Particle detection and non-detection in a quantum time of arrival measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sombillo, Denny Lane B., E-mail: dsombillo@nip.upd.edu.ph; Galapon, Eric A.
2016-01-15
The standard time-of-arrival distribution cannot reproduce both the temporal and the spatial profile of the modulus squared of the time-evolved wave function for an arbitrary initial state. In particular, the time-of-arrival distribution gives a non-vanishing probability even if the wave function is zero at a given point for all values of time. This poses a problem in the standard formulation of quantum mechanics where one quantizes a classical observable and uses its spectral resolution to calculate the corresponding distribution. In this work, we show that the modulus squared of the time-evolved wave function is in fact contained in one ofmore » the degenerate eigenfunctions of the quantized time-of-arrival operator. This generalizes our understanding of quantum arrival phenomenon where particle detection is not a necessary requirement, thereby providing a direct link between time-of-arrival quantization and the outcomes of the two-slit experiment. -- Highlights: •The time-evolved position density is contained in the standard TOA distribution. •Particle may quantum mechanically arrive at a given point without being detected. •The eigenstates of the standard TOA operator are linked to the two-slit experiment.« less
Reuter; Ward; Blanckenhorn
1998-12-07
In most previous work on the yellow dung fly Scathophaga stercoraria (L.), as on other species, adaptive explanations have been sought for male behaviour whereas female behaviour has not been examined in similar detail. Here, the arrival of females at the mating site, fresh cattle droppings, is investigated. While almost all males are present shortly after pat deposition females arrive at a low, decreasing rate over an interval of about 5 hours. We propose that the distribution of female arrival times represents a mixed Evolutionarily Stable Strategy (ESS), formed by different trade-offs between costs and benefits of early and late arrival. Early arrival could be favoured by advantages due to better conditions for oviposition, faster egg development of reduced larval competition. Late arrival could be favoured by negative effects on females of male-male competition being weaker later after deposition. Computer simulations with distributions of arrival times deviating from the natural one were performed to "measure" the costs for females arriving at different times. These costs were compared with estimated benefits corresponding to the females' arrival times. This procedure revealed that females coming to the pat later in a population of females arriving shortly after deposition would be favoured. In a population arriving according to a uniform distribution, early females would have fitness advantages. Thus, evolution should lead to an intermediate distribution of arrival times, as in nature, i.e. female arrival behaviour is probably adaptive. The simulations also revealed that the intensity of sexual selection though male-male competition is highest with the natural pattern of female arrival. Therefore, natural selection generating this pattern amplifies the intensity of male-male interaction as a by-product. Copyright 1998 Academic Press
Substructures in the temporal distribution of atmospheric Cerenkov light in EAS
NASA Astrophysics Data System (ADS)
Bosia, G.; Navarra, G.; Saavedra, O.; Boehm, E.
1980-06-01
Particle density and arrival time distribution of atmospheric Cerenkov light (ACL) was measured simultaneously in individual air showers at Pic du Midi. Substructures were observed in the arrival time distribution of the ACL. The arrival time is related to a position in the shower plane which indicates the existence of density variations, i.e., substructures in the lateral distribution of particles. The frequency of substructures is a few percent, and core distances of up to tens of meters were observed.
Timing the Random and Anomalous Arrival of Particles in a Geiger Counter with GPS Devices
ERIC Educational Resources Information Center
Blanco, F.; La Rocca, P.; Riggi, F.; Riggi, S.
2008-01-01
The properties of the arrival time distribution of particles in a detector have been studied by the use of a small Geiger counter, with a GPS device to tag the event time. The experiment is intended to check the basic properties of the random arrival time distribution between successive events and to simulate the investigations carried out by…
NASA Astrophysics Data System (ADS)
Theodorsen, Audun; Garcia, Odd Erik; Kube, Ralph; Labombard, Brian; Terry, Jim
2017-10-01
In the far scrape-off layer (SOL), radial motion of filamentary structures leads to excess transport of particles and heat. Amplitudes and arrival times of these filaments have previously been studied by conditional averaging in single-point measurements from Langmuir Probes and Gas Puff Imaging (GPI). Conditional averaging can be problematic: the cutoff for large amplitudes is mostly chosen by convention; the conditional windows used may influence the arrival time distribution; and the amplitudes cannot be separated from a background. Previous work has shown that SOL fluctuations are well described by a stochastic model consisting of a super-position of pulses with fixed shape and randomly distributed amplitudes and arrival times. The model can be formulated as a pulse shape convolved with a train of delta pulses. By choosing a pulse shape consistent with the power spectrum of the fluctuation time series, Richardson-Lucy deconvolution can be used to recover the underlying amplitudes and arrival times of the delta pulses. We apply this technique to both L and H-mode GPI data from the Alcator C-Mod tokamak. The pulse arrival times are shown to be uncorrelated and uniformly distributed, consistent with a Poisson process, and the amplitude distribution has an exponential tail.
Observation of arrival times of EAS with energies or = 6 x 10 (14) eV
NASA Technical Reports Server (NTRS)
Sun, L.
1985-01-01
The Earth's atmosphere is continually being bombarded by primary cosmic ray particles which are generally believed to be high-energy nuclei. The fact that the majority of cosmic ray primaries are charged particles and that space is permeated with random magnetic fields, means that the particles do not travel in straight lines. The arrival time distribution of EAS may also transfer some information about the primary particles. Actually, if the particles come to our Earth in a completely random process, the arrival time distribution of pairs of successive particles should fit an exponential law. The work reported here was arried out at Sydney University from May 1982 to January 1983. All the data are used to plot the arrival-time distribution of the events, that is, the distribution of time-separation between consecutive events on a 1 minute bin size. During this period more than 2300 showers were recorded. The results are discussed and compared with that of some other experiments.
Improved Results for Route Planning in Stochastic Transportation Networks
NASA Technical Reports Server (NTRS)
Boyan, Justin; Mitzenmacher, Michael
2000-01-01
In the bus network problem, the goal is to generate a plan for getting from point X to point Y within a city using buses in the smallest expected time. Because bus arrival times are not determined by a fixed schedule but instead may be random. the problem requires more than standard shortest path techniques. In recent work, Datar and Ranade provide algorithms in the case where bus arrivals are assumed to be independent and exponentially distributed. We offer solutions to two important generalizations of the problem, answering open questions posed by Datar and Ranade. First, we provide a polynomial time algorithm for a much wider class of arrival distributions, namely those with increasing failure rate. This class includes not only exponential distributions but also uniform, normal, and gamma distributions. Second, in the case where bus arrival times are independent and geometric discrete random variable,. we provide an algorithm for transportation networks of buses and trains, where trains run according to a fixed schedule.
NASA Technical Reports Server (NTRS)
Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.
1985-01-01
Detection of air showers with primary energies above 10 to the 19th power eV with sufficient statistics is extremely important in an astrophysical aspect related to the Greisen cut off and the origin of such high energy cosmic rays. Recently, a method is proposed to observe such giant air showers by measuring the arrival time distributions of air-shower particles at large core distances with a mini array. Experiments to measure the arrival time distributions of muons were started in 1981 and those of electrons in early 1983 in the Akeno air-shower array (930 gcm cm squared atmospheric depth, 900m above sea level). During the time of observation, the detection area of the Akeno array was expanded from 1 sq km to sq km in 1982 and to 20 sq km in 1984. Now the arrival time distribution of electrons and muons can be measured for showers with primary energies above 1019eV at large core distances.
Real-Time Ensemble Forecasting of Coronal Mass Ejections Using the Wsa-Enlil+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; Odstrcil, D.; MacNeice, P. J.; Rastaetter, L.; LaSota, J. A.
2014-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions. Real-time ensemble modeling of CME propagation is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL+cone model available at the Community Coordinated Modeling Center (CCMC). To estimate the effect of uncertainties in determining CME input parameters on arrival time predictions, a distribution of n (routinely n=48) CME input parameter sets are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest, including a probability distribution of CME arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). We present the results of ensemble simulations for a total of 38 CME events in 2013-2014. For 28 of the ensemble runs containing hits, the observed CME arrival was within the range of ensemble arrival time predictions for 14 runs (half). The average arrival time prediction was computed for each of the 28 ensembles predicting hits and using the actual arrival time, an average absolute error of 10.0 hours (RMSE=11.4 hours) was found for all 28 ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling sysem was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME. The parameter sensitivity study suggests future directions for the system, such as running ensembles using various magnetogram inputs to the WSA model.
Queues with Dropping Functions and General Arrival Processes
Chydzinski, Andrzej; Mrozowski, Pawel
2016-01-01
In a queueing system with the dropping function the arriving customer can be denied service (dropped) with the probability that is a function of the queue length at the time of arrival of this customer. The potential applicability of such mechanism is very wide due to the fact that by choosing the shape of this function one can easily manipulate several performance characteristics of the queueing system. In this paper we carry out analysis of the queueing system with the dropping function and a very general model of arrival process—the model which includes batch arrivals and the interarrival time autocorrelation, and allows for fitting the actual shape of the interarrival time distribution and its moments. For such a system we obtain formulas for the distribution of the queue length and the overall customer loss ratio. The analytical results are accompanied with numerical examples computed for several dropping functions. PMID:26943171
NASA Astrophysics Data System (ADS)
Macmynowski, Dena P.; Root, Terry L.
2007-05-01
The intra- and inter-season complexity of bird migration has received limited attention in climatic change research. Our phenological analysis of 22 species collected in Chicago, USA, (1979 2002) evaluates the relationship between multi-scalar climate variables and differences (1) in arrival timing between sexes, (2) in arrival distributions among species, and (3) between spring and fall migration. The early migratory period for earliest arriving species (i.e., short-distance migrants) and earliest arriving individuals of a species (i.e., males) most frequently correlate with climate variables. Compared to long-distance migrant species, four times as many short-distance migrants correlate with spring temperature, while 8 of 11 (73%) of long-distance migrant species’ arrival is correlated with the North Atlantic Oscillation (NAO). While migratory phenology has been correlated with NAO in Europe, we believe that this is the first documentation of a significant association in North America. Geographically proximate conditions apparently influence migratory timing for short-distance migrants while continental-scale climate (e.g., NAO) seemingly influences the phenology of Neotropical migrants. The preponderance of climate correlations is with the early migratory period, not the median of arrival, suggesting that early spring conditions constrain the onset or rate of migration for some species. The seasonal arrival distribution provides considerable information about migratory passage beyond what is apparent from statistical analyses of phenology. A relationship between climate and fall phenology is not detected at this location. Analysis of the within-season complexity of migration, including multiple metrics of arrival, is essential to detect species’ responses to changing climate as well as evaluate the underlying biological mechanisms.
NASA Astrophysics Data System (ADS)
Martinsson, J.
2013-03-01
We propose methods for robust Bayesian inference of the hypocentre in presence of poor, inconsistent and insufficient phase arrival times. The objectives are to increase the robustness, the accuracy and the precision by introducing heavy-tailed distributions and an informative prior distribution of the seismicity. The effects of the proposed distributions are studied under real measurement conditions in two underground mine networks and validated using 53 blasts with known hypocentres. To increase the robustness against poor, inconsistent or insufficient arrivals, a Gaussian Mixture Model is used as a hypocentre prior distribution to describe the seismically active areas, where the parameters are estimated based on previously located events in the region. The prior is truncated to constrain the solution to valid geometries, for example below the ground surface, excluding known cavities, voids and fractured zones. To reduce the sensitivity to outliers, different heavy-tailed distributions are evaluated to model the likelihood distribution of the arrivals given the hypocentre and the origin time. Among these distributions, the multivariate t-distribution is shown to produce the overall best performance, where the tail-mass adapts to the observed data. Hypocentre and uncertainty region estimates are based on simulations from the posterior distribution using Markov Chain Monte Carlo techniques. Velocity graphs (equivalent to traveltime graphs) are estimated using blasts from known locations, and applied to reduce the main uncertainties and thereby the final estimation error. To focus on the behaviour and the performance of the proposed distributions, a basic single-event Bayesian procedure is considered in this study for clarity. Estimation results are shown with different distributions, with and without prior distribution of seismicity, with wrong prior distribution, with and without error compensation, with and without error description, with insufficient arrival times and in presence of significant outliers. A particular focus is on visual results and comparisons to give a better understanding of the Bayesian advantage and to show the effects of heavy-tailed distributions and informative prior information on real data.
Real-time Ensemble Forecasting of Coronal Mass Ejections using the WSA-ENLIL+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; MacNeice, P. J.; Rastaetter, L.; Kuznetsova, M. M.; Odstrcil, D.
2013-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions due to uncertainties in determining CME input parameters. Ensemble modeling of CME propagation in the heliosphere is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL cone model available at the Community Coordinated Modeling Center (CCMC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. A distribution of n (routinely n=48) CME input parameters are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest (satellites or planets), including a probability distribution of CME shock arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). Ensemble simulations have been performed experimentally in real-time at the CCMC since January 2013. We present the results of ensemble simulations for a total of 15 CME events, 10 of which were performed in real-time. The observed CME arrival was within the range of ensemble arrival time predictions for 5 out of the 12 ensemble runs containing hits. The average arrival time prediction was computed for each of the twelve ensembles predicting hits and using the actual arrival time an average absolute error of 8.20 hours was found for all twelve ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling setup was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME.
Currie, L A
2001-07-01
Three general classes of skewed data distributions have been encountered in research on background radiation, chemical and radiochemical blanks, and low levels of 85Kr and 14C in the atmosphere and the cryosphere. The first class of skewed data can be considered to be theoretically, or fundamentally skewed. It is typified by the exponential distribution of inter-arrival times for nuclear counting events for a Poisson process. As part of a study of the nature of low-level (anti-coincidence) Geiger-Muller counter background radiation, tests were performed on the Poisson distribution of counts, the uniform distribution of arrival times, and the exponential distribution of inter-arrival times. The real laboratory system, of course, failed the (inter-arrival time) test--for very interesting reasons, linked to the physics of the measurement process. The second, computationally skewed, class relates to skewness induced by non-linear transformations. It is illustrated by non-linear concentration estimates from inverse calibration, and bivariate blank corrections for low-level 14C-12C aerosol data that led to highly asymmetric uncertainty intervals for the biomass carbon contribution to urban "soot". The third, environmentally, skewed, data class relates to a universal problem for the detection of excursions above blank or baseline levels: namely, the widespread occurrence of ab-normal distributions of environmental and laboratory blanks. This is illustrated by the search for fundamental factors that lurk behind skewed frequency distributions of sulfur laboratory blanks and 85Kr environmental baselines, and the application of robust statistical procedures for reliable detection decisions in the face of skewed isotopic carbon procedural blanks with few degrees of freedom.
Amplitude and angle of arrival measurements on a 28.56 GHz Earth-space path
NASA Technical Reports Server (NTRS)
Devasirvatham, D. M. J.; Hodge, D. B.
1981-01-01
The amplitude and angle of arrival measurements on an Earth-space path using the 28.56 GHz COMSTAR D3 satellite beacon are described. These measurements were made by the Ohio State University ElectroScience Laboratory during the period September 1978 to September 1979. Monthly, quarterly, and annual distributions of attenuation, angle of arrival, and variance of both these parameters are reported. During this period, fades exceeding 29 dB for .00% of the time and angle of arrival fluctuations exceeding .12 degrees for .01% of the time were observed.
Counting Raindrops and the Distribution of Intervals Between Them.
NASA Astrophysics Data System (ADS)
Van De Giesen, N.; Ten Veldhuis, M. C.; Hut, R.; Pape, J. J.
2017-12-01
Drop size distributions are often assumed to follow a generalized gamma function, characterized by one parameter, Λ, [1]. In principle, this Λ can be estimated by measuring the arrival rate of raindrops. The arrival rate should follow a Poisson distribution. By measuring the distribution of the time intervals between drops arriving at a certain surface area, one should not only be able to estimate the arrival rate but also the robustness of the underlying assumption concerning steady state. It is important to note that many rainfall radar systems also assume fixeddrop size distributions, and associated arrival rates, to derive rainfall rates. By testing these relationships with a simple device, we will be able to improve both land-based and space-based radar rainfall estimates. Here, an open-hardware sensor design is presented, consisting of a 3D printed housing for a piezoelectric element, some simple electronics and an Arduino. The target audience for this device are citizen scientists who want to contribute to collecting rainfall information beyond the standard rain gauge. The core of the sensor is a simple piezo-buzzer, as found in many devices such as watches and fire alarms. When a raindrop falls on a piezo-buzzer, a small voltage is generated , which can be used to register the drop's arrival time. By registering the intervals between raindrops, the associated Poisson distribution can be estimated. In addition to the hardware, we will present the first results of a measuring campaign in Myanmar that will have ran from August to October 2017. All design files and descriptions are available through GitHub: https://github.com/nvandegiesen/Intervalometer. This research is partially supported through the TWIGA project, funded by the European Commission's H2020 program under call SC5-18-2017 `Novel in-situ observation systems'. Reference [1]: Uijlenhoet, R., and J. N. M. Stricker. "A consistent rainfall parameterization based on the exponential raindrop size distribution." Journal of Hydrology 218, no. 3 (1999): 101-127.
Multi-Center Traffic Management Advisor Operational Field Test Results
NASA Technical Reports Server (NTRS)
Farley, Todd; Landry, Steven J.; Hoang, Ty; Nickelson, Monicarol; Levin, Kerry M.; Rowe, Dennis W.
2005-01-01
The Multi-Center Traffic Management Advisor (McTMA) is a research prototype system which seeks to bring time-based metering into the mainstream of air traffic control (ATC) operations. Time-based metering is an efficient alternative to traditional air traffic management techniques such as distance-based spacing (miles-in-trail spacing) and managed arrival reservoirs (airborne holding). While time-based metering has demonstrated significant benefit in terms of arrival throughput and arrival delay, its use to date has been limited to arrival operations at just nine airports nationally. Wide-scale adoption of time-based metering has been hampered, in part, by the limited scalability of metering automation. In order to realize the full spectrum of efficiency benefits possible with time-based metering, a much more modular, scalable time-based metering capability is required. With its distributed metering architecture, multi-center TMA offers such a capability.
Time of arrival in quantum and Bohmian mechanics
NASA Astrophysics Data System (ADS)
Leavens, C. R.
1998-08-01
In a recent paper Grot, Rovelli, and Tate (GRT) [Phys. Rev. A 54, 4676 (1996)] derived an expression for the probability distribution π(TX) of intrinsic arrival times T(X) at position x=X for a quantum particle with initial wave function ψ(x,t=0) freely evolving in one dimension. This was done by quantizing the classical expression for the time of arrival of a free particle at X, assuming a particular choice of operator ordering, and then regulating the resulting time of arrival operator. For the special case of a minimum-uncertainty-product wave packet at t=0 with average wave number
Only Above Barrier Energy Components Contribute to Barrier Traversal Time
NASA Astrophysics Data System (ADS)
Galapon, Eric A.
2012-04-01
A time of arrival operator across a square potential barrier is constructed. The expectation value of the barrier time of arrival operator for a sufficiently localized incident wave packet is compared with the expectation value of the free particle time of arrival operator for the same wave packet. The comparison yields an expression for the expected traversal time across the barrier. It is shown that only the above barrier components of the momentum distribution of the incident wave packet contribute to the barrier traversal time, implying that below the barrier components are transmitted without delay. This is consistent with the recent experiment in attosecond ionization in helium indicating that there is no real tunneling delay time [P. Eckle , Science 322, 1525 (2008)SCIEAS0036-807510.1126/science.1163439].
Time structure of the EAS electron and muon components measured by the KASCADE Grande experiment
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga, J. C.; Badea, A. F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Luczak, P.; Mathes, H. J.; Mayer, H. J.; Meurer, C.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Plewnia, S.; Rebel, H.; Roth, M.; Schieler, H.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.
2008-06-01
Extensive air showers measured by the KASCADE-Grande experiment at the Forschungszentrum Karlsruhe are studied with respect to the arrival times of electrons and muons at observation level. The mean and the spread of the arrival time distributions have been used to determine the average time profile of the electromagnetic and muonic shower disk. For core distances R>200m particles of the muonic shower component arrive on average earlier at observation level than particles of the electromagnetic shower component. The difference increases with the core distance from Δ
Monitoring molecular interactions using photon arrival-time interval distribution analysis
Laurence, Ted A [Livermore, CA; Weiss, Shimon [Los Angels, CA
2009-10-06
A method for analyzing/monitoring the properties of species that are labeled with fluorophores. A detector is used to detect photons emitted from species that are labeled with one or more fluorophores and located in a confocal detection volume. The arrival time of each of the photons is determined. The interval of time between various photon pairs is then determined to provide photon pair intervals. The number of photons that have arrival times within the photon pair intervals is also determined. The photon pair intervals are then used in combination with the corresponding counts of intervening photons to analyze properties and interactions of the molecules including brightness, concentration, coincidence and transit time. The method can be used for analyzing single photon streams and multiple photon streams.
Mitigating Photon Jitter in Optical PPM Communication
NASA Technical Reports Server (NTRS)
Moision, Bruce
2008-01-01
A theoretical analysis of photon-arrival jitter in an optical pulse-position-modulation (PPM) communication channel has been performed, and now constitutes the basis of a methodology for designing receivers to compensate so that errors attributable to photon-arrival jitter would be minimized or nearly minimized. Photon-arrival jitter is an uncertainty in the estimated time of arrival of a photon relative to the boundaries of a PPM time slot. Photon-arrival jitter is attributable to two main causes: (1) receiver synchronization error [error in the receiver operation of partitioning time into PPM slots] and (2) random delay between the time of arrival of a photon at a detector and the generation, by the detector circuitry, of a pulse in response to the photon. For channels with sufficiently long time slots, photon-arrival jitter is negligible. However, as durations of PPM time slots are reduced in efforts to increase throughputs of optical PPM communication channels, photon-arrival jitter becomes a significant source of error, leading to significant degradation of performance if not taken into account in design. For the purpose of the analysis, a receiver was assumed to operate in a photon- starved regime, in which photon counts follow a Poisson distribution. The analysis included derivation of exact equations for symbol likelihoods in the presence of photon-arrival jitter. These equations describe what is well known in the art as a matched filter for a channel containing Gaussian noise. These equations would yield an optimum receiver if they could be implemented in practice. Because the exact equations may be too complex to implement in practice, approximations that would yield suboptimal receivers were also derived.
Airport Facility Queuing Model Validation
DOT National Transportation Integrated Search
1977-05-01
Criteria are presented for selection of analytic models to represent waiting times due to queuing processes. An existing computer model by M.F. Neuts which assumes general nonparametric distributions of arrivals per unit time and service times for a ...
Locating Microseism Sources Using Spurious Arrivals in Intercontinental Noise Correlations
NASA Astrophysics Data System (ADS)
Retailleau, Lise; Boué, Pierre; Stehly, Laurent; Campillo, Michel
2017-10-01
The accuracy of Green's functions retrieved from seismic noise correlations in the microseism frequency band is limited by the uneven distribution of microseism sources at the surface of the Earth. As a result, correlation functions are often biased as compared to the expected Green's functions, and they can include spurious arrivals. These spurious arrivals are seismic arrivals that are visible on the correlation and do not belong to the theoretical impulse response. In this article, we propose to use Rayleigh wave spurious arrivals detected on correlation functions computed between European and United States seismic stations to locate microseism sources in the Atlantic Ocean. We perform a slant stack on a time distance gather of correlations obtained from an array of stations that comprises a regional deployment and a distant station. The arrival times and the apparent slowness of the spurious arrivals lead to the location of their source, which is obtained through a grid search procedure. We discuss improvements in the location through this methodology as compared to classical back projection of microseism energy. This method is interesting because it only requires an array and a distant station on each side of an ocean, conditions that can be met relatively easily.
The timing of life history events in the presence of soft disturbances.
Bertacchi, Daniela; Zucca, Fabio; Ambrosini, Roberto
2016-01-21
We study a model for the evolutionarily stable strategy (ESS) used by biological populations for choosing the time of life-history events, such as arrival from migration and breeding. In our model we account for both intra-species competition (early individuals have a competitive advantage) and a disturbance which strikes at a random time, killing a fraction 1-p of the population. Disturbances include spells of bad weather, such as freezing or heavily raining days. It has been shown by Iwasa and Levin (1995) that when the disturbance is so strong that it kills any individual present when it strikes (hard disturbance, p=0), then the ESS is a mixed strategy (individuals choose their arrival date in an interval of possible dates, according to a certain probability distribution). In this case, individuals wait for a certain time and afterwards start arriving (or breeding) every day. In this paper we explore a biologically more realistic situation whereby the disturbance kills only a fraction of the individuals (soft disturbance, p>0). We also remove some technical assumptions which Iwasa and Levin made on the distribution of the disturbance. We prove that the ESS is still a mixed choice of times, however with respect to the case of hard disturbance, a new phenomenon arises: whenever the disturbance is soft, if the competition is sufficiently strong, the waiting time disappears and a fraction of the population arrives at the earliest day possible, while the rest will arrive throughout the whole period during which the disturbance may occur. This means that under strong competition, the payoff of early arrival balances the increased risk of being killed by the disturbance. We study the behaviour of the ESS and of the average fitness of the population, depending on the parameters involved. We also investigate how the population may be affected by climate change: namely the occurrence of more extreme weather events, which may kill a larger fraction of the population, and time shifts of the distribution of the disturbance. We show how the ESS and the average fitness change under the new climate and discuss which is the impact of the new climate on a population that still follows the old strategy. In particular, we show that, at least under some conditions, extreme weather events imply a temporary decrease of the average fitness of the population due to an increased mortality. In addition, if the population adapts to the new climate, the population may have a larger fitness. Copyright © 2015 Elsevier Ltd. All rights reserved.
Provably secure time distribution for the electric grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith IV, Amos M; Evans, Philip G; Williams, Brian P
We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modifed QKD system. This has the advantage that the signal can be veried by examining the quantum states of the photons similar to QKD.
Improving Bed Management at Wright-Patterson Medical Center
1989-09-01
arrival distributions are Poisson, as in Sim2, then interarrival times are distributed exponentially (Budnick, Mcleavey , and Mojena, 1988:770). While... McLeavey , D. and Mojena R., Principles of Operations Research for Management (second edition). Homewood IL: Irwin, 1988. Cannoodt, L. J. and
Lognormal Infection Times of Online Information Spread
Doerr, Christian; Blenn, Norbert; Van Mieghem, Piet
2013-01-01
The infection times of individuals in online information spread such as the inter-arrival time of Twitter messages or the propagation time of news stories on a social media site can be explained through a convolution of lognormally distributed observation and reaction times of the individual participants. Experimental measurements support the lognormal shape of the individual contributing processes, and have resemblance to previously reported lognormal distributions of human behavior and contagious processes. PMID:23700473
Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 10 18 eV
Aab, Alexander; et al.
2017-09-22
We report that cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature. Clues to their origin come from studying the distribution of their arrival directions. Usingmore » $$3 \\times 10^4$$ cosmic rays above $$8 \\times 10^{18}$$ electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 square kilometers steradian year, we report an anisotropy in the arrival directions. The anisotropy, detected at more than the 5.2$$\\sigma$$ level of significance, can be described by a dipole with an amplitude of $$6.5_{-0.9}^{+1.3}$$% towards right ascension $$\\alpha_{d} = 100 \\pm 10$$ degrees and declination $$\\delta_{d} = -24_{-13}^{+12}$$ degrees. Lastly, that direction indicates an extragalactic origin for these ultra-high energy particles.« less
Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 10 18 eV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, Alexander; et al.
We report that cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature. Clues to their origin come from studying the distribution of their arrival directions. Usingmore » $$3 \\times 10^4$$ cosmic rays above $$8 \\times 10^{18}$$ electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 square kilometers steradian year, we report an anisotropy in the arrival directions. The anisotropy, detected at more than the 5.2$$\\sigma$$ level of significance, can be described by a dipole with an amplitude of $$6.5_{-0.9}^{+1.3}$$% towards right ascension $$\\alpha_{d} = 100 \\pm 10$$ degrees and declination $$\\delta_{d} = -24_{-13}^{+12}$$ degrees. Lastly, that direction indicates an extragalactic origin for these ultra-high energy particles.« less
Time difference of arrival estimation of microseismic signals based on alpha-stable distribution
NASA Astrophysics Data System (ADS)
Jia, Rui-Sheng; Gong, Yue; Peng, Yan-Jun; Sun, Hong-Mei; Zhang, Xing-Li; Lu, Xin-Ming
2018-05-01
Microseismic signals are generally considered to follow the Gauss distribution. A comparison of the dynamic characteristics of sample variance and the symmetry of microseismic signals with the signals which follow α-stable distribution reveals that the microseismic signals have obvious pulse characteristics and that the probability density curve of the microseismic signal is approximately symmetric. Thus, the hypothesis that microseismic signals follow the symmetric α-stable distribution is proposed. On the premise of this hypothesis, the characteristic exponent α of the microseismic signals is obtained by utilizing the fractional low-order statistics, and then a new method of time difference of arrival (TDOA) estimation of microseismic signals based on fractional low-order covariance (FLOC) is proposed. Upon applying this method to the TDOA estimation of Ricker wavelet simulation signals and real microseismic signals, experimental results show that the FLOC method, which is based on the assumption of the symmetric α-stable distribution, leads to enhanced spatial resolution of the TDOA estimation relative to the generalized cross correlation (GCC) method, which is based on the assumption of the Gaussian distribution.
NASA Astrophysics Data System (ADS)
Motaghedi-Larijani, Arash; Aminnayeri, Majid
2017-03-01
Cross-docking is a supply-chain strategy that can reduce transportation and inventory costs. This study is motivated by a fruit and vegetable distribution centre in Tehran, which has cross-docks and a limited time to admit outbound trucks. In this article, outbound trucks are assumed to arrive at the cross-dock with a single outbound door with a uniform distribution (0,L). The total number of assigned trucks is constant and the loading time is fixed. A queuing model is modified for this situation and the expected waiting time of each customer is calculated. Then, a curve for the waiting time is calculated. Finally, the length of window time L is optimized to minimize the total cost, which includes the waiting time of the trucks and the admission cost of the cross-dock. Some illustrative examples of cross-docking are presented and solved using the proposed method.
Analysis and modeling of optical crosstalk in InP-based Geiger-mode avalanche photodiode FPAs
NASA Astrophysics Data System (ADS)
Chau, Quan; Jiang, Xudong; Itzler, Mark A.; Entwistle, Mark; Piccione, Brian; Owens, Mark; Slomkowski, Krystyna
2015-05-01
Optical crosstalk is a major factor limiting the performance of Geiger-mode avalanche photodiode (GmAPD) focal plane arrays (FPAs). This is especially true for arrays with increased pixel density and broader spectral operation. We have performed extensive experimental and theoretical investigations on the crosstalk effects in InP-based GmAPD FPAs for both 1.06-μm and 1.55-μm applications. Mechanisms responsible for intrinsic dark counts are Poisson processes, and their inter-arrival time distribution is an exponential function. In FPAs, intrinsic dark counts and cross talk events coexist, and the inter-arrival time distribution deviates from purely exponential behavior. From both experimental data and computer simulations, we show the dependence of this deviation on the crosstalk probability. The spatial characteristics of crosstalk are also demonstrated. From the temporal and spatial distribution of crosstalk, an efficient algorithm to identify and quantify crosstalk is introduced.
NASA Technical Reports Server (NTRS)
Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.
1985-01-01
The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow.
Precise Hypocenter Determination around Palu Koro Fault: a Preliminary Results
NASA Astrophysics Data System (ADS)
Fawzy Ismullah, M. Muhammad; Nugraha, Andri Dian; Ramdhan, Mohamad; Wandono
2017-04-01
Sulawesi area is located in complex tectonic pattern. High seismicity activity in the middle of Sulawesi is related to Palu Koro fault (PKF). In this study, we determined precise hypocenter around PKF by applying double-difference method. We attempt to investigate of the seismicity rate, geometry of the fault and distribution of focus depth around PKF. We first re-pick P-and S-wave arrival time of the PKF events to determine the initial hypocenter location using Hypoellipse method through updated 1-D seismic velocity. Later on, we relocated the earthquake event using double-difference method. Our preliminary results show the distribution of relocated events are located around PKF and have smaller residual time than the initial location. We will enhance the hypocenter location through updating of arrival time by applying waveform cross correlation method as input for double-difference relocation.
NASA Astrophysics Data System (ADS)
Warchoł, Piotr
2018-06-01
The public transportation system of Cuernavaca, Mexico, exhibits random matrix theory statistics. In particular, the fluctuation of times between the arrival of buses on a given bus stop, follows the Wigner surmise for the Gaussian unitary ensemble. To model this, we propose an agent-based approach in which each bus driver tries to optimize his arrival time to the next stop with respect to an estimated arrival time of his predecessor. We choose a particular form of the associated utility function and recover the appropriate distribution in numerical experiments for a certain value of the only parameter of the model. We then investigate whether this value of the parameter is otherwise distinguished within an information theoretic approach and give numerical evidence that indeed it is associated with a minimum of averaged pairwise mutual information.
Empirical analysis and modeling of manual turnpike tollbooths in China
NASA Astrophysics Data System (ADS)
Zhang, Hao
2017-03-01
To deal with low-level of service satisfaction at tollbooths of many turnpikes in China, we conduct an empirical study and use a queueing model to investigate performance measures. In this paper, we collect archived data from six tollbooths of a turnpike in China. Empirical analysis on vehicle's time-dependent arrival process and collector's time-dependent service time is conducted. It shows that the vehicle arrival process follows a non-homogeneous Poisson process while the collector service time follows a log-normal distribution. Further, we model the process of collecting tolls at tollbooths with MAP / PH / 1 / FCFS queue for mathematical tractability and present some numerical examples.
Weiss, Jonathan D.
1995-01-01
A shock velocity and damage location sensor providing a means of measuring shock speed and damage location. The sensor consists of a long series of time-of-arrival "points" constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the "points" of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor.
Weiss, J.D.
1995-08-29
A shock velocity and damage location sensor providing a means of measuring shock speed and damage location is disclosed. The sensor consists of a long series of time-of-arrival ``points`` constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the ``points`` of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor. 6 figs.
Enhancing outpatient clinics management software by reducing patients' waiting time.
Almomani, Iman; AlSarheed, Ahlam
The Kingdom of Saudi Arabia (KSA) gives great attention to improving the quality of services provided by health care sectors including outpatient clinics. One of the main drawbacks in outpatient clinics is long waiting time for patients-which affects the level of patient satisfaction and the quality of services. This article addresses this problem by studying the Outpatient Management Software (OMS) and proposing solutions to reduce waiting times. Many hospitals around the world apply solutions to overcome the problem of long waiting times in outpatient clinics such as hospitals in the USA, China, Sri Lanka, and Taiwan. These clinics have succeeded in reducing wait times by 15%, 78%, 60% and 50%, respectively. Such solutions depend mainly on adding more human resources or changing some business or management policies. The solutions presented in this article reduce waiting times by enhancing the software used to manage outpatient clinics services. Both quantitative and qualitative methods have been used to understand current OMS and examine level of patient's satisfaction. Five main problems that may cause high or unmeasured waiting time have been identified: appointment type, ticket numbering, doctor late arrival, early arriving patient and patients' distribution list. These problems have been mapped to the corresponding OMS components. Solutions to the above problems have been introduced and evaluated analytically or by simulation experiments. Evaluation of the results shows a reduction in patient waiting time. When late doctor arrival issues are solved, this can reduce the clinic service time by up to 20%. However, solutions for early arriving patients reduces 53.3% of vital time, 20% of the clinic time and overall 30.3% of the total waiting time. Finally, well patient-distribution lists make improvements by 54.2%. Improvements introduced to the patients' waiting time will consequently affect patients' satisfaction and improve the quality of health care services. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
TIME SHARING WITH AN EXPLICIT PRIORITY QUEUING DISCIPLINE.
exponentially distributed service times and an ordered priority queue. Each new arrival buys a position in this queue by offering a non-negative bribe to the...parameters is investigated through numerical examples. Finally, to maximize the expected revenue per unit time accruing from bribes , an optimization
Reply to ``Comment on `Quantum time-of-flight distribution for cold trapped atoms' ''
NASA Astrophysics Data System (ADS)
Ali, Md. Manirul; Home, Dipankar; Majumdar, A. S.; Pan, Alok K.
2008-02-01
In their comment Gomes [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali , Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.
Reply to 'Comment on 'Quantum time-of-flight distribution for cold trapped atoms''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Md. Manirul; Home, Dipankar; Pan, Alok K.
2008-02-15
In their comment Gomes et al. [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali et al., Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.
NASA Astrophysics Data System (ADS)
van de Giesen, Nicolaas; Hut, Rolf; ten Veldhuis, Marie-claire
2017-04-01
If one can assume that drop size distributions can be effectively described by a generalized gamma function [1], one can estimate this function on the basis of the distribution of time intervals between drops hitting a certain area. The arrival of a single drop is relatively easy to measure with simple consumer devices such as cameras or piezoelectric elements. Here we present an open-hardware design for the electronics and statistical processing of an intervalometer that measures time intervals between drop arrivals. The specific hardware in this case is a piezoelectric element in an appropriate housing, combined with an instrumentation op-amp and an Arduino processor. Although it would not be too difficult to simply register the arrival times of all drops, it is more practical to only report the main statistics. For this purpose, all intervals below a certain threshold during a reporting interval are summed and counted. We also sum the scaled squares, cubes, and fourth powers of the intervals. On the basis of the first four moments, one can estimate the corresponding generalized gamma function and obtain some sense of the accuracy of the underlying assumptions. Special attention is needed to determine the lower threshold of the drop sizes that can be measured. This minimum size often varies over the area being monitored, such as is the case for piezoelectric elements. We describe a simple method to determine these (distributed) minimal drop sizes and present a bootstrap method to make the necessary corrections. Reference [1] Uijlenhoet, R., and J. N. M. Stricker. "A consistent rainfall parameterization based on the exponential raindrop size distribution." Journal of Hydrology 218, no. 3 (1999): 101-127.
Clues on the origin of post-2000 earthquakes at Campi Flegrei caldera (Italy).
Chiodini, G; Selva, J; Del Pezzo, E; Marsan, D; De Siena, L; D'Auria, L; Bianco, F; Caliro, S; De Martino, P; Ricciolino, P; Petrillo, Z
2017-06-30
The inter-arrival times of the post 2000 seismicity at Campi Flegrei caldera are statistically distributed into different populations. The low inter-arrival times population represents swarm events, while the high inter-arrival times population marks background seismicity. Here, we show that the background seismicity is increasing at the same rate of (1) the ground uplift and (2) the concentration of the fumarolic gas specie more sensitive to temperature. The seismic temporal increase is strongly correlated with the results of recent simulations, modelling injection of magmatic fluids in the Campi Flegrei hydrothermal system. These concurrent variations point to a unique process of temperature-pressure increase of the hydrothermal system controlling geophysical and geochemical signals at the caldera. Our results thus show that the occurrence of background seismicity is an excellent parameter to monitor the current unrest of the caldera.
Analysis of two production inventory systems with buffer, retrials and different production rates
NASA Astrophysics Data System (ADS)
Jose, K. P.; Nair, Salini S.
2017-09-01
This paper considers the comparison of two ( {s,S} ) production inventory systems with retrials of unsatisfied customers. The time for producing and adding each item to the inventory is exponentially distributed with rate β. However, a production rate α β higher than β is used at the beginning of the production. The higher production rate will reduce customers' loss when inventory level approaches zero. The demand from customers is according to a Poisson process. Service times are exponentially distributed. Upon arrival, the customers enter into a buffer of finite capacity. An arriving customer, who finds the buffer full, moves to an orbit. They can retry from there and inter-retrial times are exponentially distributed. The two models differ in the capacity of the buffer. The aim is to find the minimum value of total cost by varying different parameters and compare the efficiency of the models. The optimum value of α corresponding to minimum total cost is an important evaluation. Matrix analytic method is used to find an algorithmic solution to the problem. We also provide several numerical or graphical illustrations.
Krueger, Ute; Schimmelpfeng, Katja
2013-03-01
A sufficient staffing level in fire and rescue dispatch centers is crucial for saving lives. Therefore, it is important to estimate the expected workload properly. For this purpose, we analyzed whether a dispatch center can be considered as a call center. Current call center publications very often model call arrivals as a non-homogeneous Poisson process. This bases on the underlying assumption of the caller's independent decision to call or not to call. In case of an emergency, however, there are often calls from more than one person reporting the same incident and thus, these calls are not independent. Therefore, this paper focuses on the dependency of calls in a fire and rescue dispatch center. We analyzed and evaluated several distributions in this setting. Results are illustrated using real-world data collected from a typical German dispatch center in Cottbus ("Leitstelle Lausitz"). We identified the Pólya distribution as being superior to the Poisson distribution in describing the call arrival rate and the Weibull distribution to be more suitable than the exponential distribution for interarrival times and service times. However, the commonly used distributions offer acceptable approximations. This is important for estimating a sufficient staffing level in practice using, e.g., the Erlang-C model.
A note on some statistical properties of rise time parameters used in muon arrival time measurements
NASA Technical Reports Server (NTRS)
Vanderwalt, D. J.; Devilliers, E. J.
1985-01-01
Most investigations of the muon arrival time distribution in EAS during the past decade made use of parameters which can collectively be called rise time parameters. The rise time parameter T sub A/B is defined as the time taken for the integrated pulse from a detector to rise from A% to B% of its full amplitude. The use of these parameters are usually restricted to the determination of the radial dependence thereof. This radial dependence of the rise time parameters are usually taken as a signature of the particle interaction characteristics in the shower. As these parameters have a stochastic nature, it seems reasonable that one should also take notice of this aspect of the rise time parameters. A statistical approach to rise time parameters is presented.
NASA Astrophysics Data System (ADS)
Sun, W.; Dryer, M.; Fry, C. D.; Deehr, C. S.; Smith, Z.; Akasofu, S.-I.; Kartalev, M. D.; Grigorov, K. G.
2002-07-01
The Sun was extremely active during the "April Fool’s Day" epoch of 2001. We chose this period between a solar flare on 28 March 2001 to a final shock arrival at Earth on 21 April 2001. The activity consisted of two presumed helmet-streamer blowouts, seven M-class flares, and nine X-class flares, the last of which was behind the west limb. We have been experimenting since February 1997 with real-time, end-to-end forecasting of interplanetary coronal mass ejection (ICME) shock arrival times. Since August 1998, these forecasts have been distributed in real-time by e-mail to a list of interested scientists and operational USAF and NOAA forecasters. They are made using three different solar wind models. We describe here the solar events observed during the April Fool’s 2001 epoch, along with the predicted and actual shock arrival times, and the ex post facto correction to the real-time coronal shock speed observations. It appears that the initial estimates of coronal shock speeds from Type II radio burst observations and coronal mass ejections were too high by as much as 30%. We conclude that a 3-dimensional coronal density model should be developed for application to observations of solar flares and their Type II radio burst observations.
Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks
Lam, William H. K.; Li, Qingquan
2017-01-01
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks. PMID:29210978
Heterogeneous Data Fusion Method to Estimate Travel Time Distributions in Congested Road Networks.
Shi, Chaoyang; Chen, Bi Yu; Lam, William H K; Li, Qingquan
2017-12-06
Travel times in congested urban road networks are highly stochastic. Provision of travel time distribution information, including both mean and variance, can be very useful for travelers to make reliable path choice decisions to ensure higher probability of on-time arrival. To this end, a heterogeneous data fusion method is proposed to estimate travel time distributions by fusing heterogeneous data from point and interval detectors. In the proposed method, link travel time distributions are first estimated from point detector observations. The travel time distributions of links without point detectors are imputed based on their spatial correlations with links that have point detectors. The estimated link travel time distributions are then fused with path travel time distributions obtained from the interval detectors using Dempster-Shafer evidence theory. Based on fused path travel time distribution, an optimization technique is further introduced to update link travel time distributions and their spatial correlations. A case study was performed using real-world data from Hong Kong and showed that the proposed method obtained accurate and robust estimations of link and path travel time distributions in congested road networks.
Virtual Queue in a Centralized Database Environment
NASA Astrophysics Data System (ADS)
Kar, Amitava; Pal, Dibyendu Kumar
2010-10-01
Today is the era of the Internet. Every matter whether it be a gather of knowledge or planning a holiday or booking of ticket etc everything can be obtained from the internet. This paper intends to calculate the different queuing measures when some booking or purchase is done through the internet subject to the limitations in the number of tickets or seats. It involves a lot of database activities like read and write. This paper takes care of the time involved in the requests of a service, taken as arrival and the time involved in providing the required information, taken as service and thereby tries to calculate the distribution of arrival and service and the various measures of the queuing. This paper considers the database as centralized database for the sake of simplicity as the alternating concept of distributed database would rather complicate the calculation.
Five easy equations for patient flow through an emergency department.
Madsen, Thomas Lill; Kofoed-Enevoldsen, Allan
2011-10-01
Queue models are effective tools for framing management decisions and Danish hospitals could benefit from awareness of such models. Currently, as emergency departments (ED) are under reorganization, we deem it timely to empirically investigate the applicability of the standard "M/M/1" queue model in order to document its relevance. We compared actual versus theoretical distributions of hourly patient flow from 27,000 patient cases seen at Frederiksberg Hospital's ED. Formulating equations for arrivals and capacity, we wrote and tested a five equation simulation model. The Poisson distribution fitted arrivals with an hour-of-the-day specific parameter. Treatment times exceeding 15 minutes were well-described by an exponential distribution. The ED can be modelled as a black box with an hourly capacity that can be estimated either as admissions per hour when the ED operates full hilt Poisson distribution or from the linear dependency of waiting times on queue number. The results show that our ED capacity is surprisingly constant despite variations in staffing. These findings led to the formulation of a model giving a compact framework for assessing the behaviour of the ED under different assumptions about opening hours, capacity and workload. The M/M/1 almost perfectly fits our. Thus modeling and simulations have contributed to the management process. not relevant. not relevant.
Design Considerations for a New Terminal Area Arrival Scheduler
NASA Technical Reports Server (NTRS)
Thipphavong, Jane; Mulfinger, Daniel
2010-01-01
Design of a terminal area arrival scheduler depends on the interrelationship between throughput, delay and controller intervention. The main contribution of this paper is an analysis of the above interdependence for several stochastic behaviors of expected system performance distributions in the aircraft s time of arrival at the meter fix and runway. Results of this analysis serve to guide the scheduler design choices for key control variables. Two types of variables are analyzed, separation buffers and terminal delay margins. The choice for these decision variables was tested using sensitivity analysis. Analysis suggests that it is best to set the separation buffer at the meter fix to its minimum and adjust the runway buffer to attain the desired system performance. Delay margin was found to have the least effect. These results help characterize the variables most influential in the scheduling operations of terminal area arrivals.
High resolution distributed time-to-digital converter (TDC) in a White Rabbit network
NASA Astrophysics Data System (ADS)
Pan, Weibin; Gong, Guanghua; Du, Qiang; Li, Hongming; Li, Jianmin
2014-02-01
The Large High Altitude Air Shower Observatory (LHAASO) project consists of a complex detector array with over 6000 detector nodes spreading over 1.2 km2 areas. The arrival times of shower particles are captured by time-to-digital converters (TDCs) in the detectors' frontend electronics, the arrival direction of the high energy cosmic ray are then to be reconstructed from the space-time information of all detector nodes. To guarantee the angular resolution of 0.5°, a time synchronization of 500 ps (RMS) accuracy and 100 ps precision must be achieved among all TDC nodes. A technology enhancing Gigabit Ethernet, called the White Rabbit (WR), has shown the capability of delivering sub-nanosecond accuracy and picoseconds precision of synchronization over the standard data packet transfer. In this paper we demonstrate a distributed TDC prototype system combining the FPGA based TDC and the WR technology. With the time synchronization and data transfer services from a compact WR node, separate FPGA-TDC nodes can be combined to provide uniform time measurement information for correlated events. The design detail and test performance will be described in the paper.
Probabilistic SSME blades structural response under random pulse loading
NASA Technical Reports Server (NTRS)
Shiao, Michael; Rubinstein, Robert; Nagpal, Vinod K.
1987-01-01
The purpose is to develop models of random impacts on a Space Shuttle Main Engine (SSME) turbopump blade and to predict the probabilistic structural response of the blade to these impacts. The random loading is caused by the impact of debris. The probabilistic structural response is characterized by distribution functions for stress and displacements as functions of the loading parameters which determine the random pulse model. These parameters include pulse arrival, amplitude, and location. The analysis can be extended to predict level crossing rates. This requires knowledge of the joint distribution of the response and its derivative. The model of random impacts chosen allows the pulse arrivals, pulse amplitudes, and pulse locations to be random. Specifically, the pulse arrivals are assumed to be governed by a Poisson process, which is characterized by a mean arrival rate. The pulse intensity is modelled as a normally distributed random variable with a zero mean chosen independently at each arrival. The standard deviation of the distribution is a measure of pulse intensity. Several different models were used for the pulse locations. For example, three points near the blade tip were chosen at which pulses were allowed to arrive with equal probability. Again, the locations were chosen independently at each arrival. The structural response was analyzed both by direct Monte Carlo simulation and by a semi-analytical method.
