04-01

    Within the framework of the EU FP7-PEARL (Preparing for Extreme And Rare events in coastaL regions) project, a new high-resolution non hydrostatic atmospheric model is currently developed: ATHAM-Fluidity. Unlike many existing atmospheric models, ATHAM-Fluidity's dynamical core is based on a mixed finite-element discretisation designed to operate on unstructured and adaptive meshes, for an optimized use of computational power. The model is designed to simulate extreme weather conditions at local scales (on the order of 50x50 km2) and will ultimately help better understand and assess the impacts of heavy precipitation events in coastal areas. As such, ATHAM-Fluidity will constitute an important component of a suite of multi-physics models, including for example storm surge and flood modelling systems, whose role will particularly consist in producing high-resolution precipitation maps in areas of interest. A series of case studies identified within PEARL (for example Greve, Denmark, an area particularly vulnerable to floods and storm surges) will be further investigated using ATHAM-Fluidity and this integrated modelling framework. In order to successfully achieve its tasks, ATHAM-Fluidity must be equipped with a series of physical parameterisations to capture the formation and evolution of clouds and heavy precipitation. After a careful evaluation of ATHAM-Fluidity under dry atmospheric conditions [Savre et al., submitted to MWR 2015] for which the performances of the dynamical core and mesh adaptivity algorithm have been assessed, the model has recently been extended to handle moist atmospheric conditions and clouds. These new developments include the implementation of ATHAM's active tracer concept to account for atmospheric moisture and hydrometeors, as well as a warm two-moment bulk microphysics scheme to parameterise the formation and evolution of liquid clouds and precipitation. In addition, a turbulence diffusion closure, specifically designed for Large Eddy

  13. Developing a high-resolution vehicular emission inventory by integrating an emission model and a traffic model: Part 2--A case study in Beijing.

    PubMed

    Wang, Haikun; Fu, Lixin; Chen, Jinchuan

    2010-12-01

    A grid-based, bottom-up method has been proposed by combining a vehicle emission model and a travel demand model to develop a high-resolution vehicular emission inventory for Chinese cities. Beijing is used as a case study in which the focus is on fuel consumption and emissions from hot-stabilized activities of light-duty gasoline vehicles (LGVs) in 2005. The total quantity of emissions, emission intensity, and spatial distribution of emissions at 1- by 1-km resolution are presented and compared with results from other inventory methods commonly used in China. The results show that the total daily fuel consumption and vehicular emissions of carbon dioxide, carbon monoxide, hydrocarbons, and oxides of nitrogen from LGVs in the Beijing urban area in 2005 were 1.95 x 10(7) L, 4.28 x 10(4) t, 1.97 x 10(3) t, 0.28 x 10(3) t, and 0.14 x 10(3) t, respectively. Vehicular fuel consumption and emissions show spatial variations that are consistent with the traffic characteristics. The grid-based inventory developed in this study reflects the influence of traffic conditions on vehicle emissions at the microscale and may be applied to evaluate the effectiveness of traffic-related measures on emission control in China.

  14. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations.

    PubMed

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease's high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics' assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions' setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning. PMID:27351925

  15. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations.

    PubMed

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease's high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics' assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions' setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning.

  16. Development of a High-Resolution Melting Approach for Scanning Beta Globin Gene Point Mutations in the Greek and Other Mediterranean Populations

    PubMed Central

    Chassanidis, Christos; Boutou, Effrossyni; Voskaridou, Ersi; Balassopoulou, Angeliki

    2016-01-01

    Beta-thalassaemia is one of the most common autosomal recessive disorders worldwide. The disease’s high incidence, which is observed in the broader Mediterranean area has led to the establishment of molecular diagnostics’ assays to prevent affected births. Therefore, the development of a reliable, cost-effective and rapid scanning method for β globin gene point mutations, easily adapted to a routine laboratory, is absolutely essential. Here, we describe, for the first time, the development of a High-Resolution Melting Analysis (HRMA) approach, suitable for scanning the particularly heterogeneous beta globin gene mutations present in the Greek population, and thus adaptable to the Mediterranean and other areas where these mutations have been identified. Within this context, β globin gene regions containing mutations frequently identified in the Greek population were divided in ten overlapping amplicons. Our reactions’ setup allowed for the simultaneous amplification of multiple primer sets and partial multiplexing, thereby resulting in significant reduction of the experimental time. DNA samples from β-thalassaemia patients/carriers with defined genotypes were tested. Distinct genotypes displayed distinguishable melting curves, enabling accurate detection of mutations. The described HRMA can be adapted to a high-throughput level. It represents a rapid, simple, cost-effective, reliable, highly feasible and sensitive method for β-thalassaemia gene scanning. PMID:27351925

  17. Note: Development of a high resolution and wide band terahertz spectrometer based on a 1 μm-band external cavity diode laser.

    PubMed

    Kitahara, K; Oto, K; Nakajima, M; Muro, K

    2013-12-01

    We have developed a frequency-domain terahertz spectrometer based on homebuilt 1 μm band external cavity diode lasers, for high resolution spectroscopy. Our spectrometer is digitally controlled to a resolution of 10 MHz, and uses InGaAs/GaAs photoconductive antennas. We have obtained a spectrum in the range 0.02 THz to 2.5 THz, which exceeds the conventional temperature tuning range of a distributed feedback diode laser. We achieved a signal-to-noise ratio of up to 80 dB at around 0.05 THz, and 20 dB at around 2.0 THz. We observed water vapor spectra in the atmosphere with a frequency step of 0.6 GHz in the region between 1.0 THz and 2.0 THz. We have demonstrated that our 1 μm-band frequency-domain terahertz spectrometer is competitive when compared with existing 800 nm- and 1.5 μm-band systems.

  18. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    NASA Astrophysics Data System (ADS)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of "Big Data" in Earth observation. Because of the "Big Data" issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  19. Development of a method for enhancing metabolomics coverage of human sweat by gas chromatography-mass spectrometry in high resolution mode.

    PubMed

    Delgado-Povedano, M M; Calderón-Santiago, M; Priego-Capote, F; Luque de Castro, M D

    2016-01-28

    Sweat has recently gained popularity as clinical sample in metabolomics analysis as it is a non-invasive biofluid the composition of which could be modified by certain pathologies, as is the case with cystic fibrosis that increases chloride levels in sweat. However, the whole composition of sweat is still unknown and there is a lack of analytical strategies for sweat analysis. The aim of the present study was to develop and validate a method for metabolomic analysis of human sweat by gas chromatography-time of flight/mass spectrometry (GC-TOF/MS) in high resolution mode. Thus, different sample preparation strategies were compared to check their effect on the profile of sweat metabolites. Sixty-six compounds were tentatively identified by the obtained MS information. Amino acids, dicarboxylic acids and other interesting metabolites such as myo-inositol and urocanic acid were identified. Among the tested protocols, methyoxiamination plus silylation after deproteinization was the most suited option to obtain a representative snapshot of sweat metabolome. The intra-day repeatability of the method ranged from 0.60 to 16.99% and the inter-day repeatability from 2.75 to 31.25%. As most of the identified metabolites are involved in key biochemical pathways, this study opens new possibilities to the use of sweat as a source of metabolite biomarkers of specific disorders.

  20. Note: Development of a high resolution and wide band terahertz spectrometer based on a 1 μm-band external cavity diode laser.

    PubMed

    Kitahara, K; Oto, K; Nakajima, M; Muro, K

    2013-12-01

    We have developed a frequency-domain terahertz spectrometer based on homebuilt 1 μm band external cavity diode lasers, for high resolution spectroscopy. Our spectrometer is digitally controlled to a resolution of 10 MHz, and uses InGaAs/GaAs photoconductive antennas. We have obtained a spectrum in the range 0.02 THz to 2.5 THz, which exceeds the conventional temperature tuning range of a distributed feedback diode laser. We achieved a signal-to-noise ratio of up to 80 dB at around 0.05 THz, and 20 dB at around 2.0 THz. We observed water vapor spectra in the atmosphere with a frequency step of 0.6 GHz in the region between 1.0 THz and 2.0 THz. We have demonstrated that our 1 μm-band frequency-domain terahertz spectrometer is competitive when compared with existing 800 nm- and 1.5 μm-band systems. PMID:24387478

  1. High resolution 1H NMR-based metabonomic study of the auditory cortex analogue of developing chick (Gallus gallus domesticus) following prenatal chronic loud music and noise exposure.

    PubMed

    Kumar, Vivek; Nag, Tapas Chandra; Sharma, Uma; Mewar, Sujeet; Jagannathan, Naranamangalam R; Wadhwa, Shashi

    2014-10-01

    Proper functional development of the auditory cortex (ACx) critically depends on early relevant sensory experiences. Exposure to high intensity noise (industrial/traffic) and music, a current public health concern, may disrupt the proper development of the ACx and associated behavior. The biochemical mechanisms associated with such activity dependent changes during development are poorly understood. Here we report the effects of prenatal chronic (last 10 days of incubation), 110dB sound pressure level (SPL) music and noise exposure on metabolic profile of the auditory cortex analogue/field L (AuL) in domestic chicks. Perchloric acid extracts of AuL of post hatch day 1 chicks from control, music and noise groups were subjected to high resolution (700MHz) (1)H NMR spectroscopy. Multivariate regression analysis of the concentration data of 18 metabolites revealed a significant class separation between control and loud sound exposed groups, indicating a metabolic perturbation. Comparison of absolute concentration of metabolites showed that overstimulation with loud sound, independent of spectral characteristics (music or noise) led to extensive usage of major energy metabolites, e.g., glucose, β-hydroxybutyrate and ATP. On the other hand, high glutamine levels and sustained levels of neuromodulators and alternate energy sources, e.g., creatine, ascorbate and lactate indicated a systems restorative measure in a condition of neuronal hyperactivity. At the same time, decreased aspartate and taurine levels in the noise group suggested a differential impact of prenatal chronic loud noise over music exposure. Thus prenatal exposure to loud sound especially noise alters the metabolic activity in the AuL which in turn can affect the functional development and later auditory associated behaviour.

  2. A High-Resolution Stopwatch for Cents

    ERIC Educational Resources Information Center

    Gingl, Z.; Kopasz, K.

    2011-01-01

    A very low-cost, easy-to-make stopwatch is presented to support various experiments in mechanics. The high-resolution stopwatch is based on two photodetectors connected directly to the microphone input of a sound card. Dedicated free open-source software has been developed and made available to download. The efficiency is demonstrated by a free…

  3. Development of a method for metabolomic analysis of human exhaled breath condensate by gas chromatography-mass spectrometry in high resolution mode.

    PubMed

    Peralbo-Molina, A; Calderón-Santiago, M; Priego-Capote, F; Jurado-Gámez, B; Luque de Castro, M D

    2015-08-01

    Exhaled breath condensate (EBC) is a promising biofluid scarcely used in clinical analysis despite its non-invasive sampling. The main limitation in the analysis of EBC is the lack of standardized protocols to support validation studies. The aim of the present study was to develop an analytical method for analysis of human EBC by GC-TOF/MS in high resolution mode. Thus, sample preparation strategies as liquid-liquid extraction and solid-phase extraction were compared in terms of extraction coverage. Liquid-liquid extraction resulted to be the most suited sample preparation approach providing an average extraction efficiency of 77% for all compounds in a single extraction. Different normalization approaches were also compared to determine which strategy could be successfully used to obtain a normalized profile with the least variability among replicates of the same sample. Normalization to the total useful mass spectrometry signal (MSTUS) proved to be the most suited strategy for the analysis of EBC from healthy individuals (n = 50) reporting a within-day variability below 7% for the 51 identified compounds and a suited data distribution in terms of percentage of metabolites passing the Skewness and Kurtosis test for normality distribution. The composition of EBC was clearly dominated by the presence of fatty acids and derivatives such as methyl esters and amides, and volatile prenol lipids. Therefore, EBC offers the profile of both volatile and non-volatile components as compared to other similar biofluids such as exhaled breath vapor, which only provides the volatile profile. This human biofluid could be an alternative to others such as serum/plasma, urine or sputum to find potential markers with high value for subsequent development of screening models.

  4. The development and validation of a method using high-resolution mass spectrometry (HRMS) for the qualitative detection of antiretroviral agents in human blood

    PubMed Central

    Marzinke, Mark A.; Breaud, Autumn; Parsons, Teresa L.; Cohen, Myron S.; Piwowar-Manning, Estelle; Eshleman, Susan H.; Clarke, William

    2014-01-01

    Background Antiretroviral drugs are used for the treatment and prevention of HIV infection. Non-adherence to antiretroviral drug regimens can compromise their clinical efficacy and lead to emergence of drug-resistant HIV. Clinical trials evaluating antiretroviral regimens for HIV treatment and prevention can also be compromised by poor adherence and non-disclosed off-study antiretroviral drug use. This report describes the development and validation of a high throughput, qualitative method for the identification of antiretroviral drugs using high-resolution mass spectrometry (HRMS) for the retrospective assessment of off-study antiretroviral drug use and the determination of potential antiretroviral therapy (ART) non-compliance. Methods Serum standards were prepared that contained 15 antiretroviral drugs: 9 protease inhibitors (PIs), 4 nucleotide/nucleoside reverse transcriptase inhibitors (NRTIs), and 2 nonnucleoside/nucleotide reverse transcriptase inhibitors (NNRTIs). Analytical separation was achieved on a Hypersil Gold PFP (100 × 3 mm) column and the eluent was analyzed using the Thermo Exactive Orbitrap mass spectrometer (Exactive-MS) operated in full scan mode. Limit of identification, signal intensity precision, retention time analysis, selectivity, and carryover studies were conducted. Concordance with liquid chromatographic-tandem mass spectrometric (LC-MS/MS) methods was evaluated using remnant plasma samples from a clinical trial. Results The limit of identification ranged from 5-10 ng/ml for 14 drugs (9 PIs, 1 NNRTI, 4 NRTIs) and was 150 ng/ml for 1 NNRTI. Precision studies with high and low control mixtures revealed signal intensity coefficients of variation of 3.0-27.5%. The Exactive-MS method was selective for the compounds of interest. Overall, concordance ranged from 89.1%-100% for the screening of antiretroviral drugs in clinical plasma specimens as compared to LC-MS/MS methods. Conclusion Using the Exactive-MS, we developed and validated a

  5. Development of a method for metabolomic analysis of human exhaled breath condensate by gas chromatography-mass spectrometry in high resolution mode.

    PubMed

    Peralbo-Molina, A; Calderón-Santiago, M; Priego-Capote, F; Jurado-Gámez, B; Luque de Castro, M D

    2015-08-01

    Exhaled breath condensate (EBC) is a promising biofluid scarcely used in clinical analysis despite its non-invasive sampling. The main limitation in the analysis of EBC is the lack of standardized protocols to support validation studies. The aim of the present study was to develop an analytical method for analysis of human EBC by GC-TOF/MS in high resolution mode. Thus, sample preparation strategies as liquid-liquid extraction and solid-phase extraction were compared in terms of extraction coverage. Liquid-liquid extraction resulted to be the most suited sample preparation approach providing an average extraction efficiency of 77% for all compounds in a single extraction. Different normalization approaches were also compared to determine which strategy could be successfully used to obtain a normalized profile with the least variability among replicates of the same sample. Normalization to the total useful mass spectrometry signal (MSTUS) proved to be the most suited strategy for the analysis of EBC from healthy individuals (n = 50) reporting a within-day variability below 7% for the 51 identified compounds and a suited data distribution in terms of percentage of metabolites passing the Skewness and Kurtosis test for normality distribution. The composition of EBC was clearly dominated by the presence of fatty acids and derivatives such as methyl esters and amides, and volatile prenol lipids. Therefore, EBC offers the profile of both volatile and non-volatile components as compared to other similar biofluids such as exhaled breath vapor, which only provides the volatile profile. This human biofluid could be an alternative to others such as serum/plasma, urine or sputum to find potential markers with high value for subsequent development of screening models. PMID:26320793

  6. Adapting High-Resolution Respirometry to Glucose-Limited Steady State Mycelium of the Filamentous Fungus Penicillium ochrochloron: Method Development and Standardisation

    PubMed Central

    Schinagl, Christoph W.; Vrabl, Pamela; Burgstaller, Wolfgang

    2016-01-01

    Fungal electron transport systems (ETS) are branched, involving alternative NADH dehydrogenases and an alternative terminal oxidase. These alternative respiratory enzymes were reported to play a role in pathogenesis, production of antibiotics and excretion of organic acids. The activity of these alternative respiratory enzymes strongly depends on environmental conditions. Functional analysis of fungal ETS under highly standardised conditions for cultivation, sample processing and respirometric assay are still lacking. We developed a highly standardised protocol to explore in vivo the ETS—and in particular the alternative oxidase—in Penicillium ochrochloron. This included cultivation in glucose-limited chemostat (to achieve a defined and reproducible physiological state), direct transfer without any manipulation of a broth sample to the respirometer (to maintain the physiological state in the respirometer as close as possible to that in the chemostat), and high-resolution respirometry (small sample volume and high measuring accuracy). This protocol was aimed at avoiding any changes in the physiological phenotype due to the high phenotypic plasticity of filamentous fungi. A stable oxygen consumption (< 5% change in 20 minutes) was only possible with glucose limited chemostat mycelium and a direct transfer of a broth sample into the respirometer. Steady state respiration was 29% below its maximum respiratory capacity. Additionally to a rotenone-sensitive complex I and most probably a functioning complex III, the ETS of P. ochrochloron also contained a cyanide-sensitive terminal oxidase (complex IV). Activity of alternative oxidase was present constitutively. The degree of inhibition strongly depended on the sequence of inhibitor addition. This suggested, as postulated for plants, that the alternative terminal oxidase was in dynamic equilibrium with complex IV—independent of the rate of electron flux. This means that the onset of activity does not depend on a

  7. Adapting High-Resolution Respirometry to Glucose-Limited Steady State Mycelium of the Filamentous Fungus Penicillium ochrochloron: Method Development and Standardisation.

    PubMed

    Schinagl, Christoph W; Vrabl, Pamela; Burgstaller, Wolfgang

    2016-01-01

    Fungal electron transport systems (ETS) are branched, involving alternative NADH dehydrogenases and an alternative terminal oxidase. These alternative respiratory enzymes were reported to play a role in pathogenesis, production of antibiotics and excretion of organic acids. The activity of these alternative respiratory enzymes strongly depends on environmental conditions. Functional analysis of fungal ETS under highly standardised conditions for cultivation, sample processing and respirometric assay are still lacking. We developed a highly standardised protocol to explore in vivo the ETS-and in particular the alternative oxidase-in Penicillium ochrochloron. This included cultivation in glucose-limited chemostat (to achieve a defined and reproducible physiological state), direct transfer without any manipulation of a broth sample to the respirometer (to maintain the physiological state in the respirometer as close as possible to that in the chemostat), and high-resolution respirometry (small sample volume and high measuring accuracy). This protocol was aimed at avoiding any changes in the physiological phenotype due to the high phenotypic plasticity of filamentous fungi. A stable oxygen consumption (< 5% change in 20 minutes) was only possible with glucose limited chemostat mycelium and a direct transfer of a broth sample into the respirometer. Steady state respiration was 29% below its maximum respiratory capacity. Additionally to a rotenone-sensitive complex I and most probably a functioning complex III, the ETS of P. ochrochloron also contained a cyanide-sensitive terminal oxidase (complex IV). Activity of alternative oxidase was present constitutively. The degree of inhibition strongly depended on the sequence of inhibitor addition. This suggested, as postulated for plants, that the alternative terminal oxidase was in dynamic equilibrium with complex IV-independent of the rate of electron flux. This means that the onset of activity does not depend on a complete

  8. Stalagmite high resolution local paleoclimatic proxies for Late Holocene in Mesoamerica: Exploring role of moisture upon the development of Mesoamerican cultures.

    NASA Astrophysics Data System (ADS)

    Martínez Izquierdo, H. B.; Bernal, J. P.; Pérez Enriquez, R.; Böhnel, H.; Morales-Malacara, J. B.; Solari, L.; Gómez-Tuena, A.

    2010-03-01

    The relationship between climate change and culture development in Mesoamerica is complex to unravel since many written archives were destroyed during natural disasters and cultural conflicts such as Spanish conquest. Local paleoclimate records offer a way to reconstruct this relationship. Stalagmites are amongst the most reliable records of past climate variability, due to their evolution in closed-system conditions, ease of dating, and inclusion of several geochemical proxies (such as calcite oxygen and carbon isotopic composition, trace element concentration and/or elemental ratios, color and grey-tone scale). Recently, stalagmites have been used as records to explore the climatic change during Holocene and its cultural relation in Mediterranean, Asian, North American and east African cultures. Only few works were made, however, for Mesoamerican cultures. We study here a banded stalagmite belonging to Jalpan, Queretaro, central Mexico. This stalagmite was found actively growing, with its base dated at 6.85 +/- 0.3 Ka B.P. A high resolution LA-ICP-MS Mg/Ca analysis as well as grey tone analysis were obtained in order to create annual resolution time series. The proxies were correlated with local and north Atlantic paleoclimate records. Such proxies also show signals associated with volcanic eruptions (Tacana, el Chichon, Popocatepetl and Ceboruco) during the Classic period. Other signals are associated with Maya civilization collapse. These results portray the relationship between the agricultural and population patterns with moisture variability for the center of Mexico (Teotihuacan influence zone) during late Formative and Classic period. Finally, we observe patterns such as the corresponding to the little ice age and the anthropogenic climate warming, the latter correlated with local precipitation data.

  9. Development of a high-resolution (1 km × 1 km, 1 h) emission model for Spain: The High-Elective Resolution Modelling Emission System (HERMES)

    NASA Astrophysics Data System (ADS)

    Baldasano, José María; Güereca, Leonor Patricia; López, Eugeni; Gassó, Santiago; Jimenez-Guerrero, Pedro

    This work presents the results of the development and application of the High-Elective Resolution Modelling Emission System (HERMES). HERMES generates the emissions for Spain needed for the application of high-resolution chemistry transport models, taking the year 2004 as reference with a temporal resolution of 1 h and a spatial resolution of 1 km 2 considering both anthropogenic (power generation, industrial activities, on-road traffic, ports, airports, solvent use, domestic and commercial fossil fuel use) and biogenic sources (vegetation), using a bottom-up approach, up-to-date information and state-of-the-art methodologies for emission estimation. HERMES is capable of calculating emissions by sector-specific sources or by individual installations and stacks. The annual addition of hourly sectorial emissions leads to an estimation of total annual emissions as follows: NO x, 795 kt; NMVOCs, 1025 kt; CO, 1236 kt; SO 2, 1142 kt and TSP, 180 kt; which are distributed principally in the greater areas of the main cities, highways and large point sources. NO x, SO 2 and PM 2.5 highly correlate with the power generation by coal use, achieving higher emission levels during summertime due to the increase of electricity demand by cooling systems. NMVOCs show high correlation with temperature and solar radiation (mainly as a consequence of the important weight of biogenic emissions) causing the maximum emissions during the daylight hours of summer months. CO emissions are mostly influenced by the on-road traffic; consequently the higher emissions are attained in summer because of the increase of daily average traffic during holidays. The most significant total emission sources are on-road traffic (38%), combustion in power generation plants (33%), biogenic sources (12%) and combustion in manufacturing industries (9%). The inventory generated with HERMES emission model has been successfully integrated within the Spanish Ministry of the Environment's air quality forecasting

  10. Development and uncertainty analysis of a high-resolution NH3 emissions inventory and its implications with precipitation over the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Zheng, J. Y.; Yin, S. S.; Kang, D. W.; Che, W. W.; Zhong, L. J.

    2012-08-01

    Detailed NH3 emission inventories are important to understand various atmospheric processes, air quality modeling studies, air pollution management, and related environmental and ecological issues. A high-resolution NH3 emission inventory was developed based on state-of-the-science techniques, up-to-date information, and advanced expert knowledge for the Pearl River Delta region, China. To provide model-ready emissions input, this NH3 emissions inventory was spatially allocated to 3 km × 3 km grid cells using source-based spatial surrogates with geographical information system (GIS) technology. For NH3 emissions, 9 source categories and 45 subcategories were identified in this region, and detailed spatial and temporal characteristics were investigated. Results show that livestock is by far the most important NH3 emission source by contributing about 61.7% of the total NH3 emissions in this region, followed by nitrogen fertilizer applications (~23.7%) and non-agricultural sources (~14.6%). Uncertainty analysis reveals that the uncertainties associated with different sources vary from source to source and the magnitude of the uncertainty associated with a specific source mainly depends on the degree of accuracy of the emission factors and activity data as well as the technique used to perform the estimate. Further studies should give priority to the hog, broiler, goose subsectors of the livestock source and N fertilizer application source in order to reduce uncertainties of ammonia emission estimates in this region. The validity of the NH3 emissions inventory is justified by the trend analysis of local precipitation compositions, such as pH values, the Ca2++NH4+/SO42-+ NO3- ratios, and NH4+ concentrations which are directly or indirectly related to NH3 emissions.

  11. ANL high-resolution injector

    SciTech Connect

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.; Liu, Z.

    1986-05-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne tandem linac accelerator system). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed.

  12. High resolution digital delay timer

    DOEpatents

    Martin, Albert D.

    1988-01-01

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay (20) provides a first output signal (24) at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits (26, 28) latch the high resolution data (24) to form a first synchronizing data set (60). A selected time interval has been preset to internal counters (142, 146, 154) and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses (32, 34) count down the counters to generate an internal pulse delayed by an interval which is functionally related to the preset time interval. A second LCD (184) corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD (74) to generate a second set of synchronizing data (76) which is complementary with the first set of synchronizing data (60) for presentation to logic circuits (64). The logic circuits (64) further delay the internal output signal (72) to obtain a proper phase relationship of an output signal (80) with the internal pulses (32, 34). The final delayed output signal (80) thereafter enables the output pulse generator (82) to produce the desired output pulse (84) at the preset time delay interval following input of the trigger pulse (10, 12).

  13. Developing a transcultural academic-community partnership to arrest obesity.

    PubMed

    Lee, Rebecca E; Soltero, Erica G; Mama, Scherezade K; Saavedra, Fiorella; Ledoux, Tracey A; McNeill, Lorna

    2013-01-01

    Innovative and empirically tested strategies are needed to define and understand obesity prevention and reduction in a transcultural society. This manuscript describes the development of Science & Community, a partnership developed over a 3-year period with the end goal of implementing a community-based participatory research (CBPR) trial to reduce and prevent obesity. Outreach strategies focused on promoting the project via existing and new channels and identifying and contacting potential partners using established strategies. Science & Community developed and fostered partnerships by hosting a series of interactive meetings, including three Opportunity Receptions, four Community Open Forum Symposia, and quarterly Community Advisory Board (CAB) meetings. Opportunity Reception (N = 62) and Symposia attendees (N = 103) represented the diversity of the community, and participants reported high satisfaction with content and programming. From these events, the CAB was formed and was comprised of 13 community representatives. From these meetings, a Partnership representing 34 organizations and 614 individuals emerged that has helped to guide the development of future proposals and strategies to reduce obesity in Houston/Harris County.

  14. Developing a transcultural academic-community partnership to arrest obesity.

    PubMed

    Lee, Rebecca E; Soltero, Erica G; Mama, Scherezade K; Saavedra, Fiorella; Ledoux, Tracey A; McNeill, Lorna

    2013-01-01

    Innovative and empirically tested strategies are needed to define and understand obesity prevention and reduction in a transcultural society. This manuscript describes the development of Science & Community, a partnership developed over a 3-year period with the end goal of implementing a community-based participatory research (CBPR) trial to reduce and prevent obesity. Outreach strategies focused on promoting the project via existing and new channels and identifying and contacting potential partners using established strategies. Science & Community developed and fostered partnerships by hosting a series of interactive meetings, including three Opportunity Receptions, four Community Open Forum Symposia, and quarterly Community Advisory Board (CAB) meetings. Opportunity Reception (N = 62) and Symposia attendees (N = 103) represented the diversity of the community, and participants reported high satisfaction with content and programming. From these events, the CAB was formed and was comprised of 13 community representatives. From these meetings, a Partnership representing 34 organizations and 614 individuals emerged that has helped to guide the development of future proposals and strategies to reduce obesity in Houston/Harris County. PMID:25030103

  15. High-resolution slug testing.

    PubMed

    Zemansky, G M; McElwee, C D

    2005-01-01

    The hydraulic conductivity (K) variation has important ramifications for ground water flow and the transport of contaminants in ground water. The delineation of the nature of that variation can be critical to complete characterization of a site and the planning of effective and efficient remedial measures. Site-specific features (such as high-conductivity zones) need to be quantified. Our alluvial field site in the Kansas River valley exhibits spatial variability, very high conductivities, and nonlinear behavior for slug tests in the sand and gravel aquifer. High-resolution, multilevel slug tests have been performed in a number of wells that are fully screened. A general nonlinear model based on the Navier-Stokes equation, nonlinear frictional loss, non-Darcian flow, acceleration effects, radius changes in the wellbore, and a Hvorslev model for the aquifer has been used to analyze the data, employing an automated processing system that runs within the Excel spreadsheet program. It is concluded that slug tests can provide the necessary data to identify the nature of both horizontal and vertical K variation in an aquifer and that improved delineation or higher resolution of K structure is possible with shorter test intervals. The gradation into zones of higher conductivity is sharper than seen previously, and the maximum conductivity observed is greater than previously measured. However, data from this project indicate that well development, the presence of fines, and the antecedent history of the well are important interrelated factors in regard to slug-test response and can prevent obtaining consistent results in some cases.

  16. High-resolution sequence stratigraphy of lower Paleozoic sheet sandstones in central North America: The role of special conditions of cratonic interiors in development of stratal architecture

    USGS Publications Warehouse

    Runkel, Anthony C.; Miller, J.F.; McKay, R.M.; Palmer, A.R.; Taylor, John F.

    2007-01-01

    Well-known difficulties in applying sequence stratigraphic concepts to deposits that accumulated across slowly subsiding cratonic interior regions have limited our ability to interpret the history of continental-scale tectonism, oceanographic dynamics of epeiric seas, and eustasy. We used a multi-disciplinary approach to construct a high-resolution stratigraphic framework for lower Paleozoic strata in the cratonic interior of North America. Within this framework, these strata proved readily amenable to modern sequence stratigraphic techniques that were formulated based on successions along passive margins and in foreland basins, settings markedly different from the cratonic interior. Parasequences, parasequence stacking patterns, systems tracts, maximum flooding intervals, and sequence-bounding unconformities can be confidently recognized in the cratonic interior using mostly standard criteria for identification. The similarity of cratonic interior and foreland basin successions in size, geometry, constituent facies, and local stacking patterns of nearshore parasequences is especially striking. This similarity indicates that the fundamental processes that establish shoreface morphology and determine the stratal expression of retreat and progradation were likewise generally the same, despite marked differences in tectonism, physiography, and bathymetry between the two settings. Our results do not support the widespread perception that Paleozoic cratonic interior successions are so anomalous in stratal geometries, and constitute such a poor record of time, that they are poorly suited for modern sequence stratigraphic analyses. The particular arrangement of stratal elements in the cratonic interior succession we studied is no more anomalous or enigmatic than the variability in architecture that sets all sedimentary successions apart from one another. Thus, Paleozoic strata of the cratonic interior are most appropriately considered as a package that belongs in a

  17. High Resolution Imaging Spectrometer (HIRIS)

    NASA Technical Reports Server (NTRS)

    Conley, Joseph M.; Herring, Mark; Norris, David D.

    1988-01-01

    The High Resolution Imaging Spectrometer (HIRIS), related data system, orbit, and mission operations are described. The pushbroom instrument simultaneously images the terrestrial surface in 192 spectral bands from 0.4 to 2.5 microns. The swath width is 30 km and spatial resolution is 30 m. It is planned to be launched with the Earth Observing System aboard the Space Station Polar Platform in 1995. Array detectors allow concurrent integration of the signals at 192,000 detector elements.

  18. Development of a simple method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry.

    PubMed

    Brandao, Geovani C; Matos, Geraldo D; Pereira, Raimundo N; Ferreira, Sergio L C

    2014-01-01

    In this work, it was developed a method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry of NO produced by thermal decomposition of nitrate in a graphite furnace. The NO line at 215.360 nm was used for all analytical measurements and the signal obtained by integrated absorbance of three pixels. A volume of 20 μL of standard solution or groundwater sample was injected into graphite furnace and 5 μL of a 1% (m/v) Ca solution was co-injected as chemical modifier. The pyrolisis and vaporization temperatures established were of 150 and 1300°C, respectively. Under these conditions, it was observed a difference of thermal stability among the two nitrogen species in the presence of hydrochloric acid co-injected. While that the nitrite signal was totally suppressed, nitrate signal remained nearly stable. This way, nitrogen can be quantified only as nitrate. The addition of hydrogen peroxide provided the oxidation of nitrite to nitrate, which allowed the total quantification of the species and nitrite obtained by difference. A volume of 5 μL of 0.3% (v/v) hydrochloric acid was co-injected for the elimination of nitrite, whereas that hydrogen peroxide in the concentration of 0.75% (v/v) was added to samples or standards for the oxidation of nitrite to nitrate. Analytical curve was established using standard solution of nitrate. The method described has limits of detection and quantification of 0.10 and 0.33 μg mL(-1) of nitrogen, respectively. The precision, estimated as relative standard deviation (RSD), was of 7.5 and 3.8% (n=10) for groundwater samples containing nitrate-N concentrations of 1.9 and 15.2 μg mL(-1), respectively. The proposed method was applied to the analysis of 10 groundwater samples and the results were compared with those obtained by ion chromatography method. In all samples analyzed, the concentration of nitrite-N was always below of the limit of

  19. Method development for the determination of cadmium in fertilizer samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and slurry sampling

    NASA Astrophysics Data System (ADS)

    Borges, Aline R.; Becker, Emilene M.; Lequeux, Céline; Vale, Maria Goreti R.; Ferreira, Sergio L. C.; Welz, Bernhard

    2011-07-01

    The determination of cadmium (Cd) in fertilizers is of major interest, as this element can cause growth problems in plants, and also affect animals and humans. High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) with charge-coupled device (CCD) array detection overcomes several of the limitations encountered with conventional line source AAS, especially the problem of accurate background measurement and correction. In this work an analytical method has been developed to determine Cd in fertilizer samples by HR-CS GF AAS using slurry sampling. Both a mixture of 10 μg Pd + 6 μg Mg in solution and 400 μg of iridium as permanent modifier have been investigated and aqueous standards were used for calibration. Pyrolysis and atomization temperatures were 600 °C and 1600 °C for the Pd-Mg modifier, and 500 °C and 1600 °C for Ir, respectively. The results obtained for Cd in the certified reference material NIST SRM 695 (Trace Elements in Multi-Nutrient Fertilizer) of 16.7 ± 1.3 μg g -1 and 16.4 ± 0.75 μg g -1 for the Pd-Mg and Ir modifier, respectively, were statistically not different from the certified value of 16.9 ± 0.2 μg g -1 on a 95% confidence level; however, the results obtained with the Ir modifier were significantly lower than those for the Pd-Mg modifier for most of the samples. The characteristic mass was 1.0 pg for the Pd-Mg modifier and 1.1 pg Cd for the Ir modifier, and the correlation coefficients (R 2) of the calibration were > 0.99. The instrumental limits of detection were 7.5 and 7.9 ng g -1, and the limits of quantification were 25 and 27 ng g -1 for Pd-Mg and Ir, respectively, based on a sample mass of 5 mg. The cadmium concentration in the investigated samples was between 0.07 and 5.5 μg g -1 Cd, and hence below the maximum value of 20 μg g -1 Cd permitted by Brazilian legislation.

  20. Solar influence on climate variability and human development during the Neolithic: evidence from a high-resolution multi-proxy record from Templevanny Lough, County Sligo, Ireland

    NASA Astrophysics Data System (ADS)

    Stolze, Susann; Muscheler, Raimund; Dörfler, Walter; Nelle, Oliver

    2013-05-01

    The relationship between climatic variations, vegetation dynamics and early human activity between c. 4150-2860 BC was reconstructed from a high-resolution pollen and geochemical record obtained from a small lake located in County Sligo, Ireland. The proxy record suggests the existence of a woodland with a largely closed canopy at the start of the fourth millennium BC. Only minor human disturbance is recorded. Following an episode of increased rainfall at c. 3990 BC, a decrease in the elm population occurred between c. 3970 and 3820 BC. This coincided with a period of warming and drying climatic conditions and an initial increase in anthropogenic activities. A second episode of high precipitation between c. 3830-3800 BC was followed by a steep increase in human impact on the landscape, which became most pronounced between c. 3740 and 3630 BC. At this time, the lake level of Templevanny Lough was at its lowest during the Neolithic. The onset of wetter and cooler conditions after c. 3670 BC, representing the transition from the Early to the Middle Neolithic, coincided with a period of woodland recovery. The Middle Neolithic was characterised by pronounced climatic oscillations including periods of substantial rainfall between c. 3600 and 3500 BC and between c. 3500 and 3460 BC. A nearly century-long climatic amelioration between c. 3460-3370 BC facilitated a revival of human activity on a small scale around the lake. Abandonment of the area and full woodland recovery occurred after a period of particularly wet and cool conditions ranging from c. 3360-3290 BC. The pollen and geochemistry data suggest that the Late Neolithic was marked by a period of ameliorated conditions between c. 3110-3050 BC that was followed by two episodes of high rainfall at c. 3060-3030 BC and c. 2940-2900 BC. The timing of the climatic shifts inferred from the Templevanny Lough record is in agreement with those of moisture/precipitation and temperature reconstructions from northern and

  1. High-resolution ground-based spectroscopy: where and how ?

    NASA Astrophysics Data System (ADS)

    Pallavicini, R.

    2002-07-01

    An overview is presented of high-resolution optical spectrographs in operation or under development at large telescopes, with emphasis on those facilities best suited for the study of late-type stars and stellar surface inhomogeneities. Plans for the development of new high-resolution spectroscopic instruments are discussed with emphasis on the ICE spectrograph for the PEPSI spectropolarimeter at the LBT.

  2. Heavy-Section Steel Technology Program: Recent developments in crack initiation and arrest research

    SciTech Connect

    Pennell, W.E.

    1991-01-01

    Technology for the analysis of crack initiation and arrest is central to the reactor pressure vessel fracture-margin-assessment process. Regulatory procedures for nuclear plants utilize this technology to assure the retention of adequate fracture-prevention margins throughout the plant operating license period. As nuclear plants age and regulatory procedures dictate that fracture-margin assessments be performed, interest in the fracture-mechanics technology incorporated into those procedures has heightened. This has led to proposals from a number of sources for development and refinement of the underlying crack-initiation and arrest-analysis technology. This paper presents an overview of ongoing Heavy-Section Steel Technology (HSST) Program research aimed at refining the fracture toughness data used in the analysis of fracture margins under pressurized-thermal-shock loading conditions. 33 refs., 13 figs.

  3. Studies on deformation/pore pressure coupling processes at Japanese URLs and the development of ultra-high resolution FBG strain sensors for rock mechanics (Invited)

    NASA Astrophysics Data System (ADS)

    Tokunaga, T.; Matsui, H.; Zuyuan, H.; Kashiwai, Y.

    2009-12-01

    with the opposite side of the fault. The transient increase of pore pressure by pumping activity is intuitively thought to be opposite in the polarity of change, however, it is interpreted to be related to the coupling process between deformation of rock masses and the change of pore pressure. Our numerical simulation supports our interpretation based on the deformation/pore pressure coupling process. This result strongly suggests that spatially high-density, high-resolution strain measurements together with pore pressure measurements in the subsurface can provide us quite exciting information on the behavior of rock mass deformation and fluid flow processes in the subsurface environments. For this purpose, we have started our new project on the development of multiplexed, high-accuracy, Fiber Bragg Grating (FBG) strain sensors for geo-engineering application. The target specifications are 10 nanostrain in strain resolution, 10 to 100 m in total length, 0.1 to 1 m in spatial resolution, and 10 to 100 in measurement points. We expect to finish this development in JFY 2011 and are hoping to deploy our sensors to both Mizunami in Japan and Homestake in US very near future.

  4. DARPA high resolution display technologies

    NASA Astrophysics Data System (ADS)

    Slusarczuk, Marko

    1990-11-01

    Much of the information of interest to pilots in flight is display-limited, and is undergoing substantial expansion due to improved sensor output and signal processing; attention is accordingly given to digitally-based instrument display imaging in the present evaluation of high-resolution cockpit display technologies. Also noted are the advantages of digitally transmitted sensor data in cases where the airborne reconnaissance user may be able to analyze telemetered airborne data in real time and respond with requests to the pilot for more detailed information of specific battlefield sites.

  5. High Resolution Scanning Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    The present invention provides a High Resolution Scanning Reflectarray Antenna (HRSRA) for the purpose of tracking ground terminals and space craft communication applications. The present invention provides an alternative to using gimbaled parabolic dish antennas and direct radiating phased arrays. When compared to a gimbaled parabolic dish, the HRSRA offers the advantages of vibration free steering without incurring appreciable cost or prime power penalties. In addition, it offers full beam steering at a fraction of the cost of direct radiating arrays and is more efficient.

  6. Developing a semi/automated protocol to post-process large volume, High-resolution airborne thermal infrared (TIR) imagery for urban waste heat mapping

    NASA Astrophysics Data System (ADS)

    Rahman, Mir Mustafizur

    In collaboration with The City of Calgary 2011 Sustainability Direction and as part of the HEAT (Heat Energy Assessment Technologies) project, the focus of this research is to develop a semi/automated 'protocol' to post-process large volumes of high-resolution (H-res) airborne thermal infrared (TIR) imagery to enable accurate urban waste heat mapping. HEAT is a free GeoWeb service, designed to help Calgary residents improve their home energy efficiency by visualizing the amount and location of waste heat leaving their homes and communities, as easily as clicking on their house in Google Maps. HEAT metrics are derived from 43 flight lines of TABI-1800 (Thermal Airborne Broadband Imager) data acquired on May 13--14, 2012 at night (11:00 pm--5:00 am) over The City of Calgary, Alberta (˜825 km 2) at a 50 cm spatial resolution and 0.05°C thermal resolution. At present, the only way to generate a large area, high-spatial resolution TIR scene is to acquire separate airborne flight lines and mosaic them together. However, the ambient sensed temperature within, and between flight lines naturally changes during acquisition (due to varying atmospheric and local micro-climate conditions), resulting in mosaicked images with different temperatures for the same scene components (e.g. roads, buildings), and mosaic join-lines arbitrarily bisect many thousands of homes. In combination these effects result in reduced utility and classification accuracy including, poorly defined HEAT Metrics, inaccurate hotspot detection and raw imagery that are difficult to interpret. In an effort to minimize these effects, three new semi/automated post-processing algorithms (the protocol) are described, which are then used to generate a 43 flight line mosaic of TABI-1800 data from which accurate Calgary waste heat maps and HEAT metrics can be generated. These algorithms (presented as four peer-reviewed papers)---are: (a) Thermal Urban Road Normalization (TURN)---used to mitigate the microclimatic

  7. Developing and testing a low cost method for high resolution measurements of volcanic water vapour emissions at Vulcano and Mt. Etna

    NASA Astrophysics Data System (ADS)

    Pering, Tom D.; McGonigle, Andrew J. S.; Tamburello, Giancarlo; Aiuppa, Alessandro; Bitetto, Marcello; Rubino, Cosimo

    2015-04-01

    The most voluminous of emissions from volcanoes are from water vapour (H2O) (Carroll and Holloway, 1994), however, measurements of this species receive little focus due to the difficulty of independent measurement, largely a result of high atmospheric background concentrations which often undergo rapid fluctuations. A feasible method of measuring H2O emissions at high temporal and spatial resolutions would therefore be highly valuable. We describe a new and low-cost method combining modified web cameras (i.e. with infrared filters removed) with measurements of temperature and relative humidity to produce high resolution measurements (≈ 0.25 Hz) of H2O emissions. The cameras are affixed with near-infrared filters at points where water vapour absorbs (940 nm) and doesn't absorb (850 nm) incident light. Absorption of H2O is then determined by using Lambert-Beer's law on a pixel by pixel basis, producing a high spatial resolution image. The system is then calibrated by placing a Multi-GAS unit within the gas source and camera field-of-view, which measures; SO2, CO2, H2S and relative humidity. By combining the point measurements of the Multi-GAS unit with pixel values for absorption, first correcting for the width of the gas source (generally a Gaussian distribution), a calibration curve is produced which allows the conversion of absorption values to mass of water within a pixel. In combination with relative humidity measurements made outside of the plume it is then possible to subtract the non-volcanic background H2O concentration to produce a high resolution calibrated volcanic H2O flux. This technique is demonstrated in detail at the active fumarolic system on Vulcano (Aeolian Islands, Italy). Data processing and image acquisition was completed in Matlab® using a purpose built code. The technique is also demonstrated for the plume of the North-East Crater of Mt. Etna (Sicily, Italy). Here, contemporaneously acquired measurements of SO2 using a UV camera, combined

  8. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    SciTech Connect

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.