Gover, Bradford N; Ryan, James G; Stinson, Michael R
2002-11-01
A measurement system has been developed that is capable of analyzing the directional and spatial variations in a reverberant sound field. A spherical, 32-element array of microphones is used to generate a narrow beam that is steered in 60 directions. Using an omnidirectional loudspeaker as excitation, the sound pressure arriving from each steering direction is measured as a function of time, in the form of pressure impulse responses. By subsequent analysis of these responses, the variation of arriving energy with direction is studied. The directional diffusion and directivity index of the arriving sound can be computed, as can the energy decay rate in each direction. An analysis of the 32 microphone responses themselves allows computation of the point-to-point variation of reverberation time and of sound pressure level, as well as the spatial cross-correlation coefficient, over the extent of the array. The system has been validated in simple sound fields in an anechoic chamber and in a reverberation chamber. The system characterizes these sound fields as expected, both quantitatively from the measures and qualitatively from plots of the arriving energy versus direction. It is anticipated that the system will be of value in evaluating the directional distribution of arriving energy and the degree and diffuseness of sound fields in rooms.
Markovian Queues with Arrival Dependence
1976-03-01
adding together the three balance equations for P 2o’ ^21’ "^22 as ^°ll°ws ’ 1 20 2 21 <W P21= XP10 + *2P22 H- ( ^ l^ 2 )p22 = Xp11 "lP20 +UlP21 +V22...REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORM 1 REPORT NUMBER 2 . GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (and...ADDITIONAL FACTS CONCERNING THE TRANSIENT DISTRIBUTION OF WAITING TIMES FOR ARRIVING CUSTOMERS 2 ? IV. THE TWO CHANNEL SERVER QUEUE WITH SINGLE
Statistical analysis of CCSN/SS7 traffic data from working CCS subnetworks
NASA Astrophysics Data System (ADS)
Duffy, Diane E.; McIntosh, Allen A.; Rosenstein, Mark; Willinger, Walter
1994-04-01
In this paper, we report on an ongoing statistical analysis of actual CCSN traffic data. The data consist of approximately 170 million signaling messages collected from a variety of different working CCS subnetworks. The key findings from our analysis concern: (1) the characteristics of both the telephone call arrival process and the signaling message arrival process; (2) the tail behavior of the call holding time distribution; and (3) the observed performance of the CCSN with respect to a variety of performance and reliability measurements.
Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach
NASA Astrophysics Data System (ADS)
Comolli, Alessandro; Dentz, Marco
2017-09-01
We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in heterogeneous natural and engineered porous materials. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
GLASS 2.0: An Operational, Multimodal, Bayesian Earthquake Data Association Engine
NASA Astrophysics Data System (ADS)
Benz, H.; Johnson, C. E.; Patton, J. M.; McMahon, N. D.; Earle, P. S.
2015-12-01
The legacy approach to automated detection and determination of hypocenters is arrival time stacking algorithms. Examples of such algorithms are the associator, Binder, which has been in continuous use in many USGS-supported regional seismic networks since the 1980s and the spherical earth successor, GLASS 1.0, currently in service at the USGS National Earthquake Information Center for over 10 years. The principle short-comings of the legacy approach are 1) it can only use phase arrival times, 2) it does not adequately address the problems of extreme variations in station density worldwide, 3) it cannot incorporate multiple phase models or statistical attributes of phases with distance, and 4) it cannot incorporate noise model attributes of individual stations. Previously we introduced a theoretical framework of a new associator using a Bayesian kernel stacking approach to approximate a joint probability density function for hypocenter localization. More recently we added station- and phase-specific Bayesian constraints to the association process. GLASS 2.0 incorporates a multiplicity of earthquake related data including phase arrival times, back-azimuth and slowness information from array beamforming, arrival times from waveform cross correlation processing, and geographic constraints from real-time social media reports of ground shaking. We demonstrate its application by modeling an aftershock sequence using dozens of stations that recorded tens of thousands of earthquakes over a period of one month. We also demonstrate Glass 2.0 performance regionally and teleseismically using the globally distributed real-time monitoring system at NEIC.
NASA Astrophysics Data System (ADS)
Soltani, S. S.; Cvetkovic, V.
2017-07-01
This focuses on solute discharge from boreal catchments with relatively shallow groundwater table and topography-driven groundwater flow. We explore whether a simplified semianalytical approach can be used for predictive modeling of the statistical distribution of tracer discharge. The approach is referred to as the "kinematic pathways approach" (KPA). This approach uses hydrological and tracer inputs and topographical and hydrogeological information; the latter regards average aquifer depth to the less permeable bedrock. A characteristic velocity of water flow through the catchment is further obtained from the overall water balance in the catchment. For the waterborne tracer transport through the catchment, morphological dispersion is accounted for by topographical analysis of the distribution of pathway lengths to the catchment outlet. Macrodispersion is accounted for heuristically by assuming an effective Péclet number. Distribution of water travel times through the catchment reflect the dispersion on both levels and are derived in both a forward mode (transit time from input to outlet) and a backward mode (water age when arriving at outlet arrival). The forward distribution of water travel times is further used for the tracer discharge modeling by convolution. The approach is applied to modeling of a 23 year long chloride data series for a specific catchment Kringlan (Sweden), and for generic modeling to better understand the dependence of the tracer discharge distribution on different dispersion aspects. The KPA is found to provide reasonable estimates of tracer discharge distribution, and particularly of extreme values, depending on method for determining the pathway length distribution. As a possible alternative analytical model of tracer transport through a catchment, the reservoir approach generally results in large tracer dispersion. This implies that tracer discharge distributions obtained from a mixed reservoir approach and from KPA are only compatible under large dispersion conditions.
Cardoso, Márcio Zikán
2010-01-01
While butterfly responses to climate change are well studied, detailed analyses of the seasonal dynamics of range expansion are few. Therefore, the seasonal range expansion of the butterfly Heliconius charithonia L. (Lepidoptera: Nymphalidae) was analyzed using a database of sightings and collection records dating from 1884 to 1992 from Texas. First and last sightings for each year were noted, and residency time calculated, for each collection locality. To test whether sighting dates were a consequence of distance from source (defined as the southernmost location of permanent residence), the distance between source and other locations was calculated. Additionally, consistent directional change over time of arrival dates was tested in a well-sampled area (San Antonio). Also, correlations between temperature, rainfall, and butterfly distribution were tested to determine whether butterfly sightings were influenced by climate. Both arrival date and residency interval were influenced by distance from source: butterflies arrived later and residency time was shorter at more distant locations. Butterfly occurrence was correlated with temperature but not rainfall. Residency time was also correlated with temperature but not rainfall. Since temperature follows a north-south gradient this may explain the inverse relationship between residency and distance from entry point. No long-term directional change in arrival dates was found in San Antonio. The biological meaning of these findings is discussed suggesting that naturalist notes can be a useful tool in reconstructing spatial dynamics. PMID:20672989
Energy Optimal Path Planning: Integrating Coastal Ocean Modelling with Optimal Control
NASA Astrophysics Data System (ADS)
Subramani, D. N.; Haley, P. J., Jr.; Lermusiaux, P. F. J.
2016-02-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. To set up the energy optimization, the relative vehicle speed and headings are considered to be stochastic, and new stochastic Dynamically Orthogonal (DO) level-set equations that govern their stochastic time-optimal reachability fronts are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. The accuracy and efficiency of the DO level-set equations for solving the governing stochastic level-set reachability fronts are quantitatively assessed, including comparisons with independent semi-analytical solutions. Energy-optimal missions are studied in wind-driven barotropic quasi-geostrophic double-gyre circulations, and in realistic data-assimilative re-analyses of multiscale coastal ocean flows. The latter re-analyses are obtained from multi-resolution 2-way nested primitive-equation simulations of tidal-to-mesoscale dynamics in the Middle Atlantic Bight and Shelbreak Front region. The effects of tidal currents, strong wind events, coastal jets, and shelfbreak fronts on the energy-optimal paths are illustrated and quantified. Results showcase the opportunities for longer-duration missions that intelligently utilize the ocean environment to save energy, rigorously integrating ocean forecasting with optimal control of autonomous vehicles.
A Fast-Time Simulation Environment for Airborne Merging and Spacing Research
NASA Technical Reports Server (NTRS)
Bussink, Frank J. L.; Doble, Nathan A.; Barmore, Bryan E.; Singer, Sharon
2005-01-01
As part of NASA's Distributed Air/Ground Traffic Management (DAG-TM) effort, NASA Langley Research Center is developing concepts and algorithms for merging multiple aircraft arrival streams and precisely spacing aircraft over the runway threshold. An airborne tool has been created for this purpose, called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR). To evaluate the performance of AMSTAR and complement human-in-the-loop experiments, a simulation environment has been developed that enables fast-time studies of AMSTAR operations. The environment is based on TMX, a multiple aircraft desktop simulation program created by the Netherlands National Aerospace Laboratory (NLR). This paper reviews the AMSTAR concept, discusses the integration of the AMSTAR algorithm into TMX and the enhancements added to TMX to support fast-time AMSTAR studies, and presents initial simulation results.
Time operators in stroboscopic wave-packet basis and the time scales in tunneling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bokes, P.
2011-03-15
We demonstrate that the time operator that measures the time of arrival of a quantum particle into a chosen state can be defined as a self-adjoint quantum-mechanical operator using periodic boundary conditions and applied to wave functions in energy representation. The time becomes quantized into discrete eigenvalues; and the eigenstates of the time operator, i.e., the stroboscopic wave packets introduced recently [Phys. Rev. Lett. 101, 046402 (2008)], form an orthogonal system of states. The formalism provides simple physical interpretation of the time-measurement process and direct construction of normalized, positive definite probability distribution for the quantized values of the arrival time.more » The average value of the time is equal to the phase time but in general depends on the choice of zero time eigenstate, whereas the uncertainty of the average is related to the traversal time and is independent of this choice. The general formalism is applied to a particle tunneling through a resonant tunneling barrier in one dimension.« less
Positioning performance analysis of the time sum of arrival algorithm with error features
NASA Astrophysics Data System (ADS)
Gong, Feng-xun; Ma, Yan-qiu
2018-03-01
The theoretical positioning accuracy of multilateration (MLAT) with the time difference of arrival (TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival (TSOA) algorithm from the root mean square error ( RMSE) and geometric dilution of precision (GDOP) in additive white Gaussian noise (AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.
Supplement to LA-UR-17-21218: Application to SSVD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tregillis, Ian Lee
We apply the formalism derived in LA-UR-17-21218 to the prescription for an RMI-based self-similar velocity distribution (SSVD) derived by Ham- merberg et al.. We compute analytically the true [mt(t)] and inferred [mi(t)] ejecta mass arriving at the piezoelectric sensor for several shots de- scribed in the literature and compare the results to the data. We nd that while the \\RMI + SSVD" prescription gives rise to decent estimates for the nal accumulated mass at the pin, the time-dependent accumulation rises too sharply and linearly to agree with data. We also compute the time-dependent pressure and voltage at the sensor, andmore » compare the latter to data. The pres- sure does not rise smoothly from zero, instead exhibiting a strong surge as the leading edge of the ejecta cloud arrives, which produces an initial sharp spike in the voltage trace, which is not observed. These inconsistencies result from a discontinuity in the prescribed self-similar velocity distribution at maximum relative velocity.« less
Probabilistic reasoning in data analysis.
Sirovich, Lawrence
2011-09-20
This Teaching Resource provides lecture notes, slides, and a student assignment for a lecture on probabilistic reasoning in the analysis of biological data. General probabilistic frameworks are introduced, and a number of standard probability distributions are described using simple intuitive ideas. Particular attention is focused on random arrivals that are independent of prior history (Markovian events), with an emphasis on waiting times, Poisson processes, and Poisson probability distributions. The use of these various probability distributions is applied to biomedical problems, including several classic experimental studies.
Study on the propagation properties of laser in aerosol based on Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Leng, Kun; Wu, Wenyuan; Zhang, Xi; Gong, Yanchun; Yang, Yuntao
2018-02-01
When laser propagate in the atmosphere, due to aerosol scattering and absorption, laser energy will continue to decline, affecting the effectiveness of the laser effect. Based on the Monte Carlo method, the relationship between the photon spatial energy distributions of the laser wavelengths of 10.6μm in marine, sand-type, water-soluble and soot aerosols ,and the propagation distance, visibility and the divergence angle were studied. The results show that for 10.6μm laser, the maximum number of attenuation of photons arriving at the receiving plane is sand-type aerosol, the minimal attenuation is water soluble aerosol; as the propagation distance increases, the number of photons arriving at the receiving plane decreases; as the visibility increases, the number of photons arriving at the receiving plane increases rapidly and then stabilizes; in the above cases, the photon energy distribution does not deviated from the Gaussian distribution; as the divergence angle increases, the number of photons arriving at the receiving plane is almost unchanged, but the photon energy distribution gradually deviates from the Gaussian distribution.
Time behavior of solar flare particles to 5 AU
NASA Technical Reports Server (NTRS)
Haffner, J. W.
1972-01-01
A simple model of solar flare radiation event particle transport is developed to permit the calculation of fluxes and related quantities as a function of distance from the sun (R). This model assumes the particles spiral around the solar magnetic field lines with a constant pitch angle. The particle angular distributions and onset plus arrival times as functions of energy at 1 AU agree with observations if the pitch angle distribution peaks near 90 deg. As a consequence the time dependence factor is essentially proportional to R/1.7, (R in AU), and the event flux is proportional to R/2.
Temporal Constraint Propagation for Airlift Planning Analysis
1989-12-01
STATIOU KMSP) (OFFLOAD-STATION EGUN ) (AVAILABLE-TIME COIO) (EARLIEST-ARRIVAL-TIME C012) (LATEST-ARRIVAL-TIME COlS) (PRIORITY 001) (BULK-CARGO 200...CODES NIL)) ($F (LOAD-DESIG!ATOR RI) (ONLOAD-STATION KLFI) (OFFLOAD-STATION EGUN ) (AVAILABLE-TIME COOO) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL...CATEGORY-CODES NIL)) ($F (LOAD-DESIGNATOR RIS) (ONLOAD-STATION KSBD) (OFFLOAD-STATION EGUN ) (AVAILABLE-TIME COO) (EARLIEST-ARRIVAL-TIME COOS) (LATEST
Generating Discrete Power-Law Distributions from a Death- Multiple Immigration Population Process
NASA Astrophysics Data System (ADS)
Matthews, J. O.; Jakeman, E.; Hopcraft, K. I.
2003-04-01
We consider the evolution of a simple population process governed by deaths and multiple immigrations that arrive with rates particular to their order. For a particular choice of rates, the equilibrium solution has a discrete power-law form. The model is a generalization of a process investigated previously where immigrants arrived in pairs [1]. The general properties of this model are discussed in a companion paper. The population is initiated with precisely M individuals present and evolves to an equilibrium distribution with a power-law tail. However the power-law tails of the equilibrium distribution are established immediately, so that moments and correlation properties of the population are undefined for any non-zero time. The technique we develop to characterize this process utilizes external monitoring that counts the emigrants leaving the population in specified time intervals. This counting distribution also possesses a power-law tail for all sampling times and the resulting time series exhibits two features worthy of note, a large variation in the strength of the signal, reflecting the power-law PDF; and secondly, intermittency of the emissions. We show that counting with a detector of finite dynamic range regularizes naturally the fluctuations, in effect `clipping' the events. All previously undefined characteristics such as the mean, autocorrelation and probabilities to the first event and time between events are well defined and derived. These properties, although obtained by discarding much data, nevertheless possess embedded power-law regimes that characterize the population in a way that is analogous to box averaging determination of fractal-dimension.
NASA Astrophysics Data System (ADS)
Kar, Leow Soo
2014-07-01
Two important factors that influence customer satisfaction in large supermarkets or hypermarkets are adequate parking facilities and short waiting times at the checkout counters. This paper describes the simulation analysis of a large supermarket to determine the optimal levels of these two factors. SAS Simulation Studio is used to model a large supermarket in a shopping mall with car park facility. In order to make the simulation model more realistic, a number of complexities are introduced into the model. For example, arrival patterns of customers vary with the time of the day (morning, afternoon and evening) and with the day of the week (weekdays or weekends), the transport mode of arriving customers (by car or other means), the mode of payment (cash or credit card), customer shopping pattern (leisurely, normal, exact) or choice of checkout counters (normal or express). In this study, we focus on 2 important components of the simulation model, namely the parking area, the normal and express checkout counters. The parking area is modeled using a Resource Pool block where one resource unit represents one parking bay. A customer arriving by car seizes a unit of the resource from the Pool block (parks car) and only releases it when he exits the system. Cars arriving when the Resource Pool is empty (no more parking bays) leave without entering the system. The normal and express checkouts are represented by Server blocks with appropriate service time distributions. As a case study, a supermarket in a shopping mall with a limited number of parking bays in Bangsar was chosen for this research. Empirical data on arrival patterns, arrival modes, payment modes, shopping patterns, service times of the checkout counters were collected and analyzed to validate the model. Sensitivity analysis was also performed with different simulation scenarios to identify the parameters for the optimal number the parking spaces and checkout counters.
Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization
NASA Astrophysics Data System (ADS)
Subramani, Deepak N.; Lermusiaux, Pierre F. J.
2016-04-01
A stochastic optimization methodology is formulated for computing energy-optimal paths from among time-optimal paths of autonomous vehicles navigating in a dynamic flow field. Based on partial differential equations, the methodology rigorously leverages the level-set equation that governs time-optimal reachability fronts for a given relative vehicle-speed function. To set up the energy optimization, the relative vehicle-speed and headings are considered to be stochastic and new stochastic Dynamically Orthogonal (DO) level-set equations are derived. Their solution provides the distribution of time-optimal reachability fronts and corresponding distribution of time-optimal paths. An optimization is then performed on the vehicle's energy-time joint distribution to select the energy-optimal paths for each arrival time, among all stochastic time-optimal paths for that arrival time. Numerical schemes to solve the reduced stochastic DO level-set equations are obtained, and accuracy and efficiency considerations are discussed. These reduced equations are first shown to be efficient at solving the governing stochastic level-sets, in part by comparisons with direct Monte Carlo simulations. To validate the methodology and illustrate its accuracy, comparisons with semi-analytical energy-optimal path solutions are then completed. In particular, we consider the energy-optimal crossing of a canonical steady front and set up its semi-analytical solution using a energy-time nested nonlinear double-optimization scheme. We then showcase the inner workings and nuances of the energy-optimal path planning, considering different mission scenarios. Finally, we study and discuss results of energy-optimal missions in a wind-driven barotropic quasi-geostrophic double-gyre ocean circulation.
A renewal jump-diffusion process with threshold dividend strategy
NASA Astrophysics Data System (ADS)
Li, Bo; Wu, Rong; Song, Min
2009-06-01
In this paper, we consider a jump-diffusion risk process with the threshold dividend strategy. Both the distributions of the inter-arrival times and the claims are assumed to be in the class of phase-type distributions. The expected discounted dividend function and the Laplace transform of the ruin time are discussed. Motivated by Asmussen [S. Asmussen, Stationary distributions for fluid flow models with or without Brownian noise, Stochastic Models 11 (1) (1995) 21-49], instead of studying the original process, we study the constructed fluid flow process and their closed-form formulas are obtained in terms of matrix expression. Finally, numerical results are provided to illustrate the computation.
Seismicity of the Bering Glacier Region: Inferences from Relocations Using Data from STEEP
NASA Astrophysics Data System (ADS)
Panessa, A. L.; Pavlis, G. L.; Hansen, R. A.; Ruppert, N.
2008-12-01
We relocated earthquakes recorded from 1990 to 2007 in the area of the Bering Glacier in southeastern Alaska to test a hypothesis that faults in this area are linked to glaciers. We used waveform correlation to improve arrival time measurements for data from all broadband channels including all the data from the STEEP experiment. We used a novel form of correlation based on interactive array processing of common receiver gathers linked to a three-dimensional grid of control points. This procedure produced 8556 gathers that we processed interactively to produce improved arrival time estimates. The interactive procedure allowed us to select which events in each gather were sufficiently similar to warrant correlation. Redundancy in the result was resolved in a secondary correlation that aligned event stacks of the same station-event pair associated with multiple control points. This procedure yielded only 2240 waveforms that correlated and modified only a total of 524 arrivals in a total database of 12263 arrivals. The correlation procedure changed arrival times on 145 of 509 events in this database. Events with arrivals constrained by correlation were not clustered but were randomly distributed throughout the study area. We used a version of the Progressive Multiple Event Location (PMEL) that analyzed data at each control point to invert for relative locations and a set of path anomalies for each control point. We applied the PMEL procedure with different velocity models and constraints and compared the results to a HypoDD solution produced from the original arrival time data. The relocations are all significant improvements from the standard single-event, catalog locations. The relocations suggest the seismicity in this region is mostly linked to fold and thrust deformation in the Yakatat block. There is a suggestion of a north-dipping trend to much of the seismicity, but the dominant trend is a fairly diffuse cloud of events largely confined to the Yakatat block south of the Bagley Icefield. This is consistent with the recently published tectonic model by Berger et al. (2008).
Laser plasma interaction at an early stage of laser ablation
NASA Astrophysics Data System (ADS)
Lu, Y. F.; Hong, M. H.; Low, T. S.
1999-03-01
Laser scattering and its interaction with plasma during KrF excimer laser ablation of silicon are investigated by ultrafast phototube detection. There are two peaks in an optical signal with the first peak attributed to laser scattering and the second one to plasma generation. For laser fluence above 5.8 J/cm2, the second peak rises earlier to overlap with the first one. The optical signal is fitted by a pulse distribution for the scattered laser light and a drifted Maxwell-Boltzmann distribution with a center-of-mass velocity for the plasma. Peak amplitude and its arrival time, full width at half maximum (FWHM), starting time, and termination time of the profiles are studied for different laser fluences and detection angles. Laser pulse is scattered from both the substrate and the plasma with the latter part as a dominant factor during the laser ablation. Peak amplitude of the scattered laser signal increases but its FWHM decreases with the laser fluence. Angular distribution of the peak amplitude can be fitted with cosn θ(n=4) while the detection angle has no obvious influence on the FWHM. In addition, FWHM and peak amplitude of plasma signal increase with the laser fluence. However, starting time and peak arrival time of plasma signal reduce with the laser fluence. The time interval between plasma starting and scattered laser pulse termination is proposed as a quantitative parameter to characterize laser plasma interaction. Threshold fluence for the interaction is estimated to be 3.5 J/cm2. For laser fluence above 12.6 J/cm2, the plasma and scattered laser pulse distributions tend to saturate.
Hardware design and implementation of fast DOA estimation method based on multicore DSP
NASA Astrophysics Data System (ADS)
Guo, Rui; Zhao, Yingxiao; Zhang, Yue; Lin, Qianqiang; Chen, Zengping
2016-10-01
In this paper, we present a high-speed real-time signal processing hardware platform based on multicore digital signal processor (DSP). The real-time signal processing platform shows several excellent characteristics including high performance computing, low power consumption, large-capacity data storage and high speed data transmission, which make it able to meet the constraint of real-time direction of arrival (DOA) estimation. To reduce the high computational complexity of DOA estimation algorithm, a novel real-valued MUSIC estimator is used. The algorithm is decomposed into several independent steps and the time consumption of each step is counted. Based on the statistics of the time consumption, we present a new parallel processing strategy to distribute the task of DOA estimation to different cores of the real-time signal processing hardware platform. Experimental results demonstrate that the high processing capability of the signal processing platform meets the constraint of real-time direction of arrival (DOA) estimation.
Improved modified energy ratio method using a multi-window approach for accurate arrival picking
NASA Astrophysics Data System (ADS)
Lee, Minho; Byun, Joongmoo; Kim, Dowan; Choi, Jihun; Kim, Myungsun
2017-04-01
To identify accurately the location of microseismic events generated during hydraulic fracture stimulation, it is necessary to detect the first break of the P- and S-wave arrival times recorded at multiple receivers. These microseismic data often contain high-amplitude noise, which makes it difficult to identify the P- and S-wave arrival times. The short-term-average to long-term-average (STA/LTA) and modified energy ratio (MER) methods are based on the differences in the energy densities of the noise and signal, and are widely used to identify the P-wave arrival times. The MER method yields more consistent results than the STA/LTA method for data with a low signal-to-noise (S/N) ratio. However, although the MER method shows good results regardless of the delay of the signal wavelet for signals with a high S/N ratio, it may yield poor results if the signal is contaminated by high-amplitude noise and does not have the minimum delay. Here we describe an improved MER (IMER) method, whereby we apply a multiple-windowing approach to overcome the limitations of the MER method. The IMER method contains calculations of an additional MER value using a third window (in addition to the original MER window), as well as the application of a moving average filter to each MER data point to eliminate high-frequency fluctuations in the original MER distributions. The resulting distribution makes it easier to apply thresholding. The proposed IMER method was applied to synthetic and real datasets with various S/N ratios and mixed-delay wavelets. The results show that the IMER method yields a high accuracy rate of around 80% within five sample errors for the synthetic datasets. Likewise, in the case of real datasets, 94.56% of the P-wave picking results obtained by the IMER method had a deviation of less than 0.5 ms (corresponding to 2 samples) from the manual picks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roussel-Dupre, R.; Symbalisty, E.; Fox, C.
2009-08-01
The location of a radiating source can be determined by time-tagging the arrival of the radiated signal at a network of spatially distributed sensors. The accuracy of this approach depends strongly on the particular time-tagging algorithm employed at each of the sensors. If different techniques are used across the network, then the time tags must be referenced to a common fiducial for maximum location accuracy. In this report we derive the time corrections needed to temporally align leading-edge, time-tagging techniques with peak-picking algorithms. We focus on broadband radio frequency (RF) sources, an ionospheric propagation channel, and narrowband receivers, but themore » final results can be generalized to apply to any source, propagation environment, and sensor. Our analytic results are checked against numerical simulations for a number of representative cases and agree with the specific leading-edge algorithm studied independently by Kim and Eng (1995) and Pongratz (2005 and 2007).« less
Bai, Jing; Yang, Wei; Wang, Song; Guan, Rui-Hong; Zhang, Hui; Fu, Jing-Jing; Wu, Wei; Yan, Kun
2016-07-01
The purpose of this study was to explore the diagnostic value of the arrival time difference between lesions and surrounding lung tissue on contrast-enhanced sonography of subpleural pulmonary lesions. A total of 110 patients with subpleural pulmonary lesions who underwent both conventional and contrast-enhanced sonography and had a definite diagnosis were enrolled. After contrast agent injection, the arrival times in the lesion, lung, and chest wall were recorded. The arrival time differences between various tissues were also calculated. Statistical analysis showed a significant difference in the lesion arrival time, the arrival time difference between the lesion and lung, and the arrival time difference between the chest wall and lesion (all P < .001) for benign and malignant lesions. Receiver operating characteristic curve analysis revealed that the optimal diagnostic criterion was the arrival time difference between the lesion and lung, and that the best cutoff point was 2.5 seconds (later arrival signified malignancy). This new diagnostic criterion showed superior diagnostic accuracy (97.1%) compared to conventional diagnostic criteria. The individualized diagnostic method based on an arrival time comparison using contrast-enhanced sonography had high diagnostic accuracy (97.1%) with good feasibility and could provide useful diagnostic information for subpleural pulmonary lesions.
Different amplitude and time distribution of the sound of light and classical music
NASA Astrophysics Data System (ADS)
Diodati, P.; Piazza, S.
2000-08-01
Several pieces of different musical kinds were studied measuring $N(A)$, the output amplitude of a peak detector driven by the electric signal arriving to the loudspeaker. Fixed a suitable threshold $\\bar{A}$, we considered $N(A)$, the number of times that $A(t)>\\bar{A}$, each of them we named event and $N(t)$, the distribution of times $t$ between two consecutive events. Some $N(A)$ and $N(t)$ distributions are displayed in the reported logarithmic plots, showing that jazz, pop, rock and other popular rhythms have noise-distribution, while classical pieces of music are characterized by more complex statistics. We pointed out the extraordinary case of the aria ``\\textit{La calunnia \\`{e} un venticello}'', where the words describe an avalanche or seismic process, calumny, and the rossinian music shows $N(A)$ and $N(t)$ distribution typical of earthquakes.
NASA Astrophysics Data System (ADS)
Ha, Tae-Jun; Sonar, Prashant; Singh, Samarendra Pratap; Dodabalapur, Ananth
2011-03-01
There have been reports of charge transport mechanisms in organic thin film transistors (OTFTs) focusing on steady-state characteristics but these measurements provide limited information. Time-resolved measurements can provide additional information in understanding transport mechanisms but existing reports have focused on unipolar organic characteristics. No previous reports on ambipolar organic devices have involved entire velocity distribution and charge transport mechanisms. Recently, we have fabricated ambipolar OTFTs based on a diketopyrrolopyrrole-benzothiadiazole copolymer (PDPP-TBT) with a field-effect mobility of more than 0.2 cm2 V- 1 s - 1 . Velocity distributions are measured by performing specialized dynamic measurements while keeping the RC-time constant of the measurement circuit small. This yields a distribution in arrival times of charge carriers from source to drain which can be converted to velocity distributions. We will also describe dynamic transport measurements on high-k-dielectric PDPP-TBT OTFTs.
A Perspective on Multiaccess Channels
1984-09-01
packets that arrived between T and T+ are transmitted. The parameter v is determined by all each transmitter based on the history of the feedback up to time...t. The transmitters also calculate T based on the feedback history . It is helpful to view the packet arrivals in ETt) as being in a distributed queue...Cambridge, MA. 4T TO. JC-N~g 4f aAviE. I -w l 2.1 WPr IfCI’YIL 2. ICA 6-- e NO.Yt4 Z/ ’) eqp~ ~ 46 5AZw’ I.q e L 1!x;Y :r/; YFv (1.~i 21 V4 Gf~~ .. 2 15 5.5
Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data
NASA Astrophysics Data System (ADS)
Ozdemir, H.; Sampson, C. C.; de Almeida, G. A. M.; Bates, P. D.
2013-10-01
This paper evaluates the results of benchmark testing a new inertial formulation of the St. Venant equations, implemented within the LISFLOOD-FP hydraulic model, using different high resolution terrestrial LiDAR data (10 cm, 50 cm and 1 m) and roughness conditions (distributed and composite) in an urban area. To examine these effects, the model is applied to a hypothetical flooding scenario in Alcester, UK, which experienced surface water flooding during summer 2007. The sensitivities of simulated water depth, extent, arrival time and velocity to grid resolutions and different roughness conditions are analysed. The results indicate that increasing the terrain resolution from 1 m to 10 cm significantly affects modelled water depth, extent, arrival time and velocity. This is because hydraulically relevant small scale topography that is accurately captured by the terrestrial LIDAR system, such as road cambers and street kerbs, is better represented on the higher resolution DEM. It is shown that altering surface friction values within a wide range has only a limited effect and is not sufficient to recover the results of the 10 cm simulation at 1 m resolution. Alternating between a uniform composite surface friction value (n = 0.013) or a variable distributed value based on land use has a greater effect on flow velocities and arrival times than on water depths and inundation extent. We conclude that the use of extra detail inherent in terrestrial laser scanning data compared to airborne sensors will be advantageous for urban flood modelling related to surface water, risk analysis and planning for Sustainable Urban Drainage Systems (SUDS) to attenuate flow.
Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data
NASA Astrophysics Data System (ADS)
Ozdemir, H.; Sampson, C. C.; de Almeida, G. A. M.; Bates, P. D.
2013-05-01
This paper evaluates the results of benchmark testing a new inertial formulation of the de St. Venant equations, implemented within the LISFLOOD-FP hydraulic model, using different high resolution terrestrial LiDAR data (10 cm, 50 cm and 1 m) and roughness conditions (distributed and composite) in an urban area. To examine these effects, the model is applied to a hypothetical flooding scenario in Alcester, UK, which experienced surface water flooding during summer 2007. The sensitivities of simulated water depth, extent, arrival time and velocity to grid resolutions and different roughness conditions are analysed. The results indicate that increasing the terrain resolution from 1 m to 10 cm significantly affects modelled water depth, extent, arrival time and velocity. This is because hydraulically relevant small scale topography that is accurately captured by the terrestrial LIDAR system, such as road cambers and street kerbs, is better represented on the higher resolution DEM. It is shown that altering surface friction values within a wide range has only a limited effect and is not sufficient to recover the results of the 10 cm simulation at 1 m resolution. Alternating between a uniform composite surface friction value (n = 0.013) or a variable distributed value based on land use has a greater effect on flow velocities and arrival times than on water depths and inundation extent. We conclude that the use of extra detail inherent in terrestrial laser scanning data compared to airborne sensors will be advantageous for urban flood modelling related to surface water, risk analysis and planning for Sustainable Urban Drainage Systems (SUDS) to attenuate flow.
A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank
2004-01-01
The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.
1991-06-10
essentially In the Wianer- Ville distribution ( WVD ). A preliminary analysis indicates that the simple operation of autoconvolution can enhance spectral...many troublesome cases as a supplement to MUSIC (and its adaptations) and as a simple alternative (or representation of) the Wigner - Ville ... WVD is a time-frequency distribution which provides an unbiased spectrum estimate by W(t,W) = f H,(u) X (t - u/2) X (t + u/2) e -iwu du , where the
Joint maximum-likelihood magnitudes of presumed underground nuclear test explosions
NASA Astrophysics Data System (ADS)
Peacock, Sheila; Douglas, Alan; Bowers, David
2017-08-01
Body-wave magnitudes (mb) of 606 seismic disturbances caused by presumed underground nuclear test explosions at specific test sites between 1964 and 1996 have been derived from station amplitudes collected by the International Seismological Centre (ISC), by a joint inversion for mb and station-specific magnitude corrections. A maximum-likelihood method was used to reduce the upward bias of network mean magnitudes caused by data censoring, where arrivals at stations that do not report arrivals are assumed to be hidden by the ambient noise at the time. Threshold noise levels at each station were derived from the ISC amplitudes using the method of Kelly and Lacoss, which fits to the observed magnitude-frequency distribution a Gutenberg-Richter exponential decay truncated at low magnitudes by an error function representing the low-magnitude threshold of the station. The joint maximum-likelihood inversion is applied to arrivals from the sites: Semipalatinsk (Kazakhstan) and Novaya Zemlya, former Soviet Union; Singer (Lop Nor), China; Mururoa and Fangataufa, French Polynesia; and Nevada, USA. At sites where eight or more arrivals could be used to derive magnitudes and station terms for 25 or more explosions (Nevada, Semipalatinsk and Mururoa), the resulting magnitudes and station terms were fixed and a second inversion carried out to derive magnitudes for additional explosions with three or more arrivals. 93 more magnitudes were thus derived. During processing for station thresholds, many stations were rejected for sparsity of data, obvious errors in reported amplitude, or great departure of the reported amplitude-frequency distribution from the expected left-truncated exponential decay. Abrupt changes in monthly mean amplitude at a station apparently coincide with changes in recording equipment and/or analysis method at the station.
1991-03-01
ocean acoustic tomography. A straightforward method of arrival time estimation, based on locating the maximum value of an interpolated arrival, was...used with limited success for analysis of data from the December 1988 Monterey Bay Tomography Experiment. Close examination of the data revealed multiple...estimation of arrival times along an ocean acoustic ray path is an important component of ocean acoustic tomography. A straightforward method of arrival time
The Drag-based Ensemble Model (DBEM) for Coronal Mass Ejection Propagation
NASA Astrophysics Data System (ADS)
Dumbović, Mateja; Čalogović, Jaša; Vršnak, Bojan; Temmer, Manuela; Mays, M. Leila; Veronig, Astrid; Piantschitsch, Isabell
2018-02-01
The drag-based model for heliospheric propagation of coronal mass ejections (CMEs) is a widely used analytical model that can predict CME arrival time and speed at a given heliospheric location. It is based on the assumption that the propagation of CMEs in interplanetary space is solely under the influence of magnetohydrodynamical drag, where CME propagation is determined based on CME initial properties as well as the properties of the ambient solar wind. We present an upgraded version, the drag-based ensemble model (DBEM), that covers ensemble modeling to produce a distribution of possible ICME arrival times and speeds. Multiple runs using uncertainty ranges for the input values can be performed in almost real-time, within a few minutes. This allows us to define the most likely ICME arrival times and speeds, quantify prediction uncertainties, and determine forecast confidence. The performance of the DBEM is evaluated and compared to that of ensemble WSA-ENLIL+Cone model (ENLIL) using the same sample of events. It is found that the mean error is ME = ‑9.7 hr, mean absolute error MAE = 14.3 hr, and root mean square error RMSE = 16.7 hr, which is somewhat higher than, but comparable to ENLIL errors (ME = ‑6.1 hr, MAE = 12.8 hr and RMSE = 14.4 hr). Overall, DBEM and ENLIL show a similar performance. Furthermore, we find that in both models fast CMEs are predicted to arrive earlier than observed, most likely owing to the physical limitations of models, but possibly also related to an overestimation of the CME initial speed for fast CMEs.
Model of aircraft passenger acceptance
NASA Technical Reports Server (NTRS)
Jacobson, I. D.
1978-01-01
A technique developed to evaluate the passenger response to a transportation system environment is described. Reactions to motion, noise, temperature, seating, ventilation, sudden jolts and descents are modeled. Statistics are presented for the age, sex, occupation, and income distributions of the candidates analyzed. Values are noted for the relative importance of system variables such as time savings, on-time arrival, convenience, comfort, safety, the ability to read and write, and onboard services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Abraham, K.; Ackermann, M.
The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10{sup 3} up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole ( ℓ ≤ 4) moments. However, highermore » multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.« less
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration
2016-08-01
The IceCube Neutrino Observatory accumulated a total of 318 billion cosmic-ray-induced muon events between 2009 May and 2015 May. This data set was used for a detailed analysis of the sidereal anisotropy in the arrival directions of cosmic rays in the TeV to PeV energy range. The observed global sidereal anisotropy features large regions of relative excess and deficit, with amplitudes of the order of 10-3 up to about 100 TeV. A decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments. However, higher multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100 TeV, a change in the morphology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5 PeV, the highest energies currently accessible to IceCube. No time dependence of the large- and small-scale structures is observed in the period of six years covered by this analysis. The high-statistics data set reveals more details of the properties of the anisotropy and is potentially able to shed light on the various physical processes that are responsible for the complex angular structure and energy evolution.
Ohta, Shoichi; Yoda, Ikushi; Takeda, Munekazu; Kuroshima, Satomi; Uchida, Kotaro; Kawai, Kentaro; Yukioka, Tetsuo
2015-02-01
Though many governmental and nongovernmental efforts for disaster prevention have been sought throughout Japan since the Great East Japan Earthquake on March 11, 2011, most of the preparation efforts for disasters have been based more on structural and conventionalized regulations than on scientific and objective grounds. Problem There has been a lack of scientific knowledge for space utilization for triage posts in disaster drill sessions. This report addresses how participants occupy and make use of the space within a triage post in terms of areas of use and occupied time. The trajectories of human movement by using Ubiquitous Stereo Vision (USV) cameras during two emergency drill sessions held in 2012 in a large commercial building have been measured. The USV cameras collect each participant's travel distance and the wait time before, during, and after undergoing triage. The correlation between the wait time and the space utilization of patients at a triage post has been analyzed. In the first session, there were some spaces not entirely used. This was caused largely by a patient who arrived earlier than others and lingered in the middle area, which caused the later arrivals to crowd the entrance area. On the other hand, in the second session, the area was used in a more evenly-distributed manner. This is mainly because the earlier arrivals were guided to the back space of the triage post (ie, the opposite side of the entrance), and the late arrivals were also guided to the front half, which was not occupied by anyone. As a result, the entire space was effectively utilized without crowding the entrance. This study has shown that this system could measure people's arrival times and the speed of their movements at the triage post, as well as where they are placed until they receive triage. Space utilization can be improved by efficiently planning and controlling the positioning of arriving patients. Based on the results, it has been suggested that for triage operation, it is necessary to efficiently plan and control the placement of patients in order to use strategically limited spatial resources.
NASA Astrophysics Data System (ADS)
Bidari, Pooya Sobhe; Alirezaie, Javad; Tavakkoli, Jahan
2017-03-01
This paper presents a method for modeling and simulation of shear wave generation from a nonlinear Acoustic Radiation Force Impulse (ARFI) that is considered as a distributed force applied at the focal region of a HIFU transducer radiating in nonlinear regime. The shear wave propagation is simulated by solving the Navier's equation from the distributed nonlinear ARFI as the source of the shear wave. Then, the Wigner-Ville Distribution (WVD) as a time-frequency analysis method is used to detect the shear wave at different local points in the region of interest. The WVD results in an estimation of the shear wave time of arrival, its mean frequency and local attenuation which can be utilized to estimate medium's shear modulus and shear viscosity using the Voigt model.
NASA Astrophysics Data System (ADS)
Lee, Wen-Chuan; Wu, Jong-Wuu; Tsou, Hsin-Hui; Lei, Chia-Ling
2012-10-01
This article considers that the number of defective units in an arrival order is a binominal random variable. We derive a modified mixture inventory model with backorders and lost sales, in which the order quantity and lead time are decision variables. In our studies, we also assume that the backorder rate is dependent on the length of lead time through the amount of shortages and let the backorder rate be a control variable. In addition, we assume that the lead time demand follows a mixture of normal distributions, and then relax the assumption about the form of the mixture of distribution functions of the lead time demand and apply the minimax distribution free procedure to solve the problem. Furthermore, we develop an algorithm procedure to obtain the optimal ordering strategy for each case. Finally, three numerical examples are also given to illustrate the results.
Acoustic time-of-flight for proton range verification in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Kevin C.; Avery, Stephen, E-mail: Stephen.A
2016-09-15
Purpose: Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Methods: Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10{sup 7} protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom,more » and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. Results: A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10{sup 7} protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%–90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone’s acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (−2.0, 0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = − 4.5 mm and standard deviation = 2.0 mm. Conclusions: Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beam’s position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.« less
Acoustic time-of-flight for proton range verification in water.
Jones, Kevin C; Vander Stappen, François; Sehgal, Chandra M; Avery, Stephen
2016-09-01
Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10(7) protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom, and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10(7) protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%-90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone's acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (-2.0, 0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = - 4.5 mm and standard deviation = 2.0 mm. Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beam's position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.
NASA Astrophysics Data System (ADS)
Kopka, Piotr; Wawrzynczak, Anna; Borysiewicz, Mieczyslaw
2016-11-01
In this paper the Bayesian methodology, known as Approximate Bayesian Computation (ABC), is applied to the problem of the atmospheric contamination source identification. The algorithm input data are on-line arriving concentrations of the released substance registered by the distributed sensors network. This paper presents the Sequential ABC algorithm in detail and tests its efficiency in estimation of probabilistic distributions of atmospheric release parameters of a mobile contamination source. The developed algorithms are tested using the data from Over-Land Atmospheric Diffusion (OLAD) field tracer experiment. The paper demonstrates estimation of seven parameters characterizing the contamination source, i.e.: contamination source starting position (x,y), the direction of the motion of the source (d), its velocity (v), release rate (q), start time of release (ts) and its duration (td). The online-arriving new concentrations dynamically update the probability distributions of search parameters. The atmospheric dispersion Second-order Closure Integrated PUFF (SCIPUFF) Model is used as the forward model to predict the concentrations at the sensors locations.
Zhang, Guicheng; Wang, Kui; Schultz, Ennee; Khoo, Siew-Kim; Zhang, Xiaopeng; Annamalay, Alicia; Laing, Ingrid A; Hales, Belinda J; Goldblatt, Jack; Le Souëf, Peter N
2016-01-01
Several human diseases and conditions are disproportionally distributed in the world with a significant "Western-developed" vs. "Eastern-developing" gradient. We compared genome-wide DNA methylation of peripheral blood mononuclear cells in 25 newly arrived Chinese immigrants living in a Western environment for less than 6 months ("Newly arrived") with 23 Chinese immigrants living in the Western environment for more than two years ("Long-term") with a mean of 8.7 years, using the Infinium HumanMethylation450 BeadChip. In a sub-group of both subject groups (n = 12 each) we also investigated genome-wide gene expression using a Human HT-12 v4 expression beadChip. There were 62.5% probes among the total number of 382,250 valid CpG sites with greater mean Beta (β) in "Long-term" than in "Newly arrived". In the regions of CpG islands and gene promoters, compared with the CpG sites in all other regions, lower percentages of CpG sites with mean methylation levels in "Long-term" greater than "Newly arrived" were observed, but still >50%. The increase of methylation was associated with a general decrease of gene expression in Chinese immigrants living in the Western environment for a longer period of time. After adjusting for age, gender and other confounding factors the findings remained. Chinese immigrants living in Australia for a longer period of time have increased overall genome methylation and decreased overall gene expression compared with newly arrived immigrants. © 2015 Wiley Periodicals, Inc.
Calculating shock arrival in expansion tubes and shock tunnels using Bayesian changepoint analysis
NASA Astrophysics Data System (ADS)
James, Christopher M.; Bourke, Emily J.; Gildfind, David E.
2018-06-01
To understand the flow conditions generated in expansion tubes and shock tunnels, shock speeds are generally calculated based on shock arrival times at high-frequency wall-mounted pressure transducers. These calculations require that the shock arrival times are obtained accurately. This can be non-trivial for expansion tubes especially because pressure rises may be small and shock speeds high. Inaccurate shock arrival times can be a significant source of uncertainty. To help address this problem, this paper investigates two separate but complimentary techniques. Principally, it proposes using a Bayesian changepoint detection method to automatically calculate shock arrival, potentially reducing error and simplifying the shock arrival finding process. To compliment this, a technique for filtering the raw data without losing the shock arrival time is also presented and investigated. To test the validity of the proposed techniques, tests are performed using both a theoretical step change with different levels of noise and real experimental data. It was found that with conditions added to ensure that a real shock arrival time was found, the Bayesian changepoint analysis method was able to automatically find the shock arrival time, even for noisy signals.
Guerrier, Claire; Holcman, David
2016-10-18
Binding of molecules, ions or proteins to small target sites is a generic step of cell activation. This process relies on rare stochastic events where a particle located in a large bulk has to find small and often hidden targets. We present here a hybrid discrete-continuum model that takes into account a stochastic regime governed by rare events and a continuous regime in the bulk. The rare discrete binding events are modeled by a Markov chain for the encounter of small targets by few Brownian particles, for which the arrival time is Poissonian. The large ensemble of particles is described by mass action laws. We use this novel model to predict the time distribution of vesicular release at neuronal synapses. Vesicular release is triggered by the binding of few calcium ions that can originate either from the synaptic bulk or from the entry through calcium channels. We report here that the distribution of release time is bimodal although it is triggered by a single fast action potential. While the first peak follows a stimulation, the second corresponds to the random arrival over much longer time of ions located in the synaptic terminal to small binding vesicular targets. To conclude, the present multiscale stochastic modeling approach allows studying cellular events based on integrating discrete molecular events over several time scales.
Collisional evolution - an analytical study for the nonsteady-state mass distribution
NASA Astrophysics Data System (ADS)
Martins, R. Vieira
1999-05-01
To study the collisional evolution of asteroidal groups we can use an analytical solutionfor the self-similar collision cascades. This solution is suitable to study the steady-state massdistribution of the collisional fragmentation. However, out of the steady-state conditions, thissolution is not satisfactory for some values of the collisional parameters. In fact, for some valuesfor the exponent of the mass distribution power law of an asteroidal group and its relation to theexponent of the function which describes how rocks break we arrive at singular points for theequation which describes the collisional evolution. These singularities appear since someapproximations are usually made in the laborious evaluation of many integrals that appear in theanalytical calculations. They concern the cutoff for the smallest and the largest bodies. Thesesingularities set some restrictions to the study of the analytical solution for the collisionalequation. To overcome these singularities we performed an algebraic computationconsidering the smallest and the largest bodies and we obtained the analytical expressions for theintegrals that describe the collisional evolution without restriction on the parameters. However,the new distribution is more sensitive to the values of the collisional parameters. In particular thesteady-state solution for the differential mass distribution has exponents slightly different from11⧸6 for the usual parameters in the Asteroid Belt. The sensitivity of this distribution with respectto the parameters is analyzed for the usual values in the asteroidal groups. With anexpression for the mass distribution without singularities, we can evaluate also its time evolution.We arrive at an analytical expression given by a power series of terms constituted by a smallparameter multiplied by the mass to an exponent, which depends on the initial power lawdistribution. This expression is a formal solution for the equation which describes the collisionalevolution. Furthermore, the first-order term for this solution is the time rate of the distribution atthe initial time. In particular the solution shows the fundamental importance played by theexponent of the power law initial condition in the evolution of the system.
Multiserver Queueing Model subject to Single Exponential Vacation
NASA Astrophysics Data System (ADS)
Vijayashree, K. V.; Janani, B.
2018-04-01
A multi-server queueing model subject to single exponential vacation is considered. The arrivals are allowed to join the queue according to a Poisson distribution and services takes place according to an exponential distribution. Whenever the system becomes empty, all the servers goes for a vacation and returns back after a fixed interval of time. The servers then starts providing service if there are waiting customers otherwise they will wait to complete the busy period. The vacation times are also assumed to be exponentially distributed. In this paper, the stationary and transient probabilities for the number of customers during ideal and functional state of the server are obtained explicitly. Also, numerical illustrations are added to visualize the effect of various parameters.
The mass spectral density in quantitative time-of-flight mass spectrometry of polymers
NASA Astrophysics Data System (ADS)
Tate, Ranjeet S.; Ebeling, Dan; Smith, Lloyd M.
2001-03-01
Time-of-flight mass spectrometry (TOF-MS) is being increasingly used for the study of polymers, for example to obtain the distribution of molecular masses for polymer samples. Serious efforts have also been underway to use TOF-MS for DNA sequencing. In TOF-MS the data is obtained in the form of a time-series that represents the distribution in arrival times of ions of various m/z ratios. This time-series data is then converted to a "mass-spectrum" via a coordinate transformation from the arrival time (t) to the corresponding mass-to-charge ratio (m/z = const. t^2). In this transformation, it is important to keep in mind that spectra are distributions, or densities of weight +1, and thus do not transform as functions. To obtain the mass-spectral density, it is necessary to include a multiplicative factor of √m/z. Common commercial instruments do not take this factor into account. Dropping this factor has no effect on qualitative analysis (detection) or local quantitative measurements, since S/N or signal-to-baseline ratios are unaffected for peaks with small dispersions. However, there are serious consequences for general quantitative analyses. In DNA sequencing applications, loss of signal intensity is in part attributed to multiple charging; however, since the √m/z factor is not taken into account, this conclusion is based on an overestimate (by a factor of √z) of the relative amount of the multiply charged species. In the study of polymers, the normalized dispersion is underestimated by approximately (M_w/Mn -1)/2. In terms of M_w/Mn itself, for example, a M_w/M_n=1.5 calculated without the √m factor corresponds in fact to a M_w/M_n=1.88.
41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?
Code of Federal Regulations, 2010 CFR
2010-07-01
... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...
41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?
Code of Federal Regulations, 2013 CFR
2013-07-01
... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...
41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?
Code of Federal Regulations, 2012 CFR
2012-07-01
... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...
41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?
Code of Federal Regulations, 2011 CFR
2011-07-01
... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...
41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?
Code of Federal Regulations, 2014 CFR
2014-07-01
... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...
NASA Astrophysics Data System (ADS)
Rao, Hanumantha; Kumar, Vasanta; Srinivasa Rao, T.; Srinivasa Kumar, B.
2018-04-01
In this paper, we examine a two-stage queueing system where the arrivals are Poisson with rate depends on the condition of the server to be specific: vacation, pre-service, operational or breakdown state. The service station is liable to breakdowns and deferral in repair because of non-accessibility of the repair facility. The service is in two basic stages, the first being bulk service to every one of the customers holding up on the line and the second stage is individual to each of them. The server works under N-policy. The server needs preliminary time (startup time) to begin batch service after a vacation period. Startup times, uninterrupted service times, the length of each vacation period, delay times and service times follows an exponential distribution. The closed form of expressions for the mean system size at different conditions of the server is determined. Numerical investigations are directed to concentrate the impact of the system parameters on the ideal limit N and the minimum base expected unit cost.
A preliminary analysis of quantifying computer security vulnerability data in "the wild"
NASA Astrophysics Data System (ADS)
Farris, Katheryn A.; McNamara, Sean R.; Goldstein, Adam; Cybenko, George
2016-05-01
A system of computers, networks and software has some level of vulnerability exposure that puts it at risk to criminal hackers. Presently, most vulnerability research uses data from software vendors, and the National Vulnerability Database (NVD). We propose an alternative path forward through grounding our analysis in data from the operational information security community, i.e. vulnerability data from "the wild". In this paper, we propose a vulnerability data parsing algorithm and an in-depth univariate and multivariate analysis of the vulnerability arrival and deletion process (also referred to as the vulnerability birth-death process). We find that vulnerability arrivals are best characterized by the log-normal distribution and vulnerability deletions are best characterized by the exponential distribution. These distributions can serve as prior probabilities for future Bayesian analysis. We also find that over 22% of the deleted vulnerability data have a rate of zero, and that the arrival vulnerability data is always greater than zero. Finally, we quantify and visualize the dependencies between vulnerability arrivals and deletions through a bivariate scatterplot and statistical observations.
Improving arrival time identification in transient elastography
NASA Astrophysics Data System (ADS)
Klein, Jens; McLaughlin, Joyce; Renzi, Daniel
2012-04-01
In this paper, we improve the first step in the arrival time algorithm used for shear wave speed recovery in transient elastography. In transient elastography, a shear wave is initiated at the boundary and the interior displacement of the propagating shear wave is imaged with an ultrasound ultra-fast imaging system. The first step in the arrival time algorithm finds the arrival times of the shear wave by cross correlating displacement time traces (the time history of the displacement at a single point) with a reference time trace located near the shear wave source. The second step finds the shear wave speed from the arrival times. In performing the first step, we observe that the wave pulse decorrelates as it travels through the medium, which leads to inaccurate estimates of the arrival times and ultimately to blurring and artifacts in the shear wave speed image. In particular, wave ‘spreading’ accounts for much of this decorrelation. Here we remove most of the decorrelation by allowing the reference wave pulse to spread during the cross correlation. This dramatically improves the images obtained from arrival time identification. We illustrate the improvement of this method on phantom and in vivo data obtained from the laboratory of Mathias Fink at ESPCI, Paris.
Assessing Multiple Methods for Determining Active Source Travel Times in a Dense Array
NASA Astrophysics Data System (ADS)
Parker, L.; Zeng, X.; Thurber, C. H.; Team, P.
2016-12-01
238 three-component nodal seismometers were deployed at the Brady Hot Springs geothermal field in Nevada to characterize changes in the subsurface as a result of changes in pumping conditions. The array consisted of a 500 meter by 1600 meter irregular grid with 50 meter spacing centered in an approximately rectangular 1200 meter by 1600 meter grid with 200 meter spacing. A large vibroseis truck (T-Rex) was deployed as an active seismic source at 216 locations. Over the course of 15 days, the truck occupied each location up to four times. At each location a swept-frequency source between 5 and 80 Hz over 20 seconds was produced using three vibration modes: longitudinal S-wave, transverse S-wave, and P-wave. Seismic wave arrivals were identified using three methods: cross-correlation, deconvolution, and Wigner-Ville distribution (WVD) plus the Hough Transform (HT). Surface wave arrivals were clear for all three modes of vibration using all three methods. Preliminary tomographic models will be presented, using the arrivals of the identified phases. This analysis is part of the PoroTomo project: Poroelastic Tomography by Adjoint Inverse Modeling of Data from Seismology, Geodesy, and Hydrology; http://geoscience.wisc.edu/feigl/porotomo.
Distributed Decision Making in a Dynamic Network Environment
1990-01-01
protocols, particularly when traffic arrival statistics are varying or unknown, and loads are high. Both nonpreemptive and preemptive repeat disciplines are...The simulation model allows general value functions, continuous time operation, and preemptive or nonpreemptive service. For reasons of tractability... nonpreemptive LIFO, (4) nonpreemptive LIFO with discarding, (5) nonpreemptive HOL, (6) nonpreemp- tive HOL with discarding, (7) preemptive repeat HOL, (8
Sensitivity of EAS measurements to the energy spectrum of muons
NASA Astrophysics Data System (ADS)
Espadanal, J.; Cazon, L.; Conceição, R.
2017-01-01
We have studied how the energy spectrum of muons at production affects some of the most common measurements related to muons in extensive air shower studies, namely, the number of muons at the ground, the slope of the lateral distribution of muons, the apparent muon production depth, and the arrival time delay of muons at ground. We found that by changing the energy spectrum by an amount consistent with the difference between current models (namely EPOS-LHC and QGSJET-II.04), the muon surface density at ground increases 5% at 20° zenith angle and 17% at 60° zenith angle. This effect introduces a zenith angle dependence on the reconstructed number of muons which might be experimentally observed. The maximum of the muon production depth distribution at 40° increases ∼ 10 g/cm2 and ∼ 0 g/cm2 at 60°, which, from pure geometrical considerations, increases the arrival time delay of muons. There is an extra contribution to the delay due to the subluminal velocities of muons of the order of ∼ 3 ns at all zenith angles. Finally, changes introduced in the logarithmic slope of the lateral density function are less than 2%.
NASA Astrophysics Data System (ADS)
Tang, Tie-Qiao; Wang, Tao; Chen, Liang; Huang, Hai-Jun
2018-01-01
In this paper, we introduce the fuel cost into each commuter's trip cost, define a new trip cost without late arrival and its corresponding equilibrium state, and use a car-following model to explore the impacts of the fuel cost on each commuter's departure time, departure interval, arrival time, arrival interval, traveling time, early arrival time and trip cost at the above equilibrium state. The numerical results show that considering the fuel cost in each commuter's trip cost has positive impacts on his trip cost and fuel cost, and the traffic situation in the system without late arrival, i.e., each commuter should explicitly consider the fuel cost in his trip cost.
Mori, J.
1991-01-01
Event record sections, which are constructed by plotting seismograms from many closely spaced earthquakes recorded on a few stations, show multiple free-surface reflections (PP, PPP, PPPP) of the P wave in the Imperial Valley. The relative timing of these arrivals is used to estimate the strength of the P-wave velocity gradient within the upper 5 km of the sediment layer. Consistent with previous studies, a velocity model with a value of 1.8 km/sec at the surface increasing linearly to 5.8 km/sec at a depth of 5.5 km fits the data well. The relative amplitudes of the P and PP arrivals are used to estimate the source depth for the aftershock distributions of the Elmore Ranch and Superstition Hills main shocks. Although the depth determination has large uncertainties, both the Elmore Ranch and Superstition Hills aftershock sequencs appear to have similar depth distribution in the range of 4 to 10 km. -Author
Automatic pickup of arrival time of channel wave based on multi-channel constraints
NASA Astrophysics Data System (ADS)
Wang, Bao-Li
2018-03-01
Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.
NASA Astrophysics Data System (ADS)
Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.
2012-12-01
We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and DWSA arrivals. We also use an eigenvalue decomposition to determine the direction of the incoming wave field, and to measure the arrival azimuths. This work is supported by the USGS Earthquake Hazards Program under grant numbers G11AP20027 and G11AP20028.
Testing hypotheses on distribution shifts and changes in phenology of imperfectly detectable species
Chambert, Thierry A.; Kendall, William L.; Hines, James E.; Nichols, James D.; Pedrini, Paolo; Waddle, J. Hardin; Tavecchia, Giacomo; Walls, Susan C.; Tenan, Simone
2015-01-01
With ongoing climate change, many species are expected to shift their spatial and temporal distributions. To document changes in species distribution and phenology, detection/non-detection data have proven very useful. Occupancy models provide a robust way to analyse such data, but inference is usually focused on species spatial distribution, not phenology.We present a multi-season extension of the staggered-entry occupancy model of Kendall et al. (2013, Ecology, 94, 610), which permits inference about the within-season patterns of species arrival and departure at sampling sites. The new model presented here allows investigation of species phenology and spatial distribution across years, as well as site extinction/colonization dynamics.We illustrate the model with two data sets on European migratory passerines and one data set on North American treefrogs. We show how to derive several additional phenological parameters, such as annual mean arrival and departure dates, from estimated arrival and departure probabilities.Given the extent of detection/non-detection data that are available, we believe that this modelling approach will prove very useful to further understand and predict species responses to climate change.
Infinite capacity multi-server queue with second optional service channel
NASA Astrophysics Data System (ADS)
Ke, Jau-Chuan; Wu, Chia-Huang; Pearn, Wen Lea
2013-02-01
This paper deals with an infinite-capacity multi-server queueing system with a second optional service (SOS) channel. The inter-arrival times of arriving customers, the service times of the first essential service (FES) and the SOS channel are all exponentially distributed. A customer may leave the system after the FES channel with probability (1-θ), or at the completion of the FES may immediately require a SOS with probability θ (0 <= θ <= 1). The formulae for computing the rate matrix and stationary probabilities are derived by means of a matrix analytical approach. A cost model is developed to determine the optimal values of the number of servers and the two service rates, simultaneously, at the minimal total expected cost per unit time. Quasi-Newton method are employed to deal with the optimization problem. Under optimal operating conditions, numerical results are provided in which several system performance measures are calculated based on assumed numerical values of the system parameters.
NASA Astrophysics Data System (ADS)
Meier, M.; Cua, G. B.; Wiemer, S.; Fischer, M.
2011-12-01
The Virtual Seismologist (VS) method is a Bayesian approach to regional network-based earthquake early warning (EEW) that uses observed phase arrivals, ground motion amplitudes and selected prior information to estimate earthquake magnitude, location and origin time, and predict the distribution of peak ground motion throughout a region using envelope attenuation relationships. Implementation of the VS algorithm in California is an on-going effort of the Swiss Seismological Service (SED) at ETH Zürich. VS is one of three EEW algorithms - the other two being ElarmS (Allen and Kanamori, 2003) and On-Site (Wu and Kanamori, 2005; Boese et al., 2008) - that form the basis of the California Integrated Seismic Network ShakeAlert system, a prototype end-to-end EEW system that could potentially be implemented in California. The current prototype version of VS in California requires picks at 4 stations to initiate an event declaration. On average, taking into account data latency, variable station distribution, and processing time, this initial estimate is available about 20 seconds after the earthquake origin time, corresponding to a blind zone of about 70 km around the epicenter which would receive no warning, but where it would be the most useful. To increase the available warning time, we want to produce EEW estimates faster (with less than 4 stations). However, working with less than 4 stations with our current approach would increase the number of false alerts, for which there is very little tolerance in a useful EEW system. We explore the use of back-azimuth estimations and the Voronoi-based concept of not-yet-arrived data for reducing false alerts of the earliest VS estimates. The concept of not-yet-arrived data was originally used to provide evolutionary location estimates in EEW (Horiuchi, 2005; Cua and Heaton, 2007; Satriano et al. 2008). However, it can also be applied in discriminating between earthquake and non-earthquake signals. For real earthquakes, the constraints on earthquake location from the not-yet-arrived data and the back-azimuth estimations are consistent with location constraints from the available picks. For non-earthquake signals, these different location constraints are in most cases inconsistent. We use archived event data from the Northern and Southern California Seismic Networks as well as archived continuous waveform data from where the current VS codes erroneously declared events to quantify how using a combination of pick-based and not-yet-arrived data constraints can reduce VS false alert rates while providing faster warning information. The consistency of the pick-based and not-yet-arrived data constraints are mapped into the VS likelihood parameter, which reflects the degree of believe that the signals come from a real earthquake. This approach contributes towards improving the robustness of the Virtual Seismologist Multiple Threshold Event Detection (VS-MTED), which allows for single-station event declarations, when signal amplitudes are large enough.
Results on three predictions for July 2012 federal elections in Mexico based on past regularities.
Hernández-Saldaña, H
2013-01-01
The Presidential Election in Mexico of July 2012 has been the third time that PREP, Previous Electoral Results Program works. PREP gives voting outcomes based in electoral certificates of each polling station that arrive to capture centers. In previous ones, some statistical regularities had been observed, three of them were selected to make predictions and were published in arXiv:1207.0078 [physics.soc-ph]. Using the database made public in July 2012, two of the predictions were completely fulfilled, while, the third one was measured and confirmed using the database obtained upon request to the electoral authorities. The first two predictions confirmed by actual measures are: (ii) The Partido Revolucionario Institucional, PRI, is a sprinter and has a better performance in polling stations arriving late to capture centers during the process. (iii) Distribution of vote of this party is well described by a smooth function named a Daisy model. A Gamma distribution, but compatible with a Daisy model, fits the distribution as well. The third prediction confirms that errare humanum est, since the error distributions of all the self-consistency variables appeared as a central power law with lateral lobes as in 2000 and 2006 electoral processes. The three measured regularities appeared no matter the political environment.
Results on Three Predictions for July 2012 Federal Elections in Mexico Based on Past Regularities
Hernández-Saldaña, H.
2013-01-01
The Presidential Election in Mexico of July 2012 has been the third time that PREP, Previous Electoral Results Program works. PREP gives voting outcomes based in electoral certificates of each polling station that arrive to capture centers. In previous ones, some statistical regularities had been observed, three of them were selected to make predictions and were published in arXiv:1207.0078 [physics.soc-ph]. Using the database made public in July 2012, two of the predictions were completely fulfilled, while, the third one was measured and confirmed using the database obtained upon request to the electoral authorities. The first two predictions confirmed by actual measures are: (ii) The Partido Revolucionario Institucional, PRI, is a sprinter and has a better performance in polling stations arriving late to capture centers during the process. (iii) Distribution of vote of this party is well described by a smooth function named a Daisy model. A Gamma distribution, but compatible with a Daisy model, fits the distribution as well. The third prediction confirms that errare humanum est, since the error distributions of all the self-consistency variables appeared as a central power law with lateral lobes as in 2000 and 2006 electoral processes. The three measured regularities appeared no matter the political environment. PMID:24386103
Priority queues with bursty arrivals of incoming tasks
NASA Astrophysics Data System (ADS)
Masuda, N.; Kim, J. S.; Kahng, B.
2009-03-01
Recently increased accessibility of large-scale digital records enables one to monitor human activities such as the interevent time distributions between two consecutive visits to a web portal by a single user, two consecutive emails sent out by a user, two consecutive library loans made by a single individual, etc. Interestingly, those distributions exhibit a universal behavior, D(τ)˜τ-δ , where τ is the interevent time, and δ≃1 or 3/2 . The universal behaviors have been modeled via the waiting-time distribution of a task in the queue operating based on priority; the waiting time follows a power-law distribution Pw(τ)˜τ-α with either α=1 or 3/2 depending on the detail of queuing dynamics. In these models, the number of incoming tasks in a unit time interval has been assumed to follow a Poisson-type distribution. For an email system, however, the number of emails delivered to a mail box in a unit time we measured follows a power-law distribution with general exponent γ . For this case, we obtain analytically the exponent α , which is not necessarily 1 or 3/2 and takes nonuniversal values depending on γ . We develop the generating function formalism to obtain the exponent α , which is distinct from the continuous time approximation used in the previous studies.
Weblog patterns and human dynamics with decreasing interest
NASA Astrophysics Data System (ADS)
Guo, J.-L.; Fan, C.; Guo, Z.-H.
2011-06-01
In order to describe the phenomenon that people's interest in doing something always keep high in the beginning while gradually decreases until reaching the balance, a model which describes the attenuation of interest is proposed to reflect the fact that people's interest becomes more stable after a long time. We give a rigorous analysis on this model by non-homogeneous Poisson processes. Our analysis indicates that the interval distribution of arrival-time is a mixed distribution with exponential and power-law feature, which is a power law with an exponential cutoff. After that, we collect blogs in ScienceNet.cn and carry on empirical study on the interarrival time distribution. The empirical results agree well with the theoretical analysis, obeying a special power law with the exponential cutoff, that is, a special kind of Gamma distribution. These empirical results verify the model by providing an evidence for a new class of phenomena in human dynamics. It can be concluded that besides power-law distributions, there are other distributions in human dynamics. These findings demonstrate the variety of human behavior dynamics.
Carbon isotope turnover as a measure of arrival time in migratory birds
Oppel, Steffen; Powell, Abby N.
2009-01-01
Arrival time on breeding or non-breeding areas is of interest in many ecological studies exploring fitness consequences of migratory schedules. However, in most field studies, it is difficult to precisely assess arrival time of individuals. Here, we use carbon isotope turnover in avian blood as a technique to estimate arrival time for birds switching from one habitat or environment to another. Stable carbon isotope ratios (δ13C) in blood assimilate to a new equilibrium following a diet switch according to an exponential decay function. This relationship can be used to determine the time a diet switch occurred if δ13C of both the old and new diet are known. We used published data of captive birds to validate that this approach provides reliable estimates of the time since a diet switch within 1–3 weeks after the diet switch. We then explored the utility of this technique for King Eiders (Somateria spectabilis) arriving on terrestrial breeding grounds after wintering and migration at sea. We estimated arrival time on breeding grounds in northern Alaska (95% CI) from red blood cell δ13C turnover to be 4–9 June. This estimate overlapped with arrival time of birds from the same study site tracked with satellite transmitters (5–12 June). Therefore, we conclude that this method provides a simple yet reliable way to assess arrival time of birds moving between isotopically distinct environments.
McDermott, Molly E; DeGroote, Lucas W
2017-01-01
Advanced timing of both seasonal migration and reproduction in birds has been strongly associated with a warming climate for many bird species. Phenological responses to climate linking these stages may ultimately impact fitness. We analyzed five decades of banding data from 17 migratory bird species to investigate 1) how spring arrival related to timing of breeding, 2) if the interval between arrival and breeding has changed with increasing spring temperatures, and 3) whether arrival timing or breeding timing best predicted local productivity. Four of 17 species, all mid- to long-distance migrants, hatched young earlier in years when migrants arrived earlier to the breeding grounds (~1:1 day advancement). The interval between arrival on breeding grounds and appearance of juveniles shortened with warmer spring temperatures for 12 species (1-6 days for every 1°C increase) and over time for seven species (1-8 days per decade), suggesting that some migratory passerines adapt to climate change by laying more quickly after arrival or reducing the time from laying to fledging. We found more support for the former, that the rate of reproductive advancement was higher than that for arrival in warm years. Timing of spring arrival and breeding were both poor predictors of avian productivity for most migrants analyzed. Nevertheless, we found evidence that fitness benefits may occur from shifts to earlier spring arrival for the multi-brooded Song Sparrow. Our results uniquely demonstrate that co-occurring avian species are phenologically plastic in their response to climate change on their breeding grounds. If migrants continue to show a weaker response to temperatures during migration than breeding, and the window between arrival and optimal breeding shortens further, biological constraints to plasticity may limit the ability of species to adapt successfully to future warming.
Aab, Alexander
2015-03-30
In this study, we present the results of an analysis of the large angular scale distribution of the arrival directions of cosmic rays with energy above 4 EeV detected at the Pierre Auger Observatory including for the first time events with zenith angle between 60° and 80°. We perform two Rayleigh analyses, one in the right ascension and one in the azimuth angle distributions, that are sensitive to modulations in right ascension and declination, respectively. The largest departure from isotropy appears in themore » $$E\\gt 8$$ EeV energy bin, with an amplitude for the first harmonic in right ascension $$r_{1}^{\\alpha }=(4.4\\pm 1.0)\\times {{10}^{-2}}$$, that has a chance probability $$P(\\geqslant r_{1}^{\\alpha })=6.4\\times {{10}^{-5}}$$, reinforcing the hint previously reported with vertical events alone.« less
Method and device for landing aircraft dependent on runway occupancy time
NASA Technical Reports Server (NTRS)
Ghalebsaz Jeddi, Babak (Inventor)
2012-01-01
A technique for landing aircraft using an aircraft landing accident avoidance device is disclosed. The technique includes determining at least two probability distribution functions; determining a safe lower limit on a separation between a lead aircraft and a trail aircraft on a glide slope to the runway; determining a maximum sustainable safe attempt-to-land rate on the runway based on the safe lower limit and the probability distribution functions; directing the trail aircraft to enter the glide slope with a target separation from the lead aircraft corresponding to the maximum sustainable safe attempt-to-land rate; while the trail aircraft is in the glide slope, determining an actual separation between the lead aircraft and the trail aircraft; and directing the trail aircraft to execute a go-around maneuver if the actual separation approaches the safe lower limit. Probability distribution functions include runway occupancy time, and landing time interval and/or inter-arrival distance.
Universal bursty behavior in the air transportation system.
Ito, Hidetaka; Nishinari, Katsuhiro
2015-12-01
Social activities display bursty behavior characterized by heavy-tailed interevent time distributions. We examine the bursty behavior of airplanes' arrivals in hub airports. The analysis indicates that the air transportation system universally follows a power-law interarrival time distribution with an exponent α=2.5 and an exponential cutoff. Moreover, we investigate the mechanism of this bursty behavior by introducing a simple model to describe it. In addition, we compare the extent of the hub-and-spoke structure and the burstiness of various airline networks in the system. Remarkably, the results suggest that the hub-and-spoke network of the system and the carriers' strategy to facilitate transit are the origins of this universality.
On buffer overflow duration in a finite-capacity queueing system with multiple vacation policy
NASA Astrophysics Data System (ADS)
Kempa, Wojciech M.
2017-12-01
A finite-buffer queueing system with Poisson arrivals and generally distributed processing times, operating under multiple vacation policy, is considered. Each time when the system becomes empty, the service station takes successive independent and identically distributed vacation periods, until, at the completion epoch of one of them, at least one job waiting for service is detected in the buffer. Applying analytical approach based on the idea of embedded Markov chain, integral equations and linear algebra, the compact-form representation for the cumulative distribution function (CDF for short) of the first buffer overflow duration is found. Hence, the formula for the CDF of next such periods is obtained. Moreover, probability distributions of the number of job losses in successive buffer overflow periods are found. The considered queueing system can be efficienly applied in modelling energy saving mechanisms in wireless network communication.
Updated Tomographic Seismic Imaging at Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Okubo, P.; Johnson, J.; Felts, E. S.; Flores, N.
2013-12-01
Improved and more detailed geophysical, geological, and geochemical observations and measurements at Kilauea, along with prolonged eruptions at its summit caldera and east rift zone, are encouraging more ambitious interpretation and modeling of volcanic processes over a range of temporal and spatial scales. We are updating three-dimensional models of seismic wave-speed distributions within Kilauea using local earthquake arrival time tomography to support waveform-based modeling of seismic source mechanisms. We start from a tomographic model derived from a combination of permanent seismic stations comprising the Hawaiian Volcano Observatory (HVO) seismographic network and a dense deployment of temporary stations in the Kilauea caldera region in 1996. Using P- and S-wave arrival times measured from the HVO network for local earthquakes from 1997 through 2012, we compute velocity models with the finite difference tomographic seismic imaging technique implemented by Benz and others (1996), and applied to numerous volcanoes including Kilauea. Particular impetus to our current modeling was derived from a focused effort to review seismicity occurring in Kilauea's summit caldera and adjoining regions in 2012. Our results reveal clear P-wave low-velocity features at and slightly below sea level beneath Kilauea's summit caldera, lying between Halemaumau Crater and the north-facing scarps that mark the southern caldera boundary. The results are also suggestive of changes in seismic velocity distributions between 1996 and 2012. One example of such a change is an apparent decrease in the size and southeastward extent, compared to the earlier model, of the low VP feature imaged with the more recent data. However, we recognize the distinct possibility that these changes are reflective of differences in earthquake and seismic station distributions in the respective datasets, and we need to further populate the more recent HVO seismicity catalogs to possibly address this concern. We also look forward to more complete implementation at HVO of seismic imaging techniques that use ambient seismic noise retrieved from continuous seismic recordings, and to using earthquake arrival times and ambient seismic noise jointly to tomographically image Kilauea.
Parametric adaptive filtering and data validation in the bar GW detector AURIGA
NASA Astrophysics Data System (ADS)
Ortolan, A.; Baggio, L.; Cerdonio, M.; Prodi, G. A.; Vedovato, G.; Vitale, S.
2002-04-01
We report on our experience gained in the signal processing of the resonant GW detector AURIGA. Signal amplitude and arrival time are estimated by means of a matched-adaptive Wiener filter. The detector noise, entering in the filter set-up, is modelled as a parametric ARMA process; to account for slow non-stationarity of the noise, the ARMA parameters are estimated on an hourly basis. A requirement of the set-up of an unbiased Wiener filter is the separation of time spans with 'almost Gaussian' noise from non-Gaussian and/or strongly non-stationary time spans. The separation algorithm consists basically of a variance estimate with the Chauvenet convergence method and a threshold on the Curtosis index. The subsequent validation of data is strictly connected with the separation procedure: in fact, by injecting a large number of artificial GW signals into the 'almost Gaussian' part of the AURIGA data stream, we have demonstrated that the effective probability distributions of the signal-to-noise ratio χ2 and the time of arrival are those that are expected.
Social factors influencing hospital arrival time in acute ischemic stroke patients.
Iosif, Christina; Papathanasiou, Mathilda; Staboulis, Eleftherios; Gouliamos, Athanasios
2012-04-01
This is a multi-center, hospital-based study aiming to estimate social factors influencing pre-hospital times of arrival in acute ischemic stroke, with a perspective of finding ways to reduce arrival time and to augment the number of patients eligible for intra-arterial thrombolysis. Acute ischemic stroke patients who presented at the emergency units of four major general public hospitals were registered. We assessed information concerning demographics, time of presentation, clinical situation, imaging, treatment, and socioeconomic factors. The sample was divided in two sub-samples, based on the time of arrival since onset of symptoms, and was statistically analyzed. During one calendar year (2005), 907 patients were registered. Among them 34.6% arrived in the first 6 h from symptom onset, 38.7% arrived between 6 and 24 h, 18.1% after 24 h and for 8.6% the time of onset was unknown. Younger age (P = 0.007), transfer with ambulatory service (Ρ = 0.002), living with a mate (Ρ = 0.004), and higher educational level (P < 0.005) were factors which correlated significantly with early arrival at the hospital. Instructing patients at high risk for stroke to live with a housemate appears beneficial for timely arrival at the hospital. The establishment of dedicated acute stroke call and transportation center should improve the percentage of early arrival. A national information campaign is needed to increase the level of awareness of the population concerning beneficial social behaviors and optimal reaction to symptoms of acute ischemic stroke.
Emergency department arrival times after acute ischemic stroke during the 1990s.
Kleindorfer, Dawn O; Broderick, Joseph P; Khoury, Jane; Flaherty, Matthew L; Woo, Daniel; Alwell, Kathleen; Moomaw, Charles J; Pancioli, Arthur; Jauch, Edward; Miller, Rosie; Kissela, Brett M
2007-01-01
Only 8% of ischemic stroke (IS) patients are eligible for rt-PA, and the largest exclusion criterion is delayed time of presentation to the ED. We sought to investigate whether patients are arriving to the ED more quickly in 1999 than in 1993/94 within our large biracial population of 1.3 million. Using ICD-9 codes 430-436, we ascertained all stroke events that presented to a local ED within our population in 7/93-6/94 and again in 1999. Times were recorded as documented in the medical record. There were 1,792 IS patients that presented to an ED in 1993/94 and 1,973 in 1999. The percentage of patients with documented times arriving in under 3 h improved slightly in 1999 (26% vs. 23% in 93/94, P = 0.03), however, the percentage arriving in under 2 h did not. Blacks significantly improved in arrivals under 3 h: 26% in 1999 compared to 17% in 1993/94 (P = 0.01), while whites did not (26% vs. 25%, P = 0.29). In 1999, only 9% of patients arrived from 3-8 h after symptom onset, the large majority of times were either estimated, unknown, or >8 h. We found only marginal improvement in arrival times during the 1990s. In our population, blacks improved in early arrival after symptom onset, while whites did not. Very few patients arrive 3-8 h after onset; therefore expansion of the acute treatment time window to 8 h is unlikely to dramatically affect acute treatment of ischemic stroke.
Multiscale 2D Inversions of Active-source First-arrival Times in Taiwan
NASA Astrophysics Data System (ADS)
Lin, Y. P.; Zhao, L.; Hung, S. H.
2015-12-01
In this study, we make use of the active-source records collected by the TAIGER (TAiwan Integrated GEodynamics Research) project in 2008 at nearly 1400 locations on the island of Taiwan and the surrounding ocean bottom. We manually picked the first-arrival times from the waveform records to obtain a set of highly accurate P-wave traveltimes. Among the 1400 receivers, more than 1000 were deployed along four almost linear cross-island profiles with inter-seismometer spacing down to 200 m. This ground-truth dataset provides strong constrains on the structure between the exactly known active sources and densely distributed receivers, which can be used to calibrate the seismic structure in the upper crust in Taiwan. In this study, we use this dataset to image the two-dimensional P-wave structure along the four linear profiles. A wavelet parameterization of the model is adopted to achieve an objective and data-adaptive multiscale resolution to the 2D structures. Rigorous estimations of resolution lengths were also conducted to quantify the spatial resolutions of the tomography inversions. The resulting 2D models yield first-arrival time predictions that are in excellent agreement with the observations. The seismic structures along the 2D profiles display strong lateral variations (up to 80% relative to regional average) with more realistic amplitudes of velocity perturbations and spatial patterns consistent with geological zonations of Taiwan
ERIC Educational Resources Information Center
Ronen, Simcha
1981-01-01
Examined the effects of a flexible working hours schedule on the arrival and departure times of 162 public sector employees. Results indicated that workers, when scheduling their own workday, deviate only moderately from their preflexitime arrival/departure times; and they tend to develop relatively stable arrival/departure patterns. (Author/RC)
NASA Astrophysics Data System (ADS)
Morales-Casique, E.; Lezama-Campos, J. L.; Guadagnini, A.; Neuman, S. P.
2013-05-01
Modeling tracer transport in geologic porous media suffers from the corrupt characterization of the spatial distribution of hydrogeologic properties of the system and the incomplete knowledge of processes governing transport at multiple scales. Representations of transport dynamics based on a Fickian model of the kind considered in the advection-dispersion equation (ADE) fail to capture (a) the temporal variation associated with the rate of spreading of a tracer, and (b) the distribution of early and late arrival times which are often observed in field and/or laboratory scenarios and are considered as the signature of anomalous transport. Elsewhere we have presented exact stochastic moment equations to model tracer transport in randomly heterogeneous aquifers. We have also developed a closure scheme which enables one to provide numerical solutions of such moment equations at different orders of approximations. The resulting (ensemble) average and variance of concentration fields were found to display a good agreement against Monte Carlo - based simulation results for mildly heterogeneous (or well-conditioned strongly heterogeneous) media. Here we explore the ability of the moment equations approach to describe the distribution of early arrival times and late time tailing effects which can be observed in Monte-Carlo based breakthrough curves (BTCs) of the (ensemble) mean concentration. We show that BTCs of mean resident concentration calculated at a fixed space location through higher-order approximations of moment equations display long tailing features of the kind which is typically associated with anomalous transport behavior and are not represented by an ADE model with constant dispersive parameter, such as the zero-order approximation.
Time-correlated neutron analysis of a multiplying HEU source
NASA Astrophysics Data System (ADS)
Miller, E. C.; Kalter, J. M.; Lavelle, C. M.; Watson, S. M.; Kinlaw, M. T.; Chichester, D. L.; Noonan, W. A.
2015-06-01
The ability to quickly identify and characterize special nuclear material remains a national security challenge. In counter-proliferation applications, identifying the neutron multiplication of a sample can be a good indication of the level of threat. Currently neutron multiplicity measurements are performed with moderated 3He proportional counters. These systems rely on the detection of thermalized neutrons, a process which obscures both energy and time information from the source. Fast neutron detectors, such as liquid scintillators, have the ability to detect events on nanosecond time scales, providing more information on the temporal structure of the arriving signal, and provide an alternative method for extracting information from the source. To explore this possibility, a series of measurements were performed on the Idaho National Laboratory's MARVEL assembly, a configurable HEU source. The source assembly was measured in a variety of different HEU configurations and with different reflectors, covering a range of neutron multiplications from 2 to 8. The data was collected with liquid scintillator detectors and digitized for offline analysis. A gap based approach for identifying the bursts of detected neutrons associated with the same fission chain was used. Using this approach, we are able to study various statistical properties of individual fission chains. One of these properties is the distribution of neutron arrival times within a given burst. We have observed two interesting empirical trends. First, this distribution exhibits a weak, but definite, dependence on source multiplication. Second, there are distinctive differences in the distribution depending on the presence and type of reflector. Both of these phenomena might prove to be useful when assessing an unknown source. The physical origins of these phenomena can be illuminated with help of MCNPX-PoliMi simulations.
Benefit Assessment of the Precision Departure Release Capability Concept
NASA Technical Reports Server (NTRS)
Palopo, Kee; Chatterji, Gano B.; Lee, Hak-Tae
2011-01-01
A Precision Departure Release Capability concept is being evaluated by both the National Aeronautics and Space Administration and the Federal Aviation Administration as part of a larger goal of improving throughput, efficiency and capacity in integrated departure, arrival and surface operations. The concept is believed to have the potential of increasing flight efficiency and throughput by avoiding missing assigned slots and minimizing speed increase or path stretch to recover the slot. The main thrust of the paper is determining the impact of early and late departures from the departure runway when an aircraft has a slot assigned either at a meter fix or at the arrival airport. Results reported in the paper are for two scenarios. The first scenario considers flights out of Dallas/Fort Worth destined for Hartsfield-Jackson International Airport in Atlanta flying through the Meridian meter-fix in the Memphis Center with miles-in-trail constraints. The second scenario considers flights destined to George Bush Intercontinental/Houston Airport with specified airport arrival rate constraint. Results show that delay reduction can be achieved by allowing reasonable speed changes in scheduling. It was determined that the traffic volume between Dallas/Fort Worth and Atlanta via the Meridian fix is low and the departures times are spread enough that large departure schedule uncertainty can be tolerated. Flights can depart early or late within 90 minutes without accruing much more delay due to miles-in-trail constraint at the Meridian fix. In the Houston scenario, 808 arrivals from 174 airports were considered. Results show that delay experienced by the 16 Dallas/Fort Worth departures is higher if initial schedules of the remaining 792 flights are kept unaltered while they are rescheduled. Analysis shows that the probability of getting the initially assigned slot back after perturbation and rescheduling decreases with increasing standard deviation of the departure delay distributions. Results show that most Houston arrivals can be expected to be on time based on the assumed zero-mean Normal departure delay distributions achievable by Precision Departure Release Capability. In the current system, airport-departure delay, which is the sum of gate-departure delay and taxi-out delay, is observed at the airports. This delay acts as a bias, which can be reduced by Precision Departure Release Capability.
Simulation of the airwave caused by the Chelyabinsk superbolide
NASA Astrophysics Data System (ADS)
Avramenko, Mikhail I.; Glazyrin, Igor V.; Ionov, Gennady V.; Karpeev, Artem V.
2014-06-01
Numerical simulations were carried out to model the propagation of an airwave from the fireball that passed over Chelyabinsk (Russia) on 15 February 2013. The airburst of the Chelyabinsk meteoroid occurred due to its catastrophic fragmentation in the atmosphere. Simulations of the space-time distribution of energy deposition during the airburst were done using a novel fragmentation model based on dimensionality considerations and analogy to the fission chain reaction in fissile materials. To get an estimate of the airburst energy, observed values of the airwave arrival times to different populated localities were retrieved from video records available on the Internet. The calculated arrival times agree well with the observed values for all the localities. Energy deposition in the atmosphere obtained from observations of the airwave arrival times was found to be 460 ± 60 kt in trinitrotoluene (TNT) equivalent. We also obtained an independent estimate for the deposited energy, 450-160+200 kt TNT from detecting the air increment velocity due to the wave passage in Chelyabinsk. Assuming that the energy of about 90 kt TNT was irradiated in the form of visible light and infrared radiation, as registered with optical sensors [Yeomans and Chodas, 2013], one can value the total energy release to be about 550 kt TNT which is in agreement with previous estimates from infrasound registration and from optical sensors data. The overpressure amplitude and its positive phase duration in the airwave that reached the city of Chelyabinsk were calculated to be about 2 kPa and 10 s accordingly.
Dead time corrections for inbeam γ-spectroscopy measurements
NASA Astrophysics Data System (ADS)
Boromiza, M.; Borcea, C.; Negret, A.; Olacel, A.; Suliman, G.
2017-08-01
Relatively high counting rates were registered in a proton inelastic scattering experiment on 16O and 28Si using HPGe detectors which was performed at the Tandem facility of IFIN-HH, Bucharest. In consequence, dead time corrections were needed in order to determine the absolute γ-production cross sections. Considering that the real counting rate follows a Poisson distribution, the dead time correction procedure is reformulated in statistical terms. The arriving time interval between the incoming events (Δt) obeys an exponential distribution with a single parameter - the average of the associated Poisson distribution. We use this mathematical connection to calculate and implement the dead time corrections for the counting rates of the mentioned experiment. Also, exploiting an idea introduced by Pommé et al., we describe a consistent method for calculating the dead time correction which completely eludes the complicated problem of measuring the dead time of a given detection system. Several comparisons are made between the corrections implemented through this method and by using standard (phenomenological) dead time models and we show how these results were used for correcting our experimental cross sections.
NASA Astrophysics Data System (ADS)
Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; MacNeice, P. J.; Jian, L. K.
2017-12-01
The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model CME propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME leading edge measurements near Earth, STEREO-A and STEREO-B for simulations completed between March 2010-December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B and we observed an arrival (hit), the mean absolute arrival-time prediction error was 10.4 ± 0.9 hours, with a tendency to early prediction error of -4.0 hours. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). There is an increase of 1.7 hours in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.
CAT-PUMA: CME Arrival Time Prediction Using Machine learning Algorithms
NASA Astrophysics Data System (ADS)
Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert
2018-04-01
CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) quickly and accurately predicts the arrival of Coronal Mass Ejections (CMEs) of CME arrival time. The software was trained via detailed analysis of CME features and solar wind parameters using 182 previously observed geo-effective partial-/full-halo CMEs and uses algorithms of the Support Vector Machine (SVM) to make its predictions, which can be made within minutes of providing the necessary input parameters of a CME.
Shear wave arrival time estimates correlate with local speckle pattern.
Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan
2015-12-01
We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared with the variation with axial position/ local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture.
Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern
McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan
2016-01-01
We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared to the variation with axial position/local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture. PMID:26670847
Spatial connectivity in a highly heterogeneous aquifer: From cores to preferential flow paths
Bianchi, M.; Zheng, C.; Wilson, C.; Tick, G.R.; Liu, Gaisheng; Gorelick, S.M.
2011-01-01
This study investigates connectivity in a small portion of the extremely heterogeneous aquifer at the Macrodispersion Experiment (MADE) site in Columbus, Mississippi. A total of 19 fully penetrating soil cores were collected from a rectangular grid of 4 m by 4 m. Detailed grain size analysis was performed on 5 cm segments of each core, yielding 1740 hydraulic conductivity (K) estimates. Three different geostatistical simulation methods were used to generate 3-D conditional realizations of the K field for the sampled block. Particle tracking calculations showed that the fastest particles, as represented by the first 5% to arrive, converge along preferential flow paths and exit the model domain within preferred areas. These 5% fastest flow paths accounted for about 40% of the flow. The distribution of preferential flow paths and particle exit locations is clearly influenced by the occurrence of clusters formed by interconnected cells with K equal to or greater than the 0.9 decile of the data distribution (10% of the volume). The fraction of particle paths within the high-K clusters ranges from 43% to 69%. In variogram-based K fields, some of the fastest paths are through media with lower K values, suggesting that transport connectivity may not require fully connected zones of relatively homogenous K. The high degree of flow and transport connectivity was confirmed by the values of two groups of connectivity indicators. In particular, the ratio between effective and geometric mean K (on average, about 2) and the ratio between the average arrival time and the arrival time of the fastest particles (on average, about 9) are consistent with flow and advective transport behavior characterized by channeling along preferential flow paths. ?? 2011 by the American Geophysical Union.
Infrasound associated with the deep M 7.3 northeastern China earthquake of June 28, 2002
NASA Astrophysics Data System (ADS)
Che, Il-Young; Kim, Geunyoung; Le Pichon, Alexis
2013-02-01
On 28 June, 2002, a deep-focus (566 km) earthquake with a moment magnitude of 7.3 occurred in the China-Russia-North Korea border region. Despite its deep focus, the earthquake produced an infrasound signal that was observed by the remote infrasound array (CHNAR), 682 km from the epicenter, in South Korea. Coherent infrasound signals were detected sequentially at the receiver, with different arrival times and azimuths indicating that the signals were generated both near the epicenter and elsewhere. On the basis of the azimuth, arrival time measurements, and atmospheric ray simulation results, the source area of the infrasonic signals that arrived earlier were located along the eastern coastal areas of North Korea and Russia, whereas later signals were sourced throughout Japan. The geographically-constrained, and discrete, distribution of the sources identified is explained by infrasound propagation effects caused by a westward zonal wind that was active when the event occurred. The amplitude of the deep quake's signal was equivalent to that of a shallow earthquake with a magnitude of approximately 5. This study expands the breadth of seismically-associated infrasound to include deep earthquakes, and also supports the possibility that infrasound measurements could help determine the depth of earthquakes.
Kendall, William L.; Hines, James E.; Nichols, James D.; Grant, Evan H. Campbell
2013-01-01
Occupancy statistical models that account for imperfect detection have proved very useful in several areas of ecology, including species distribution and spatial dynamics, disease ecology, and ecological responses to climate change. These models are based on the collection of multiple samples at each of a number of sites within a given season, during which it is assumed the species is either absent or present and available for detection while each sample is taken. However, for some species, individuals are only present or available for detection seasonally. We present a statistical model that relaxes the closure assumption within a season by permitting staggered entry and exit times for the species of interest at each site. Based on simulation, our open model eliminates bias in occupancy estimators and in some cases increases precision. The power to detect the violation of closure is high if detection probability is reasonably high. In addition to providing more robust estimation of occupancy, this model permits comparison of phenology across sites, species, or years, by modeling variation in arrival or departure probabilities. In a comparison of four species of amphibians in Maryland we found that two toad species arrived at breeding sites later in the season than a salamander and frog species, and departed from sites earlier.
NASA Astrophysics Data System (ADS)
Zhu, T.; Ajo Franklin, J. B.; Daley, T. M.
2015-12-01
Continuous active source seismic measurements (CASSM) were collected in the crosswell geometry during scCO2 injection at the Frio-II brine pilot (Liberty, TX). Previous studies (Daley et.al. 2007, 2011) have demonstrated that spatial-temporal changes in the picked first arrival time after CO2 injection constrain the movement of the CO2 plume in the storage interval. To improve the quantitative constraints on plume saturation using this dataset, we investigate spatial-temporal changes in the seismic attenuation of the first arrivals. The attenuation changes over the injection period (~60 h) are estimated by the amount of the centroid frequency shift computed by the local time-frequency analysis. Our observations include: at receivers above the packer seismic attenuation does not change in a physical trend; at receivers below the packer attenuation sharply increases as the amount of CO2 plume increase at the first few hours and peaks at specific points varying with distributed receivers, which are consistent with observations from time delays of first arrivals. Then, attenuation decreases over the injection time with increased amount of CO2 plume. This bell-shaped attenuation response as a function of time in the experiment is consistent with White's patchy saturation model which predicts an attenuation peak at intermediate CO2 saturations. Our analysis suggests that spatial-temporal attenuation change is an indicator of the movement/saturation of CO2 plume at high saturations, a system state for which seismic measurements are typically only weakly sensitive to.
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method. PMID:27382610
Joint Estimation of Time-Frequency Signature and DOA Based on STFD for Multicomponent Chirp Signals.
Zhao, Ziyue; Liu, Congfeng
2014-01-01
In the study of the joint estimation of time-frequency signature and direction of arrival (DOA) for multicomponent chirp signals, an estimation method based on spatial time-frequency distributions (STFDs) is proposed in this paper. Firstly, array signal model for multicomponent chirp signals is presented and then array processing is applied in time-frequency analysis to mitigate cross-terms. According to the results of the array processing, Hough transform is performed and the estimation of time-frequency signature is obtained. Subsequently, subspace method for DOA estimation based on STFD matrix is achieved. Simulation results demonstrate the validity of the proposed method.
1976-01-28
source-receiver geometry dynamics. For a given time instant, each of the subroutines outputs time variables ( emission time, arrival time...transmission loss, depression/elevation and azimuthal arrival angles, received frequency and range variables (range at emission time, range at arrival time...with the wind equal 24.5 kts. In the double bottom bounce regions, the emission angles (at the virtual surface source) are moderately small (15
Properties of 10 (18)-10 (19)eV EAS at far core distance
NASA Technical Reports Server (NTRS)
Teshima, M.; Nagano, M.; Hara, T.; Hatano, Y.; Hayashida, N.; He, C. X.; Honda, M.; Ishikawa, F.; Kamata, K.; Matsubara, Y.