    2002-03-11

    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.

  9. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  10. High Resolution Thermography In Medicine

    NASA Astrophysics Data System (ADS)

    Clark, R. P.; Goff, M. R.; Culley, J. E.

    1988-10-01

    A high resolution medical thermal imaging system using an 8 element SPRI1E detector is described. Image processing is by an Intellect 100 processor and is controlled by a DEC LSI 11/23 minicomputer. Image storage is with a 170 Mbyte winchester disc together with archival storage on 12 inch diameter optical discs having a capacity of 1 Gbyte per side. The system is currently being evaluated for use in physiology and medicine. Applications outlined include the potential of thermographic screening to identify genetic carriers in X-linked hypohidrotic ectodermal dysplasia (XED), detailed vas-cular perfusion studies in health and disease and the relation-ship between cutaneous blood flow, neurological peripheral function and skin surface temperature.

  11. Enhanced High Resolution RBS System

    NASA Astrophysics Data System (ADS)

    Pollock, Thomas J.; Hass, James A.; Klody, George M.

    2011-06-01

    Improvements in full spectrum resolution with the second NEC high resolution RBS system are summarized. Results for 50 Å TiN/HfO films on Si yielding energy resolution on the order of 1 keV are also presented. Detector enhancements include improved pulse processing electronics, upgraded shielding for the MCP/RAE detector, and reduced noise generated from pumping. Energy resolution measurements on spectra front edge coupled with calculations using 0.4mStr solid angle show that beam energy spread at 400 KeV from the Pelletron® accelerator is less than 100 eV. To improve user throughput, magnet control has been added to the automatic data collection. Depth profiles derived from experimental data are discussed. For the thin films profiled, depth resolutions were on the Angstrom level with the non-linear energy/channel conversions ranging from 100 to 200 eV.

  12. High resolution spectrograph. [for LST

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1975-01-01

    The high resolution spectrograph (HRS) is designed to be used with the Large Space Telescope (LST) for the study of spectra of point and extended targets in the spectral range 110 to 410 nm. It has spectral resolutions of 1,000; 30,000; and 100,000 and has a field of view as large as 10 arc sec. The spectral range and resolution are selectable using interchangeable optical components and an echelle spectrograph is used to display a cross dispersed spectrum on the photocathode of either of 2 SEC orthicon image tubes. Provisions are included for wavelength calibration, target identification and acquisition and thermal control. The system considerations of the instrument are described.

  13. Mars high-resolution mapping

    NASA Astrophysics Data System (ADS)

    Batson, R. M.; Thomas, P. K.

    1991-06-01

    A series of photomosaics of high-resolution Viking Orbiter images of Mars is being prepared and published to support the Mars 1:500,000 scale geologic mapping program. More than 100 of these photomosaics were made manually, but for the last several years they have all been made digitally. The digital mosaics are published on the Mars Transverse Mercator (MTM) system, and they are also available to the appropriate principal investigators as digital files in the mosaicked digital image model (MDIM) format. The mosaics contain Viking Orbiter images with the highest available resolution: in some areas as high as 10 m/pixel. This resolution, where it exists, will support a 1:100,000 map scale. The full resolution of a mosaic is preserved in a digital file, but conventional lithographic publication of such large-scale inset maps will be done only if required by the geologic map author. When high-resolution images do not fill the neat lines of an MTM quadrangle, the medium-resolution (1/256 degrees/pixel, or 231 m/pixel) MDIM is used. The mosaics are tied by image-matching to the planetwide MDIM, in which random errors as large as 5 km (10 mm at 1:500,000 scale) are common; a few much larger, worst-case errors also occur. Because of the distribution of the errors, many large discrepancies appear along the cutlines between frames with very different resolutions. Furthermore, each block of quadrangles is compiled on its own local control system, and adjacent blocks, compiled later, are unlikely to match. Selection of areas to be mapped is based on geologic mapping proposals reviewed and recommended by the Mars 1:500,000 scale geologic mapping review panel. There is no intention to map the entire planet at this scale.

  14. HRSC: High resolution stereo camera

    USGS Publications Warehouse

    Neukum, G.; Jaumann, R.; Basilevsky, A.T.; Dumke, A.; Van Gasselt, S.; Giese, B.; Hauber, E.; Head, J. W.; Heipke, C.; Hoekzema, N.; Hoffmann, H.; Greeley, R.; Gwinner, K.; Kirk, R.; Markiewicz, W.; McCord, T.B.; Michael, G.; Muller, Jan-Peter; Murray, J.B.; Oberst, J.; Pinet, P.; Pischel, R.; Roatsch, T.; Scholten, F.; Willner, K.

    2009-01-01

    The High Resolution Stereo Camera (HRSC) on Mars Express has delivered a wealth of image data, amounting to over 2.5 TB from the start of the mapping phase in January 2004 to September 2008. In that time, more than a third of Mars was covered at a resolution of 10-20 m/pixel in stereo and colour. After five years in orbit, HRSC is still in excellent shape, and it could continue to operate for many more years. HRSC has proven its ability to close the gap between the low-resolution Viking image data and the high-resolution Mars Orbiter Camera images, leading to a global picture of the geological evolution of Mars that is now much clearer than ever before. Derived highest-resolution terrain model data have closed major gaps and provided an unprecedented insight into the shape of the surface, which is paramount not only for surface analysis and geological interpretation, but also for combination with and analysis of data from other instruments, as well as in planning for future missions. This chapter presents the scientific output from data analysis and highlevel data processing, complemented by a summary of how the experiment is conducted by the HRSC team members working in geoscience, atmospheric science, photogrammetry and spectrophotometry. Many of these contributions have been or will be published in peer-reviewed journals and special issues. They form a cross-section of the scientific output, either by summarising the new geoscientific picture of Mars provided by HRSC or by detailing some of the topics of data analysis concerning photogrammetry, cartography and spectral data analysis.

  15. A Portable, High Resolution, Surface Measurement Device

    NASA Technical Reports Server (NTRS)

    Ihlefeld, Curtis M.; Burns, Bradley M.; Youngquist, Robert C.

    2012-01-01

    A high resolution, portable, surface measurement device has been demonstrated to provide micron-resolution topographical plots. This device was specifically developed to allow in-situ measurements of defects on the Space Shuttle Orbiter windows, but is versatile enough to be used on a wide variety of surfaces. This paper discusses the choice of an optical sensor and then the decisions required to convert a lab bench optical measurement device into an ergonomic portable system. The necessary trade-offs between performance and portability are presented along with a description of the device developed to measure Orbiter window defects.

  16. Arrested development of abomasal trichostrongylid nematodes in lambs in a steppe environment (North-Eastern Algeria).

    PubMed

    Meradi, Salah; Cabaret, Jacques; Bentounsi, Bourhane

    2016-01-01

    Arrested development of abomasal trichostrongylid nematodes was studied in 30 permanent grazing lambs on a large farm in the North-East of Algeria. The steppe climate has cold winters and hot and dry summers. The lambs were monitored monthly for gastrointestinal nematodes using nematode faecal egg counts, from February 2008 to February 2009. Every 2 months, two of the original 30 permanent lambs were necropsied after being held in pens for three weeks so that recently ingested infective larvae could develop into adults. The highest percentage of fourth stage larvae (L4), reaching 48% of the total worm burden, was recorded in abomasal contents in June. Teladorsagia and other Ostertagiinae constituted the highest percentage of L4 larvae (71%), whereas the percentage of Trichostrongylus (17.4%) or Haemonchus (11.6%) remained low. The dynamics of infection observed here (highest faecal egg count in August) and the stage composition of worm burden (highest percentage of L4 in June) provide strong evidence that arrested development had occurred. PMID:27608531

  17. Arrested development of abomasal trichostrongylid nematodes in lambs in a steppe environment (North-Eastern Algeria)

    PubMed Central

    Meradi, Salah; Cabaret, Jacques; Bentounsi, Bourhane

    2016-01-01

    Arrested development of abomasal trichostrongylid nematodes was studied in 30 permanent grazing lambs on a large farm in the North-East of Algeria. The steppe climate has cold winters and hot and dry summers. The lambs were monitored monthly for gastrointestinal nematodes using nematode faecal egg counts, from February 2008 to February 2009. Every 2 months, two of the original 30 permanent lambs were necropsied after being held in pens for three weeks so that recently ingested infective larvae could develop into adults. The highest percentage of fourth stage larvae (L4), reaching 48% of the total worm burden, was recorded in abomasal contents in June. Teladorsagia and other Ostertagiinae constituted the highest percentage of L4 larvae (71%), whereas the percentage of Trichostrongylus (17.4%) or Haemonchus (11.6%) remained low. The dynamics of infection observed here (highest faecal egg count in August) and the stage composition of worm burden (highest percentage of L4 in June) provide strong evidence that arrested development had occurred. PMID:27608531

  18. Arrested development of abomasal trichostrongylid nematodes in lambs in a steppe environment (North-Eastern Algeria).

    PubMed

    Meradi, Salah; Cabaret, Jacques; Bentounsi, Bourhane

    2016-01-01

    Arrested development of abomasal trichostrongylid nematodes was studied in 30 permanent grazing lambs on a large farm in the North-East of Algeria. The steppe climate has cold winters and hot and dry summers. The lambs were monitored monthly for gastrointestinal nematodes using nematode faecal egg counts, from February 2008 to February 2009. Every 2 months, two of the original 30 permanent lambs were necropsied after being held in pens for three weeks so that recently ingested infective larvae could develop into adults. The highest percentage of fourth stage larvae (L4), reaching 48% of the total worm burden, was recorded in abomasal contents in June. Teladorsagia and other Ostertagiinae constituted the highest percentage of L4 larvae (71%), whereas the percentage of Trichostrongylus (17.4%) or Haemonchus (11.6%) remained low. The dynamics of infection observed here (highest faecal egg count in August) and the stage composition of worm burden (highest percentage of L4 in June) provide strong evidence that arrested development had occurred.

  19. Final report on development of Pulse Arrested Spark Discharge (PASD) for aging aircraft wiring application

    SciTech Connect

    Lockner, Thomas Ramsbeck; Howard, R. Kevin; Pena, Gary Edward; Schneider, Larry X.; Higgins, Matthew B.; Glover, Steven Frank

    2006-09-01

    Pulsed Arrested Spark Discharge (PASD) is a Sandia National Laboratories Patented, non-destructive wiring system diagnostic that has been developed to detect defects in aging wiring systems in the commercial aircraft fleet. PASD was previously demonstrated on relatively controlled geometry wiring such as coaxial cables and shielded twisted-pair wiring through a contract with the U.S. navy and is discussed in a Sandia National Laboratories report, SAND2001-3225 ''Pulsed Arrested Spark Discharge (PASD) Diagnostic Technique for the Location of Defects in Aging Wiring Systems''. This report describes an expansion of earlier work by applying the PASD technique to unshielded twisted-pair and discrete wire configurations commonly found in commercial aircraft. This wiring is characterized by higher impedances as well as relatively non-uniform impedance profiles that have been found to be challenging for existing aircraft wiring diagnostics. Under a three year contract let by the Federal Aviation Administration, Interagency Agreement DTFA-03-00X90019, this technology was further developed for application on aging commercial aircraft wiring systems. This report describes results of the FAA program with discussion of previous work conducted under U.S. Department of Defense funding.

  20. A High Resolution Scale-of-four

    DOE R&D Accomplishments Database

    Fitch, V.

    1949-08-25

    A high resolution scale-of-four has been developed to be used in conjunction with the nuclear particle detection devices in applications where the counting rate is unusually high. Specifically, it is intended to precede the commercially available medium resolution scaling circuits and so decrease the resolving time of the counting system. The circuit will function reliably on continuously recurring pulses separated by less than 0.1 microseconds. It will resolve two pulses (occurring at a moderate repetition rate) which are spaced at 0.04 microseconds. A five-volt input signal is sufficient to actuate the device.

  1. High Resolution Spectroscopy with Submillimeter-Wave

    NASA Astrophysics Data System (ADS)

    Kumar, Vinay; Dave, Hemant

    2003-03-01

    In order to explain the characteristic features of planetary atmosphere, detection and precise measurements of environmentally important gases such as CO, CIO, No becomes necessary. Since most of the polyatomic molecules have (ro-vibrational) transitions in submillimeter region 100 μ-1000μ), probing in this wavelength region is vital. The specific rotational and vibrational states are the result of interactions between different atoms in the molecule. Since each molecule has a unique arrangement of atoms, it has an exclusive submillimeter signature. We are developing a portable heterodyne receiver system at Physical Research Laboratory, Ahmedabad to perform high-resolution spectroscopy in this wavelength region.

  2. High resolution time interval counter

    DOEpatents

    Condreva, Kenneth J.

    1994-01-01

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured.

  3. High resolution time interval counter

    DOEpatents

    Condreva, K.J.

    1994-07-26

    A high resolution counter circuit measures the time interval between the occurrence of an initial and a subsequent electrical pulse to two nanoseconds resolution using an eight megahertz clock. The circuit includes a main counter for receiving electrical pulses and generating a binary word--a measure of the number of eight megahertz clock pulses occurring between the signals. A pair of first and second pulse stretchers receive the signal and generate a pair of output signals whose widths are approximately sixty-four times the time between the receipt of the signals by the respective pulse stretchers and the receipt by the respective pulse stretchers of a second subsequent clock pulse. Output signals are thereafter supplied to a pair of start and stop counters operable to generate a pair of binary output words representative of the measure of the width of the pulses to a resolution of two nanoseconds. Errors associated with the pulse stretchers are corrected by providing calibration data to both stretcher circuits, and recording start and stop counter values. Stretched initial and subsequent signals are combined with autocalibration data and supplied to an arithmetic logic unit to determine the time interval in nanoseconds between the pair of electrical pulses being measured. 3 figs.

  4. High resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Loudin, Jim; Dinyari, Rostam; Huie, Phil; Butterwick, Alex; Peumans, Peter; Palanker, Daniel

    2009-02-01

    Electronic retinal prostheses seek to restore sight in patients with retinal degeneration by delivering pulsed electric currents to retinal neurons via an array of microelectrodes. Most implants use inductive or optical transmission of information and power to an intraocular receiver, with decoded signals subsequently distributed to retinal electrodes through an intraocular cable. Surgical complexity could be minimized by an "integrated" prosthesis, in which both power and data are delivered directly to the stimulating array without any discrete components or cables. We present here an integrated retinal prosthesis system based on a photodiode array implant. Video frames are processed and imaged onto the retinal implant by a video goggle projection system operating at near-infrared wavelengths (~ 900 nm). Photodiodes convert light into pulsed electric current, with charge injection maximized by specially optimized series photodiode circuits. Prostheses of three different pixel densities (16 pix/mm2, 64 pix/mm2, and 256 pix/mm2) have been designed, simulated, and prototyped. Retinal tissue response to subretinal implants made of various materials has been investigated in RCS rats. The resulting prosthesis can provide sufficient charge injection for high resolution retinal stimulation without the need for implantation of any bulky discrete elements such as coils or tethers. In addition, since every pixel functions independently, pixel arrays may be placed separately in the subretinal space, providing visual stimulation to a larger field of view.

  5. High resolution imaging at Palomar

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    1992-01-01

    For the last two years we have embarked on a program of understanding the ultimate limits of ground-based optical imaging. We have designed and fabricated a camera specifically for high resolution imaging. This camera has now been pressed into service at the prime focus of the Hale 5 m telescope. We have concentrated on two techniques: the Non-Redundant Masking (NRM) and Weigelt's Fully Filled Aperture (FFA) method. The former is the optical analog of radio interferometry and the latter is a higher order extension of the Labeyrie autocorrelation method. As in radio Very Long Baseline Interferometry (VLBI), both these techniques essentially measure the closure phase and, hence, true image construction is possible. We have successfully imaged binary stars and asteroids with angular resolution approaching the diffraction limit of the telescope and image quality approaching that of a typical radio VLBI map. In addition, we have carried out analytical and simulation studies to determine the ultimate limits of ground-based optical imaging, the limits of space-based interferometric imaging, and investigated the details of imaging tradeoffs of beam combination in optical interferometers.

  6. Cardiac arrest

    MedlinePlus

    ... Article.jsp. Accessed June 16, 2014. Myerburg RJ, Castellanos A. Approach to cardiac arrest and life-threatening ... PA: Elsevier Saunders; 2011:chap 63. Myerburg RJ, Castellanos A. Cardiac arrest and audden aardiac death. In: ...

  7. Evaluation of Advanced Bionics high resolution mode.

    PubMed

    Buechner, Andreas; Frohne-Buechner, Carolin; Gaertner, Lutz; Lesinski-Schiedat, Anke; Battmer, Rolf-Dieter; Lenarz, Thomas

    2006-07-01

    The objective of this paper is to evaluate the advantages of the Advanced Bionic high resolution mode for speech perception, through a retrospective analysis. Forty-five adult subjects were selected who had a minimum experience of three months' standard mode (mean of 10 months) before switching to high resolution mode. Speech perception was tested in standard mode immediately before fitting with high resolution mode, and again after a maximum of six months high resolution mode usage (mean of two months). A significant improvement was found, between 11 and 17%, depending on the test material. The standard mode preference does not give any indication about the improvement when switching to high resolution. Users who are converted within any study achieve a higher performance improvement than those converted in the clinical routine. This analysis proves the significant benefits of high resolution mode for users, and also indicates the need for guidelines for individual optimization of parameter settings in a high resolution mode program.

  8. Common high-resolution MMW scene generator

    NASA Astrophysics Data System (ADS)

    Saylor, Annie V.; McPherson, Dwight A.; Satterfield, H. DeWayne; Sholes, William J.; Mobley, Scott B.

    2001-08-01

    The development of a modularized millimeter wave (MMW) target and background high resolution scene generator is reported. The scene generator's underlying algorithms are applicable to both digital and real-time hardware-in-the-loop (HWIL) simulations. The scene generator will be configurable for a variety of MMW and multi-mode sensors employing state of the art signal processing techniques. At present, digital simulations for MMW and multi-mode sensor development and testing are custom-designed by the seeker vendor and are verified, validated, and operated by both the vendor and government in simulation-based acquisition. A typical competition may involve several vendors, each requiring high resolution target and background models for proper exercise of seeker algorithms. There is a need and desire by both the government and sensor vendors to eliminate costly re-design and re-development of digital simulations. Additional efficiencies are realized by assuring commonality between digital and HWIL simulation MMW scene generators, eliminating duplication of verification and validation efforts.

  9. Floodplain development in engineered and natural settings determined with novel, high resolution 210-Pb geochronology: Insights from sedimentation studies along the lower Sacramento River, California

    NASA Astrophysics Data System (ADS)

    Aalto, R.; Singer, M. B.

    2008-12-01

    This presentation summarizes results from studies of floodplain sedimentation along the middle and lower Sacramento River that investigate processes using a new, high resolution methodology for 210Pb geochronology of 1-5 m floodplain cores. This approach accounts both for grain-size effects and radon ventilation and can resolve both deposition and erosional events. Therefore, it was possible to assess sedimentation over the past century within a wide array of sedimentary environments throughout the Sacramento Valley, where other techniques are limited. In particular, the Sacramento Valley has naturally low 210Pb activity due to its proximity to the Pacific Ocean, high rates of radon ventilation due to dry, porous floodplain sediment, and deposition of widely varying grain sizes - challenges that we have addressed with our enhanced methodology. The analytical approach affords a new ability to assess and directly compare dates and rates of sedimentation and erosion in disparate sedimentary environments throughout this complex fluvial dispersal system. We compare and contrast sediment deposition in engineered floodplains called bypasses, levied ancestral floodplains which serve as floodways during high flow, with sedimentation occurring in some remaining natural floodplains adjacent to the Sacramento River. We find that bypasses tend to accumulate sand and silt at their entrances, but that rates and textures decline rapidly with distance away from the channel. Essentially, a quasi-natural physical process of levee construction by advective overbank transport and deposition of sediment is operating (Singer and Aalto, ESPL, in press). These engineered floodways tend to siphon sediment out of the active channel, such that relatively low sedimentation rates prevail in floodplains and oxbow lakes within the active meander corridor that is bypassed. However, we document significant accumulation of fine-grained material in sedimentary sinks throughout floodplains upstream

  10. High-Resolution PET Detector. Final report

    SciTech Connect

    Karp, Joel

    2014-03-26

    The objective of this project was to develop an understanding of the limits of performance for a high resolution PET detector using an approach based on continuous scintillation crystals rather than pixelated crystals. The overall goal was to design a high-resolution detector, which requires both high spatial resolution and high sensitivity for 511 keV gammas. Continuous scintillation detectors (Anger cameras) have been used extensively for both single-photon and PET scanners, however, these instruments were based on NaI(Tl) scintillators using relatively large, individual photo-multipliers. In this project we investigated the potential of this type of detector technology to achieve higher spatial resolution through the use of improved scintillator materials and photo-sensors, and modification of the detector surface to optimize the light response function.We achieved an average spatial resolution of 3-mm for a 25-mm thick, LYSO continuous detector using a maximum likelihood position algorithm and shallow slots cut into the entrance surface.

  11. Improved methods for high resolution electron microscopy

    SciTech Connect

    Taylor, J.R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C/sub 44/H/sub 90/ paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol. 53 refs., 19 figs., 1 tab.

  12. Improved methods for high resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.

    1987-04-01

    Existing methods of making support films for high resolution transmission electron microscopy are investigated and novel methods are developed. Existing methods of fabricating fenestrated, metal reinforced specimen supports (microgrids) are evaluated for their potential to reduce beam induced movement of monolamellar crystals of C44H90 paraffin supported on thin carbon films. Improved methods of producing hydrophobic carbon films by vacuum evaporation, and improved methods of depositing well ordered monolamellar paraffin crystals on carbon films are developed. A novel technique for vacuum evaporation of metals is described which is used to reinforce microgrids. A technique is also developed to bond thin carbon films to microgrids with a polymer bonding agent. Unique biochemical methods are described to accomplish site specific covalent modification of membrane proteins. Protocols are given which covalently convert the carboxy terminus of papain cleaved bacteriorhodopsin to a free thiol.

  13. AVHRR/1-FM Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The advanced very high resolution radiometer is discussed. The program covers design, construction, and test of a breadboard model, engineering model, protoflight model, mechanical/structural model, and a life test model. Special bench test and calibration equipment was developed for use on the program. The flight model program objectives were to fabricate, assemble and test four of the advanced very high resolution radiometers along with a bench cooler and collimator.

  14. Volumetric expiratory high-resolution CT of the lung.

    PubMed

    Nishino, Mizuki; Hatabu, Hiroto

    2004-11-01

    We developed a volumetric expiratory high-resolution CT (HRCT) protocol that provides combined inspiratory and expiratory volumetric imaging of the lung without increasing radiation exposure, and conducted a preliminary feasibility assessment of this protocol to evaluate diffuse lung disease with small airway abnormalities. The volumetric expiratory high-resolution CT increased the detectability of the conducting airway to the areas of air trapping (P<0.0001), and added significant information about extent and distribution of air trapping (P<0.0001).

  15. Continuity and Change from Adolescence to Emerging Adulthood: Adolescence-Limited vs. Life-Course-Persistent Profound Ego Development Arrests

    ERIC Educational Resources Information Center

    Billings, Rebecca L.; Hauser, Stuart T.; Allen, Joseph P.

    2008-01-01

    Participants (n = 36) with consistent Pre-conformist ego development levels during multiple adolescent assessments were studied to determine whether and how their ego levels had changed at age 25. Those (n = 12) whose ego levels remained at the Pre-conformist level were assigned to a "life-course-persistent profound ego development arrest"…

  16. High resolution wavefront measurement of aspheric optics

    NASA Astrophysics Data System (ADS)

    Erichsen, I.; Krey, S.; Heinisch, J.; Ruprecht, A.; Dumitrescu, E.

    2008-08-01

    With the recently emerged large volume production of miniature aspheric lenses for a wide range of applications, a new fast fully automatic high resolution wavefront measurement instrument has been developed. The Shack-Hartmann based system with reproducibility better than 0.05 waves is able to measure highly aspheric optics and allows for real time comparison with design data. Integrated advanced analysis tools such as calculation of Zernike coefficients, 2D-Modulation Transfer Function (MTF), Point Spread Function (PSF), Strehl-Ratio and the measurement of effective focal length (EFL) as well as flange focal length (FFL) allow for the direct verification of lens properties and can be used in a development as well as in a production environment.

  17. High resolution solar X-ray studies

    NASA Technical Reports Server (NTRS)

    Blake, R. L.

    1974-01-01

    Two high resolution solar X-ray payloads and their launches on Aerobee rockets with pointing system are described. The payloads included 5 to 25A X-ray spectrometers, multiaperture X-ray cameras, and command box attitude control inflight by means of a television image radioed to ground. Spatial resolution ranged from five arc minutes to ten arc seconds and spectral resolution ranged from 500 to 3000. Several laboratory tasks were completed in order to achieve the desired resolution. These included (1) development of techniques to align grid collimators, (2) studies of the spectrometric properties of crystals, (3) measurements of the absorption coefficients of various materials used in X-ray spectrometers, (4) evaluation of the performance of multiaperture cameras, and (5) development of facilities.

  18. Development of a Web GIS Application for Visualizing and Analyzing Community Out of Hospital Cardiac Arrest Patterns.

    PubMed

    Semple, Hugh; Qin, Han; Sasson, Comilla

    2013-01-01

    Improving survival rates at the neighborhood level is increasingly seen as a priority for reducing overall rates of out-of-hospital cardiac arrest (OHCA) in the United States. Since wide disparities exist in OHCA rates at the neighborhood level, it is important for public health officials and residents to be able to quickly locate neighborhoods where people are at elevated risk for cardiac arrest and to target these areas for educational outreach and other mitigation strategies. This paper describes an OHCA web mapping application that was developed to provide users with interactive maps and data for them to quickly visualize and analyze the geographic pattern of cardiac arrest rates, bystander CPR rates, and survival rates at the neighborhood level in different U.S. cities. The data comes from the CARES Registry and is provided over a period spanning several years so users can visualize trends in neighborhood out-of-hospital cardiac arrest patterns. Users can also visualize areas that are statistical hot and cold spots for cardiac arrest and compare OHCA and bystander CPR rates in the hot and cold spots. Although not designed as a public participation GIS (PPGIS), this application seeks to provide a forum around which data and maps about local patterns of OHCA can be shared, analyzed and discussed with a view of empowering local communities to take action to address the high rates of OHCA in their vicinity.

  19. Development of a Web GIS Application for Visualizing and Analyzing Community Out of Hospital Cardiac Arrest Patterns

    PubMed Central

    Semple, Hugh; Qin, Han; Sasson, Comilla

    2013-01-01

    Improving survival rates at the neighborhood level is increasingly seen as a priority for reducing overall rates of out-of-hospital cardiac arrest (OHCA) in the United States. Since wide disparities exist in OHCA rates at the neighborhood level, it is important for public health officials and residents to be able to quickly locate neighborhoods where people are at elevated risk for cardiac arrest and to target these areas for educational outreach and other mitigation strategies. This paper describes an OHCA web mapping application that was developed to provide users with interactive maps and data for them to quickly visualize and analyze the geographic pattern of cardiac arrest rates, bystander CPR rates, and survival rates at the neighborhood level in different U.S. cities. The data comes from the CARES Registry and is provided over a period spanning several years so users can visualize trends in neighborhood out-of-hospital cardiac arrest patterns. Users can also visualize areas that are statistical hot and cold spots for cardiac arrest and compare OHCA and bystander CPR rates in the hot and cold spots. Although not designed as a public participation GIS (PPGIS), this application seeks to provide a forum around which data and maps about local patterns of OHCA can be shared, analyzed and discussed with a view of empowering local communities to take action to address the high rates of OHCA in their vicinity. PMID:23923097

  20. Methodology of high-resolution photography for mural condition database

    NASA Astrophysics Data System (ADS)

    Higuchi, R.; Suzuki, T.; Shibata, M.; Taniguchi, Y.

    2015-08-01

    Digital documentation is one of the most useful techniques to record the condition of cultural heritage. Recently, high-resolution images become increasingly useful because it is possible to show general views of mural paintings and also detailed mural conditions in a single image. As mural paintings are damaged by environmental stresses, it is necessary to record the details of painting condition on high-resolution base maps. Unfortunately, the cost of high-resolution photography and the difficulty of operating its instruments and software have commonly been an impediment for researchers and conservators. However, the recent development of graphic software makes its operation simpler and less expensive. In this paper, we suggest a new approach to make digital heritage inventories without special instruments, based on our recent our research project in Üzümlü church in Cappadocia, Turkey. This method enables us to achieve a high-resolution image database with low costs, short time, and limited human resources.

  1. High Resolution, High Frame Rate Video Technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Papers and working group summaries presented at the High Resolution, High Frame Rate Video (HHV) Workshop are compiled. HHV system is intended for future use on the Space Shuttle and Space Station Freedom. The Workshop was held for the dual purpose of: (1) allowing potential scientific users to assess the utility of the proposed system for monitoring microgravity science experiments; and (2) letting technical experts from industry recommend improvements to the proposed near-term HHV system. The following topics are covered: (1) State of the art in the video system performance; (2) Development plan for the HHV system; (3) Advanced technology for image gathering, coding, and processing; (4) Data compression applied to HHV; (5) Data transmission networks; and (6) Results of the users' requirements survey conducted by NASA.

  2. High-resolution climate simulation using CAM

    NASA Astrophysics Data System (ADS)

    Bacmeister, J.; Neale, R. B.; Hannay, C.; Lauritzen, P. H.; Wehner, M. F.

    2012-12-01

    Thanks to the development of highly scalable dynamical cores that can exploit massively parallel computer architectures, we expect that global climate models in the next decade will run routinely at horizontal resolutions of 25 km or finer. Early results at these resolutions show clear improvements in simulating climatologically and societally-important mesoscale meteorology such as tropical cyclones. Improvements in regional circulations likely associated with topography are also obtained. Nevertheless many long-standing biases in climate simulations, e.g., the "double ITCZ" bias in precipitation, remain remarkably insensitive to increased resolution. This talk will present high-resolution global simulations using the community atmosphere model. Sensitivity of tropical cyclone climatology and precipitation statistics to model physics suites will be shown

  3. Low noise and high resolution microchannel plate

    NASA Astrophysics Data System (ADS)

    Liu, Shulin; Pan, Jingsheng; Deng, Guangxu; Su, Detan; Xu, Zhiqing; Zhang, Yanyun

    2008-02-01

    To improve the Figure of Merit (FOM) and reduce the Equivalent Background Input (EBI) and Fixed-Pattern-Noise (FPN) in image intensifier, NVT (North Night Vision Technology Co., Ltd) has been researching and developing a low noise and high resolution Micro Channel Plate (MCP). The density of dark current of this new MCP is less than 0.5PA/cm2 (when MCP voltage at 1000V). The FPN and scintillation noise are reduced remarkably. Channel diameter is 6 μm and open area ratio is 60%~70%. The vacuum bakeout temperature could be as high as 500°C. This new kind of MCP will be extensively used in the supper generation and the third generation image intensifiers.

  4. High resolution analysis of satellite gradiometry

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1989-01-01

    Satellite gravity gradiometry is a technique now under development which, by the middle of the next decade, may be used for the high resolution charting from space of the gravity field of the earth and, afterwards, of other planets. Some data analysis schemes are reviewed for getting detailed gravity maps from gradiometry on both a global and a local basis. It also presents estimates of the likely accuracies of such maps, in terms of normalized spherical harmonics expansions, both using gradiometry alone and in combination with data from a Global Positioning System (GPS) receiver carried on the same spacecraft. It compares these accuracies with those of current and future maps obtained from other data (conventional tracking, satellite-satellite tracking, etc.), and also with the spectra of various signals of geophysical interest.

  5. A high resolution ultraviolet Shuttle glow spectrograph

    NASA Technical Reports Server (NTRS)

    Carruthers, George R.

    1993-01-01

    The High Resolution Shuttle Glow Spectrograph-B (HRSGS-B) is a small payload being developed by the Naval Research Laboratory. It is intended for study of shuttle surface glow in the 180-400 nm near- and middle-ultraviolet wavelength range, with a spectral resolution of 0.2 nm. It will search for, among other possible features, the band systems of excited NO which result from surface-catalyzed combination of N and O. It may also detect O2 Hertzberg bands and N2 Vegard-Kaplan bands resulting from surface recombination. This wavelength range also includes possible N2+ and OH emissions. The HRSGS-B will be housed in a Get Away Special canister, mounted in the shuttle orbiter payload bay, and will observe the glow on the tail of the orbiter.

  6. High-Resolution Anamorphic SPECT Imaging

    PubMed Central

    Durko, Heather L.; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    We have developed a gamma-ray imaging system that combines a high-resolution silicon detector with two sets of movable, half-keel-edged copper-tungsten blades configured as crossed slits. These apertures can be positioned independently between the object and detector, producing an anamorphic image in which the axial and transaxial magnifications are not constrained to be equal. The detector is a 60 mm × 60 mm, one-millimeter-thick, one-megapixel silicon double-sided strip detector with a strip pitch of 59 μm. The flexible nature of this system allows the application of adaptive imaging techniques. We present system details; calibration, acquisition, and reconstruction methods; and imaging results. PMID:26160983

  7. High resolution magnetic spectrometer SHARAQ in RIBF

    SciTech Connect

    Shimoura, S.

    2007-05-22

    For a new spectroscopy of nuclei using intense RI beams at RIBF, we started the SHARAQ project where a high-resolution SHARAQ spectrometer is being constructed together with a high-resolution secondary beam line. Physics motivation and the specification of the spectrometer are presented.

  8. High resolution scintillation detector with semiconductor readout

    DOEpatents

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  9. High Resolution PDF Measurements on Ag Nanoparticles

    SciTech Connect

    Rocha, Tulio C. R.; Martin, Chris; Kycia, Stefan; Zanchet, Daniela

    2009-01-29

    The quantitative analysis of structural defects in Ag nanoparticles was addressed in this work. We performed atomic scale structural characterization by a combination of x-ray diffraction (XRD) using the Pair Distribution Function analysis (PDF) and High Resolution Transmission Electron Microscopy (HRTEM). The XRD measurements were performed using an innovative instrumentation setup to provide high resolution PDF patterns.

  10. High resolution multimodal clinical ophthalmic imaging system.

    PubMed

    Mujat, Mircea; Ferguson, R Daniel; Patel, Ankit H; Iftimia, Nicusor; Lue, Niyom; Hammer, Daniel X

    2010-05-24

    We developed a multimodal adaptive optics (AO) retinal imager which is the first to combine high performance AO-corrected scanning laser ophthalmoscopy (SLO) and swept source Fourier domain optical coherence tomography (SSOCT) imaging modes in a single compact clinical prototype platform. Such systems are becoming ever more essential to vision research and are expected to prove their clinical value for diagnosis of retinal diseases, including glaucoma, diabetic retinopathy (DR), age-related macular degeneration (AMD), and retinitis pigmentosa. The SSOCT channel operates at a wavelength of 1 microm for increased penetration and visualization of the choriocapillaris and choroid, sites of major disease activity for DR and wet AMD. This AO system is designed for use in clinical populations; a dual deformable mirror (DM) configuration allows simultaneous low- and high-order aberration correction over a large range of refractions and ocular media quality. The system also includes a wide field (33 deg.) line scanning ophthalmoscope (LSO) for initial screening, target identification, and global orientation, an integrated retinal tracker (RT) to stabilize the SLO, OCT, and LSO imaging fields in the presence of lateral eye motion, and a high-resolution LCD-based fixation target for presentation of visual cues. The system was tested in human subjects without retinal disease for performance optimization and validation. We were able to resolve and quantify cone photoreceptors across the macula to within approximately 0.5 deg (approximately 100-150 microm) of the fovea, image and delineate ten retinal layers, and penetrate to resolve features deep into the choroid. The prototype presented here is the first of a new class of powerful flexible imaging platforms that will provide clinicians and researchers with high-resolution, high performance adaptive optics imaging to help guide therapies, develop new drugs, and improve patient outcomes.

  11. Ecological applications of high resolution spectrometry

    NASA Technical Reports Server (NTRS)

    Lawrence, William T.

    1989-01-01

    Future directions of NASA's space program plans include a significant effort at studying the Earth as a system of interrelated ecosystems. As part of NASA's Earth Observing System (Eos) Program a series of space platforms will be launched and operated to study the Earth with a variety of active and passive instruments. Several of the Eos instruments will be capable of imaging the planet's surface reflectance on a large number of very narrow portions of the solar spectrum. After the development of appropriate algorithms, this reflectance information will be used to determine key parameters about the structure and function of terrestrial and aquatic ecosystems and the pattern and processes of those systems across large areas of the globe. Algorithm development applicable to terrestrial systems will permit the inference of ecological processes from high resolution spectrometry data, similar to that to be forthcoming from the Eos mission. The first summer was spent working with tropical soils and relating their reflectance characteristics to particle size, iron content, and color. This summer the emphasis is on vegetation and work was begun with the Forest Ecosystems Dynamics Project in the Earth Resources Branch where both optical and radar characteristics of a mixed conifer/hardwood forest in Maine are being studied for use in a ecological modeling effort. A major series of aircraft overflights will take place throughout the summer. Laboratory and field spectrometers are used to measure the spectral reflectance of a hierarchy of vegetation from individual leaves to whole canopies for eventual modeling of their nutrient content using reflectance data. Key leaf/canopy parameters are being approximated including chlorophyll, nitrogen, phosphorus, water content, and leaf specific weight using high resolution spectrometry alone. Measurements are made of carbon exchange across the landscape for input to a spatial modeling effort to gauge production within the forest. A

  12. High Resolution Powder Diffraction and Structure Determination

    SciTech Connect

    Cox, D. E.

    1999-04-23

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 {micro}m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  13. The impact of extended preovipositional arrest on embryonic development and hatchling fitness in the flatback sea turtle.

    PubMed

    Rings, Chloe C; Rafferty, Anthony R; Guinea, Michael L; Reina, Richard D

    2015-01-01

    Turtle embryos pause development before oviposition in a process known as preovipositional arrest. Embryonic development arrests due to hypoxia (low oxygen) in the maternal oviducts and resumes only after exposure to normoxia when eggs are laid. Recently, several studies have hypothesized that the prolonged periods of preovipositional arrest may have a detrimental effect on embryo survival and development after eggs are laid. We tested this hypothesis by comparing embryo survival (determined by white spot formation and hatching success) and hatchling fitness (measured by self-righting, crawling, and swimming ability) of flatback sea turtle (Natator depressus) eggs following incubation in hypoxic (∼ 1%) and normoxic (∼ 21%) treatments for 5 d immediately following oviposition. We also measured embryo survival and hatchling fitness when eggs were incubated in hyperoxic conditions (42% oxygen), to determine whether hyperoxia could improve developmental outcome or whether some consequence of oxidative stress might manifest. Eggs incubated in hypoxia remained arrested during the 5-d treatment, and 97.5% of the eggs successfully recommenced development after exposure to normoxia when the treatment finished. At treatment commencement, 100% and 97.5% of eggs in the hyperoxic and normoxic treatments, respectively, began developing. Although hatching success was significantly lower following hypoxia (15%) compared to normoxia (80%) and hyperoxia (85%), hatchings from the hypoxic treatment were larger (carapace length and width and plastron length) than normoxic hatchlings. Similarly, hypoxic hatchings also swam significantly faster than hyperoxic hatchlings. Considering larger hatchlings may have a greater chance of survival, the production of larger hatchings may offset the high cost (lower hatching success) when preovipositional arrest is prolonged. Hyperoxia does not appear to have deleterious consequences for development.

  14. Sorbitol as an arrester of embryonic development in diapausing eggs of the silkworm, Bombyx mori.

    PubMed

    Horie; Kanda; Mochida

    2000-06-01

    Recently, it was confirmed that embryos derived from diapausing eggs of the silkworm, Bombyx mori, begin their development and reach larval maturity on mulberry leaves, when the naked eggs are cultured in vitro. In this study, we found that the method of embryo culture is useful for determining the physiological regulation of diapause. We show that the development of embryos derived from diapausing eggs was strongly inhibited by the addition of either sorbitol or trehalose to the culture medium. Furthermore, this inhibitory effect disappeared when the embryos were cultured in a control medium which did not contain either sorbitol or trehalose, indicating that the inhibitory reactions caused by both substances are reversible. The minimal effective dose of either sorbitol or trehalose was approximately 0.2 M, a value similar to the in vivo concentration of sorbitol in diapausing eggs (0.2 M). Glycerol, mannitol or glucose were moderately effective for inhibition. Sorbitol present in diapausing silkworm eggs does not appear to serve as an antifreeze, but as an strong arresting factor of embryonic development. Furthermore, these results show that a decrease in sorbitol releases the embryos from diapause at the termination of diapause.

  15. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2006-01-01

    The major research activities performed during the cooperative agreement enhanced our spectroscopic knowledge of molecules of atmospheric interest such as H2O (water vapor), O3 (ozone), HCN (hydrogen cyanide), CH4 (methane), NO2 (nitrogen dioxide) and CO (carbon monoxide). The data required for the analyses were obtained from two different Fourier Transform Spectrometers (FTS); one of which is located at the National Solar Observatory (NSO) on Kitt Peak, Arizona and the other instrument is located at the Pacific Northwest National Laboratories (PNNL) at Richland, Washington. The data were analyzed using a modified multispectrum nonlinear least squares fitting algorithm developed by Dr. D. Chris Benner of the College of William and Mary. The results from these studies made significant improvements in the line positons and intensities for these molecules. The measurements of pressure broadening and pressure induced line shift coefficients and the temperature dependence of pressure broadening and pressure induced shift coefficients for hundreds of infrared transitions of HCN, CO3 CH4 and H2O were also performed during this period. Results from these studies have been used for retrievals of stratospheric gas concentration profiles from data collected by several Upper Atmospheric Research Satellite (UARS) infrared instruments as well as in the analysis of high resolution atmospheric spectra such as those acquired by space-based, ground-based, and various balloon- and aircraft-borne experiments. Our results made significant contributions in several updates of the HITRAN (HIgh resolution TRANsmission) spectral line parameters database. This database enjoys worldwide recognition in research involving diversified scientific fields. The research conducted during the period 2003-2006 has resulted in publications given in this paper. In addition to Journal publications, several oral and poster presentations were given at various Scientific conferences within the United States

  16. Development of a new generation of high-resolution anatomical models for medical device evaluation: the Virtual Population 3.0

    NASA Astrophysics Data System (ADS)

    Gosselin, Marie-Christine; Neufeld, Esra; Moser, Heidi; Huber, Eveline; Farcito, Silvia; Gerber, Livia; Jedensjö, Maria; Hilber, Isabel; Di Gennaro, Fabienne; Lloyd, Bryn; Cherubini, Emilio; Szczerba, Dominik; Kainz, Wolfgang; Kuster, Niels

    2014-09-01

    The Virtual Family computational whole-body anatomical human models were originally developed for electromagnetic (EM) exposure evaluations, in particular to study how absorption of radiofrequency radiation from external sources depends on anatomy. However, the models immediately garnered much broader interest and are now applied by over 300 research groups, many from medical applications research fields. In a first step, the Virtual Family was expanded to the Virtual Population to provide considerably broader population coverage with the inclusion of models of both sexes ranging in age from 5 to 84 years old. Although these models have proven to be invaluable for EM dosimetry, it became evident that significantly enhanced models are needed for reliable effectiveness and safety evaluations of diagnostic and therapeutic applications, including medical implants safety. This paper describes the research and development performed to obtain anatomical models that meet the requirements necessary for medical implant safety assessment applications. These include implementation of quality control procedures, re-segmentation at higher resolution, more-consistent tissue assignments, enhanced surface processing and numerous anatomical refinements. Several tools were developed to enhance the functionality of the models, including discretization tools, posing tools to expand the posture space covered, and multiple morphing tools, e.g., to develop pathological models or variations of existing ones. A comprehensive tissue properties database was compiled to complement the library of models. The results are a set of anatomically independent, accurate, and detailed models with smooth, yet feature-rich and topologically conforming surfaces. The models are therefore suited for the creation of unstructured meshes, and the possible applications of the models are extended to a wider range of solvers and physics. The impact of these improvements is shown for the MRI exposure of an adult

  17. In vivo exposure to northern diatoms arrests sea urchin embryonic development.

    PubMed

    Gudimova, Elena; Eilertsen, Hans C; Jørgensen, Trond Ø; Hansen, Espen

    2016-01-01

    There are numerous reports indicating that marine diatoms may act harmful to early developmental stages of invertebrates. It is believed that the compounds responsible for these detrimental effects are oxylipins resulting from oxidized polyunsaturated fatty acids, and that they may function as grazing deterrents. Most studies reporting these effects have exposed test organisms to diatom extracts or purified toxins, but data from in vivo exposure to intact diatoms are scarce. We have conducted sea urchin egg incubation and plutei feeding experiments to test if intact diatom cells affected sea urchin embryo development and survival. This was done by exposing the common northern sea urchins Strongylocentrotus droebachiensis and Echinus acutus to northern strains of the diatoms Chaetoceros socialis, Skeletonema marinoi, Chaetoceros furcellatus, Attheya longicornis, Thalassiosira gravida and Porosira glacialis. The intact diatom cell suspensions were found to inhibit sea urchin egg hatching and embryogenesis. S. marinoi was the most potent one as it caused acute mortality in S. droebachiensis eggs after only four hours exposure to high (50 μg/L Chla) diatom concentrations, as well as 24 h exposure to normal (20 μg/L Chla) and high diatom concentrations. The second most potent species was T. gravida that caused acute mortality after 24 h exposure to both diatom concentrations. A. longicornis was the least harmful of the diatom species in terms of embryo development arrestment, and it was the species that was most actively ingested by S. droebachiensis plutei.