1985-01-01
The properties of 10 to the 18th power - 10 to the 19th power eV EAS showers such as the electron lateral distribution, the muon lateral distribution ( 1Gev), the ratio of muon density to a electron density, the shower front structure and the transition effects in scintillator of 5cm thickness are investigated with the Akeno 4 sq km/20sq km array at far core distances between 500m and 3000m. The fluctuation of densities and arrival time increase rapidly at core distances greater than 2km.
Diagnosability of Stochastic Chemical Kinetic Systems: A Discrete Event Systems Approach (PREPRINT)
2010-01-01
USA. E -mail: thorsley@u.washington.edu. This research is partially supported by the 2006 AFOSR MURI award “High Confidence Design for Distributed...occurrence of the finite sample path ω. These distributions are defined recursively to be π0(x) := π0(x), πωσ(x ′) := ∑ x∈X πω(x)r(x ′,σ | x) e −r(x ′,σ|x... e −rxτ . (2) This probability is this probability that the arrival time of the first event is greater than τ . For finite sample paths with strings
Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E
2015-01-01
Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles' arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that including the fusion-time statistics in our model does not produce any significant changes on the results. These findings indicate that the motion of the whole ensemble of vesicles towards the membrane is directed and reflected in the amperometric signals. Our results confirm the conclusions of previous imaging studies performed on single vesicles that vesicles' motion underneath plasma membranes is not purely random, but biased towards the membrane.
Jarukanont, Daungruthai; Bonifas Arredondo, Imelda; Femat, Ricardo; Garcia, Martin E.
2015-01-01
Chromaffin cells release catecholamines by exocytosis, a process that includes vesicle docking, priming and fusion. Although all these steps have been intensively studied, some aspects of their mechanisms, particularly those regarding vesicle transport to the active sites situated at the membrane, are still unclear. In this work, we show that it is possible to extract information on vesicle motion in Chromaffin cells from the combination of Langevin simulations and amperometric measurements. We developed a numerical model based on Langevin simulations of vesicle motion towards the cell membrane and on the statistical analysis of vesicle arrival times. We also performed amperometric experiments in bovine-adrenal Chromaffin cells under Ba2+ stimulation to capture neurotransmitter releases during sustained exocytosis. In the sustained phase, each amperometric peak can be related to a single release from a new vesicle arriving at the active site. The amperometric signal can then be mapped into a spike-series of release events. We normalized the spike-series resulting from the current peaks using a time-rescaling transformation, thus making signals coming from different cells comparable. We discuss why the obtained spike-series may contain information about the motion of all vesicles leading to release of catecholamines. We show that the release statistics in our experiments considerably deviate from Poisson processes. Moreover, the interspike-time probability is reasonably well described by two-parameter gamma distributions. In order to interpret this result we computed the vesicles’ arrival statistics from our Langevin simulations. As expected, assuming purely diffusive vesicle motion we obtain Poisson statistics. However, if we assume that all vesicles are guided toward the membrane by an attractive harmonic potential, simulations also lead to gamma distributions of the interspike-time probability, in remarkably good agreement with experiment. We also show that including the fusion-time statistics in our model does not produce any significant changes on the results. These findings indicate that the motion of the whole ensemble of vesicles towards the membrane is directed and reflected in the amperometric signals. Our results confirm the conclusions of previous imaging studies performed on single vesicles that vesicles’ motion underneath plasma membranes is not purely random, but biased towards the membrane. PMID:26675312
Jurneczko, Ewa; Kalapothakis, Jason; Campuzano, Iain D G; Morris, Michael; Barran, Perdita E
2012-10-16
There has been a significant increase in the use of ion mobility mass spectrometry (IM-MS) to investigate conformations of proteins and protein complexes following electrospray ionization. Investigations which employ traveling wave ion mobility mass spectrometry (TW IM-MS) instrumentation rely on the use of calibrants to convert the arrival times of ions to collision cross sections (CCS) providing "hard numbers" of use to structural biology. It is common to use nitrogen as the buffer gas in TW IM-MS instruments and to calibrate by extrapolating from CCS measured in helium via drift tube (DT) IM-MS. In this work, both DT and TW IM-MS instruments are used to investigate the effects of different drift gases (helium, neon, nitrogen, and argon) on the transport of multiply charged ions of the protein myoglobin, frequently used as a standard in TW IM-MS studies. Irrespective of the drift gas used, recorded mass spectra are found to be highly similar. In contrast, the recorded arrival time distributions and the derived CCS differ greatly. At low charge states (7 ≤ z ≤ 11) where the protein is compact, the CCS scale with the polarizability of the gas; this is also the case for higher charge states (12 ≤ z ≤ 22) where the protein is more unfolded for the heavy gases (neon, argon, and nitrogen) but not the case for helium. This is here interpreted as a different conformational landscape being sampled by the lighter gas and potentially attributable to increased field heating by helium. Under nanoelectrospray ionization (nESI) conditions, where myoglobin is sprayed from an aqueous solution buffered to pH 6.8 with 20 mM ammonium acetate, in the DT IM-MS instrument, each buffer gas can yield a different arrival time distribution (ATD) for any given charge state.
Supplemental feeding alters migration of a temperate ungulate.
Jones, Jennifer D; Kauffman, Matthew J; Monteith, Kevin L; Scurlock, Brandon M; Albeke, Shannon E; Cross, Paul C
Conservation of migration requires information on behavior and environmental determinants. The spatial distribution of forage resources, which migration exploits, often are altered and may have subtle, unintended consequences. Supplemental feeding is a common management practice, particularly for ungulates in North America and Europe, and carryover effects on behavior of this anthropogenic manipulation of forage are expected in theory, but have received limited empirical evaluation, particularly regarding effects on migration. We used global positioning system (GPS) data to evaluate the influence of winter feeding on migration behavior of 219 adult female elk (Cervus elaphus) from 18 fed ranges and 4 unfed ranges in western Wyoming. Principal component analysis revealed that the migratory behavior of fed and unfed elk differed in distance migrated, and the timing of arrival to, duration on, and departure from summer range. Fed elk migrated 19.2 km less, spent 11 more days on stopover sites, arrived to summer range 5 days later, resided on summer range 26 fewer days, and departed in the autumn 10 days earlier than unfed elk. Time-to-event models indicated that differences in migratory behavior between fed and unfed elk were caused by altered sensitivity to the environmental drivers of migration. In spring, unfed elk migrated following plant green-up closely, whereas fed elk departed the feedground but lingered on transitional range, thereby delaying their arrival to summer range. In autumn, fed elk were more responsive to low temperatures and precipitation events, causing earlier departure from summer range than unfed elk. Overall, supplemental feeding disconnected migration by fed elk from spring green-up and decreased time spent on summer range, thereby reducing access to quality forage. Our findings suggest that ungulate migration can be substantially altered by changes to the spatial distribution of resources, including those of anthropogenic origin, and that management practices applied in one season may have unintended behavioral consequences in subsequent seasons.
Supplemental feeding alters migration of a temperate ungulate
Jones, Jennifer D; Kauffman, Matthew J.; Monteith, Kevin L.; Scurlock, Brandon M.; Albeke, Shannon E.; Cross, Paul C.
2014-01-01
Conservation of migration requires information on behavior and environmental determinants. The spatial distribution of forage resources, which migration exploits, often are altered and may have subtle, unintended consequences. Supplemental feeding is a common management practice, particularly for ungulates in North America and Europe, and carryover effects on behavior of this anthropogenic manipulation of forage are expected in theory, but have received limited empirical evaluation, particularly regarding effects on migration. We used global positioning system (GPS) data to evaluate the influence of winter feeding on migration behavior of 219 adult female elk (Cervus elaphus) from 18 fed ranges and 4 unfed ranges in western Wyoming. Principal component analysis revealed that the migratory behavior of fed and unfed elk differed in distance migrated, and the timing of arrival to, duration on, and departure from summer range. Fed elk migrated 19.2 km less, spent 11 more days on stopover sites, arrived to summer range 5 days later, resided on summer range 26 fewer days, and departed in the autumn 10 days earlier than unfed elk. Time-to-event models indicated that differences in migratory behavior between fed and unfed elk were caused by altered sensitivity to the environmental drivers of migration. In spring, unfed elk migrated following plant green-up closely, whereas fed elk departed the feedground but lingered on transitional range, thereby delaying their arrival to summer range. In autumn, fed elk were more responsive to low temperatures and precipitation events, causing earlier departure from summer range than unfed elk. Overall, supplemental feeding disconnected migration by fed elk from spring green-up and decreased time spent on summer range, thereby reducing access to quality forage. Our findings suggest that ungulate migration can be substantially altered by changes to the spatial distribution of resources, including those of anthropogenic origin, and that management practices applied in one season may have unintended behavioral consequences in subsequent seasons.
The Supermarket Model with Bounded Queue Lengths in Equilibrium
NASA Astrophysics Data System (ADS)
Brightwell, Graham; Fairthorne, Marianne; Luczak, Malwina J.
2018-04-01
In the supermarket model, there are n queues, each with a single server. Customers arrive in a Poisson process with arrival rate λ n , where λ = λ (n) \\in (0,1) . Upon arrival, a customer selects d=d(n) servers uniformly at random, and joins the queue of a least-loaded server amongst those chosen. Service times are independent exponentially distributed random variables with mean 1. In this paper, we analyse the behaviour of the supermarket model in the regime where λ (n) = 1 - n^{-α } and d(n) = \\lfloor n^β \\rfloor , where α and β are fixed numbers in (0, 1]. For suitable pairs (α , β ) , our results imply that, in equilibrium, with probability tending to 1 as n → ∞, the proportion of queues with length equal to k = \\lceil α /β \\rceil is at least 1-2n^{-α + (k-1)β } , and there are no longer queues. We further show that the process is rapidly mixing when started in a good state, and give bounds on the speed of mixing for more general initial conditions.
ROSAT observations of clusters with wide-angle tailed radio sources
NASA Technical Reports Server (NTRS)
Burns, Jack O.
1993-01-01
The goal of these ROSAT PSPC pointed observations was to understand the nature of X-ray emission associated clusters that contain luminous wide-angle tailed (WAT) radio sources identified with the centrally dominant cluster galaxies. These 500 kpc diameter radio sources are strongly affected by confinement and interaction with the intracluster medium. So, a complete picture of the origin and evolution of these radio sources is not possible without detailed X-ray observations which sample the distribution and temperature of the surrounding hot gas. Two WAT clusters have been observed with the ROSAT PSPC to date. The first is Abell 2634 which contains the WAT 3C 465 and was approved for observations in AO-1. Unfortunately, these observations were broken into two widely separated pieces in time. The first data set containing about 9000 sec of integration arrived in mid-March, 1992. The second data set containing about 10,500 sec arrived just recently in early April (after a first tape was destroyed in the mail). The second cluster is 1919+479 which was approved for observations in AO-2. These ROSAT data arrived in October 1992.
Two tandem queues with general renewal input. 2: Asymptotic expansions for the diffusion model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knessl, C.; Tier, C.
1999-10-01
In Part 1 the authors formulated and solved a diffusion model for two tandem queues with exponential servers and general renewal arrivals. They thus obtained the easy traffic diffusion approximation to the steady state joint queue length distribution for this network. Here they study asymptotic and numerical properties of the diffusion approximation. In particular, analytical expressions are obtained for the tail probabilities. Both the joint distribution of the two queues and the marginal distribution of the second queue are considered. They also give numerical illustrations of how this marginal is affected by changes in the arrival and service processes.
A new Bayesian Inference-based Phase Associator for Earthquake Early Warning
NASA Astrophysics Data System (ADS)
Meier, Men-Andrin; Heaton, Thomas; Clinton, John; Wiemer, Stefan
2013-04-01
State of the art network-based Earthquake Early Warning (EEW) systems can provide warnings for large magnitude 7+ earthquakes. Although regions in the direct vicinity of the epicenter will not receive warnings prior to damaging shaking, real-time event characterization is available before the destructive S-wave arrival across much of the strongly affected region. In contrast, in the case of the more frequent medium size events, such as the devastating 1994 Mw6.7 Northridge, California, earthquake, providing timely warning to the smaller damage zone is more difficult. For such events the "blind zone" of current systems (e.g. the CISN ShakeAlert system in California) is similar in size to the area over which severe damage occurs. We propose a faster and more robust Bayesian inference-based event associator, that in contrast to the current standard associators (e.g. Earthworm Binder), is tailored to EEW and exploits information other than only phase arrival times. In particular, the associator potentially allows for reliable automated event association with as little as two observations, which, compared to the ShakeAlert system, would speed up the real-time characterizations by about ten seconds and thus reduce the blind zone area by up to 80%. We compile an extensive data set of regional and teleseismic earthquake and noise waveforms spanning a wide range of earthquake magnitudes and tectonic regimes. We pass these waveforms through a causal real-time filterbank with passband filters between 0.1 and 50Hz, and, updating every second from the event detection, extract the maximum amplitudes in each frequency band. Using this dataset, we define distributions of amplitude maxima in each passband as a function of epicentral distance and magnitude. For the real-time data, we pass incoming broadband and strong motion waveforms through the same filterbank and extract an evolving set of maximum amplitudes in each passband. We use the maximum amplitude distributions to check whether the incoming waveforms are consistent with amplitude and frequency patterns of local earthquakes by means of a maximum likelihood approach. If such a single-station event likelihood is larger than a predefined threshold value we check whether there are neighboring stations that also have single-station event likelihoods above the threshold. If this is the case for at least one other station, we evaluate whether the respective relative arrival times are in agreement with a common earthquake origin (assuming a simple velocity model and using an Equal Differential Time location scheme). Additionally we check if there are stations where, given the preliminary location, observations would be expected but were not reported ("not-yet-arrived data"). Together, the single-station event likelihood functions and the location likelihood function constitute the multi-station event likelihood function. This function can then be combined with various types of prior information (such as station noise levels, preceding seismicity, fault proximity, etc.) to obtain a Bayesian posterior distribution, representing the degree of belief that the ensemble of the current real-time observations correspond to a local earthquake, rather than to some other signal source irrelevant for EEW. Additional to the reduction of the blind zone size, this approach facilitates the eventual development of an end-to-end probabilistic framework for an EEW system that provides systematic real-time assessment of the risk of false alerts, which enables end users of EEW to implement damage mitigation strategies only above a specified certainty level.
Number needed to eat: pizza and resident conference attendance.
Cosimini, Michael J; Mackintosh, Liza; Chang, Todd P
2016-12-01
The didactic conference is a common part of the resident education curriculum. Given the demands of clinical responsibilities and restrictions on duty hours, maximising education is a challenge faced by all residency programmes. To date, little research exists with respect to how the provision of complimentary food affects physician and resident conference attendance. The objective of this study was to determine whether complimentary food improves resident arrival times and attendance at educational conferences and, furthermore, to test whether this provision is a potentially cost-effective tool for improving education. A retrospective review of 36 resident educational Friday noon conferences, including 1043 resident arrivals, was performed. Data were analysed for total attendance, arrival times, number needed to eat (NNE) and the percentage of residents arriving on time, and compared between days on which food was and was not provided. Median attendance was 3.7% higher (p = 0.04) on days on which food was provided, at a cost of US$46 for each additional resident in attendance. Arrival times were also statistically significantly improved when food was provided, with a median improvement of 0.7 minutes (p = 0.02) and an 11.0% increase in on-time arrivals (p < 0.001). The NNE was 10.6. Complimentary food improves both attendance and arrival times by a small, but statistically significant, degree. The provision of complimentary food can be considered as an incentive for attendance and on-time arrival at didactic educational sessions, although more cost-effective modalities may exist. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
Identification of the Low-velocity Zone Beneath the Northern Taiwan by the P-wave Delays Analysis
NASA Astrophysics Data System (ADS)
Chang, C. W.; Che-Min, L.
2017-12-01
Taipei City, the capital of Taiwan, located in northern Taiwan is near to the Tatun volcano group and the Shanchiao fault which is an active fault. This region is a complex tectonic environment. The Tatun volcano group is seen as a dormant volcano. Recently, the location of the magma reservoir of the Tatun volcano was discussed again. However, the volume and the location of the magma reservoir are still unclear. There are several seismic networks operated by different institutions around Taipei and Tatun volcano. In this study, we combined the data of these networks to analysis the P-wave arrival times for clarifying the magma reservoir. The events with hypocenters are deeper than 100 km and the local magnitude (ML) are larger than 4.0 were collected to analysis. Our results show that the stations could be separated into three groups by the slope of the P-wave arrival time. They are distributed at the western of the Basin edge, the Jin-Shan Plain areal and the Taipei Basin, respectively. When the epicenter distance of the different stations is the same, the P-wave arrival time of the stations on the west side of the basin edge will be 0.3 0.5 seconds later than that in the Taipei Basin, and the stations on the Jin-Shan Plain will be 0.1 0.4 seconds later than in the Taipei Basin. The slope of the P-wave arrival time in 3 groups is very different, indicating that the low-velocity zone is existed in shallow crustal beneath of these areas. However, the low-velocity zone can be connected to the magma reservoir of the Tatun volcano group or submarine volcano of Keelung Island or not? It can be discussed the correlation between the magma reservoir and the low-velocity zone by more events collected.
Short-term gas dispersion in idealised urban canopy in street parallel with flow direction
NASA Astrophysics Data System (ADS)
Chaloupecká, Hana; Jaňour, Zbyněk; Nosek, Štěpán
2016-03-01
Chemical attacks (e.g. Syria 2014-15 chlorine, 2013 sarine or Iraq 2006-7 chlorine) as well as chemical plant disasters (e.g. Spain 2015 nitric oxide, ferric chloride; Texas 2014 methyl mercaptan) threaten mankind. In these crisis situations, gas clouds are released. Dispersion of gas clouds is the issue of interest investigated in this paper. The paper describes wind tunnel experiments of dispersion from ground level point gas source. The source is situated in a model of an idealised urban canopy. The short duration releases of passive contaminant ethane are created by an electromagnetic valve. The gas cloud concentrations are measured in individual places at the height of the human breathing zone within a street parallel with flow direction by Fast-response Ionisation Detector. The simulations of the gas release for each measurement position are repeated many times under the same experimental set up to obtain representative datasets. These datasets are analysed to compute puff characteristics (arrival, leaving time and duration). The results indicate that the mean value of the dimensionless arrival time can be described as a growing linear function of the dimensionless coordinate in the street parallel with flow direction where the gas source is situated. The same might be stated about the dimensionless leaving time as well as the dimensionless duration, however these fits are worse. Utilising a linear function, we might also estimate some other statistical characteristics from datasets than the datasets means (medians, trimeans). The datasets of the dimensionless arrival time, the dimensionless leaving time and the dimensionless duration can be fitted by the generalized extreme value distribution (GEV) in all sampling positions except one.
An evaluation of descent strategies for TNAV-equipped aircraft in an advanced metering environment
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Schwab, R. W.; Groce, J. L.; Coote, M. A.
1986-01-01
Investigated were the effects on system throughput and fleet fuel usage of arrival aircraft utilizing three 4D RNAV descent strategies (cost optimal, clean-idle Mach/CAS and constant descent angle Mach/CAS), both individually and in combination, in an advanced air traffic control metering environment. Results are presented for all mixtures of arrival traffic consisting of three Boeing commercial jet types and for all combinations of the three descent strategies for a typical en route metering airport arrival distribution.
Probabilistic Reasoning for Robustness in Automated Planning
NASA Technical Reports Server (NTRS)
Schaffer, Steven; Clement, Bradley; Chien, Steve
2007-01-01
A general-purpose computer program for planning the actions of a spacecraft or other complex system has been augmented by incorporating a subprogram that reasons about uncertainties in such continuous variables as times taken to perform tasks and amounts of resources to be consumed. This subprogram computes parametric probability distributions for time and resource variables on the basis of user-supplied models of actions and resources that they consume. The current system accepts bounded Gaussian distributions over action duration and resource use. The distributions are then combined during planning to determine the net probability distribution of each resource at any time point. In addition to a full combinatoric approach, several approximations for arriving at these combined distributions are available, including maximum-likelihood and pessimistic algorithms. Each such probability distribution can then be integrated to obtain a probability that execution of the plan under consideration would violate any constraints on the resource. The key idea is to use these probabilities of conflict to score potential plans and drive a search toward planning low-risk actions. An output plan provides a balance between the user s specified averseness to risk and other measures of optimality.
Hovdenes, Jan; Røysland, Kjetil; Nielsen, Niklas; Kjaergaard, Jesper; Wanscher, Michael; Hassager, Christian; Wetterslev, Jørn; Cronberg, Tobias; Erlinge, David; Friberg, Hans; Gasche, Yvan; Horn, Janneke; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wise, Matthew P; Åneman, Anders; Bugge, Jan Frederik
2016-10-01
To investigate the association of temperature on arrival to hospital after out-of-hospital-cardiac arrest (OHCA) with the primary outcome of mortality, in the targeted temperature management (TTM) trial. The TTM trial randomized 939 patients to TTM at 33 or 36°C for 24h. Patients were categorized according to their recorded body temperature on arrival and also categorized to groups of patients being actively cooled or passively rewarmed. OHCA patients having a temperature ≤34.0°C on arrival at hospital had a significantly higher mortality compared to the OHCA patients with a higher temperature on arrival. A low body temperature on arrival was associated with a longer time to return of spontaneous circulation (ROSC) and duration of transport time to hospital. Patients who were actively cooled or passively rewarmed during the first 4h had similar mortality. In a multivariate logistic regression model mortality was significantly related to time from OHCA to ROSC, time from OHCA to advanced life support (ALS), age, sex and first registered rhythm. None of the temperature related variables (included the TTM-groups) were significantly related to mortality. OHCA patients with a temperature ≤34.0°C on arrival have a higher mortality than patients with a temperature ≥34.1°C on arrival. A low temperature on arrival is associated with a long time to ROSC. Temperature changes and TTM-groups were not associated with mortality in a regression model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Perturbation analysis of queueing systems with a time-varying arrival rate
NASA Technical Reports Server (NTRS)
Cassandras, Christos G.; Pan, Jie
1991-01-01
The authors consider an M/G/1 queuing with a time-varying arrival rate. The objective is to obtain infinitesimal perturbation analysis (IPA) gradient estimates for various performance measures of interest with respect to certain system parameters. In particular, the authors consider the mean system time over n arrivals and an arrival rate alternating between two values. By choosing a convenient sample path representation of this system, they derive an unbiased IPA gradient estimator which, however, is not consistent, and investigate the nature of this problem.
Lisovski, Simeon; Fröhlich, Anne; von Tersch, Matthew; Klaassen, Marcel; Peter, Hans-Ulrich; Ritz, Markus S
2016-04-01
In migratory animals, protandry (earlier arrival of males on the breeding grounds) prevails over protogyny (females preceding males). In theory, sex differences in timing of arrival should be driven by the operational sex ratio, shifting toward protogyny in female-biased populations. However, empirical support for this hypothesis is, to date, lacking. To test this hypothesis, we analyzed arrival data from three populations of the long-distance migratory south polar skua (Catharacta maccormicki). These populations differed in their operational sex ratio caused by the unidirectional hybridization of male south polar skuas with female brown skuas (Catharacta antarctica lonnbergi). We found that arrival times were protandrous in allopatry, shifting toward protogyny in female-biased populations when breeding in sympatry. This unique observation is consistent with theoretical predictions that sex-specific arrival times should be influenced by sex ratio and that protogyny should be observed in populations with female-biased operational sex ratio.
Reproductive strategies of northern geese: Why wait?
Ely, Craig R.; Bollinger, K.S.; Densmore, R.V.; Rothe, T.C.; Petrula, M.J.; Takekawa, John Y.; Orthmeyer, D.L.
2007-01-01
Migration and reproductive strategies in waterbirds are tightly linked, with timing of arrival and onset of nesting having important consequences for reproductive success. Whether migratory waterbirds are capital or income breeders is predicated by their spring migration schedule, how long they are on breeding areas before nesting, and how adapted they are to exploiting early spring foods at northern breeding areas. However, for most species, we know little about individual migration schedules, arrival times, and duration of residence on breeding areas before nesting. To document these relationships in a northern nesting goose, we radiotracked winter-marked Tule Greater White-fronted Geese (Anser albifrons elgasi; hereafter “Tule Geese”; n = 116) from the time of their arrival in Alaska through nesting. Tule Geese arrived on coastal feeding areas in mid-April and moved to nesting locations a week later. They initiated nests 15 days (range: 6–24 days) after arrival, a period roughly equivalent to the duration of rapid follicle growth. Tule Geese that arrived the earliest were more likely to nest than geese that arrived later; early arrivals also spent more time on the breeding grounds and nested earlier than geese that arrived later. The length of the prenesting period was comparable to that of other populations of this species, but longer than for goose species that initiate rapid follicle growth before arrival on the breeding grounds. We suggest that Tule Geese nesting in more temperate climates are more likely to delay breeding to exploit local food resources than Arctic-nesting species that may be constrained by short growing seasons.
Wu, Fei; Sioshansi, Ramteen
2017-05-25
Electric vehicles (EVs) hold promise to improve the energy efficiency and environmental impacts of transportation. However, widespread EV use can impose significant stress on electricity-distribution systems due to their added charging loads. This paper proposes a centralized EV charging-control model, which schedules the charging of EVs that have flexibility. This flexibility stems from EVs that are parked at the charging station for a longer duration of time than is needed to fully recharge the battery. The model is formulated as a two-stage stochastic optimization problem. The model captures the use of distributed energy resources and uncertainties around EV arrival timesmore » and charging demands upon arrival, non-EV loads on the distribution system, energy prices, and availability of energy from the distributed energy resources. We use a Monte Carlo-based sample-average approximation technique and an L-shaped method to solve the resulting optimization problem efficiently. We also apply a sequential sampling technique to dynamically determine the optimal size of the randomly sampled scenario tree to give a solution with a desired quality at minimal computational cost. Here, we demonstrate the use of our model on a Central-Ohio-based case study. We show the benefits of the model in reducing charging costs, negative impacts on the distribution system, and unserved EV-charging demand compared to simpler heuristics. Lastly, we also conduct sensitivity analyses, to show how the model performs and the resulting costs and load profiles when the design of the station or EV-usage parameters are changed.« less
NASA Astrophysics Data System (ADS)
Zhang, X.-J.; Li, W.; Thorne, R. M.; Angelopoulos, V.; Ma, Q.; Li, J.; Bortnik, J.; Nishimura, Y.; Chen, L.; Baker, D. N.; Reeves, G. D.; Spence, H. E.; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Blake, J. B.; Fennell, J. F.
2016-09-01
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed by Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1 MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.
Fast first arrival picking algorithm for noisy microseismic data
NASA Astrophysics Data System (ADS)
Kim, Dowan; Byun, Joongmoo; Lee, Minho; Choi, Jihoon; Kim, Myungsun
2017-01-01
Most microseismic events occur during hydraulic fracturing. Thus microseismic monitoring, by recording seismic waves from microseismic events, is one of the best methods for locating the positions of hydraulic fractures. However, since microseismic events have very low energy, the data often have a low signal-to-noise ratio (S/N ratio) and it is not easy to pick the first arrival time. In this study, we suggest a new fast picking method optimised for noisy data using cross-correlation and stacking. In this method, a reference trace is selected and the time differences between the first arrivals of the reference trace and those of the other traces are computed by cross-correlation. Then, all traces are aligned with the reference trace by time shifting, and the aligned traces are summed together to produce a stacked reference trace that has a considerably improved S/N ratio. After the first arrival time of the stacked reference trace is picked, the first arrival time of each trace is calculated automatically using the time differences obtained in the cross-correlation process. In experiments with noisy synthetic data and field data, this method produces more reliable results than the traditional method, which picks the first arrival time of each noisy trace separately. In addition, the computation time is dramatically reduced.
Refractory pulse counting processes in stochastic neural computers.
McNeill, Dean K; Card, Howard C
2005-03-01
This letter quantitiatively investigates the effect of a temporary refractory period or dead time in the ability of a stochastic Bernoulli processor to record subsequent pulse events, following the arrival of a pulse. These effects can arise in either the input detectors of a stochastic neural network or in subsequent processing. A transient period is observed, which increases with both the dead time and the Bernoulli probability of the dead-time free system, during which the system reaches equilibrium. Unless the Bernoulli probability is small compared to the inverse of the dead time, the mean and variance of the pulse count distributions are both appreciably reduced.
Calibrated Multiple Event Relocations of the Central and Eastern United States
NASA Astrophysics Data System (ADS)
Yeck, W. L.; Benz, H.; McNamara, D. E.; Bergman, E.; Herrmann, R. B.; Myers, S. C.
2015-12-01
Earthquake locations are a first-order observable which form the basis of a wide range of seismic analyses. Currently, the ANSS catalog primarily contains published single-event earthquake locations that rely on assumed 1D velocity models. Increasing the accuracy of cataloged earthquake hypocenter locations and origin times and constraining their associated errors can improve our understanding of Earth structure and have a fundamental impact on subsequent seismic studies. Multiple-event relocation algorithms often increase the precision of relative earthquake hypocenters but are hindered by their limited ability to provide realistic location uncertainties for individual earthquakes. Recently, a Bayesian approach to the multiple event relocation problem has proven to have many benefits including the ability to: (1) handle large data sets; (2) easily incorporate a priori hypocenter information; (3) model phase assignment errors; and, (4) correct for errors in the assumed travel time model. In this study we employ bayseloc [Myers et al., 2007, 2009] to relocate earthquakes in the Central and Eastern United States from 1964-present. We relocate ~11,000 earthquakes with a dataset of ~439,000 arrival time observations. Our dataset includes arrival-time observations from the ANSS catalog supplemented with arrival-time data from the Reviewed ISC Bulletin (prior to 1981), targeted local studies, and arrival-time data from the TA Array. One significant benefit of the bayesloc algorithm is its ability to incorporate a priori constraints on the probability distributions of specific earthquake locations parameters. To constrain the inversion, we use high-quality calibrated earthquake locations from local studies, including studies from: Raton Basin, Colorado; Mineral, Virginia; Guy, Arkansas; Cheneville, Quebec; Oklahoma; and Mt. Carmel, Illinois. We also add depth constraints to 232 earthquakes from regional moment tensors. Finally, we add constraints from four historic (1964-1973) ground truth events from a verification database. We (1) evaluate our ability to improve our location estimations, (2) use improved locations to evaluate Earth structure in seismically active regions, and (3) examine improvements to the estimated locations of historic large magnitude earthquakes.
Becker, Peter H.; Dittmann, Tobias; Ludwigs, Jan-Dieter; Limmer, Bente; Ludwig, Sonja C.; Bauch, Christina; Braasch, Alexander; Wendeln, Helmut
2008-01-01
In long-lived vertebrates, individuals generally visit potential breeding areas or populations during one or more seasons before reproducing for the first time. During these years of prospecting, they select a future breeding site, colony, or mate and improve various skills and their physical condition to meet the requirements of reproduction. One precondition of successful reproduction is arrival in time on the breeding grounds. Here, we study the intricate links among the date of initial spring arrival, body mass, sex, and the age of first breeding in the common tern Sterna hirundo, a long-lived migratory colonial seabird. The study is based on a unique, individual-based, long-term dataset of sexed birds, marked with transponders, which allow recording their individual arrival, overall attendance, and clutch initiation remotely and automatically year by year over the entire lifetime at the natal colony site. We show that the seasonal date of initial arrival at the breeding grounds predicts the individual age at first reproduction, which mostly occurs years later. Late first-time arrivals remain delayed birds throughout subsequent years. Our findings reveal that timing of arrival at the site of reproduction and timing of reproduction itself are coherent parameters of individual quality, which are linked with the prospects of the breeding career and may have consequences for fitness. PMID:18711134
NASA Technical Reports Server (NTRS)
Glaab, Patricia C.
2012-01-01
The first phase of this study investigated the amount of time a flight can be delayed or expedited within the Terminal Airspace using only speed changes. The Arrival Capacity Calculator analysis tool was used to predict the time adjustment envelope for standard descent arrivals and then for CDA arrivals. Results ranged from 0.77 to 5.38 minutes. STAR routes were configured for the ACES simulation, and a validation of the ACC results was conducted comparing the maximum predicted time adjustments to those seen in ACES. The final phase investigated full runway-to-runway trajectories using ACES. The radial distance used by the arrival scheduler was incrementally increased from 50 to 150 nautical miles (nmi). The increased Planning Horizon radii allowed the arrival scheduler to arrange, path stretch, and speed-adjust flights to more fully load the arrival stream. The average throughput for the high volume portion of the day increased from 30 aircraft per runway for the 50 nmi radius to 40 aircraft per runway for the 150 nmi radius for a traffic set representative of high volume 2018. The recommended radius for the arrival scheduler s Planning Horizon was found to be 130 nmi, which allowed more than 95% loading of the arrival stream.
Diagnosis according to time of arrival at "The Great New York State Fair".
Nacca, Katherine; Scott, Jay; Grant, William
2014-02-01
To study the diagnoses of patients presenting to a medical facility within a mass-gathering public event, "The Great New York State Fair" (NYSF) based on chief complaints, diagnoses, and time of arrival. The goal of the study was to assess the need for increased staffing, services, or supplies during certain times of day for an event that gathers approximately 1 million patrons over a 12-day span. Patrons occupy the grounds between the hours of 10 am and 11 pm, while workers and staff are on the grounds around the clock. Triage data gathered by trained medical students was collected from all of the patients seen during the 2009 NYSF from 12 am to 11:59 pm. Triage information was categorized based on the nature of complaint, physician impression, and time of arrival to assess for trends in the distribution of common chief complaints and diagnoses at a mass-gathering medical care facility. The early hours of the NYSF were occupied mostly with treatment of minor first aid complaints, while later hours were occupied more commonly by orthopedic complaints. Insect stings were the most frequent complaint throughout the day. Daytime and evening hours at the fair have a significant number of orthopedic diagnoses and may benefit from specific staff and equipment sufficient to handle these complaints. Stings and minor first aid injuries are also significant and may benefit from adequate stocking of the infirmary for such events. Major medical complaints, including cardiac and neurological complaints, did occur but were a minor part of the total patient population.
NASA Astrophysics Data System (ADS)
Zhu, Tieyuan; Ajo-Franklin, Jonathan B.; Daley, Thomas M.
2017-09-01
A continuous active source seismic monitoring data set was collected with crosswell geometry during CO2 injection at the Frio-II brine pilot, near Liberty, TX. Previous studies have shown that spatiotemporal changes in the P wave first arrival time reveal the movement of the injected CO2 plume in the storage zone. To further constrain the CO2 saturation, particularly at higher saturation levels, we investigate spatial-temporal changes in the seismic attenuation of the first arrivals. The attenuation changes over the injection period are estimated by the amount of the centroid frequency shift computed by local time-frequency analysis. We observe that (1) at receivers above the injection zone seismic attenuation does not change in a physical trend; (2) at receivers in the injection zone attenuation sharply increases following injection and peaks at specific points varying with distributed receivers, which is consistent with observations from time delays of first arrivals; then, (3) attenuation decreases over the injection time. The attenuation change exhibits a bell-shaped pattern during CO2 injection. Under Frio-II field reservoir conditions, White's patchy saturation model can quantitatively explain both the P wave velocity and attenuation response observed. We have combined the velocity and attenuation change data in a crossplot format that is useful for model-data comparison and determining patch size. Our analysis suggests that spatial-temporal attenuation change is not only an indicator of the movement and saturation of CO2 plumes, even at large saturations, but also can quantitatively constrain CO2 plume saturation when used jointly with seismic velocity.
A model-free characterization of recurrences in stationary time series
NASA Astrophysics Data System (ADS)
Chicheportiche, Rémy; Chakraborti, Anirban
2017-05-01
Study of recurrences in earthquakes, climate, financial time-series, etc. is crucial to better forecast disasters and limit their consequences. Most of the previous phenomenological studies of recurrences have involved only a long-ranged autocorrelation function, and ignored the multi-scaling properties induced by potential higher order dependencies. We argue that copulas is a natural model-free framework to study non-linear dependencies in time series and related concepts like recurrences. Consequently, we arrive at the facts that (i) non-linear dependences do impact both the statistics and dynamics of recurrence times, and (ii) the scaling arguments for the unconditional distribution may not be applicable. Hence, fitting and/or simulating the intertemporal distribution of recurrence intervals is very much system specific, and cannot actually benefit from universal features, in contrast to the previous claims. This has important implications in epilepsy prognosis and financial risk management applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engdahl, Eric, R.; Bergman, Eric, A.; Myers, Stephen, C.
A new catalog of seismicity at magnitudes above 2.5 for the period 1923-2008 in the Iran region is assembled from arrival times reported by global, regional, and local seismic networks. Using in-country data we have formed new events, mostly at lower magnitudes that were not previously included in standard global earthquake catalogs. The magnitude completeness of the catalog varies strongly through time, complete to about magnitude 4.2 prior to 1998 and reaching a minimum of about 3.6 during the period 1998-2005. Of the 25,722 events in the catalog, most of the larger events have been carefully reviewed for proper phasemore » association, especially for depth phases and to eliminate outlier readings, and relocated. To better understand the quality of the data set of arrival times reported by Iranian networks that are central to this study, many waveforms for events in Iran have been re-picked by an experienced seismic analyst. Waveforms at regional distances in this region are often complex. For many events this makes arrival time picks difficult to make, especially for smaller magnitude events, resulting in reported times that can be substantially improved by an experienced analyst. Even when the signal/noise ratio is large, re-picking can lead to significant differences. Picks made by our analyst are compared with original picks made by the regional networks. In spite of the obvious outliers, the median (-0.06 s) and spread (0.51 s) are small, suggesting that reasonable confidence can be placed in the picks reported by regional networks in Iran. This new catalog has been used to assess focal depth distributions throughout Iran. A principal result of this study is that the geographic pattern of depth distributions revealed by the relatively small number of earthquakes (~167) with depths constrained by waveform modeling (+/- 4 km) are now in agreement with the much larger number of depths (~1229) determined using reanalysis of ISC arrival-times (+/-10 km), within their respective errors. This is a significant advance, as outliers and future events with apparently anomalous depths can be readily identified and, if necessary, further investigated. The patterns of reliable focal depth distributions have been interpreted in the context of Middle Eastern active tectonics. Most earthquakes in the Iranian continental lithosphere occur in the upper crust, less than about 25-30 km in depth, with the crustal shortening produced by continental collision apparently accommodated entirely by thickening and distributed deformation rather than by subduction of crust into the mantle. However, intermediate-depth earthquakes associated with subducted slab do occur across the central Caspian Sea and beneath the Makran coast. A multiple-event relocation technique, specialized to use different kinds of near-source data, is used to calibrate the locations of 24 clusters containing 901 events drawn from the seismicity catalog. The absolute locations of these clusters are fixed either by comparing the pattern of relocated earthquakes with mapped fault geometry, by using one or more cluster events that have been accurately located independently by a local seismic network or aftershock deployment, by using InSAR data to determine the rupture zone of shallow earthquakes, or by some combination of these near-source data. This technique removes most of the systematic bias in single-event locations done with regional and teleseismic data, resulting in 624 calibrated events with location uncertainties of 5 km or better at the 90% confidence level (GT590). For 21 clusters (847 events) that are calibrated in both location and origin time we calculate empirical travel times, relative to a standard 1-D travel time model (ak135), and investigate event to station travel-time anomalies as functions of epicentral distance and azimuth. Substantial travel-time anomalies are seen in the Iran region which make accurate locations impossible unless observing stations are at very short distances (less than about 200 km) or travel-time models are improved to account for lateral heterogeneity in the region. Earthquake locations in the Iran region by international agencies, based on regional and teleseismic arrival time data, are systematically biased to the southwest and have a 90% location accuracy of 18-23 km, with the lower value achievable by applying limits on secondary azimuth gap. The data set of calibrated locations reported here provides an important constraint on travel-time models that would begin to account for the lateral heterogeneity in Earth structure in the Iran region, and permit seismic networks, especially the regional ones, to obtain in future more accurate locations of the earthquakes in the region.« less
Monitoring Churn in Wireless Networks
NASA Astrophysics Data System (ADS)
Holzer, Stephan; Pignolet, Yvonne Anne; Smula, Jasmin; Wattenhofer, Roger
Wireless networks often experience a significant amount of churn, the arrival and departure of nodes. In this paper we propose a distributed algorithm for single-hop networks that detects churn and is resilient to a worst-case adversary. The nodes of the network are notified about changes quickly, in asymptotically optimal time up to an additive logarithmic overhead. We establish a trade-off between saving energy and minimizing the delay until notification for single- and multi-channel networks.
Delay time between onset of ischemic stroke and hospital arrival.
Biller, J; Patrick, J T; Shepard, A; Adams, H P
1993-01-01
Some current experimental protocols for acute ischemic stroke require the initiation of treatment within hours of the onset of stroke symptoms. We prospectively evaluated 30 patients with acute ischemic stroke based on clinical and computed tomography findings. The time between the onset of stroke symptoms and arrival in the emergency room and subsequently on the stroke service was determined. Within 3, 6,12, and 24 h of the onset of stroke symptoms, 16 (53%), 19 (63%), 22 (73%), and 25 (83%) patients had arrived at the emergency room and 0 (0%), 4 (13%), 14 (47%), and 22 (73%) of them on the stroke service, respectively. From the onset of stroke symptoms, the mean arrival time to the emergency room was 24 h (range, 30 min to 144 h) and to the stroke service was 61 h (range, 4-150 h). The mean time between arrival in the emergency room and stroke service was 8.6 h (range, 0-47 h). Even though 53% and 63% of our patients arrived at the emergency room within 3 and 6 h of the onset of stroke symptoms, only 0% and 13% of them arrived on the stroke service within the same time period for the initiation of treatment, respectively. Thus, in order for more patients to qualify for current experimental protocols, they must arrive on the stroke service more quickly or treatment must be initiated in the emergency room. Copyright © 1993. Published by Elsevier Inc.
Spatiotemporal reconstruction of list-mode PET data.
Nichols, Thomas E; Qi, Jinyi; Asma, Evren; Leahy, Richard M
2002-04-01
We describe a method for computing a continuous time estimate of tracer density using list-mode positron emission tomography data. The rate function in each voxel is modeled as an inhomogeneous Poisson process whose rate function can be represented using a cubic B-spline basis. The rate functions are estimated by maximizing the likelihood of the arrival times of detected photon pairs over the control vertices of the spline, modified by quadratic spatial and temporal smoothness penalties and a penalty term to enforce nonnegativity. Randoms rate functions are estimated by assuming independence between the spatial and temporal randoms distributions. Similarly, scatter rate functions are estimated by assuming spatiotemporal independence and that the temporal distribution of the scatter is proportional to the temporal distribution of the trues. A quantitative evaluation was performed using simulated data and the method is also demonstrated in a human study using 11C-raclopride.
Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo
2015-01-01
In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation. PMID:26225974
Kim, Mi Jeong; Maeng, Sung Joon; Cho, Yong Soo
2015-07-28
In this paper, a distributed synchronization technique based on a bio-inspired algorithm is proposed for an orthogonal frequency division multiple access (OFDMA)-based wireless mesh network (WMN) with a time difference of arrival. The proposed time- and frequency-synchronization technique uses only the signals received from the neighbor nodes, by considering the effect of the propagation delay between the nodes. It achieves a fast synchronization with a relatively low computational complexity because it is operated in a distributed manner, not requiring any feedback channel for the compensation of the propagation delays. In addition, a self-organization scheme that can be effectively used to construct 1-hop neighbor nodes is proposed for an OFDMA-based WMN with a large number of nodes. The performance of the proposed technique is evaluated with regard to the convergence property and synchronization success probability using a computer simulation.
NASA Astrophysics Data System (ADS)
Sykes, J. F.; Kang, M.; Thomson, N. R.
2007-12-01
The TCE release from The Lockformer Company in Lisle Illinois resulted in a plume in a confined aquifer that is more than 4 km long and impacted more than 300 residential wells. Many of the wells are on the fringe of the plume and have concentrations that did not exceed 5 ppb. The settlement for the Chapter 11 bankruptcy protection of Lockformer involved the establishment of a trust fund that compensates individuals with cancers with payments being based on cancer type, estimated TCE concentration in the well and the duration of exposure to TCE. The estimation of early arrival times and hence low likelihood events is critical in the determination of the eligibility of an individual for compensation. Thus, an emphasis must be placed on the accuracy of the leading tail region in the likelihood distribution of possible arrival times at a well. The estimation of TCE arrival time, using a three-dimensional analytical solution, involved parameter estimation and uncertainty analysis. Parameters in the model included TCE source parameters, groundwater velocities, dispersivities and the TCE decay coefficient for both the confining layer and the bedrock aquifer. Numerous objective functions, which include the well-known L2-estimator, robust estimators (L1-estimators and M-estimators), penalty functions, and dead zones, were incorporated in the parameter estimation process to treat insufficiencies in both the model and observational data due to errors, biases, and limitations. The concept of equifinality was adopted and multiple maximum likelihood parameter sets were accepted if pre-defined physical criteria were met. The criteria ensured that a valid solution predicted TCE concentrations for all TCE impacted areas. Monte Carlo samples are found to be inadequate for uncertainty analysis of this case study due to its inability to find parameter sets that meet the predefined physical criteria. Successful results are achieved using a Dynamically-Dimensioned Search sampling methodology that inherently accounts for parameter correlations and does not require assumptions regarding parameter distributions. For uncertainty analysis, multiple parameter sets were obtained using a modified Cauchy's M-estimator. Penalty functions had to be incorporated into the objective function definitions to generate a sufficient number of acceptable parameter sets. The combined effect of optimization and the application of the physical criteria perform the function of behavioral thresholds by reducing anomalies and by removing parameter sets with high objective function values. The factors that are important to the creation of an uncertainty envelope for TCE arrival at wells are outlined in the work. In general, greater uncertainty appears to be present at the tails of the distribution. For a refinement of the uncertainty envelopes, the application of additional physical criteria or behavioral thresholds is recommended.
On the properties of stochastic intermittency in rainfall processes.
Molini, A; La, Barbera P; Lanza, L G
2002-01-01
In this work we propose a mixed approach to deal with the modelling of rainfall events, based on the analysis of geometrical and statistical properties of rain intermittency in time, combined with the predictability power derived from the analysis of no-rain periods distribution and from the binary decomposition of the rain signal. Some recent hypotheses on the nature of rain intermittency are reviewed too. In particular, the internal intermittent structure of a high resolution pluviometric time series covering one decade and recorded at the tipping bucket station of the University of Genova is analysed, by separating the internal intermittency of rainfall events from the inter-arrival process through a simple geometrical filtering procedure. In this way it is possible to associate no-rain intervals with a probability distribution both in virtue of their position within the event and their percentage. From this analysis, an invariant probability distribution for the no-rain periods within the events is obtained at different aggregation levels and its satisfactory agreement with a typical extreme value distribution is shown.
Beam tracking strategies for studies of kinetic scales in the solar wind with THOR-CSW
NASA Astrophysics Data System (ADS)
De Keyser, Johan; Lavraud, Benoit; Neefs, Eddy; Berkenbosch, Sophie; Anciaux, Michel; Maggiolo, Romain
2016-04-01
Modern plasma spectrometers for monitoring the solar wind attempt to intelligently track the energy and direction of the solar wind beam in order to obtain solar wind velocity distributions more efficiently. Such beam tracking strategies offer some benefits, but also have their limitations and drawbacks. Benefits include an improved resolution and/or a faster velocity distribution function acquisition time. Limitations are due to instrument characteristics that tend to be optimized for a particular range of particle energies and arrival directions. A drawback is the risk to miss an important part of the velocity distribution or to lose track of the beam altogether. A comparison is presented of different beam tracking strategies under consideration for the THOR-CSW instrument in order to highlight a number of design decisions and their impact on the acquired velocity distributions. The gain offered by beam tracking in terms of increased time resolution turns out to be essential for studies of solar wind physics at kinetic scales.
StratBAM: A Discrete-Event Simulation Model to Support Strategic Hospital Bed Capacity Decisions.
Devapriya, Priyantha; Strömblad, Christopher T B; Bailey, Matthew D; Frazier, Seth; Bulger, John; Kemberling, Sharon T; Wood, Kenneth E
2015-10-01
The ability to accurately measure and assess current and potential health care system capacities is an issue of local and national significance. Recent joint statements by the Institute of Medicine and the Agency for Healthcare Research and Quality have emphasized the need to apply industrial and systems engineering principles to improving health care quality and patient safety outcomes. To address this need, a decision support tool was developed for planning and budgeting of current and future bed capacity, and evaluating potential process improvement efforts. The Strategic Bed Analysis Model (StratBAM) is a discrete-event simulation model created after a thorough analysis of patient flow and data from Geisinger Health System's (GHS) electronic health records. Key inputs include: timing, quantity and category of patient arrivals and discharges; unit-level length of care; patient paths; and projected patient volume and length of stay. Key outputs include: admission wait time by arrival source and receiving unit, and occupancy rates. Electronic health records were used to estimate parameters for probability distributions and to build empirical distributions for unit-level length of care and for patient paths. Validation of the simulation model against GHS operational data confirmed its ability to model real-world data consistently and accurately. StratBAM was successfully used to evaluate the system impact of forecasted patient volumes and length of stay in terms of patient wait times, occupancy rates, and cost. The model is generalizable and can be appropriately scaled for larger and smaller health care settings.