  18. Inactivation of a glycyl-tRNA synthetase leads to an arrest in plant embryo development.

    PubMed Central

    Uwer, U; Willmitzer, L; Altmann, T

    1998-01-01

    Embryo formation is the first patterning process during vegetative plant growth. Using transposons as insertional mutagens in Arabidopsis, we identified the mutant edd1 that shows embryo-defective development. The insertion mutation is lethal, arresting embryo growth between the globular and heart stages of embryonic development. The mutant phenotype cosegregates with a transposed Dissociation element. Sequences flanking the transposed element were isolated and used to isolate a full-length cDNA clone representing the wild-type EDD1 gene. Complementation of the mutant through Agrobacterium-mediated gene transfer of an EDD1 wild-type copy as well as loss of the transposon concomitant with phenotypic reversion demonstrated that the transposon had caused the mutation. Based on homology to Escherichia coli, the EDD1 gene is predicted to encode a novel glycyl-tRNA synthetase (GlyRS) that has not been identified previously in higher plants. An N-terminal portion of the plant protein is able to direct a marker protein into pea chloroplasts. Thus, the gene identified by the embryo-defective insertion mutation encodes a GlyRS homolog, probably acting within the plastidic compartment. PMID:9707529

  19. High-resolution color images of Io

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.; Soderblom, L. A.

    1984-01-01

    Color versions of the highest resolution Voyager images of Io were produced by combining the low resolution color images with the high resolution, clear filter images. High resolution versions of the orange, blue, and violet filter images are produced by: orange = high-res clear * low-res orange / low-res clear blue = high-res clear * low-res blue / low-res clear violet = high-res clear * low-res violet / low-res clear. The spectral responses of the high and low resolution clear filter images cancel, leaving the color, while the spatial frequencies of the two low resolution images cancel, leaving the high resolution.

  20. Development and validation of a generic nontarget method based on liquid chromatography - high resolution mass spectrometry analysis for the evaluation of different wastewater treatment options.

    PubMed

    Nürenberg, Gudrun; Schulz, Manoj; Kunkel, Uwe; Ternes, Thomas A

    2015-12-24

    A comprehensive workflow for using nontarget approaches as process evaluation tools was implemented, including data acquisition based on a LC-HRMS (QTOF) system using direct injection and data post-processing for the peak recognition in "full scan" data. Both parts of the approach were not only developed and validated in a conventional way using the suspected analysis of a set of spiked known micropollutants but also the nontarget analysis of a wastewater treatment plant (WWTP) effluent itself was utilized to consider a more environmental relevant range of analytes. Hereby, special focus was laid on the minimization of false positive results (FPs) during the peak recognition. The optimized data post-processing procedure reduced the percentage of FPs from 42% to 10-15%. Furthermore, the choice of a suitable chromatography for biological treated wastewater systems was also discussed during the method development. The workflow paid also attention to differences in the performance levels of the LC-HRMS system by implementation of an adaption system for intensity variations comparing different measurements dates or different instruments. The application of this workflow on wastewater samples from a municipal WWTP revealed that more than 91% compounds were eliminated by the biological treatment step and that the received effluent contained 55% newly formed potential transformation products. PMID:26654253

  1. A multi-proxy, high-resolution record of peatland development and its drivers during the last millennium from the subalpine Swiss Alps

    NASA Astrophysics Data System (ADS)

    van der Knaap, W. O.; Lamentowicz, M.; van Leeuwen, J. F. N.; Hangartner, S.; Leuenberger, M.; Mauquoy, D.; Goslar, T.; Mitchell, E. A. D.; Lamentowicz, Ł.; Kamenik, C.

    2011-11-01

    We present a record of peatland development during the last 1000 years from Mauntschas mire in the eastern Swiss Alps (Upper Engadine valley; 1818 m a.s.l.) inferred from testate amoebae (pH and depth to the water table (DWT) reconstructions), stable oxygen isotopes in Sphagnum (δ 18O; proxy for water vapour pressure) and carbon isotopes in Sphagnum (δ 13C; proxy for mire surface wetness), peat accumulation rates, charcoal (indicating local burning), pollen and spores (proxies for human impact), and plant macrofossils (reflecting local vegetation and trophic state). Past human impact on the local mire conditions was strong but fluctuating during AD 1000-1570 (±50 yr; depth-age model based on 29 14C AMS dates) with local irrigation of nutrient-enriched water and grazing. Human impact was minor AD 1570-1830 (±30 yr) with partial recovery of the local mire vegetation, and it was absent AD 1830 (±30 yr)-present when hummock formation took place. Correlations among DWT, pH, δ 13C, and δ 18O, carried out both with the raw data and with linear trends removed, suggest that the factors driving peatland development changed over time, since only testate amoeba-based pH and DWT co-varied during all the three aforementioned periods. δ 18O correlates with δ 13C only in the period AD 1830-present and with DWT only during AD 1570-1830, δ 13C correlates with DWT only during AD 1000-1570. Part of this apparent instability among the four time series might be attributed to shifts in the local mire conditions which potentially formed very different (non-analogue) habitats. Lack of analogues, caused, for example, by pre-industrial human impact, might have introduced artefacts in the reconstructions, since those habitats are not well represented in some proxy transfer functions. Human impact was probably the main factor for peatland development, distorting most of the climate signals.

  2. Development of a high-resolution binational vegetation map of the Santa Cruz River riparian corridor and surrounding watershed, southern Arizona and northern Sonora, Mexico

    USGS Publications Warehouse

    Wallace, Cynthia S.A.; Villarreal, Miguel L.; Norman, Laura M.

    2011-01-01

    This report summarizes the development of a binational vegetation map developed for the Santa Cruz Watershed, which straddles the southern border of Arizona and the northern border of Sonora, Mexico. The map was created as an environmental input to the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM) that is being created by the U.S. Geological Survey for the watershed. The SCWEPM is a map-based multicriteria evaluation tool that allows stakeholders to explore tradeoffs between valued ecosystem services at multiple scales within a participatory decision-making process. Maps related to vegetation type and are needed for use in modeling wildlife habitat and other ecosystem services. Although detailed vegetation maps existed for the U.S. side of the border, there was a lack of consistent data for the Santa Cruz Watershed in Mexico. We produced a binational vegetation classification of the Santa Cruz River riparian habitat and watershed vegetation based on NatureServe Terrestrial Ecological Systems (TES) units using Classification And Regression Tree (CART) modeling. Environmental layers used as predictor data were derived from a seasonal set of Landsat Thematic Mapper (TM) images (spring, summer, and fall) and from a 30-meter digital-elevation-model (DEM) grid. Because both sources of environmental data are seamless across the international border, they are particularly suited to this binational modeling effort. Training data were compiled from existing field data for the riparian corridor and data collected by the NM-GAP (New Mexico Gap Analysis Project) team for the original Southwest Regional Gap Analysis Project (SWReGAP) modeling effort. Additional training data were collected from core areas of the SWReGAP classification itself, allowing the extrapolation of the SWReGAP mapping into the Mexican portion of the watershed without collecting additional training data.

  3. Development and testing of an automated High-resolution InSAR volcano-monitoring system in the MED-SUV project

    NASA Astrophysics Data System (ADS)

    Chowdhury, Tanvir Ahmed; Minet, Christian; Fritz, Thomas; Rodriguez Gonzalez, Fernando

    2015-04-01

    Volcanic unrest which produces a variety of geological and hydrological hazards is difficult to predict. Therefore it is important to monitor volcanoes continuously. The monitoring of active volcanoes requires the reliable measurement of surface deformation before, during and after volcanic activities. Besides the improvements of the understanding of geophysical processes underlying the volcanic systems of Vesuvius/ Campi Flegrei and Mt. Etna, one of the main goals of the MED-SUV (MEDiterranean SUpersite Volcanoes) project is to design a system for automatically monitoring ground deformations over active volcanoes. Space-borne synthetic aperture radar (SAR) interferometry (InSAR), persistent scatterer interferometry (PSI) and small baseline subset algorithm (SBAS) provide powerful tools for observing the surface changes with millimeter accuracy. All the mentioned techniques address the challenges by exploiting medium to large SAR image stacks. The generation of interferometric products constitutes a major effort in terms of processing and planning. It requires a high degree of automation, robustness and quality control of the overall process. As a consequence of these requirements and constrains, the Integrated Wide Area Processor (IWAP) developed at DLR is introduced in the framework of a remote sensing task of MED-SUV project. The IWAP has been conceived and designed to optimize the processing workflow in order to minimize the processing time. Moreover, a quality control concept has been developed and integrated in the workflow. The IWAP is structured into three parts: (i) firstly, preparation of an order file containing some configuration parameters and invokes the processor; (ii) secondly, upon request from the processor, the operator performs some manual interactions by means of visual interfaces; (iii) analysis of the final product supported by extensive product visualization. This visualization supports the interpretation of the results without the need of

  4. Cell Arrest and Cell Death in Mammalian Preimplantation Development: Lessons from the Bovine Model

    PubMed Central

    Leidenfrost, Sandra; Boelhauve, Marc; Reichenbach, Myriam; Güngör, Tuna; Reichenbach, Horst-Dieter; Sinowatz, Fred; Wolf, Eckhard; Habermann, Felix A.

    2011-01-01

    Background The causes, modes, biological role and prospective significance of cell death in preimplantation development in humans and other mammals are still poorly understood. Early bovine embryos represent a very attractive experimental model for the investigation of this fundamental and important issue. Methods and Findings To obtain reference data on the temporal and spatial occurrence of cell death in early bovine embryogenesis, three-dimensionally preserved embryos of different ages and stages of development up to hatched blastocysts were examined in toto by confocal laser scanning microscopy. In parallel, transcript abundance profiles for selected apoptosis-related genes were analyzed by real-time reverse transcriptase-polymerase chain reaction. Our study documents that in vitro as well as in vivo, the first four cleavage cycles are prone to a high failure rate including different types of permanent cell cycle arrest and subsequent non-apoptotic blastomere death. In vitro produced and in vivo derived blastocysts showed a significant incidence of cell death in the inner cell mass (ICM), but only in part with morphological features of apoptosis. Importantly, transcripts for CASP3, CASP9, CASP8 and FAS/FASLG were not detectable or found at very low abundances. Conclusions In vitro and in vivo, errors and failures of the first and the next three cleavage divisions frequently cause immediate embryo death or lead to aberrant subsequent development, and are the main source of developmental heterogeneity. A substantial occurrence of cell death in the ICM even in fast developing blastocysts strongly suggests a regular developmentally controlled elimination of cells, while the nature and mechanisms of ICM cell death are unclear. Morphological findings as well as transcript levels measured for important apoptosis-related genes are in conflict with the view that classical caspase-mediated apoptosis is the major cause of cell death in early bovine development. PMID

  5. Advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The program covered the design, construction, and test of a Breadboard Model, Engineering Model, Protoflight Model, Mechanical/Structural Model, and a Life Test Model. Special bench test and calibration equipment was also developed for use on the program. Initially, the instrument was to operate from a 906 n.mi. orbit and be thermally isolated from the spacecraft. The Breadboard Model and the Mechanical/Structural Model were designed and built to these requirements. The spacecraft altitude was changed to 450 n.mi., IFOVs and spectral characteristics were modified, and spacecraft interfaces were changed. The final spacecraft design provided a temperature-controlled Instrument Mounting Platform (IMP) to carry the AVHRR and other instruments. The design of the AVHRR was modified to these new requirements and the modifications were incorporated in the Engineering Model. The Protoflight Model and the Flight Models conform to this design.

  6. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  7. Development of a High-Resolution H3O+ Chemical Ionization Mass Spectrometer for Gas-phase Hydrocarbons and its Application During the 2015 SONGNEX Aircraft Campaign

    NASA Astrophysics Data System (ADS)

    Koss, A.; Yuan, B.; De Gouw, J. A.; Warneke, C.; Stark, H.

    2015-12-01

    In-situ time-of-flight chemical ionization mass spectrometers (ToF-CIMS) using H3O+ reagent ion chemistry (PTR-MS) are a relatively new technique in detection of gas-phase hydrocarbons, and recent improvements in instrument sensitivity, mass resolution, and ease of field deployment have expanded their use in atmospheric chemistry. The comparatively low-energy H3O+ ionization technique is ideal for measuring complex mixtures of hydrocarbons, and, compared to conventional quadrupole PTRMS, the newest generation of ToF-CIMS measure many more species simultaneously and with a sensitivity that is as high as a quadrupole PTR-MS. We describe here the development of a commercially available ToF CIMS into an H3O+CIMS suitable for deployment on aircraft, and its application during an aircraft campaign studying emissions from oil and natural gas extraction industry. We provide an overview of instrument development and specifications, including design, characterization, and field operation. We then discuss data processing and interpretation. First, we investigate determination of intensities of poorly resolved peaks. The mass resolution of the present instrument (m/Δm ~4500) enables separate analysis of many isobaric peaks, but peaks are also frequently not fully resolved. Using results from laboratory tests, we quantify how the accuracy can be limited by the overlap in neighboring peaks, and compare to theoretical predictions from literature. We then briefly describe our method for quality assurance of reported compounds, and correction for background and humidity effects. Finally, we present preliminary results from the first field deployment of this instrument during the Spring 2015 SONGNEX aircraft campaign. This campaign sampled emissions from oil and natural gas extraction regions and associated infrastructure in the Western and Central United States. We will highlight results that illustrate (1) new scientific capability from improved mass resolution, which

  8. Development of a high resolution modeling tool for prediction of waterflows through complex mires: Example of the Mukhrino bog complex in West Siberian middle Taiga Zone

    NASA Astrophysics Data System (ADS)

    Zarov, Evgeny A.; Schmitz, Oliver; Bleuten, Wladimir

    2015-04-01

    Water flow through peat bogs differ substantially from mineral soil landscapes. Permeability of the peatlayers decrease dramatically with depth within the permanently watersaturated peat layers (Catotelm), whereas the 10-60 cm thick superficial layer (Acrotelm) has a very high conductivity. Water flows predominantly in this acrotelm layer where an open structure of stems of mosses and few plants hardly limit water flow. By omitting this superficial flow infrastructures in many places block the waterflow. Moreover, the different bog types within a complex bog have different hydrological conductivities. Without considering the typical water-flow of bogs the construction of roads and platforms for oil and gas production threatens downhill mire ecosystems by partly drainage. The objective of our study was to develop a modeling tool which can be used to predict quantitatively spatially distributed water-flow of a bog complex. A part of the extensive bog complex "Mukhrino bog complex" located at the left bank of Irtysh river near the West Siberian town Khanty-Mansiysk' was chosen as modeling area. Water discharge from this bog catchment occurs by "waterfalls" at the East margin where a scarp with ca. 8 m elevation difference has been developed by backward erosion into the bog by the Mukhrino river. From field observations it was proven that no discharge of groundwater occurred at the margin of the bog catchment area. We used PCRaster-MODFLOW as modeling environment. The model area size was 3.8 km2, cell size 5 m and the model included 3 Acrotelm layers and 3 Catotelm layers. Thickness of Acrotelm and Catotelm have been measured by coring in transects. Input data of rain, snow have been recorded in the study area. Evapotranspiration was measured with small lysimeters and crop factors for different land unit types (open water, raised bog, patterned bog, poor fens) were elaborated by water balance modeling (1-D). Land unit types have been mapped by supervised classification

  9. Solar corona at high resolution

    NASA Technical Reports Server (NTRS)

    Golub, L.; Rosner, R.; Zombeck, M. V. Z.; Vaiana, G. S.

    1982-01-01

    The earth's surface is shielded from solar X rays almost completely by the atmosphere. It is, therefore, necessary to place X-ray detectors on rockets or orbiting satellites. Solar rays were detected for the first time in the late 1940's, using V-2 rockets. In 1960, the first true X-ray images of the sun were obtained with the aid of a simple pinhole camera. The spatial resolution of the X-ray images could be considerably improved by making use of reflective optics, operating at grazing incidence. Aspects of X-ray mirror developments are discussed along with the results obtained in coronal studies utilizing the new devices for the observation of solar X-ray emission. It is pointed out that the major achievements of the Skylab missions were due primarily to the unique opportunity to obtain data over an extended period of time. Attention is given to normal incidence X-ray optics, achievements possible by making use of high spatial resolution optics, and details of improved mirror design.

  10. NOAA's Use of High-Resolution Imagery

    NASA Technical Reports Server (NTRS)

    Hund, Erik

    2007-01-01

    NOAA's use of high-resolution imagery consists of: a) Shoreline mapping and nautical chart revision; b) Coastal land cover mapping; c) Benthic habitat mapping; d) Disaster response; and e) Imagery collection and support for coastal programs.

  11. Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan

    NASA Astrophysics Data System (ADS)

    Chatani, Satoru; Morikawa, Tazuko; Nakatsuka, Seiji; Matsunaga, Sou; Minoura, Hiroaki

    2011-03-01

    We have developed a framework for a three-dimensional regional air quality simulation that is applicable to various air quality studies over Japan. The framework consists of the following simulation model systems: the Weather Research and Forecasting (WRF) model to simulate meteorological fields; the Community Multi-scale Air Quality (CMAQ) modeling system to simulate pollutant concentrations; emissions estimate models; and emission databases. Motor vehicle emissions in Japan are estimated using the Japan Auto-Oil Program (JATOP) vehicle emissions estimate model; anthropogenic emissions from sources other than motor vehicles in Japan are estimated using the Georeference-Based Emission Activity Modeling System (G-BEAMS); and biogenic emissions are estimated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). The Regional Emission inventory in Asia (REAS) is used for emissions in Asian countries except for Japan. The most prominent feature of our framework is its ability to simulate multi-scale air quality. The framework allows for the simulation of emissions and the dynamic transport of pollutants in heavily polluted urban areas with a maximum resolution of 1 × 1 km, and the long-range transport of pollutants is also taken into account. This framework is used to analyze the impact of future emissions from anthropogenic sources on air quality over the Tokyo metropolitan area. NOx, NMVOC and primary PM2.5 emissions over the Tokyo metropolitan area are estimated to be reduced by 44.5%, 18.1% and 41.7%, respectively, from 2005 to 2020. The simulation predicts that concentrations of NO2 and PM2.5 over the Tokyo metropolitan area will decrease by approximately 30-40% and 15-20%, respectively, during the above period. O3 concentrations significantly increase in winter due to decreased titration by NO, whereas no significant variations are observed in spring and summer. In addition, we analyzed the impact of future long-range transport projected under

  12. Ultra-high resolution AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  13. Development of a high-resolution inductively-coupled argon plasma apparatus for derivative spectrometry and its application to the determination of hafnium in high-purity zirconium oxide.

    PubMed

    Ishii, H; Satoh, K

    1982-04-01

    A high-resolution apparatus for inductively-coupled plasma emission spectrometry (ICPES) has been developed, based on an echelle spectrometer modified for wavelength modulation with a quartz refractor plate. The selectivity of the technique is thus improved, and small amounts of hafnium in high-purity zirconium oxide can be determined directly without prior separation or preconcentration. A straight-line calibration curve passing through the origin is obtained without any correction for the interference from zirconium which exists in large excess. The detection limit for hafnium is 0.06 microg/ml, and the relative standard deviation (10 replicates) for hafnium at the 1.2 microg/ml level is about 3%.

  14. High-resolution seismic studies applied to injected geothermal fluids

    SciTech Connect

    Smith, A.T.; Kasameyer, P.

    1985-01-01

    The application of high-resolution microseismicity studies to the problem of monitoring injected fluids is one component of the Geothermal Injection Monitoring Project at LLNL. The evaluation of microseismicity includes the development of field techniques, and the acquisition and processing of events during the initial development of a geothermal field. To achieve a specific detection threshold and location precision, design criteria are presented for seismic networks. An analysis of a small swarm near Mammoth Lakes, California, demonstrates these relationships and the usefulness of high-resolution seismic studies. A small network is currently monitoring the Mammoth-Pacific geothermal power plant at Casa Diablo as it begins production.

  15. Assessment of Digital Terrain Model algorithms for the development of a massive processing system for all high-resolution stereo images of Mars from CTX and HiRISE

    NASA Astrophysics Data System (ADS)

    Yershov, Vladimir; Ivanov, Anton; Muller, Jan-Peter; Tao, Yu; Mr; Pool, William; Kim, Jung-Rack; Sidiropoulos, Panagiotis

    We assess several algorithms for generating digital terrain models (DTM) of Mars using high-resolution stereoscopic images produced by the High Resolution Imaging Science Experiment (HiRISE) camera and Context Camera (CTX) onboard the NASA Mars Reconnaissance Orbiter (MRO) spacecraft. One of the algorithms was developed jointly by University of Seoul and University College London and uses a stereo processing chain based on a non-rigorous sensor model with geodetic control derived from a reference stereo data source (HRSC co-registered to MOLA). The second algorithm was developed at École Polytechnique Federale de Lausanne on the basis of the Integrated Software for Images and Spectrometers (ISIS) application programme interface for deriving ray information and ray intersection points corresponding to the matched pixels of two images forming a stereo pair. The quality assessment of image photogrammetric registration of these two algorithms is made by using reference (“true”) data generated by USGS using SOCET® and using the NASA Ames pipeline and for limited areas using DTMs from re-projected and ortho-rectified images obtained on the Martian surface by Mars Exploration Rovers A and B within the EU-FP7-PROViDE project. The latter images were produced at University College London by a different software designed for stereo-matching rover images. The quality assessment of two DTM-building algorithms is made within the iMars project of the European Seventh Framework Programme. Acknowledgements: The research leading to these results has received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n˚ 607379, PRoViDE grant agreement n˚ 312377 and partial funding for PS from the STFC “MSSL Consolidated Grant” ST/K000977/1.

  16. High-resolution CCD imaging alternatives

    NASA Astrophysics Data System (ADS)

    Brown, D. L.; Acker, D. E.

    1992-08-01

    High resolution CCD color cameras have recently stimulated the interest of a large number of potential end-users for a wide range of practical applications. Real-time High Definition Television (HDTV) systems are now being used or considered for use in applications ranging from entertainment program origination through digital image storage to medical and scientific research. HDTV generation of electronic images offers significant cost and time-saving advantages over the use of film in such applications. Further in still image systems electronic image capture is faster and more efficient than conventional image scanners. The CCD still camera can capture 3-dimensional objects into the computing environment directly without having to shoot a picture on film develop it and then scan the image into a computer. 2. EXTENDING CCD TECHNOLOGY BEYOND BROADCAST Most standard production CCD sensor chips are made for broadcast-compatible systems. One popular CCD and the basis for this discussion offers arrays of roughly 750 x 580 picture elements (pixels) or a total array of approximately 435 pixels (see Fig. 1). FOR. A has developed a technique to increase the number of available pixels for a given image compared to that produced by the standard CCD itself. Using an inter-lined CCD with an overall spatial structure several times larger than the photo-sensitive sensor areas each of the CCD sensors is shifted in two dimensions in order to fill in spatial gaps between adjacent sensors.

  17. Crusta: Visualizing High-resolution Global Data

    NASA Astrophysics Data System (ADS)

    Bernardin, T. S.; Kreylos, O.; Bowles, C. J.; Cowgill, E.; Hamann, B.; Kellogg, L. H.

    2009-12-01

    Virtual globes have become indispensable tools for visualizing, understanding and presenting data from Earth and other planetary bodies. The scientific community has invested much effort into exploiting existing globes to their fullest potential by refining and adapting their capabilities to better satisfy specific needs. For example, Google Earth provides users with the ability to view hillshade images derived from airborne LiDAR data such as the 2007 Northern California GeoEarthScope data. However, because most available globes were not designed with the specific needs of geoscientists in mind, shortcomings are becoming increasingly evident in geoscience applications such as terrain visualization. In particular, earth scientists struggle to visualize digital elevation models with both high spatial resolution (0.5 - 1 square meters per sample) and large extent (>2000 square kilometers), such as those obtained with airborne LiDAR. To address the specific earth science need of real-time terrain visualization of LiDAR data, we are developing Crusta as part of a close collaboration involving earth and computer scientists. Crusta is a new virtual globe that differs from widely used globes by both providing accurate global data representation and the ability to easily visualize custom topographic and image data. As a result, Crusta enables real-time, interactive visualization of high resolution digital elevation data spanning thousands of square kilometers, such as the complete 2007 Northern California GeoEarthScope airborne LiDAR data set. To implement an accurate data representation and avoid distortion of the display at the poles, where other projections have singularities, Crusta represents the globe as a thirty-sided polyhedron. Each side of this polyhedron can be subdivided to an arbitrarily fine grid on the surface of the globe, which allows Crusta to accommodate input data of arbitrary resolution ranging from global (e.g., Blue Marble) to local (e.g., a tripod

  18. Superconducting High Resolution Fast-Neutron Spectrometers

    SciTech Connect

    Hau, Ionel Dragos

    2006-01-01

    Superconducting high resolution fast-neutron calorimetric spectrometers based on 6LiF and TiB{sub 2} absorbers have been developed. These novel cryogenic spectrometers measure the temperature rise produced in exothermal (n, α) reactions with fast neutrons in 6Li and 10B-loaded materials with heat capacity C operating at temperatures T close to 0.1 K. Temperature variations on the order of 0.5 mK are measured with a Mo/Cu thin film multilayer operated in the transition region between its superconducting and its normal state. The advantage of calorimetry for high resolution spectroscopy is due to the small phonon excitation energies kBT on the order of μeV that serve as signal carriers, resulting in an energy resolution ΔE ~ (kBT2C)1/2, which can be well below 10 keV. An energy resolution of 5.5 keV has been obtained with a Mo/Cu superconducting sensor and a TiB2 absorber using thermal neutrons from a 252Cf neutron source. This resolution is sufficient to observe the effect of recoil nuclei broadening in neutron spectra, which has been related to the lifetime of the first excited state in 7Li. Fast-neutron spectra obtained with a 6Li-enriched LiF absorber show an energy resolution of 16 keV FWHM, and a response in agreement with the 6Li(n, α)3H reaction cross section and Monte Carlo simulations for energies up to several MeV. The energy resolution of order of a few keV makes this novel instrument applicable to fast-neutron transmission spectroscopy based on the unique elemental signature provided by the neutron absorption and scattering resonances. The optimization of the energy resolution based on analytical and numerical models of the detector response is discussed in the context of these applications.

  19. High-resolution light microscopy of nanoforms

    NASA Astrophysics Data System (ADS)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  20. High-Resolution Nuclear Magnetic Resonance of Solids.

    ERIC Educational Resources Information Center

    Maciel, Gary E.

    1984-01-01

    Examines recent developments in techniques for obtaining high-resolution nuclear magnetic resonance (NMR) spectra on solid samples, discussing the kinds of applications for which these techniques are well suited. Also discusses the characteristics of NMR of solids and generating magnetization for NMR in solids. (JN)

  1. RAPID DAMAGE ASSESSMENT FROM HIGH RESOLUTION IMAGERY

    SciTech Connect

    Vijayaraj, Veeraraghavan; Bright, Eddie A; Bhaduri, Budhendra L

    2008-01-01

    Disaster impact modeling and analysis uses huge volumes of image data that are produced immediately following a natural or an anthropogenic disaster event. Rapid damage assessment is the key to time critical decision support in disaster management to better utilize available response resources and accelerate recovery and relief efforts. But exploiting huge volumes of high resolution image data for identifying damaged areas with robust consistency in near real time is a challenging task. In this paper, we present an automated image analysis technique to identify areas of structural damage from high resolution optical satellite data using features based on image content.

  2. Large Scale, High Resolution, Mantle Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Geenen, T.; Berg, A. V.; Spakman, W.

    2007-12-01

    To model the geodynamic evolution of plate convergence, subduction and collision and to allow for a connection to various types of observational data, geophysical, geodetical and geological, we developed a 4D (space-time) numerical mantle convection code. The model is based on a spherical 3D Eulerian fem model, with quadratic elements, on top of which we constructed a 3D Lagrangian particle in cell(PIC) method. We use the PIC method to transport material properties and to incorporate a viscoelastic rheology. Since capturing small scale processes associated with localization phenomena require a high resolution, we spend a considerable effort on implementing solvers suitable to solve for models with over 100 million degrees of freedom. We implemented Additive Schwartz type ILU based methods in combination with a Krylov solver, GMRES. However we found that for problems with over 500 thousend degrees of freedom the convergence of the solver degraded severely. This observation is known from the literature [Saad, 2003] and results from the local character of the ILU preconditioner resulting in a poor approximation of the inverse of A for large A. The size of A for which ILU is no longer usable depends on the condition of A and on the amount of fill in allowed for the ILU preconditioner. We found that for our problems with over 5×105 degrees of freedom convergence became to slow to solve the system within an acceptable amount of walltime, one minute, even when allowing for considerable amount of fill in. We also implemented MUMPS and found good scaling results for problems up to 107 degrees of freedom for up to 32 CPU¡¯s. For problems with over 100 million degrees of freedom we implemented Algebraic Multigrid type methods (AMG) from the ML library [Sala, 2006]. Since multigrid methods are most effective for single parameter problems, we rebuild our model to use the SIMPLE method in the Stokes solver [Patankar, 1980]. We present scaling results from these solvers for 3D

  3. High-resolution two dimensional advective transport

    USGS Publications Warehouse

    Smith, P.E.; Larock, B.E.

    1989-01-01

    The paper describes a two-dimensional high-resolution scheme for advective transport that is based on a Eulerian-Lagrangian method with a flux limiter. The scheme is applied to the problem of pure-advection of a rotated Gaussian hill and shown to preserve the monotonicity property of the governing conservation law.

  4. High-resolution TFT-LCD for spatial light modulator

    NASA Astrophysics Data System (ADS)

    Lee, JaeWon; Kim, Yong-Hae; Byun, Chun-Won; Pi, Jae-Eun; Oh, Himchan; Kim, GiHeon; Lee, Myung-Lae; Chu, Hye-Yong; Hwang, Chi-Sun

    2014-06-01

    SLM with very fine pixel pitch is needed for the holographic display system. Among various kinds of SLMs, commercially available high resolution LCoS has been widely used as a spatial light modulator. But the size of commercially available LCoS SLM is limited because the manufacturing technology of LCoS is based on the semiconductor process developed on small size Si wafer. Recently very high resolution flat panel display panel (~500ppi) was developed as a "retina display". Until now, the pixel pitch of flat panel display is several times larger than the pixel pitch of LCoS. But considering the possibility of shrink down the pixel pitch with advanced lithographic tools, the application of flat panel display will make it possible to build a SLM with high spatial bandwidth product. We simulated High resolution TFT-LCD panel on glass substrate using oxide semiconductor TFT with pixel pitch of 20um. And we considered phase modulation behavior of LC(ECB) mode. The TFT-LCD panel is reflective type with 4-metal structure with organic planarization layers. The technical challenge for high resolution large area SLM will be discussed with very fine pixel.

  5. Technical aspects: development, manufacture and installation of a cryo-cooled HTS coil system for high-resolution in-vivo imaging of the mouse at 1.5 T.

    PubMed

    Ginefri, Jean-Christophe; Poirier-Quinot, Marie; Girard, Olivier; Darrasse, Luc

    2007-09-01

    Signal-to-noise ratio improvement is of major importance to achieve microscopic spatial resolution in magnetic resonance experiments. Magnetic resonance imaging of small animals is particularly concerned since it typically requires voxels of less than (100 microm)(3) to observe the small anatomical structures having size reduction by a factor of more than 10 as compared to human being. The signal-to-noise ratio can be increased by working at high static magnetic field strengths, but the biomedical interest of such high-field systems may be limited due to field-dependent contrast mechanisms and severe technological difficulties. An alternative approach that allows working in clinical imaging system is to improve the sensitivity of the radio-frequency receiver coil. This can be done using small cryogenically operated coils made either of copper or high-temperature superconducting material. We report the technological development of cryo-cooled superconducting coils for high-resolution imaging in a whole-body magnetic resonance scanner operating at 1.5 T. The technological background supporting this development is first addressed, including HTS coil design, simulation tools, cryogenic mean description and electrical characterization procedure. To illustrate the performances of superconducting coils for magnetic resonance imaging at intermediate field strength, in-vivo mouse images of various anatomic sites acquired with a 12 mm diameter cryo-cooled superconducting coil are presented.

  6. Potential High Resolution Dosimeters For MRT

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Brochard, T.; Kamlowski, A.; Cellere, G.; Paccagnella, A.; Siegbahn, E. A.; Prezado, Y.; Martinez-Rovira, I.; Bravin, A.; Dusseau, L.; Berkvens, P.

    2010-07-01

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow (˜25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 μm microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy/s, micron

  7. Potential High Resolution Dosimeters For MRT

    SciTech Connect

    Braeuer-Krisch, E.; Brochard, T.; Prezado, Y.; Bravin, A.; Berkvens, P.; Rosenfeld, A.; Lerch, M.; Petasecca, M.; Akselrod, M.; Sykora, J.; Bartz, J.; Ptaszkiewicz, M.; Olko, P.; Berg, A.; Wieland, M.; Doran, S.; Kamlowski, A.; Cellere, G.

    2010-07-23

    Microbeam Radiation Therapy (MRT) uses highly collimated, quasi-parallel arrays of X-ray microbeams of 50-600 keV, produced by 2nd and 3rd generation synchrotron sources, such as the National Synchrotron Light Source (NSLS) in the U.S., and the European Synchrotron Radiation Facility (ESRF) in France, respectively. High dose rates are necessary to deliver therapeutic doses in microscopic volumes, to avoid spreading of the microbeams by cardiosynchronous movement of the tissues. A small beam divergence and a filtered white beam spectrum in the energy range between 30 and 250 keV results in the advantage of steep dose gradients with a sharper penumbra than that produced in conventional radiotherapy. MRT research over the past 20 years has allowed a vast number of results from preclinical trials on different animal models, including mice, rats, piglets and rabbits. Microbeams in the range between 10 and 100 micron width show an unprecedented sparing of normal radiosensitive tissues as well as preferential damage to malignant tumor tissues. Typically, MRT uses arrays of narrow ({approx}25-100 micron-wide) microplanar beams separated by wider (100-400 microns centre-to-centre, c-t-c) microplanar spaces. We note that thicker microbeams of 0.1-0.68 mm used by investigators at the NSLS are still called microbeams, although some invesigators in the community prefer to call them minibeams. This report, however, limits it discussion to 25-100 {mu}m microbeams. Peak entrance doses of several hundreds of Gy are surprisingly well tolerated by normal tissues. High resolution dosimetry has been developed over the last two decades, but typical dose ranges are adapted to dose delivery in conventional Radiation Therapy (RT). Spatial resolution in the sub-millimetric range has been achieved, which is currently required for quality assurance measurements in Gamma-knife RT. Most typical commercially available detectors are not suitable for MRT applications at a dose rate of 16000 Gy

  8. Large-field high-resolution mosaic movies

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Sliepen, Guus; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Sütterlin, Peter; Lin, Yong; Martin, Sara F.; Panasenco, Olga; Romashets, Eugene P.

    2013-08-01

    Movies with fields-of-view larger than normal, for high-resolution telescopes, will give a better understanding of processes on the Sun such as filament and active region developments and their possible interactions. New active regions can serve as an igniter of the eruption of a nearby filament. A method to create a large field-of-view is to join several fields-of-view into a mosaic. Fields are imaged quickly, one after another, using fast telescope-pointing. Such a pointing cycle has been automated at the Dutch open telescope (DOT), a high-resolution solar telescope located on the Canary Island La Palma. The number and positions of the subfields are calculated automatically and represented by an array of bright points in the guider image which indicates the subfield centers inside the drawn rectangle of the total field on the computer screen with the whole-sun image. Automatic production of flats is also programmed. For the first time, mosaic movies were programmed from stored information on automated telescope motions. The mosaic movies show larger regions of the solar disk in high resolution and fill a gap between available whole-sun images with limited spatial resolution of synoptic telescopes including space instruments and small-field high-cadence movies of high-resolution solar telescopes.

  9. Capillary electrophoresis/inductively-coupled plasma-mass spectrometry: development and optimization of a high resolution analytical tool for the size-based characterization of nanomaterials in dietary supplements.

    PubMed

    Qu, Haiou; Mudalige, Thilak K; Linder, Sean W

    2014-12-01

    We report the development and optimization of a system consisting of capillary electrophoresis (CE) interfaced with inductively coupled plasma mass spectrometry (ICPMS) for rapid and high resolution speciation and characterization of metallic (e.g., gold, platinum, and palladium) nanoparticles in a dietary supplement. Multiple factors, including surfactant type and concentration, pH of running buffer, and applied voltage, were investigated to optimize the separation conditions. It was found that by using the anionic surfactant sodium dodecyl benzenesulfonate (SDBS) in the running buffer the separation resolution was significantly improved, allowing for easy distinction of adjacent size fractions in a gold nanoparticle mixture with very small size differences (e.g., 5, 15, 20, and 30 nm). The type and concentration of the surfactant was found to be critical in obtaining sufficient separation while applied voltage and pH values of the running buffers largely affected the elution times by varying the electroosmotic flow. Quantum dots were used as mobility markers to eliminate the run-to-run variation. The diameters of the nanoparticles followed a linear relationship with their relative electrophoretic mobility, and size information on unknown samples could be extrapolated from a standard curve. The accuracy and precision of this method was confirmed using 10 and 30 nm gold nanoparticle standard reference materials. Furthermore, the method was successfully applied to the analysis of commercially available metallic nanoparticle-based dietary supplements, as evidenced by good agreement between the particle sizes calculated by CE/ICPMS and transmission electron microscopy (TEM).

  10. Development of an ultra-high-performance liquid chromatography coupled to high-resolution quadrupole-Orbitrap mass spectrometry method for the rapid detection and confirmation of illegal adulterated sedative-hypnotics in dietary supplements.

    PubMed

    Jiang, Shuyin; Tan, Huijie; Guo, Changchuan; Gong, Liping; Shi, Feng

    2015-01-01

    A novel method using ultra-high performance liquid chromatography coupled to hybrid quadrupole-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap) was developed and validated for the simultaneous screening, identification and quantification of sedative-hypnotics in dietary supplements. Chromatographic conditions were optimised and a full data-dependent MS(2) scan (MS/dd-MS(2)) in positive and negative ion mode was used. A single injection was sufficient to perform the simultaneous screening and identification/quantification of samples. The response showed a good linear relationship with analyte concentrations over wide ranges (e.g., 1.0-1000 ng g(-1) for diazepam) with all the determination coefficients (r(2)) > 0.9985. The method was validated, obtaining accuracy (intra- and inter-day) in the range of 94.5-105.3% and precision (intra- and inter-day) in the range of 0.4-8.9%, respectively. The detection limits (LODs) were in the range of 0.3-1.0 ng g(-1) for different analytes. Recoveries were performed and ranged from 74.1% to 90.2%, while all matrix effects were over the range of 85.4-93.6%. Finally, this method was used to detect sedative-hypnotics in commercial dietary supplements. Of a total of 45 batches of dietary supplements, only three batches were found to be positive samples with concentrations of diazepam, clonazepam and alprazolam at high levels (≥ 8.22 mg g(-1)).

  11. Development of two major resources for pea genomics: the GenoPea 13.2K SNP Array and a high-density, high-resolution consensus genetic map.

    PubMed

    Tayeh, Nadim; Aluome, Christelle; Falque, Matthieu; Jacquin, Françoise; Klein, Anthony; Chauveau, Aurélie; Bérard, Aurélie; Houtin, Hervé; Rond, Céline; Kreplak, Jonathan; Boucherot, Karen; Martin, Chantal; Baranger, Alain; Pilet-Nayel, Marie-Laure; Warkentin, Thomas D; Brunel, Dominique; Marget, Pascal; Le Paslier, Marie-Christine; Aubert, Grégoire; Burstin, Judith

    2015-12-01

    Single nucleotide polymorphism (SNP) arrays represent important genotyping tools for innovative strategies in both basic research and applied breeding. Pea is an important food, feed and sustainable crop with a large (about 4.45 Gbp) but not yet available genome sequence. In the present study, 12 pea recombinant inbred line populations were genotyped using the newly developed GenoPea 13.2K SNP Array. Individual and consensus genetic maps were built providing insights into the structure and organization of the pea genome. Largely collinear genetic maps of 3918-8503 SNPs were obtained from all mapping populations, and only two of these exhibited putative chromosomal rearrangement signatures. Similar distortion patterns in different populations were noted. A total of 12 802 transcript-derived SNP markers placed on a 15 079-marker high-density, high-resolution consensus map allowed the identification of ohnologue-rich regions within the pea genome and the localization of local duplicates. Dense syntenic networks with sequenced legume genomes were further established, paving the way for the identification of the molecular bases of important agronomic traits segregating in the mapping populations. The information gained on the structure and organization of the genome from this research will undoubtedly contribute to the understanding of the evolution of the pea genome and to its assembly. The GenoPea 13.2K SNP Array and individual and consensus genetic maps are valuable genomic tools for plant scientists to strengthen pea as a model for genetics and physiology and enhance breeding.

  12. Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA

    NASA Astrophysics Data System (ADS)

    Lefebvre, Nathalie S.; White, James D. L.; Kjarsgaard, Bruce A.

    2016-01-01

    fluidal, folded-over shapes and ropy surfaces, subordinate thermally altered wall-rock and variegated domains of lapilli tuff. SRE shows a progressive transition from fissure to diatreme, and overall evolution from more explosive to weakly explosive eruption styles recorded at the conduit-crater transition. Diatreme development was initiated by deep-quarrying explosive eruptions along a fissure to form the country rock-rich breccia. Only parts of the fissure remained active as magma feeding the highly explosive eruptions along the fissure localized into discrete point sources forming the matrix-rich lapilli tuff deposits. These superimposed deposits record the passage of multiple debris-jets and subvertical fallback from shallow cratering arising from explosions triggered by magma-water interaction at numerous, discrete sites. However, instead of continuing to build a well-formed diatreme, the system switched to weak spattering with intermittent explosive activity and near-surface dike emplacement into the unconsolidated anisotropic, pyroclastic debris of the crater floor. Dominant spatter from strombolian-style bursts accumulated on the topographically varied, evolving unstable syn-eruptive crater floor, and led to local failure and remobilization. This study demonstrates how the combination of fissure behavior and sensitivity of the shallow plumbing system to local conditions during an eruption can lead to a decrease in eruptive footprint within the diatreme structure, and an overall decrease in explosivity resulting in the arrested development of an immature diatreme.