An Exploratory Study of Runway Arrival Procedures: Time Based Arrival and Self-Spacing
NASA Technical Reports Server (NTRS)
Houston, Vincent E.; Barmore, Bryan
2009-01-01
The ability of a flight crew to deliver their aircraft to its arrival runway on time is important to the overall efficiency of the National Airspace System (NAS). Over the past several years, the NAS has been stressed almost to its limits resulting in problems such as airport congestion, flight delay, and flight cancellation to reach levels that have never been seen before in the NAS. It is predicted that this situation will worsen by the year 2025, due to an anticipated increase in air traffic operations to one-and-a-half to three times its current level. Improved arrival efficiency, in terms of both capacity and environmental impact, is an important part of improving NAS operations. One way to improve the arrival performance of an aircraft is to enable the flight crew to precisely deliver their aircraft to a specified point at either a specified time or specified interval relative to another aircraft. This gives the flight crew more control to make the necessary adjustments to their aircraft s performance with less tactical control from the controller; it may also decrease the controller s workload. Two approaches to precise time navigation have been proposed: Time-Based Arrivals (e.g., required times of arrival) and Self-Spacing. Time-Based Arrivals make use of an aircraft s Flight Management System (FMS) to deliver the aircraft to the runway threshold at a given time. Self-Spacing enables the flight crew to achieve an ATC assigned spacing goals at the runway threshold relative to another aircraft. The Joint Planning and Development Office (JPDO), a multi-agency initiative established to plan and coordinate the development of the Next Generation Air Transportation System (NextGen), has asked for data for both of these concepts to facilitate future research and development. This paper provides a first look at the delivery performance of these two concepts under various initial and environmental conditions in an air traffic simulation environment.
Distributed environmental control
NASA Technical Reports Server (NTRS)
Cleveland, Gary A.
1992-01-01
We present an architecture of distributed, independent control agents designed to work with the Computer Aided System Engineering and Analysis (CASE/A) simulation tool. CASE/A simulates behavior of Environmental Control and Life Support Systems (ECLSS). We describe a lattice of agents capable of distributed sensing and overcoming certain sensor and effector failures. We address how the architecture can achieve the coordinating functions of a hierarchical command structure while maintaining the robustness and flexibility of independent agents. These agents work between the time steps of the CASE/A simulation tool to arrive at command decisions based on the state variables maintained by CASE/A. Control is evaluated according to both effectiveness (e.g., how well temperature was maintained) and resource utilization (the amount of power and materials used).
NASA Astrophysics Data System (ADS)
Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.
2017-05-01
Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.
WWLLN and Earth Networks new combined Global Lightning Network: First Look
NASA Astrophysics Data System (ADS)
Holzworth, R. H., II; Brundell, J. B.; Sloop, C.; Heckman, S.; Rodger, C. J.
2016-12-01
Lightning VLF sferic waveforms detected around the world by WWLLN (World Wide Lightning Location Network) and by Earth Networks WTLN receivers are being analyzed in real time to calculate the time of group arrival (TOGA) of the sferic wave packet at each station. These times (TOGAs) are then used for time-of-arrival analysis to determine the source lightning location. Beginning in 2016 we have successfully implemented the operational software to allow the incorporation of waveforms from hundreds of Earth Networks sensors into the normal WWLLN TOGA processing, resulting in a new global lightning distribution which has over twice as many stroke locations as the WWLLN-only data set. The combined global lightning network shows marked improvement over the WWLLN-only data set in regions such as central and southern Africa, and over the Indian subcontinent. As of July 2016 the new data set is typically running at about 230% of WWLLN-only in terms of total strokes, and some days over 250%, using data from 65 to 70 WWLLN stations, combined with the VLF channel from about 160 Earth Networks stations. The Earth Networks lightning network includes nearly 1000 receiving stations, so it is anticipated we will be able to further increase the total stations being used for the new combined network while still maintaining a relatively smooth global distribution of the sensors. Detailed comparisons of the new data set with WWLLN-only data, as well as with independent lightning location networks including WTLN in the CONUS and NZLDN in New Zealand will be presented.
NASA Astrophysics Data System (ADS)
Trifonov, A. P.; Korchagin, Yu. E.; Korol'kov, S. V.
2018-05-01
We synthesize the quasi-likelihood, maximum-likelihood, and quasioptimal algorithms for estimating the arrival time and duration of a radio signal with unknown amplitude and initial phase. The discrepancies between the hardware and software realizations of the estimation algorithm are shown. The characteristics of the synthesized-algorithm operation efficiency are obtained. Asymptotic expressions for the biases, variances, and the correlation coefficient of the arrival-time and duration estimates, which hold true for large signal-to-noise ratios, are derived. The accuracy losses of the estimates of the radio-signal arrival time and duration because of the a priori ignorance of the amplitude and initial phase are determined.
Pseudorange error analysis for precise indoor positioning system
NASA Astrophysics Data System (ADS)
Pola, Marek; Bezoušek, Pavel
2017-05-01
There is a currently developed system of a transmitter indoor localization intended for fire fighters or members of rescue corps. In this system the transmitter of an ultra-wideband orthogonal frequency-division multiplexing signal position is determined by the time difference of arrival method. The position measurement accuracy highly depends on the directpath signal time of arrival estimation accuracy which is degraded by severe multipath in complicated environments such as buildings. The aim of this article is to assess errors in the direct-path signal time of arrival determination caused by multipath signal propagation and noise. Two methods of the direct-path signal time of arrival estimation are compared here: the cross correlation method and the spectral estimation method.
Analysis of Deep Seafloor Arrivals Observed on NPAL04
2012-12-03
transmission station to the scattering point (black line) to compute the time spent on the PE-predicted path to the scattering point. This time would...arrives at the OBSs at times corresponding to caustics of the PE predicted time fronts, there are large amplitude, late arrivals that occur between... caustics and even after the PE predicted coda. Similar analysis was done for T500 to T2300 with similar results and is discussed in Section 4 of
Estimating epidemic arrival times using linear spreading theory
NASA Astrophysics Data System (ADS)
Chen, Lawrence M.; Holzer, Matt; Shapiro, Anne
2018-01-01
We study the dynamics of a spatially structured model of worldwide epidemics and formulate predictions for arrival times of the disease at any city in the network. The model is composed of a system of ordinary differential equations describing a meta-population susceptible-infected-recovered compartmental model defined on a network where each node represents a city and the edges represent the flight paths connecting cities. Making use of the linear determinacy of the system, we consider spreading speeds and arrival times in the system linearized about the unstable disease free state and compare these to arrival times in the nonlinear system. Two predictions are presented. The first is based upon expansion of the heat kernel for the linearized system. The second assumes that the dominant transmission pathway between any two cities can be approximated by a one dimensional lattice or a homogeneous tree and gives a uniform prediction for arrival times independent of the specific network features. We test these predictions on a real network describing worldwide airline traffic.
Wood, Nathan J.; Schmidtlein, Mathew C.; Peters, Jeff
2014-01-01
Pedestrian evacuation modeling for tsunami hazards typically focuses on current land-cover conditions and population distributions. To examine how post-disaster redevelopment may influence the evacuation potential of at-risk populations to future threats, we modeled pedestrian travel times to safety in Seward, Alaska, based on conditions before the 1964 Good Friday earthquake and tsunami disaster and on modern conditions. Anisotropic, path distance modeling is conducted to estimate travel times to safety during the 1964 event and in modern Seward, and results are merged with various population data, including the location and number of residents, employees, public venues, and dependent care facilities. Results suggest that modeled travel time estimates conform well to the fatality patterns of the 1964 event and that evacuation travel times have increased in modern Seward due to the relocation and expansion of port and harbor facilities after the disaster. The majority of individuals threatened by tsunamis today in Seward are employee, customer, and tourist populations, rather than residents in their homes. Modern evacuation travel times to safety for the majority of the region are less than wave arrival times for future tectonic tsunamis but greater than arrival times for landslide-related tsunamis. Evacuation travel times will likely be higher in the winter time, when the presence of snow may constrain evacuations to roads.
Geological entropy and solute transport in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Bianchi, Marco; Pedretti, Daniele
2017-06-01
We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.
An ion mobility-mass spectrometry investigation of monocyte chemoattractant protein-1
NASA Astrophysics Data System (ADS)
Schenauer, Matthew R.; Leary, Julie A.
2009-10-01
In the present article we describe the gas-phase dissociation behavior of the dimeric form of monocyte chemoattractant protein-1 (MCP-1) using quadrupole-traveling wave ion mobility spectrometry-time of flight mass spectrometry (q-TWIMS-TOF MS) (Waters Synapt(TM)). Through investigation of the 9+ charge state of the dimer, we were able to monitor dissociation product ion (monomer) formation as a function of activation energy. Using ion mobility, we were able to observe precursor ion structural changes occurring throughout the activation process. Arrival time distributions (ATDs) for the 5+ monomeric MCP-1 product ions, derived from the gas-phase dissociation of the 9+ dimer, were then compared with ATDs obtained for the 5+ MCP-1 monomer isolated directly from solution. The results show that the dissociated monomer is as compact as the monomer arising from solution, regardless of the trap collision energy (CE) used in the dissociation. The solution-derived monomer, when collisionally activated, also resists significant unfolding within measure. Finally, we compared the collisional activation data for the MCP-1 dimer with an MCP-1 dimer non-covalently bound to a single molecule of the semi-synthetic glycosaminoglycan (GAG) analog Arixtra(TM); the latter a therapeutic anti-thrombin III-activating pentasaccharide. We observed that while dimeric MCP-1 dissociated at relatively low trap CEs, the Arixtra-bound dimer required much higher energies, which also induced covalent bond cleavage in the bound Arixtra molecule. Both the free and Arixtra-bound dimers became less compact and exhibited longer arrival times with increasing trap CEs, albeit the Arixtra-bound complex at slightly higher energies. That both dimers shifted to longer arrival times with increasing activation energy, while the dissociated MCP-1 monomers remained compact, suggests that the longer arrival times of the Arixtra-free and Arixtra-bound dimers may represent a partial breach of non-covalent interactions between the associated MCP-1 monomers, rather than extensive unfolding of individual subunits. The fact that Arixtra preferentially binds MCP-1 dimers and prevents dimer dissociation at comparable activation energies to the Arixtra-free dimer, may suggest that the drug interacts across the two monomers, thereby inhibiting their dissociation.
Direction of Arrival Studies of Medium Frequency Burst Radio Emissions at Toolik Lake, AK
NASA Astrophysics Data System (ADS)
Bunch, N.; Labelle, J.; Weatherwax, A.; Lummerzheim, D.; Stenbaek-Nielsen, H.
2008-05-01
MF burst is an impulsive radio emission of auroral origin, which can be detected by ground-based instruments at frequencies between 1,300 and 4,500kHz. MF burst has been shown to be associated with substorm onset, but its exact generation mechanism remains unknown, although it is thought to arise from mode conversion radiation [see review by LaBelle and Treumann, 2002] . In search of the generation mechanism of this emission, Dartmouth College has deployed radio interferometers in Alaska, Northern Canada, Greenland, and Antarctica, including a three-element interferometer deployed to Toolik Field Station in Alaska during the summer of 2006. This instrument measured spectra, amplitudes and directions of arrival (DOA's) of over 47 MF burst events between November 30, 2006 and May 26, 2007. These data represent the first DOA measurements of impulsive MF burst, of which selected case studies were presented at the Fall 2007 AGU conference. Here we present a statistical survey of all 47 events as well as detailed analysis of three events occurring on: Mar 5, Mar 23, and Nov 20, 2007. For the statistical survey, we present distributions of DOA as a function of local time and frequency. In each case study we analyze the direction of arrival of the emissions as a function of both time and frequency within each event. The time variations will be compared with the time variations of optical auroral forms simultaneously measured with all-sky cameras. The dependence of the arrival direction on frequency enables a significant test of the generation mechanism whereby the waves are emitted at the local plasma or upper hybrid frequency in the topside ionosphere, predicting that higher frequencies should originate at lower altitudes. These three events have been selected because All-Sky camera data are available at these times from Toolik Lake and Fort Yukon, Alaska. These are critical both for identifying which optical features are associated with the radio emissions as well as for constraining the electron density profiles used for ray tracing. Ray tracing is a critical tool for this study, and several alternative models will be used in order to understand the uncertainty in these events.
Modelling and mitigating refractive propagation effects in precision pulsar timing observations
NASA Astrophysics Data System (ADS)
Shannon, R. M.; Cordes, J. M.
2017-01-01
To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. We examine both the strength of propagation effects associated with large-scale electron-density variations and the methodology used to estimate infinite frequency arrival times. Using simulations of two-dimensional phase-varying screens, we assess the strength and non-stationarity of timing perturbations associated with large-scale density variations. We identify additional contributions to arrival times that are stochastic in both radio frequency and time and therefore not amenable to correction solely using times of arrival. We attribute this to the frequency dependence of the trajectories of the propagating radio waves. We find that this limits the efficacy of low-frequency (metre-wavelength) observations. Incorporating low-frequency pulsar observations into precision timing campaigns is increasingly problematic for pulsars with larger dispersion measures.
NASA Astrophysics Data System (ADS)
Wold, Alexandra M.; Mays, M. Leila; Taktakishvili, Aleksandre; Jian, Lan K.; Odstrcil, Dusan; MacNeice, Peter
2018-03-01
The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model coronal mass ejection (CME) propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC space weather team. CCMC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in situ interplanetary coronal mass ejection leading edge measurements at Solar TErrestrial RElations Observatory-Ahead (STEREO-A), Solar TErrestrial RElations Observatory-Behind (STEREO-B), and Earth (Wind and ACE) for simulations completed between March 2010 and December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three locations. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B, and was actually observed (hit event), the mean absolute arrival-time prediction error was 10.4 ± 0.9 h, with a tendency to early prediction error of -4.0 h. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A sidelobe operations (August 2014-December 2015). There is an increase of 1.7 h in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.
Low-traffic limit and first-passage times for a simple model of the continuous double auction
NASA Astrophysics Data System (ADS)
Scalas, Enrico; Rapallo, Fabio; Radivojević, Tijana
2017-11-01
We consider a simplified model of the continuous double auction where prices are integers varying from 1 to N with limit orders and market orders, but quantity per order limited to a single share. For this model, the order process is equivalent to two M / M / 1 queues. We study the behavior of the auction in the low-traffic limit where limit orders are immediately matched by market orders. In this limit, the distribution of prices can be computed exactly and gives a reasonable approximation of the price distribution when the ratio between the rate of order arrivals and the rate of order executions is below 1 / 2. This is further confirmed by the analysis of the first-passage time in 1 or N.
A comprehensive review of prehospital and in-hospital delay times in acute stroke care.
Evenson, K R; Foraker, R E; Morris, D L; Rosamond, W D
2009-06-01
The purpose of this study was to systematically review and summarize prehospital and in-hospital stroke evaluation and treatment delay times. We identified 123 unique peer-reviewed studies published from 1981 to 2007 of prehospital and in-hospital delay time for evaluation and treatment of patients with stroke, transient ischemic attack, or stroke-like symptoms. Based on studies of 65 different population groups, the weighted Poisson regression indicated a 6.0% annual decline (P<0.001) in hours/year for prehospital delay, defined from symptom onset to emergency department arrival. For in-hospital delay, the weighted Poisson regression models indicated no meaningful changes in delay time from emergency department arrival to emergency department evaluation (3.1%, P=0.49 based on 12 population groups). There was a 10.2% annual decline in hours/year from emergency department arrival to neurology evaluation or notification (P=0.23 based on 16 population groups) and a 10.7% annual decline in hours/year for delay time from emergency department arrival to initiation of computed tomography (P=0.11 based on 23 population groups). Only one study reported on times from arrival to computed tomography scan interpretation, two studies on arrival to drug administration, and no studies on arrival to transfer to an in-patient setting, precluding generalizations. Prehospital delay continues to contribute the largest proportion of delay time. The next decade provides opportunities to establish more effective community-based interventions worldwide. It will be crucial to have effective stroke surveillance systems in place to better understand and improve both prehospital and in-hospital delays for acute stroke care.
Real time testing of intelligent relays for synchronous distributed generation islanding detection
NASA Astrophysics Data System (ADS)
Zhuang, Davy
As electric power systems continue to grow to meet ever-increasing energy demand, their security, reliability, and sustainability requirements also become more stringent. The deployment of distributed energy resources (DER), including generation and storage, in conventional passive distribution feeders, gives rise to integration problems involving protection and unintentional islanding. Distributed generators need to be islanded for safety reasons when disconnected or isolated from the main feeder as distributed generator islanding may create hazards to utility and third-party personnel, and possibly damage the distribution system infrastructure, including the distributed generators. This thesis compares several key performance indicators of a newly developed intelligent islanding detection relay, against islanding detection devices currently used by the industry. The intelligent relay employs multivariable analysis and data mining methods to arrive at decision trees that contain both the protection handles and the settings. A test methodology is developed to assess the performance of these intelligent relays on a real time simulation environment using a generic model based on a real-life distribution feeder. The methodology demonstrates the applicability and potential advantages of the intelligent relay, by running a large number of tests, reflecting a multitude of system operating conditions. The testing indicates that the intelligent relay often outperforms frequency, voltage and rate of change of frequency relays currently used for islanding detection, while respecting the islanding detection time constraints imposed by standing distributed generator interconnection guidelines.
Identifying and Correcting Timing Errors at Seismic Stations in and around Iran
Syracuse, Ellen Marie; Phillips, William Scott; Maceira, Monica; ...
2017-09-06
A fundamental component of seismic research is the use of phase arrival times, which are central to event location, Earth model development, and phase identification, as well as derived products. Hence, the accuracy of arrival times is crucial. However, errors in the timing of seismic waveforms and the arrival times based on them may go unidentified by the end user, particularly when seismic data are shared between different organizations. Here, we present a method used to analyze travel-time residuals for stations in and around Iran to identify time periods that are likely to contain station timing problems. For the 14more » stations with the strongest evidence of timing errors lasting one month or longer, timing corrections are proposed to address the problematic time periods. Finally, two additional stations are identified with incorrect locations in the International Registry of Seismograph Stations, and one is found to have erroneously reported arrival times in 2011.« less
Zhang, Zheshen; Mower, Jacob; Englund, Dirk; Wong, Franco N C; Shapiro, Jeffrey H
2014-03-28
High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement produced by spontaneous parametric down-conversion and show that it is secure against collective attacks. Its security rests upon visibility data-obtained from Franson and conjugate-Franson interferometers-that probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper bound can be established on the eavesdropper's Holevo information by translating the Gaussian-state security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful, secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy entanglement HDQKD could permit a 700-bit/sec secure-key rate and a photon information efficiency of 2 secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system efficiency.
Calabro, Finnegan J.; Beardsley, Scott A.; Vaina, Lucia M.
2012-01-01
Estimation of time-to-arrival for moving objects is critical to obstacle interception and avoidance, as well as to timing actions such as reaching and grasping moving objects. The source of motion information that conveys arrival time varies with the trajectory of the object raising the question of whether multiple context-dependent mechanisms are involved in this computation. To address this question we conducted a series of psychophysical studies to measure observers’ performance on time-to-arrival estimation when object trajectory was specified by angular motion (“gap closure” trajectories in the frontoparallel plane), looming (colliding trajectories, TTC) or both (passage courses, TTP). We measured performance of time-to-arrival judgments in the presence of irrelevant motion, in which a perpendicular motion vector was added to the object trajectory. Data were compared to models of expected performance based on the use of different components of optical information. Our results demonstrate that for gap closure, performance depended only on the angular motion, whereas for TTC and TTP, both angular and looming motion affected performance. This dissociation of inputs suggests that gap closures are mediated by a separate mechanism than that used for the detection of time-to-collision and time-to-passage. We show that existing models of TTC and TTP estimation make systematic errors in predicting subject performance, and suggest that a model which weights motion cues by their relative time-to-arrival provides a better account of performance. PMID:22056519
Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Batista, R Alves; Ambrosio, M; Aminaei, A; Anchordoqui, L; Andringa, S; Aramo, C; Aranda, V M; Arqueros, F; Asorey, H; Assis, P; Aublin, J; Ave, M; Avenier, M; Avila, G; Awal, N; Badescu, A M; Barber, K B; Bäuml, J; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Blaess, S; Blanco, M; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brancus, I; Bridgeman, A; Brogueira, P; Brown, W C; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Candusso, M; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Cilmo, M; Clay, R W; Cocciolo, G; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Cordier, A; Coutu, S; Covault, C E; Cronin, J; Curutiu, A; Dallier, R; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; Almeida, R M de; Domenico, M De; Jong, S J de; Neto, J R T de Mello; Mitri, I De; Oliveira, J de; Souza, V de; Peral, L Del; Deligny, O; Dembinski, H; Dhital, N; Giulio, C Di; Matteo, A Di; Diaz, J C; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; Docters, W; D'Olivo, J C; Dorofeev, A; Hasankiadeh, Q Dorosti; Dova, M T; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Luis, P Facal San; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fernandes, M; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fox, B D; Fratu, O; Fröhlich, U; Fuchs, B; Fujii, T; Gaior, R; García, B; Roca, S T Garcia; Garcia-Gamez, D; Garcia-Pinto, D; Garilli, G; Bravo, A Gascon; Gate, F; Gemmeke, H; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Glaser, C; Glass, H; Berisso, M Gómez; Vitale, P F Gómez; Gonçalves, P; Gonzalez, J G; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Grebe, S; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Hartmann, S; Harton, J L; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huber, D; Huege, T; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Kégl, B; Keilhauer, B; Keivani, A; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Krömer, O; Kruppke-Hansen, D; Kuempel, D; Kunka, N; LaHurd, D; Latronico, L; Lauer, R; Lauscher, M; Lautridou, P; Coz, S Le; Leão, M S A B; Lebrun, D; Lebrun, P; Oliveira, M A Leigui de; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lu, L; Lucero, A; Ludwig, M; Malacari, M; Maldera, S; Mallamaci, M; Maller, J; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martin, L; Martinez, H; Bravo, O Martínez; Martraire, D; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurel, D; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Meissner, R; Melissas, M; Melo, D; Menshikov, A; Messina, S; Meyhandan, R; Mićanović, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Muller, M A; Müller, G; Müller, S; Münchmeyer, M; Mussa, R; Navarra, G; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, L; Ochilo, L; Olinto, A; Oliveira, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Palmieri, N; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pȩkala, J; Pelayo, R; Pepe, I M; Perrone, L; Petermann, E; Peters, C; Petrera, S; Petrov, Y; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porcelli, A; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Purrello, V; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Riggi, S; Risse, M; Ristori, P; Rizi, V; Carvalho, W Rodrigues de; Cabo, I Rodriguez; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Ros, G; Rosado, J; Rossler, T; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Sánchez, F; Sanchez-Lucas, P; Santo, C E; Santos, E; Santos, E M; Sarazin, F; Sarkar, B; Sarmento, R; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, D; Schröder, F G; Scholten, O; Schoorlemmer, H; Schovánek, P; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sidelnik, I; Sigl, G; Sima, O; Kowski, A Śmiał; Šmída, R; Snow, G R; Sommers, P; Sorokin, J; Squartini, R; Srivastava, Y N; Stanič, S; Stapleton, J; Stasielak, J; Stephan, M; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Szuba, M; Taborda, O A; Tapia, A; Tartare, M; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Toma, G; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Aar, G van; Bodegom, P van; Berg, A M van den; Velzen, S van; Vliet, A van; Varela, E; Vargas Cárdenas, B; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vlcek, B; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weidenhaupt, K; Weindl, A; Werner, F; Widom, A; Wiencke, L; Wilczyńska, B; Wilczyński, H; Will, M; Williams, C; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yamamoto, T; Yapici, T; Yuan, G; Yushkov, A; Zamorano, B; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Zhou, J; Zhu, Y; Silva, M Zimbres; Ziolkowski, M; Zuccarello, F
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with [Formula: see text] eV by analyzing cosmic rays with energies above [Formula: see text] eV arriving within an angular separation of approximately 15[Formula: see text]. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.
Aab, Alexander
2015-06-20
Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E ≥ 6×10 19 eV by analyzing cosmic rays with energies above E ≥ 5×10 18 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis.more » As a result, the comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources.« less
NASA Astrophysics Data System (ADS)
Abbasi, R. U.; Abu-Zayyad, T.; Amann, J. F.; Archbold, G.; Atkins, R.; Bellido, J. A.; Belov, K.; Belz, J. W.; BenZvi, S.; Bergman, D. R.; Boyer, J. H.; Burt, G. W.; Cao, Z.; Clay, R. W.; Connolly, B. M.; Dawson, B. R.; Deng, W.; Fedorova, Y.; Findlay, J.; Finley, C. B.; Hanlon, W. F.; Hoffman, C. M.; Holzscheiter, M. H.; Hughes, G. A.; Hüntemeyer, P.; Jui, C. C. H.; Kim, K.; Kirn, M. A.; Knapp, B. C.; Loh, E. C.; Maestas, M. M.; Manago, N.; Mannel, E. J.; Marek, L. J.; Martens, K.; Matthews, J. A. J.; Matthews, J. N.; O'Neill, A.; Painter, C. A.; Perera, L.; Reil, K.; Riehle, R.; Roberts, M. D.; Sasaki, M.; Schnetzer, S. R.; Seman, M.; Simpson, K. M.; Sinnis, G.; Smith, J. D.; Snow, R.; Sokolsky, P.; Song, C.; Springer, R. W.; Stokes, B. T.; Thomas, J. R.; Thomas, S. B.; Thomson, G. B.; Tupa, D.; Westerhoff, S.; Wiencke, L. R.; Zech, A.; HIRES Collaboration
2004-08-01
The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6d and is sensitive to cosmic rays with energies above 1018 eV. The HiRes cosmic-ray detector is thus an excellent instrument for the study of the arrival directions of ultra-high-energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5°) and at the highest energies (>1019 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 1019 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.
Bayesian analysis of Jolly-Seber type models
Matechou, Eleni; Nicholls, Geoff K.; Morgan, Byron J. T.; Collazo, Jaime A.; Lyons, James E.
2016-01-01
We propose the use of finite mixtures of continuous distributions in modelling the process by which new individuals, that arrive in groups, become part of a wildlife population. We demonstrate this approach using a data set of migrating semipalmated sandpipers (Calidris pussila) for which we extend existing stopover models to allow for individuals to have different behaviour in terms of their stopover duration at the site. We demonstrate the use of reversible jump MCMC methods to derive posterior distributions for the model parameters and the models, simultaneously. The algorithm moves between models with different numbers of arrival groups as well as between models with different numbers of behavioural groups. The approach is shown to provide new ecological insights about the stopover behaviour of semipalmated sandpipers but is generally applicable to any population in which animals arrive in groups and potentially exhibit heterogeneity in terms of one or more other processes.
NASA Astrophysics Data System (ADS)
Kao, H.; Shan, S.
2004-12-01
Determination of the rupture propagation of large earthquakes is important and of wide interest to the seismological research community. The conventional inversion method determines the distribution of slip at a grid of subfaults whose orientations are predefined. As a result, difference choices of fault geometry and dimensions often result in different solutions. In this study, we try to reconstruct the rupture history of an earthquake using the newly developed Source-Scanning Algorithm (SSA) without imposing any a priori constraints on the fault's orientation and dimension. The SSA identifies the distribution of seismic sources in two steps. First, it calculates the theoretical arrival times from all grid points inside the model space to all seismic stations by assuming an origin time. Then, the absolute amplitudes of the observed waveforms at the predicted arrival times are added to give the "brightness" of each time-space pair, and the brightest spots mark the locations of sources. The propagation of the rupture is depicted by the migration of the brightest spots throughout a prescribed time window. A series of experiments are conducted to test the resolution of the SSA inversion. Contrary to the conventional wisdom that seismometers should be placed as close as possible to the fault trace to give the best resolution in delineating rupture details, we found that the best results are obtained if the seismograms are recorded at a distance about half of the total rupture length away from the fault trace. This is especially true when the rupture duration is longer than ~10 s. A possible explanation is that the geometric spreading effects for waveforms from different segments of the rupture are about the same if the stations are sufficiently away from the fault trace, thus giving a uniform resolution to the entire rupture history.
NASA Astrophysics Data System (ADS)
Chen, F.; Wiese, B.; Zhou, Q.; Birkholzer, J. T.; Kowalsky, M. B.
2013-12-01
The Stuttgart formation used for ongoing CO2 injection at the Ketzin pilot test site in Germany is highly heterogeneous in nature. The site characterization data, including 3D seismic amplitude images, the regional geology data, and the core measurements and geophysical logs of the wells show the formation is composed of permeable sandstone channels of varying thickness and length embedded in less permeable mudstones. Most of the sandstone channels are located in the upper 10-15 m of the formation, with only a few sparsely distributed sandstone channels in the bottom 70-m layer. Three-dimensional seismic data help to identify the large-scale facies distribution patterns in the Stuttgart formation, but are unable to resolve internal structures at a smaller scale (e.g. ~100 m). Heterogeneity has a large effect on the pressure propagation measured during a suite of pumping tests conducted in 2007-2008 and also impacts strongly the CO2 arrival times observed during the ongoing CO2 injection experiment. The arrival time of the CO2 plume at the observation well Ktzi 202was 12.5 times greater than at the other observation well Ktzi 200, even though the distance to the injection well is only 2.2 times farther than that of Ktzi 200. To characterize subsurface properties and help predict the behavior of injected CO2 in subsequent experiments, we develop a TOUGH2/EOS9 model for modeling the hydraulic pumping tests and use the inverse modeling tool iTOUGH2 for automatic model calibration. The model domain is parameterized using multiple zones, with each zone assumed to have uniform rock properties. The calibrated model produces system responses that are in good agreement with the measured pressure drawdown data, indicating that it captures the essential flow processes occurring during the pumping tests. The estimated permeability distribution shows that the heterogeneity is significant and that the study site is situated a semi-closed system with one or two sides open to permeable regions and the others effectively blocked by low-permeability regions. A low-permeability zone appears at the northern boundary of the model. Of the three wells that are analyzed, permeable channels are found to connect Ktzi 202 with Ktzi 200/Ktzi 201, while a low-permeability zone is observed between Ktzi 201 and Ktzi 200. The calibrated results are consistent with the crosshole ERT data and can help explain the position of a CO2 plume, inferred from 3D seismic surveys in a subsequent CO2 injection experiment. Because the CO2 transport that occurs during a CO2 injection and the pressure propagation that occurs during pumping tests are sensitive to different scales of subsurface heterogeneity, direct application of a model calibrated from pumping test data is inappropriate for predicting CO2 arrival. However, by including a thin layer of highly permeable sandstone, we present a proof-of-concept model that produces CO2 arrival times comparable to those observed at the site.
Artifacts in Digital Coincidence Timing
Moses, W. W.; Peng, Q.
2014-01-01
Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into a time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator. All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e., the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the “optimal” method. The purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization. PMID:25321885
Artifacts in digital coincidence timing
Moses, W. W.; Peng, Q.
2014-10-16
Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into amore » time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.« less
Artifacts in digital coincidence timing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, W. W.; Peng, Q.
Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into amore » time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.« less
Hardware-software complex of informing passengers of forecasted route transport arrival at stop
NASA Astrophysics Data System (ADS)
Pogrebnoy, V. Yu; Pushkarev, M. I.; Fadeev, A. S.
2017-02-01
The paper presents the hardware-software complex of informing the passengers of the forecasted route transport arrival. A client-server architecture of the forecasting information system is represented and an electronic information board prototype is described. The scheme of information transfer and processing, starting with receiving navigating telemetric data from a transport vehicle and up to the time of passenger public transport arrival at the stop, as well as representation of the information on the electronic board is illustrated and described. Methods and algorithms of determination of the transport vehicle current location in the city route network are considered in detail. The description of the proposed forecasting model of transport vehicle arrival time at the stop is given. The obtained result is applied in Tomsk for forecasting and displaying the arrival time information at the stops.
Weather Impact on Airport Arrival Meter Fix Throughput
NASA Technical Reports Server (NTRS)
Wang, Yao
2017-01-01
Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.
Leonard, M; Kinet, J M; Bodson, M; Havelange, A; Jacqmard, A; Bernier, G
1981-06-01
Vegetative plants of Xanthium strumarium L. grown in long days were induced to flower by exposure to one or several 16-hour dark periods. The distribution of male and female inflorescences on the flowering shoot was described, and a scoring system was designed to assess the development of the female inflorescences. The time of movement of the floral stimulus out of the induced leaf and the timing of action of high temperature were shown to be similar for both the apical male and lateral female inflorescences.Strong photoperiodic induction of the plants favored female sex expression, while maleness was enhanced by exogenous gibberellic acid. The problem of the control of sex expression in Xanthium is discussed in relation to the distribution pattern of male and female inflorescences on the flowering shoot and to the state of the meristem at the time of the arrival of the floral stimulus.
Flowering in Xanthium strumarium
Leonard, Maggy; Kinet, Jean-Marie; Bodson, Monique; Havelange, Andrée; Jacqmard, Annie; Bernier, Georges
1981-01-01
Vegetative plants of Xanthium strumarium L. grown in long days were induced to flower by exposure to one or several 16-hour dark periods. The distribution of male and female inflorescences on the flowering shoot was described, and a scoring system was designed to assess the development of the female inflorescences. The time of movement of the floral stimulus out of the induced leaf and the timing of action of high temperature were shown to be similar for both the apical male and lateral female inflorescences. Strong photoperiodic induction of the plants favored female sex expression, while maleness was enhanced by exogenous gibberellic acid. The problem of the control of sex expression in Xanthium is discussed in relation to the distribution pattern of male and female inflorescences on the flowering shoot and to the state of the meristem at the time of the arrival of the floral stimulus. Images PMID:16661844
How isotropic can the UHECR flux be?
NASA Astrophysics Data System (ADS)
di Matteo, Armando; Tinyakov, Peter
2018-05-01
Modern observatories of ultra-high energy cosmic rays (UHECR) have collected over 104 events with energies above 10 EeV, whose arrival directions appear to be nearly isotropically distributed. On the other hand, the distribution of matter in the nearby Universe - and therefore presumably also that of UHECR sources - is not homogeneous. This is expected to leave an imprint on the angular distribution of UHECR arrival directions, though deflections by cosmic magnetic fields can confound the picture. In this work, we investigate quantitatively this apparent inconsistency. To this end we study observables sensitive to UHECR source inhomogeneities but robust to uncertainties on magnetic fields and the UHECR mass composition. We show, in a rather model-independent way, that if the source distribution tracks the overall matter distribution, the arrival directions at energies above 30 EeV should exhibit a sizeable dipole and quadrupole anisotropy, detectable by UHECR observatories in the very near future. Were it not the case, one would have to seriously reconsider the present understanding of cosmic magnetic fields and/or the UHECR composition. Also, we show that the lack of a strong quadrupole moment above 10 EeV in the current data already disfavours a pure proton composition, and that in the very near future measurements of the dipole and quadrupole moment above 60 EeV will be able to provide evidence about the UHECR mass composition at those energies.
Salmonella serotype distribution in the Dutch broiler supply chain.
van Asselt, E D; Thissen, J T N M; van der Fels-Klerx, H J
2009-12-01
Salmonella serotype distribution can give insight in contamination routes and persistence along a production chain. Therefore, it is important to determine not only Salmonella prevalence but also to specify the serotypes involved at the different stages of the supply chain. For this purpose, data from a national monitoring program in the Netherlands were used to estimate the serotype distribution and to determine whether this distribution differs for the available sampling points in the broiler supply chain. Data covered the period from 2002 to 2005, all slaughterhouses (n = 22), and the following 6 sampling points: departure from hatchery, arrival at the farm, departure from the farm, arrival at the slaughterhouse, departure from the slaughterhouse, and end of processing. Furthermore, retail data for 2005 were used for comparison with slaughterhouse data. The following serotypes were followed throughout the chain: Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Paratyphi B var. Java (Salmonella Java), Salmonella Infantis, Salmonella Virchow, and Salmonella Mbandaka. Results showed that serotype distribution varied significantly throughout the supply chain (P < 0.05). Main differences were found at the farm and at the slaughterhouse (within one stage), and least differences were found between departure from one stage and arrival at the next stage. The most prominent result was the increase of Salmonella Java at farm level. This serotype remained the most prominent pathogen throughout the broiler supply chain up to the retail phase.
25 CFR 142.7 - How are transportation and scheduling determined?
Code of Federal Regulations, 2010 CFR
2010-04-01
... advantage of economies of scale and consider geographic disparity and distribution of sites. (b) Itineraries... shipping season the final departure and arrival schedules must be distributed prior to the commencement of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X. -J.; Li, W.; Thorne, R. M.
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed bymore » Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.« less
Zhang, X. -J.; Li, W.; Thorne, R. M.; ...
2016-08-13
Three mechanisms have been proposed to explain relativistic electron flux depletions (dropouts) in the Earth's outer radiation belt during storm times: adiabatic expansion of electron drift shells due to a decrease in magnetic field strength, magnetopause shadowing and subsequent outward radial diffusion, and precipitation into the atmosphere (driven by EMIC wave scattering). Which mechanism predominates in causing electron dropouts commonly observed in the outer radiation belt is still debatable. In the present study, we evaluate the physical mechanism that may be primarily responsible for causing the sudden change in relativistic electron pitch angle distributions during a dropout event observed bymore » Van Allen Probes during the main phase of the 27 February 2014 storm. During this event, the phase space density of ultrarelativistic (>1MeV) electrons was depleted by more than 1 order of magnitude over the entire radial extent of the outer radiation belt (3 < L* < 5) in less than 6 h after the passage of an interplanetary shock. We model the electron pitch angle distribution under a compressed magnetic field topology based on actual solar wind conditions. Although these ultrarelativistic electrons exhibit highly anisotropic (peaked in 90°), energy-dependent pitch angle distributions, which appear to be associated with the typical EMIC wave scattering, comparison of the modeled electron distribution to electron measurements indicates that drift shell splitting is responsible for this rapid change in electron pitch angle distributions. This further indicates that magnetopause loss is the predominant cause of the electron dropout right after the shock arrival.« less
How robust are distributed systems
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.
1989-01-01
A distributed system is made up of large numbers of components operating asynchronously from one another and hence with imcomplete and inaccurate views of one another's state. Load fluctuations are common as new tasks arrive and active tasks terminate. Jointly, these aspects make it nearly impossible to arrive at detailed predictions for a system's behavior. It is important to the successful use of distributed systems in situations in which humans cannot provide the sorts of predictable realtime responsiveness of a computer, that the system be robust. The technology of today can too easily be affected by worn programs or by seemingly trivial mechanisms that, for example, can trigger stock market disasters. Inventors of a technology have an obligation to overcome flaws that can exact a human cost. A set of principles for guiding solutions to distributed computing problems is presented.
Method of locating underground mines fires
Laage, Linneas; Pomroy, William
1992-01-01
An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.
Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?
Oppel, Steffen; Powell, Abby N.
2009-01-01
Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.
Estimating Controller Intervention Probabilities for Optimized Profile Descent Arrivals
NASA Technical Reports Server (NTRS)
Meyn, Larry A.; Erzberger, Heinz; Huynh, Phu V.
2011-01-01
Simulations of arrival traffic at Dallas/Fort-Worth and Denver airports were conducted to evaluate incorporating scheduling and separation constraints into advisories that define continuous descent approaches. The goal was to reduce the number of controller interventions required to ensure flights maintain minimum separation distances of 5 nmi horizontally and 1000 ft vertically. It was shown that simply incorporating arrival meter fix crossing-time constraints into the advisory generation could eliminate over half of the all predicted separation violations and more than 80% of the predicted violations between two arrival flights. Predicted separation violations between arrivals and non-arrivals were 32% of all predicted separation violations at Denver and 41% at Dallas/Fort-Worth. A probabilistic analysis of meter fix crossing-time errors is included which shows that some controller interventions will still be required even when the predicted crossing-times of the advisories are set to add a 1 or 2 nmi buffer above the minimum in-trail separation of 5 nmi. The 2 nmi buffer was shown to increase average flight delays by up to 30 sec when compared to the 1 nmi buffer, but it only resulted in a maximum decrease in average arrival throughput of one flight per hour.
Minimal conditions for the existence of a Hawking-like flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcelo, Carlos; Liberati, Stefano; Sonego, Sebastiano
2011-02-15
We investigate the minimal conditions that an asymptotically flat general relativistic spacetime must satisfy in order for a Hawking-like Planckian flux of particles to arrive at future null infinity. We demonstrate that there is no requirement that any sort of horizon form anywhere in the spacetime. We find that the irreducible core requirement is encoded in an approximately exponential 'peeling' relationship between affine coordinates on past and future null infinity. As long as a suitable adiabaticity condition holds, then a Planck-distributed Hawking-like flux will arrive at future null infinity with temperature determined by the e-folding properties of the outgoing nullmore » geodesics. The temperature of the Hawking-like flux can slowly evolve as a function of time. We also show that the notion of peeling of null geodesics is distinct from the usual notion of 'inaffinity' used in Hawking's definition of surface gravity.« less
NASA Astrophysics Data System (ADS)
Romano, M.; Mays, M. L.; Taktakishvili, A.; MacNeice, P. J.; Zheng, Y.; Pulkkinen, A. A.; Kuznetsova, M. M.; Odstrcil, D.
2013-12-01
Modeling coronal mass ejections (CMEs) is of great interest to the space weather research and forecasting communities. We present recent validation work of real-time CME arrival time predictions at different satellites using the WSA-ENLIL+Cone three-dimensional MHD heliospheric model available at the Community Coordinated Modeling Center (CCMC) and performed by the Space Weather Research Center (SWRC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. The quality of model operation is evaluated by comparing its output to a measurable parameter of interest such as the CME arrival time and geomagnetic storm strength. The Kp index is calculated from the relation given in Newell et al. (2007), using solar wind parameters predicted by the WSA-ENLIL+Cone model at Earth. The CME arrival time error is defined as the difference between the predicted arrival time and the observed in-situ CME shock arrival time at the ACE, STEREO A, or STEREO B spacecraft. This study includes all real-time WSA-ENLIL+Cone model simulations performed between June 2011-2013 (over 400 runs) at the CCMC/SWRC. We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we show the average absolute CME arrival time error, and the dependence of this error on CME input parameters such as speed, width, and direction. We also present the predicted geomagnetic storm strength (using the Kp index) error for Earth-directed CMEs.
If Time Is Brain Where Is the Improvement in Prehospital Time after Stroke?
Pulvers, Jeremy N.; Watson, John D. G.
2017-01-01
Despite the availability of thrombolytic and endovascular therapy for acute ischemic stroke, many patients are ineligible due to delayed hospital arrival. The identification of factors related to either early or delayed hospital arrival may reveal potential targets of intervention to reduce prehospital delay and improve access to time-critical thrombolysis and clot retrieval therapy. Here, we have reviewed studies reporting on factors associated with either early or delayed hospital arrival after stroke, together with an analysis of stroke onset to hospital arrival times. Much effort in the stroke treatment community has been devoted to reducing door-to-needle times with encouraging improvements. However, this review has revealed that the median onset-to-door times and the percentage of stroke patients arriving before the logistically critical 3 h have shown little improvement in the past two decades. Major factors affecting prehospital time were related to emergency medical pathways, stroke symptomatology, patient and bystander behavior, patient health characteristics, and stroke treatment awareness. Interventions addressing these factors may prove effective in reducing prehospital delay, allowing prompt diagnosis, which in turn may increase the rates and/or efficacy of acute treatments such as thrombolysis and clot retrieval therapy and thereby improve stroke outcomes. PMID:29209269
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moestl, C.; Rollett, T.; Temmer, M.
2011-11-01
One of the goals of the NASA Solar TErestrial RElations Observatory (STEREO) mission is to study the feasibility of forecasting the direction, arrival time, and internal structure of solar coronal mass ejections (CMEs) from a vantage point outside the Sun-Earth line. Through a case study, we discuss the arrival time calculation of interplanetary CMEs (ICMEs) in the ecliptic plane using data from STEREO/SECCHI at large elongations from the Sun in combination with different geometric assumptions about the ICME front shape [fixed-{Phi} (FP): a point and harmonic mean (HM): a circle]. These forecasting techniques use single-spacecraft imaging data and are basedmore » on the assumption of constant velocity and direction. We show that for the slow (350 km s{sup -1}) ICME on 2009 February 13-18, observed at quadrature by the two STEREO spacecraft, the results for the arrival time given by the HM approximation are more accurate by 12 hr than those for FP in comparison to in situ observations of solar wind plasma and magnetic field parameters by STEREO/IMPACT/PLASTIC, and by 6 hr for the arrival time at Venus Express (MAG). We propose that the improvement is directly related to the ICME front shape being more accurately described by HM for an ICME with a low inclination of its symmetry axis to the ecliptic. In this case, the ICME has to be tracked to >30{sup 0} elongation to obtain arrival time errors < {+-} 5 hr. A newly derived formula for calculating arrival times with the HM method is also useful for a triangulation technique assuming the same geometry.« less
The interplanetary shock of September 24, 1998: Arrival at Earth
NASA Astrophysics Data System (ADS)
Russell, C. T.; Wang, Y. L.; Raeder, J.; Tokar, R. L.; Smith, C. W.; Ogilvie, K. W.; Lazarus, A. J.; Lepping, R. P.; Szabo, A.; Kawano, H.; Mukai, T.; Savin, S.; Yermolaev, Y. I.; Zhou, X.-Y.; Tsurutani, B. T.
2000-11-01
At close to 2345 UT on September 24, 1998, the magnetosphere was suddenly compressed by the passage of an interplanetary shock. In order to properly interpret the magnetospheric events triggered by the arrival of this shock, we calculate the orientation of the shock, its velocity, and its estimated time of arrival at the nose of the magnetosphere. Our best fit shock normal has an orientation of (-0.981 -0.157 -0.112) in solar ecliptic coordinates, a speed of 769 km/s, and an arrival time of 2344:19 at the magnetopause at 10 RE. Since measurements of the solar wind and interplanetary magnetic field are available from multiple spacecraft, we can compare several different techniques of shock-normal determination. Of the single spacecraft techniques the magnetic coplanarity solution is most accurate and the mixed mode solution is of lesser accuracy. Uncertainty in the timing and location of the IMP 8 spacecraft limits the accuracy of solutions using the time of arrival at the position of IMP 8.
Evaluation of bus transit reliability in the District of Columbia.
DOT National Transportation Integrated Search
2013-11-01
Several performance metrics can be used to assess the reliability of a transit system. These include on-time arrivals, travel-time : adherence, run-time adherence, and customer satisfaction, among others. On-time arrival at bus stops is one of the pe...
Collaborative Arrival Planning: Data Sharing and User Preference Tools
NASA Technical Reports Server (NTRS)
Zelenka, Richard E.; Edwards, Thomas A. (Technical Monitor)
1998-01-01
Air traffic growth and air carrier economic pressures have motivated efforts to increase the flexibility of the air traffic management process and change the relationship between the air traffic control service provider and the system user. One of the most visible of these efforts is the U.S. government/industry "free flight" initiative, in which the service provider concentrates on safety and cross-airline fairness, and the user on their business objectives and operating preferences, including selecting their own path and speed in real-time. In the terminal arrival phase of flight, severe restrictions and rigid control are currently placed on system users, typically without regard for individual user operational preferences. Airborne delays applied to arriving aircraft into capacity constrained airports are imposed on a first-come, first-serve basis, and thus do not allow the system user to plan for or prioritize late arrivals, or to economically optimize their arrival sequence. A central tenant of the free-flight operating paradigm is collaboration between service providers and users in reaching air traffic management decisions. Such collaboration would be particularly beneficial to an airline's "hub" operation, where off-schedule arrival aircraft are a consistent problem, as they cause serious air-port ramp difficulties, rippling airline scheduling effects, and result in large economic inefficiencies. Greater collaboration can also lead to increased airport capacity and decrease the severity of over-capacity rush periods. In the NASA Collaborative Arrival Planning (CAP) project, both independent exchange of real-time data between the service provider and system user and collaborative decision support tools are addressed. Data exchange of real-time arrival scheduling, airspace management, and air carrier fleet data between the FAA service provider and an air carrier is being conducted and evaluated. Collaborative arrival decision support tools to allow intra-airline arrival preferences are being developed and simulated. The CAP project is part of and leveraged from the NASA/FAA Center TRACON Automation System (CTAS), a fielded set of decision support tools that provide computer generated advisories for both enroute and terminal area controllers to manage and control arrival traffic more efficiently. In this paper, the NASA Collaborative Arrival Planning project is outlined and recent results detailed, including the real-time use of CTAS arrival scheduling data by a major air carrier and simulations of tactical and strategic user preference decision support tools.
Ward, David; Helmericks, J.; Hupp, Jerry W.; McManus, L.; Budde, Michael; Douglas, David C.; Tape, K.D.
2016-01-01
Warming in the Arctic has caused the transition from winter to summer to occur weeks earlier over the last half century, yet little is known about whether avian migrants have altered their timing of arrival on breeding areas to match this earlier seasonal transition. Over a 50-yr period, we examined trends in the timing of the first arrival for 16 avian migrant species at the terminus of their northward migration along the central Arctic coast of Alaska and compared these trends to factors potentially influencing migration phenology. Date of first arrival occurred an average of 0.12 d yr−1 or 6 d (range = 3–10 d) earlier across all species and did not differ significantly among species between 1964 and 2013. Local climatic variables, particularly temperature, had a greater effect on a species first arrival date than did large-scale climatic predictors. First arrival date was 1.03 d earlier for every 1°C annual change in temperature, but there was nearly a 2-fold difference in the range of responses across species (0.69–1.33 d °C−1), implying that some species did better than others at timing their arrival with changing temperature. There was weak support for an influence of foraging strategy, migration distance, and flight path on timing of first arrival. Our findings, like others from temperate latitudes, indicate that avian migrants are responsive to changing environmental conditions, though some species appear to be more adaptive than others.
Time to antibiotics for septic shock: evaluating a proposed performance measure.
Venkatesh, Arjun K; Avula, Umakanth; Bartimus, Holly; Reif, Justin; Schmidt, Michael J; Powell, Emilie S
2013-04-01
International guidelines recommend antibiotics within 1 hour of septic shock recognition; however, a recently proposed performance measure is focused on measuring antibiotic administration within 3 hours of emergency department (ED) arrival. Our objective was to describe the time course of septic shock and subsequent implications for performance measurement. Cross-sectional study of consecutive ED patients ultimately diagnosed with septic shock. All patients were evaluated at an urban, academic ED in 2006 to 2008. Primary outcomes included time to definition of septic shock and performance on 2 measures: antibiotics within 3 hours of ED arrival vs antibiotics within 1 hour of septic shock definition. Of 267 patients with septic shock, the median time to definition was 88 minutes (interquartile range, 37-156), and 217 patients (81.9%) met the definition within 3 hours of arrival. Of 221 (83.4%) of patients who received antibiotics within 3 hours of arrival, 38 (17.2%) did not receive antibiotics within 1 hour of definition. Of 207 patients who received antibiotics within 1 hour of definition, 11.6% (n = 24) did not receive antibiotics within 3 hours of arrival. The arrival measure did not accurately classify performance in 23.4% of patients. Nearly 1 of 5 patients cannot be captured for performance measurement within 3 hours of ED arrival due to the variable progression of septic shock. Use of this measure would misclassify performance in 23% of patients. Measuring antibiotic administration based on the clinical course of septic shock rather than from ED arrival would be more appropriate. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hino, Hisato; Hoshino, Satoshi; Fujisawa, Tomoharu; Maruyama, Shigehisa; Ota, Jun
Currently, container ships move cargo with minimal participation from external trucks. However, there is slack time between the departure of container ships and the completion of cargo handling by container ships without the participation of external trucks; therefore, external trucks can be used to move cargo without delaying the departure time. In this paper, we propose a solution involving the control algorithms of transfer cranes (TCs) because the efficiency of yard operations depends largely on the productivity of TCs. TCs work according to heuristic rules using the forecasted arrival times of internal and external trucks. Simulation results show that the proposed method can reduce the waiting time of external trucks and meet the departure time of container ships.
NASA Astrophysics Data System (ADS)
Zhang, Yubo; Deng, Muhan; Yang, Rui; Jin, Feixiang
2017-09-01
The location technique of acoustic emission (AE) source for deformation damage of 16Mn steel in high temperature environment is studied by using linear time-difference-of-arrival (TDOA) location method. The distribution characteristics of strain induced acoustic emission source signals at 20°C and 400°C of tensile specimens were investigated. It is found that the near fault has the location signal of the cluster, which can judge the stress concentration and cause the fracture.
An Application of the H-Function to Curve-Fitting and Density Estimation.
1983-12-01
equations into a model that is linear in its coefficients. Nonlinear least squares estimation is a relatively new area developed to accomodate models which...to converge on a solution (10:9-10). For the simple linear model and when general assump- tions are made, the Gauss-Markov theorem states that the...distribution. For example, if the analyst wants to model the time between arrivals to a queue for a computer simulation, he infers the true probability
Scheduling and Separating Departures Crossing Arrival Flows in Shared Airspace
NASA Technical Reports Server (NTRS)
Chevalley, Eric; Parke, Bonny K.; Lee, Paul; Omar, Faisal; Lee, Hwasoo; Beinert, Nancy; Kraut, Joshua M.; Palmer, Everett
2013-01-01
Flight efficiency and reduction of flight delays are among the primary goals of NextGen. In this paper, we propose a concept of shared airspace where departures fly across arrival flows, provided gaps are available in these flows. We have explored solutions to separate departures temporally from arrival traffic and pre-arranged procedures to support controllers' decisions. We conducted a Human-in-the-Loop simulation and assessed the efficiency and safety of 96 departures from the San Jose airport (SJC) climbing across the arrival airspace of the Oakland and San Francisco arrival flows. In our simulation, the SJC tower had a tool to schedule departures to fly across predicted gaps in the arrival flow. When departures were mistimed and separation could not be ensured, a safe but less efficient route was provided to the departures to fly under the arrival flows. A coordination using a point-out procedure allowed the arrival controller to control the SJC departures right after takeoff. We manipulated the accuracy of departure time (accurate vs. inaccurate) as well as which sector took control of the departures after takeoff (departure vs. arrival sector) in a 2x2 full factorial plan. Results show that coordination time decreased and climb efficiency increased when the arrival sector controlled the aircraft right after takeoff. Also, climb efficiency increased when the departure times were more accurate. Coordination was shown to be a critical component of tactical operations in shared airspace. Although workload, coordination, and safety were judged by controllers as acceptable in the simulation, it appears that in the field, controllers would need improved tools and coordination procedures to support this procedure.
Kowalewski, Michał; Domènech, Rosa; Martinell, Jordi
2014-01-01
Multi-decadal increase in shell removal by tourists, a process that may accelerate degradation of natural habitats, was quantified via two series of monthly surveys, conducted thirty years apart (1978–1981 and 2008–2010) in one small embayment on the Mediterranean coast of the Iberian Peninsula. Over the last three decades, the local tourist arrivals have increased almost three-fold (2.74), while the area has remained unaffected by urban encroachment and commercial fisheries. During the same time interval the abundance of mollusk shells along the shoreline decreased by a comparable factor (2.62) and was significantly and negatively correlated with tourist arrivals (r = −0.52). The strength of the correlation increased when data were restricted to months with high tourist arrivals (r = −0.72). In contrast, the maximum monthly wave energy (an indirect proxy for changes in rate of onshore shell transport) was not significantly correlated with shell abundance (r = 0.10). Similarly, rank dominance of common species, drilling predation intensity, and body size-frequency distribution patterns have all remained stable over recent decades. A four-fold increase in global tourist arrivals over the last 30 years may have induced a comparable worldwide acceleration in shell removal from marine shorelines, resulting in multiple, currently unquantifiable, habitat changes such as increased beach erosion, changes in calcium carbonate recycling, and declines in diversity and abundance of organisms, which are dependent on shell availability. PMID:24421895
Kowalewski, Michał; Domènech, Rosa; Martinell, Jordi
2014-01-01
Multi-decadal increase in shell removal by tourists, a process that may accelerate degradation of natural habitats, was quantified via two series of monthly surveys, conducted thirty years apart (1978-1981 and 2008-2010) in one small embayment on the Mediterranean coast of the Iberian Peninsula. Over the last three decades, the local tourist arrivals have increased almost three-fold (2.74), while the area has remained unaffected by urban encroachment and commercial fisheries. During the same time interval the abundance of mollusk shells along the shoreline decreased by a comparable factor (2.62) and was significantly and negatively correlated with tourist arrivals (r = -0.52). The strength of the correlation increased when data were restricted to months with high tourist arrivals (r = -0.72). In contrast, the maximum monthly wave energy (an indirect proxy for changes in rate of onshore shell transport) was not significantly correlated with shell abundance (r = 0.10). Similarly, rank dominance of common species, drilling predation intensity, and body size-frequency distribution patterns have all remained stable over recent decades. A four-fold increase in global tourist arrivals over the last 30 years may have induced a comparable worldwide acceleration in shell removal from marine shorelines, resulting in multiple, currently unquantifiable, habitat changes such as increased beach erosion, changes in calcium carbonate recycling, and declines in diversity and abundance of organisms, which are dependent on shell availability.
Energetic solar particle events
NASA Technical Reports Server (NTRS)
Fenton, K. B.; Fenton, A. G.; Humble, J. E.
1985-01-01
Studies of the arrival directions of energetic solar particles during ground level enhancements (CLE's) observed by neutron monitors have shown that, in general, in the first hour of the event most of the particles arrive with a distribution of pitch angles peaked about the garden hose field direction in the vicinity of Earth. During the first hour some of the particles arrive from the antisolar direction, while in later stages of the event the intensity becomes more nearly isotropic as a result of scattering of particles in interplanetary space. An attempt is made to determine the arrival directions of the particles during the early stages of the GLE of 16 February 1984 using the data currently available from high latitude neutron monitors near sea level where the cut off is essentially atmospheric (approx. LGV).
Energetic particles at venus: galileo results.
Williams, D J; McEntire, R W; Krimigis, S M; Roelof, E C; Jaskulek, S; Tossman, B; Wilken, B; Stüdemann, W; Armstrong, T P; Fritz, T A; Lanzerotti, L J; Roederer, J G
1991-09-27
At Venus the Energetic Particles Detector (EPD) on the Galileo spacecraft measured the differential energy spectra and angular distributions of ions >22 kiloelectron volts (keV) and electrons > 15 keV in energy. The only time particles were observed by EPD was in a series of episodic events [0546 to 0638 universal time (UT)] near closest approach (0559:03 UT). Angular distributions were highly anisotropic, ordered by the magnetic field, and showed ions arriving from the hemisphere containing Venus and its bow shock. The spectra showed a power law form with intensities observed into the 120- to 280-keV range. Comparisons with model bow shock calculations show that these energetic ions are associated with the venusian foreshock-bow shock region. Shock-drift acceleration in the venusian bow shock seems the most likely process responsible for the observed ions.
NASA Astrophysics Data System (ADS)
Ivanov, A. A.
2018-04-01
The Yakutsk array data set in the energy interval (1017,1019) eV is revisited in order to interpret the zenith angle distribution of an extensive air shower event rate of ultra-high-energy cosmic rays. The close relation of the distribution to the attenuation of the main measurable parameter of showers, ρ600, is examined. Measured and expected distributions are used to analyze the arrival directions of cosmic rays on an equatorial map including the energy range below 1018 eV , which was previously avoided due to the reduced trigger efficiency of the array in the range. While the null hypothesis cannot be rejected with data from the Yakutsk array, an upper limit on the fraction of cosmic rays from a separable source in the uniform background is derived as a function of declination and energy.
The effect of model uncertainty on some optimal routing problems
NASA Technical Reports Server (NTRS)
Mohanty, Bibhu; Cassandras, Christos G.
1991-01-01
The effect of model uncertainties on optimal routing in a system of parallel queues is examined. The uncertainty arises in modeling the service time distribution for the customers (jobs, packets) to be served. For a Poisson arrival process and Bernoulli routing, the optimal mean system delay generally depends on the variance of this distribution. However, as the input traffic load approaches the system capacity the optimal routing assignment and corresponding mean system delay are shown to converge to a variance-invariant point. The implications of these results are examined in the context of gradient-based routing algorithms. An example of a model-independent algorithm using online gradient estimation is also included.
Measurement of the energy and multiplicity distributions of neutrons from the photofission of U 235
Clarke, S. D.; Wieger, B. M.; Enqvist, A.; ...
2017-06-20
For the first time, the complete neutron multiplicity distribution has been measured in this study from the photofission of 235U induced by high-energy spallation γ rays arriving ahead of the neutron beam at the Los Alamos Neutron Science Center. The resulting average neutron multiplicity 3.80 ± 0.08 (stat.) neutrons per photofission is in general agreement with previous measurements. In addition, unique measurements of the prompt fission energy spectrum of the neutrons from photofission and the angular correlation of two-neutron energies emitted in photofission also were made. Finally, the results are compared to calculations with the complete event fission model FREYA.
Disorganized junior doctors fail the MRCP (UK).
Stanley, Adrian G; Khan, Khalid M; Hussain, Walayat; Tweed, Michael
2006-02-01
Career progression during undergraduate and early postgraduate years is currently determined by successfully passing examinations. Both academic factors (secondary school examination results, learning style and training opportunities) and non-academic factors (maturity, ethnic origin, gender and motivation) have been identified as predicting examination outcome. Few studies have examined organization skills. Disorganized medical students are more likely to perform poorly in end-of-year examinations but this observation has not been examined in junior doctors. This study asked whether organization skills relate to examination outcome amongst junior doctors taking the clinical Part II examination for the Membership of the Royal College of Physicians (Practical Assessment of Clinical Examination Skills). The study was conducted prospectively at four consecutive clinical courses that provided clinical teaching and practice to prepare trainees for the examination. Arrival time at registration for the course was the chosen surrogate for organization skills. Trainees were advised that they should arrive promptly at 8.00 a.m. for registration and it was explained that the course would start at 8.30 a.m. Recorded arrival times were compared with the pass lists published by the Royal College of Physicians. The mean arrival time was 8.17 a.m. A total of 81 doctors (53.3%) passed the examination with a mean arrival time of 8.14 a.m. However, 71 doctors failed the exam and arrived, on average, six minutes later than doctors who passed (p?=?0.006). Better-prepared junior doctors were more likely to pass the final examination. Arriving on time represents a composite of several skills involved in the planning of appropriate travel arrangements and is therefore a valid marker of organization skills and preparation. This novel study has shown that good time-keeping skills are positively associated with examination outcome.
Collisional evolution - an analytical study for the non steady-state mass distribution.
NASA Astrophysics Data System (ADS)
Vieira Martins, R.
1999-05-01
To study the collisional evolution of asteroidal groups one can use an analytical solution for the self-similar collision cascades. This solution is suitable to study the steady-state mass distribution of the collisional fragmentation. However, out of the steady-state conditions, this solution is not satisfactory for some values of the collisional parameters. In fact, for some values for the exponent of the mass distribution power law of an asteroidal group and its relation to the exponent of the function which describes "how rocks break" the author arrives at singular points for the equation which describes the collisional evolution. These singularities appear since some approximations are usually made in the laborious evaluation of many integrals that appear in the analytical calculations. They concern the cutoff for the smallest and the largest bodies. These singularities set some restrictions to the study of the analytical solution for the collisional equation. To overcome these singularities the author performed an algebraic computation considering the smallest and the largest bodies and he obtained the analytical expressions for the integrals that describe the collisional evolution without restriction on the parameters. However, the new distribution is more sensitive to the values of the collisional parameters. In particular the steady-state solution for the differential mass distribution has exponents slightly different from 11/6 for the usual parameters in the asteroid belt. The sensitivity of this distribution with respect to the parameters is analyzed for the usual values in the asteroidal groups. With an expression for the mass distribution without singularities, one can evaluate also its time evolution. The author arrives at an analytical expression given by a power series of terms constituted by a small parameter multiplied by the mass to an exponent, which depends on the initial power law distribution. This expression is a formal solution for the equation which describes the collisional evolution.
Interarrival times of message propagation on directed networks.
Mihaljev, Tamara; de Arcangelis, Lucilla; Herrmann, Hans J
2011-08-01
One of the challenges in fighting cybercrime is to understand the dynamics of message propagation on botnets, networks of infected computers used to send viruses, unsolicited commercial emails (SPAM) or denial of service attacks. We map this problem to the propagation of multiple random walkers on directed networks and we evaluate the interarrival time distribution between successive walkers arriving at a target. We show that the temporal organization of this process, which models information propagation on unstructured peer to peer networks, has the same features as SPAM reaching a single user. We study the behavior of the message interarrival time distribution on three different network topologies using two different rules for sending messages. In all networks the propagation is not a pure Poisson process. It shows universal features on Poissonian networks and a more complex behavior on scale free networks. Results open the possibility to indirectly learn about the process of sending messages on networks with unknown topologies, by studying interarrival times at any node of the network.
Interarrival times of message propagation on directed networks
NASA Astrophysics Data System (ADS)
Mihaljev, Tamara; de Arcangelis, Lucilla; Herrmann, Hans J.
2011-08-01
One of the challenges in fighting cybercrime is to understand the dynamics of message propagation on botnets, networks of infected computers used to send viruses, unsolicited commercial emails (SPAM) or denial of service attacks. We map this problem to the propagation of multiple random walkers on directed networks and we evaluate the interarrival time distribution between successive walkers arriving at a target. We show that the temporal organization of this process, which models information propagation on unstructured peer to peer networks, has the same features as SPAM reaching a single user. We study the behavior of the message interarrival time distribution on three different network topologies using two different rules for sending messages. In all networks the propagation is not a pure Poisson process. It shows universal features on Poissonian networks and a more complex behavior on scale free networks. Results open the possibility to indirectly learn about the process of sending messages on networks with unknown topologies, by studying interarrival times at any node of the network.
Improving queuing service at McDonald's
NASA Astrophysics Data System (ADS)
Koh, Hock Lye; Teh, Su Yean; Wong, Chin Keat; Lim, Hooi Kie; Migin, Melissa W.
2014-07-01
Fast food restaurants are popular among price-sensitive youths and working adults who value the conducive environment and convenient services. McDonald's chains of restaurants promote their sales during lunch hours by offering package meals which are perceived to be inexpensive. These promotional lunch meals attract good response, resulting in occasional long queues and inconvenient waiting times. A study is conducted to monitor the distribution of waiting time, queue length, customer arrival and departure patterns at a McDonald's restaurant located in Kuala Lumpur. A customer survey is conducted to gauge customers' satisfaction regarding waiting time and queue length. An android app named Que is developed to perform onsite queuing analysis and report key performance indices. The queuing theory in Que is based upon the concept of Poisson distribution. In this paper, Que is utilized to perform queuing analysis at this McDonald's restaurant with the aim of improving customer service, with particular reference to reducing queuing time and shortening queue length. Some results will be presented.
NASA Astrophysics Data System (ADS)
Capra, Lucia; Coviello, Velio; Borselli, Lorenzo; Márquez-Ramírez, Víctor-Hugo; Arámbula-Mendoza, Raul
2018-03-01
The Volcán de Colima, one of the most active volcanoes in Mexico, is commonly affected by tropical rains related to hurricanes that form over the Pacific Ocean. In 2011, 2013 and 2015 hurricanes Jova, Manuel and Patricia, respectively, triggered tropical storms that deposited up to 400 mm of rain in 36 h, with maximum intensities of 50 mm h -1. The effects were devastating, with the formation of multiple lahars along La Lumbre and Montegrande ravines, which are the most active channels in sediment delivery on the south-southwest flank of the volcano. Deep erosion along the river channels and several marginal landslides were observed, and the arrival of block-rich flow fronts resulted in damages to bridges and paved roads in the distal reaches of the ravines. The temporal sequence of these flow events is reconstructed and analyzed using monitoring data (including video images, seismic records and rainfall data) with respect to the rainfall characteristics and the hydrologic response of the watersheds based on rainfall-runoff numerical simulation. For the studied events, lahars occurred 5-6 h after the onset of rainfall, lasted several hours and were characterized by several pulses with block-rich fronts and a maximum flow discharge of 900 m3 s -1. Rainfall-runoff simulations were performer using the SCS-curve number and the Green-Ampt infiltration models, providing a similar result in the detection of simulated maximum watershed peaks discharge. Results show different behavior for the arrival times of the first lahar pulses that correlate with the simulated catchment's peak discharge for La Lumbre ravine and with the peaks in rainfall intensity for Montegrande ravine. This different behavior is related to the area and shape of the two watersheds. Nevertheless, in all analyzed cases, the largest lahar pulse always corresponds with the last one and correlates with the simulated maximum peak discharge of these catchments. Data presented here show that flow pulses within a lahar are not randomly distributed in time, and they can be correlated with rainfall peak intensity and/or watershed discharge, depending on the watershed area and shape. This outcome has important implications for hazard assessment during extreme hydro-meteorological events, as it could help in providing real-time alerts. A theoretical rainfall distribution curve was designed for Volcán de Colima based on the rainfall and time distribution of hurricanes Manuel and Patricia. This can be used to run simulations using weather forecasts prior to the actual event, in order to estimate the arrival time of main lahar pulses, usually characterized by block-rich fronts, which are responsible for most of the damage to infrastructure and loss of goods and lives.
Arrival metering fuel consumption analysis
DOT National Transportation Integrated Search
2011-01-01
Arrival metering is a method of time-based traffic management that is used by the Federal Aviation Administration to plan and manage streams of arrival traffic during periods of : high demand at busy airports. The Traffic Management Advisor is an aut...
Lateral and Time Distributions of Extensive Air Showers for CHICOS
NASA Astrophysics Data System (ADS)
Jillings, C. J.; Wells, D.; Chan, K. C.; Hill, J.; Falkowski, B.; Sepikas, J.
2005-04-01
We report results of a series of detailed Monte-Carlo calculations to determine the density and arrival-time distribution of charged particles in extensive air showers. We have parameterized both distributions as a function of distance from the shower axis, energy of the primary cosmic-ray proton, and incident zenith angle. Muons and electrons are parameterized separately. These parameterizations can be easily used in maximum-likelihood reconstruction of air showers. Calculations were performed for primary energies between 10^18 and 10^21eV and zenith angles out to approximately 50^o. The calculations are appropriate for the California High School Cosmic Ray Observatory: a 400 km^2 array of scintillation detectors in Los Angeles county. The average elevation of the array is approximately 250 meters above sea level. Currently 64 of 90 sites are operational. The array will be completed this year. We thank the NSF, the CURE program at the Jet Propulsion Laboratory, the SURF program at Caltech, and the Chinese University of Hong Kong.
Information security: from classical to quantum
NASA Astrophysics Data System (ADS)
Barnett, Stephen M.; Brougham, Thomas
2012-09-01
Quantum cryptography was designed to provide a new approach to the problem of distributing keys for private-key cryptography. The principal idea is that security can be ensured by exploiting the laws of quantum physics and, in particular, by the fact that any attempt to measure a quantum state will change it uncontrollably. This change can be detected by the legitimate users of the communication channel and so reveal to them the presence of an eavesdropper. In this paper I explain (briefly) how quantum key distribution works and some of the progress that has been made towards making this a viable technology. With the principles of quantum communication and quantum key distribution firmly established, it is perhaps time to consider how efficient it can be made. It is interesting to ask, in particular, how many bits of information might reasonably be encoded securely on each photon. The use of photons entangled in their time of arrival might make it possible to achieve data rates in excess of 10 bits per photon.
Effect of Coulomb interaction on time of flight of cold antiprotons launched from an ion trap
NASA Technical Reports Server (NTRS)
Camp, J. B.; Witteborn, F. C.
1993-01-01
Time-of-flight spectra for Maxwell-Boltzman (MB) distributions of antiprotons initially held in an ion trap and detected after being launched through a 50-cm-long shielding drift tube have been calculated. The distributions used are of temperature 0.4-40 K, cubic length 0.003-3.0 cm, and number 10-100 particles. The mutual Coulomb repulsion of the particles causes a reduction in the number of late arrival particles expected from the MB velocity distribution. The Coulomb energy is not equally divided among the particles during the expansion. The energy is transferred preferentially to the outer particles so that the reduction in the number of slow particles is not necessarily large. The reduction factor is found to be greater than unity when the potential energy of the trapped ions is greater than about 5 percent of the ions' kinetic energy and is about 2 for the launch parameters of the Los Alamos antiproton gravity experiment.
First arrival time picking for microseismic data based on DWSW algorithm
NASA Astrophysics Data System (ADS)
Li, Yue; Wang, Yue; Lin, Hongbo; Zhong, Tie
2018-03-01
The first arrival time picking is a crucial step in microseismic data processing. When the signal-to-noise ratio (SNR) is low, however, it is difficult to get the first arrival time accurately with traditional methods. In this paper, we propose the double-sliding-window SW (DWSW) method based on the Shapiro-Wilk (SW) test. The DWSW method is used to detect the first arrival time by making full use of the differences between background noise and effective signals in the statistical properties. Specifically speaking, we obtain the moment corresponding to the maximum as the first arrival time of microseismic data when the statistic of our method reaches its maximum. Hence, in our method, there is no need to select the threshold, which makes the algorithm more facile when the SNR of microseismic data is low. To verify the reliability of the proposed method, a series of experiments is performed on both synthetic and field microseismic data. Our method is compared with the traditional short-time and long-time average (STA/LTA) method, the Akaike information criterion, and the kurtosis method. Analysis results indicate that the accuracy rate of the proposed method is superior to that of the other three methods when the SNR is as low as - 10 dB.
Order of arrival affects competition in two reef fishes.
Geange, Shane W; Stier, Adrian C
2009-10-01
Many communities experience repeated periods of colonization due to seasonally regenerating habitats or pulsed arrival of young-of-year. When an individual's persistence in a community depends upon the strength of competitive interactions, changes in the timing of arrival relative to the arrival of a competitor can modify competitive strength and, ultimately, establishment in the community. We investigated whether the strength of intracohort competitive interactions between recent settlers of the reef fishes Thalassoma hardwicke and T. quinquevittatum are dependent on the sequence and temporal separation of their arrival into communities. To achieve this, we manipulated the sequence and timing of arrival of each species onto experimental patch reefs by simulating settlement pulses and monitoring survival and aggressive interactions. Both species survived best in the absence of competitors, but when competitors were present, they did best when they arrived at the same time. Survival declined as each species entered the community progressively later than its competitor and as aggression by its competitor increased. Intraspecific effects of resident T. hardwicke were similar to interspecific effects. This study shows that the strength of competition depends not only on the identity of competitors, but also on the sequence and timing of their interactions, suggesting that when examining interaction strengths, it is important to identify temporal variability in the direction and magnitude of their effects. Furthermore, our findings provide empirical evidence for the importance of competitive lotteries in the maintenance of species diversity in demographically open marine systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryuichi
In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}(more » f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.« less
Hanaki, Nao; Yamashita, Kazuto; Kunisawa, Susumu; Imanaka, Yuichi
2016-12-09
In Japan, ambulance staff sometimes must make request calls to find hospitals that can accept patients because of an inadequate information sharing system. This study aimed to quantify effects of the number of request calls on the time interval between an emergency call and hospital arrival. A cross-sectional study of an ambulance records database in Nara prefecture, Japan. A total of 43 663 patients (50% women; 31.2% aged 80 years and over): (1) transported by ambulance from April 2013 to March 2014, (2) aged 15 years and over, and (3) with suspected major illness. The time from call to hospital arrival, defined as the time interval from receipt of an emergency call to ambulance arrival at a hospital. The mean time interval from emergency call to hospital arrival was 44.5 min, and the mean number of requests was 1.8. Multilevel linear regression analysis showed that ∼43.8% of variations in transportation times were explained by patient age, sex, season, day of the week, time, category of suspected illness, person calling for the ambulance, emergency status at request call, area and number of request calls. A higher number of request calls was associated with longer time intervals to hospital arrival (addition of 6.3 min per request call; p<0.001). In an analysis dividing areas into three groups, there were differences in transportation time for diseases needing cardiologists, neurologists, neurosurgeons and orthopaedists. The study revealed 6.3 additional minutes needed in transportation time for every refusal of a request call, and also revealed disease-specific delays among specific areas. An effective system should be collaboratively established by policymakers and physicians to ensure the rapid identification of an available hospital for patient transportation in order to reduce the time from the initial emergency call to hospital arrival. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Hanaki, Nao; Yamashita, Kazuto; Kunisawa, Susumu; Imanaka, Yuichi
2016-01-01
Objectives In Japan, ambulance staff sometimes must make request calls to find hospitals that can accept patients because of an inadequate information sharing system. This study aimed to quantify effects of the number of request calls on the time interval between an emergency call and hospital arrival. Design and setting A cross-sectional study of an ambulance records database in Nara prefecture, Japan. Cases A total of 43 663 patients (50% women; 31.2% aged 80 years and over): (1) transported by ambulance from April 2013 to March 2014, (2) aged 15 years and over, and (3) with suspected major illness. Primary outcome measures The time from call to hospital arrival, defined as the time interval from receipt of an emergency call to ambulance arrival at a hospital. Results The mean time interval from emergency call to hospital arrival was 44.5 min, and the mean number of requests was 1.8. Multilevel linear regression analysis showed that ∼43.8% of variations in transportation times were explained by patient age, sex, season, day of the week, time, category of suspected illness, person calling for the ambulance, emergency status at request call, area and number of request calls. A higher number of request calls was associated with longer time intervals to hospital arrival (addition of 6.3 min per request call; p<0.001). In an analysis dividing areas into three groups, there were differences in transportation time for diseases needing cardiologists, neurologists, neurosurgeons and orthopaedists. Conclusions The study revealed 6.3 additional minutes needed in transportation time for every refusal of a request call, and also revealed disease-specific delays among specific areas. An effective system should be collaboratively established by policymakers and physicians to ensure the rapid identification of an available hospital for patient transportation in order to reduce the time from the initial emergency call to hospital arrival. PMID:27940625
Agarwal, Shikhar; Gallo, Justin J; Parashar, Akhil; Agarwal, Kanika K; Ellis, Stephen G; Khot, Umesh N; Spooner, Robin; Murat Tuzcu, Emin; Kapadia, Samir R
2016-03-01
Operational inefficiencies are ubiquitous in several healthcare processes. To improve the operational efficiency of our catheterization laboratory (Cath Lab), we implemented a lean six sigma process improvement initiative, starting in June 2010. We aimed to study the impact of lean six sigma implementation on improving the efficiency and the patient throughput in our Cath Lab. All elective and urgent cardiac catheterization procedures including diagnostic coronary angiography, percutaneous coronary interventions, structural interventions and peripheral interventions performed between June 2009 and December 2012 were included in the study. Performance metrics utilized for analysis included turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start and manual sheath-pulls inside the Cath Lab. After implementation of lean six sigma in the Cath Lab, we observed a significant improvement in turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. The percentage of cases with optimal turn-time increased from 43.6% in 2009 to 56.6% in 2012 (p-trend<0.001). Similarly, the percentage of cases with an aggregate on-time start increased from 41.7% in 2009 to 62.8% in 2012 (p-trend<0.001). In addition, the percentage of manual sheath-pulls performed in the Cath Lab decreased from 60.7% in 2009 to 22.7% in 2012 (p-trend<0.001). The current longitudinal study illustrates the impact of successful implementation of a well-known process improvement initiative, lean six sigma, on improving and sustaining efficiency of our Cath Lab operation. After the successful implementation of this continuous quality improvement initiative, there was a significant improvement in the selected performance metrics namely turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. Copyright © 2016 Elsevier Inc. All rights reserved.
An experimental study on real time bus arrival time prediction with GPS data
DOT National Transportation Integrated Search
2001-01-01
Bus headway in a rural area is usually much larger than that in an urban area. Providing real-time bus : arrival information could make the public transit system more user-friendly and thus enhance its : competitiveness among various transportation m...
An experimental study on real time bus arrival time prediction with GPS data
DOT National Transportation Integrated Search
1999-01-01
Bus headway in a rural area usually is much larger than that in an urban area. Providing real-time bus arrival information could make the public transit system more user-friendly and thus enhance its competitiveness among various transportation modes...
Evaluation of the real-time earthquake information system in Japan
NASA Astrophysics Data System (ADS)
Nakamura, Hiromitsu; Horiuchi, Shigeki; Wu, Changjiang; Yamamoto, Shunroku; Rydelek, Paul A.
2009-01-01
The real-time earthquake information system (REIS) of the Japanese seismic network is developed for automatically determining earthquake parameters within a few seconds after the P-waves arrive at the closest stations using both the P-wave arrival times and the timing data that P-waves have not yet arrived at other stations. REIS results play a fundamental role in the real-time information for earthquake early warning in Japan. We show the rapidity and accuracy of REIS from the analysis of 4,050 earthquakes in three years since 2005; 44 percent of the first reports are issued within 5 seconds after the first P-wave arrival and 80 percent of the events have a difference in epicenter distance less than 20 km relative to manually determined locations. We compared the formal catalog to the estimated magnitude from the real-time analysis and found that 94 percent of the events had a magnitude difference of +/-1.0 unit.
Non-Poissonian Distribution of Tsunami Waiting Times
NASA Astrophysics Data System (ADS)
Geist, E. L.; Parsons, T.
2007-12-01
Analysis of the global tsunami catalog indicates that tsunami waiting times deviate from an exponential distribution one would expect from a Poisson process. Empirical density distributions of tsunami waiting times were determined using both global tsunami origin times and tsunami arrival times at a particular site with a sufficient catalog: Hilo, Hawai'i. Most sources for the tsunamis in the catalog are earthquakes; other sources include landslides and volcanogenic processes. Both datasets indicate an over-abundance of short waiting times in comparison to an exponential distribution. Two types of probability models are investigated to explain this observation. Model (1) is a universal scaling law that describes long-term clustering of sources with a gamma distribution. The shape parameter (γ) for the global tsunami distribution is similar to that of the global earthquake catalog γ=0.63-0.67 [Corral, 2004]. For the Hilo catalog, γ is slightly greater (0.75-0.82) and closer to an exponential distribution. This is explained by the fact that tsunamis from smaller triggered earthquakes or landslides are less likely to be recorded at a far-field station such as Hilo in comparison to the global catalog, which includes a greater proportion of local tsunamis. Model (2) is based on two distributions derived from Omori's law for the temporal decay of triggered sources (aftershocks). The first is the ETAS distribution derived by Saichev and Sornette [2007], which is shown to fit the distribution of observed tsunami waiting times. The second is a simpler two-parameter distribution that is the exponential distribution augmented by a linear decay in aftershocks multiplied by a time constant Ta. Examination of the sources associated with short tsunami waiting times indicate that triggered events include both earthquake and landslide tsunamis that begin in the vicinity of the primary source. Triggered seismogenic tsunamis do not necessarily originate from the same fault zone, however. For example, subduction-thrust and outer-rise earthquake pairs are evident, such as the November 2006 and January 2007 Kuril Islands tsunamigenic pair. Because of variations in tsunami source parameters, such as water depth above the source, triggered tsunami events with short waiting times are not systematically smaller than the primary tsunami.
Clark, C W; Ellison, W T
2000-06-01
Between 1984 and 1993, visual and acoustic methods were combined to census the Bering-Chukchi-Beaufort bowhead whale, Balaena mysticetus, population. Passive acoustic location was based on arrival-time differences of transient bowhead sounds detected on sparse arrays of three to five hydrophones distributed over distances of 1.5-4.5 km along the ice edge. Arrival-time differences were calculated from either digital cross correlation of spectrograms (old method), or digital cross correlation of time waveforms (new method). Acoustic calibration was conducted in situ in 1985 at five sites with visual site position determined by triangulation using two theodolites. The discrepancy between visual and acoustic locations was <1%-5% of visual range and less than 0.7 degrees of visual bearing for either method. Comparison of calibration results indicates that the new method yielded slightly more precise and accurate positions than the old method. Comparison of 217 bowhead whale call locations from both acoustic methods showed that the new method was more precise, with location errors 3-4 times smaller than the old method. Overall, low-frequency bowhead transients were reliably located out to ranges of 3-4 times array size. At these ranges in shallow water, signal propagation appears to be dominated by the fundamental mode and is not corrupted by multipath.
Deconvolution improves the accuracy and depth sensitivity of time-resolved measurements
NASA Astrophysics Data System (ADS)
Diop, Mamadou; St. Lawrence, Keith
2013-03-01
Time-resolved (TR) techniques have the potential to distinguish early- from late-arriving photons. Since light travelling through superficial tissue is detected earlier than photons that penetrate the deeper layers, time-windowing can in principle be used to improve the depth sensitivity of TR measurements. However, TR measurements also contain instrument contributions - referred to as the instrument-response-function (IRF) - which cause temporal broadening of the measured temporal-point-spread-function (TPSF). In this report, we investigate the influence of the IRF on pathlength-resolved absorption changes (Δμa) retrieved from TR measurements using the microscopic Beer-Lambert law (MBLL). TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved to recover the distribution of time-of-flights (DTOFs) of the detected photons. The microscopic Beer-Lambert law was applied to early and late time-windows of the TPSFs and DTOFs to access the effects of the IRF on pathlength-resolved Δμa. The analysis showed that the late part of the TPSFs contains substantial contributions from early-arriving photons, due to the smearing effects of the IRF, which reduced its sensitivity to absorption changes occurring in deep layers. We also demonstrated that the effects of the IRF can be efficiently eliminated by applying a robust deconvolution technique, thereby improving the accuracy and sensitivity of TR measurements to deep-tissue absorption changes.
An Investigation of the Combat Air Patrol Stationing in an Integrated Air Defense Scenario
1990-12-01
interceptor to go to CAP station takes off at time t = 0. At time t = toc this interceptor arrives at station and, because no attacker arrives, it...has arrived on station and for this to be possible, the third interceptor has taken off at time t = toc + 2tn - to= = 2t. Meanwhile, the first...that tc > 0 and (tbc + tnp + tA) > 0. Under these assumptions we have that aircraft number 2 will always be used because ( toc + t= + tj, + te + tAI
Impulse propagation in the nocturnal boundary layer: analysis of the geometric component.
Blom, Philip; Waxler, Roger
2012-05-01
On clear dry nights over flat land, a temperature inversion and stable nocturnal wind jet lead to an acoustic duct in the lowest few hundred meters of the atmosphere. An impulsive signal propagating in such a duct is received at long ranges from the source as an extended wave train consisting of a series of weakly dispersed distinct arrivals followed by a strongly dispersed low-frequency tail. The leading distinct arrivals have been previously shown to be well modeled by geometric acoustics. In this paper, the geometric acoustics approximation for the leading arrivals is investigated. Using the solutions of the eikonal and transport equations, travel times, amplitudes, and caustic structures of the distinct arrivals have been determined. The time delay between and relative amplitudes of the direct-refracted and single ground reflection arrivals have been investigated as parameters for an inversion scheme. A two parameter quadratic approximation to the effective sound speed profile has been fit and found to be in strong agreement with meteorological measurements from the time of propagation.
Strengthening economy through tourism sector by tourist arrival prediction
NASA Astrophysics Data System (ADS)
Supriatna, A.; Subartini, B.; Hertini, E.; Sukono; Rumaisha; Istiqamah, N.
2018-03-01
Tourism sector has a tendency to be proposed as a support for national economy to many countries with various of natural resources, such as Indonesia. The number of tourist is very related with the success rate of a tourist attraction, since it is also related with planning and strategy. Hence, it is important to predict the climate of tourism in Indonesia, especially the number of domestic or international tourist in the future. This study uses Seasonal Autoregressive Integrated Moving Average (SARIMA) time series method to predict the number of tourist arrival to tourism strategic areas in Nusa Tenggara Barat. The prediction was done using the international and domestic tourist arrival to Nusa Tenggara Barat data from January 2008 to June 2016. The established SARIMA method was (0,1,1)(0,0,2)12 with MAPE error of 15.76. The prediction for the next six time periods showed that the highest number of tourist arrival is during September 2016 with 330,516 tourist arrivals. Prediction of tourist arrival hopefully might be used as reference for local and national government to make policies to strengthen national economy for a long period of time
Nonlinear Localized Dissipative Structures for Long-Time Solution of Wave Equation
2009-07-01
are described in this chapter. These details are required to compute interference. WC can be used to generate constant arrival time ( Eikonal phase...complicated using Eikonal schemes. Some recent developments in Eikonal methods [2] can treat multiple arrival times but, these methods require extra
Statistical modeling of storm-level Kp occurrences
Remick, K.J.; Love, J.J.
2006-01-01
We consider the statistical modeling of the occurrence in time of large Kp magnetic storms as a Poisson process, testing whether or not relatively rare, large Kp events can be considered to arise from a stochastic, sequential, and memoryless process. For a Poisson process, the wait times between successive events occur statistically with an exponential density function. Fitting an exponential function to the durations between successive large Kp events forms the basis of our analysis. Defining these wait times by calculating the differences between times when Kp exceeds a certain value, such as Kp ??? 5, we find the wait-time distribution is not exponential. Because large storms often have several periods with large Kp values, their occurrence in time is not memoryless; short duration wait times are not independent of each other and are often clumped together in time. If we remove same-storm large Kp occurrences, the resulting wait times are very nearly exponentially distributed and the storm arrival process can be characterized as Poisson. Fittings are performed on wait time data for Kp ??? 5, 6, 7, and 8. The mean wait times between storms exceeding such Kp thresholds are 7.12, 16.55, 42.22, and 121.40 days respectively.
Wave-equation migration velocity inversion using passive seismic sources
NASA Astrophysics Data System (ADS)
Witten, B.; Shragge, J. C.
2015-12-01
Seismic monitoring at injection sites (e.g., CO2 sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits the fact that the P- and S-wave arrivals originate at the same time and location in the subsurface. We generate image volumes by back-propagating P- and S-wave data through initial Earth models and then applying a correlation-based extended-imaging condition. Energy focusing away from zero lag in the extended image volume is used as a (penalized) residual in an adjoint-state tomography scheme to update the P- and S-wave velocity models. We use an acousto-elastic approximation to greatly reduce the computational cost. Because the method requires neither an initial source location or origin time estimate nor picking of arrivals, it is suitable for low signal-to-noise datasets, such as microseismic data. Synthetic results show that with a realistic distribution of microseismic sources, P- and S-velocity perturbations can be recovered. Although demonstrated at an oil and gas reservoir scale, the technique can be applied to problems of all scales from geologic core samples to global seismology.
Determination of trajectories of fireballs using seismic network data
NASA Astrophysics Data System (ADS)
Ishihara, Y.
2006-12-01
Fireballs, Bolides, which are caused by high velocity passages of meteoroids through the atmosphere, generate shockwaves. Meteor shockwave provide us very important information (arrival time and amplitude) to study meteor physics. The shockwave arrival time data enable us to determine trajectories of the fireballs. On the other hand, the shockwave amplitude tells us size and ablation history of the meteoroid. Infrasound observation is one of the ways of detecting bolide shockwaves. However, we have no infrasound observational networks extends for large area with enough spatial distribution for determination of trajectories and estimate ablation histories. We have only a few infrasound arrays that have three or four elements, in the Japanese islands. Last decade, digital seismic networks are greatly improved for the purpose of monitoring micro earthquakes. Those seismic networks are quite sensitive for detecting micro ground vibration, and then those networks could detect not only seismic wave generated by earthquakes, but also ground oscillations generated by coupling of meteor shockwave with the ground near station. Last years, I analyses this kind of ground motion data recorded by seismic network, as meteor shockwave signals. For example, we estimate some great fireball's aerial path from arrival times of shockwaves (e.g., Ishihara et. al., 2003 Earth Planets, and Space, 2004 Geophysical Research. Letters.; Pujol et al., 2006 Planetary and Space Science), and we estimate sizes and ablation history of some great fireball and a meteorite fall (Ishihara et al., 2004 Meteoroids2004). In Japan, some great fireball falls occurred during 2004 to 2005. In this presentation, I show the trajectories of these fireballs determined from shockwave analysis. Some fireballs trajectories are also determined from photographic records. The trajectories determined from shockwave and that from photos show good agreement.
Separation of the electromagnetic and the muon component in EAS by their arrival times
NASA Astrophysics Data System (ADS)
Brüggemann, M.; Apel, W.D.; Arteaga, J.C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Buchholz, P.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P.L.; Gils, H.J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J.R.; Huege, T.; Isar, P.G.; Kampert, K.-H.; Kickelbick, D.; Klages, H.O.; Kolotaev, Y.; Luczak, P.; Mathes, H.J.; Mayer, H.J.; Meurer, C.; Milke, J.; Mitrica, B.; Morales, A.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Plewnia, S.; Rebel, H.; Roth, M.; Schieler, H.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G.C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.
The KASCADE-Grande experiment at Forschungszentrum Karlsruhe, Germany, measures extensive air showers initiated by primary particles with energies between 100 TeV and 1 EeV. Detector pulses digitized by a Flash-ADC based data acquisition system were unfolded to study the arrival times of secondary particles separately for the electromagnetic and the muonic shower component. Muons arrive on average earlier at ground level than electrons. A cut on the particle arrival time has been determined as a function of the distance to the shower core for the separation of electrons and muons. This cut is intended to be used for the determination of the muon content of air showers in experiments without dedicated muon detectors but with time resolving detector electronics. The muon content is essential for the reconstruction of the cosmic ray energy spectrum separated into individual elemental groups.
Empirical estimation of the arrival time of ICME Shocks
NASA Astrophysics Data System (ADS)
Shaltout, Mosalam
Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.
Toward the Probabilistic Forecasting of High-latitude GPS Phase Scintillation
NASA Technical Reports Server (NTRS)
Prikryl, P.; Jayachandran, P.T.; Mushini, S. C.; Richardson, I. G.
2012-01-01
The phase scintillation index was obtained from L1 GPS data collected with the Canadian High Arctic Ionospheric Network (CHAIN) during years of extended solar minimum 2008-2010. Phase scintillation occurs predominantly on the dayside in the cusp and in the nightside auroral oval. We set forth a probabilistic forecast method of phase scintillation in the cusp based on the arrival time of either solar wind corotating interaction regions (CIRs) or interplanetary coronal mass ejections (ICMEs). CIRs on the leading edge of high-speed streams (HSS) from coronal holes are known to cause recurrent geomagnetic and ionospheric disturbances that can be forecast one or several solar rotations in advance. Superposed epoch analysis of phase scintillation occurrence showed a sharp increase in scintillation occurrence just after the arrival of high-speed solar wind and a peak associated with weak to moderate CMEs during the solar minimum. Cumulative probability distribution functions for the phase scintillation occurrence in the cusp are obtained from statistical data for days before and after CIR and ICME arrivals. The probability curves are also specified for low and high (below and above median) values of various solar wind plasma parameters. The initial results are used to demonstrate a forecasting technique on two example periods of CIRs and ICMEs.
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antiči'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Messina, S.; Meurer, C.; Meyhandan, R.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Peķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; 'Smiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.
2012-12-01
A thorough search for large-scale anisotropies in the distribution of arrival directions of cosmic rays detected above 1018 eV at the Pierre Auger Observatory is presented. This search is performed as a function of both declination and right ascension in several energy ranges above 1018 eV, and reported in terms of dipolar and quadrupolar coefficients. Within the systematic uncertainties, no significant deviation from isotropy is revealed. Assuming that any cosmic-ray anisotropy is dominated by dipole and quadrupole moments in this energy range, upper limits on their amplitudes are derived. These upper limits allow us to test the origin of cosmic rays above 1018 eV from stationary Galactic sources densely distributed in the Galactic disk and predominantly emitting light particles in all directions.
A study on the impact of prioritising emergency department arrivals on the patient waiting time.
Van Bockstal, Ellen; Maenhout, Broos
2018-05-03
In the past decade, the crowding of the emergency department has gained considerable attention of researchers as the number of medical service providers is typically insufficient to fulfil the demand for emergency care. In this paper, we solve the stochastic emergency department workforce planning problem and consider the planning of nurses and physicians simultaneously for a real-life case study in Belgium. We study the patient arrival pattern of the emergency department in depth and consider different patient acuity classes by disaggregating the arrival pattern. We determine the personnel staffing requirements and the design of the shifts based on the patient arrival rates per acuity class such that the resource staffing cost and the weighted patient waiting time are minimised. In order to solve this multi-objective optimisation problem, we construct a Pareto set of optimal solutions via the -constraints method. For a particular staffing composition, the proposed model minimises the patient waiting time subject to upper bounds on the staffing size using the Sample Average Approximation Method. In our computational experiments, we discern the impact of prioritising the emergency department arrivals. Triaging results in lower patient waiting times for higher priority acuity classes and to a higher waiting time for the lowest priority class, which does not require immediate care. Moreover, we perform a sensitivity analysis to verify the impact of the arrival and service pattern characteristics, the prioritisation weights between different acuity classes and the incorporated shift flexibility in the model.