  13. The HFIP High Resolution Hurricane Forecast Test

    NASA Astrophysics Data System (ADS)

    Nance, L. B.; Bernardet, L.; Bao, S.; Brown, B.; Carson, L.; Fowler, T.; Halley Gotway, J.; Harrop, C.; Szoke, E.; Tollerud, E. I.; Wolff, J.; Yuan, H.

    2010-12-01

    Tropical cyclones are a serious concern for the nation, causing significant risk to life, property and economic vitality. The National Oceanic and Atmospheric Administration (NOAA) National Weather Service has a mission of issuing tropical cyclone forecasts and warnings, aimed at protecting life and property and enhancing the national economy. In the last 10 years, the errors in hurricane track forecasts have been reduced by about 50% through improved model guidance, enhanced observations, and forecaster expertise. However, little progress has been made during this period toward reducing forecasted intensity errors. To address this shortcoming, NOAA established the Hurricane Forecast Improvement Project (HFIP) in 2007. HFIP is a 10-year plan to improve one to five day tropical cyclone forecasts, with a focus on rapid intensity change. Recent research suggests that prediction models with grid spacing less than 1 km in the inner core of the hurricane may provide a substantial improvement in intensity forecasts. The 2008-09 staging of the High Resolution Hurricane (HRH) Test focused on quantifying the impact of increased horizontal resolution in numerical models on hurricane intensity forecasts. The primary goal of this test was an evaluation of the effect of increasing horizontal resolution within a given model across a variety of storms with different intensity, location and structure. The test focused on 69 retrospectives cases from the 2005 and 2007 hurricane seasons. Six modeling groups participated in the HRH test utilizing a variety of models, including three configurations of the Weather Research and Forecasting (WRF) model, the operational GFDL model, the Navy’s tropical cyclone model, and a model developed at the University of Wisconsin-Madison (UWM). The Development Testbed Center (DTC) was tasked with providing objective verification statistics for a variety of metrics. This presentation provides an overview of the HRH Test and a summary of the standard

  14. Development of an analytical method for the targeted screening and multi-residue quantification of environmental contaminants in urine by liquid chromatography coupled to high resolution mass spectrometry for evaluation of human exposures.

    PubMed

    Cortéjade, A; Kiss, A; Cren, C; Vulliet, E; Buleté, A

    2016-01-01

    The aim of this study was to develop an analytical method and contribute to the assessment of the Exposome. Thus, a targeted analysis of a wide range of contaminants in contact with humans on daily routines in urine was developed. The method focused on a list of 38 contaminants, including 12 pesticides, one metabolite of pesticide, seven veterinary drugs, five parabens, one UV filter, one plastic additive, two surfactants and nine substances found in different products present in the everyday human environment. These contaminants were analyzed by high performance liquid chromatography coupled to high resolution mass spectrometry (HPLC-HRMS) with a quadrupole-time-of-flight (QqToF) instrument from a raw urinary matrix. A validation according to the FDA guidelines was employed to evaluate the specificity, linear or quadratic curve fitting, inter- and intra-day precision, accuracy and limits of detection and quantification (LOQ). The developed analysis allows for the quantification of 23 contaminants in the urine samples, with the LOQs ranging between 4.3 ng.mL(-1) and 113.2 ng.mL(-1). This method was applied to 17 urine samples. Among the targeted contaminants, four compounds were detected in samples. One of the contaminants (tributyl phosphate) was detected below the LOQ. The three others (4-hydroxybenzoic acid, sodium dodecylbenzenesulfonate and O,O-diethyl thiophosphate potassium) were detected but did not fulfill the validation criteria for quantification. Among these four compounds, two of them were found in all samples: tributyl phosphate and the surfactant sodium dodecylbenzenesulfonate. PMID:26695319

  15. High resolution 3D nonlinear integrated inversion

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wang, Xuben; Li, Zhirong; Li, Qiong; Li, Zhengwen

    2009-06-01

    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  16. High-Resolution X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.

    2010-01-01

    Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.

  17. High resolution schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Harten, A.

    1983-01-01

    A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurate scheme to an appropriately modified flux function. The so-derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme. Numerical experiments are presented to demonstrate the performance of these new schemes.

  18. High-Resolution Traction Force Microscopy

    PubMed Central

    Plotnikov, Sergey V.; Sabass, Benedikt; Schwarz, Ulrich S.; Waterman, Clare M.

    2015-01-01

    Cellular forces generated by the actomyosin cytoskeleton and transmitted to the extracellular matrix (ECM) through discrete, integrin-based protein assemblies, that is, focal adhesions, are critical to developmental morphogenesis and tissue homeostasis, as well as disease progression in cancer. However, quantitative mapping of these forces has been difficult since there has been no experimental technique to visualize nanonewton forces at submicrometer spatial resolution. Here, we provide detailed protocols for measuring cellular forces exerted on two-dimensional elastic substrates with a high-resolution traction force microscopy (TFM) method. We describe fabrication of polyacrylamide substrates labeled with multiple colors of fiducial markers, functionalization of the substrates with ECM proteins, setting up the experiment, and imaging procedures. In addition, we provide the theoretical background of traction reconstruction and experimental considerations important to design a high-resolution TFM experiment. We describe the implementation of a new algorithm for processing of images of fiducial markers that are taken below the surface of the substrate, which significantly improves data quality. We demonstrate the application of the algorithm and explain how to choose a regularization parameter for suppression of the measurement error. A brief discussion of different ways to visualize and analyze the results serves to illustrate possible uses of high-resolution TFM in biomedical research. PMID:24974038

  19. High-Resolution US of Rheumatologic Diseases.

    PubMed

    Taljanovic, Mihra S; Melville, David M; Gimber, Lana H; Scalcione, Luke R; Miller, Margaret D; Kwoh, C Kent; Klauser, Andrea S

    2015-01-01

    For the past 15 years, high-resolution ultrasonography (US) is being routinely and increasingly used for initial evaluation and treatment follow-up of rheumatologic diseases. This imaging technique is performed by using high-frequency linear transducers and has proved to be a powerful diagnostic tool in evaluation of articular erosions, simple and complex joint and bursal effusions, tendon sheath effusions, and synovitis, with results comparable to those of magnetic resonance imaging, excluding detection of bone marrow edema. Crystal deposition diseases including gouty arthropathy and calcium pyrophosphate deposition disease (CPPD) have characteristic appearances at US, enabling differentiation between these two diseases and from inflammatory arthropathies. Enthesopathy, which frequently accompanies psoriatic and reactive arthritis, also has a characteristic appearance at high-resolution US, distinguishing these two entities from other inflammatory and metabolic arthropathies. The presence of Doppler signal in examined joints, bursae, and tendon sheaths indicates active synovitis. Microbubble echo contrast agents augment detection of tissue vascularity and may act in the future as a drug delivery vehicle. Frequently, joint, tendon sheath, and bursal fluid aspirations and therapeutic injections are performed under US guidance. The authors describe the high-resolution US technique including gray-scale, color or power Doppler, and contrast agent-enhanced US that is used in evaluation of rheumatologic diseases of the wrist and hand and the ankle and foot in their routine clinical practice. This article demonstrates imaging findings of normal joints, rheumatoid arthritis, gouty arthritis, CPPD, psoriatic and reactive arthritis, and osteoarthritis.

  20. Partial homogeneity based high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Lin, Liangjie; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2014-09-29

    In nuclear magnetic resonance (NMR) technique, it is of great necessity and importance to obtain high-resolution spectra, especially under inhomogeneous magnetic fields. In this study, a method based on partial homogeneity is proposed for retrieving high-resolution one-dimensional NMR spectra under inhomogeneous fields. Signals from series of small voxels, which characterize high resolution due to small sizes, are recorded simultaneously. Then, an inhomogeneity correction algorithm is developed based on pattern recognition to correct the influence brought by field inhomogeneity automatically, thus yielding high-resolution information. Experiments on chemical solutions and fish spawn were carried out to demonstrate the performance of the proposed method. The proposed method serves as a single radiofrequency pulse high-resolution NMR spectroscopy under inhomogeneous fields and may provide an alternative of obtaining high-resolution spectra of in vivo living systems or chemical-reaction systems, where performances of conventional techniques are usually degenerated by field inhomogeneity.

  1. Development of a simultaneous high resolution typing method for three SLA class II genes, SLA-DQA, SLA-DQB1, and SLA-DRB1 and the analysis of SLA class II haplotypes.

    PubMed

    Le, MinhThong; Choi, Hojun; Choi, Min-Kyeung; Cho, Hyesun; Kim, Jin-Hoi; Seo, Han Geuk; Cha, Se-Yeon; Seo, Kunho; Dadi, Hailu; Park, Chankyu

    2015-06-15

    The characterization of the genetic variations of major histocompatibility complex (MHC) is essential to understand the relationship between the genetic diversity of MHC molecules and disease resistance and susceptibility in adaptive immunity. We previously reported the development of high-resolution individual locus typing methods for three of the most polymorphic swine leukocyte antigens (SLA) class II loci, namely, SLA-DQA, SLA-DQB1, and SLA-DRB1. In this study, we extensively modified our previous protocols and developed a method for the simultaneous amplification of the three SLA class II genes and subsequent analysis of individual loci using direct sequencing. The unbiased and simultaneous amplification of alleles from the all three hyper-polymorphic and pseudogene containing genes such as MHC genes is extremely challenging. However, using this method, we demonstrated the successful typing of SLA-DQA, SLA-DQB1, and SLA-DRB1 for 31 selected individuals comprising 26 different SLA class II haplotypes which were identified from 700 animals using the single locus typing methods. The results were identical to the known genotypes from the individual locus typing. The new method has significant benefits over the individual locus typing, including lower typing cost, use of less biomaterial, less effort and fewer errors in handling large samples for multiple loci. We also extensively characterized the haplotypes of SLA class II genes and reported three new haplotypes. Our results should serve as a basis to investigate the possible association between polymorphisms of MHC class II and differences in immune responses to exogenous antigens.

  2. Parallelization and Algorithmic Enhancements of High Resolution IRAS Image Construction

    NASA Technical Reports Server (NTRS)

    Cao, Yu; Prince, Thomas A.; Tereby, Susan; Beichman, Charles A.

    1996-01-01

    The Infrared Astronomical Satellite caried out a nearly complete survey of the infrared sky, and the survey data are important for the study of many astrophysical phenomena. However, many data sets at other wavelengths have higher resolutions than that of the co-added IRAS maps, and high resolution IRAS images are strongly desired both for their own information content and their usefulness in correlation. The HIRES program was developed by the Infrared Processing and Analysis Center (IPAC) to produce high resolution (approx. 1') images from IRAS data using the Maximum Correlation Method (MCM). We describe the port of HIRES to the Intel Paragon, a massively parallel supercomputer, other software developments for mass production of HIRES images, and the IRAS Galaxy Atlas, a project to map the Galactic plane at 60 and 100(micro)m.

  3. Genetic Diversity and mRNA Expression of Porcine MHC Class I Chain-Related 2 (SLA-MIC2) Gene and Development of a High-Resolution Typing Method.

    PubMed

    Dadi, Hailu; Le, MinhThong; Dinka, Hunduma; Nguyen, DinhTruong; Choi, Hojun; Cho, Hyesun; Choi, Minkyeung; Kim, Jin-Hoi; Park, Jin-Ki; Soundrarajan, Nagasundarapandian; Park, Chankyu

    2015-01-01

    The genetic structure and function of MHC class I chain-related (MIC) genes in the pig genome have not been well characterized, and show discordance in available data. Therefore, we have experimentally characterized the exon-intron structure and functional copy expression pattern of the pig MIC gene, SLA-MIC2. We have also studied the genetic diversity of SLA-MIC2 from seven different breeds using a high-resolution genomic sequence-based typing (GSBT) method. Our results showed that the SLA-MIC2 gene has a similar molecular organization as the human and cattle orthologs, and is expressed in only a few tissues including the small intestine, lung, and heart. A total of fifteen SLA-MIC2 alleles were identified from typing 145 animals, ten of which were previously unreported. Our analysis showed that the previously reported and tentatively named SLA-MIC2*05, 07, and 01 alleles occurred most frequently. The observed heterozygosity varied from 0.26 to 0.73 among breeds. The number of alleles of the SLA-MIC2 gene in pigs is somewhat lower compared to the number of alleles of the porcine MHC class I and II genes; however, the level of heterozygosity was similar. Our results indicate the comprehensiveness of using genomic DNA-based typing for the systemic study of the SLA-MIC2 gene. The method developed for this study, as well as the detailed information that was obtained, could serve as fundamental tools for understanding the influence of the SLA-MIC2 gene on porcine immune responses.

  4. Genetic Diversity and mRNA Expression of Porcine MHC Class I Chain-Related 2 (SLA-MIC2) Gene and Development of a High-Resolution Typing Method

    PubMed Central

    Dinka, Hunduma; Nguyen, DinhTruong; Choi, Hojun; Cho, Hyesun; Choi, Minkyeung; Kim, Jin-Hoi; Park, Jin-Ki; Soundrarajan, Nagasundarapandian; Park, Chankyu

    2015-01-01

    The genetic structure and function of MHC class I chain-related (MIC) genes in the pig genome have not been well characterized, and show discordance in available data. Therefore, we have experimentally characterized the exon-intron structure and functional copy expression pattern of the pig MIC gene, SLA-MIC2. We have also studied the genetic diversity of SLA-MIC2 from seven different breeds using a high-resolution genomic sequence-based typing (GSBT) method. Our results showed that the SLA-MIC2 gene has a similar molecular organization as the human and cattle orthologs, and is expressed in only a few tissues including the small intestine, lung, and heart. A total of fifteen SLA-MIC2 alleles were identified from typing 145 animals, ten of which were previously unreported. Our analysis showed that the previously reported and tentatively named SLA-MIC2*05, 07, and 01 alleles occurred most frequently. The observed heterozygosity varied from 0.26 to 0.73 among breeds. The number of alleles of the SLA-MIC2 gene in pigs is somewhat lower compared to the number of alleles of the porcine MHC class I and II genes; however, the level of heterozygosity was similar. Our results indicate the comprehensiveness of using genomic DNA-based typing for the systemic study of the SLA-MIC2 gene. The method developed for this study, as well as the detailed information that was obtained, could serve as fundamental tools for understanding the influence of the SLA-MIC2 gene on porcine immune responses. PMID:26305091

  5. Achievement of a 920-MHz High Resolution NMR

    NASA Astrophysics Data System (ADS)

    Hashi, Kenjiro; Shimizu, Tadashi; Goto, Atsushi; Kiyoshi, Tsukasa; Matsumoto, Shinji; Wada, Hitoshi; Fujito, Teruaki; Hasegawa, Ken-ichi; Yoshikawa, Masatoshi; Miki, Takashi; Ito, Satoshi; Hamada, Mamoru; Hayashi, Seiji

    2002-06-01

    We have developed a 920-MHz NMR system and performed the proton NMR measurement of H 2O and ethylbenzene using the superconducting magnet operating at 21.6 T (920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high resolution NMR.

  6. LandScan 2013 High Resolution Global Population Data Set

    SciTech Connect

    2014-07-01

    The LandScan data set is a worldwide population database compiled on a 30"x30" latitude/longitude grid. Census counts (at sub-national level) were apportioned to each grid cell based on likelihood coefficients, which are based on land cover, slope, road proximity, high-resolution imagery, and other data sets. The LandScan data set was developed as part of Oak Ridge National Laboratory (ORNL) Global Population Project for estimating ambient populations at risk.

  7. The Goddard High Resolution Spectrograph: Instrument, goals, and science results

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Heap, S. R.; Beaver, E. A.; Boggess, A.; Carpenter, K. G.; Ebbets, D. C.; Hutchings, J. B.; Jura, M.; Leckrone, D. S.; Linsky, J. L.

    1994-01-01

    The Goddard High Resolution Spectrograph (GHRS), currently in Earth orbit on the Hubble Space Telescope (HST), operates in the wavelength range 1150-3200 A with spectral resolutions (lambda/delta lambda) of approximately 2 x 10(exp 3), 2 x 10(exp 4), and 1 x 10(exp 3). The instrument and its development from inception, its current status, the approach to operations, representative results in the major areas of the scientific goals, and prospects for the future are described.

  8. High resolution fiber optic interferometer: FY94 final report

    SciTech Connect

    Baldwin, D.P.; Zamzow, D.S.; D`Silva, A.P.

    1994-12-31

    Objective is a field, on-line high resolution spectrometer system capable of resolving the optical emission from actinide isotopes in an inductively coupled plasma. AOTF (acousto-optic tunable filter) and FFP (fiber optic Fabry-Perot) were combined in this spectrometer, using bulk optical materials. The AOTF-FFP system was tested on U-235/U-238 and RCRA metals. Future development is described; a commercialization plan is attached.

  9. High resolution SAR applications and instrument design

    NASA Technical Reports Server (NTRS)

    Dionisio, C.; Torre, A.

    1993-01-01

    The Synthetic Aperture Radar (SAR) has viewed, in the last two years, a huge increment of interest from many preset and potential users. The good spatial resolution associated to the all weather capability lead to considering SAR not only a scientific instrument but a tool for verifying and controlling the daily human relationships with the Earth Environment. New missions were identified for SAR as spatial resolution became lower than three meters: disasters, pollution, ships traffic, volcanic eruptions, earthquake effect are only a few of the possible objects which can be effectively detected, controlled and monitored by SAR mounted on satellites. High resolution radar design constraints and dimensioning are discussed.

  10. High resolution millimeter-wave imaging sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Howard, R. J.; Parks, G. S.

    1985-01-01

    A scanning 3-mm radiometer is described that has been built for use on a small aircraft to produce real time high resolution images of the ground when atmospheric conditions such as smoke, dust, and clouds make IR and visual sensors unusable. The sensor can be used for a variety of remote sensing applications such as measurements of snow cover and snow water equivalent, precipitation mapping, vegetation type and extent, surface moisture and temperature, and surface thermal inertia. The advantages of millimeter waves for cloud penetration and the ability to observe different physical phenomena make this system an attractive supplement to visible and IR remote sensing systems.

  11. High resolution extremity CT for biomechanics modeling

    SciTech Connect

    Ashby, A.E.; Brand, H.; Hollerbach, K.; Logan, C.M.; Martz, H.E.

    1995-09-23

    With the advent of ever more powerful computing and finite element analysis (FEA) capabilities, the bone and joint geometry detail available from either commercial surface definitions or from medical CT scans is inadequate. For dynamic FEA modeling of joints, precise articular contours are necessary to get appropriate contact definition. In this project, a fresh cadaver extremity was suspended in parafin in a lucite cylinder and then scanned with an industrial CT system to generate a high resolution data set for use in biomechanics modeling.

  12. High Resolution Image From Viking Lander 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Viking 1 took this high-resolution picture today, its third day on Mars. Distance from the camera to the nearfield (bottom) is about 4 meters (13 feet); to the horizon, about 3 kilometers (1.8 miles). The photo shows numerous angular blocks ranging in size from a few centimeters to several meters. The surface between the blocks is composed of fine-grained material. Accumulation of some fine-grained material behind blocks indicates wind deposition of dust and sand downwind of obstacles. The large block on the horizon is about 4 meters (13 feet) wide. Distance across the horizon is about 34 meters (110 feet).

  13. Space to Think: Large, High-Resolution Displays for Sensemaking

    SciTech Connect

    Andrews, Christopher P.; Endert, Alexander; North, Chris

    2010-05-05

    Space supports human cognitive abilities in a myriad of ways. The note attached to the side of the monitor, the papers spread out on the desk, diagrams scrawled on a whiteboard, and even the keys left out on the counter are all examples of using space to recall, reveal relationships, and think. Technological advances have made it possible to construct large display environments in which space has real meaning. This paper examines how increased space affects the way displays are regarded and used within the context of the cognitively demanding task of sensemaking. A study was conducted observing analysts using a prototype large, high-resolution display to solve an analytic problem. This paper reports on the results of this study and suggests a number of potential design criteria for future sensemaking tools developed for large, high-resolution displays.

  14. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  15. Progressive display of very high resolution images using wavelets.

    PubMed Central

    Zhang, Ya; Wang, James Z.

    2002-01-01

    Digital or digitized biomedical images often have very high resolutions', which make them difficult or impossible to display on computer screens. Therefore, it is desirable to develop a multiresolution display method with which users can freely browse the contents of those high resolution images. In this paper, we present an improved wavelet-based progressive image display algorithm by stressing on the encoding and decoding process. The encoder, which dynamically determines levels of transform and partition of coefficients, is based on a modified Haar wavelet transform. The decoder retrieves the necessary data and reconstructs the requested region at a scale specified by the user. A prototype system, which enables virtually any size of images to be displayed progressively, has been implemented based on this algorithm. The system has low computational complexity for both encoding and decoding process. Images Figure 2 PMID:12476909

  16. High-resolution array processing using implicit eigenvector weighting techniques

    SciTech Connect

    Steele, A.K. ); Byrne, C.L. )

    1990-01-01

    Many high-resolution bearing estimators require the explicit calculation of the eigenvectors and eigenvalues of the cross-spectral matrix of the sensor outputs. Once the eigenvectors have been calculated, various different estimators can be derived by altering the eigenvalues to give a re-weighing of the eigenvectors. For example, in the MUSIC method the eigenvalues corresponding to those eigenvectors in the noise subspace are set to unity, while the eigenvalues corresponding to those eigenvectors in the signal subspace are set to zero. These weighing functions are reminiscent of ideal filter responses in analog filter theory, where practical filters are designed by using polynomial approximations to the ideal desired response. In this paper, the approximation theory developed for filter design is used to derive high-resolution bearing estimators that do not require explicit calculation of the eigenvectors.

  17. High Resolution Scanning Electron Microscopy of Cells Using Dielectrophoresis

    PubMed Central

    Tang, Shi-Yang; Zhang, Wei; Soffe, Rebecca; Nahavandi, Sofia; Shukla, Ravi; Khoshmanesh, Khashayar

    2014-01-01

    Ultrastructural analysis of cells can reveal valuable information about their morphological, physiological, and biochemical characteristics. Scanning electron microscopy (SEM) has been widely used to provide high-resolution images from the surface of biological samples. However, samples need to be dehydrated and coated with conductive materials for SEM imaging. Besides, immobilizing non-adherent cells during processing and analysis is challenging and requires complex fixation protocols. In this work, we developed a novel dielectrophoresis based microfluidic platform for interfacing non-adherent cells with high-resolution SEM at low vacuum mode. The system enables rapid immobilization and dehydration of samples without deposition of chemical residues over the cell surface. Moreover, it enables the on-chip chemical stimulation and fixation of immobilized cells with minimum dislodgement. These advantages were demonstrated for comparing the morphological changes of non-budding and budding yeast cells following Lyticase treatment. PMID:25089528

  18. Development of analytical procedures for determination of total chromium by quadrupole ICP-MS and high-resolution ICP-MS, and hexavalent chromium by HPLC-ICP-MS, in different materials used in the automotive industry.

    PubMed

    Séby, F; Gagean, M; Garraud, H; Castetbon, A; Donard, O F X

    2003-10-01

    A European directive was recently adopted limiting the use of hazardous substances such as Pb, Hg, Cd, and Cr(VI) in vehicle manufacturing. From July 2003 a maximum of 2 g Cr(VI) will be authorised per vehicle in corrosion-preventing coatings of key components. As no standardised procedures are available to check if produced vehicles are in agreement with this directive, the objective of this work was to develop analytical procedures for total chromium and Cr(VI) determination in these materials. The first step of this study was to optimise digestion procedures for total chromium determination in plastic and metallic materials by inductively coupled plasma mass spectrometry (ICP-MS). High resolution (HR) ICP-MS was used to examine the influence of polyatomic interferences on the detection of the (52)Cr(+) and (53)Cr(+) isotopes. If there was strong interference with m/ z 52 for plastic materials, it was possible to use quadrupole ICP-MS for m/ z 53 if digestions were performed with HNO(3)+H(2)O(2). This mixture was also necessary for digestion of chromium from metallic materials. Extraction procedures in alkaline medium (NH(4)(+)/NH(3) buffer solution at pH 8.9) assisted by sonication were developed for determining Cr(VI) in four different corrosion-preventing coatings by HPLC-ICP-MS. After optimisation and validation with the only solid reference material certified for its Cr(VI) content (BCR 545; welding dusts), the efficiency of this extraction procedure for screw coatings was compared with that described in the EN ISO 3613 standard generally used in routine laboratories. For coatings comprising zinc and aluminium passivated in depth with chromium oxides the extraction procedure developed herein enabled determination of higher Cr(VI) concentrations. This was also observed for the screw covered with a chromium passivant layer on zinc-nickel. For coating comprising a chromium passivant layer on alkaline zinc the standardized extraction procedure was more efficient

  19. High resolution ultrasonic spectroscopy system for nondestructive evaluation

    NASA Technical Reports Server (NTRS)

    Chen, C. H.

    1991-01-01

    With increased demand for high resolution ultrasonic evaluation, computer based systems or work stations become essential. The ultrasonic spectroscopy method of nondestructive evaluation (NDE) was used to develop a high resolution ultrasonic inspection system supported by modern signal processing, pattern recognition, and neural network technologies. The basic system which was completed consists of a 386/20 MHz PC (IBM AT compatible), a pulser/receiver, a digital oscilloscope with serial and parallel communications to the computer, an immersion tank with motor control of X-Y axis movement, and the supporting software package, IUNDE, for interactive ultrasonic evaluation. Although the hardware components are commercially available, the software development is entirely original. By integrating signal processing, pattern recognition, maximum entropy spectral analysis, and artificial neural network functions into the system, many NDE tasks can be performed. The high resolution graphics capability provides visualization of complex NDE problems. The phase 3 efforts involve intensive marketing of the software package and collaborative work with industrial sectors.

  20. New Challenges in High-Resolution Modeling of Hurricanes

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2006-12-01

    The extreme active Atlantic hurricane seasons in recent years have highlighted the urgent need for a better understanding of the factors that contribute to hurricane intensity and for development of the corresponding advanced hurricane prediction models to improve intensity forecasts. The lack of skill in present forecasts of hurricane structure and intensity may be attributed in part to deficiencies in the current prediction models: insufficient grid resolution, inadequate surface and boundary layer formulations, and the lack of full coupling to a dynamic ocean. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The recent modeling effort is to develop and test a fully coupled atmosphere-wave-ocean modeling system that is capable of resolving the eye and eyewall in a hurricane at ~1 km grid resolution. The new challenges for these very high resolution models are the corresponding physical representations at 1-km scale, including microphysics, sub-grid turbulence parameterization, atmospheric boundary layer, physical processes at the air-sea interface with surface waves among others. The lack of accurate initial conditions for high-resolution hurricane modeling presents another major challenge. Improvements in initial conditions rest on the use of more airborne and remotely sensed observations in high-resolution assimilation systems and on the application of advanced assimilation schemes to hurricanes. This study aimed to provide an overview of these new challenges using high-resolution model simulations of Hurricanes Isabel (2003), Frances (2004), Katrina and Rita (2005) that were observed extensively by two recent field programs, namely, the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-Hurricane in 2003-2004 and the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005.

  1. High-Resolution Scintimammography: A Pilot Study

    SciTech Connect

    Rachel F. Brem; Joelle M. Schoonjans; Douglas A. Kieper; Stan Majewski; Steven Goodman; Cahid Civelek

    2002-07-01

    This study evaluated a novel high-resolution breast-specific gamma camera (HRBGC) for the detection of suggestive breast lesions. Methods: Fifty patients (with 58 breast lesions) for whom a scintimammogram was clinically indicated were prospectively evaluated with a general-purpose gamma camera and a novel HRBGC prototype. The results of conventional and high-resolution nuclear studies were prospectively classified as negative (normal or benign) or positive (suggestive or malignant) by 2 radiologists who were unaware of the mammographic and histologic results. All of the included lesions were confirmed by pathology. Results: There were 30 benign and 28 malignant lesions. The sensitivity for detection of breast cancer was 64.3% (18/28) with the conventional camera and 78.6% (22/28) with the HRBGC. The specificity with both systems was 93.3% (28/30). For the 18 nonpalpable lesions, sensitivity was 55.5% (10/18) and 72.2% (13/18) with the general-purpose camera and the HRBGC, respectively. For lesions 1 cm, 7 of 15 were detected with the general-purpose camera and 10 of 15 with the HRBGC. Four lesions (median size, 8.5 mm) were detected only with the HRBGC and were missed by the conventional camera. Conclusion: Evaluation of indeterminate breast lesions with an HRBGC results in improved sensitivity for the detection of cancer, with greater improvement shown for nonpalpable and 1-cm lesions.

  2. High Resolution Camera for Mapping Titan Surface

    NASA Technical Reports Server (NTRS)

    Reinhardt, Bianca

    2011-01-01

    Titan, Saturn's largest moon, has a dense atmosphere and is the only object besides Earth to have stable liquids at its surface. The Cassini/Huygens mission has revealed the extraordinary breadth of geological processes shaping its surface. Further study requires high resolution imaging of the surface, which is restrained by light absorption by methane and scattering from aerosols. The Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft has demonstrated that Titan's surface can be observed within several windows in the near infrared, allowing us to process several regions in order to create a geological map and to determine the morphology. Specular reflections monitored on the lakes of the North Pole show little scattering at 5 microns, which, combined with the present study of Titan's northern pole area, refutes the paradigm that only radar can achieve high resolution mapping of the surface. The present data allowed us to monitor the evolution of lakes, to identify additional lakes at the Northern Pole, to examine Titan's hypothesis of non-synchronous rotation and to analyze the albedo of the North Pole surface. Future missions to Titan could carry a camera with 5 micron detectors and a carbon fiber radiator for weight reduction.

  3. High Resolution Laser Spectroscopy of Rhenium Carbide

    NASA Astrophysics Data System (ADS)

    Adam, Allan G.; Hall, Ryan M.; Linton, Colan; Tokaryk, Dennis

    2014-06-01

    The first spectroscopic study of rhenium carbide, ReC, has been performed using both low and high resolution techniques to collect rotationally resolved electronic spectra from 420 to 500nm. Laser-induced fluorescence (LIF), and dispersed fluorescence (DF) techniques were employed. ReC was formed in our laser ablation molecular jet apparatus by ablating a rhenium target rod in the presence of 1% methane in helium. The low resolution spectrum identified four bands of an electronic system belonging to ReC, three of which have been studied so far. Extensive hyperfine structure composed of six hyperfine components was observed in the high resolution spectrum, as well as a clear distinction between the 187ReC and 185ReC isotopologues. The data seems consistent with a ^4Π - ^4Σ- transition, as was predicted before experimentation. Dispersed fluorescence spectra allowed us to determine the ground state vibrational frequency (ωe"=994.4 ± 0.3 wn), and to identify a low-lying electronically excited state at Te"=1118.4 ± 0.4 wn with a vibrational frequency of ωe"=984 ± 2 wn. Personal communication, F. Grein, University of New Brunswick

  4. Comparative Very-High-Resolution VUV Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lewis, B. R.; Gibson, S. T.; Baldwin, K. G. H.; Dooley, P. M.; Waring, K.

    Despite their importance to the photochemistry of the terrestrial atmosphere, and many experimental studies, previous characterization of the Schumann-Runge (SR) bands of O2, B3 Σ u- <- X3 Σ_g^- (v, 0) (1750-2050 Å) has been limited by poor experimental resolution. In addition, our understanding of the SR spectrum is incomplete, many rovibrational transitions in the perturbed region of the spectrum [B(v > 15)] remaining unassigned. We review new very-high-resolution measurements of the O2 photoabsorption cross section in the SR bands. Tunable, narrow-bandwidth background vacuum-ultraviolet (VUV) radiation for the measurements ( 7 × 105 resolving power) was generated by the two-photon-resonant difference-frequency four-wave mixing in Xe of excimer-pumped dye-laser radiation. With the aid of these cross-section measurements, rovibrational and line-shape analyses have led to new insights into the molecular structure and predissociation dynamics of O2. The current VUV laser-spectroscopic measurements are shown to compare favourably with results from two other very-high-resolution experimental techniques, namely laser-induced fluorescence spectroscopy and VUV Fourier-transform spectroscopy, the latter performed using a synchrotron source.

  5. Limiting liability via high resolution image processing

    SciTech Connect

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  6. High-Resolution Shadowing of Transfer RNA

    PubMed Central

    Abermann, Reinhard J.; Yoshikami, Doju

    1972-01-01

    High-resolution shadowing with metals that melt at high temperatures was used to study macromolecules. Molecules of transfer RNA shadowed with tantalum-tungsten are readily visualized in an electron microscope. Mounting procedures for tRNA were perfected that reproducibly gave uniform distributions of both monomeric and dimeric tRNA particles, and allowed a statistical assessment of their gross shapes and sizes. Monomeric tRNA yielded a fairly homogeneous population of rod-shaped particles, with axial dimensions of about 40 × 85 Å. Dimers of yeast alanine tRNA held together by hydrogen bonds and dimers constructed by covalent linkage of the amino-acid acceptor (3′-) termini of monomers both gave slightly more heterogeneous populations of particles. Yet, their structures were also basically rod shaped, with their lengths ranging to about twice that of the monomer; this result indicates an end-to-end arrangement of the monomeric units within both dimers. These results suggest that the amino-acid acceptor terminus and the anticodon region are at the ends of the rod-shaped, dehydrated tRNA monomer visible by electron microscopy, consistent with the generally accepted view of tRNA structure in solution suggested by other workers using other methods. This study demonstrates that high-resolution shadowing with tantalum-tungsten provides a means to examine the three-dimensional structures of relatively small biological macromolecules. Images PMID:4504373

  7. High Resolution Spectroscopy to Support Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Venkataraman, Malathy Devi

    2003-01-01

    Spectroscopic parameters (such as line position, intensity, broadening and shifting coefficients and their temperature dependences, line mixing coefficients etc.) for various molecular species of atmospheric interest are determined. In order to achieve these results, infrared spectra of several molecular bands are obtained using high-resolution recording instruments such as tunable diode laser spectrometer and Fourier transform spectrometers. Using sophisticated analysis routines (Multispectrum nonlinear least squares technique) these high-resolution infrared spectra are processed to determine the various spectral line parameters that are cited above. Spectra were taken using the McMath-Pierce Fourier transform spectrometer (FTS) at the National Solar Observatory on Kitt Peak, Arizona as well as the Bruker FTS at the Pacific Northwest National Laboratory (PNNL) at Richland, Washington. Most of the spectra are acquired not only at room temperature, but also at several different cold temperatures. This procedure is necessary to study the variation of the spectral line parameters as a function of temperature in order to simulate the Earth's and other planetary atmospheric environments. Depending upon the strength or weakness of the various bands recorded and analyzed, the length(s) of the absorption cells in which the gas samples under study are kept varied from a few centimeters up to several meters and the sample temperatures varied from approximately +30 C to -63 C. Research on several infrared bands of various molecular species and their isotopomers are undertaken. Those studies are briefly described.

  8. Adaptive optics with pupil tracking for high resolution retinal imaging.

    PubMed

    Sahin, Betul; Lamory, Barbara; Levecq, Xavier; Harms, Fabrice; Dainty, Chris

    2012-02-01

    Adaptive optics, when integrated into retinal imaging systems, compensates for rapidly changing ocular aberrations in real time and results in improved high resolution images that reveal the photoreceptor mosaic. Imaging the retina at high resolution has numerous potential medical applications, and yet for the development of commercial products that can be used in the clinic, the complexity and high cost of the present research systems have to be addressed. We present a new method to control the deformable mirror in real time based on pupil tracking measurements which uses the default camera for the alignment of the eye in the retinal imaging system and requires no extra cost or hardware. We also present the first experiments done with a compact adaptive optics flood illumination fundus camera where it was possible to compensate for the higher order aberrations of a moving model eye and in vivo in real time based on pupil tracking measurements, without the real time contribution of a wavefront sensor. As an outcome of this research, we showed that pupil tracking can be effectively used as a low cost and practical adaptive optics tool for high resolution retinal imaging because eye movements constitute an important part of the ocular wavefront dynamics.

  9. Quantification of Murine Pancreatic Tumors by High Resolution Ultrasound

    PubMed Central

    Sastra, Stephen A.; Olive, Kenneth P.

    2013-01-01

    Summary Ultrasonography is a powerful imaging modality that enables non-invasive, real time visualization of abdominal organs and tissues. This technology may be adapted for use in mice through the utilization of higher frequency transducers, allowing for extremely high resolution imaging of the mouse pancreas. This technique is particularly well-suited to pancreas imaging due to the ultrasonographic properties of the normal mouse pancreas, easily accessible imaging planes for the head and tail of the mouse pancreas, and the comparative difficulty in imaging the mouse pancreas with other technologies. A suite of measurements tools is available to characterize the normal and diseased states of tissues. Of particular utility for cancer applications is the ability to use tomography to construct a 3D tumor volume, enabling longitudinal imaging studies to track tumor development, or response to therapies. Here, we describe a detailed method for performing high resolution ultrasound to detect and measure pancreatic lesions in a genetically engineered mouse model of pancreatic ductal using the VisualSonics Vevo2100 High Resolution Ultrasound System. The method includes preparation of the animal for imaging, 2D and 3D image acquisition, and post-acquisition analysis of tumors volumes. The combined procedure has been utilized extensively by our group and others for the preclinical evaluation of novel therapeutic agents in the treatment of pancreatic ductal adenocarcinoma (1–4). PMID:23359158

  10. Machine Learning Based Road Detection from High Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Lv, Ye; Wang, Guofeng; Hu, Xiangyun

    2016-06-01

    At present, remote sensing technology is the best weapon to get information from the earth surface, and it is very useful in geo- information updating and related applications. Extracting road from remote sensing images is one of the biggest demand of rapid city development, therefore, it becomes a hot issue. Roads in high-resolution images are more complex, patterns of roads vary a lot, which becomes obstacles for road extraction. In this paper, a machine learning based strategy is presented. The strategy overall uses the geometry features, radiation features, topology features and texture features. In high resolution remote sensing images, the images cover a great scale of landscape, thus, the speed of extracting roads is slow. So, roads' ROIs are firstly detected by using Houghline detection and buffering method to narrow down the detecting area. As roads in high resolution images are normally in ribbon shape, mean-shift and watershed segmentation methods are used to extract road segments. Then, Real Adaboost supervised machine learning algorithm is used to pick out segments that contain roads' pattern. At last, geometric shape analysis and morphology methods are used to prune and restore the whole roads' area and to detect the centerline of roads.

  11. High resolution, MRI-based, segmented, computerized head phantom

    SciTech Connect

    Zubal, I.G.; Harrell, C.R.; Smith, E.O.; Smith, A.L.; Krischlunas, P.

    1999-01-01

    The authors have created a high-resolution software phantom of the human brain which is applicable to voxel-based radiation transport calculations yielding nuclear medicine simulated images and/or internal dose estimates. A software head phantom was created from 124 transverse MRI images of a healthy normal individual. The transverse T2 slices, recorded in a 256x256 matrix from a GE Signa 2 scanner, have isotropic voxel dimensions of 1.5 mm and were manually segmented by the clinical staff. Each voxel of the phantom contains one of 62 index numbers designating anatomical, neurological, and taxonomical structures. The result is stored as a 256x256x128 byte array. Internal volumes compare favorably to those described in the ICRP Reference Man. The computerized array represents a high resolution model of a typical human brain and serves as a voxel-based anthropomorphic head phantom suitable for computer-based modeling and simulation calculations. It offers an improved realism over previous mathematically described software brain phantoms, and creates a reference standard for comparing results of newly emerging voxel-based computations. Such voxel-based computations lead the way to developing diagnostic and dosimetry calculations which can utilize patient-specific diagnostic images. However, such individualized approaches lack fast, automatic segmentation schemes for routine use; therefore, the high resolution, typical head geometry gives the most realistic patient model currently available.

  12. Deletion of core components of the plastid protein import machinery causes differential arrest of embryo development in Arabidopsis thaliana.

    PubMed

    Hust, B; Gutensohn, M

    2006-01-01

    Among the genes that have recently been pinpointed to be essential for plant embryo development a large number encodes plastid proteins suggesting that embryogenesis is linked to plastid localized processes. However, nuclear encoded plastid proteins are synthesized as precursors in the cytosol and subsequently have to be transported across the plastid envelopes by a complex import machinery. We supposed that deletion of components of this machinery should allow a more general assessment of the role of plastids in embryogenesis since it will not only affect single proteins but instead inhibit the accumulation of most plastid proteins. Here we have characterized three Arabidopsis thaliana mutants lacking core components of the Toc complex, the protein translocase in the outer plastid envelope membrane, which indeed show embryo lethal phenotypes. Remarkably, embryo development in the atToc75-III mutant, lacking the pore forming component of the translocase, was arrested extremely early at the two-cell stage. In contrast, despite the complete or almost complete lack of the import receptors Toc34 and Toc159, embryo development in the a tToc33/34 and atToc132/159 mutants proceeded slowly and was arrested later at the transition to the globular and the heart stage, respectively. These data demonstrate a strict dependence of cell division and embryo development on functional plastids as well as specific functions of plastids at different stages of embryogenesis. In addition, our analysis suggest that not all components of the translocase are equally essential for plastid protein import in vivo. PMID:16435266

  13. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  14. Clementine High Resolution Camera Mosaicking Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  15. Clementine High Resolution Camera Mosaicking Project

    NASA Astrophysics Data System (ADS)

    1998-10-01

    This report constitutes the final report for NASA Contract NASW-5054. This project processed Clementine I high resolution images of the Moon, mosaicked these images together, and created a 22-disk set of compact disk read-only memory (CD-ROM) volumes. The mosaics were produced through semi-automated registration and calibration of the high resolution (HiRes) camera's data against the geometrically and photometrically controlled Ultraviolet/Visible (UV/Vis) Basemap Mosaic produced by the US Geological Survey (USGS). The HiRes mosaics were compiled from non-uniformity corrected, 750 nanometer ("D") filter high resolution nadir-looking observations. The images were spatially warped using the sinusoidal equal-area projection at a scale of 20 m/pixel for sub-polar mosaics (below 80 deg. latitude) and using the stereographic projection at a scale of 30 m/pixel for polar mosaics. Only images with emission angles less than approximately 50 were used. Images from non-mapping cross-track slews, which tended to have large SPICE errors, were generally omitted. The locations of the resulting image population were found to be offset from the UV/Vis basemap by up to 13 km (0.4 deg.). Geometric control was taken from the 100 m/pixel global and 150 m/pixel polar USGS Clementine Basemap Mosaics compiled from the 750 nm Ultraviolet/Visible Clementine imaging system. Radiometric calibration was achieved by removing the image nonuniformity dominated by the HiRes system's light intensifier. Also provided are offset and scale factors, achieved by a fit of the HiRes data to the corresponding photometrically calibrated UV/Vis basemap, that approximately transform the 8-bit HiRes data to photometric units. The sub-polar mosaics are divided into tiles that cover approximately 1.75 deg. of latitude and span the longitude range of the mosaicked frames. Images from a given orbit are map projected using the orbit's nominal central latitude. Polar mosaics are tiled into squares 2250 pixels on a

  16. High-Resolution Broadband Spectral Interferometry

    SciTech Connect

    Erskine, D J; Edelstein, J

    2002-08-09

    We demonstrate solar spectra from a novel interferometric method for compact broadband high-resolution spectroscopy. The spectral interferometer (SI) is a hybrid instrument that uses a spectrometer to externally disperse the output of a fixed-delay interferometer. It also has been called an externally dispersed interferometer (EDI). The interferometer can be used with linear spectrometers for imaging spectroscopy or with echelle spectrometers for very broad-band coverage. EDI's heterodyning technique enhances the spectrometer's response to high spectral-density features, increasing the effective resolution by factors of several while retaining its bandwidth. The method is extremely robust to instrumental insults such as focal spot size or displacement. The EDI uses no moving parts, such as purely interferometric FTS spectrometers, and can cover a much wider simultaneous bandpass than other internally dispersed interferometers (e.g. HHS or SHS).

  17. Ultra-high resolution computed tomography imaging

    DOEpatents

    Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.

    2002-01-01

    A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.

  18. High-resolution MRI: in vivo histology?

    PubMed Central

    Bridge, Holly; Clare, Stuart

    2005-01-01

    For centuries scientists have been fascinated with the question of how the brain works. Investigators have looked at both where different functions are localized and how the anatomical microstructure varies across the brain surface. Here we discuss how advances in magnetic resonance imaging (MRI) have allowed in vivo visualization of the fine structure of the brain that was previously only visible in post-mortem brains. We present data showing the correspondence between definitions of the primary visual cortex defined anatomically using very high-resolution MRI and functionally using functional MRI. We consider how this technology can be applied to allow the investigation of brains that differ from normal, and what this ever-evolving technology may be able to reveal about in vivo brain structure in the next few years. PMID:16553313

  19. High-resolution reconstruction for terahertz imaging.

    PubMed

    Xu, Li-Min; Fan, Wen-Hui; Liu, Jia

    2014-11-20

    We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.

  20. HIRIS - The High Resolution Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff

    1988-01-01

    The High-Resolution Imaging Spectrometer (HIRIS) is a JPL facility instrument designed for NASA's Earth Observing System (Eos).It will have 10-nm wide spectral bands from 0.4-2.5 microns at 30 m spatial resolution over a 30 km swath. The spectral resolution allows identification of many minerals in rocks and soils, important algal pigments in oceans and inland waters, spectral changes associated with plant canopy biochemistry, composition of atmospheric aerosols, and grain size of snow and its contamination by absorbing impurities. The bands wil have 12-bit quantization over a dynamic range suitable for bright targets, such as snow. For targets of low brightness, such as water bodies, image-motion compensation will allow gains up to a factor of eight to increase signal-to-noise ratios. In the 824-km orbit altitude proposed for Eos, the crosstrack pointing capability will allow 4-5 views during a 16-day revisit cycle.

  1. Constructing a WISE High Resolution Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Sheth, K.; Stanford, S.; Wright, E.

    2012-08-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 μm, 4.6 μm, 12 μm, and 22 μm. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  2. Computer synthesis of high resolution electron micrographs

    NASA Technical Reports Server (NTRS)

    Nathan, R.

    1976-01-01

    Specimen damage, spherical aberration, low contrast and noisy sensors combine to prevent direct atomic viewing in a conventional electron microscope. The paper describes two methods for obtaining ultra-high resolution in biological specimens under the electron microscope. The first method assumes the physical limits of the electron objective lens and uses a series of dark field images of biological crystals to obtain direct information on the phases of the Fourier diffraction maxima; this information is used in an appropriate computer to synthesize a large aperture lens for a 1-A resolution. The second method assumes there is sufficient amplitude scatter from images recorded in focus which can be utilized with a sensitive densitometer and computer contrast stretching to yield fine structure image details. Cancer virus characterization is discussed as an illustrative example. Numerous photographs supplement the text.

  3. High resolution detection system of capillary electrophoresis

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Wang, Li Qiang; Shi, Yan; Zheng, Hua; Lu, Zu Kang

    2007-12-01

    The capillary electrophoresis (CE) with laser induced fluorescence detection (LIFD) system was founded according to confocal theory. The 3-D adjustment of the exciting and collecting optical paths was realized. The photomultiplier tube (PMT) is used and the signals are processed by a software designed by ourselves. Under computer control, high voltage is applied to appropriate reservoirs and to inject and separate DNA samples respectively. Two fluorescent dyes Thiazole Orange (TO) and SYBR Green I were contrasted. With both of the dyes, high signals-to-noise images were obtained with the CE-LIFD system. The single-bases can be distinguished from the electrophoretogram and high resolution of DNA sample separation was obtained.

  4. High-resolution adaptive spiking sonar.

    PubMed

    Alvarez, Fernando J; Kuc, Roman

    2009-05-01

    A new sonar system based on the conventional 6500 ranging module is presented that generates a sequence of spikes whose temporal density is related to the strength of the received echo. This system notably improves the resolution of a previous system by shortening the discharge cycle of the integrator included in the module. The operation is controlled by a PIC18F452 device, which can adapt the duration of the discharge to changing features of the echo, providing the system with a novel adaptive behavior. The performance of the new sensor is characterized and compared with that of the previous system by performing rotational scans of simple objects with different reflecting strengths. Some applications are suggested that exploit the high resolution and adaptability of this sensor.

  5. Constructing a WISE High Resolution Galaxy Atlas

    NASA Technical Reports Server (NTRS)

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Cluver, M.; Assef, Roberto J.; Benford, D.; Blain, A.; Bridge, C.; Donoso, E.; Eisenhardt, P.; Fowler, J.; Koribalski, B.; Lake, S.; Neill, James D.; Seibert, M.; Stanford, S.; Wright, E.

    2012-01-01

    After eight months of continuous observations, the Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at 3.4 micron, 4.6 micron, 12 micron, and 22 micron. We have begun a dedicated WISE High Resolution Galaxy Atlas project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we summarize the deconvolution techniques used to significantly improve the spatial resolution of WISE imaging, specifically designed to study the internal anatomy of nearby galaxies. As a case study, we present results for the galaxy NGC 1566, comparing the WISE enhanced-resolution image processing to that of Spitzer, Galaxy Evolution Explorer, and ground-based imaging. This is the first paper in a two-part series; results for a larger sample of nearby galaxies are presented in the second paper.

  6. Limits of simulation based high resolution EBSD.

    PubMed

    Alkorta, Jon

    2013-08-01

    High resolution electron backscattered diffraction (HREBSD) is a novel technique for a relative determination of both orientation and stress state in crystals through digital image correlation techniques. Recent works have tried to use simulated EBSD patterns as reference patterns to achieve the absolute orientation and stress state of crystals. However, a precise calibration of the pattern centre location is needed to avoid the occurrence of phantom stresses. A careful analysis of the projective transformation involved in the formation of EBSD patterns has permitted to understand these phantom stresses. This geometrical analysis has been confirmed by numerical simulations. The results indicate that certain combinations of crystal strain states and sample locations (pattern centre locations) lead to virtually identical EBSD patterns. This ambiguity makes the problem of solving the absolute stress state of a crystal unfeasible in a single-detector configuration. PMID:23676453

  7. A simple, high efficiency, high resolution spectropolarimeter

    NASA Astrophysics Data System (ADS)

    Barden, Samuel C.

    2012-09-01

    A simple concept is described that uses volume phase holographic gratings as polarizing dispersers for a high efficiency, high resolution spectropolarimeter. Although the idea has previously been mentioned in the literature as possible, such a concept has not been explored in detail. Performance analysis is presented for a VPHG spectropolarimeter concept that could be utilized for both solar and night-time astronomy. Instrumental peak efficiency can approach 100% with spectral dispersions permitting R~200,000 spectral resolution with diffraction limited telescopes. The instrument has 3-channels: two dispersed image planes with orthogonal polarization and an undispersed image plane. The concept has a range of versatility where it could be configured (with appropriate half-wave plates) for slit-fed spectroscopy or without slits for snapshot/hyperspectral/tomographic spectroscopic imaging. Multiplex gratings could also be used for the simultaneous recording of two separate spectral bands or multiple instruments could be daisy chained with beam splitters for further spectral coverage.

  8. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  9. Pyramidal fractal dimension for high resolution images

    NASA Astrophysics Data System (ADS)

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.

  10. Pyramidal fractal dimension for high resolution images.

    PubMed

    Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2016-07-01

    Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images. PMID:27475069

  11. Alternative high-resolution lithographic technologies for optical applications

    NASA Astrophysics Data System (ADS)

    Zeitner, Uwe D.; Weichelt, Tina; Bourgin, Yannick; Kinder, Robert

    2016-03-01

    Modern optical applications have special demands on the lithographic fabrication technologies. This relates to the lateral shape of the structures as well as to their three dimensional surface profile. On the other hand optical nano-structures are often periodic which allows for the use of dedicated lithographic exposure principles. The paper briefly reviews actual developments in the field of optical nano-structure generation. Special emphasis will be given to two technologies: electron-beam lithography based on a flexible cell-projection method and the actual developments in diffractive mask aligner lithography. Both offer a cost effective fabrication alternative for high resolution structures or three-dimensional optical surface profiles.

  12. [Heart arrest].

    PubMed

    Chiarella, F; Giovannini, E; Bozzano, A; Caristo, G; Delise, P; Fedele, F; Fera, M S; Lavalle, C; Roghi, A; Valagussa, F

    2001-03-01

    Cardiac arrest is one of the leading causes of mortality in industrialized countries and is mainly due to ischemic heart disease. According to ISTAT estimates, approximately 45,000 sudden deaths occur annually in Italy whereas according to the World Health Organization, its incidence is 1 per 1000 persons. The most common cause of cardiac arrest is ventricular fibrillation due to an acute ischemic episode. During acute ischemia the onset of a ventricular tachyarrhythmia is sudden, unpredictable and often irreversible and lethal. Each minute that passes, the probability that the patient survives decreases by 10%. For this reason, the first 10 min are considered to be priceless for an efficacious first aid. The possibility of survival depends on the presence of witnesses, on the heart rhythm and on the resolution of the arrhythmia. In the majority of cases, the latter is possible by means of electrical defibrillation followed by the reestablishment of systolic function. An increase in equipment alone does not suffice for efficacious handling of cardiac arrest occurring outside the hospital premises. Above all, an adequate intervention strategy is required. Ambulance personnel must be well trained and capable of intervening rapidly, possibly within the first 5 min. The key to success lies in the diffusion and proper use of defibrillators. The availability of new generation instruments, the external automatic defibrillators, encourages their widespread use. On the territory, these emergencies are the responsibility of the 118 organization based, according to the characteristics specific to each country, on the regulated coordination between the operative command, the crews and the first-aid means. Strategies for the handling of these emergencies within hospitals have been proposed by the Conference of Bethesda and tend to guarantee an efficacious resuscitation with a maximum latency of 2 min between cardiac arrest and the first electric shock. The diffusion of external

  13. Meiotic arrest in vitro by phosphodiesterase 3-inhibitor enhances maturation capacity of human oocytes and allows subsequent embryonic development.

    PubMed

    Nogueira, D; Ron-El, R; Friedler, S; Schachter, M; Raziel, A; Cortvrindt, R; Smitz, J

    2006-01-01

    Controlling nuclear maturation during oocyte culture might improve nuclear-cytoplasmic maturation synchrony. We aimed to evaluate the quality of in vitro-matured, germinal vesicle (GV)-stage human oocytes following a prematuration culture (PMC) with a meiotic arrester, phosphodiesterase 3-inhibitor (PDE3-I). Follicles (diameter, 6-12 mm) were retrieved 34-36 h post-hCG administration from informed, consenting patients who had undergone controlled ovarian stimulation. Cumulus-enclosed oocytes (CEOs) presenting moderate expansion or full compaction were placed in PMC with the PDE3-I, Org9935, for 24 or 48 h. Subsequently, oocytes were removed from PMC, denuded of cumulus cells, matured in vitro, and fertilized, and the resulting embryos were cultured. In the presence of PDE3-I, approximately 98% of the oocytes were arrested at the GV stage. Following PDE3-I removal, oocytes acquired a higher maturation rate than oocytes that were immediately denuded of cumulus cells after retrieval and in vitro matured (67% vs. 46%, P = 0.01). In controls, immature CEOs retrieved with moderate expansion reached higher maturation rates compared to fully compacted CEOs, but in PMC groups, high values of maturation were achieved for both morphological classes of CEOs. No effect of PMC on fertilization was observed. A 24-h PMC period proved to be the most effective in preserving embryonic integrity. Similar proportions of nuclear abnormalities were observed in embryos of all in vitro groups. In summary, PMC with the specific PDE3-I had a beneficial effect on human CEOs by enhancing maturation, benefiting mainly the fully compacted CEOs. This resulted in an increased yield of mature oocytes available for insemination without compromising embryonic development. These results suggest that applying an inhibitor to control the rate of nuclear maturity by regulating intraoocyte PDE3 activity may allow the synchronization of nuclear and ooplasmic maturation.

  14. A High Resolution Microprobe Study of EETA79001 Lithology C

    NASA Technical Reports Server (NTRS)

    Schrader, Christian M.; Cohen, B. A.; Donovan, J. J.; Vicenzi, E. P.

    2010-01-01

    Antarctic meteorite EETA79001 has received substantial attention for possibly containing a component of Martian soil in its impact glass (Lithology C) [1]. The composition of Martian soil can illuminate near-surface processes such as impact gardening [2] and hydrothermal and volcanic activity [3,4]. Impact melts in meteorites represent our most direct samples of Martian regolith. We present the initial findings from a high-resolution electron microprobe study of Lithology C from Martian meteorite EETA79001. As this study develops we aim to extract details of a potential soil composition and to examine Martian surface processes using elemental ratios and correlations.

  15. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability, and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  16. Design of a High Resolution Hexapod Positioning Mechanism

    NASA Technical Reports Server (NTRS)

    Britt, Jamie; Brodeur, Stephen J. (Technical Monitor)

    2001-01-01

    This paper describes the development of a high resolution, six-degree of freedom positioning mechanism. This mechanism, based on the Stewart platform concept, was designed for use with the Developmental Comparative Active Optics Telescope Testbed (DCATT), a ground-based technology testbed for the Next Generation Space Telescope (NGST). The mechanism provides active control to the DCATT telescope's segmented primary mirror. Emphasis is on design decisions and technical challenges. Significant issues include undesirable motion properties of PZT-inchworm actuators, testing difficulties, dimensional stability and use of advanced composite materials. Supporting test data from prototype mechanisms is presented.

  17. Applied high resolution geophysical methods: Offshore geoengineering hazards

    SciTech Connect

    Trabant, P.K.

    1984-01-01

    This book is an examination of the purpose, methodology, equipment, and data interpretation of high-resolution geophysical methods, which are used to assess geological and manmade engineering hazards at offshore construction locations. It is a state-of-the-art review. Contents: 1. Introduction. 2. Maring geophysics, an overview. 3. Marine geotechnique, an overview. 4. Echo sounders. 5. Side scan sonar. 6. Subbottom profilers. 7. Seismic sources. 8. Single-channel seismic reflection systems. 9. Multifold acquisition and digital processing. 10. Marine magnetometers. 11. Marine geoengineering hazards. 12. Survey organization, navigation, and future developments. Appendix. Glossary. References. Index.

  18. High resolution scanning electron microscopy of plasmodesmata.

    PubMed

    Brecknock, Sarah; Dibbayawan, Teresa P; Vesk, Maret; Vesk, Peter A; Faulkner, Christine; Barton, Deborah A; Overall, Robyn L

    2011-10-01

    Symplastic transport occurs between neighbouring plant cells through functionally and structurally dynamic channels called plasmodesmata (PD). Relatively little is known about the composition of PD or the mechanisms that facilitate molecular transport into neighbouring cells. While transmission electron microscopy (TEM) provides 2-dimensional information about the structural components of PD, 3-dimensional information is difficult to extract from ultrathin sections. This study has exploited high-resolution scanning electron microscopy (HRSEM) to reveal the 3-dimensional morphology of PD in the cell walls of algae, ferns and higher plants. Varied patterns of PD were observed in the walls, ranging from uniformly distributed individual PD to discrete clusters. Occasionally the thick walls of the giant alga Chara were fractured, revealing the surface morphology of PD within. External structures such as spokes, spirals and mesh were observed surrounding the PD. Enzymatic digestions of cell wall components indicate that cellulose or pectin either compose or stabilise the extracellular spokes. Occasionally, the PD were fractured open and desmotubule-like structures and other particles were observed in their central regions. Our observations add weight to the argument that Chara PD contain desmotubules and are morphologically similar to higher plant PD.

  19. High-resolution imaging using endoscopic holography

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1990-08-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help to their control. 1.

  20. Holographic high-resolution endoscopic image recording

    NASA Astrophysics Data System (ADS)

    Bjelkhagen, Hans I.

    1991-03-01

    Endoscopic holography or endoholography combines the features of endoscopy and holography. The purpose of endoholographic imaging is to provide the physician with a unique means of extending diagnosis by providing a life-like record of tissue. Endoholographic recording will provide means for microscopic examination of tissue and in some cases may obviate the need to excise specimens for biopsy. In this method holograms which have the unique properties of three-dimensionality large focal depth and high resolution are made with a newly designed endoscope. The endoscope uses a single-mode optical fiber for illumination and single-beam reflection holograms are recorded in close contact with the tissue at the distal end of the endoscope. The holograms are viewed under a microscope. By using the proper combinations of dyes for staining specific tissue types with various wavelengths of laser illumination increased contrast on the cellular level can be obtained. Using dyes such as rose bengal in combination with the 514. 5 nm line of an argon ion laser and trypan blue or methylene blue with the 647. 1 nm line of a krypton ion laser holograms of the stained colon of a dog showed the architecture of the colon''s columnar epithelial cells. It is hoped through chronological study using this method in-vivo an increased understanding of the etiology and pathology of diseases such as Crohn''s diseases colitis proctitis and several different forms of cancer will help

  1. High resolution animated scenes from stills.

    PubMed

    Lin, Zhouchen; Wang, Lifeng; Wang, Yunbo; Kang, Sing Bing; Fang, Tian

    2007-01-01

    Current techniques for generating animated scenes involve either videos (whose resolution is limited) or a single image (which requires a significant amount of user interaction). In this paper, we describe a system that allows the user to quickly and easily produce a compelling-looking animation from a small collection of high resolution stills. Our system has two unique features. First, it applies an automatic partial temporal order recovery algorithm to the stills in order to approximate the original scene dynamics. The output sequence is subsequently extracted using a second-order Markov Chain model. Second, a region with large motion variation can be automatically decomposed into semiautonomous regions such that their temporal orderings are softly constrained. This is to ensure motion smoothness throughout the original region. The final animation is obtained by frame interpolation and feathering. Our system also provides a simple-to-use interface to help the user to fine-tune the motion of the animated scene. Using our system, an animated scene can be generated in minutes. We show results for a variety of scenes. PMID:17356221

  2. High-resolution microwave images of Saturn

    NASA Technical Reports Server (NTRS)

    Grossman, A. W.; Muhleman, D. O.; Berge, G. L.

    1989-01-01

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern midlatitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH3 mixing ratio to be 0.00012 in a region just below the NH3 clouds, while the observed bright band indicates a 25 percent relative decrease of NH3 in northern midlatitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.

  3. Laser wavelength comparison by high resolution interferometry.

    PubMed

    Layer, H P; Deslattes, R D; Schweitzer, W G

    1976-03-01

    High resolution interferometry has been used to determine the wavelength ratio between two molecularly stabilized He-Ne lasers, one locked to a methane absorption at 3.39 microm and the other locked to the k peak of (129)I(2) at 633 nm. An optical beat frequency technique gave fractional orders while a microwave sideband method yielded the integer parts. Conventional (third derivative) peak seeking servoes stabilized both laser and cavity lengths. Reproducibility of the electronic control system and optics was a few parts in 10(12), while systematic errors associated with curvature of the cavity mirrors limited the accuracy of the wavelength ratio measurement to 2 parts in 10(10). The measured wavelength ratio of the methane stabilized He-Ne laser at 3.39 microm [P(7) line, nu(3) band] to the (129)I(2) (k peak) stabilized He-Ne laser at 633 nm was 5.359 049 260 6 (0.000 2 ppm). This ratio agrees with that calculated from the (lower accuracy) results of earlier wavelength measurements made relative to the (86)Kr standard. Its higher accuracy thus permits a provisional extension of the frequency scale based on the cesium oscillator into the visible spectrum.

  4. High-resolution microwave images of saturn.

    PubMed

    Grossman, A W; Muhleman, D O; Berge, G L

    1989-09-15

    An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern mid-latitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH(3) mixing ratio to be 1.2 x 10(-4) in a region just below the NH(3) clouds, while the observed bright band indicates a 25 percent relative decrease of NH(3) in northern mid-latitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.

  5. Metallicity determination of M dwarfs. High-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindgren, Sara; Heiter, Ulrike; Seifahrt, Andreas

    2016-02-01

    Context. Several new techniques to determine the metallicity of M dwarfs with better precision have been developed over the last decades. However, most of these studies were based on empirical methods. In order to enable detailed abundance analysis, standard methods established for warmer solar-like stars, i.e. model-dependent methods using fitting of synthetic spectra, still need to be used. Aims: In this work we continue the reliability confirmation and development of metallicity determinations of M dwarfs using high-resolution infrared spectra. The reliability was confirmed through analysis of M dwarfs in four binary systems with FGK dwarf companions and by comparison with previous optical studies of the FGK dwarfs. Methods: The metallicity determination was based on spectra taken in the J band (1.1-1.4 μm) with the CRIRES spectrograph. In this part of the infrared, the density of stellar molecular lines is limited, reducing the amount of blends with atomic lines enabling an accurate continuum placement. Lines of several atomic species were used to determine the stellar metallicity. Results: All binaries show excellent agreement between the derived metallicity of the M dwarf and its binary companion. Our results are also in good agreement with values found in the literature. Furthermore, we propose an alternative way to determine the effective temperature of M dwarfs of spectral types later than M2 through synthetic spectral fitting of the FeH lines in our observed spectra. Conclusions: We have confirmed that a reliable metallicity determination of M dwarfs can be achieved using high-resolution infrared spectroscopy. We also note that metallicites obtained with photometric metallicity calibrations available for M dwarfs only partly agree with the results we obtain from high-resolution spectroscopy. Based on data obtained at ESO-VLT, Paranal Observatory, Chile, Program ID 082.D-0838(A) and 084.D-1042(A).

  6. SPIDER Progress Towards High Resolution Correlated Fission Product Data

    NASA Astrophysics Data System (ADS)

    Shields, Dan; Meierbachtol, Krista; Tovesson, Fredrik; Arnold, Charles; Blackeley, Rick; Bredeweg, Todd; Devlin, Matt; Hecht, Adam; Jandel, Marian; Jorgenson, Justin; Nelson, Ron; White, Morgan; Spider Team

    2014-09-01

    The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. The SPIDER detector (SPectrometer for Ion DEtermination in fission Research) is under development with the goal of obtaining high-resolution, high-efficiency, correlated fission product data needed for many applications including the modeling of next generation nuclear reactors, stockpile stewardship, and the fundamental understanding of the fission process. SPIDER simultaneously measures velocity and energy of both fission products to calculate fission product yields (FPYs), neutron multiplicity (ν), and total kinetic energy (TKE). A detailed description of the prototype SPIDER detector components will be presented. Characterization measurements with alpha and spontaneous fission sources will also be discussed. LA-UR-14-24875. This work is in part supported by LANL Laboratory Directed Research and Development Projects 20110037DR and 20120077DR.

  7. High-resolution extended source optical coherence tomography.

    PubMed

    Yu, Xiaojun; Liu, Xinyu; Chen, Si; Luo, Yuemei; Wang, Xianghong; Liu, Linbo

    2015-10-01

    High resolution optical coherence tomography (OCT) is capable of providing detailed tissue microstructures that are critical for disease diagnosis, yet its sensitivity is usually degraded since the system key components are typically not working at their respective center wavelengths. We developed a novel imaging system that achieves enhanced sensitivity without axial resolution degradation by the use of a spectrally encoded extended source (SEES) technique; it allows larger sample power without exceeding the maximum permissible exposure (MPE). In this study, we demonstrate a high-resolution extended source (HRES) OCT system, which is capable of providing a transverse resolution of 4.4 µm and an axial resolution of 2.1 µm in air with the SEES technique. We first theoretically show a sensitivity advantage of 6-dB of the HRES-OCT over that of its point source counterpart using numerical simulations, and then experimentally validate the applicability of the SEES technique to high-resolution OCT (HR-OCT) by comparing the HRES-OCT with an equivalent point-source system. In the HRES-OCT system, a dispersive prism was placed in the infinity space of the sample arm optics to spectrally extend the visual angle (angular subtense) of the light source to 10.3 mrad. This extended source allowed ~4 times larger MPE than its point source counterpart, which results in an enhancement of ~6 dB in sensitivity. Specifically, to solve the unbalanced dispersion between the sample and the reference arm optics, we proposed easy and efficient methods for system calibration and dispersion correction, respectively. With a maximum scanning speed reaching up to 60K A-lines/s, we further conducted imaging experiments with HRES-OCT using the human fingertip in vivo and the swine eye tissues ex vivo. Results demonstrate that the HRES-OCT is able to achieve significantly larger penetration depth than its conventional point source OCT counterpart.

  8. High resolution Arctic snow observations: SnowNet (Invited)

    NASA Astrophysics Data System (ADS)

    Hiemstra, C. A.; Sturm, M.; Gelvin, A. B.; Berezovskaya, S.; Saari, S. P.; Finnegan, D. C.; Liston, G. E.

    2009-12-01

    Snow’s importance has become especially prominent in the terrestrial Arctic, where snow dominates the landscape most of the year and changes in snow arrival, depth, and melt have substantial energy budget and biotic consequences. Yet, the Arctic presents formidable challenges to accurate snow measurements because snow depths can vary greatly over relatively short distances (< 10 m). Snow distribution patterns in windy environments, such as the Arctic, arise from interactions among wind, snow, vegetation, and topography. In this environment, snow is transported easily and is retained in topographic depressions, near taller vegetation, and deposited on the lee sides of hills. Reliable observations of where snow exists in the Arctic landscape can be difficult to obtain, and estimates vary depending on where snow is sampled. Measurements tend to be widely distributed and sparse. In addition, observed changes in Arctic vegetation (e.g., increasing shrubs) and land surfaces (e.g., thermokarst) complicate matters further. In response to this critical shortcoming in Arctic snow measurements, we have developed a prototype observational network (SnowNet) that employs standard meteorological observations and high resolution topographic and vegetation data in concert with a comprehensive spatially-intensive snow measurement program. Our sites at Barrow (started 2007) and Imnavait Creek (started 2008), Alaska, feature frequent site visits and intensive spatial sampling of snow depths and densities and snow-surface topography. Both sites have high resolution (~20 cm) topographic and vegetation data layers generated from remote sensing and ground surveys. Further, we have been incorporating extremely high-resolution (< 10 cm) ground-based LiDAR snow and vegetation datasets that allow us to identify relationships among topography, vegetation, and snow in Arctic environments. In addition, we have collected tens of thousands of manual snow depths across our research sites. This

  9. Large-field high-resolution mosaic movies

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Sliepen, Guus; Bettonvil, Felix C. M.; Jägers, Aswin P. L.; Sütterlin, Peter; Martin, Sara F.

    2012-09-01

    Movies with fields-of-view larger than normal for high-resolution telescopes will give a better understanding of processes on the Sun, such as filament and active region developments and their possible interactions. New active regions can influence, by their emergence, their environment to the extent of possibly serving as an igniter of the eruption of a nearby filament. A method to create a large field-of-view is to join several fields-of-view into a mosaic. Fields are imaged quickly one after another using fast telescope-pointing. Such a pointing cycle has been automated at the Dutch Open Telescope (DOT), a high-resolution solar telescope located on the Canary Island La Palma. The observer can draw with the computer mouse the desired total field in the guider-telescope image of the whole Sun. The guider telescope is equipped with an H-alpha filter and electronic enhancement of contrast in the image for good visibility of filaments and prominences. The number and positions of the subfields are calculated automatically and represented by an array of bright points indicating the subfield centers inside the drawn rectangle of the total field on the computer screen with the whole-sun image. When the exposures start the telescope repeats automatically the sequence of subfields. Automatic production of flats is also programmed including defocusing and fast motion over the solar disk of the image field. For the first time mosaic movies were programmed from stored information on automated telescope motions from one field to the next. The mosaic movies fill the gap between whole-sun images with limited resolution of synoptic telescopes including space instruments and small-field high-cadence movies of high-resolution solar telescopes.

  10. High-Resolution Radar Imagery of Mars

    NASA Astrophysics Data System (ADS)

    Harmon, John K.; Nolan, M. C.

    2009-09-01

    We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.

  11. Toward high-resolution optoelectronic retinal prosthesis

    NASA Astrophysics Data System (ADS)

    Palanker, Daniel; Huie, Philip; Vankov, Alexander; Asher, Alon; Baccus, Steven

    2005-04-01

    It has been already demonstrated that electrical stimulation of retina can produce visual percepts in blind patients suffering from macular degeneration and retinitis pigmentosa. Current retinal implants provide very low resolution (just a few electrodes), while several thousand pixels are required for functional restoration of sight. We present a design of the optoelectronic retinal prosthetic system that can activate a retinal stimulating array with pixel density up to 2,500 pix/mm2 (geometrically corresponding to a visual acuity of 20/80), and allows for natural eye scanning rather than scanning with a head-mounted camera. The system operates similarly to "virtual reality" imaging devices used in military and medical applications. An image from a video camera is projected by a goggle-mounted infrared LED-LCD display onto the retina, activating an array of powered photodiodes in the retinal implant. Such a system provides a broad field of vision by allowing for natural eye scanning. The goggles are transparent to visible light, thus allowing for simultaneous utilization of remaining natural vision along with prosthetic stimulation. Optical control of the implant allows for simple adjustment of image processing algorithms and for learning. A major prerequisite for high resolution stimulation is the proximity of neural cells to the stimulation sites. This can be achieved with sub-retinal implants constructed in a manner that directs migration of retinal cells to target areas. Two basic implant geometries are described: perforated membranes and protruding electrode arrays. Possibility of the tactile neural stimulation is also examined.

  12. Decadal prediction with a high resolution model

    NASA Astrophysics Data System (ADS)

    Monerie, Paul-Arthur; Valcke, Sophie; Terray, Laurent; Moine, Marie-Pierre

    2016-04-01

    The ability of a high resolution coupled atmosphere-ocean general circulation model (with a horizontal resolution of the quarter degree in the ocean and of about 50 km in the atmosphere) to predict the annual means of temperature, precipitation, sea-ice volume and extent is assessed. Reasonable skill in predicting sea surface temperatures and surface air temperature is obtained, especially over the North Atlantic, the tropical Atlantic and the Indian Ocean. The skill in predicting precipitations is weaker and not significant. The Sea Ice Extent and volume are also reasonably predicted in winter (March) and summer (September). It is however argued that the skill is mainly due to the atmosphere feeding in well-mixed GHGs. The mid-90's subpolar gyre warming is assessed. The model simulates a warming of the North Atlantic Ocean, associated with an increase of the meridional heat transport, a strengthening of the North Atlantic current and a deepening of the mixed layer over the Labrador Sea. The atmosphere plays a role in the warming through a modulation of the North Atlantic Oscillation and a shrinking of the subpolar gyre. At the 3-8 years lead-time, a negative anomaly of pressure, located south of the subpolar gyre is associated with the wind speed decrease over the subpolar gyre. It prevents oceanic heat-loss and favors the northward move, from the subtropical to the subpolar gyre, of anomalously warm and salty water, leading to its warming. We finally argued that the subpolar gyre warming is triggered by the ocean dynamic but the atmosphere can contributes to its sustaining. This work is realised in the framework of the EU FP7 SPECS Project.

  13. High-resolution phylogenetic microbial community profiling

    SciTech Connect

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  14. High Resolution Global View of Io

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Io, the most volcanic body in the solar system is seen in the highest resolution obtained to date by NASA's Galileo spacecraft. The smallest features that can be discerned are 2.5 kilometers in size. There are rugged mountains several kilometers high, layered materials forming plateaus, and many irregular depressions called volcanic calderas. Several of the dark, flow-like features correspond to hot spots, and may be active lava flows. There are no landforms resembling impact craters, as the volcanism covers the surface with new deposits much more rapidly than the flux of comets and asteroids can create large impact craters. The picture is centered on the side of Io that always faces away from Jupiter; north is to the top.

    Color images acquired on September 7, 1996 have been merged with higher resolution images acquired on November 6, 1996 by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The color is composed of data taken, at a range of 487,000 kilometers, in the near-infrared, green, and violet filters and has been enhanced to emphasize the extraordinary variations in color and brightness that characterize Io's face. The high resolution images were obtained at ranges which varied from 245,719 kilometers to 403,100 kilometers.

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  15. High-resolution 2D NMR spectra in inhomogeneous fields via 3D acquisition

    NASA Astrophysics Data System (ADS)

    Lin, Yanqin; Wei, Zhiliang; Zhang, Liandi; Lin, Liangjie; Chen, Zhong

    2014-04-01

    High-resolution nuclear magnetic resonance (NMR) spectroscopy plays an important role in chemical studies. Here, a pulse sequence, based on coherence transfer module of tracking differences of precession frequencies of two spins and spin echo module, is proposed to obtain two dimension (2D) high-resolution NMR spectra via 3D acquisition under large field inhomogeneity. The proposed scheme composes of simple hard pulses and rectangle gradients. Resulting 2D spectra exhibit chemical shift differences and J coupling splittings in two orthogonal dimensions. The method developed here may offer a promising way for in situ high-resolution NMR studies on combinatorial chemistry.

  16. High resolution multiplexed functional imaging in live embyros (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xu, Dongli; Peng, Leilei

    2016-03-01

    Optical projection tomography (OPT) creates isotropic 3D imaging of tissue. Two approaches exist today: Wide-field OPT illuminates the entire sample and acquires projection images with a camera; Scanning-laser optical tomography (SLOT) generates the projection with a moving laser beam and point detector. SLOT has superior light collecting efficiency than wide-field optical tomography, making it ideal for tissue fluorescence imaging. Regardless the approach, traditional OPT has to compromise between the resolution and the depth of view. In traditional SLOT, the focused Gaussian beam diverges quickly from the focused plane, making it impossible to achieve high resolution imaging through a large volume specimen. We report using Bessel beam instead of Gaussian beam to perform SLOT. By illuminating samples with a narrow Bessel beam throughout an extended depth, high-resolution projection images can be measured in large volume. Under Bessel illumination, the projection image contains signal from annular-rings of the Bessel beam. Traditional inverse Radon transform of these projections will result in ringing artifacts in reconstructed imaging. Thus a modified 3D filtered back projection algorithm is developed to perform tomography reconstructing of Bessel-illuminated projection images. The resulting 3D imaging is free of artifact and achieved cellular resolution in extended sample volume. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove Bessel SLOT a promising imaging method in development biology research.

  17. Gemini high-resolution optical spectrograph conceptual design

    NASA Astrophysics Data System (ADS)

    Szeto, Kei; McConnachie, Alan; Anthony, André; Bohlender, David; Crampton, David; Desaulniers, Pierre; Dunn, Jennifer; Hardy, Tim; Hill, Alexis; Monin, Dmitry; Pazder, John; Schwab, Christian; Spano, Paola; Starkenburg, Else; Thibault, Simon; Walker, Gordon; Venn, Kim; Zhang, Hu

    2012-09-01

    A multiplexed moderate resolution (R = 34,000) and a single object high resolution (R = 90,000) spectroscopic facility for the entire 340 - 950nm wavelength region has been designed for Gemini. The result is a high throughput, versatile instrument that will enable precision spectroscopy for decades to come. The extended wavelength coverage for these relatively high spectral resolutions is achieved by use of an Echelle grating with VPH cross-dispersers and for the R = 90,000 mode utilization of an image slicer. The design incorporates a fast, efficient, reliable system for acquiring targets over the7 arcmin field of Gemini. This paper outlines the science case development and requirements flow-down process that leads to the configuration of the HIA instrument and describes the overall GHOS conceptual design. In addition, this paper discusses design trades examined during the conceptual design study instrument group of the Herzberg Institute of Astrophysics has been commissioned by the Gemini Observatory as one of the three competing organizations to conduct a conceptual design study for a new Gemini High-Resolution Optical Spectrograph (GHOS). This paper outlines the science case development and requirements flow-down process that leads to the configuration of the HIA instrument and describes the overall GHOS conceptual design. In addition, this paper discusses design trades examined during the conceptual design study.

  18. Nowcasting for a high-resolution weather radar network

    NASA Astrophysics Data System (ADS)

    Ruzanski, Evan

    Short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories and is of great practical importance. Nowcasting using weather radar reflectivity data has been shown to be particularly useful. The Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides high-resolution reflectivity data amenable to producing valuable nowcasts. The high-resolution nature of CASA data requires the use of an efficient nowcasting approach, which necessitated the development of the Dynamic Adaptive Radar Tracking of Storms (DARTS) and sinc kernel-based advection nowcasting methodology. This methodology was implemented operationally in the CASA Distributed Collaborative Adaptive Sensing (DCAS) system in a robust and efficient manner necessitated by the high-resolution nature of CASA data and distributed nature of the environment in which the nowcasting system operates. Nowcasts up to 10 min to support emergency manager decision-making and 1--5 min to steer the CASA radar nodes to better observe the advecting storm patterns for forecasters and researchers are currently provided by this system. Results of nowcasting performance during the 2009 CASA IP experiment are presented. Additionally, currently state-of-the-art scale-based filtering methods were adapted and evaluated for use in the CASA DCAS to provide a scale-based analysis of nowcasting. DARTS was also incorporated in the Weather Support to Deicing Decision Making system to provide more accurate and efficient snow water equivalent nowcasts for aircraft deicing decision support relative to the radar-based nowcasting method currently used in the operational system. Results of an evaluation using data collected from 2007--2008 by the Weather Service Radar-1988 Doppler (WSR-88D) located near Denver, Colorado, and the National Center for Atmospheric Research Marshall Test Site near Boulder, Colorado, are presented. DARTS was also used to study the

  19. Influence of nutrient deficiency caused by host developmental arrest on the growth and development of a koinobiont parasitoid.

    PubMed

    Nakamatsu, Y; Kuriya, K; Harvey, J A; Tanaka, T

    2006-01-01

    Koinobiont parasitoids utilize nutrients obtained from hosts that contine to feed and grow after parasitization. However, if the ecdysis of early host instars is prevented, parasitized larvae will fail to grow large enough to support the development of the parasitoid brood and both organisms will perish. When L5 instar larvae (the penultimate stage) of Pseudaletia separata were parasitized by Cotesia kariyai and injected with Euplectrus separatae venom (5PV), the development of these hosts was arrested before molting to the next stage and the caterpillars thus failed to gain weight. These hosts remained at approximately 300 mg until parasitoid emergence. In contrast, hosts parasitized as L5 but without the injection of venom (5P) exhibited an increase in weight after molting to the next stage and ultimately grew to approximately 700 mg. The inhibition of ecdysis reduced the amount of food resource (e.g. fat body) for the parasitoid larvae. On the other hand, when final (= L6) host instars were parasitized and injected with E. separatae venom (6PV), the maximum weight attained by these larvae was about 710 mg, although weight gain was depressed compared to hosts parasitized without the injection of E. separatae venom (6P). The adult weight of C. kariyai that emerged from 5PV hosts was less than conspecifics that emerged from 5P, 6P, and 6PV respectively, although the egg-pupal period of the parasitoid from 5PV hosts was extended. The offspring sex ratio (percentage males) of adult wasps did not vary significantly with treatment. Female parasitoids that eclosed from 5PV hosts laid almost the same number of eggs in day 0-6th host instars as those emerging from 5P, 6P, 6PV hosts. Their egg-pupal period was extended and the cocoon cluster mass and the parasitoid body mass on subsequent generations was lighter than those reared from 5P, 6P, 6PV hosts. The sex ratio of F2 C. kariyai wasps that eclosed from 5PV increased more than in wasps that eclosed from the other host

  20. EDITORIAL: High-resolution noncontact atomic force microscopy High-resolution noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-06-01

    original papers authored by many of the leading groups in the field with the goal of providing a well-balanced overview on the state-of-the-art in this rapidly evolving field. These papers, many of which are based on notable presentations given during the Madrid conference, feature highlights such as (1) the development of sophisticated force spectroscopy procedures that are able to map the complete 3D tip-sample force field on different surfaces; (2) the considerable resolution improvement of Kelvin probe force microscopy (reaching, in some cases, the atomic scale), which is accompanied by a thorough, quantitative understanding of the contrast observed; (3) the perfecting of atomic resolution imaging on insulating substrates, which helps reshape our microscopic understanding of surface properties and chemical activity of these surfaces; (4) the description of instrumental and methodological developments that pave the way to the atomic-scale characterization of magnetic and electronic properties of nanostructures, and last but not least (5) the extension of dynamic imaging modes to high-resolution operation in liquids, ultimately achieving atomic resolution. The latter developments are already having a significant impact in the highly competitive field of biological imaging under physiological conditions. This special issue of Nanotechnology would not have been possible without the highly professional support from Nina Couzin, Amy Harvey, Alex Wotherspoon and the entire Nanotechnology team at IOP Publishing. We are thankful for their help in pushing this project forward. We also thank the authors who have contributed their excellent original articles to this issue, the referees whose comments have helped make the issue an accurate portrait of this rapidly moving field, and the entire NC-AFM community that continues to drive NC-AFM to new horizons.

  1. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development.

    PubMed

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui; Wang, Zhengchao

    2015-10-23

    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27(Kip1) and p21(Cip1), were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure.

  2. Coregistration of high-resolution Mars orbital images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    represent the best available 3D reference frame for Mars showing co-registration with MOLA<25m (loc.cit.). In our work, the reference generated by HRSC terrain corrected orthorectified images is used as a common reference frame to co-register all available high-resolution orbital NASA products into a common 3D coordinate system, thus allowing the examination of the changes that happen on the surface of Mars over time (such as seasonal flows [McEwen et al., 2011] or new impact craters [Byrne, et al., 2009]). In order to accomplish such a tedious manual task, we have developed an automatic co-registration pipeline that produces orthorectified versions of the NASA images in realistic time (i.e. from ~15 minutes to 10 hours per image depending on size). In the first step of this pipeline, tie-points are extracted from the target NASA image and the reference HRSC image or image mosaic. Subsequently, the HRSC areo-reference information is used to transform the HRSC tie-points pixel coordinates into 3D "world" coordinates. This way, a correspondence between the pixel coordinates of the target NASA image and the 3D "world" coordinates is established for each tie-point. This set of correspondences is used to estimate a non-rigid, 3D to 2D transformation model, which transforms the target image into the HRSC reference coordinate system. Finally, correlation of the transformed target image and the HRSC image is employed to fine-tune the orthorectification results, thus generating results with sub-pixel accuracy. This method, which has been proven to be accurate, robust to resolution differences and reliable when dealing with partially degraded data and fast, will be presented, along with some example co-registration results that have been achieved by using it. Acknowledgements: The research leading to these results has received partial funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7

  3. High Resolution Airborne Shallow Water Mapping

    NASA Astrophysics Data System (ADS)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  4. High Resolution Velocity Structure in Eastern Turkey

    SciTech Connect

    Pasyanos, M; Gok, R; Zor, E; Walter, W

    2004-09-03

    We investigate the crustal and upper mantle structure of eastern Turkey where the Anatolian, Arabian and Eurasian Plates meet and form a complex tectonic structure. The Bitlis suture is a continental collision zone between the Anatolian plateau and the Arabian plate. Broadband data available through the Eastern Turkey Seismic Experiment (ETSE) provided a unique opportunity for studying the high resolution velocity structure. Zor et al. found an average 46 km thick crust in Anatolian plateau using six-layered grid search inversion of the ETSE receiver functions. Receiver functions are sensitive to the velocity contrast of interfaces and the relative travel time of converted and reverberated waves between those interfaces. The interpretation of receiver function alone with many-layered parameterization may result in an apparent depth-velocity tradeoff. In order to improve previous velocity model, we employed the joint inversion method with many layered parameterization of Julia et al. (2000) to the ETSE receiver functions. In this technique, the receiver function and surface-wave observations are combined into a single algebraic equation and each data set is weighted by an estimate of the uncertainty in the observations. We consider azimuthal changes of receiver functions and have stacked them into different groups. We calculated the receiver functions using iterative time-domain deconvolution technique and surface wave group velocity dispersion curves between 10-100 sec. We are making surface wave dispersion measurements at the ETSE stations and have incorporated them into a regional group velocity model. Preliminary results indicate a strong trend in the long period group velocity in the northeast. This indicates slow upper mantle velocities in the region consistent with Pn, Sn and receiver function results. We started with both the 1-D model that is obtained with the 12 tones dam explosion shot data recorded by ETSE network and the existing receiver function

  5. Evaluation of a high resolution silicon PET insert module

    NASA Astrophysics Data System (ADS)

    Grkovski, Milan; Brzezinski, Karol; Cindro, Vladimir; Clinthorne, Neal H.; Kagan, Harris; Lacasta, Carlos; Mikuž, Marko; Solaz, Carles; Studen, Andrej; Weilhammer, Peter; Žontar, Dejan

    2015-07-01

    Conventional PET systems can be augmented with additional detectors placed in close proximity of the region of interest. We developed a high resolution PET insert module to evaluate the added benefit of such a combination. The insert module consists of two back-to-back 1 mm thick silicon sensors, each segmented into 1040 1 mm2 pads arranged in a 40 by 26 array. A set of 16 VATAGP7.1 ASICs and a custom assembled data acquisition board were used to read out the signal from the insert module. Data were acquired in slice (2D) geometry with a Jaszczak phantom (rod diameters of 1.2-4.8 mm) filled with 18F-FDG and the images were reconstructed with ML-EM method. Both data with full and limited angular coverage from the insert module were considered and three types of coincidence events were combined. The ratio of high-resolution data that substantially improves quality of the reconstructed image for the region near the surface of the insert module was estimated to be about 4%. Results from our previous studies suggest that such ratio could be achieved at a moderate technological expense by using an equivalent of two insert modules (an effective sensor thickness of 4 mm).