Crossing fitness canyons by a finite population
NASA Astrophysics Data System (ADS)
Saakian, David B.; Bratus, Alexander S.; Hu, Chin-Kun
2017-06-01
We consider the Wright-Fisher model of the finite population evolution on a fitness landscape defined in the sequence space by a path of nearly neutral mutations. We study a specific structure of the fitness landscape: One of the intermediate mutations on the mutation path results in either a large fitness value (climbing up a fitness hill) or a low fitness value (crossing a fitness canyon), the rest of the mutations besides the last one are neutral, and the last sequence has much higher fitness than any intermediate sequence. We derive analytical formulas for the first arrival time of the mutant with two point mutations. For the first arrival problem for the further mutants in the case of canyon crossing, we analytically deduce how the mean first arrival time scales with the population size and fitness difference. The location of the canyon on the path of sequences has a crucial role. If the canyon is at the beginning of the path, then it significantly prolongs the first arrival time; otherwise it just slightly changes it. Furthermore, the fitness hill at the beginning of the path strongly prolongs the arrival time period; however, the hill located near the end of the path shortens it. We optimize the first arrival time by applying a nonzero selection to the intermediate sequences. We extend our results and provide a scaling for the valley crossing time via the depth of the canyon and population size in the case of a fitness canyon at the first position. Our approach is useful for understanding some complex evolution systems, e.g., the evolution of cancer.
Bibok, Maximilian B; Votova, Kristine; Balshaw, Robert F; Lesperance, Mary L; Croteau, Nicole S; Trivedi, Anurag; Morrison, Jaclyn; Sedgwick, Colin; Penn, Andrew M
2018-02-27
To evaluate the performance of a novel triage system for Transient Ischemic Attack (TIA) units built upon an existent clinical prediction rule (CPR) to reduce time to unit arrival, relative to the time of symptom onset, for true TIA and minor stroke patients. Differentiating between true and false TIA/minor stroke cases (mimics) is necessary for effective triage as medical intervention for true TIA/minor stroke is time-sensitive and TIA unit spots are a finite resource. Prospective cohort study design utilizing patient referral data and TIA unit arrival times from a regional fast-track TIA unit on Vancouver Island, Canada, accepting referrals from emergency departments (ED) and general practice (GP). Historical referral cohort (N = 2942) from May 2013-Oct 2014 was triaged using the ABCD2 score; prospective referral cohort (N = 2929) from Nov 2014-Apr 2016 was triaged using the novel system. A retrospective survival curve analysis, censored at 28 days to unit arrival, was used to compare days to unit arrival from event date between cohort patients matched by low (0-3), moderate (4-5) and high (6-7) ABCD2 scores. Survival curve analysis indicated that using the novel triage system, prospectively referred TIA/minor stroke patients with low and moderate ABCD2 scores arrived at the unit 2 and 1 day earlier than matched historical patients, respectively. The novel triage process is associated with a reduction in time to unit arrival from symptom onset for referred true TIA/minor stroke patients with low and moderate ABCD2 scores.
Characterization of compounds by time-of-flight measurement utilizing random fast ions
Conzemius, R.J.
1989-04-04
An apparatus is described for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions. 8 figs.
Characterization of compounds by time-of-flight measurement utilizing random fast ions
Conzemius, Robert J.
1989-01-01
An apparatus for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions.
Processing of the Liquid Xenon calorimeter's signals for timing measurements
NASA Astrophysics Data System (ADS)
Epshteyn, L. B.; Yudin, Yu V.
2014-09-01
One of the goals of the Cryogenic Magnetic Detector at Budker Institute of Nuclear Physics SB RAS (Novosibirsk, Russia) is a study of nucleons production in electron-positron collisions near threshold. The neutron-antineutron pair production events can be detected only by the calorimeters. In the barrel calorimeter the antineutron annihilation typically occurs by 5 ns or later after beams crossing. For identification of such events it is necessary to measure the time of flight of particles to the LXe-calorimeter with accuracy of about 3 ns. The LXe-calorimeter consists of 14 layers of ionization chambers with anode and cathode readout. The duration of charge collection to the anodes is about 4.5 mks, while the required accuracy of measuring of the signal arrival time is less than 1/1000 of that. Besides, the signals' shapes differ substantially from event to event, so the signal arrival time is measured in two stages. At the first stage, the signal arrival time is determined with an accuracy of 1-2 discretization periods, and initial values of parameters for subsequent fitting procedure are calculated. At the second stage, the signal arrival time is determined with the required accuracy by means of fitting of the signal waveform with a template waveform. To implement that, a special electronics has been developed which performs waveform digitization and On-Line measurement of signals' arrival times and amplitudes.
Mommsen, Philipp; Bradt, Nikolas; Zeckey, Christian; Andruszkow, Hagen; Petri, Max; Frink, Michael; Hildebrand, Frank; Krettek, Christian; Probst, Christian
2012-01-01
In consideration of rising cost pressure in the German health care system, the usefulness of helicopter emergency medical service (HEMS) in terms of time- and cost-effectiveness is controversially discussed. The aim of the present study was to investigate whether HEMS is associated with significantly decreased arrival and transportation times compared to ground EMS. In a retrospective study, we evaluated 1,548 primary emergency missions for time sensitive diagnoses (multiple trauma, traumatic brain and burn injury, heart-attack, stroke, and pediatric emergency) performed by a German HEMS using the medical database, NADIN, of the German Air Rescue Service. Arrival and transportation times were compared to calculated ground EMS times. HEMS showed significantly reduced arrival times at the scene in case of heart-attack, stroke and pediatric emergencies. In contrast, HEMS and ground EMS showed comparable arrival times in patients with multiple trauma, traumatic brain and burn injury due to an increased flight distance. HEMS showed a significantly decreased transportation time to the closest centre capable of specialist care in all diagnosis groups (p<0.001). The results of the present study indicate the time-effectiveness of German air ambulance services with significantly decreased transportation times.
Kwena, Zachary A; Njoroge, Betty W; Cohen, Craig R; Oyaro, Patrick; Shikari, Rosemary; Kibaara, Charles K; Bukusi, Elizabeth A
2015-01-01
As efforts are made to reach universal access to ART in Kenya, the problem of congestion at HIV care clinics is likely to worsen. We evaluated the feasibility and the economic benefits of a designated time appointment system as a solution to decongest HIV care clinics. This was an explanatory two-arm open-label randomized controlled trial that enrolled 354 consenting participants during their normal clinic days and followed-up at subsequent clinic appointments for up to nine months. Intervention arm participants were given specific dates and times to arrive at the clinic for their next appointment while those in the control arm were only given the date and had the discretion to decide on the time to arrive as is the standard practice. At follow-up visits, we recorded arrival and departure times and asked the monetary value of work participants engaged in before and after clinic. We conducted multiple imputation to replace missing data in our primary outcome variables to allow for intention-to-treat analysis; and analyzed the data using Mann-Whitney U test. Overall, 72.1% of the intervention participants arrived on time, 13.3% arrived ahead of time and 14.6% arrived past scheduled time. Intervention arm participants spent a median of 65 [interquartile range (IQR), 52-87] minutes at the clinic compared to 197 (IQR, 173-225) minutes for control participants (p<0.01). Furthermore, intervention arm participants were more productively engaged on their clinic days valuing their cumulative work at a median of USD 10.5 (IQR, 60.0-16.8) compared to participants enrolled in the control arm who valued their work at USD 8.3 (IQR, 5.5-12.9; p=0.02). A designated time appointment system is feasible and provides substantial time savings associated with greater economic productivity for HIV patients attending a busy HIV care clinic.
State-space receptive fields of semicircular canal afferent neurons in the bullfrog
NASA Technical Reports Server (NTRS)
Paulin, M. G.; Hoffman, L. F.
2001-01-01
Receptive fields are commonly used to describe spatial characteristics of sensory neuron responses. They can be extended to characterize temporal or dynamical aspects by mapping neural responses in dynamical state spaces. The state-space receptive field of a neuron is the probability distribution of the dynamical state of the stimulus-generating system conditioned upon the occurrence of a spike. We have computed state-space receptive fields for semicircular canal afferent neurons in the bullfrog (Rana catesbeiana). We recorded spike times during broad-band Gaussian noise rotational velocity stimuli, computed the frequency distribution of head states at spike times, and normalized these to obtain conditional pdfs for the state. These state-space receptive fields quantify what the brain can deduce about the dynamical state of the head when a single spike arrives from the periphery. c2001 Elsevier Science B.V. All rights reserved.
Supporting Management of European Refugee Streams by Earth Observation and Geoinformation
NASA Astrophysics Data System (ADS)
Komp, K.-U.; Müterthies, A.
2016-06-01
The sharp increase in refugee numbers arriving in the European Union has recently caused major and manifold challenges for the member states and their administrative services. Location based situation reports and maps may support the refugee management from local to European level. The first support is mapping of the geographical distribution of migrating people which needs more or less real time data. The actual data sources are location related observations along the routes of refugees, actual satellite observations and data mining results. These tools and data are used to monitor spatial distributions as well as extrapolate the arrival of refugees for the subsequent weeks. The second support is the short term update of the location of initial registration facilities and first reception facilities, their capacities, and their occupancy. The third management level is the systematic inquiry for unoccupied housing facilities and for empty places within build-up areas. Geo-coded data sets of house numbers have to be cross-referenced with city maps and communal inhabitants address data. The legal aspects of data mining and secured access to personal data are strictly controlled by the administration allowing only limited access and distribution of data and results. However, the paper will not disclose scientific progress in Earth Observation and GIS, but will actually demonstrate an urgently needed new combination of existing methods to support actual needs. The societal benefits of EO/GIS are no longer just potential possibilities, but actual results in real political, administrative and humanitarian day to day reality.
Accurate seismic phase identification and arrival time picking of glacial icequakes
NASA Astrophysics Data System (ADS)
Jones, G. A.; Doyle, S. H.; Dow, C.; Kulessa, B.; Hubbard, A.
2010-12-01
A catastrophic lake drainage event was monitored continuously using an array of 6, 4.5 Hz 3 component geophones in the Russell Glacier catchment, Western Greenland. Many thousands of events and arrival time phases (e.g., P- or S-wave) were recorded, often with events occurring simultaneously but at different locations. In addition, different styles of seismic events were identified from 'classical' tectonic earthquakes to tremors usually observed in volcanic regions. The presence of such a diverse and large dataset provides insight into the complex system of lake drainage. One of the most fundamental steps in seismology is the accurate identification of a seismic event and its associated arrival times. However, the collection of such a large and complex dataset makes the manual identification of a seismic event and picking of the arrival time phases time consuming with variable results. To overcome the issues of consistency and manpower, a number of different methods have been developed including short-term and long-term averages, spectrograms, wavelets, polarisation analyses, higher order statistics and auto-regressive techniques. Here we propose an automated procedure which establishes the phase type and accurately determines the arrival times. The procedure combines a number of different automated methods to achieve this, and is applied to the recently acquired lake drainage data. Accurate identification of events and their arrival time phases are the first steps in gaining a greater understanding of the extent of the deformation and the mechanism of such drainage events. A good knowledge of the propagation pathway of lake drainage meltwater through a glacier will have significant consequences for interpretation of glacial and ice sheet dynamics.
NASA Astrophysics Data System (ADS)
Balzer, W.
1996-09-01
A 1430 m deep station in the Norwegian Sea (Voering Plateau) was occupied five times between May 1986 and February 1987 to investigate the seasonal variation in sediment mixing rates. Cherbnbyl-derived radiocesium, identified by its high proportion of short-lived 134Cs, was used as a tracer for mixing. Most of the nuclide input arrived at the sediment within a narrow time span in June/early July during the beginning of the seasonal biogenic sedimentation pulse. Measured 137Cs profiles in the sediment over time were compared with modelled distributions calculated with a finite difference scheme. The input function of radiocesium to the sea floor was evaluated from the increase of the total inventory with time. Time-invariant mixing coefficients did not provide reasonable fits to either summer or winter distributions. The best fit was obtained with a rate of mixing proportional to the radiocesium input flux, with an average enhancement factor of 6.6 during the two summer months. It appears that the benthic macrofauna are more active during the food supply season and rapidly ingest/bury freshly sedimented materials.
Acoustic field in unsteady moving media
NASA Technical Reports Server (NTRS)
Bauer, F.; Maestrello, L.; Ting, L.
1995-01-01
In the interaction of an acoustic field with a moving airframe the authors encounter a canonical initial value problem for an acoustic field induced by an unsteady source distribution, q(t,x) with q equivalent to 0 for t less than or equal to 0, in a medium moving with a uniform unsteady velocity U(t)i in the coordinate system x fixed on the airframe. Signals issued from a source point S in the domain of dependence D of an observation point P at time t will arrive at point P more than once corresponding to different retarded times, Tau in the interval (0, t). The number of arrivals is called the multiplicity of the point S. The multiplicity equals 1 if the velocity U remains subsonic and can be greater when U becomes supersonic. For an unsteady uniform flow U(t)i, rules are formulated for defining the smallest number of I subdomains V(sub i) of D with the union of V(sub i) equal to D. Each subdomain has multiplicity 1 and a formula for the corresponding retarded time. The number of subdomains V(sub i) with nonempty intersection is the multiplicity m of the intersection. The multiplicity is at most I. Examples demonstrating these rules are presented for media at accelerating and/or decelerating supersonic speed.
NASA Astrophysics Data System (ADS)
Patton, J.; Yeck, W.; Benz, H.
2017-12-01
The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.
Cederwall, R T; Peterson, K R
1990-11-01
A three-dimensional atmospheric transport and diffusion model is used to calculate the arrival and deposition of fallout from 13 selected nuclear tests at the Nevada Test Site (NTS) in the 1950s. Results are used to extend NTS fallout patterns to intermediate downwind distances (300 to 1200 km). The radioactive cloud is represented in the model by a population of Lagrangian marker particles, with concentrations calculated on an Eulerian grid. Use of marker particles, with fall velocities dependent on particle size, provides a realistic simulation of fallout as the debris cloud travels downwind. The three-dimensional wind field is derived from observed data, adjusted for mass consistency. Terrain is represented in the grid, which extends up to 1200 km downwind of NTS and has 32-km horizontal resolution and 1-km vertical resolution. Ground deposition is calculated by a deposition-velocity approach. Source terms and relationships between deposition and exposure rate are based on work by Hicks. Uncertainty in particle size and vertical distributions within the debris cloud (and stem) allow for some model "tuning" to better match measured ground-deposition values. Particle trajectories representing different sizes and starting heights above ground zero are used to guide source specification. An hourly time history of the modeled fallout pattern as the debris cloud moves downwind provides estimates of fallout arrival times. Results for event HARRY illustrate the methodology. The composite deposition pattern for all 13 tests is characterized by two lobes extending out to the north-northeast and east-northeast, respectively, at intermediate distances from NTS. Arrival estimates, along with modeled deposition values, augment measured deposition data in the development of data bases at the county level; these data bases are used for estimating radiation exposure at intermediate distances downwind of NTS. Results from a study of event TRINITY are also presented.
Programmable quantum random number generator without postprocessing.
Nguyen, Lac; Rehain, Patrick; Sua, Yong Meng; Huang, Yu-Ping
2018-02-15
We demonstrate a viable source of unbiased quantum random numbers whose statistical properties can be arbitrarily programmed without the need for any postprocessing such as randomness distillation or distribution transformation. It is based on measuring the arrival time of single photons in shaped temporal modes that are tailored with an electro-optical modulator. We show that quantum random numbers can be created directly in customized probability distributions and pass all randomness tests of the NIST and Dieharder test suites without any randomness extraction. The min-entropies of such generated random numbers are measured close to the theoretical limits, indicating their near-ideal statistics and ultrahigh purity. Easy to implement and arbitrarily programmable, this technique can find versatile uses in a multitude of data analysis areas.
Ogle, Kiona; Caron, Melanie; Marks, Jane C.; Rogg, Helmuth W.
2016-01-01
Invasive species alter ecosystems, threaten native and endangered species, and have negative economic impacts. Knowing where invading individuals are from and when they arrive to a new site can guide management. Here, we evaluated how well the stable hydrogen isotope composition (δ2H) records the recent origin and time since arrival of specimens of the invasive Japanese beetle (Popillia japonica Newman) captured near the Portland International Airport (Oregon, U.S.A.). The δ2H of Japanese beetle specimens collected from sites across the contiguous U.S.A. reflected the δ2H of local precipitation, a relationship similar to that documented for other organisms, and one confirming the utility of δ2H as a geographic fingerprint. Within weeks after experimental relocation to a new isotopic environment, the δ2H of beetles changed linearly with time, demonstrating the potential for δ2H to also mark the timing of arrival to a new location. We used a hierarchical Bayesian model to estimate the recent geographical origin and timing of arrival of each specimen based on its δ2H value. The geographic resolution was broad, with values consistent with multiple regions of origin in the eastern U.S.A., slightly favoring the southeastern U.S.A. as the more likely source. Beetles trapped from 2007–2010 had arrived 30 or more days prior to trapping, whereas the median time since arrival declined to 3–7 days for beetles trapped from 2012–2014. This reduction in the time between arrival and trapping at the Portland International Airport supports the efficacy of trapping and spraying to prevent establishment. More generally, our analysis shows how stable isotopes can serve as sentinels of biological invasions, verifying the efficacy of control measures, or, alternatively, indicating when those measures show signs of failure. PMID:26959686
Fiber optic thermal/fast neutron and gamma ray scintillation detector
Neal, John S.; Mihalczo, John T
2007-10-30
A system for detecting fissile and fissionable material originating external to the system includes: a .sup.6Li loaded glass fiber scintillator for detecting thermal neutrons, x-rays and gamma rays; a fast scintillator for detecting fast neutrons, x-rays and gamma rays, the fast scintillator conjoined with the glass fiber scintillator such that the fast scintillator moderates fast neutrons prior to their detection as thermal neutrons by the glass fiber scintillator; and a coincidence detection system for processing the time distributions of arriving signals from the scintillators.
Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software
NASA Technical Reports Server (NTRS)
Hunter, George; Boisvert, Benjamin
2013-01-01
This document is the final report for the project entitled "Upgrades to the Probabilistic NAS Platform Air Traffic Simulation Software." This report consists of 17 sections which document the results of the several subtasks of this effort. The Probabilistic NAS Platform (PNP) is an air operations simulation platform developed and maintained by the Saab Sensis Corporation. The improvements made to the PNP simulation include the following: an airborne distributed separation assurance capability, a required time of arrival assignment and conformance capability, and a tactical and strategic weather avoidance capability.
1984-12-01
with more gene - ral arrival process or service-time distribution, with attention restricted to critical-number policies, have been studied by Adler...points of their respective intervals. This method proved quite satisfactory for df’s that possess no sharp peaks or severe skewness. The method is...then (animal is carnivore))) (rule id6 (if (animal has pointed teeth ) (animal has claws) (animal has forward eyes)) (then (animal is carnivore
1990-12-01
ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS THESIS Scott Thomas Captain, USAF AFIT/GE/ENG/90D-62 DTIC...ELECTE ao • JAN08 1991 Approved for public release; distribution unlimited. AFIT/GE/ENG/90D-62 ANGLE OF ARRIVAL DETECTION THROUGH ARTIFICIAL NEURAL NETWORK ANALYSIS... ARTIFICIAL NEURAL NETWORK ANALYSIS OF OPTICAL FIBER INTENSITY PATTERNS L Introduction The optical sensors of United States Air Force reconnaissance
First photon detection in time-resolved transillumination imaging: a theoretical evaluation.
Behin-Ain, S; van Doorn, T; Patterson, J R
2004-09-07
First photon detection, as a special case of time-resolved transillumination imaging, is studied through the derivation of the temporal probability density function (pdf) for the first arriving photon. The pdf for different laser intensities, media and second and later arriving photons were generated. The arrival time of the first detected photon reduced as the laser power increased and also when the scattering and absorption coefficients decreased. The pdf for an imbedded totally absorbing 3 mm inhomogeneity may be distinguished from the pdf of a homogeneous turbid medium similar to that of human breast in dimensions and optical properties.
NASA Astrophysics Data System (ADS)
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.
2016-04-01
Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.
Aging persons' estimates of vehicular motion.
Schiff, W; Oldak, R; Shah, V
1992-12-01
Estimated arrival times of moving autos were examined in relation to viewer age, gender, motion trajectory, and velocity. Direct push-button judgments were compared with verbal estimates derived from velocity and distance, which were based on assumptions that perceivers compute arrival time from perceived distance and velocity. Experiment 1 showed that direct estimates of younger Ss were most accurate. Older women made the shortest (highly cautious) estimates of when cars would arrive. Verbal estimates were much lower than direct estimates, with little correlation between them. Experiment 2 extended target distances and velocities of targets, with the results replicating the main findings of Experiment 1. Judgment accuracy increased with target velocity, and verbal estimates were again poorer estimates of arrival time than direct ones, with different patterns of findings. Using verbal estimates to approximate judgments in traffic situations appears questionable.
NASA Astrophysics Data System (ADS)
Kummerow, J.; Reshetnikov, A.; Häring, M.; Asanuma, H.
2012-12-01
Thousands of microseismic events occurred during and after the stimulation of the 4.5km deep Basel 1 well at the Deep Heat Mining Project in Basel, Switzerland, in December 2006. The located seismicity extends about 1km in vertical direction and also 1km in NNW-SSE direction, consistent with the orientation of the maximum horizontal stress. In this study, we analyze 2100 events with magnitudes Mw>0.0, which were recorded by six borehole seismometers between December 2, 2006, and June 7, 2007. We first identify event multiplets based on waveform similarity and apply an automatic, iterative arrival time optimization to calculate high-precision P and S time picks for the multiplet events. Local estimates of the Vp/Vs ratio in the stimulated Basel geothermal reservoir are then obtained from the slope of the demeaned differential S versus P arrival times. The average value of Vp/Vs=1.70 is close to the characteristic reservoir value of 1.72, which was determined independently from sonic log measurements. Also, in the vicinity of the borehole, the depth distribution of Vp/Vs correlates well with the low-pass filtered sonic log data: Vp/Vs values are less than 1.70 at the top of the seismicity cloud at <3.9km depth, close to average at 4.0-4.4km depth, and exceed the value of 1.75 at larger depth (4.4-4.6km), consistent with the sonic log data. Furthermore, we observe a correlation of anomalous Vp/Vs values with zones of enhanced seismic reflectivity which were resolved by microseismic reflection imaging. Away from the borehole, increased Vp/Vs ratios also seem to correlate with domains of high event density, possibly indicating fluid migration paths.
Intelligent feature selection techniques for pattern classification of Lamb wave signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinders, Mark K.; Miller, Corey A.
2014-02-18
Lamb wave interaction with flaws is a complex, three-dimensional phenomenon, which often frustrates signal interpretation schemes based on mode arrival time shifts predicted by dispersion curves. As the flaw severity increases, scattering and mode conversion effects will often dominate the time-domain signals, obscuring available information about flaws because multiple modes may arrive on top of each other. Even for idealized flaw geometries the scattering and mode conversion behavior of Lamb waves is very complex. Here, multi-mode Lamb waves in a metal plate are propagated across a rectangular flat-bottom hole in a sequence of pitch-catch measurements corresponding to the double crossholemore » tomography geometry. The flaw is sequentially deepened, with the Lamb wave measurements repeated at each flaw depth. Lamb wave tomography reconstructions are used to identify which waveforms have interacted with the flaw and thereby carry information about its depth. Multiple features are extracted from each of the Lamb wave signals using wavelets, which are then fed to statistical pattern classification algorithms that identify flaw severity. In order to achieve the highest classification accuracy, an optimal feature space is required but it’s never known a priori which features are going to be best. For structural health monitoring we make use of the fact that physical flaws, such as corrosion, will only increase over time. This allows us to identify feature vectors which are topologically well-behaved by requiring that sequential classes “line up” in feature vector space. An intelligent feature selection routine is illustrated that identifies favorable class distributions in multi-dimensional feature spaces using computational homology theory. Betti numbers and formal classification accuracies are calculated for each feature space subset to establish a correlation between the topology of the class distribution and the corresponding classification accuracy.« less
A Preliminary ZEUS Lightning Location Error Analysis Using a Modified Retrieval Theory
NASA Technical Reports Server (NTRS)
Elander, Valjean; Koshak, William; Phanord, Dieudonne
2004-01-01
The ZEUS long-range VLF arrival time difference lightning detection network now covers both Europe and Africa, and there are plans for further expansion into the western hemisphere. In order to fully optimize and assess ZEUS lightning location retrieval errors and to determine the best placement of future receivers expected to be added to the network, a software package is being developed jointly between the NASA Marshall Space Flight Center (MSFC) and the University of Nevada Las Vegas (UNLV). The software package, called the ZEUS Error Analysis for Lightning (ZEAL), will be used to obtain global scale lightning location retrieval error maps using both a Monte Carlo approach and chi-squared curvature matrix theory. At the core of ZEAL will be an implementation of an Iterative Oblate (IO) lightning location retrieval method recently developed at MSFC. The IO method will be appropriately modified to account for variable wave propagation speed, and the new retrieval results will be compared with the current ZEUS retrieval algorithm to assess potential improvements. In this preliminary ZEAL work effort, we defined 5000 source locations evenly distributed across the Earth. We then used the existing (as well as potential future ZEUS sites) to simulate arrival time data between source and ZEUS site. A total of 100 sources were considered at each of the 5000 locations, and timing errors were selected from a normal distribution having a mean of 0 seconds and a standard deviation of 20 microseconds. This simulated "noisy" dataset was analyzed using the IO algorithm to estimate source locations. The exact locations were compared with the retrieved locations, and the results are summarized via several color-coded "error maps."
Timelines in the management of adrenal crisis - targets, limits and reality.
Hahner, Stefanie; Hemmelmann, Nina; Quinkler, Marcus; Beuschlein, Felix; Spinnler, Christina; Allolio, Bruno
2015-04-01
To evaluate current management timelines in adrenal crisis (AC) and to establish time targets and time limits for emergency treatment. Patients from a prospective study who had reported an AC (n = 46) were contacted and asked about management of their AC. A survey among 24 European endocrinologists collected expert recommendations concerning time targets and time limits for contact-arrival time of emergency health professionals and presentation of emergency card-glucocorticoid (GC) injection time. Median time targets and time limits regarded by experts as adequate for contact-arrival time were 45 and 90 min, respectively, and for card-injection time 15 and 30 min, respectively. Thirty-seven of 46 patients could be interviewed. All patients were equipped with an emergency card but only 23 (62%) with an emergency kit. Seven patients (19%) were trained in GC self-injection. The median time interval between contacting a health professional and arrival was 20 min (range 2-2880 min); ≤45 min: n = 32 (86%), <90 min: n = 34 (92%). The median time interval between arrival and administration of GC was 30 min (range 2-2400 min); ≤15 min: n = 17 (46%), ≤30 min: n = 20 (54%). While the time between contacting health professionals and their arrival was within the limits set by experts, initiation of GC administration was delayed in 46% of patients. Thus, improved management of AC needs to focus on shortening the presentation of card-injection time. Given the current reality in the management of AC, promotion of self-injection of GC (s.c. or i.m.) is warranted. © 2014 John Wiley & Sons Ltd.
Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barbato, F.; Barreira Luz, R. J.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Cobos, A.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Consolati, G.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorosti, Q.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fenu, F.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Jurysek, J.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemmerich, N.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lo Presti, D.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Merenda, K.-D.; Michal, S.; Micheletti, M. I.; Middendorf, L.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Riehn, F.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Šupík, J.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, R. A.; Veberič, D.; Ventura, C.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Wirtz, M.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.
2017-09-01
Cosmic rays are high-energy particles arriving from space; some have energies far beyond those that human-made particle accelerators can achieve. The sources of higher-energy cosmic rays remain under debate, although we know that lower-energy cosmic rays come from the solar wind. The Pierre Auger Collaboration reports the observation of thousands of cosmic rays with ultrahigh energies of several exa–electron volts (about a Joule per particle), arriving in a slightly dipolar distribution (see the Perspective by Gallagher and Halzen). The direction of the rays indicates that the particles originated in other galaxies and not from nearby sources within our own Milky Way Galaxy.
NASA Astrophysics Data System (ADS)
Das, G. S.; Hazarika, P.; Goswami, U. D.
2018-07-01
We have studied the distribution patterns of lateral density, arrival time and angular position of Cherenkov photons generated in Extensive Air Showers (EASs) initiated by γ-ray, proton and iron primaries incident with various energies and at various zenith angles. This study is the extension of our earlier work [1] to cover a wide energy range of ground based γ-ray astronomy with a wide range of zenith angles (≤40°) of primary particles, as well as the extension to study the angular distribution patterns of Cherenkov photons in EASs. This type of study is important for distinguishing the γ-ray initiated showers from the hadronic showers in the ground based γ-ray astronomy, where Atmospheric Cherenkov Technique (ACT) is being used. Importantly, such study gives an insight on the nature of γ-ray and hadronic showers in general. In this work, the CORSIKA 6.990 simulation code is used for generation of EASs. Similarly to the case of Ref. [1], this study also revealed that, the lateral density and arrival time distributions of Cherenkov photons vary almost in accordance with the functions: ρch(r) =ρ0e-βr and tch(r) =t0eΓ/rλ respectively by taking different values of the parameters of functions for the type, energy and zenith angle of the primary particle. The distribution of Cherenkov photon's angular positions with respect to shower axis shows distinctive features depending on the primary type, its energy and the zenith angle. As a whole this distribution pattern for the iron primary is noticeably different from those for γ-ray and proton primaries. The value of the angular position at which the maximum number of Cherenkov photons are concentrated, increases with increase in energy of vertically incident primary, but for inclined primary it lies within a small value (≤1°) for almost all energies and primary types. No significant difference in the results obtained by using the high energy hadronic interaction models, viz., QGSJETII and EPOS has been observed.
Ensemble Modeling of the July 23, 2012 CME Event
NASA Astrophysics Data System (ADS)
Cash, M. D.; Biesecker, D. A.; Millward, G.; Arge, C. N.; Henney, C. J.
2013-12-01
On July 23, 2012 a large and very fast coronal mass ejection (CME) was observed by STEREO A. This CME was unusual in that the estimates of the speed of the CME ranged from 2125 km/s to 2780 km/s based on dividing the distance of STEREO A from the Sun by the transit time of the CME. Modeling of this CME event with the WSA-Enlil model has also suggested that a very fast speed is required in order to obtain the correct arrival time at 1 AU. We present a systematic study of parameter space for the July 23, 2012 CME event through an ensemble study using the WSA-Enlil model to predict the arrival time of the CME at STEREO A. We investigate how variations in the initial speed, angular width, and direction affect the predicted arrival time. We also explore how variations in the background solar wind influence CME arrival time by using varying ADAPT maps within our ensemble study. Factors involved in the fast transit time of this large CME are discussed and the optimal CME parameters are presented.
Statistical inference of seabed sound-speed structure in the Gulf of Oman Basin.
Sagers, Jason D; Knobles, David P
2014-06-01
Addressed is the statistical inference of the sound-speed depth profile of a thick soft seabed from broadband sound propagation data recorded in the Gulf of Oman Basin in 1977. The acoustic data are in the form of time series signals recorded on a sparse vertical line array and generated by explosive sources deployed along a 280 km track. The acoustic data offer a unique opportunity to study a deep-water bottom-limited thickly sedimented environment because of the large number of time series measurements, very low seabed attenuation, and auxiliary measurements. A maximum entropy method is employed to obtain a conditional posterior probability distribution (PPD) for the sound-speed ratio and the near-surface sound-speed gradient. The multiple data samples allow for a determination of the average error constraint value required to uniquely specify the PPD for each data sample. Two complicating features of the statistical inference study are addressed: (1) the need to develop an error function that can both utilize the measured multipath arrival structure and mitigate the effects of data errors and (2) the effect of small bathymetric slopes on the structure of the bottom interacting arrivals.
Gray, David R
2016-05-01
Reducing the risk of introduction to North America of the invasive Asian gypsy moth (Lymantria dispar asiatica Vnukovskij and L. d. japonica [Motschulsky]) on international maritime vessels involves two tactics: (1) vessels that wish to arrive in Canada or the United States and have visited any Asian port that is subject to regulation during designated times must obtain a predeparture inspection certificate from an approved entity; and (2) vessels with a certificate may be subjected to an additional inspection upon arrival. A decision support tool is described here with which the allocation of inspection resources at North American ports can be partitioned among multiple vessels according to estimates of the potential onboard Asian gypsy moth population and estimates of the onboard larval emergence pattern. The decision support tool assumes that port inspection is uniformly imperfect at the Asian ports and that each visit to a regulated port has potential for the vessel to be contaminated with gypsy moth egg masses. The decision support tool uses a multigenerational phenology model to estimate the potential onboard population of egg masses by calculating the temporal intersection between the dates of port visits to regulated ports and the simulated oviposition pattern in each port. The phenological development of the onboard population is simulated each day of the vessel log until the vessel arrives at the port being protected from introduction. Multiple independent simulations are used to create a probability distribution of the size and timing of larval emergence. © 2015 Society for Risk Analysis.
Foo, Brian; van der Schaar, Mihaela
2010-11-01
In this paper, we discuss distributed optimization techniques for configuring classifiers in a real-time, informationally-distributed stream mining system. Due to the large volume of streaming data, stream mining systems must often cope with overload, which can lead to poor performance and intolerable processing delay for real-time applications. Furthermore, optimizing over an entire system of classifiers is a difficult task since changing the filtering process at one classifier can impact both the feature values of data arriving at classifiers further downstream and thus, the classification performance achieved by an ensemble of classifiers, as well as the end-to-end processing delay. To address this problem, this paper makes three main contributions: 1) Based on classification and queuing theoretic models, we propose a utility metric that captures both the performance and the delay of a binary filtering classifier system. 2) We introduce a low-complexity framework for estimating the system utility by observing, estimating, and/or exchanging parameters between the inter-related classifiers deployed across the system. 3) We provide distributed algorithms to reconfigure the system, and analyze the algorithms based on their convergence properties, optimality, information exchange overhead, and rate of adaptation to non-stationary data sources. We provide results using different video classifier systems.
Madsen, Tracy E; Roberts, Eric T; Kuczynski, Heather; Goldmann, Emily; Parikh, Nina S; Boden-Albala, Bernadette
2017-12-01
The study aimed to investigate the effect of gender on the association between social networks and stroke preparedness as measured by emergency department (ED) arrival within 3 hours of symptom onset. As part of the Stroke Warning Information and Faster Treatment study, baseline data on demographics, social networks, and time to ED arrival were collected from 1193 prospectively enrolled stroke/transient ischemic attack (TIA) patients at Columbia University Medical Center. Logistic regression was conducted with arrival to the ED ≤3 hours as the outcome, social network characteristics as explanatory variables, and gender as a potential effect modifier. Men who lived alone or were divorced were significantly less likely to arrive ≤3 hours than men who lived with a spouse (adjusted odds ratio [aOR]: .31, 95% confidence interval [CI]: .15-0.64) or were married (aOR: .45, 95% CI: .23-0.86). Among women, those who lived alone or were divorced had similar odds of arriving ≤3 hours compared with those who lived with a spouse (aOR: 1.25, 95% CI: .63-2.49) or were married (aOR: .73, 95% CI: .4-1.35). In patients with stroke/TIA, living with someone or being married improved time to arrival in men only. Behavioral interventions to improve stroke preparedness should incorporate gender differences in how social networks affect arrival times. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Identification of Preferential Groundwater Flow Pathways from Local Tracer Breakthrough Curves
NASA Astrophysics Data System (ADS)
Kokkinaki, A.; Sleep, B. E.; Dearden, R.; Wealthall, G.
2009-12-01
Characterizing preferential groundwater flow paths in the subsurface is a key factor in the design of in situ remediation technologies. When applying reaction-based remediation methods, such as enhanced bioremediation, preferential flow paths result in fast solute migration and potentially ineffective delivery of reactants, thereby adversely affecting treatment efficiency. The presence of such subsurface conduits was observed at the SABRe (Source Area Bioremediation) research site. Non-uniform migration of contaminants and electron donor during the field trials of enhanced bioremediation supported this observation. To better determine the spatial flow field of the heterogeneous aquifer, a conservative tracer test was conducted. Breakthrough curves were obtained at a reference plane perpendicular to the principal groundwater flow direction. The resulting dataset was analyzed using three different methods: peak arrival times, analytical solution fitting and moment analysis. Interpretation using the peak arrival time method indicated areas of fast plume migration. However, some of the high velocities are supported by single data points, thus adding considerable uncertainty to the estimated velocity distribution. Observation of complete breakthrough curves indicated different types of solute breakthrough, corresponding to different transport mechanisms. Sharp peaks corresponded to high conductivity preferential flow pathways, whereas more dispersed breakthrough curves with long tails were characteristic of significant dispersive mixing and dilution. While analytical solutions adequately quantified flow characteristics for the first type of curves, they failed to do so for the second type, in which case they gave unrealistic results. Therefore, a temporal moment analysis was performed to obtain complete spatial distributions of mass recovery, velocity and dispersivity. Though the results of moment analysis qualitatively agreed with the results of previous methods, more realistic estimates of velocities were obtained and the presence of one major preferential flow pathway was confirmed. However, low mass recovery and deviations from the 10% scaling rule for dispersivities indicate that insufficient spatial and temporal monitoring, as well as interpolation and truncation errors introduced uncertainty in the flow and transport parameters estimated by the method of moments. The results of the three analyses are valuable for enhancing the understanding of mass transport and remediation performance. Comparing the different interpretation methods, increasing the amount of concentration data considered in the analysis, the derived velocity fields were smoother and the estimated local velocities and dispersivities became more realistic. In conclusion, moment analysis is a method that represents a smoothed average of the velocity across the entire breakthrough curve, whereas the peak arrival time, which may be a less well constrained estimate, represents the physical peak arrival and typically yields a higher velocity than the moment analysis. This is an important distinction when applying the results of the tracer test to field sites.
Passive imaging of hydrofractures in the South Belridge diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilderton, D.C.; Patzek, T.W.; Rector, J.W.
1996-03-01
The authors present the results of a seismic analysis of two hydrofractures spanning the entire diatomite column (1,110--1,910 ft or 338--582 m) in Shell`s Phase 2 steam drive pilot in South Belridge, California. These hydrofractures were induced at two depths (1,110--1,460 and 1,560--1,910 ft) and imaged passively using the seismic energy released during fracturing. The arrivals of shear waves from the cracking rock (microseismic events) were recorded at a 1 ms sampling rate by 56 geophones in three remote observation wells, resulting in 10 GB of raw data. These arrival times were then inverted for the event locations, from whichmore » the hydrofracture geometry was inferred. A five-dimensional conjugate-gradient algorithm with a depth-dependent, but otherwise constant shear wave velocity model (CVM) was developed for the inversions. To validate CVM, they created a layered shear wave velocity model of the formation and used it to calculate synthetic arrival times from known locations chosen at various depths along the estimated fracture plane. These arrival times were then inverted with CVM and the calculated locations compared with the known ones, quantifying the systematic error associated with the assumption of constant shear wave velocity. They also performed Monte Carlo sensitivity analyses on the synthetic arrival times to account for all other random errors that exist in field data. After determining the limitations of the inversion algorithm, they hand-picked the shear wave arrival times for both hydrofractures and inverted them with CVM.« less
NASA Astrophysics Data System (ADS)
Verdhora Ry, Rexha; Septyana, T.; Widiyantoro, S.; Nugraha, A. D.; Ardjuna, A.
2017-04-01
Microseismic monitoring and constraining its hypocenters in and around hydrocarbon reservoirs provides insight into induced deformation related to hydraulic fracturing. In this study, we used data from a single vertical array of sensors in a borehole, providing measures of arrival times and polarizations. Microseismic events are located using 1-D velocity models and arrival times of P- and S-waves. However, in the case of all the sensors being deployed in a near-vertical borehole, there is a high ambiguity in the source location. Herein, we applied a procedure using azimuth of P-wave particle motion to constrain and improve the source location. We used a dataset acquired during 1-day of fracture stimulation at a CBM field in Indonesia. We applied five steps of location procedure to investigate microseismic events induced by these hydraulic fracturing activities. First, arrival times for 1584 candidate events were manually picked. Then we refined the arrival times using energy ratio method to obtain high consistency picking. Using these arrival times, we estimated back-azimuth using P-wave polarization analysis. We also added the combination of polarities analysis to remove 180° ambiguity. In the end, we determined hypocenter locations using grid-search method that guided in the back-azimuth trace area to minimize the misfit function of arrival times. We have successfully removed the ambiguity and produced a good solution for hypocenter locations as indicated statistically by small RMS. Most of the events clusters highlight coherent structures around the treatment well site and revealed faults. The same procedure can be applied to various other cases such as microseismic monitoring in the field of geothermal and shale gas/oil exploration, also CCS (Carbon Capture and Storage) development.
Wavelet-based automatic determination of the P- and S-wave arrivals
NASA Astrophysics Data System (ADS)
Bogiatzis, P.; Ishii, M.
2013-12-01
The detection of P- and S-wave arrivals is important for a variety of seismological applications including earthquake detection and characterization, and seismic tomography problems such as imaging of hydrocarbon reservoirs. For many years, dedicated human-analysts manually selected the arrival times of P and S waves. However, with the rapid expansion of seismic instrumentation, automatic techniques that can process a large number of seismic traces are becoming essential in tomographic applications, and for earthquake early-warning systems. In this work, we present a pair of algorithms for efficient picking of P and S onset times. The algorithms are based on the continuous wavelet transform of the seismic waveform that allows examination of a signal in both time and frequency domains. Unlike Fourier transform, the basis functions are localized in time and frequency, therefore, wavelet decomposition is suitable for analysis of non-stationary signals. For detecting the P-wave arrival, the wavelet coefficients are calculated using the vertical component of the seismogram, and the onset time of the wave is identified. In the case of the S-wave arrival, we take advantage of the polarization of the shear waves, and cross-examine the wavelet coefficients from the two horizontal components. In addition to the onset times, the automatic picking program provides estimates of uncertainty, which are important for subsequent applications. The algorithms are tested with synthetic data that are generated to include sudden changes in amplitude, frequency, and phase. The performance of the wavelet approach is further evaluated using real data by comparing the automatic picks with manual picks. Our results suggest that the proposed algorithms provide robust measurements that are comparable to manual picks for both P- and S-wave arrivals.
Hossain, Monir; Wright, Steven; Petersen, Laura A
2002-04-01
One way to monitor patient access to emergent health care services is to use patient characteristics to predict arrival time at the hospital after onset of symptoms. This predicted arrival time can then be compared with actual arrival time to allow monitoring of access to services. Predicted arrival time could also be used to estimate potential effects of changes in health care service availability, such as closure of an emergency department or an acute care hospital. Our goal was to determine the best statistical method for prediction of arrival intervals for patients with acute myocardial infarction (AMI) symptoms. We compared the performance of multinomial logistic regression (MLR) and discriminant analysis (DA) models. Models for MLR and DA were developed using a dataset of 3,566 male veterans hospitalized with AMI in 81 VA Medical Centers in 1994-1995 throughout the United States. The dataset was randomly divided into a training set (n = 1,846) and a test set (n = 1,720). Arrival times were grouped into three intervals on the basis of treatment considerations: <6 hours, 6-12 hours, and >12 hours. One model for MLR and two models for DA were developed using the training dataset. One DA model had equal prior probabilities, and one DA model had proportional prior probabilities. Predictive performance of the models was compared using the test (n = 1,720) dataset. Using the test dataset, the proportions of patients in the three arrival time groups were 60.9% for <6 hours, 10.3% for 6-12 hours, and 28.8% for >12 hours after symptom onset. Whereas the overall predictive performance by MLR and DA with proportional priors was higher, the DA models with equal priors performed much better in the smaller groups. Correct classifications were 62.6% by MLR, 62.4% by DA using proportional prior probabilities, and 48.1% using equal prior probabilities of the groups. The misclassifications by MLR for the three groups were 9.5%, 100.0%, 74.2% for each time interval, respectively. Misclassifications by DA models were 9.8%, 100.0%, and 74.4% for the model with proportional priors and 47.6%, 79.5%, and 51.0% for the model with equal priors. The choice of MLR or DA with proportional priors, or DA with equal priors for monitoring time intervals of predicted hospital arrival time for a population should depend on the consequences of misclassification errors.
Radioactive Iron Rain: Transporting 60Fe in Supernova Dust to the Ocean Floor
NASA Astrophysics Data System (ADS)
Fry, Brian J.; Fields, Brian D.; Ellis, John R.
2016-08-01
Several searches have found evidence of {}60{{Fe}} deposition, presumably from a near-Earth supernova (SN), with concentrations that vary in different locations on Earth. This paper examines various influences on the path of interstellar dust carrying {}60{{Fe}} from an SN through the heliosphere, with the aim of estimating the final global distribution on the ocean floor. We study the influences of magnetic fields, angle of arrival, wind, and ocean cycling of SN material on the concentrations at different locations. We find that the passage of SN material through the mesosphere/lower thermosphere has the greatest influence on the final global distribution, with ocean cycling causing lesser alteration as the SN material sinks to the ocean floor. SN distance estimates in previous works that assumed a uniform distribution are a good approximation. Including the effects on surface distributions, we estimate a distance of {46}-6+10 pc for an 8{--}10 {M}⊙ SN progenitor. This is consistent with an SN occurring within the Tuc-Hor stellar group ˜2.8 Myr ago, with SN material arriving on Earth ˜2.2 Myr ago. We note that the SN dust retains directional information to within 1◦ through its arrival in the inner solar system, so that SN debris deposition on inert bodies such as the Moon will be anisotropic, and thus could in principle be used to infer directional information. In particular, we predict that existing lunar samples should show measurable {}60{{Fe}} differences.
COSMIC-RAY SMALL-SCALE ANISOTROPIES AND LOCAL TURBULENT MAGNETIC FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Barquero, V.; Farber, R.; Xu, S.
2016-10-10
Cosmic-ray anisotropy has been observed in a wide energy range and at different angular scales by a variety of experiments over the past decade. However, no comprehensive or satisfactory explanation has been put forth to date. The arrival distribution of cosmic rays at Earth is the convolution of the distribution of their sources and of the effects of geometry and properties of the magnetic field through which particles propagate. It is generally believed that the anisotropy topology at the largest angular scale is adiabatically shaped by diffusion in the structured interstellar magnetic field. On the contrary, the medium- and small-scalemore » angular structure could be an effect of nondiffusive propagation of cosmic rays in perturbed magnetic fields. In particular, a possible explanation for the observed small-scale anisotropy observed at the TeV energy scale may be the effect of particle propagation in turbulent magnetized plasmas. We perform numerical integration of test particle trajectories in low- β compressible magnetohydrodynamic turbulence to study how the cosmic rays’ arrival direction distribution is perturbed when they stream along the local turbulent magnetic field. We utilize Liouville’s theorem for obtaining the anisotropy at Earth and provide the theoretical framework for the application of the theorem in the specific case of cosmic-ray arrival distribution. In this work, we discuss the effects on the anisotropy arising from propagation in this inhomogeneous and turbulent interstellar magnetic field.« less
ERIC Educational Resources Information Center
Tynell, Lena Lyngholt; Wimmelmann, Camilla Lawaetz; Jervelund, Signe Smith
2017-01-01
Objective: In most European countries, immigrants do not systematically learn about the host countries' healthcare system when arriving. This study investigated how newly arrived immigrants perceived the information they received about the Danish healthcare system. Methods: Immigrants attending a language school in Copenhagen in 2012 received…
Roecker, S.; Thurber, C.; McPhee, D.
2004-01-01
Taking advantage of large datasets of both gravity and elastic wave arrival time observations available for the Parkfield, California region, we generated an image consistent with both types of data. Among a variety of strategies, the best result was obtained from a simultaneous inversion with a stability requirement that encouraged the perturbed model to remain close to a starting model consisting of a best fit to the arrival time data. The preferred model looks essentially the same as the best-fit arrival time model in areas where ray coverage is dense, with differences being greatest at shallow depths and near the edges of the model where ray paths are few. Earthquake locations change by no more than about 100 m, the general effect being migration of the seismic zone to the northeast, closer to the surface trace of the San Andreas Fault. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Karasawa, Yoshio; Kumagai, Taichi; Takemoto, Atsushi; Fujii, Takeo; Ito, Kenji; Suzuki, Noriyoshi
A novel timing synchronizing scheme is proposed for use in inter-vehicle communication (IVC) with an autonomous distributed intelligent transport system (ITS). The scheme determines the timing of packet signal transmission in the IVC network and employs the guard interval (GI) timing in the orthogonal frequency divisional multiplexing (OFDM) signal currently used for terrestrial broadcasts in the Japanese digital television system (ISDB-T). This signal is used because it is expected that the automotive market will demand the capability for cars to receive terrestrial digital TV broadcasts in the near future. The use of broadcasts by automobiles presupposes that the on-board receivers are capable of accurately detecting the GI timing data in an extremely low carrier-to-noise ratio (CNR) condition regardless of a severe multipath environment which will introduce broad scatter in signal arrival times. Therefore, we analyzed actual broadcast signals received in a moving vehicle in a field experiment and showed that the GI timing signal is detected with the desired accuracy even in the case of extremely low-CNR environments. Some considerations were also given about how to use these findings.