  6. High resolution 3D fluorescence tomography using ballistic photons

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Nouizi, Farouk; Cho, Jaedu; Kwong, Jessica; Gulsen, Gultekin

    2015-03-01

    We are developing a ballistic-photon based approach for improving the spatial resolution of fluorescence tomography using time-domain measurements. This approach uses early photon information contained in measured time-of-fight distributions originating from fluorescence emission. The time point spread functions (TPSF) from both excitation light and emission light are acquired with gated single photon Avalanche detector (SPAD) and time-correlated single photon counting after a short laser pulse. To determine the ballistic photons for reconstruction, the lifetime of the fluorophore and the time gate from the excitation profiles will be used for calibration, and then the time gate of the fluorescence profile can be defined by a simple time convolution. By mimicking first generation CT data acquisition, the sourcedetector pair will translate across and also rotate around the subject. The measurement from each source-detector position will be reshaped into a histogram that can be used by a simple back-projection algorithm in order to reconstruct high resolution fluorescence images. Finally, from these 2D sectioning slides, a 3D inclusion can be reconstructed accurately. To validate the approach, simulation of light transport is performed for biological tissue-like media with embedded fluorescent inclusion by solving the diffusion equation with Finite Element Method using COMSOL Multiphysics simulation. The reconstruction results from simulation studies have confirmed that this approach drastically improves the spatial resolution of fluorescence tomography. Moreover, all the results have shown the feasibility of this technique for high resolution small animal imaging up to several centimeters.

  7. Unsupervised Feature Learning for High-Resolution Satellite Image Classification

    SciTech Connect

    Cheriyadat, Anil M

    2013-01-01

    The rich data provided by high-resolution satellite imagery allow us to directly model geospatial neighborhoods by understanding their spatial and structural patterns. In this paper we explore an unsupervised feature learning approach to model geospatial neighborhoods for classification purposes. While pixel and object based classification approaches are widely used for satellite image analysis, often these approaches exploit the high-fidelity image data in a limited way. In this paper we extract low-level features to characterize the local neighborhood patterns. We exploit the unlabeled feature measurements in a novel way to learn a set of basis functions to derive new features. The derived sparse feature representation obtained by encoding the measured features in terms of the learned basis function set yields superior classification performance. We applied our technique on two challenging image datasets: ORNL dataset representing one-meter spatial resolution satellite imagery representing five land-use categories and, UCMERCED dataset consisting of 21 different categories representing sub-meter resolution overhead imagery. Our results are highly promising and, in the case of UCMERCED dataset we outperform the best results obtained for this dataset. We show that our feature extraction and learning methods are highly effective in developing a detection system that can be used to automatically scan large-scale high-resolution satellite imagery for detecting large-facility.

  8. High resolution mapping of total deposition of acidifying pollutants

    NASA Astrophysics Data System (ADS)

    de Vos, Thierri; Zhang, Leiming

    2012-09-01

    A framework has been developed to estimate dry and wet deposition over Southern Belgium for a variety of acidifying substances on a 5 × 5 km2 grid. Concentrations of different compounds in the atmosphere or in the precipitation are provided by the measurement networks (both stations and gauges) and are interpolated over Southern Belgium. Dry deposition velocities are calculated using local meteorology and land use information, following the approach described in Zhang et al. (2001, 2003). Local precipitation is provided by merged radar-gauge observations. This is the first high resolution framework for Southern Belgium computing both time- and space-dependent deposition, using a modified kriging interpolation method (for SO2 and NO2), as well as radar-based precipitation. Estimated dry and wet depositions are compared with long range transport (LRT) model results, based on the European emission inventories. Although a good agreement is observed between our results and LRT model results on the annual totals averaged over Southern Belgium, the extent of agreement for the spatial variability of the annual deposition differs significantly from one pollutant to another. This new framework provides consistent high resolution maps for several pollutants, while improving the mapping of dry and wet deposition in Southern Belgium, in order to assess critical loads exceedances.

  9. Invariance Techniques And High-Resolution Null Steering

    NASA Astrophysics Data System (ADS)

    Roy, R.; Kailath, T.

    1988-02-01

    Over the past several decades, a significant amount of research has been performed in the area of high-resolution signal parameter estimation. It is a problem of significance in many signal processing applications including direction-of-arrival estimation in which the locations of multiple sources whose radiation is received by an array of sensors are sought. Much of the research has focussed on approaches based on the formation of optimal weight or copy vectors, procedures derived from the conventional practice of beamforming. This class of approached to parameter estimation problems has come to be known as high-resolution spectral analysis/beamforming since the introduction of the maximum entropy (MEM) method by Burg in 1967, and the maximum-likelihood (ML) method by Capon in 1969. These techniques provide increased resolution and accuracy over their predecessors (including conventional beamforming, but suffer from model mismatch. MUSIC and ESPRIT are recently developed geometric techniques that exploit the underlying model and thereby achieve significant improvements in performance. In this paper, these techniques are summarized. From basic physical principles, it is shown that ESPRIT is actually a multidimensional null steering algorithm, an interpretation with significant intuitive appeal. Finally, optimal signal copy vectors that naturally arise from the algorithm are presented, and their properties as beamforming vectors for this class of problems are discussed.

  10. A miniature high-resolution accelerometer utilizing electron tunneling

    NASA Technical Reports Server (NTRS)

    Rockstad, Howard K.; Kenny, T. W.; Reynolds, J. K.; Kaiser, W. J.; Vanzandt, T. R.; Gabrielson, Thomas B.

    1992-01-01

    New methods have been developed to implement high-resolution position sensors based on electron tunneling. These methods allow miniaturization while utilizing the position sensitivity of electron tunneling to give high resolution. A single-element tunneling accelerometer giving a displacement resolution of 0.002 A/sq rt Hz at 10 Hz, corresponding to an acceleration resolution of 5 x 10 exp -8 g/sq rt Hz, is described. A new dual-element tunneling structure which overcomes the narrow bandwidth limitations of a single-element structure is described. A sensor with an operating range of 5 Hz to 10 kHz, which can have applications as an acoustic sensor, is discussed. Noise is analyzed for fundamental thermal vibration of the suspended masses and is compared to electronic noise. It is shown that miniature tunnel accelerometers can achieve resolution such that thermal noise in the suspended masses is the dominant cause of the resolution limit. With a proof mass of order 100 mg, noise analysis predicts limiting resolutions approaching 10 exp -9 g/sq rt Hz in a 300 Hz band and 10 exp -8 g/sq rt Hz at 1 kHz.

  11. Automated frame selection process for high-resolution microendoscopy

    NASA Astrophysics Data System (ADS)

    Ishijima, Ayumu; Schwarz, Richard A.; Shin, Dongsuk; Mondrik, Sharon; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Anandasabapathy, Sharmila; Richards-Kortum, Rebecca

    2015-04-01

    We developed an automated frame selection algorithm for high-resolution microendoscopy video sequences. The algorithm rapidly selects a representative frame with minimal motion artifact from a short video sequence, enabling fully automated image analysis at the point-of-care. The algorithm was evaluated by quantitative comparison of diagnostically relevant image features and diagnostic classification results obtained using automated frame selection versus manual frame selection. A data set consisting of video sequences collected in vivo from 100 oral sites and 167 esophageal sites was used in the analysis. The area under the receiver operating characteristic curve was 0.78 (automated selection) versus 0.82 (manual selection) for oral sites, and 0.93 (automated selection) versus 0.92 (manual selection) for esophageal sites. The implementation of fully automated high-resolution microendoscopy at the point-of-care has the potential to reduce the number of biopsies needed for accurate diagnosis of precancer and cancer in low-resource settings where there may be limited infrastructure and personnel for standard histologic analysis.

  12. High-resolution electron microscopy of advanced materials

    SciTech Connect

    Mitchell, T.E.; Kung, H.H.; Sickafus, K.E.; Gray, G.T. III; Field, R.D.; Smith, J.F.

    1997-11-01

    This final report chronicles a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The High-Resolution Electron Microscopy Facility has doubled in size and tripled in quality since the beginning of the three-year period. The facility now includes a field-emission scanning electron microscope, a 100 kV field-emission scanning transmission electron microscope (FE-STEM), a 300 kV field-emission high-resolution transmission electron microscope (FE-HRTEM), and a 300 kV analytical transmission electron microscope. A new orientation imaging microscope is being installed. X-ray energy dispersive spectrometers for chemical analysis are available on all four microscopes; parallel electron energy loss spectrometers are operational on the FE-STEM and FE-HRTEM. These systems enable evaluation of local atomic bonding, as well as chemical composition in nanometer-scale regions. The FE-HRTEM has a point-to-point resolution of 1.6 {angstrom}, but the resolution can be pushed to its information limit of 1 {angstrom} by computer reconstruction of a focal series of images. HRTEM has been used to image the atomic structure of defects such as dislocations, grain boundaries, and interfaces in a variety of materials from superconductors and ferroelectrics to structural ceramics and intermetallics.

  13. High-resolution Imaging Techniques for the Assessment of Osteoporosis

    PubMed Central

    Krug, Roland; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.

    2010-01-01

    Synopsis The importance of assessing the bone’s microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in a number of publications. The high spatial resolution required to resolve the bone’s microstructure in a clinically feasible scan time is challenging. Currently, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition Multidetector-CT has been used for high-resolution imaging of trabecular bone structure, however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements and recent developments in this emerging field. Details regarding imaging protocols as well as image post-processing methods for bone structure quantification are discussed. PMID:20609895

  14. Application of High Resolution Multispectral Imagery for Levee Slide Detection and Monitoring

    NASA Technical Reports Server (NTRS)

    Hossain, A. K. M. Azad; Easson, Greg

    2007-01-01

    The objective is to develop methods to detect and monitor levee slides using commercially available high resolution multispectral imagery. High resolution multispectral imagery like IKONOS and QuickBird are suitable for detecting and monitoring levee slides. IKONOS is suitable for visual inspection, image classification and Tasseled Cap transform based slide detection. Tasseled Cap based model was found to be the best method for slide detection. QuickBird was suitable for visual inspection and image classification.

  15. High Resolution Higher Energy X-ray Microscope for Mesoscopic Materials

    NASA Astrophysics Data System (ADS)

    Snigireva, I.; Snigirev, A.

    2013-10-01

    We developed a novel X-ray microscopy technique to study mesoscopically structured materials, employing compound refractive lenses. The easily seen advantage of lens-based methodology is the possibility to retrieve high resolution diffraction pattern and real-space images in the same experimental setup. Methodologically the proposed approach is similar to the studies of crystals by high resolution transmission electron microscopy. The proposed microscope was applied for studying of mesoscopic materials such as natural and synthetic opals, inverted photonic crystals.

  16. Mesenchymal stem cells with irreversibly arrested proliferation stimulate decidua development in rats

    PubMed Central

    Domnina, Alisa P.; Novikova, Polina V.; Lyublinskaya, Olga G.; Zenin, Valeriy V.; Fridlyanskaya, Irina I.; Mikhailov, Vyacheslav M.; Nikolsky, Nikolay N.

    2016-01-01

    Stem cell transplantation, which is based on the application of mesenchymal stem/stromal cells (MSCs), is a rapidly developing approach to the regenerative therapy of various degenerative disorders characterized by brain and heart failure, as well as skin lesions. In comparison, the use of stem cell transplantations to treat infertility has received less attention. One of the causes of miscarriages and fetal growth delay is the loss of the decidual reaction of endometrial cells. The present study modeled decidualization processes in pseudopregnant rats. For cell transplantation experiments, the rats were transplanted with MSCs established from endometrial fragments in menstrual blood (eMSCs). These cells express common MSC markers, are multipotent and are able to differentiate into various tissue lineages. Cell therapy frequently requires substantial cell biomass, and cultivation of MSCs may be accompanied by significant changes to their properties, including malignant transformation. In order to minimize the potential for malignant transformation, the proliferation of eMSCs was irreversibly suppressed by irradiation and mitomycin C treatment. Transplantation of the rats with viable, non-proliferating eMSCs stimulated the development of all elements of decidual tissue. Conversely, transplantation of the rats with cells killed using 95% ethanol did not result in the development of decidual tissue. The present study demonstrated the potential for applying eMSCs to the cellular therapy of infertility associated with endometrial disorders characterized by decidualization insufficiency and implantation failure. In addition, the transplantation of viable but non-proliferating cells ensured that their oncogenic potential was limited.

  17. Mesenchymal stem cells with irreversibly arrested proliferation stimulate decidua development in rats

    PubMed Central

    Domnina, Alisa P.; Novikova, Polina V.; Lyublinskaya, Olga G.; Zenin, Valeriy V.; Fridlyanskaya, Irina I.; Mikhailov, Vyacheslav M.; Nikolsky, Nikolay N.

    2016-01-01

    Stem cell transplantation, which is based on the application of mesenchymal stem/stromal cells (MSCs), is a rapidly developing approach to the regenerative therapy of various degenerative disorders characterized by brain and heart failure, as well as skin lesions. In comparison, the use of stem cell transplantations to treat infertility has received less attention. One of the causes of miscarriages and fetal growth delay is the loss of the decidual reaction of endometrial cells. The present study modeled decidualization processes in pseudopregnant rats. For cell transplantation experiments, the rats were transplanted with MSCs established from endometrial fragments in menstrual blood (eMSCs). These cells express common MSC markers, are multipotent and are able to differentiate into various tissue lineages. Cell therapy frequently requires substantial cell biomass, and cultivation of MSCs may be accompanied by significant changes to their properties, including malignant transformation. In order to minimize the potential for malignant transformation, the proliferation of eMSCs was irreversibly suppressed by irradiation and mitomycin C treatment. Transplantation of the rats with viable, non-proliferating eMSCs stimulated the development of all elements of decidual tissue. Conversely, transplantation of the rats with cells killed using 95% ethanol did not result in the development of decidual tissue. The present study demonstrated the potential for applying eMSCs to the cellular therapy of infertility associated with endometrial disorders characterized by decidualization insufficiency and implantation failure. In addition, the transplantation of viable but non-proliferating cells ensured that their oncogenic potential was limited. PMID:27698746

  18. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer.

    PubMed

    Ozbek, Nil; Akman, Suleyman

    2012-05-30

    Fluorine was determined via the rotational molecular absorption line of aluminum mono fluoride (AlF) generated in C(2)H(2)/N(2)O flame at 227.4613 nm using a high-resolution continuum source flame atomic absorption spectrophotometer (HR-CS-FAAS). The effects of AlF wavelength, burner height, fuel rate (C(2)H(2)/N(2)O) and amount of Al on the accuracy, precision and sensitivity were investigated and optimized. The Al-F absorption band at 227.4613 nm was found to be the most suitable analytical line with respect to sensitivity and spectral interferences. Maximum sensitivity and a good linearity were obtained in acetylene-nitrous oxide flame at a flow rate of 210 L h(-1) and a burner height of 8mm using 3000 mg L(-1) of Al for 10-1000 mg L(-1)of F. The accuracy and precision of the method were tested by analyzing spiked samples and waste water certified reference material. The results were in good agreement with the certified and spiked amounts as well as the precision of several days during this study was satisfactory (RSD<10%). The limit of detection and characteristic concentration of the method were 5.5 mg L(-1) and 72.8 mg L(-1), respectively. Finally, the fluorine concentrations in several toothpaste samples were determined. The results found and given by the producers were not significantly different. The method was simple, fast, accurate and sensitive.

  19. Development of a High Resolution Virulence Allelic Profiling (HReVAP) Approach Based on the Accessory Genome of Escherichia coli to Characterize Shiga-Toxin Producing E. coli (STEC)

    PubMed Central

    Michelacci, Valeria; Orsini, Massimiliano; Knijn, Arnold; Delannoy, Sabine; Fach, Patrick; Caprioli, Alfredo; Morabito, Stefano

    2016-01-01

    Shiga-toxin producing Escherichia coli (STEC) strains possess a large accessory genome composed of virulence genes existing in multiple allelic variants, which sometimes segregate with specific STEC subpopulations. We analyzed the allelic variability of 91 virulence genes of STEC by Real Time PCR followed by melting curves analysis in 713 E. coli strains including 358 STEC. The 91 genes investigated were located on the locus of enterocyte effacement (LEE), OI-57, and OI-122 pathogenicity islands and displayed a total of 476 alleles in the study population. The combinations of the 91 alleles of each strain were termed allelic signatures and used to perform cluster analyses. We termed such an approach High Resolution Virulence Allelic Profiling (HReVAP) and used it to investigate the phylogeny of STEC of multiple serogroups. The dendrograms obtained identified groups of STEC segregating approximately with the serogroups and allowed the identification of subpopulations within the single groups. The study of the allelic signatures provided further evidence of the coevolution of the LEE and OI-122, reflecting the occurrence of their acquisition through a single event. The HReVAP analysis represents a sensitive tool for studying the evolution of LEE-positive STEC. PMID:26941726

  20. Optical Histology: High-Resolution Visualization of Tissue Microvasculature

    NASA Astrophysics Data System (ADS)

    Moy, Austin Jing-Ming

    Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high

  1. Mutations in Rhizobium phaseoli that lead to arrested development of infection threads.

    PubMed Central

    Noel, K D; Vandenbosch, K A; Kulpaca, B

    1986-01-01

    Two Rhizobium phaseoli mutants, isolated previously by Tn5 mutagenesis, elicited infection threads which ceased development prematurely, usually within root hairs. These infection threads were wide, globular, and otherwise altered in morphology, compared with normal infection threads. Anatomy and division of the root cortical cells during initial stages of nodule morphogenesis appeared normal. However, later nodule differentiation deviated considerably from normal development, and release of bacteria from infection threads was not observed. In tryptone-yeast extract medium the mutants sedimented during growth in shaken cultures and formed rough colonies on agar. Electrophoresis of washed cultures solubilized in dodecyl sulfate revealed that the major carbohydrate band was absent from the mutants. The behavior of this carbohydrate in phenol-water extraction and gel chromatography, its apparent ketodeoxyoctonate content, and its susceptibility to mild acid hydrolysis suggested that it was a lipopolysaccharide. From the results of genetic crosses or reversion analysis, the defect in synthesizing this carbohydrate material and the defect in infection could be attributed to a single mutation in each mutant. Images PMID:3782040

  2. A high-resolution fringe printer for studying synthetic holograms

    NASA Astrophysics Data System (ADS)

    Matsushima, K.; Kobayashi, S.; Miyauchi, H.

    2006-02-01

    A high resolution fringe printer developed for driving the research in computer-generated holograms is presented. This fringe printer consists of a rotation drum and a laser diode and is capable of printing elliptical dots of 1.5 times 3.0 microns in diameter on photosensitive films. These dot sizes are approximately converted into resolutions of 17,000dpi × 8,500dpi. The horizontal and vertical angles of viewing-zone of holograms printed by the printer reach 24 and 12 degrees, respectively. The designed maximum scan speed is more than 200mm/s, and at current stage of development, a hologram of approximately 50 mm square can be printed in approximately 2 hours.

  3. High resolution modeling of direct ocean carbon sequestration

    SciTech Connect

    Michael Follows; John Marshall

    2004-04-22

    This work has followed two themes: (1) Developing and using the adjoint of the MIT ocean biogeochemistry model to examine the efficiency of carbon sequestration in a global configuration. We have demonstrated the power of the adjoint method for systematic ocean model sensitivity studies. We have shown that the relative efficiency of carbon sequestration in the Atlantic and Pacific basins changes with the period of interest. For decadal to centennial scales, the Pacific is more efficient. On longer timescales the Atlantic is more efficient . (2) We have developed and applied a high-resolution, North Atlantic circulation and tracer model to investigate the role of the mesoscale in controlling sequestration efficiency. We show that the mesoscale eddy field, and its explicit representation, significantly affects the estimated sequestration efficiency for local sources on the Eastern US seaboard.

  4. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, Sean; Boogert, Stewart; Chung, Carl; Fitsos, Joe; Frisch, Joe; Gronberg, Jeff; Hayano, Hitoshi; Honda, Yosuke; Kolomensky, Yury; Lyapin, Alexey; Malton, Stephen; May, Justin; McCormick, Douglas; Meller, Robert; Miller, David John; Orimoto, Toyoko; Ross, Marc; Slater, Mark; Smith, Steve; Smith, Tonee; Terunuma, Nobuhiro; /Fermilab /UC, Berkeley /LBL, Berkeley /Cambridge U. /Royal Holloway, U. of London /Cornell U., LNS /LLNL, Livermore /University Coll. London /SLAC /Caltech /KEK, Tsukuba

    2007-06-08

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {mu}rad over a dynamic range of approximately {+-} 20 {mu}m.

  5. Performance of a High Resolution Cavity Beam Position Monitor System

    SciTech Connect

    Walston, S; Boogert, S; Chung, C; Fitsos, P; Frisch, J; Gronberg, J; Hayano, H; Honda, Y; Kolomensky, Y; Lyapin, A; Malton, S; May, J; McCormick, D; Meller, R; Miller, D; Orimoto, T; Ross, M; Slater, M; Smith, S; Smith, T; Terunuma, N; Thomson, M; Urakawa, J; Vogel, V; Ward, D; White, G

    2006-12-18

    It has been estimated that an RF cavity Beam Position Monitor (BPM) could provide a position measurement resolution of less than one nanometer. We have developed a high resolution cavity BPM and associated electronics. A triplet comprised of these BPMs was installed in the extraction line of the Accelerator Test Facility (ATF) at the High Energy Accelerator Research Organization (KEK) for testing with its ultra-low emittance beam. The three BPMs were each rigidly mounted inside an alignment frame on six variable-length struts which could be used to move the BPMs in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, we have demonstrated a position resolution of 15.6 nm and a tilt resolution of 2.1 {micro}rad over a dynamic range of approximately {+-} 20 {micro}m.

  6. Relationship between body colour, feeding, and reproductive arrest under short-day development in Tetranychus pueraricola (Acari: Tetranychidae).

    PubMed

    Ito, Katsura; Fukuda, Tatsuya; Hayakawa, Hiroshi; Arakawa, Ryo; Saito, Yutaka

    2013-08-01

    In Tetranychus spider mites (Acari: Tetranychidae), diapausing females have a conspicuous orange body colour, which is used as an indicator of diapause induction in many laboratory studies. However, to which extent body colour reflects reproductive activity is scarcely investigated. In this study, we investigated the relationship between body colour, reproductive arrest, and food intake in the inbred strain of T. pueraricola individually reared at 20 °C with a 10:14 h light: dark photoperiod. Our results showed that (1) body colour is a good indicator of reproductive arrest 11 days after adult emergence but does not completely reflect reproductive status at an earlier age; (2) even orange females intermittently feed, and the arrest of feeding comes after the change in body colour; and (3) reproducing females have a higher risk of death than non-reproducing females. These results suggest that measurement of diapause incidence by body colour alone may miss the variation in reproductive status in early adult life.

  7. Arrested development of the dorsal column following neonatal spinal cord injury in the opossum, Monodelphis domestica.

    PubMed

    Wheaton, Benjamin J; Noor, Natassya M; Dziegielewska, Katarzyna M; Whish, Sophie; Saunders, Norman R

    2015-03-01

    Developmental studies of spinal cord injury in which regrowth of axons occurs across the site of transection rarely distinguish between the recovery of motor-controlling pathways and that of ascending axons carrying sensory information. We describe the morphological changes that occur in the dorsal column (DC) of the grey short-tailed opossum, Monodelphis domestica, following spinal cord injury at two early developmental ages. The spinal cords of opossums that had had their mid-thoracic spinal cords completely transected at postnatal day 7 (P7) or P28 were analysed. Profiles of neurofilament immunoreactivity in transected cords showing DC development were differentially affected by the injury compared with the rest of the cord and cytoarchitecture was modified in an age- and site-dependent manner. The ability of DC neurites to grow across the site of transection was confirmed by injection of fluorescent tracer below the injury. P7 transected cords showed labelling in the DC above the site of original transection indicating that neurites of this sensory tract were able to span the injury. No growth of any neuronal processes was seen after P28 transection. Thus, DC is affected by spinal injury in a differential manner depending on the age at which the transection occurs. This age-differential response, together with other facets of remodelling that occur after neonatal spinal injury, might explain the locomotor adaptations and recovery observed in these animals.

  8. Overexpression of EVE1, a novel ubiquitin family protein, arrests inflorescence stem development in Arabidopsis.

    PubMed

    Hwang, Hyun-Ju; Kim, Hoyeun; Jeong, Young-Min; Choi, Monica Y; Lee, So-Young; Kim, Sang-Gu

    2011-08-01

    In Arabidopsis, inflorescence stem formation is a critical process in phase transition from the vegetative to the reproductive state. Although inflorescence stem development has been reported to depend on the expression of a variety of genes during floral induction and repression, little is known about the molecular mechanisms involved in the control of inflorescence stem formation. By activation T-DNA tagging mutagenesis of Arabidopsis, a dominant gain-of-function mutation, eve1-D (eternally vegetative phase1-Dominant), which has lost the ability to form an inflorescence stem, was isolated. The eve1-D mutation exhibited a dome-shaped primary shoot apical meristem (SAM) in the early vegetative stage, similar to that seen in the wild-type SAM. However, the SAM in the eve1-D mutation failed to transition into an inflorescence meristem (IM) and eventually reached senescence without ever leaving the vegetative phase. The eve1-D mutation also displayed pleiotropic phenotypes, including lobed and wavy rosette leaves, short petioles, and an increased number of rosette leaves. Genetic analysis indicated that the genomic location of the EVE1 gene in Arabidopsis thaliana corresponded to a bacterial artificial chromosome (BAC) F4C21 from chromosome IV at ∼17cM which encoded a novel ubiquitin family protein (At4g03350), consisting of a single exon. The EVE1 protein is composed of 263 amino acids, contains a 52 amino acid ubiquitin domain, and has no glycine residue related to ubiquitin activity at the C-terminus. The eve1-D mutation provides a way to study the regulatory mechanisms that control phase transition from the vegetative to the reproductive state.

  9. Pilot Study on the Detection of Simulated Lesions Using a 2D and 3D Digital Full-Field Mammography System with a Newly Developed High Resolution Detector Based on Two Shifts of a-Se.

    PubMed

    Schulz-Wendtland, R; Bani, M; Lux, M P; Schwab, S; Loehberg, C R; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Uder, M; Fasching, P A; Adamietz, B; Meier-Meitinger, M

    2012-05-01

    Purpose: Experimental study of a new system for digital 2D and 3D full-field mammography (FFDM) using a high resolution detector based on two shifts of a-Se. Material and Methods: Images were acquired using the new FFDM system Amulet® (FujiFilm, Tokio, Japan), an a-Se detector (receptor 24 × 30 cm(2), pixel size 50 µm, memory depth 12 bit, spatial resolution 10 lp/mm, DQE > 0.50). Integrated in the detector is a new method for data transfer, based on optical switch technology. The object of investigation was the Wisconsin Mammographic Random Phantom, Model 152A (Radiation Measurement Inc., Middleton, WI, USA) and the same parameters and exposure data (Tungsten, 100 mAs, 30 kV) were consistently used. We acquired 3 different pairs of images in the c-c and ml planes (2D) and in the c-c and c-c planes with an angle of 4 degrees (3D). Five radiologists experienced in mammography (experience ranging from 3 months to more than 5 years) analyzed the images (monitoring) which had been randomly encoded (random generator) with regard to the recognition of details such as specks of aluminum oxide (200-740 µm), nylon fibers (0.4-1.6 mm) and round lesions/masses (diameters 5-14 mm), using special linear glasses for 3D visualization, and compared the results. Results: A total of 225 correct positive decisions could be detected: we found 222 (98.7 %) correct positive results for 2D and 3D visualization in each case. Conclusion: The results of this phantom study showed the same detection rates for both 2D and 3D imaging using full field digital mammography. Our results must be confirmed in further clinical trials.

  10. Three-dimensional high-resolution plasma bubble modeling

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsuhiro; Shinagawa, Hiroyuki; Jin, Hidekatsu

    Equatorial plasma bubble (EPB) is a well-known phenomenon in the equatorial ionospheric F region. As it causes severe scintillation in the amplitude and phase of radio signals, it is important to understand and forecast the occurrence of EPB from a space weather point of view. The development of EPB is known as a evolution of the generalized Rayleigh-Taylor instability. Numerical modelings of the instability on the equatorial two-dimensional plane have been conducted since the late 1970's, and the nonlinear evolution of the instability has been clearly presented. Recently, three-dimensional (3D) modelings became popular tools for further understanding of the development of EPB such as 3D structure of EPB, meridional wind effects and gravity wave seeding. One of the biggest advantages of the 3D model is that the off-equatorial E region which is coupled with the equatorial F region can be included in the model. It is known from observations that the conductance of the off-equatorial E region controls the growth rate of the Rayleigh-Taylor instability, that is, sudden decrease of the E-region conductance around the sunset accelerates the evolution of the instability. We have developed a new 3D high-resolution model for EPB, and studied internal structure of EPB and the contribution of the off-equatorial E region. As it is necessary to use high-order numerical schemes to capture sharp plasma density gradient of EPB, we adopted the CIP scheme which can keep the third-order accuracy in time and space. The simulated EPB has asymmetrical density gradients at east and west walls, and the growth rate changes significantly depending on the condition of the off-equatorial E region. In the future, we will integrate the high-resolution model into whole atmosphere-ionosphere coupled model (GAIA) to study the growth of EPB under the realistic background conditions.

  11. A High-resolution Reanalysis for the European CORDEX Region

    NASA Astrophysics Data System (ADS)

    Bentzien, Sabrina; Bollmeyer, Christoph; Crewell, Susanne; Friederichs, Petra; Hense, Andreas; Keller, Jan; Keune, Jessica; Kneifel, Stefan; Ohlwein, Christian; Pscheidt, Ieda; Redl, Stephanie; Steinke, Sandra

    2014-05-01

    A High-resolution Reanalysis for the European CORDEX Region Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. The work presented here focuses on the regional reanalysis for Europe with a domain matching the CORDEX-EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km). The COSMO reanalysis system comprises the assimilation of observational data using the existing nudging scheme of COSMO and is complemented by a special soil moisture analysis and boundary conditions given by ERA-interim data. The reanalysis data set currently covers 6 years (2007-2012). The evaluation of the reanalyses is done using independent observations with special emphasis on precipitation and high-impact weather situations. The development and evaluation of the COSMO-based reanalysis for the CORDEX-Euro domain can be seen as a preparation for joint European activities on the development of an ensemble system of regional reanalyses for Europe.

  12. High-Resolution Multisensor Infrastructure Inspection with Unmanned Aircraft Systems

    NASA Astrophysics Data System (ADS)

    Eschmann, C.; Kuo, C.-M.; Kuo, C.-H.; Boller, C.

    2013-08-01

    This paper reports on the investigations made at Fraunhofer Institute for Non-Destructive Testing (IZFP) where different rotary wing micro UAS have been used to scan infrastructures including bridges and monuments at high resolutions for remote damage assessment and monitoring purposes. The aerial pictures taken at high speed and frequency have then been stitched together to obtain full 2D and 3D building reconstructions at a resolution allowing damages and cracking to be observed still in the millimeter range. With these ultra hi-res building reconstruction models a specific data base could be created for each object in order to provide extensive information for long term evaluation and life cycle management. The UAS also have been equipped with sensors for damage size estimation, which combined with an image processing software developed to allow automatic cracking pattern recognition could be used for further analysis.

  13. Detection of Barchan Dunes in High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Azzaoui, M. A.; Adnani, M.; El Belrhiti, H.; Chaouki, I. E.; Masmoudi, C.

    2016-06-01

    Barchan dunes are the fastest moving sand dunes in the desert. We developed a process to detect barchans dunes on High resolution satellite images. It consisted of three steps, we first enhanced the image using histogram equalization and noise reduction filters. Then, the second step proceeds to eliminate the parts of the image having a texture different from that of the barchans dunes. Using supervised learning, we tested a coarse to fine textural analysis based on Kolomogorov Smirnov test and Youden's J-statistic on co-occurrence matrix. As an output we obtained a mask that we used in the next step to reduce the search area. In the third step we used a gliding window on the mask and check SURF features with SVM to get barchans dunes candidates. Detected barchans dunes were considered as the fusion of overlapping candidates. The results of this approach were very satisfying in processing time and precision.

  14. High-resolution phosphor screen beam profile monitor

    SciTech Connect

    Yencho, S.; Walz, D.R.

    1985-05-01

    A high-resolution luminescent screen beam profile monitor was developed to allow viewing of both conventional large diameter SLAC e/sup +//e/sup -/ beams, and also collider rf-bunches having small transverse spatial extent, with one instrument. The principal features of the monitor are described. They include the two-power magnification system offering magnifications of 12 and 78X, respectively; the reticle grid which is optically superimposed on the screen image by a cube beam splitter; selection of a suitable camera; and the Al/sub 2/O/sub 3/(Cr) phosphor screen. A simplified version of the monitor for viewing of only micron-sized beams for applications in the collider arcs and final focus regions and achieving a magnification of approx. 40X, coupled with a resolution of approx. 20..mu..m is also presented. 4 refs., 4 figs.

  15. A high-resolution phosphor screen beam profile monitor

    SciTech Connect

    Yencho, S.; Walz, D.R.

    1985-10-01

    A high-resolution luminescent screen beam profile monitor was developed to allow viewing of both conventional large diameter SLAC e/sup +//e/sup -/ beams, and also collider rf-bunches having small transverse spatial extent, with one instrument. The principal features of the monitor are described. They include the two-power magnification system offering magnifications of 12 and 78X, respectively; the reticle grid which is optically superimposed on the screen image by a cube beam splitter; selection of a suitable camera; and the Al/sub 2/O/sub 3/(Cr) phosphor screen. A simplified version of the monitor for viewing of only micronsized beams for applications in the collider arcs and final focus regions and achieving a magnification of about40X, coupled with a resolution of about20..mu..m is also presented.

  16. Higher throughput high resolution multi-worm tracker

    NASA Astrophysics Data System (ADS)

    Javer, Avelino; Li, Kezhi; Gyenes, Bertalan; Brown, Andre; Behavioural Genomics Team

    2015-03-01

    We have developed a high throughput imaging system for tracking multiple nematode worms at high resolution. The tracker consists of 6 cameras mounted on a motorized gantry so that up to 48 plates (each with approximately 30 worms) can be imaged without user intervention. To deal with the high data rate of the cameras we use real time processing to find worms and only save the immediately surrounding pixels. The system is also equipped with automatic oxygen and carbon dioxide control for observing stimulus response behaviour. We will describe the design and performance of the new system, some of the challenges of truly high throughput behaviour recording, and report preliminary results on inter-individual variation in behaviour as well as a quantitative analysis of C. elegans response to hypoxia, oxygen reperfusion, and carbon dioxide. Funding provided by the Medical Research Council.

  17. Bayesian Peptide Peak Detection for High Resolution TOF Mass Spectrometry

    PubMed Central

    Zhang, Jianqiu; Zhou, Xiaobo; Wang, Honghui; Suffredini, Anthony; Zhang, Lin; Huang, Yufei; Wong, Stephen

    2011-01-01

    In this paper, we address the issue of peptide ion peak detection for high resolution time-of-flight (TOF) mass spectrometry (MS) data. A novel Bayesian peptide ion peak detection method is proposed for TOF data with resolution of 10 000–15 000 full width at half-maximum (FWHW). MS spectra exhibit distinct characteristics at this resolution, which are captured in a novel parametric model. Based on the proposed parametric model, a Bayesian peak detection algorithm based on Markov chain Monte Carlo (MCMC) sampling is developed. The proposed algorithm is tested on both simulated and real datasets. The results show a significant improvement in detection performance over a commonly employed method. The results also agree with expert’s visual inspection. Moreover, better detection consistency is achieved across MS datasets from patients with identical pathological condition. PMID:21544266

  18. High Resolution Melting (HRM) applied to wine authenticity.

    PubMed

    Pereira, Leonor; Gomes, Sónia; Castro, Cláudia; Eiras-Dias, José Eduardo; Brazão, João; Graça, António; Fernandes, José R; Martins-Lopes, Paula

    2017-02-01

    Wine authenticity methods are in increasing demand mainly in Denomination of Origin designations. The DNA-based methodologies are a reliable means of tracking food/wine varietal composition. The main aim of this work was the study of High Resolution Melting (HRM) application as a screening method for must and wine authenticity. Three sample types (leaf, must and wine) were used to validate the three developed HRM assays (Vv1-705bp; Vv2-375bp; and Vv3-119bp). The Vv1 HRM assay was only successful when applied to leaf and must samples. The Vv2 HRM assay successfully amplified all sample types, allowing genotype discrimination based on melting temperature values. The smallest amplicon, Vv3, produced a coincident melting curve shape in all sample types (leaf and wine) with corresponding genotypes. This study presents sensitive, rapid and efficient HRM assays applied for the first time to wine samples suitable for wine authenticity purposes.

  19. Wide and high resolution tension measurement using FRET in embryo.

    PubMed

    Yamashita, Satoshi; Tsuboi, Takashi; Ishinabe, Nanako; Kitaguchi, Tetsuya; Michiue, Tatsuo

    2016-06-23

    During embryonic development, physical force plays an important role in morphogenesis and differentiation. Stretch sensitive fluorescence resonance energy transfer (FRET) has the potential to provide non-invasive tension measurements inside living tissue. In this study, we introduced a FRET-based actinin tension sensor into Xenopus laevis embryos and demonstrated that this sensor captures variation of tension across differentiating ectoderm. The actinin tension sensor, containing mCherry and EGFP connected by spider silk protein, was validated in human embryonic kidney (HEK) cells and embryos. It co-localized with actin filaments and changed FRET efficiencies in response to actin filament destruction, myosin deactivation, and osmotic perturbation. Time-lapse FRET analysis showed that the prospective neural ectoderm bears higher tension than the epidermal ectoderm during gastrulation and neurulation, and cells morphogenetic behavior correlated with the tension difference. These data confirmed that the sensor enables us to measure tension across tissues concurrently and with high resolution.

  20. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  1. Thermal design concept for a high resolution UV spectrometer

    NASA Technical Reports Server (NTRS)

    Caruso, P.; Stipandic, E.

    1979-01-01

    The thermal design concept described has been developed for the High Resolution UV Spectrometer/Polarimeter to be flown on the Solar Maximum Mission. Based on experience gained from a similar Orbiting Solar Observatory mission payload, it has been recognized that initial protection of the optical elements, contamination control, reduction of scattered light, tight bulk temperature, and gradient constraints are key elements that must be accommodated in any thermal control concept for this class of instrument. Salient features of the design include: (1) a telescope door providing contamination protection of an aplanatic Gregorian telescope; (2) a rastering system for the secondary mirror; (3) a unique solar heat absorbing device; (4) heat pipes and special radiators; (5) heaters for active temperature control and optics contamination protection; and (6) high precision platinum resistance thermometers. Viability of the design concept has been established by extensive thermal analysis and some subsystem testing. A summary of analytical and test results is included.

  2. High-Resolution Fractionation of Signaling Endosomes Containing Different Receptors

    PubMed Central

    McCaffrey, Gretchen; Welker, Jonathan; Scott, Jessica; van Der Salm, Louise; Grimes, Mark L.

    2010-01-01

    Receptor endocytosis is regulated by ligand binding, and receptors may signal after endocytosis in signaling endosomes. We hypothesized that signaling endosomes containing different types of receptors may be distinct from one another and have different physical characteristics. To test this hypothesis, we developed a high-resolution organelle fractionation method based on mass and density, optimized to resolve endosomes from other organelles. Three different types of receptors undergoing ligand-induced endocytosis were localized predominately in endosomes that were resolved from one another using this method. Endosomes containing activated receptor tyrosine kinases (RTKs), TrkA and EGFR, were similar to one another. Endosomes containing p75NTR (in the tumor necrosis receptor superfamily) and PAC1 (a G-protein-coupled receptor) were distinct from each other and from RTK endosomes. Receptor-specific endosomes may direct the intracellular location and duration of signal transduction pathways to dictate response to signals and determine cell fate. PMID:19416476

  3. High Resolution Melting (HRM) applied to wine authenticity.

    PubMed

    Pereira, Leonor; Gomes, Sónia; Castro, Cláudia; Eiras-Dias, José Eduardo; Brazão, João; Graça, António; Fernandes, José R; Martins-Lopes, Paula

    2017-02-01

    Wine authenticity methods are in increasing demand mainly in Denomination of Origin designations. The DNA-based methodologies are a reliable means of tracking food/wine varietal composition. The main aim of this work was the study of High Resolution Melting (HRM) application as a screening method for must and wine authenticity. Three sample types (leaf, must and wine) were used to validate the three developed HRM assays (Vv1-705bp; Vv2-375bp; and Vv3-119bp). The Vv1 HRM assay was only successful when applied to leaf and must samples. The Vv2 HRM assay successfully amplified all sample types, allowing genotype discrimination based on melting temperature values. The smallest amplicon, Vv3, produced a coincident melting curve shape in all sample types (leaf and wine) with corresponding genotypes. This study presents sensitive, rapid and efficient HRM assays applied for the first time to wine samples suitable for wine authenticity purposes. PMID:27596395

  4. Wide and high resolution tension measurement using FRET in embryo

    PubMed Central

    Yamashita, Satoshi; Tsuboi, Takashi; Ishinabe, Nanako; Kitaguchi, Tetsuya; Michiue, Tatsuo

    2016-01-01

    During embryonic development, physical force plays an important role in morphogenesis and differentiation. Stretch sensitive fluorescence resonance energy transfer (FRET) has the potential to provide non-invasive tension measurements inside living tissue. In this study, we introduced a FRET-based actinin tension sensor into Xenopus laevis embryos and demonstrated that this sensor captures variation of tension across differentiating ectoderm. The actinin tension sensor, containing mCherry and EGFP connected by spider silk protein, was validated in human embryonic kidney (HEK) cells and embryos. It co-localized with actin filaments and changed FRET efficiencies in response to actin filament destruction, myosin deactivation, and osmotic perturbation. Time-lapse FRET analysis showed that the prospective neural ectoderm bears higher tension than the epidermal ectoderm during gastrulation and neurulation, and cells morphogenetic behavior correlated with the tension difference. These data confirmed that the sensor enables us to measure tension across tissues concurrently and with high resolution. PMID:27335157

  5. Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Tybrandt, Klas; Stauffer, Flurin; Vörös, Janos

    2016-05-01

    Stretchable electronics can bridge the gap between hard planar electronic circuits and the curved, soft and elastic objects of nature. This has led to applications like conformal displays, electronic skin and soft neuroprosthetics. A remaining challenge, however, is to match the dimensions of the interfaced systems, as all require feature sizes well below 100 μm. Intrinsically stretchable nanocomposites are attractive in this context as the mechanical deformations occur on the nanoscale, although methods for patterning high performance materials have been lacking. Here we address these issues by reporting on a multilayer additive patterning approach for high resolution fabrication of stretchable electronic devices. The method yields highly conductive 30 μm tracks with similar performance to their macroscopic counterparts. Further, we demonstrate a three layer micropatterned stretchable electroluminescent display with pixel sizes down to 70 μm. These presented findings pave the way towards future developments of high definition displays, electronic skins and dense multielectrode arrays.

  6. High-resolution imaging microchannel plate detector for EUV spectrometry

    NASA Astrophysics Data System (ADS)

    Bannister, Nigel P.; Lapington, Jonathan S.; Barstow, Martin A.; Fraser, George W.; Sanderson, B. S.; Tandy, J. A.; Pearson, James F.; Spragg, J. E.

    2000-12-01

    We describe the development of an imaging microchannel plate detector for a new class of high resolution EUV spectrometer. The detector incorporates a front MCP coated with a CsI photocathode to enhance quantum efficiency, while the rear MCP, supplied by Photonis SAS for a European Space Agency Technology Research Program, represents one of the first uses of a 6 micron pore device in astronomy. The detector uses a unique design of charge division anode, the Vernier readout, enabling it to deliver a spatial resolution better than 15 microns FWHM. The detector forms an integral component of J- PEX, a sounding rocket EUV spectrometer operating at near- normal incidence, using multilayer coated gratings to deliver a resolution and effective area 10 times that of EUVE in the 225 - 245 angstrom band.

  7. Wide and high resolution tension measurement using FRET in embryo.

    PubMed

    Yamashita, Satoshi; Tsuboi, Takashi; Ishinabe, Nanako; Kitaguchi, Tetsuya; Michiue, Tatsuo

    2016-01-01

    During embryonic development, physical force plays an important role in morphogenesis and differentiation. Stretch sensitive fluorescence resonance energy transfer (FRET) has the potential to provide non-invasive tension measurements inside living tissue. In this study, we introduced a FRET-based actinin tension sensor into Xenopus laevis embryos and demonstrated that this sensor captures variation of tension across differentiating ectoderm. The actinin tension sensor, containing mCherry and EGFP connected by spider silk protein, was validated in human embryonic kidney (HEK) cells and embryos. It co-localized with actin filaments and changed FRET efficiencies in response to actin filament destruction, myosin deactivation, and osmotic perturbation. Time-lapse FRET analysis showed that the prospective neural ectoderm bears higher tension than the epidermal ectoderm during gastrulation and neurulation, and cells morphogenetic behavior correlated with the tension difference. These data confirmed that the sensor enables us to measure tension across tissues concurrently and with high resolution. PMID:27335157

  8. High-Resolution DNA Melting Analysis in Plant Research.

    PubMed

    Simko, Ivan

    2016-06-01

    Genetic and genomic studies provide valuable insight into the inheritance, structure, organization, and function of genes. The knowledge gained from the analysis of plant genes is beneficial to all aspects of plant research, including crop improvement. New methods and tools are continually being developed to facilitate rapid and accurate mapping, sequencing, and analyzing of genes. Here, I review the recent progress in the application of high-resolution melting (HRM) analysis of DNA, a method that allows detecting polymorphism in double-stranded DNA by comparing profiles of melting curves. Use of HRM has expanded considerably in the past few years as the method was successfully applied for high-throughput genotyping, mapping genes, testing food products and seeds, and other areas of plant research. PMID:26827247

  9. Theme issue "High Resolution Earth Imaging for Geospatial Information"

    NASA Astrophysics Data System (ADS)

    Heipke, Christian; Soergel, Uwe; Rottensteiner, Franz; Jutzi, Boris

    2015-02-01

    Earth imaging from air and space has undergone major changes over the last decade. Examples of new and significant developments comprise the development and constant improvement of digital aerial cameras, multiple-echo and full-waveform laser scanners and the appearance of geosensor networks and unconventional platforms, most notably unmanned aircraft systems (UAS), sometimes called unmanned aerial vehicles (UAV) or remotely piloted aircraft systems (RPAS), and the ever increasing number of high-resolution and hyperspectral optical and SAR satellite sensors, small satellites and satellite constellations, which allow for both, a continued availability of satellite data over long periods of time, and a very short revisit time for any location on the globe. To give few examples: the latest Landsat satellite, appropriately called the Landsat data continuity mission or LDCM was launched on February 2013, continuing the Landsat mission which began back in 1972; during 2013 and 2014 France has put the SPOT 6 and 7 twin satellites into orbit, extending the history of high resolution space images, which started in 1986; and in April 2014 the European Space Agency (ESA) successfully launched the Sentinel 1A satellite with a synthetic aperture radar (SAR) sensor, the first of a fleet of different sensors that will be sent into space in the coming years. Sentinel 1A together with its twin system Sentinel 1B, to be launched in 2016, will continue the tremendous success story of ESA's C band SAR satellite activities dating back to 1991. Like the predecessors ERS 1, ERS 2, and Envisat ASAR, the Sentinel 1 systems are designed to cover the entire land mass with medium resolution, the repeat cycle is 12 days for Sentinel 1A alone and will even drop to six days as soon as both satellites are operational.

  10. Advancing Cyberinfrastructure to support high resolution water resources modeling

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Ogden, F. L.; Jones, N.; Horsburgh, J. S.

    2012-12-01

    Addressing the problem of how the availability and quality of water resources at large scales are sensitive to climate variability, watershed alterations and management activities requires computational resources that combine data from multiple sources and support integrated modeling. Related cyberinfrastructure challenges include: 1) how can we best structure data and computer models to address this scientific problem through the use of high-performance and data-intensive computing, and 2) how can we do this in a way that discipline scientists without extensive computational and algorithmic knowledge and experience can take advantage of advances in cyberinfrastructure? This presentation will describe a new system called CI-WATER that is being developed to address these challenges and advance high resolution water resources modeling in the Western U.S. We are building on existing tools that enable collaboration to develop model and data interfaces that link integrated system models running within an HPC environment to multiple data sources. Our goal is to enhance the use of computational simulation and data-intensive modeling to better understand water resources. Addressing water resource problems in the Western U.S. requires simulation of natural and engineered systems, as well as representation of legal (water rights) and institutional constraints alongside the representation of physical processes. We are establishing data services to represent the engineered infrastructure and legal and institutional systems in a way that they can be used with high resolution multi-physics watershed modeling at high spatial resolution. These services will enable incorporation of location-specific information on water management infrastructure and systems into the assessment of regional water availability in the face of growing demands, uncertain future meteorological forcings, and existing prior-appropriations water rights. This presentation will discuss the informatics

  11. High Resolution Microendoscopy for Quantitative Diagnosis of Esophageal Neoplasia

    NASA Astrophysics Data System (ADS)

    Shin, Dongsuk

    Esophageal cancer is the eighth most common cancer in the world. Cancers of the esophagus account for 3.8% of all cases of cancers, with approximately 482,300 new cases reported in 2008 worldwide. In the United States alone, it is estimated that approximately 18,000 new cases will be diagnosed in 2013, and 15,210 deaths are expected. Despite advances in surgery and chemoradiation therapy, these advances have not led to a significant increase in survival rates, primarily because diagnosis often at an advanced and incurable stage when treatment is more difficult and less successful. Accurate, objective methods for early detection of esophageal neoplasia are needed. Here, quantitative classification algorithms for high resolution miscroendoscopic images were developed to distinguish between esophageal neoplastic and non-neoplastic tissue. A clinical study in 177 patients with esophageal squamous cell carcinoma (ESCC) was performed to evaluate the diagnostic performance of the classification algorithm in collaboration with the Mount Sinai Medical Center in the United States, the First Hospital of Jilin University in China, and the Cancer Institute and Hospital, the Chinese Academy of Medical Science in China. The study reported a sensitivity and specificity of 93% and 92%, respectively, in the training set, 87% and 97%, respectively, in the test set, and 84% and 95%, respectively, in an independent validation set. Another clinical study in 31 patients with Barrett's esophagus resulted in a sensitivity of 84% and a specificity of 85%. Finally, a compact, portable version of the high resolution microendoscopy (HRME) device using a consumer-grade camera was developed and a series of biomedical experimental studies were carried out to assess the capability of the device.

  12. High resolution modelling of extreme precipitation events in urban areas

    NASA Astrophysics Data System (ADS)

    Siemerink, Martijn; Volp, Nicolette; Schuurmans, Wytze; Deckers, Dave

    2015-04-01

    The present day society needs to adjust to the effects of climate change. More extreme weather conditions are expected, which can lead to longer periods of drought, but also to more extreme precipitation events. Urban water systems are not designed for such extreme events. Most sewer systems are not able to drain the excessive storm water, causing urban flooding. This leads to high economic damage. In order to take appropriate measures against extreme urban storms, detailed knowledge about the behaviour of the urban water system above and below the streets is required. To investigate the behaviour of urban water systems during extreme precipitation events new assessment tools are necessary. These tools should provide a detailed and integral description of the flow in the full domain of overland runoff, sewer flow, surface water flow and groundwater flow. We developed a new assessment tool, called 3Di, which provides detailed insight in the urban water system. This tool is based on a new numerical methodology that can accurately deal with the interaction between overland runoff, sewer flow and surface water flow. A one-dimensional model for the sewer system and open channel flow is fully coupled to a two-dimensional depth-averaged model that simulates the overland flow. The tool uses a subgrid-based approach in order to take high resolution information of the sewer system and of the terrain into account [1, 2]. The combination of using the high resolution information and the subgrid based approach results in an accurate and efficient modelling tool. It is now possible to simulate entire urban water systems using extreme high resolution (0.5m x 0.5m) terrain data in combination with a detailed sewer and surface water network representation. The new tool has been tested in several Dutch cities, such as Rotterdam, Amsterdam and The Hague. We will present the results of an extreme precipitation event in the city of Schiedam (The Netherlands). This city deals with

  13. High resolution remote sensing of water surface patterns

    NASA Astrophysics Data System (ADS)

    Woodget, A.; Visser, F.; Maddock, I.; Carbonneau, P.

    2012-12-01

    The assessment of in-stream habitat availability within fluvial environments in the UK traditionally includes the mapping of patterns which appear on the surface of the water, known as 'surface flow types' (SFTs). The UK's River Habitat Survey identifies ten key SFTs, including categories such as rippled flow, upwelling, broken standing waves and smooth flow. SFTs result from the interaction between the underlying channel morphology, water depth and velocity and reflect the local flow hydraulics. It has been shown that SFTs can be both biologically and hydraulically distinct. SFT mapping is usually conducted from the river banks where estimates of spatial coverage are made by eye. This approach is affected by user subjectivity and inaccuracies in the spatial extent of mapped units. Remote sensing and specifically the recent developments in unmanned aerial systems (UAS) may now offer an alternative approach for SFT mapping, with the capability for rapid and repeatable collection of very high resolution imagery from low altitudes, under bespoke flight conditions. This PhD research is aimed at investigating the mapping of SFTs using high resolution optical imagery (less than 10cm) collected from a helicopter-based UAS flown at low altitudes (less than 100m). This paper presents the initial findings from a series of structured experiments on the River Arrow, a small lowland river in Warwickshire, UK. These experiments investigate the potential for mapping SFTs from still and video imagery of different spatial resolutions collected at different flying altitudes and from different viewing angles (i.e. vertical and oblique). Imagery is processed using 3D mosaicking software to create orthophotos and digital elevation models (DEM). The types of image analysis which are tested include a simple, manual visual assessment undertaken in a GIS environment, based on the high resolution optical imagery. In addition, an object-based image analysis approach which makes use of the

  14. High resolution infrared acquisitions droning over the LUSI mud eruption.

    NASA Astrophysics Data System (ADS)

    Di Felice, Fabio; Romeo, Giovanni; Di Stefano, Giuseppe; Mazzini, Adriano

    2016-04-01

    The use of low-cost hand-held infrared (IR) thermal cameras based on uncooled micro-bolometer detector arrays became more widespread during the recent years. Thermal cameras have the ability to estimate temperature values without contact and therefore can be used in circumstances where objects are difficult or dangerous to reach such as volcanic eruptions. Since May 2006 the Indonesian LUSI mud eruption continues to spew boiling mud, water, aqueous vapor, CO2, CH4 and covers a surface of nearly 7 km2. At this locality we performed surveys over the unreachable erupting crater. In the framework of the LUSI Lab project (ERC grant n° 308126), in 2014 and 2015, we acquired high resolution infrared images using a specifically equipped remote-controlled drone flying at an altitude of m 100. The drone is equipped with GPS and an autopilot system that allows pre-programming the flying path or designing grids. The mounted thermal camera has peak spectral sensitivity in LW wavelength (μm 10) that is characterized by low water vapor and CO2 absorption. The low distance (high resolution) acquisitions have a temperature detail every cm 40, therefore it is possible to detect and observe physical phenomena such as thermodynamic behavior, hot mud and fluids emissions locations and their time shifts. Despite the harsh logistics and the continuously varying gas concentrations we managed to collect thermal images to estimate the crater zone spatial thermal variations. We applied atmosphere corrections to calculate infrared absorption by high concentration of water vapor. Thousands of images have been stitched together to obtain a mosaic of the crater zone. Regular monitoring with heat variation measurements collected, e.g. every six months, could give important information about the volcano activity estimating its evolution. A future data base of infrared high resolution and visible images stored in a web server could be a useful monitoring tool. An interesting development will be

  15. Lensfree on-chip high-resolution imaging using two-way lighting, and its limitations

    NASA Astrophysics Data System (ADS)

    Adachi, Yasuhiko; Tamaki, Tokuhiko; Motomura, Hideto; Kato, Yoshihisa

    2016-03-01

    A high-magnification image of a biological sample can generally be obtained by an optical microscope with an objective lens, moving the image sensor with a sub-pixel shift and the subsequent image processing for super-resolution. However, to obtain a high-resolution image, a large number of images will be required for the super-resolution, and thus it is difficult to achieve real-time operation, and the field-of-view (FOV) is not sufficiently wide. The currently proposed digital holography technique places a sample on the image sensor and captures the interference fringe (hologram) to reconstruct a 3D high-resolution image in a computer. This technique ensures the features of a wide FOV, whereas the high resolution obtained by image processing cannot ensure real-time operation, because it requires recursive calculations of light propagation and adequate computer resources. To realize wide FOV and the real-time operation at the same time, we have developed a new technique: Lensfree on-chip high-resolution imaging using two-way lighting. High-resolution image is immediately obtained by image processing of the low-resolution images of the samples. This makes it possible to ensure a wide FOV, a deep depth of focus without the need for focus adjustment, and a continuously expanding operation. We also discuss the limitations of the high resolution.

  16. Development of a high-resolution soft x-ray (30--1500 eV) beamline at the Advanced Light Source and its use for the study of angle-resolved photoemission extended fine structure

    SciTech Connect

    Huff, W R.A.

    1996-02-01

    ALS Bending magnet beamline 9.3.2 is for high resolution spectroscopy, with circularly polarized light. Fixed included-angle SGM uses three gratings for 30--1500 eV photons; circular polarization is produced by an aperture for selecting the beam above or below the horizontal plane. Photocurrent from upper and lower jaws of entrance slit sets a piezoelectric drive feedback loop on the vertically deflecting mirror for stable beam. End station has a movable platform. With photomeission data from Stanford, structure of c(2{times}2)P/Fe(100) was determined using angle-resolved photoemission extended fine structure (ARPEFS). Multiple-scattering spherical-wave (MSSW) calculations indicate that P atoms adsorb in fourfold hollow sites 1.02A above the first Fe layer. Self-consistent-field X{alpha} scattered wave calculation confirm that the Fe{sub 1}-Fe{sub 2} space is contracted for S/Fe but not for P/Fe; comparison is made to atomic N and O on Fe(100). Final-state effects on ARPEFS curves used literature data from the S 1s and 2p core levels of c(2{times}2)S/Ni(001); a generalized Ramsauer-Townsend splitting is present in the 1s but not 2p data. An approximate method for analyzing ARPEFS data from a non-s initial state using only the higher-{ell} partial wave was tested successfully. ARPEFS data from clean surfaces were collected normal to Ni(111) (3p core levels) and 5{degree} off-normal from Cu(111)(3s, 3p). Fourier transforms (FT) resemble adsorbate systems, showing backscattering signals from atoms up to 4 layers below emitters. 3p FTs show scattering from 6 nearest neighbors in the same crystal layer as the emitters. MSSW calulation indicate that Cu 3p photoemission is mostly d-wave. FTs also indicate double-scattering and single-scattering from laterally distant atoms; calculations indicate that the signal is dominated by photoemission from the first 2 crystal layers.

  17. Regenerative Endodontic Treatment of an Immature Necrotic Molar with Arrested Root Development by Using Recombinant Human Platelet-derived Growth Factor: A Case Report.

    PubMed

    Zhujiang, Annie; Kim, Sahng G

    2016-01-01

    Regenerative endodontic treatment has provided a treatment option that aims to allow root maturation. The present report describes the regenerative endodontic treatment of a necrotic, immature molar by using recombinant human platelet-derived growth factor (rhPDGF-BB) and shows the continued root maturation in the tooth with arrested root development. A regenerative endodontic procedure that used a growth factor was performed for a necrotic molar with arrested root formation in a 20-year-old patient. Thorough disinfection by using mechanical instrumentation and copious irrigation of antimicrobial agents as well as intracanal medication with calcium hydroxide was performed throughout the first 2 appointments. At the third appointment, the root canals were irrigated with an antimicrobial solution and 17% EDTA, and bleeding was evoked by passing sterile paper points beyond the apex in each canal. Small pieces of a collagen membrane saturated with rhPDGF-BB solution from GEM 21S were packed into each canal. Mineral trioxide aggregate was placed, and Cavit and composite resin were used to restore the tooth. Complete root maturation and resolution of a periapical radiolucency were observed at the 15-month follow-up. The present report presents a regenerative endodontic procedure that uses rhPDGF-BB for a necrotic molar with arrested root development. The finding of continued root development in the present case suggests that regenerative endodontic treatment may be able to resume the root maturation process in teeth with arrested root formation. Further clinical studies are required to investigate the efficacy of rhPDGF-BB in regenerative endodontic treatment.

  18. 2D optoacoustic array for high resolution imaging

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R. S.; Kim, K.; Huang, S.-W.; Hou, Y.; O'Donnell, M.

    2006-02-01

    An optoacoustic detector denotes the detection of acoustic signals by optical devices. Recent advances in fabrication techniques and the availability of high power tunable laser sources have greatly accelerated the development of efficient optoacoustic detectors. The unique advantages of optoacoustic technology are of special interest in applications that require high resolution imaging. For these applications optoacoustic technology enables high frequency transducer arrays with element size on the order of 10 μm. Laser generated ultrasound (photoacoustic effect) has been studied since the early observations of A.G. Bell (1880) of audible sound generated by light absorption . Modern studies have demonstrated the use of the photoacoustic effect to form a versatile imaging modality for medical and biological applications. A short laser pulse illuminates a tissue creating rapid thermal expansion and acoustic emission. Detection of the resulting acoustic field by an array enables the imaging of the tissue optical absorption using ultrasonic imaging methods. We present an integrated imaging system that employs photoacoustic sound generation and 2D optoacoustic reception. The optoacoustic receiver consists of a thin polymer Fabry-Perot etalon. The etalon is an optical resonator of a high quality factor (Q = 750). The relatively low elasticity modulus of the polymer and the high Q-factor of the resonator combine to yield high ultrasound sensitivity. The etalon thickness (10 μm) was optimized for wide bandwidth (typically above 50 MHz). An optical scanning and focusing system is used to create a large aperture and high density 2D ultrasonic receiver array. High resolution 3D images of phantom targets and biological tissue samples were obtained.

  19. A high-resolution regional reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.

    2015-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers the past 20 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  20. Evaluation of a High-Resolution Regional Reanalysis for Europe

    NASA Astrophysics Data System (ADS)

    Ohlwein, C.; Wahl, S.; Keller, J. D.; Bollmeyer, C.

    2014-12-01

    Reanalyses gain more and more importance as a source of meteorological information for many purposes and applications. Several global reanalyses projects (e.g., ERA, MERRA, CSFR, JMA9) produce and verify these data sets to provide time series as long as possible combined with a high data quality. Due to a spatial resolution down to 50-70km and 3-hourly temporal output, they are not suitable for small scale problems (e.g., regional climate assessment, meso-scale NWP verification, input for subsequent models such as river runoff simulations). The implementation of regional reanalyses based on a limited area model along with a data assimilation scheme is able to generate reanalysis data sets with high spatio-temporal resolution. Within the Hans-Ertel-Centre for Weather Research (HErZ), the climate monitoring branch concentrates efforts on the assessment and analysis of regional climate in Germany and Europe. In joint cooperation with DWD (German Meteorological Service), a high-resolution reanalysis system based on the COSMO model has been developed. The regional reanalysis for Europe matches the domain of the CORDEX EURO-11 specifications, albeit at a higher spatial resolution, i.e., 0.055° (6km) instead of 0.11° (12km) and comprises the assimilation of observational data using the existing nudging scheme of COSMO complemented by a special soil moisture analysis with boundary conditions provided by ERA-Interim data. The reanalysis data set covers 6 years (2007-2012) and is currently extended to 16 years. Extensive evaluation of the reanalysis is performed using independent observations with special emphasis on precipitation and high-impact weather situations indicating a better representation of small scale variability. Further, the evaluation shows an added value of the regional reanalysis with respect to the forcing ERA Interim reanalysis and compared to a pure high-resolution dynamical downscaling approach without data assimilation.

  1. WINKLER - An imaging high resolution gamma-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Nakano, G. H.; Sandie, W. G.; Kilner, J. R.; Pang, F.; Imai, B. B.

    1991-04-01

    The WINKLER high-resolution gamma-ray spectrometer was originally developed to fly on a high-altitude aircraft. Following the discovery of Supernova 1987A in the Large Magellanic Cloud, arrangements were made to perform balloon-borne observations of this event. The instrument was quickly adapted to fit on a gondola furnished by NASA/MSFC in a collaborative effort and was flown in a series of three successful flights from Alice Springs, Australia. The second flight on October 29-31, 1987 resulted in the first high-resolution detection of the 847-keV line emission from the decay of 56Co and provided definitive confirmation of the explosive nucleosynthesis process. WINKLER comprises an array of nine coaxial n-type germanium detectors which are housed in a common vaccuum cryostat and surrounded by an NaI(Tl) scintillator shield that suppresses Compton interactions and gamma-ray background. Gamma-ray images are obtained with a rotational modulation collimator system attached to the spectrometer. Collimator holes in the upper section of the shield define the angular field of view of the instrument to 22 deg FWHM. The energy range of the spectrometer is 20 eV to 8 MeV, and the composite energy resolution from all detectors is 1.5 keV at 100 keV and about 2.5 keV at 1.33 MeV. The total frontal area of the sensor array is 214 cm2 with a volume of 1177 cm3, providing sufficient detection sensitivity for gamma-ray astronomy as well as for land-based applications such as treaty verification monitoring.

  2. All-Optical Ultrasound Transducers for High Resolution Imaging

    NASA Astrophysics Data System (ADS)

    Sheaff, Clay Smith

    High frequency ultrasound (HFUS) has increasingly been used within the past few decades to provide high resolution (< 200 mum) imaging in medical applications such as endoluminal imaging, intravascular imaging, ophthalmology, and dermatology. The optical detection and generation of HFUS using thin films offers numerous advantages over traditional piezoelectric technology. Circumvention of an electronic interface with the device head is one of the most significant given the RF noise, crosstalk, and reduced capacitance that encumbers small-scale electronic transducers. Thin film Fabry-Perot interferometers - also known as etalons - are well suited for HFUS receivers on account of their high sensitivity, wide bandwidth, and ease of fabrication. In addition, thin films can be used to generate HFUS when irradiated with optical pulses - a method referred to as Thermoelastic Ultrasound Generation (TUG). By integrating a polyimide (PI) film for TUG into an etalon receiver, we have created for the first time an all-optical ultrasound transducer that is both thermally stable and capable of forming fully sampled 2-D imaging arrays of arbitrary configuration. Here we report (1) the design and fabrication of PI-etalon transducers; (2) an evaluation of their optical and acoustic performance parameters; (3) the ability to conduct high-resolution imaging with synthetic 2-D arrays of PI-etalon elements; and (4) work towards a fiber optic PI-etalon for in vivo use. Successful development of a fiber optic imager would provide a unique field-of-view thereby exposing an abundance of prospects for minimally-invasive analysis, diagnosis, and treatment of disease.

  3. Phase contrast in high resolution electron microscopy

    DOEpatents

    Rose, H.H.

    1975-09-23

    This patent relates to a device for developing a phase contrast signal for a scanning transmission electron microscope. The lens system of the microscope is operated in a condition of defocus so that predictable alternate concentric regions of high and low electron density exist in the cone of illumination. Two phase detectors are placed beneath the object inside the cone of illumination, with the first detector having the form of a zone plate, each of its rings covering alternate regions of either higher or lower electron density. The second detector is so configured that it covers the regions of electron density not covered by the first detector. Each detector measures the number of electrons incident thereon and the signal developed by the first detector is subtracted from the signal developed by the record detector to provide a phase contrast signal. (auth)

  4. High resolution airborne geophysics at hazardous waste disposal sites

    SciTech Connect

    Beard, L.P.; Nyquist, J.E.; Doll, W.E.; Chong Foo, M.; Gamey, T.J.

    1995-06-01

    In 1994, a high resolution helicopter geophysical survey was conducted over portions of the Oak Ridge Reservation, Tennessee. The 1800 line kilometer survey included multi-frequency electromagnetic and magnetic sensors. The areas covered by the high resolution portion of the survey were selected on the basis of their importance to the environmental restoration effort and on data obtained from the reconnaissance phase of the airborne survey in which electromagnetic, magnetic, and radiometric data were collected over the entire Oak Ridge Reservation in 1992--1993. The high resolution phase had lower sensor heights, more and higher EM frequencies, and tighter line spacings than did the reconnaissance survey. When flying over exceptionally clear areas, the high resolution bird came within a few meters of the ground surface. Unfortunately, even sparse trees and power or phone lines could prevent the bird from being towed safely at low altitude, and over such areas it was more usual for it to be flown at about the same altitude as the bird in the reconnaissance survey, about 30m. Even so, the magnetometers used in the high resolution phase were 20m closer to the ground than in the reconnaissance phase because they were mounted on the tail of the bird rather than on the tow cable above the bird. The EM frequencies used in the high resolution survey ranged from 7400Hz to 67000Hz. Only the horizontal coplanar loop configuration was used in the high resolution flyovers.

  5. HIGH RESOLUTION PHOTOEMISSION STUDIES OF COMPLEX MATERIALS.

    SciTech Connect

    JOHNSON,P.D.; VALLA,T.; FEDOROV,A.; REISFELD,G.; HULBERT,S.L.

    1999-10-13

    Recent instrumentation developments in photoemission are providing new insights into the physics of complex materials. With increased energy and momentum resolution, it has become possible to examine in detail different contributions to the self-energy or inverse lifetime of the photohole created in the photoexcitation process. Employing momentum distribution and energy distribution curves, a detailed study of the optimally doped cuprate, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}, shows that the material behaves like a non-Fermi liquid with no evidence for the quasi-particles characteristic of a Fermi liquid.

  6. A wideband, high-resolution spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Quirk, M. P.; Wilck, H. C.; Garyantes, M. F.; Grimm, M. J.

    1988-01-01

    A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.

  7. High resolution interface nanochemistry and structure

    SciTech Connect

    Not Available

    1993-01-01

    A summary is given of results on nanospectroscopy etc. during the previous three years, divided into the following subsections: development of methods and instrumentation for interface/boundary chemical analysis, interface and boundary structure in ceramic matrix composites, quantitative composition measurements of thin films and inclusions, theoretical calculations for electron energy loss near edge fine structure and grain boundary structure, and small probe radiation effects in ceramics. Materials studied include SiC whisker-reinforced Si3N4, SiC, Si oxides, Si, Si oxynitride, other ceramics. Methods mentioned include field emission, EELS (electron energy loss spectroscopy), nanospectroscopy, electron nanoprobe, etc.

  8. High resolution interface nanochemistry and structure

    SciTech Connect

    Not Available

    1993-03-01

    A summary is given of results on nanospectroscopy etc. during the previous three years, divided into the following subsections: development of methods and instrumentation for interface/boundary chemical analysis, interface and boundary structure in ceramic matrix composites, quantitative composition measurements of thin films and inclusions, theoretical calculations for electron energy loss near edge fine structure and grain boundary structure, and small probe radiation effects in ceramics. Materials studied include SiC whisker-reinforced Si3N4, SiC, Si oxides, Si, Si oxynitride, other ceramics. Methods mentioned include field emission, EELS (electron energy loss spectroscopy), nanospectroscopy, electron nanoprobe, etc.

  9. GLASS CERAMICS FOR HIGH RESOLUTION IMAGING

    SciTech Connect

    Johnson, Jackie A.; Weber, Rick; Kolesnikov, Alexander I; SCHWEIZER, Stefan

    2008-01-01

    Glass-ceramic materials are being developed for use in digital mammography systems. The materials are transparent x-ray storage phosphors, which are potentially less expensive than competing materials with superior performance. The materials do not suffer from loss of resolution and increased noise due to light scattering from grain boundaries, as do the currently available polycrystalline materials. The glass ceramics are based on Eu2+ -doped fluorochlorozirconate glasses. These can be heat treated to nucleate Eudoped barium chloride nanocrystals. The glass ceramic converts ionizing radiation (typically x-rays) into stable electronhole pairs that can be read by scanning a stimulating light beam across the glass to cause photostimulated luminescence (PSL) emission. Measurements on the materials are ongoing to elucidate structure-property relationships developed as a result of introducing rare-earth ions and modifying process conditions. Image quality measurements indicate that the current material competes with state-of-the-art x-ray imaging plates. The paper presents results on structure, properties and future directions of the materials described above.

  10. High-resolution tomographic imaging of microvessels

    NASA Astrophysics Data System (ADS)

    Müller, Bert; Lang, Sabrina; Dominietto, Marco; Rudin, Markus; Schulz, Georg; Deyhle, Hans; Germann, Marco; Pfeiffer, Franz; David, Christian; Weitkamp, Timm

    2008-08-01

    Cancer belongs to the primary diseases these days. Although different successful treatments including surgery, chemical, pharmacological, and radiation therapies are established, the aggressive proliferation of cancerous cells and the related formation of blood vessels has to be better understood to develop more powerful strategies against the different kinds of cancer. Angiogenesis is one of the crucial steps for the survival and metastasis formation of malignant tumors. Although therapeutic strategies attempting to inhibit these processes are being developed, the biological regulation is still unclear. This study concentrates on the three-dimensional morphology of vessels formed in a mouse tumor xenograft model post mortem. Synchrotron radiation-based micro computed tomography (SRμCT) could provide the necessary information that is essential for validating the simulations. Using mouse and human brain tissue, the different approaches to extract the vessel tree from SRμCT data are discussed. These approaches include corrosion casting, the application of contrast agents such as barium sulfate, tissue embedding, all of them regarded as materials science based. Alternatively, phase contrast tomography was used, which gave rise to promising results but still not reaches the spatial resolution to uncover the smallest capillaries.

  11. High Resolution Multimode Fiber Image Recovery

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah

    2000-01-01

    The research emphasis is on developing a cost-effective method of recovering image information from small, closely confined spaces using multimode fibers. The state-of-the-art good quality-viewing fiber, which can currently be used for performing this function, is a 0.5 mm diameter bundle containing 6000 pixels at a cost of $10,000 per fiber bundle. However, these fiber bundles are very fragile and can easily break during surgical use, thereby making instrument reliability and replacement cost,a major impediment to their routine use in many applications. The advantage of working with a single multimode fiber is that it is significantly less expensive and mechanically more robust. In addition, careful choice of numerical aperture allows a higher image resolution (roughly 750,000 pixels) with a 0.5 mm diameter multimode fiber.

  12. Volume Visualizing High-Resolution Turbulence Computations

    NASA Astrophysics Data System (ADS)

    Clyne, John; Scheitlin, Tim; Weiss, Jeffrey B.

    Using several volume-visualization packages including a new package we developed called Volsh, we investigate a 25-Gbyte dataset from a 2563 computation of decaying quasi-geostrophic turbulence. We compare surface fitting and direct volume rendering approaches, as well as a number of techniques for producing feature-revealing spatial cues. We also study the pros and cons of using batch and interactive tools for visualizing the data and discuss the relative merits of using each approach. We find that each tool has its own advantages and disadvantages, and a combination of tools is most effective at exploring large four-dimensional scalar datasets. The resulting visualizations show several new phenomena in the dynamics of coherent vortices.

  13. Seismic investigations for high resolution exploration ahead and around boreholes

    NASA Astrophysics Data System (ADS)

    Jaksch, Katrin; Giese, Ruediger; Kopf, Matthias

    2013-04-01

    Deep reservoirs usually will be explored with a surface seismic survey often in combination with borehole seismic measurements like VSP or SWD which can improve the velocity model of the underground. Reservoirs especially in geothermal fields are often characterized by small-scale structures. Additionally, with depth the need for exploration methods with a high resolution increases because standard methods like borehole seismic measurements cannot improve their resolution with depth. To localize structures with more accuracy methods with higher resolution in the range of meters are necessary. Within the project SPWD - Seismic Prediction While Drilling a new exploration method will be developed. With an implementation of seismic sources and receivers in one device an exploration method ahead and around the borehole will be enabled. Also, a high resolution independent from the depth will be achieved. Therefore active and powerful seismic sources are necessary to reach an acceptable penetration depth. Step by step seismic borehole devices were developed, which can be used under different conditions. Every borehole device contains four seismic sources and several three-component geophones. A small distance between actuators and geophones allows detecting also the high frequency content of the wave field reflected at geological structures. Also, exploration with a high resolution is possible. A first borehole device was developed for basic conditions in horizontal boreholes without special terms to temperature or pressure. In a mine first methodical measurements for the initiated wave field were performed. Therefor an existing seismic test area at the research and education mine of the TU Bergakademie Freiberg was extended with boreholes. In the seismic test area, consisting of a dense geophone array with three-component geophone anchors, two horizontal and one vertical borehole was drilled. To achieve a radiation pattern in predefined directions by constructive

  14. Small UAV-Acquired, High-resolution, Georeferenced Still Imagery

    SciTech Connect

    Ryan Hruska

    2005-09-01

    Currently, small Unmanned Aerial Vehicles (UAVs) are primarily used for capturing and down-linking real-time video. To date, their role as a low-cost airborne platform for capturing high-resolution, georeferenced still imagery has not been fully utilized. On-going work within the Unmanned Vehicle Systems Program at the Idaho National Laboratory (INL) is attempting to exploit this small UAV-acquired, still imagery potential. Initially, a UAV-based still imagery work flow model was developed that includes initial UAV mission planning, sensor selection, UAV/sensor integration, and imagery collection, processing, and analysis. Components to support each stage of the work flow are also being developed. Critical to use of acquired still imagery is the ability to detect changes between images of the same area over time. To enhance the analysts’ change detection ability, a UAV-specific, GIS-based change detection system called SADI or System for Analyzing Differences in Imagery is under development. This paper will discuss the associated challenges and approaches to collecting still imagery with small UAVs. Additionally, specific components of the developed work flow system will be described and graphically illustrated using varied examples of small UAV-acquired still imagery.

  15. A parallel solution for high resolution histological image analysis.

    PubMed

    Bueno, G; González, R; Déniz, O; García-Rojo, M; González-García, J; Fernández-Carrobles, M M; Vállez, N; Salido, J

    2012-10-01

    This paper describes a general methodology for developing parallel image processing algorithms based on message passing for high resolution images (on the order of several Gigabytes). These algorithms have been applied to histological images and must be executed on massively parallel processing architectures. Advances in new technologies for complete slide digitalization in pathology have been combined with developments in biomedical informatics. However, the efficient use of these digital slide systems is still a challenge. The image processing that these slides are subject to is still limited both in terms of data processed and processing methods. The work presented here focuses on the need to design and develop parallel image processing tools capable of obtaining and analyzing the entire gamut of information included in digital slides. Tools have been developed to assist pathologists in image analysis and diagnosis, and they cover low and high-level image processing methods applied to histological images. Code portability, reusability and scalability have been tested by using the following parallel computing architectures: distributed memory with massive parallel processors and two networks, INFINIBAND and Myrinet, composed of 17 and 1024 nodes respectively. The parallel framework proposed is flexible, high performance solution and it shows that the efficient processing of digital microscopic images is possible and may offer important benefits to pathology laboratories.

  16. High-resolution colorimetric imaging of paintings

    NASA Astrophysics Data System (ADS)

    Martinez, Kirk; Cupitt, John; Saunders, David R.

    1993-05-01

    With the aim of providing a digital electronic replacement for conventional photography of paintings, a scanner has been constructed based on a 3000 X 2300 pel resolution camera which is moved precisely over a 1 meter square area. Successive patches are assembled to form a mosaic which covers the whole area at c. 20 pels/mm resolution, which is sufficient to resolve the surface textures, particularly craquelure. To provide high color accuracy, a set of seven broad-band interference filters are used to cover the visible spectrum. A calibration procedure based upon a least-mean-squares fit to the color of patches from a Macbeth Colorchecker chart yields an average color accuracy of better than 3 units in the CMC uniform color space. This work was mainly carried out as part of the VASARI project funded by the European Commission's ESPRIT program, involving companies and galleries from around Europe. The system is being used to record images for conservation research, for archival purposes and to assist in computer-aided learning in the field of art history. The paper will describe the overall system design, including the selection of the various hardware components and the design of controlling software. The theoretical basis for the color calibration methodology is described as well as the software for its practical implementation. The mosaic assembly procedure and some of the associated image processing routines developed are described. Preliminary results from the research will be presented.

  17. The High Resolution Tropospheric Ozone Residual

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2006-01-01

    The co-flight of the MLS stratospheric limb sounder and the Ozone Monitoring Instrument (OMI) provides the capability of computing the Tropospheric Ozone Residual (TOR) in much greater detail [Ziemke et al., 2006]. Using forward trajectory calculations of MLS ozone measurements combined with OMI column ozone we have developed a high horizontal resolution tropospheric ozone residual (HTOR) which can provide even more detail than the standard TOR product. HTOR is especially useful for extra-tropical studies of tropospheric ozone transport. We find that both the Pacific pollution corridor (East Asia to Alaska) and the Atlantic pollution corridor (North America east coast to Europe) are also preferred locations for strat-trop folds leading to systematic overestimates of pollution amounts. In fact, fold events appear to dominate extra-tropical Northern Hemisphere day-to-day maps of HTOR. Model estimates of the tropospheric column are in reasonable agreement with the HTOR amounts when offsets due to different tropopause height calculations are taken into consideration.

  18. Updating Maps Using High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Alrajhi, Muhamad; Shahzad Janjua, Khurram; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Kingdom of Saudi Arabia is one of the most dynamic countries of the world. We have witnessed a very rapid urban development's which are altering Kingdom's landscape on daily basis. In recent years a substantial increase in urban populations is observed which results in the formation of large cities. Considering this fast paced growth, it has become necessary to monitor these changes, in consideration with challenges faced by aerial photography projects. It has been observed that data obtained through aerial photography has a lifecycle of 5-years because of delay caused by extreme weather conditions and dust storms which acts as hindrances or barriers during aerial imagery acquisition, which has increased the costs of aerial survey projects. All of these circumstances require that we must consider some alternatives that can provide us easy and better ways of image acquisition in short span of time for achieving reliable accuracy and cost effectiveness. The approach of this study is to conduct an extensive comparison between different resolutions of data sets which include: Orthophoto of (10 cm) GSD, Stereo images of (50 cm) GSD and Stereo images of (1 m) GSD, for map updating. Different approaches have been applied for digitizing buildings, roads, tracks, airport, roof level changes, filling stations, buildings under construction, property boundaries, mosques buildings and parking places.

  19. High Resolution LTS-SQUID Microscopes

    NASA Astrophysics Data System (ADS)

    Baudenbacher, Franz; Peters, Nicholas; Wikswo, John

    2000-03-01

    We have developed a scanning superconducting quantum interference device (SQUID) microscope for imaging magnetic fields of room-temperature samples with sub-millimeter resolution. In our design, hand wound niobium pickup coils were coupled to commercially available low-temperature SQUID sensors. The SQUID sensor and the pickup coil are in the vacuum space of the cryostat separated typically less than 50μm by a thin sapphire window from the room-temperature sample. A computerized non-magnetic scanning stage with sub-micron resolution in combination with a tripod leveling system allows samples to be scanned within 10μm of the sapphire window. For a 20-turn 500μm diameter pickup coil, we achieved a field sensitivity of 350fT\\cdotHz-1/2 for frequencies above 1 Hz, and 1pT\\cdotHz-1/2 for a 10-turn 250mm coil. The SQUID microscope was used to image the distribution of time-dependent stimulus and action currents in anisotropic cardiac tissue, the remanent magnetization of the Martian meteorite ALH84001 during thermal demagnetisation, and the magnetic susceptibility of biogenic magnetite in the beak of homing pigeons.

  20. High resolution TVD schemes for interface tracking

    NASA Astrophysics Data System (ADS)

    Nandi, K.; Walker, S. P.; Date, A. W.

    2016-06-01

    A first order upwind difference scheme (UDS) is routinely adopted for representing convection terms in a discretised space. UDS provides stable solutions. However it also introduces false diffusion in situations in which the flow direction is oblique relative to the numerical grid or when the cell-Peclet number is large. In order to predict sharp interface, higher order upwind schemes are preferred because of they reduce numerical dissipation. In interfacial flows, density and viscosity vary sharply in space. Representation of convective terms by Total variation diminishing (TVD) schemes ensures reduced smearing without impairing convergence property. TVD schemes develop formulae for interpolation of a cell-face value of the transported variable. If the interpolated value is bounded by the neighbouring nodal values then the scheme is `Bounded'. However, not all TVD schemes possess this property of `Boundedness'. The Normalised Variable Diagram (NVD) defines a domain within which the TVD scheme is bounded. Thus by combining the features of both TVD schemes and ensuring that they fall with the defined area of NVD, the convergence as well as the boundedness of a computational scheme can be ensured. In this paper, six different higher order schemes are considered some which are TVD bounded or unbounded, to solve the well known interface tracking problem of Rayleigh-Taylor Instability. To the best of our knowledge, a comparison of combined TVD/NVD principles in the case of interface tracking problems has not been reported in published literature.

  1. High resolution integral holography using Fourier ptychographic approach.

    PubMed

    Li, Zhaohui; Zhang, Jianqi; Wang, Xiaorui; Liu, Delian

    2014-12-29

    An innovative approach is proposed for calculating high resolution computer generated integral holograms by using the Fourier Ptychographic (FP) algorithm. The approach initializes a high resolution complex hologram with a random guess, and then stitches together low resolution multi-view images, synthesized from the elemental images captured by integral imaging (II), to recover the high resolution hologram through an iterative retrieval with FP constrains. This paper begins with an analysis of the principle of hologram synthesis from multi-projections, followed by an accurate determination of the constrains required in the Fourier ptychographic integral-holography (FPIH). Next, the procedure of the approach is described in detail. Finally, optical reconstructions are performed and the results are demonstrated. Theoretical analysis and experiments show that our proposed approach can reconstruct 3D scenes with high resolution.

  2. Update on High-Resolution Geodetically Controlled LROC Polar Mosaics

    NASA Astrophysics Data System (ADS)

    Archinal, B.; Lee, E.; Weller, L.; Richie, J.; Edmundson, K.; Laura, J.; Robinson, M.; Speyerer, E.; Boyd, A.; Bowman-Cisneros, E.; Wagner, R.; Nefian, A.

    2015-10-01

    We describe progress on high-resolution (1 m/pixel) geodetically controlled LROC mosaics of the lunar poles, which can be used for locating illumination resources (for solar power or cold traps) or landing site and surface operations planning.

  3. High Resolution CryoFESEM of Microbial Surfaces

    NASA Astrophysics Data System (ADS)

    Erlandsen, Stanley; Lei, Ming; Martin-Lacave, Ines; Dunny, Gary; Wells, Carol

    2003-08-01

    The outer surfaces of three microorganisms, Giardia lamblia, Enterococcus faecalis, and Proteus mirabilis, were investigated by cryo-immobilization followed by sublimation of extracellular ice and cryocoating with either Pt alone or Pt plus carbon. Cryocoated samples were examined at [minus sign]125°C in either an in-lens field emission SEM or a below-the-lens field emission SEM. Cryocoating with Pt alone was sufficient for low magnification observation, but attempts to do high-resolution imaging resulted in radiolysis and cracking of the specimen surface. Double coating with Pt and carbon, in combination with high resolution backscatter electron detectors, enabled high-resolution imaging of the glycocalyx of bacteria, revealing a sponge-like network over the surface. High resolution examination of bacterial flagella also revealed a periodic substructure. Common artifacts included radiolysis leading to “cracking” of the surface, and insufficient deposition of Pt resulting in the absence of detectable surface topography.

  4. High resolution difference schemes for compressible gas dynamics

    SciTech Connect

    Woodward, P.; Colella, P.

    1980-07-30

    The advantages and disadvantages of four new high-resolution difference schemes, namely the von Neumann-Richtmyer, Godunovs, MUSCL and Glimms, for mathematically representing physical conditions in compressible gas flows are compared. (LCL)

  5. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, I. E.; Sutanudjaja, E.; Van Beek, L. P.; Bierkens, M. F.

    2013-12-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and also supplies water for agricultural and industrial activities. During times of drought, the large natural groundwater storage provides a buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a transient global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013) combined with information about e.g. aquifer thickness and presence of less permeable, impermeable, and semi-impermeable layers. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. We validated simulated groundwater heads with observations, from North America and Australia, resulting in a coefficient of determination of 0.8 and 0.7 respectively. This shows that it is feasible to build a global groundwater model using best available

  6. A high resolution global scale groundwater model

    NASA Astrophysics Data System (ADS)

    de Graaf, Inge; Sutanudjaja, Edwin; van Beek, Rens; Bierkens, Marc

    2014-05-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater storage provides a large natural buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). With this global groundwater model we eventually intend to simulate the changes in the groundwater system over time that result from variations in recharge and abstraction. Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013), combined with our estimate of aquifer thickness for sedimentary basins. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. Based on our sensitivity analysis, in which we run the model with various hydrogeological parameter settings, we observed that most variance in groundwater

  7. Optical multichannel analyzer techniques for high resolution optical spectroscopy

    SciTech Connect

    Chao, J.L.

    1980-06-01

    The development of optical multichannel analyzer techniques for UV/VIS spectroscopy is presented. The research focuses on the development of spectroscopic techniques for measuring high resolution spectral lineshape functions from the exciton phosphorescence in H/sub 2/-1,2,4,5-tetrachlorobenzene. It is found that the temperature dependent frequency shifts and widths confirm a theoretical model based on an exchange theory. The exchange of low energy phonon modes which couple with excited state exciton transitions is shown to display the proper temperature dependent behavior. In addition to the techniques for using the optical multichannel analyzer (OMA) to perform low light level target integration, the use of the OMA for capturing spectral information in transient pulsed laser applications is discussed. An OMP data acquisition system developed for real-time signal processng is described. Both hardware and software interfacing considerations for control and data acquisition by a microcomputer are described. The OMA detector is described in terms of the principles behind its photoelectron detection capabilities and its design is compared with other optoelectronic devices.

  8. High-resolution computed tomography reconstructions of invertebrate burrow systems.

    PubMed

    Hale, Rachel; Boardman, Richard; Mavrogordato, Mark N; Sinclair, Ian; Tolhurst, Trevor J; Solan, Martin

    2015-01-01

    The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (μ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (≤ 2,000 raw image slices aquarium(-1), isotropic voxel resolution, 81 μm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture. PMID:26396743

  9. High-resolution computed tomography reconstructions of invertebrate burrow systems

    PubMed Central

    Hale, Rachel; Boardman, Richard; Mavrogordato, Mark N.; Sinclair, Ian; Tolhurst, Trevor J.; Solan, Martin

    2015-01-01

    The architecture of biogenic structures can be highly influential in determining species contributions to major soil and sediment processes, but detailed 3-D characterisations are rare and descriptors of form and complexity are lacking. Here we provide replicate high-resolution micro-focus computed tomography (μ-CT) data for the complete burrow systems of three co-occurring, but functionally contrasting, sediment-dwelling inter-tidal invertebrates assembled alone, and in combination, in representative model aquaria. These data (≤2,000 raw image slices aquarium−1, isotropic voxel resolution, 81 μm) provide reference models that can be used for the development of novel structural analysis routines that will be of value within the fields of ecology, pedology, geomorphology, palaeobiology, ichnology and mechanical engineering. We also envisage opportunity for those investigating transport networks, vascular systems, plant rooting systems, neuron connectivity patterns, or those developing image analysis or statistics related to pattern or shape recognition. The dataset will allow investigators to develop or test novel methodology and ideas without the need to generate a complete three-dimensional computation of exemplar architecture. PMID:26396743

  10. Synthesis and electroplating of high resolution insulated carbon nanotube scanning probes for imaging in liquid solutions

    PubMed Central

    Roberts, N.A.; Noh, J.H.; Lassiter, M.G.; Guo, S.; Kalinin, S.V.; Rack, P.D.

    2012-01-01

    High resolution and isolated scanning probe microscopy (SPM) is in demand for continued development of energy storage and conversion systems involving chemical reactions at the nanoscale as well as an improved understanding of biological systems. Carbon nanotubes (CNTs) have large aspect ratios and, if leveraged properly, can be used to develop high resolution SPM probes. Isolation of SPM probes can be achieved by deposited a dielectric film and selectively etching at the apex of the probe. In this paper the fabrication of a high resolution and isolated SPM tip is demonstrated using electron beam induced etching of a dielectric film deposited onto an SPM tip with an attached CNT at the apex. PMID:22433664

  11. Immersion Gratings for Infrared High-resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kobayashi, Naoto; Kaji, Sayumi; Sukegawa, Takashi; Sugiyama, Shigeru; Nakagawa, Takao; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-10-01

    High-resolution spectroscopy in the infrared wavelength range is essential for observations of minor isotopologues, such as HDO for water, and prebiotic organic molecules like hydrocarbons/P-bearing molecules because numerous vibrational molecular bands (including non-polar molecules) are located in this wavelength range. High spectral resolution enables us to detect weak lines without spectral line confusion. This technique has been widely used in planetary sciences, e.g., cometary coma (H2O, CO, and organic molecules), the martian atmosphere (CH4, CO2, H2O and HDO), and the upper atmosphere of gas giants (H3+ and organic molecules such as C2H6). Spectrographs with higher resolution (and higher sensitivity) still have a potential to provide a plenty of findings. However, because the size of spectrographs scales with the spectral resolution, it is difficult to realize it.Immersion grating (IG), which is a diffraction grating wherein the diffraction surface is immersed in a material with a high refractive index (n > 2), provides n times higher spectral resolution compared to a reflective grating of the same size. Because IG reduces the size of spectrograph to 1/n compared to the spectrograph with the same spectral resolution using a conventional reflective grating, it is widely acknowledged as a key optical device to realize compact spectrographs with high spectral resolution.Recently, we succeeded in fabricating a CdZnTe immersion grating with the theoretically predicted diffraction efficiency by machining process using an ultrahigh-precision five-axis processing machine developed by Canon Inc. Using the same technique, we completed a practical germanium (Ge) immersion grating with both a reflection coating on the grating surface and the an AR coating on the entrance surface. It is noteworthy that the wide wavelength range from 2 to 20 um can be covered by the two immersion gratings.In this paper, we present the performances and the applications of the immersion

  12. A new high-resolution electromagnetic method for subsurface imaging

    NASA Astrophysics Data System (ADS)

    Feng, Wanjie

    For most electromagnetic (EM) geophysical systems, the contamination of primary fields on secondary fields ultimately limits the capability of the controlled-source EM methods. Null coupling techniques were proposed to solve this problem. However, the small orientation errors in the null coupling systems greatly restrict the applications of these systems. Another problem encountered by most EM systems is the surface interference and geologic noise, which sometimes make the geophysical survey impossible to carry out. In order to solve these problems, the alternating target antenna coupling (ATAC) method was introduced, which greatly removed the influence of the primary field and reduced the surface interference. But this system has limitations on the maximum transmitter moment that can be used. The differential target antenna coupling (DTAC) method was proposed to allow much larger transmitter moments and at the same time maintain the advantages of the ATAC method. In this dissertation, first, the theoretical DTAC calculations were derived mathematically using Born and Wolf's complex magnetic vector. 1D layered and 2D blocked earth models were used to demonstrate that the DTAC method has no responses for 1D and 2D structures. Analytical studies of the plate model influenced by conductive and resistive backgrounds were presented to explain the physical phenomenology behind the DTAC method, which is the magnetic fields of the subsurface targets are required to be frequency dependent. Then, the advantages of the DTAC method, e.g., high-resolution, reducing the geologic noise and insensitive to surface interference, were analyzed using surface and subsurface numerical examples in the EMGIMA software. Next, the theoretical advantages, such as high resolution and insensitive to surface interference, were verified by designing and developing a low-power (moment of 50 Am 2) vertical-array DTAC system and testing it on controlled targets and scaled target coils. At last, a

  13. A high-resolution strain-gauge nanolaser

    PubMed Central

    Choi, Jae-Hyuck; No, You-Shin; So, Jae-Pil; Lee, Jung Min; Kim, Kyoung-Ho; Hwang, Min-Soo; Kwon, Soon-Hong; Park, Hong-Gyu

    2016-01-01

    Interest in mechanical compliance has been motivated by the development of flexible electronics and mechanosensors. In particular, studies and characterization of structural deformation at the fundamental scale can offer opportunities to improve the device sensitivity and spatiotemporal response; however, the development of precise measurement tools with the appropriate resolution remains a challenge. Here we report a flexible and stretchable photonic crystal nanolaser whose spectral and modal behaviours are sensitive to nanoscale structural alterations. Reversible spectral tuning of ∼26 nm in lasing wavelength, with a sub-nanometre resolution of less than ∼0.6 nm, is demonstrated in response to applied strain ranging from −10 to 12%. Instantaneous visualization of the sign of the strain is also characterized by exploring the structural and corresponding modal symmetry. Furthermore, our high-resolution strain-gauge nanolaser functions as a stable and deterministic strain-based pH sensor in an opto-fluidic system, which may be useful for further analysis of chemical/biological systems. PMID:27175544

  14. Computational analysis of high resolution unsteady airloads for rotor aeroacoustics

    NASA Technical Reports Server (NTRS)

    Quackenbush, Todd R.; Lam, C.-M. Gordon; Wachspress, Daniel A.; Bliss, Donald B.

    1994-01-01

    The study of helicopter aerodynamic loading for acoustics applications requires the application of efficient yet accurate simulations of the velocity field induced by the rotor's vortex wake. This report summarizes work to date on the development of such an analysis, which builds on the Constant Vorticity Contour (CVC) free wake model, previously implemented for the study of vibratory loading in the RotorCRAFT computer code. The present effort has focused on implementation of an airload reconstruction approach that computes high resolution airload solutions of rotor/rotor-wake interactions required for acoustics computations. Supplementary efforts on the development of improved vortex core modeling, unsteady aerodynamic effects, higher spatial resolution of rotor loading, and fast vortex wake implementations have substantially enhanced the capabilities of the resulting software, denoted RotorCRAFT/AA (AeroAcoustics). Results of validation calculations using recently acquired model rotor data show that by employing airload reconstruction it is possible to apply the CVC wake analysis with temporal and spatial resolution suitable for acoustics applications while reducing the computation time required by one to two orders of magnitude relative to that required by direct calculations. Promising correlation with this body of airload and noise data has been obtained for a variety of rotor configurations and operating conditions.

  15. Crevasse-splay sedimentation processes revealed through high resolution modelling

    NASA Astrophysics Data System (ADS)

    Hackney, Christopher; Darby, Stephen; Parsons, Daniel; Leyland, Julian; Aalto, Rolf; Nicholas, Andrew; Best, Jim

    2015-04-01

    During rapid rise flood events, crevasse-splay complexes are a dominant conduit through which sediment and water are passed from the main channel onto the floodplain, particularly for large rivers. These crevasse-splay systems are, therefore, key in controlling rates of floodplain sedimentation, as well as conditioning the location of avulsions. Despite recent advances in our capabilities to model the development and evolution of these systems, our understanding of the passage, storage and reworking of water and sediment across them remains relatively poor. A key limitation concerns the point that, since floodplain topography is a first-order control on the hydrodynamics of crevasse-splays, publicly available topographic data sets (e.g. SRTM) are currently unable to resolve key processes at the necessary spatial resolution. Here we employ Structure-from-Motion (SfM) on low-level aerial photography to obtain high-resolution (3m grid cell) georectified topographic data (horizontal error = 0.02 m; vertical error = 0.5 m) for a series of three representative crevasse-splay complexes located along the Mekong River, Cambodia. We use the coupled hydrodynamic and morphodynamic model, Delft-3D to simulate sedimentation patterns for a series of flood events. We model floodplain deposition and erosion and validate simulated spatial and temporal variations against observed patterns. We show how the spatial and temporal patterns of floodplain development via crevasse-splays are conditioned by key hydrological characteristics.

  16. High resolution imaging of objects located within a wall

    NASA Astrophysics Data System (ADS)

    Greneker, Eugene F.; Showman, Gregory A.; Trostel, John M.; Sylvester, Vincent

    2006-05-01

    Researchers at Georgia Tech Research Institute have developed a high resolution imaging radar technique that allows large sections of a test wall to be scanned in X and Y dimensions. The resulting images that can be obtained provide information on what is inside the wall, if anything. The scanning homodyne radar operates at a frequency of 24.1 GHz at with an output power level of approximately 10 milliwatts. An imaging technique that has been developed is currently being used to study the detection of toxic mold on the back surface of wallboard using radar as a sensor. The moisture that is associated with the mold can easily be detected. In addition to mold, the technique will image objects as small as a 4 millimeter sphere on the front or rear of the wallboard and will penetrate both sides of a wall made of studs and wallboard. Signal processing is performed on the resulting data to further sharpen the image. Photos of the scanner and images produced by the scanner are presented. A discussion of the signal processing and technical challenges are also discussed.

  17. Preliminary design study of a high resolution meteor radar

    NASA Technical Reports Server (NTRS)

    Lee, W.; Geller, M. A.

    1973-01-01

    A design study for a high resolution meteor radar system is carried out with the objective of measuring upper atmospheric winds and particularly studying short period atmospheric waves in the 80 to 120 km altitude region. The transmitter that is to be used emits a peak power of 4 Mw. The system is designed to measure the wind velocity and height of a meteor trail very accurately. This is achieved using a specially developed digital reduction procedure to determine wind velocity and range together with an interferometer for measuring both the azimuth and elevation angles of the region with a long baseline vernier measurement being used to refine the elevation angle measurement. The resultant accuracies are calculated to be + or - 0.9 m/s for the wind, + or - 230 m for the range and + or - 0.12 deg for the elevation angle, giving a height accuracy of + or - 375 m. The prospects for further development of this system are also discussed.

  18. A high-resolution strain-gauge nanolaser.

    PubMed

    Choi, Jae-Hyuck; No, You-Shin; So, Jae-Pil; Lee, Jung Min; Kim, Kyoung-Ho; Hwang, Min-Soo; Kwon, Soon-Hong; Park, Hong-Gyu

    2016-01-01

    Interest in mechanical compliance has been motivated by the development of flexible electronics and mechanosensors. In particular, studies and characterization of structural deformation at the fundamental scale can offer opportunities to improve the device sensitivity and spatiotemporal response; however, the development of precise measurement tools with the appropriate resolution remains a challenge. Here we report a flexible and stretchable photonic crystal nanolaser whose spectral and modal behaviours are sensitive to nanoscale structural alterations. Reversible spectral tuning of ∼26 nm in lasing wavelength, with a sub-nanometre resolution of less than ∼0.6 nm, is demonstrated in response to applied strain ranging from -10 to 12%. Instantaneous visualization of the sign of the strain is also characterized by exploring the structural and corresponding modal symmetry. Furthermore, our high-resolution strain-gauge nanolaser functions as a stable and deterministic strain-based pH sensor in an opto-fluidic system, which may be useful for further analysis of chemical/biological systems. PMID:27175544

  19. Ultrasound-aided high-resolution biophotonic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lihong V.

    2003-10-01

    We develop novel biophotonic imaging for early-cancer detection, a grand challenge in cancer research, using nonionizing electromagnetic and ultrasonic waves. Unlike ionizing x-ray radiation, nonionizing electromagnetic waves such as optical waves are safe for biomedical applications and reveal new contrast mechanisms and functional information. For example, our spectroscopic oblique-incidence reflectometry can detect skin cancers based on functional hemoglobin parameters and cell nuclear size with 95% accuracy. Unfortunately, electromagnetic waves in the nonionizing spectral region do not penetrate biological tissue in straight paths as do x-rays. Consequently, high-resolution tomography based on nonionizing electromagnetic waves alone, as demonstrated by our Mueller optical coherence tomography, is limited to superficial tissue imaging. Ultrasonic imaging, on the contrary, furnishes good imaging resolution but has poor contrast in early-stage tumors and has strong speckle artifacts as well. We developed ultrasound-mediated imaging modalities by combining electromagnetic and ultrasonic waves synergistically. The hybrid modalities yield speckle-free electromagnetic-contrast at ultrasonic resolution in relatively large biological tissue. In ultrasound-modulated (acousto)-optical tomography, a focused ultrasonic wave encodes diffuse laser light in scattering biological tissue. In photo-acoustic (thermo-acoustic) tomography, a low-energy laser (RF) pulse induces ultrasonic waves in biological tissue due to thermoelastic expansion.

  20. High Resolution Aquifer Characterization - Busting the Grain Size Myth

    NASA Astrophysics Data System (ADS)

    Vienken, T.; Dietrich, P.

    2014-12-01

    While major advancements have been made in the field of aquifer characterization, field method development and application for reliable model parametrization and improving system understanding are in many cases yet under-developed. One key parameter for the description of groundwater flow and transport is hydraulic conductivity (K). In every day practice, K is often estimated based on literature values or ex-situ laboratory measurements. The calculation of K based on grain size distribution data is a very prominent example of a well-established but unsuitable method for the characterization of heterogeneous sedimentary deposits. Even though concerns about the suitability of this method for detailed aquifer characterization have been raised in several publications, this approach is still widely used by both, scientists and practitioners - mainly due to its simplicity. Hence, a vast number of different empirical and semi-empirical formulas already exist and even more adapted formulas are proposed, although reliable alternatives are available. With this contribution we want to raise awareness about the intrinsic limitations of using grain size data for the determination of K and show direct push-based alternatives for reliable and efficient high resolution aquifer characterization.

  1. A high-resolution strain-gauge nanolaser

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hyuck; No, You-Shin; So, Jae-Pil; Lee, Jung Min; Kim, Kyoung-Ho; Hwang, Min-Soo; Kwon, Soon-Hong; Park, Hong-Gyu

    2016-05-01

    Interest in mechanical compliance has been motivated by the development of flexible electronics and mechanosensors. In particular, studies and characterization of structural deformation at the fundamental scale can offer opportunities to improve the device sensitivity and spatiotemporal response; however, the development of precise measurement tools with the appropriate resolution remains a challenge. Here we report a flexible and stretchable photonic crystal nanolaser whose spectral and modal behaviours are sensitive to nanoscale structural alterations. Reversible spectral tuning of ~26 nm in lasing wavelength, with a sub-nanometre resolution of less than ~0.6 nm, is demonstrated in response to applied strain ranging from -10 to 12%. Instantaneous visualization of the sign of the strain is also characterized by exploring the structural and corresponding modal symmetry. Furthermore, our high-resolution strain-gauge nanolaser functions as a stable and deterministic strain-based pH sensor in an opto-fluidic system, which may be useful for further analysis of chemical/biological systems.

  2. Accuracy Enhancement of Inertial Sensors Utilizing High Resolution Spectral Analysis

    PubMed Central

    Noureldin, Aboelmagd; Armstrong, Justin; El-Shafie, Ahmed; Karamat, Tashfeen; McGaughey, Don; Korenberg, Michael; Hussain, Aini

    2012-01-01

    In both military and civilian applications, the inertial navigation system (INS) and the global positioning system (GPS) are two complementary technologies that can be integrated to provide reliable positioning and navigation information for land vehicles. The accuracy enhancement of INS sensors and the integration of INS with GPS are the subjects of widespread research. Wavelet de-noising of INS sensors has had limited success in removing the long-term (low-frequency) inertial sensor errors. The primary objective of this research is to develop a novel inertial sensor accuracy enhancement technique that can remove both short-term and long-term error components from inertial sensor measurements prior to INS mechanization and INS/GPS integration. A high resolution spectral analysis technique called the fast orthogonal search (FOS) algorithm is used to accurately model the low frequency range of the spectrum, which includes the vehicle motion dynamics and inertial sensor errors. FOS models the spectral components with the most energy first and uses an adaptive threshold to stop adding frequency terms when fitting a term does not reduce the mean squared error more than fitting white noise. The proposed method was developed, tested and validated through road test experiments involving both low-end tactical grade and low cost MEMS-based inertial systems. The results demonstrate that in most cases the position accuracy during GPS outages using FOS de-noised data is superior to the position accuracy using wavelet de-noising.

  3. Fiber optic cable-based high-resolution, long-distance VGA extenders

    NASA Astrophysics Data System (ADS)

    Rhee, Jin-Geun; Lee, Iksoo; Kim, Heejoon; Kim, Sungjoon; Koh, Yeon-Wan; Kim, Hoik; Lim, Jiseok; Kim, Chur; Kim, Jungwon

    2013-02-01

    Remote transfer of high-resolution video information finds more applications in detached display applications for large facilities such as theaters, sports complex, airports, and security facilities. Active optical cables (AOCs) provide a promising approach for enhancing both the transmittable resolution and distance that standard copper-based cables cannot reach. In addition to the standard digital formats such as HDMI, the high-resolution, long-distance transfer of VGA format signals is important for applications where high-resolution analog video ports should be also supported, such as military/defense applications and high-resolution video camera links. In this presentation we present the development of a compressionless, high-resolution (up to WUXGA, 1920x1200), long-distance (up to 2 km) VGA extenders based on serialized technique. We employed asynchronous serial transmission and clock regeneration techniques, which enables lower cost implementation of VGA extenders by removing the necessity for clock transmission and large memory at the receiver. Two 3.125-Gbps transceivers are used in parallel to meet the required maximum video data rate of 6.25 Gbps. As the data are transmitted asynchronously, 24-bit pixel clock time stamp is employed to regenerate video pixel clock accurately at the receiver side. In parallel to the video information, stereo audio and RS-232 control signals are transmitted as well.

  4. High Resolution Hurricane Storm Surge and Inundation Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Luettich, R.; Westerink, J. J.

    2010-12-01

    Coastal counties are home to nearly 60% of the U.S. population and industry that accounts for over 16 million jobs and 10% of the U.S. annual gross domestic product. However, these areas are susceptible to some of the most destructive forces in nature, including tsunamis, floods, and severe storm-related hazards. Since 1900, tropical cyclones making landfall on the US Gulf of Mexico Coast have caused more than 9,000 deaths; nearly 2,000 deaths have occurred during the past half century. Tropical cyclone-related adjusted, annualized losses in the US have risen from 1.3 billion from 1949-1989, to 10.1 billion from 1990-1995, and $35.8 billion per year for the period 2001-2005. The risk associated with living and doing business in the coastal areas that are most susceptible to tropical cyclones is exacerbated by rising sea level and changes in the characteristics of severe storms associated with global climate change. In the five years since hurricane Katrina devastated the northern Gulf of Mexico Coast, considerable progress has been made in the development and utilization of high resolution coupled storm surge and wave models. Recent progress will be presented with the ADCIRC + SWAN storm surge and wave models. These tightly coupled models use a common unstructured grid in the horizontal that is capable of covering large areas while also providing high resolution (i.e., base resolution down to 20m plus smaller subgrid scale features such as sea walls and levees) in areas that are subject to surge and inundation. Hydrodynamic friction and overland winds are adjusted to account for local land cover. The models scale extremely well on modern high performance computers allowing rapid turnaround on large numbers of compute cores. The models have been adopted for FEMA National Flood Insurance Program studies, hurricane protection system design and risk analysis, and quasi-operational forecast systems for several regions of the country. They are also being evaluated as

  5. High-resolution global irradiance monitoring from photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Buchmann, Tina; Pfeilsticker, Klaus; Siegmund, Alexander; Meilinger, Stefanie; Mayer, Bernhard; Pinitz, Sven; Steinbrecht, Wolfgang

    2016-04-01

    Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition. To achieve this goal our studies introduce a novel method which makes use of photovoltaic power generation in order to infer global irradiance. The method allows to determine high-resolution temporal global irradiance data (one data point every 15 minutes at each location) from power data of operated photovoltaic systems. Due to the multitude of installed photovoltaic systems (in Germany) the detailed spatial coverage is much better than for example only using global irradiance data from conventional pyranometer networks (e.g. from the German Weather Service). Our designated method is composed of two components: a forward component, i.e. to conclude from predicted global irradiance to photovoltaic (PV) power, and a backward component, i.e. from PV power with suitable calibration to global irradiance. The forward process is modelled by using the radiation transport model libRadtran (B. Mayer and A. Kylling (1)) for clear skies to obtain the characteristics (orientation, size, temperature dependence, …) of individual PV systems. For PV systems in the vicinity of a meteorological station, these data are validated against calibrated pyranometer readings. The forward-modelled global irradiance is used to determine the power efficiency for each photovoltaic system using non-linear optimisation techniques. The backward component uses the power efficiency

  6. High-resolution harmonic motion imaging (HR-HMI) for tissue biomechanical property characterization

    PubMed Central

    Ma, Teng; Qian, Xuejun; Chiu, Chi Tat; Yu, Mingyue; Jung, Hayong; Tung, Yao-Sheng; Shung, K. Kirk

    2015-01-01

    Background Elastography, capable of mapping the biomechanical properties of biological tissues, serves as a useful technique for clinicians to perform disease diagnosis and determine stages of many diseases. Many acoustic radiation force (ARF) based elastography, including acoustic radiation force impulse (ARFI) imaging and harmonic motion imaging (HMI), have been developed to remotely assess the elastic properties of tissues. However, due to the lower operating frequencies of these approaches, their spatial resolutions are insufficient for revealing stiffness distribution on small scale applications, such as cancerous tumor margin detection, atherosclerotic plaque composition analysis and ophthalmologic tissue characterization. Though recently developed ARF-based optical coherence elastography (OCE) methods open a new window for the high resolution elastography, shallow imaging depths significantly limit their usefulness in clinics. Methods The aim of this study is to develop a high-resolution HMI method to assess the tissue biomechanical properties with acceptable field of view (FOV) using a 4 MHz ring transducer for efficient excitation and a 40 MHz needle transducer for accurate detection. Under precise alignment of two confocal transducers, the high-resolution HMI system has a lateral resolution of 314 µm and an axial resolution of 
147 µm with an effective FOV of 2 mm in depth. Results The performance of this high resolution imaging system was validated on the agar-based tissue mimicking phantoms with different stiffness distributions. These data demonstrated the imaging system’s improved resolution and sensitivity on differentiating materials with varying stiffness. In addition, ex vivo imaging of a human atherosclerosis coronary artery demonstrated the capability of high resolution HMI in identifying layer-specific structures and characterizing atherosclerotic plaques based on their stiffness differences. Conclusions All together high resolution HMI

  7. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    SciTech Connect

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin E-mail: chenz@xmu.edu.cn; Chen, Zhong E-mail: chenz@xmu.edu.cn; Chen, Youhe

    2015-04-07

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  8. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields.

    PubMed

    Wei, Zhiliang; Yang, Jian; Chen, Youhe; Lin, Yanqin; Chen, Zhong

    2015-04-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields.

  9. [Measurement of OH radicals in flame with high resolution differential optical absorption spectroscopy].

    PubMed

    Liu, Yu; Liu, Wen-Qing; Kan, Rui-Feng; Si, Fu-Qi; Xu, Zhen-Yu; Hu, Ren-Zhi; Xie, Pin-Hua

    2011-10-01

    The present paper describes a new developed high resolution differential optical absorption spectroscopy instrument used for the measurement of OH radicals in flame. The instrument consists of a Xenon lamp for light source; a double pass high resolution echelle spectrometer with a resolution of 3.3 pm; a multiple-reflection cell of 20 meter base length, in which the light reflects in the cell for 176 times, so the whole path length of light can achieve 3 520 meters. The OH radicals'6 absorption lines around 308 nm were simultaneously observed in the experiment. By using high resolution DOAS technology, the OH radicals in candles, kerosene lamp, and alcohol burner flames were monitored, and their concentrations were also inverted. PMID:22250529

  10. High resolution soil moisture mapping using Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Dong, Jianzhi; Steele-Dunne, Susan; Ochsner, Tyson; van de Giesen, Nick

    2016-04-01

    Distributed Temperature Sensing (DTS) can measure high resolution (spatial < 1 m, and temporal < 1 min) soil temperature at multiple depths at scales up to kilometers. This study presents a data assimilation framework for robustly estimating soil moisture using DTS observed soil temperature data. The combination of advanced data assimilation techniques and DTS produces a tool for high spatial and temporal resolution soil moisture mapping. To robustly extract soil moisture information from the evolution of soil temperatures, we use a new data assimilation algorithm, particle batch smoother (PBS). Synthetic, as well as real point and DTS data were use develop the data assimilation framework. In addition to estimating soil moisture, the PBS was also used to estimate soil thermal and hydraulic properties by assimilating soil temperatures. The improved soil hydraulic properties fundamentally benefit the forward model in the data assimilation framework, which leads to the most robust soil moisture estimates. Finally, we applied the proposed data assimilation frame work to a real transect of DTS cable. The estimated soil moisture and soil properties are validated using data observed at a nearby site. The DTS mapped soil moisture shows that the soil moisture spatial variability is a strong function of the areal mean soil moisture, which is consistent with previous studies. Results so far indicate that we can finally use DTS to understand intermediate scale soil moisture spatial variability, and link soil moisture measurements at different scales.

  11. Towards a high resolution, integrated hydrology model of North America.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.

    2015-12-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  12. Designing arrays for modern high-resolution methods

    SciTech Connect

    Dowla, F.U.

    1987-10-01

    A bearing estimation study of seismic wavefields propagating from a strongly heterogeneous media shows that with the high-resolution MUSIC algorithm the bias of the direction estimate can be reduced by adopting a smaller aperture sub-array. Further, on this sub-array, the bias of the MUSIC algorithm is less than those of the MLM and Bartlett methods. On the full array, the performance for the three different methods are comparable. Improvement in bearing estimation in MUSIC with a reduced aperture might be attributed to increased signal coherency in the array. For methods with less resolution, the improved signal coherency in the smaller array is possible being offset by severe loss of resolution and the presence of weak secondary sources. Building upon the characteristics of real seismic wavefields, a design language has been developed to generate, modify, and test other arrays. Eigenstructures of wavefields and arrays have been studied empirically by simulation of a variety of realistic signals. 6 refs., 5 figs.

  13. Extraction and labeling high-resolution images from PDF documents

    NASA Astrophysics Data System (ADS)

    Chachra, Suchet K.; Xue, Zhiyun; Antani, Sameer; Demner-Fushman, Dina; Thoma, George R.

    2013-12-01

    Accuracy of content-based image retrieval is affected by image resolution among other factors. Higher resolution images enable extraction of image features that more accurately represent the image content. In order to improve the relevance of search results for our biomedical image search engine, Open-I, we have developed techniques to extract and label high-resolution versions of figures from biomedical articles supplied in the PDF format. Open-I uses the open-access subset of biomedical articles from the PubMed Central repository hosted by the National Library of Medicine. Articles are available in XML and in publisher supplied PDF formats. As these PDF documents contain little or no meta-data to identify the embedded images, the task includes labeling images according to their figure number in the article after they have been successfully extracted. For this purpose we use the labeled small size images provided with the XML web version of the article. This paper describes the image extraction process and two alternative approaches to perform image labeling that measure the similarity between two images based upon the image intensity projection on the coordinate axes and similarity based upon the normalized cross-correlation between the intensities of two images. Using image identification based on image intensity projection, we were able to achieve a precision of 92.84% and a recall of 82.18% in labeling of the extracted images.

  14. High-resolution adaptive imaging with a single photodiode

    PubMed Central

    Soldevila, F.; Salvador-Balaguer, E.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2015-01-01

    During the past few years, the emergence of spatial light modulators operating at the tens of kHz has enabled new imaging modalities based on single-pixel photodetectors. The nature of single-pixel imaging enforces a reciprocal relationship between frame rate and image size. Compressive imaging methods allow images to be reconstructed from a number of projections that is only a fraction of the number of pixels. In microscopy, single-pixel imaging is capable of producing images with a moderate size of 128 × 128 pixels at frame rates under one Hz. Recently, there has been considerable interest in the development of advanced techniques for high-resolution real-time operation in applications such as biological microscopy. Here, we introduce an adaptive compressive technique based on wavelet trees within this framework. In our adaptive approach, the resolution of the projecting patterns remains deliberately small, which is crucial to avoid the demanding memory requirements of compressive sensing algorithms. At pattern projection rates of 22.7 kHz, our technique would enable to obtain 128 × 128 pixel images at frame rates around 3 Hz. In our experiments, we have demonstrated a cost-effective solution employing a commercial projection display. PMID:26382114

  15. High-Resolution Displacement Sensor Using a SQUID Array Amplifier

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Penanen, Konstantin; Barmatz, M.; Paik, Ho Jung

    2004-01-01

    Improvement in the measurement of displacement has profound implications for both exploration technologies and fundamental physics. For planetary exploration, the new SQUID-based capacitive displacement sensor will enable a more sensitive gravity gradiometer for mapping the interior of planets and moons. A new concept of a superfluid clock to be reported by Penanen and Chui at this workshop is also based on a high-resolution displacement sensor. Examples of high-impact physics projects that can benefit from a better displacement sensor are: detection of gravitational waves, test of the equivalence principle, search for the postulated "axion" particle, and test of the inverse square law of gravity. We describe the concept of a new displacement sensor that makes use of a recent development in the Superconducting Quantum Interference Device (SQUID) technology. The SQUID array amplifier, invented by Welty and Martinis (IEEE Trans. Appl. Superconductivity 3, 2605, 1993), has about the same noise as a conventional SQUID; however, it can work at a much higher frequency of up to 5 MHz. We explain how the higher bandwidth can be translated into higher resolution using a bridge-balancing scheme that can simultaneously balance out both the carrier signal at the bridge output and the electrostatic force acting on the test mass.

  16. Lynx: A High-Resolution Synthetic Aperture Radar

    SciTech Connect

    Doerry, A.W.; Hensley, W.H.; Pace, F.; Stence, J.; Tsunoda, S.I.; Walker, B.C.; Woodring, M.

    1999-03-08

    Lynx is a high resolution, synthetic aperture radar (SAR) that has been designed and built by Sandia National Laboratories in collaboration with General Atomics (GA). Although Lynx may be operated on a wide variety of manned and unmanned platforms, it is primarily intended to be fielded on unmanned aerial vehicles. In particular, it may be operated on the Predator, I-GNAT, or Prowler II platforms manufactured by GA Aeronautical Systems, Inc. The Lynx production weight is less than 120 lb. and has a slant range of 30 km (in 4 mm/hr rain). It has operator selectable resolution and is capable of 0.1 m resolution in spotlight mode and 0.3 m resolution in stripmap mode. In ground moving target indicator mode, the minimum detectable velocity is 6 knots with a minimum target cross-section of 10 dBsm. In coherent change detection mode, Lynx makes registered, complex image comparisons either of 0.1 m resolution (minimum) spotlight images or of 0.3 m resolution (minimum) strip images. The Lynx user interface features a view manager that allows it to pan and zoom like a video camera. Lynx was developed under corporate finding from GA and will be manufactured by GA for both military and commercial applications. The Lynx system architecture will be presented and some of its unique features will be described. Imagery at the finest resolutions in both spotlight and strip modes have been obtained and will also be presented.

  17. High Resolution Electron Spectroscopy with Time-of-Flight Spectrometers

    NASA Astrophysics Data System (ADS)

    Krässig, Bertold; Kanter, Elliot P.

    2015-05-01

    We have developed a parametrization based on ray-tracing calculations to convert electron time-of-flight (eTOF) to kinetic energy for the spectrometers of the LCLS-AMO end station at SLAC National Accelerator Laboratory. During the experiments the eTOF detector signals are recorded as digitized waveforms for every shot of the accelerator. With our parameterization we can analyze the waveforms on-line and convert detector hit times to kinetic energies. In this way we accumulate histograms with equally spaced bins in energy directly, rather than a posteriori converting an accumulated histogram of equally spaced flight times into a histogram of kinetic energies with unequal bin sizes. The parametrization is, of course, not a perfect replica of the ray tracing results, and the ray tracing is based on nominal dimensions, perfect alignment, detector response, and knowledge of time zero for the time-of-flight. In this presentation we will discuss causes, effects, and remedies for the observed deviations. We will present high-resolution results for the Ne KLL Auger spectrum that has been well studied and serves as a benchmark for our analysis algorithm. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division by the Office of Basic Energy Sciences, Office of Science, US Department of Energy, under Contract No. DE-AC02-06CH11357.

  18. High-resolution OCT balloon imaging catheter with astigmatism correction

    PubMed Central

    Xi, Jiefeng; Huo, Li; Wu, Yicong; Cobb, Michael J.; Hwang, Joo Ha; Li, Xingde

    2014-01-01

    We report new optics designs for an optical coherence tomography (OCT) balloon imaging catheter to achieve diffraction-limited high resolution at a large working distance and enable the correction of severe astigmatism in the catheter. The designs employed a 1 mm diameter gradient-index lens of a properly chosen pitch number and a glass rod spacer to fully utilize the available NA of the miniature optics. Astigmatism caused by the balloon tubing was analyzed, and a method based on a cylindrical reflector was proposed and demonstrated to compensate the astigmatism. A catheter based on the new designs was successfully developed with a measured diffraction-limited lateral resolution of ∼21 μm, a working distance of ∼ 11 –12 mm, and a round-shape beam profile. The performance of the OCT balloon catheter was demonstrated by 3D full-circumferential imaging of a swine esophagus in vivo along with a high-speed, Fourier-domain, mode-locked swept-source OCT system. PMID:19571960

  19. The TIROS-N high resolution infrared radiation sounder

    NASA Technical Reports Server (NTRS)

    Koenig, E. W.

    1979-01-01

    The high-resolution infrared radiation sounder (HIRS/2) was developed and flown on the Television and Infrared Observation Satellite, N Series (TIROS-N) as one means of obtaining atmospheric vertical profile information. The HIRS/2 receives visible and infrared spectrum radiation through a single telescope and selects 20 narrow spectral channels by means of a rotating filter wheel. A passive radiant cooler provides an operating temperature of 106.7K for the HgCdTe and InSb detectors while the visible detector operates at instrument frame temperature. Low noise amplifiers and digital processing provide 13 bit data for spacecraft data multiplexing and transmission. The qualities of system performance that determine sounding capability are the dynamic range of data collection, the noise equivalent radiance of the system, the registration of the air columns sampled in each channel, and the ability to upgrade the calibration of the instrument to maintain the performance standard throughout life. The basic performance of the instrument in test is described. Early orbital information from the TIROS-N launched on October 13, 1978 are given and some observations on system quality are made.

  20. High-resolution fully vectorial scanning Kerr magnetometer.

    PubMed

    Flajšman, Lukáš; Urbánek, Michal; Křižáková, Viola; Vaňatka, Marek; Turčan, Igor; Šikola, Tomáš

    2016-05-01

    We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can be deterministically deviated from the objective symmetry axis, therefore, both in-plane (via the longitudinal Kerr effect) and out-of-plane (via the polar Kerr effect) components of the magnetization vector may be detected. These components are then separated by exploiting the symmetries of the polar and longitudinal Kerr effects. From four consecutive measurements, we are able to directly obtain the three orthogonal components of the magnetization vector with a resolution of 600 nm. Performance of the apparatus is demonstrated by a measurement of 3D magnetization vector maps showing out-of-plane domains and in-plane domain walls in an yttrium-iron-garnet film and on a study of magnetization reversal in a 4-μm-wide magnetic disk. PMID:27250432

  1. High-resolution fully vectorial scanning Kerr magnetometer

    NASA Astrophysics Data System (ADS)

    Flajšman, Lukáš; Urbánek, Michal; Křižáková, Viola; VaÅatka, Marek; Turčan, Igor; Šikola, Tomáš

    2016-05-01

    We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can be deterministically deviated from the objective symmetry axis, therefore, both in-plane (via the longitudinal Kerr effect) and out-of-plane (via the polar Kerr effect) components of the magnetization vector may be detected. These components are then separated by exploiting the symmetries of the polar and longitudinal Kerr effects. From four consecutive measurements, we are able to directly obtain the three orthogonal components of the magnetization vector with a resolution of 600 nm. Performance of the apparatus is demonstrated by a measurement of 3D magnetization vector maps showing out-of-plane domains and in-plane domain walls in an yttrium-iron-garnet film and on a study of magnetization reversal in a 4-μm-wide magnetic disk.

  2. High-resolution Doppler model of the human gait

    NASA Astrophysics Data System (ADS)

    Geisheimer, Jonathan L.; Greneker, Eugene F., III; Marshall, William S.

    2002-07-01

    A high resolution Doppler model of the walking human was developed for analyzing the continuous wave (CW) radar gait signature. Data for twenty subjects were collected simultaneously using an infrared motion capture system along with a two channel 10.525 GHz CW radar. The motion capture system recorded three-dimensional coordinates of infrared markers placed on the body. These body marker coordinates were used as inputs to create the theoretical Doppler output using a model constructed in MATLAB. The outputs of the model are the simulated Doppler signals due to each of the major limbs and the thorax. An estimated radar cross section for each part of the body was assigned using the Lund & Browder chart of estimated body surface area. The resultant Doppler model was then compared with the actual recorded Doppler gait signature in the frequency domain using the spectrogram. Comparison of the two sets of data has revealed several identifiable biomechanical features in the radar gait signature due to leg and body motion. The result of the research shows that a wealth of information can be unlocked from the radar gait signature, which may be useful in security and biometric applications.

  3. Cheetah: A high frame rate, high resolution SWIR image camera

    NASA Astrophysics Data System (ADS)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  4. High-resolution adaptive imaging with a single photodiode

    NASA Astrophysics Data System (ADS)

    Soldevila, F.; Salvador-Balaguer, E.; Clemente, P.; Tajahuerce, E.; Lancis, J.

    2015-09-01

    During the past few years, the emergence of spatial light modulators operating at the tens of kHz has enabled new imaging modalities based on single-pixel photodetectors. The nature of single-pixel imaging enforces a reciprocal relationship between frame rate and image size. Compressive imaging methods allow images to be reconstructed from a number of projections that is only a fraction of the number of pixels. In microscopy, single-pixel imaging is capable of producing images with a moderate size of 128 × 128 pixels at frame rates under one Hz. Recently, there has been considerable interest in the development of advanced techniques for high-resolution real-time operation in applications such as biological microscopy. Here, we introduce an adaptive compressive technique based on wavelet trees within this framework. In our adaptive approach, the resolution of the projecting patterns remains deliberately small, which is crucial to avoid the demanding memory requirements of compressive sensing algorithms. At pattern projection rates of 22.7 kHz, our technique would enable to obtain 128 × 128 pixel images at frame rates around 3 Hz. In our experiments, we have demonstrated a cost-effective solution employing a commercial projection display.

  5. Mapping Hazardous River Ice from High Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Jones, C.; Kielland, K.; Prakash, A.; Hinzman, L. D.

    2014-12-01

    In interior Alaska, frozen river systems are important transportation corridors, due to the very limited road network. Long-time Alaskan residents report that winter travel conditions on Interior rivers have become more dangerous in recent memory. Field experience suggested that visual clues may provide experienced river travelers with clues of ice conditions. We explored the utility of airborne or satellite imagery as useful tools to map dangerous ice conditions on rivers in interior Alaska. Unsupervised classification of high-resolution satellite imagery was used to identify and map open water and degraded ice conditions on the Tanana River. An accuracy assessment indicated that snow, degraded ice, and open water were mapped with an overall accuracy of 73%, producer's accuracies between (82 and 100%), and user's accuracy ranging from (62 to 86%). Over 95% of the errors were caused by shadowing of trees or topographic features in the snow. The classification system performed well for a variety of satellite images and across different satellite platforms. With further development, these types of satellite remote sensing tools could prove to be very useful across a range of disciplines and industry in northern climates.

  6. Chandra X-Ray Observatory High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  7. Chandra X-Ray Observatory High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  8. Chandra X-Ray Observatory High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSCF was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  9. The Astro-E High Resolution X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Audley, Michael D.; Boyce, Kevin R.; Breon, Susan R.; Fujimoto, Ryuichi; Gendreau, Keith C.; Holt, Stephen S.; Ishisaki, Yoshitaka; McCammon, Dan; Mihara, Tatehiro

    1999-01-01

    The Astro-E High Resolution X-ray Spectrometer (XRS) was developed jointly by the NASA/Goddard Space Flight Center and the Institute of Space and Astronautical Science in Japan. The instrument is based on a new approach to spectrosc