Spatial vs. individual variability with inheritance in a stochastic Lotka-Volterra system
NASA Astrophysics Data System (ADS)
Dobramysl, Ulrich; Tauber, Uwe C.
2012-02-01
We investigate a stochastic spatial Lotka-Volterra predator-prey model with randomized interaction rates that are either affixed to the lattice sites and quenched, and / or specific to individuals in either population. In the latter situation, we include rate inheritance with mutations from the particles' progenitors. Thus we arrive at a simple model for competitive evolution with environmental variability and selection pressure. We employ Monte Carlo simulations in zero and two dimensions to study the time evolution of both species' densities and their interaction rate distributions. The predator and prey concentrations in the ensuing steady states depend crucially on the environmental variability, whereas the temporal evolution of the individualized rate distributions leads to largely neutral optimization. Contrary to, e.g., linear gene expression models, this system does not experience fixation at extreme values. An approximate description of the resulting data is achieved by means of an effective master equation approach for the interaction rate distribution.
The CTS 11.7 GHz angle of arrival experiment
NASA Technical Reports Server (NTRS)
Kwan, B. W.; Hodge, D. B.
1981-01-01
The objective of the experiment was to determine the statistical behavior of attenuation and angle of arrival on an Earth-space propagation path using the CTS 11.7 GHz beacon. Measurements performed from 1976 to 1978 form the data base for analysis. The statistics of the signal attenuation and phase variations due to atmospheric disturbances are presented. Rainfall rate distributions are also included to provide a link between the above effects on wave propagation and meteorological conditions.
Measurement of the Anisotropy of Cosmic-ray Arrival Directions with IceCube
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; De Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration
2010-08-01
We report the first observation of an anisotropy in the arrival direction of cosmic rays with energies in the multi-TeV region in the Southern sky using data from the IceCube detector. Between 2007 June and 2008 March, the partially deployed IceCube detector was operated in a configuration with 1320 digital optical sensors distributed over 22 strings at depths between 1450 and 2450 m inside the Antarctic ice. IceCube is a neutrino detector, but the data are dominated by a large background of cosmic-ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the southern sky. The data include 4.3 billion muons produced by downward-going cosmic-ray interactions in the atmosphere; these events were reconstructed with a median angular resolution of 3° and a median energy of ~20 TeV. Their arrival direction distribution exhibits an anisotropy in right ascension with a first-harmonic amplitude of (6.4 ± 0.2 stat. ± 0.8 syst.) × 10-4.
First LOCSMITH locations of deep moonquakes
NASA Astrophysics Data System (ADS)
Hempel, S.; Knapmeyer, M.; Sens-Schönfelder, C.; Oberst, J.
2008-09-01
Introduction Several thousand seismic events were recorded by the Apollo seismic network from 19691977. Different types of events can be distinguished: meteoroid impacts, thermal quakes and internally caused moonquakes. The latter subdivide into shallow (100 to 300km) and deep moonquakes (700 to 1100km), which are by far the most common events. The deep quakes would be no immediate danger to inhabitated stations on the Earth's Moon because of their relatively low magnitude and great depth. However, they bear important information on lunar structure and evolution, and their distribution probably reflects their source mechanism. In this study, we reinvestigate location patterns of deep lunar quakes. LOCSMITH The core of this study is a new location method (LOCSMITH, [1]). This algorithm uses time intervals rather than time instants as input, which contain the dedicated arrival with probability 1. LOCSMITH models and compares theoretical and actual travel times on a global scale and uses an adaptive grid to search source locations compatible with all observations. The output is a set of all possible hypocenters for the considered region of repeating, tidally triggered moonquake activity, called clusters. The shape and size of these sets gives a better estimate of the location uncertainty than the formal standard deviations returned by classical methods. This is used for grading of deep moonquake clusters according to the currently available data quality. Classification of deep moonquakes As first step, we establish a reciprocal dependence of size and shape of LOCSMITH location clouds on number of arrivals. Four different shapes are recognized, listed here in an order corresponding to decreasing spatial resolution: 1. "Balls", which are well defined and relatively small types of sets resembling the commonly assumed error ellipsoid. These are found in the best cases with many observations. Locations in this shape are obtained for clusters 1, 18 or 33, these were already well located by earlier works [2,3]. 2. The next best shape of a location set is the "banana" as found for clusters 5, 39 or 53 [Fig. 1]. In this case, only limited depth resolution is available, and the solution spreads over a large volume. The size of a "banana" could be minimized by either finding a not yet discovered shear wave arrival or estimating a S arrival time interval by considering the coda instead of a clear S arrival. 3. Shape of clouds we call "cones" are formed by clusters for which no compressional wave arrivals, but three S arrivals were picked. Such solutions were found for clusters 35, 201 or 218 [Fig. 2]. A depth limitation is given only by the surface of the Moon's far side. In previous works, locations of these clusters were usually determined with a fixed depth, thus neglecting all depth uncertainty [2]. 4. The fourth and worst class shows a "disc"like shape with no depth resolution and almost no latitude resolution. Clusters of this class, like 4, 23 or 43, were not located so far. From class 1 ("ball") to 4 ("disc") the amount of possible hypocenters increases. So we also found a correlation between size and shape of volumes containing possible hypocenter solutions. Aim We classified all clusters according to the solution set scheme by using arrival times of [2] with an estimated error of ±10s as input for LOCSMITH. We reprocess selected clusters of each class to come up with the special requirements and possibilities of this new location method. As said above, one of the requirements of LOCSMITH is the definition of a time interval instead of a time instant for input, and an interesting option is using an estimated S arrival time interval derived from coda and scattering model, lacking a clear S arrival. We try to find fully automated methods for each processing step, dependent on the quality of data. Methods For despiking we merged methods by [4] and [5] and achieve very good results even for worst case as already presented in [6]. Prior to stacking we developed a complex multiparameter correlation algorithm to calculate the optimum time shift. Results We present relocations of selected deep moonquakes in context of data availability and quality. Previous locations are often contained in our location clouds, but realistic location uncertainties allow large deviations from the best fitting solutions, including locations on the far side of the Moon. Perspective By developing new methods for data processing and using the LOCSMITH locating algorithm we hope to reduce the location uncertainty sufficiently to make sure that all sources are on the near side, or to prove a far side origin of some of them. This would answer questions of hemispheric symmetry of lunar deep seismicity and the Moon's internal structure. References [1] Knapmeyer (2008) accepted to GJI. [2] Nakamura (2005) JGR, 110, E01001. [3] Lognonné (2003) EPSL, 211, 2744. [4] Bulow (2005) JGR, 110, E10003. [5] Sonnemann (2005) EGU05A07960. [6] Hempel, Knapmeyer, Oberst (2008) EGU2008A07989.
Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI
NASA Astrophysics Data System (ADS)
Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.
2016-10-01
Delays between contrast agent (CA) arrival at the site of vascular input function (VIF) sampling and the tissue of interest affect dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling. We investigate effects of altering VIF CA bolus arrival delays on liver DCE MRI perfusion parameters, propose an alternative approach to estimating delays and evaluate reproducibility. Thirteen healthy volunteers (28.7 ± 1.9 years, seven males) underwent liver DCE MRI using dual-input single compartment modelling, with reproducibility (n = 9) measured at 7 days. Effects of VIF CA bolus arrival delays were assessed for arterial and portal venous input functions. Delays were pre-estimated using linear regression, with restricted free modelling around the pre-estimated delay. Perfusion parameters and 7 days reproducibility were compared using this method, freely modelled delays and no delays using one-way ANOVA. Reproducibility was assessed using Bland-Altman analysis of agreement. Maximum percent change relative to parameters obtained using zero delays, were -31% for portal venous (PV) perfusion, +43% for total liver blood flow (TLBF), +3247% for hepatic arterial (HA) fraction, +150% for mean transit time and -10% for distribution volume. Differences were demonstrated between the 3 methods for PV perfusion (p = 0.0085) and HA fraction (p < 0.0001), but not other parameters. Improved mean differences and Bland-Altman 95% Limits-of-Agreement for reproducibility of PV perfusion (9.3 ml/min/100 g, ±506.1 ml/min/100 g) and TLBF (43.8 ml/min/100 g, ±586.7 ml/min/100 g) were demonstrated using pre-estimated delays with constrained free modelling. CA bolus arrival delays cause profound differences in liver DCE MRI quantification. Pre-estimation of delays with constrained free modelling improved 7 days reproducibility of perfusion parameters in volunteers.
Cho, Han-Jin; Lee, Kyung Yul; Nam, Hyo Suk; Kim, Young Dae; Song, Tae-Jin; Jung, Yo Han; Choi, Hye-Yeon; Heo, Ji Hoe
2014-10-01
Process improvement (PI) is an approach for enhancing the existing quality improvement process by making changes while keeping the existing process. We have shown that implementation of a stroke code program using a computerized physician order entry system is effective in reducing the in-hospital time delay to thrombolysis in acute stroke patients. We investigated whether implementation of this PI could further reduce the time delays by continuous improvement of the existing process. After determining a key indicator [time interval from emergency department (ED) arrival to intravenous (IV) thrombolysis] and conducting data analysis, the target time from ED arrival to IV thrombolysis in acute stroke patients was set at 40 min. The key indicator was monitored continuously at a weekly stroke conference. The possible reasons for the delay were determined in cases for which IV thrombolysis was not administered within the target time and, where possible, the problems were corrected. The time intervals from ED arrival to the various evaluation steps and treatment before and after implementation of the PI were compared. The median time interval from ED arrival to IV thrombolysis in acute stroke patients was significantly reduced after implementation of the PI (from 63.5 to 45 min, p=0.001). The variation in the time interval was also reduced. A reduction in the evaluation time intervals was achieved after the PI [from 23 to 17 min for computed tomography scanning (p=0.003) and from 35 to 29 min for complete blood counts (p=0.006)]. PI is effective for continuous improvement of the existing process by reducing the time delays between ED arrival and IV thrombolysis in acute stroke patients.
A new task scheduling algorithm based on value and time for cloud platform
NASA Astrophysics Data System (ADS)
Kuang, Ling; Zhang, Lichen
2017-08-01
Tasks scheduling, a key part of increasing resource utilization and enhancing system performance, is a never outdated problem especially in cloud platforms. Based on the value density algorithm of the real-time task scheduling system and the character of the distributed system, the paper present a new task scheduling algorithm by further studying the cloud technology and the real-time system: Least Level Value Density First (LLVDF). The algorithm not only introduces some attributes of time and value for tasks, it also can describe weighting relationships between these properties mathematically. As this feature of the algorithm, it can gain some advantages to distinguish between different tasks more dynamically and more reasonably. When the scheme was used in the priority calculation of the dynamic task scheduling on cloud platform, relying on its advantage, it can schedule and distinguish tasks with large amounts and many kinds more efficiently. The paper designs some experiments, some distributed server simulation models based on M/M/C model of queuing theory and negative arrivals, to compare the algorithm against traditional algorithm to observe and show its characters and advantages.
Direct Breakthrough Curve Prediction From Statistics of Heterogeneous Conductivity Fields
NASA Astrophysics Data System (ADS)
Hansen, Scott K.; Haslauer, Claus P.; Cirpka, Olaf A.; Vesselinov, Velimir V.
2018-01-01
This paper presents a methodology to predict the shape of solute breakthrough curves in heterogeneous aquifers at early times and/or under high degrees of heterogeneity, both cases in which the classical macrodispersion theory may not be applicable. The methodology relies on the observation that breakthrough curves in heterogeneous media are generally well described by lognormal distributions, and mean breakthrough times can be predicted analytically. The log-variance of solute arrival is thus sufficient to completely specify the breakthrough curves, and this is calibrated as a function of aquifer heterogeneity and dimensionless distance from a source plane by means of Monte Carlo analysis and statistical regression. Using the ensemble of simulated groundwater flow and solute transport realizations employed to calibrate the predictive regression, reliability estimates for the prediction are also developed. Additional theoretical contributions include heuristics for the time until an effective macrodispersion coefficient becomes applicable, and also an expression for its magnitude that applies in highly heterogeneous systems. It is seen that the results here represent a way to derive continuous time random walk transition distributions from physical considerations rather than from empirical field calibration.
Real-time Upstream Monitoring System: Using ACE Data to Predict the Arrival of Interplanetary Shocks
NASA Astrophysics Data System (ADS)
Donegan, M. M.; Wagstaff, K. L.; Ho, G. C.; Vandegriff, J.
2003-12-01
We have developed an algorithm to predict Earth arrival times for interplanetary (IP) shock events originating at the Sun. Our predictions are generated from real-time data collected by the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. The high intensities of energetic ions that occur prior to and during an IP shock pose a radiation hazard to astronauts as well as to electronics in Earth orbit. The potential to predict such events is based on characteristic signatures in the Energetic Storm Particle (ESP) event ion intensities which are often associated with IP shocks. We have previously reported on the development and implementation of an algorithm to forecast the arrival of ESP events. Historical ion data from ACE/EPAM was used to train an artificial neural network which uses the signature of an approaching event to predict the time remaining until the shock arrives. Tests on the trained network have been encouraging, with an average error of 9.4 hours for predictions made 24 hours in advance, and an reduced average error of 4.9 hours when the shock is 12 hours away. The prediction engine has been integrated into a web-based system that uses real-time ACE/EPAM data provided by the NOAA Space Environment Center (http://sd-www.jhuapl.edu/UPOS/RISP/ index.html.) This system continually processes the latest ACE data, reports whether or not there is an impending shock, and predicts the time remaining until the shock arrival. Our predictions are updated every five minutes and provide significant lead-time, thereby supplying critical information that can be used by mission planners, satellite operations controllers, and scientists. We have continued to refine the prediction capabilities of this system; in addition to forecasting arrival times for shocks, we now provide confidence estimates for those predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie; Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17; Gahan, David, E-mail: david.gahan@impedans.com
A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this researchmore » work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.« less
Laloš, Jernej; Babnik, Aleš; Možina, Janez; Požar, Tomaž
2016-03-01
The near-field, surface-displacement waveforms in plates are modeled using interwoven concepts of Green's function formalism and streamlined Huygens' principle. Green's functions resemble the building blocks of the sought displacement waveform, superimposed and weighted according to the simplified distribution. The approach incorporates an arbitrary circular spatial source distribution and an arbitrary circular spatial sensitivity in the area probed by the sensor. The displacement histories for uniform, Gaussian and annular normal-force source distributions and the uniform spatial sensor sensitivity are calculated, and the corresponding weight distributions are compared. To demonstrate the applicability of the developed scheme, measurements of laser ultrasound induced solely by the radiation pressure are compared with the calculated waveforms. The ultrasound is induced by laser pulse reflection from the mirror-surface of a glass plate. The measurements show excellent agreement not only with respect to various wave-arrivals but also in the shape of each arrival. Their shape depends on the beam profile of the excitation laser pulse and its corresponding spatial normal-force distribution. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Juranić, P. N.; Stepanov, A.; Peier, P.; Hauri, C. P.; Ischebeck, R.; Schlott, V.; Radović, M.; Erny, C.; Ardana-Lamas, F.; Monoszlai, B.; Gorgisyan, I.; Patthey, L.; Abela, R.
2014-03-01
The recent entry of X-ray free electron lasers (FELs) to all fields of physics has created an enormous need, both from scientists and operators, for better characterization of the beam created by these facilities. Of particular interest is the measurement of the arrival time of the FEL pulse relative to a laser pump, for pump-probe experiments, and the measurement of the FEL pulse length. This article describes a scheme that corrects one of the major sources of uncertainty in these types of measurements, namely the jitter in the arrival time of the FEL relative to an experimental laser beam. The setup presented here uses a combination of THz streak cameras and a spectral encoding setup to reduce the effect of an FEL's jitter, leaving the pulse length as the only variable that can affect the accuracy of the pulse length and arrival time measurement. A discussion of underlying principles is also provided.
`Inter-Arrival Time' Inspired Algorithm and its Application in Clustering and Molecular Phylogeny
NASA Astrophysics Data System (ADS)
Kolekar, Pandurang S.; Kale, Mohan M.; Kulkarni-Kale, Urmila
2010-10-01
Bioinformatics, being multidisciplinary field, involves applications of various methods from allied areas of Science for data mining using computational approaches. Clustering and molecular phylogeny is one of the key areas in Bioinformatics, which help in study of classification and evolution of organisms. Molecular phylogeny algorithms can be divided into distance based and character based methods. But most of these methods are dependent on pre-alignment of sequences and become computationally intensive with increase in size of data and hence demand alternative efficient approaches. `Inter arrival time distribution' (IATD) is a popular concept in the theory of stochastic system modeling but its potential in molecular data analysis has not been fully explored. The present study reports application of IATD in Bioinformatics for clustering and molecular phylogeny. The proposed method provides IATDs of nucleotides in genomic sequences. The distance function based on statistical parameters of IATDs is proposed and distance matrix thus obtained is used for the purpose of clustering and molecular phylogeny. The method is applied on a dataset of 3' non-coding region sequences (NCR) of Dengue virus type 3 (DENV-3), subtype III, reported in 2008. The phylogram thus obtained revealed the geographical distribution of DENV-3 isolates. Sri Lankan DENV-3 isolates were further observed to be clustered in two sub-clades corresponding to pre and post Dengue hemorrhagic fever emergence groups. These results are consistent with those reported earlier, which are obtained using pre-aligned sequence data as an input. These findings encourage applications of the IATD based method in molecular phylogenetic analysis in particular and data mining in general.
Hahn, Steffen; Emmenegger, Tamara; Lisovski, Simeon; Amrhein, Valentin; Zehtindjiev, Pavel; Liechti, Felix
2014-01-01
Migration detours, the spatial deviation from the shortest route, are a widespread phenomenon in migratory species, especially if barriers must be crossed. Moving longer distances causes additional efforts in energy and time, and to be adaptive, this should be counterbalanced by favorable condition en route. We compared migration patterns of nightingales that travelled along different flyways from their European breeding sites to the African nonbreeding sites. We tested for deviations from shortest routes and related the observed and expected routes to the habitat availability at ground during autumn and spring migration. All individuals flew detours of varying extent. Detours were largest and seasonally consistent in western flyway birds, whereas birds on the central and eastern flyways showed less detours during autumn migration, but large detours during spring migration (eastern flyway birds). Neither migration durations nor the time of arrival at destination were related to the lengths of detours. Arrival at the breeding site was nearly synchronous in birds flying different detours. Flying detours increased the potential availability of suitable broad-scale habitats en route only along the western flyway. Habitat availability on observed routes remained similar or even decreased for individuals flying detours on the central or the eastern flyway as compared to shortest routes. Thus, broad-scale habitat distribution may partially explain detour performance, but the weak detour-habitat association along central and eastern flyways suggests that other factors shape detour extent regionally. Prime candidate factors are the distribution of small suitable habitat patches at local scale as well as winds specific for the region and altitude. PMID:25505540
NASA Technical Reports Server (NTRS)
Greenberg, Albert G.; Lubachevsky, Boris D.; Nicol, David M.; Wright, Paul E.
1994-01-01
Fast, efficient parallel algorithms are presented for discrete event simulations of dynamic channel assignment schemes for wireless cellular communication networks. The driving events are call arrivals and departures, in continuous time, to cells geographically distributed across the service area. A dynamic channel assignment scheme decides which call arrivals to accept, and which channels to allocate to the accepted calls, attempting to minimize call blocking while ensuring co-channel interference is tolerably low. Specifically, the scheme ensures that the same channel is used concurrently at different cells only if the pairwise distances between those cells are sufficiently large. Much of the complexity of the system comes from ensuring this separation. The network is modeled as a system of interacting continuous time automata, each corresponding to a cell. To simulate the model, conservative methods are used; i.e., methods in which no errors occur in the course of the simulation and so no rollback or relaxation is needed. Implemented on a 16K processor MasPar MP-1, an elegant and simple technique provides speedups of about 15 times over an optimized serial simulation running on a high speed workstation. A drawback of this technique, typical of conservative methods, is that processor utilization is rather low. To overcome this, new methods were developed that exploit slackness in event dependencies over short intervals of time, thereby raising the utilization to above 50 percent and the speedup over the optimized serial code to about 120 times.
Nondestructive Integrity Evaluation of PC Pile Using Wigner-Ville Distribution Method
NASA Astrophysics Data System (ADS)
Ni, Sheng-Huoo; Lo, Kuo-Feng; Huang, Yan-Hong
Nondestructive evaluation (NDE) techniques have been used for years to provide a quality control of the construction for both drilled shafts and driven concrete piles. This trace is typically made up of transient pulses reflected from structural features of the pile or changes in its surrounding environment. It is often analyzed in conjunction with the spectral response, mobility curve, arrival time, etc. The Wigner-Ville Distribution is a new numerical analysis tool for signal process technique in the time-frequency domain and it can offer assistance and enhance signal characteristics for better resolution both easily and quickly. In this study, five single pre-cast concrete piles have been tested and evaluated by both sonic echo method and Wigner-Ville distribution (WVD). Furthermore, two difficult problems in nondestructive evaluation problems are discussed and solved: the first one is with a pile with slight defect, whose necking area percentage is less than 10%, and the other is a pile with multiple defects. The results show that WVD can not only recognize the characteristics easily, but also locate the defects more clearly than the traditional pile integrity testing method.
3D P-Wave Velocity Structure of the Crust and Relocation of Earthquakes in 21 the Lushan Source Area
NASA Astrophysics Data System (ADS)
Yu, X.; Wang, X.; Zhang, W.
2014-12-01
The double difference seismic tomography method is applied to the absolute first arrival P wave arrival times and high quality relative P arrival times of the Lushan seismic sequence to determine the detailed crustal 3D P wave velocity structure and the hypocenter parameters in the Lushan seismic area. The results show that the Lushan mainshock locates at 30.28 N, 103.98 E, with the depth of 16.38 km. The leading edge of aftershock in the northeast of mainshock present a spade with a steep dip angle, the aftershocks' extended length is about 12 km. In the southwest of the Lushan mainshock, the leading edge of aftershock in low velocity zone slope gently, the aftershocks' extended length is about 23 km. The P wave velocity structure of the Lushan seismic area shows obviously lateral heterogeneity. The P wave velocity anomalies represent close relationship with topographic relief and geological structure. In Baoxing area the complex rocks correspond obvious high-velocity anomalies extending down to 15 km depth,while the Cenozoic rocks are correlated with low-velocity anomalies. Our high-resolution tomographic model not only displays the general features contained in the previous models, but also reveals some new features. An obvious high-velocity anomaly is visible in Daxing area. The high-velocity anomalies beneath Baoxing and Daxing connect each other in 10 km depth, which makes the contrast between high and low velocity anomalies more sharp. Above 20 km depth the velocity structure in southwest and northeast segment of the mainshock shows a big difference: low-velocity anomalies are dominated the southwest segment, while high-velocity anomalies rule the northeast segment. The Lushan mainshock locates at the leading edge of a low-velocity anomaly surrounded by the Baoxing and Daxing high-velocity anomalies. The Lushan aftershocks in southwest are distributed in low-velocity anomalies or the transition belt: the footwall represents low-velocity anomalies, while the hanging wall shows high-velocity anomalies. The northeastern aftershocks are distributed at the boundary between high-velocity anomalies in Baoxing and Daxing area. The main seismogenic layer dips to northwest.
Inferring the background traffic arrival process in the Internet.
Hága, Péter; Csabai, István; Vattay, Gábor
2009-12-01
Phase transition has been found in many complex interactivity systems. Complex networks are not exception either but there are quite few real systems where we can directly understand the emergence of this nontrivial behavior from the microscopic view. In this paper, we present the emergence of the phase transition between the congested and uncongested phases of a network link. We demonstrate a method to infer the background traffic arrival process, which is one of the key state parameters of the Internet traffic. The traffic arrival process in the Internet has been investigated in several studies, since the recognition of its self-similar nature. The statistical properties of the traffic arrival process are very important since they are fundamental in modeling the dynamical behavior. Here, we demonstrate how the widely used packet train technique can be used to determine the main properties of the traffic arrival process. We show that the packet train dispersion is sensitive to the congestion on the network path. We introduce the packet train stretch as an order parameter to describe the phase transition between the congested and uncongested phases of the bottleneck link in the path. We find that the distribution of the background traffic arrival process can be determined from the average packet train dispersion at the critical point of the system.
Optimal Time Advance In Terminal Area Arrivals: Throughput vs. Fuel Savings
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V .; Swenson, Harry N.; Haskell, William B.; Rakas, Jasenka
2011-01-01
The current operational practice in scheduling air traffic arriving at an airport is to adjust flight schedules by delay, i.e. a postponement of an aircrafts arrival at a scheduled location, to manage safely the FAA-mandated separation constraints between aircraft. To meet the observed and forecast growth in traffic demand, however, the practice of time advance (speeding up an aircraft toward a scheduled location) is envisioned for future operations as a practice additional to delay. Time advance has two potential advantages. The first is the capability to minimize, or at least reduce, the excess separation (the distances between pairs of aircraft immediately in-trail) and thereby to increase the throughput of the arriving traffic. The second is to reduce the total traffic delay when the traffic sample is below saturation density. A cost associated with time advance is the fuel expenditure required by an aircraft to speed up. We present an optimal control model of air traffic arriving in a terminal area and solve it using the Pontryagin Maximum Principle. The admissible controls allow time advance, as well as delay, some of the way. The cost function reflects the trade-off between minimizing two competing objectives: excess separation (negatively correlated with throughput) and fuel burn. A number of instances are solved using three different methods, to demonstrate consistency of solutions.
A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem
NASA Technical Reports Server (NTRS)
Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad
2010-01-01
Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.
Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Moision, Bruce E.
2010-01-01
Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.
Analysis of delay reducing and fuel saving sequencing and spacing algorithms for arrival traffic
NASA Technical Reports Server (NTRS)
Neuman, Frank; Erzberger, Heinz
1991-01-01
The air traffic control subsystem that performs sequencing and spacing is discussed. The function of the sequencing and spacing algorithms is to automatically plan the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several algorithms are described and their statistical performance is examined. Sequencing brings order to an arrival sequence for aircraft. First-come-first-served sequencing (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the arriving traffic, gaps will remain in the sequence of aircraft. Delays are reduced by time-advancing the leading aircraft of each group while still preserving the FCFS order. Tightly spaced groups of aircraft remain with a mix of heavy and large aircraft. Spacing requirements differ for different types of aircraft trailing each other. Traffic is reordered slightly to take advantage of this spacing criterion, thus shortening the groups and reducing average delays. For heavy traffic, delays for different traffic samples vary widely, even when the same set of statistical parameters is used to produce each sample. This report supersedes NASA TM-102795 on the same subject. It includes a new method of time-advance as well as an efficient method of sequencing and spacing for two dependent runways.
SPX-8 Dragon Spacecraft Approach
2016-04-10
ISS047e052707 (04/10/2016) --- The SpaceX Dragon cargo spaceship begins the final approach to the International Space Station. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six.
Systematic Studies of Cosmic-Ray Anisotropy and Energy Spectrum with IceCube and IceTop
NASA Astrophysics Data System (ADS)
McNally, Frank
Anisotropy in the cosmic-ray arrival direction distribution has been well documented over a large energy range, but its origin remains largely a mystery. In the TeV to PeV energy range, the galactic magnetic field thoroughly scatters cosmic rays, but anisotropy at the part-per-mille level and smaller persists, potentially carrying information about nearby cosmic-ray accelerators and the galactic magnetic field. The IceCube Neutrino Observatory was the first detector to observe anisotropy at these energies in the Southern sky. This work uses 318 billion cosmic-ray induced muon events, collected between May 2009 and May 2015 from both the in-ice component of IceCube as well as the surface component, IceTop. The observed global anisotropy features large regions of relative excess and deficit, with amplitudes on the order of 10-3. While a decomposition of the arrival direction distribution into spherical harmonics shows that most of the power is contained in the low-multipole (ℓ ≤ 4) moments, higher-multipole components are found to be statistically significant down to an angular scale of less than 10°, approaching the angular resolution of the detector. Above 100TeV, a change in the topology of the arrival direction distribution is observed, and the anisotropy is characterized by a wide relative deficit whose amplitude increases with primary energy up to at least 5PeV, the highest energies currently accessible to IceCube with sufficient event statistics. No time dependence of the large- and small-scale structures is observed in the six-year period covered by this analysis within statistical and systematic uncertainties. Analysis of the energy spectrum and composition in the PeV energy range as a function of sky position is performed with IceTop data over a five-year period using a likelihood-based reconstruction. Both the energy spectrum and the composition distribution are found to be consistent with a single source population over declination bands. This work represents an early attempt at understanding the anisotropy through the study of the spectrum and composition. The high-statistics data set reveals more details on the properties of the anisotropy, potentially able to shed light on the various physical processes responsible for the complex angular structure and energy evolution.
An Elementary Algorithm for Autonomous Air Terminal Merging and Interval Management
NASA Technical Reports Server (NTRS)
White, Allan L.
2017-01-01
A central element of air traffic management is the safe merging and spacing of aircraft during the terminal area flight phase. This paper derives and examines an algorithm for the merging and interval managing problem for Standard Terminal Arrival Routes. It describes a factor analysis for performance based on the distribution of arrivals, the operating period of the terminal, and the topology of the arrival routes; then presents results from a performance analysis and from a safety analysis for a realistic topology based on typical routes for a runway at Phoenix International Airport. The heart of the safety analysis is a statistical derivation on how to conduct a safety analysis for a local simulation when the safety requirement is given for the entire airspace.
Urban sprawl and delayed ambulance arrival in the U.S.
Trowbridge, Matthew J; Gurka, Matthew J; O'Connor, Robert E
2009-11-01
Minimizing emergency medical service (EMS) response time is a central objective of prehospital care, yet the potential influence of built environment features such as urban sprawl on EMS system performance is often not considered. This study measures the association between urban sprawl and EMS response time to test the hypothesis that features of sprawling development increase the probability of delayed ambulance arrival. In 2008, EMS response times for 43,424 motor-vehicle crashes were obtained from the Fatal Analysis Reporting System, a national census of crashes involving > or =1 fatality. Sprawl at each crash location was measured using a continuous county-level index previously developed by Ewing et al. The association between sprawl and the probability of a delayed ambulance arrival (> or =8 minutes) was then measured using generalized linear mixed modeling to account for correlation among crashes from the same county. Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival (p=0.03). This probability increases quadratically as the severity of sprawl increases while controlling for nighttime crash occurrence, road conditions, and presence of construction. For example, in sprawling counties (e.g., Fayette County GA), the probability of a delayed ambulance arrival for daytime crashes in dry conditions without construction was 69% (95% CI=66%, 72%) compared with 31% (95% CI=28%, 35%) in counties with prominent smart-growth characteristics (e.g., Delaware County PA). Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival following motor-vehicle crashes in the U.S. The results of this study suggest that promotion of community design and development that follows smart-growth principles and regulates urban sprawl may improve EMS performance and reliability.
Estimation of flow properties using surface deformation and head data: A trajectory-based approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, D.W.
2004-07-12
A trajectory-based algorithm provides an efficient and robust means to infer flow properties from surface deformation and head data. The algorithm is based upon the concept of an ''arrival time'' of a drawdown front, which is defined as the time corresponding to the maximum slope of the drawdown curve. The technique involves three steps: the inference of head changes as a function of position and time, the use of the estimated head changes to define arrival times, and the inversion of the arrival times for flow properties. Trajectories, computed from the output of a numerical simulator, are used to relatemore » the drawdown arrival times to flow properties. The inversion algorithm is iterative, requiring one reservoir simulation for each iteration. The method is applied to data from a set of 14 tiltmeters, located at the Raymond Quarry field site in California. Using the technique, I am able to image a high-conductivity channel which extends to the south of the pumping well. The presence of th is permeable pathway is supported by an analysis of earlier cross-well transient pressure test data.« less
NASA Astrophysics Data System (ADS)
Reymond, Dominique
2017-04-01
We present a tool for computing the complete arrival times of the dispersed wave-train of a tsunami. The calculus is made using the exact formulation of the tsunami dispersion (and without approximations), at any desired periods between one hour or more (concerning the gravity waves propagation) until 10s (the highly dispersed mode). The computation of the travel times is based on the a summation of the necessary time for a tsunami to cross all the elementary blocs of a grid of bathymetry following a path between the source and receiver at a given period. In addition the source dimensions and the focal mechanism are taken into account to adjust the minimum travel time to the different possible points of emission of the source. A possible application of this tool is to forecast the arrival time of late arrivals of tsunami waves that could produce the resonnance of some bays and sites at higher frequencies than the gravity mode. The theoretical arrival times are compared to the observed ones and to the results obtained by TTT (P. Wessel, 2009) and the ones obtained by numerical simulations. References: Wessel, P. (2009). Analysis of oberved and predicted tsunami travel times for the Pacic and Indian oceans. Pure Appl. Geophys., 166:301-324.
NASA Technical Reports Server (NTRS)
Hein, G. F.
1974-01-01
Special purpose satellites are very cost sensitive to the number of broadcast channels, usually will have Poisson arrivals, fairly low utilization (less than 35%), and a very high availability requirement. To solve the problem of determining the effects of limiting C the number of channels, the Poisson arrival, infinite server queueing model will be modified to describe the many server case. The model is predicated on the reproductive property of the Poisson distribution.
MESSENGER observations of transient bursts of energetic electrons in Mercury's magnetosphere.
Ho, George C; Krimigis, Stamatios M; Gold, Robert E; Baker, Daniel N; Slavin, James A; Anderson, Brian J; Korth, Haje; Starr, Richard D; Lawrence, David J; McNutt, Ralph L; Solomon, Sean C
2011-09-30
The MESSENGER spacecraft began detecting energetic electrons with energies greater than 30 kilo-electron volts (keV) shortly after its insertion into orbit about Mercury. In contrast, no energetic protons were observed. The energetic electrons arrive as bursts lasting from seconds to hours and are most intense close to the planet, distributed in latitude from the equator to the north pole, and present at most local times. Energies can exceed 200 keV but often exhibit cutoffs near 100 keV. Angular distributions of the electrons about the magnetic field suggest that they do not execute complete drift paths around the planet. This set of characteristics demonstrates that Mercury's weak magnetic field does not support Van Allen-type radiation belts, unlike all other planets in the solar system with internal magnetic fields.
Gargano, Julia Warner; Wehner, Susan; Reeves, Mathew J
2009-04-01
Previous studies report that women with stroke may experience longer delays in diagnostic workup than men after arriving at the emergency department. We hypothesized that presenting symptom differences could explain these delays. Data were collected on 1922 acute stroke cases who presented to 15 hospitals participating in a statewide stroke registry. We evaluated 2 in-hospital time intervals: emergency department arrival to physician examination ("door-to-doctor") and emergency department arrival to brain imaging ("door-to-image"). We used parametric survival models to estimate time ratios, which represent the ratio of average times comparing women to men, after adjusting for symptom presentation and other confounders. Women were significantly less likely than men to present with any stroke warning sign or suspected stroke (87.5% versus 91.4%) or to report trouble with walking, balance, or dizziness (9.5% versus 13.7%). Difficulty speaking and loss of consciousness were associated with shorter door-to-doctor times. Weakness, facial droop, difficulty speaking, and loss of consciousness were associated with shorter door-to-image times, whereas difficulty with walking/balance was associated with longer door-to-image times. In adjusted analyses, women had 11% longer door-to-doctor intervals (time ratio, 1.11; 95%, CI 1.02 to 1.22) and 15% longer door-to-image intervals (time ratio, 1.15; 95% CI, 1.08 to 1.25) after accounting for presenting symptoms, age, and other confounders. Furthermore, these sex differences remained evident after restricting to patients who arrived within 6 or within 2 hours of symptom onset. Women with acute stroke experienced greater emergency department delays than men, which were not attributable to differences in presenting symptoms, time of arrival, age, or other confounders.
Do Arctic breeding geese track or overtake a green wave during spring migration?
Si, Yali; Xin, Qinchuan; de Boer, Willem F; Gong, Peng; Ydenberg, Ronald C; Prins, Herbert H T
2015-03-04
Geese breeding in the Arctic have to do so in a short time-window while having sufficient body reserves. Hence, arrival time and body condition upon arrival largely influence breeding success. The green wave hypothesis posits that geese track a successively delayed spring flush of plant development on the way to their breeding sites. The green wave has been interpreted as representing either the onset of spring or the peak in nutrient biomass. However, geese tend to adopt a partial capital breeding strategy and might overtake the green wave to accomplish a timely arrival on the breeding site. To test the green wave hypothesis, we link the satellite-derived onset of spring and peak in nutrient biomass with the stopover schedule of individual Barnacle Geese. We find that geese track neither the onset of spring nor the peak in nutrient biomass. Rather, they arrive at the southernmost stopover site around the peak in nutrient biomass, and gradually overtake the green wave to match their arrival at the breeding site with the local onset of spring, thereby ensuring gosling benefit from the peak in nutrient biomass. Our approach for estimating plant development stages is critical in testing the migration strategies of migratory herbivores.
Lee, Kilhung
2010-01-01
This paper presents a medium access control and scheduling scheme for wireless sensor networks. It uses time trees for sending data from the sensor node to the base station. For an energy efficient operation of the sensor networks in a distributed manner, time trees are built in order to reduce the collision probability and to minimize the total energy required to send data to the base station. A time tree is a data gathering tree where the base station is the root and each sensor node is either a relaying or a leaf node of the tree. Each tree operates in a different time schedule with possibly different activation rates. Through the simulation, the proposed scheme that uses time trees shows better characteristics toward burst traffic than the previous energy and data arrival rate scheme. PMID:22319270
Aab, Alexander
2015-05-01
We analyze the distribution of arrival directions of ultra-high-energy cosmic rays recorded at the Pierre Auger Observatory in 10 years of operation. The data set, about three times larger than that used in earlier studies, includes arrival directions with zenith angles up to 80°, thus covering from -90° to +45° in declination. After updating the fraction of events correlating with the active galactic nuclei (AGNs) in the Véron-Cetty and Véron catalog, we subject the arrival directions of the data with energies in excess of 40 EeV to different tests for anisotropy. We search for localized excess fluxes, self-clustering of event directions at angular scales up to 30°, and different threshold energies between 40 and 80 EeV. We then look for correlations of cosmic rays with celestial structures both in the Galaxy (the Galactic Center and Galactic Plane) and in the local universe (the Super-Galactic Plane). We also examine their correlation with different populations of nearby extragalactic objects: galaxies in the 2MRS catalog, AGNs detected by Swift-BAT, radio galaxies with jets, and the Centaurus A (Cen A) galaxy. None of the tests show statistically significant evidence of anisotropy. As a result, the strongest departures from isotropy (post-trial probabilitymore » $$\\sim 1.4$$%) are obtained for cosmic rays with $$E\\gt 58$$ EeV in rather large windows around Swift AGNs closer than 130 Mpc and brighter than 10 44 erg s -1 (18° radius), and around the direction of Cen A (15° radius).« less
McGann, Mary; Grossman, Eric E.; Takesue, Renee K.; Penttila, Dan; Walsh, John P.; Corbett, Reide
2012-01-01
Trochammina hadai Uchio, a benthic foraminifera native to Japanese estuaries, was first identified as an invasive in 1995 in San Francisco Bay and later in 16 other west coast estuaries. To investigate the timing of the arrival and expansion of this invasive species in Padilla Bay, Washington, we analyzed the distribution of foraminifera in two surface samples collected in 1971, in nine surface samples collected by Scott in 1972–1973, as well as in two cores (Padilla Flats 3 and Padilla V1/V2) obtained in 2004. Trochanimina hadai, originally identified as the native Trochammina pacifica Cushman in several early foraminiferal studies, dominates the assemblage of most of the surface samples. In the Padilla V1/V2 and Padilla Flats 3 cores, the species' abundance follows a pattern of absence, first appearance, rapid expansion commonly seen shortly after the arrival of a successful biological invasion, setback, and second expansion. Using Q-mode cluster analysis, pre-expansion and expansion assemblages were identified. Pb-210 dating of these cores proved unsuccessful. However, based on T. hadai's first appearance occurring stratigraphically well above sedimentological changes in the cores that reflect deposition of sediments in the bay due to previous diversions of the Skagit River, and its dominance in the early 1970s surface samples, we conclude that the species arrived in Padilla Bay somewhere between the late 1800s and 1971. Trochammina hadai may have been introduced into the bay in the 1930s when oyster culturing began there or, at a minimum, ten years prior to its appearance in San Francisco Bay.
NASA Astrophysics Data System (ADS)
Rollett, T.; Möstl, C.; Isavnin, A.; Davies, J. A.; Kubicka, M.; Amerstorfer, U. V.; Harrison, R. A.
2016-06-01
In this study, we present a new method for forecasting arrival times and speeds of coronal mass ejections (CMEs) at any location in the inner heliosphere. This new approach enables the adoption of a highly flexible geometrical shape for the CME front with an adjustable CME angular width and an adjustable radius of curvature of its leading edge, I.e., the assumed geometry is elliptical. Using, as input, Solar TErrestrial RElations Observatory (STEREO) heliospheric imager (HI) observations, a new elliptic conversion (ElCon) method is introduced and combined with the use of drag-based model (DBM) fitting to quantify the deceleration or acceleration experienced by CMEs during propagation. The result is then used as input for the Ellipse Evolution Model (ElEvo). Together, ElCon, DBM fitting, and ElEvo form the novel ElEvoHI forecasting utility. To demonstrate the applicability of ElEvoHI, we forecast the arrival times and speeds of 21 CMEs remotely observed from STEREO/HI and compare them to in situ arrival times and speeds at 1 AU. Compared to the commonly used STEREO/HI fitting techniques (Fixed-ϕ, Harmonic Mean, and Self-similar Expansion fitting), ElEvoHI improves the arrival time forecast by about 2 to ±6.5 hr and the arrival speed forecast by ≈ 250 to ±53 km s-1, depending on the ellipse aspect ratio assumed. In particular, the remarkable improvement of the arrival speed prediction is potentially beneficial for predicting geomagnetic storm strength at Earth.
Richardson, Magnus J E; Gerstner, Wulfram
2005-04-01
The subthreshold membrane voltage of a neuron in active cortical tissue is a fluctuating quantity with a distribution that reflects the firing statistics of the presynaptic population. It was recently found that conductance-based synaptic drive can lead to distributions with a significant skew. Here it is demonstrated that the underlying shot noise caused by Poissonian spike arrival also skews the membrane distribution, but in the opposite sense. Using a perturbative method, we analyze the effects of shot noise on the distribution of synaptic conductances and calculate the consequent voltage distribution. To first order in the perturbation theory, the voltage distribution is a gaussian modulated by a prefactor that captures the skew. The gaussian component is identical to distributions derived using current-based models with an effective membrane time constant. The well-known effective-time-constant approximation can therefore be identified as the leading-order solution to the full conductance-based model. The higher-order modulatory prefactor containing the skew comprises terms due to both shot noise and conductance fluctuations. The diffusion approximation misses these shot-noise effects implying that analytical approaches such as the Fokker-Planck equation or simulation with filtered white noise cannot be used to improve on the gaussian approximation. It is further demonstrated that quantities used for fitting theory to experiment, such as the voltage mean and variance, are robust against these non-Gaussian effects. The effective-time-constant approximation is therefore relevant to experiment and provides a simple analytic base on which other pertinent biological details may be added.
2009-03-01
IN WIRELESS SENSOR NETWORKS WITH RANDOMLY DISTRIBUTED ELEMENTS UNDER MULTIPATH PROPAGATION CONDITIONS by Georgios Tsivgoulis March 2009...COVERED Engineer’s Thesis 4. TITLE Source Localization in Wireless Sensor Networks with Randomly Distributed Elements under Multipath Propagation...the non-line-of-sight information. 15. NUMBER OF PAGES 111 14. SUBJECT TERMS Wireless Sensor Network , Direction of Arrival, DOA, Random
Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong
2016-01-01
Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity. PMID:26765140
Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong
2016-01-01
Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Smith, Nancy M.; Bienert, Nancy; Brasil, Connie; Buckley, Nathan; Chevalley, Eric; Homola, Jeffrey; Omar, Faisal; Parke, Bonny; Yoo, Hyo-Sang
2016-01-01
LaGuardia (LGA) departure delay was identified by the stakeholders and subject matter experts as a significant bottleneck in the New York metropolitan area. Departure delay at LGA is primarily due to dependency between LGA's arrival and departure runways: LGA departures cannot begin takeoff until arrivals have cleared the runway intersection. If one-in one-out operations are not maintained and a significant arrival-to-departure imbalance occurs, the departure backup can persist through the rest of the day. At NASA Ames Research Center, a solution called "Departure-sensitive Arrival Spacing" (DSAS) was developed to maximize the departure throughput without creating significant delays in the arrival traffic. The concept leverages a Terminal Sequencing and Spacing (TSS) operations that create and manage the arrival schedule to the runway threshold and added an interface enhancement to the traffic manager's timeline to provide the ability to manually adjust inter-arrival spacing to build precise gaps for multiple departures between arrivals. A more complete solution would include a TSS algorithm enhancement that could automatically build these multi-departure gaps. With this set of capabilities, inter-arrival spacing could be controlled for optimal departure throughput. The concept was prototyped in a human-in-the- loop (HITL) simulation environment so that operational requirements such as coordination procedures, timing and magnitude of TSS schedule adjustments, and display features for Tower, TRACON and Traffic Management Unit could be determined. A HITL simulation was conducted in August 2014 to evaluate the concept in terms of feasibility, controller workload impact, and potential benefits. Three conditions were tested, namely a Baseline condition without scheduling, TSS condition that schedules the arrivals to the runway threshold, and TSS+DSAS condition that adjusts the arrival schedule to maximize the departure throughput. The results showed that during high arrival demand period, departure throughput could be incrementally increased under TSS and TSS+DSAS conditions without compromising the arrival throughput. The concept, operational procedures, and summary results were originally published in ATM20151 but detailed results were omitted. This paper expands on the earlier paper to provide the detailed results on throughput, conformance, safety, flight time/distance, etc. that provide extra insights into the feasibility and the potential benefits on the concept.
Takakuwa, Kevin M; Burek, Gregory A; Estepa, Adrian T; Shofer, Frances S
2009-10-01
The objectives were to determine if an emergency department (ED) could improve the adherence to a door-to-electrocardiogram (ECG) time goal of 10 minutes or less for patients who presented to an ED with chest pain and the effect of this adherence on door-to-balloon (DTB) time for ST-segment elevation myocardial infarction (STEMI) cardiac catheterization (cath) alert patients. This was a planned 1-month before-and-after interventional study design for implementing a new process for obtaining ECGs in patients presenting to the study ED with chest pain. Prior to the change, patients were registered and triaged before an ECG was obtained. The new procedure required registration clerks to identify those with chest pain and directly overhead page or call a designated ECG technician. This technician had other ED duties, but prioritized performing ECGs and delivering them to attending physicians. A full registration process occurred after the clinical staff performed their initial assessment. The primary outcome was the total percentage of patients with chest pain who received an ECG within 10 minutes of ED arrival. The secondary outcome was DTB time for patients with STEMI who were emergently cath alerted. Data were analyzed using mean differences, 95% confidence intervals (CIs), and relative risk (RR) regression to adjust for possible confounders. A total of 719 patients were studied: 313 before and 405 after the intervention. The mean (+/-standard deviation [SD]) age was 50 (+/-16) years, 54% were women, 57% were African American, and 36% were white. Patients walked in 89% of the time; 11% arrived by ambulance. Thirty-nine percent were triaged as emergent and 61% as nonemergent. Patients presented during daytime 68% of the time, and 32% presented during the night. Before the intervention, 16% received an ECG at 10 minutes or less. After the intervention, 64% met the time requirement, for a mean difference of 47.3% (95% CI = 40.8% to 53.3%, p < 0.0001). Results were not affected by age, sex, race, mode of arrival, triage classification, or time of arrival. For patients with STEMI cath alerts, four were seen before and seven after the intervention. No patients before the intervention had ECG time within 10 minutes, and one of four had DTB time of <90 minutes. After the intervention, all seven patients had ECG time within 10 minutes; the three arriving during weekday hours when the cath team was on site had DTB times of <90 minutes, but the four arriving at night and on weekends when the cath team was off site had DTB times of >90 minutes. The overall percentage of patients with a door-to-ECG time within 10 minutes improved without increasing staffing. An ECG was performed within 10 minutes of arrival for all patients who were STEMI cath alerted, but DTB time under 90 minutes was achieved only when the cath team was on site.
Tidal Analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data
2017-01-01
elevation at the time of vessel movement and calculating the tidal dependence (TD) parameter to 23 U.S. port areas for the years 2012– 2014. Tidal prediction...predictions, obtained from the National Oceanographic and Atmospheric Administration, are used to rank relative tidal dependence for arriving cargo and...sector traffic percentages and tidal dependence metric ............................. 11 Arrival process mining
NASA Astrophysics Data System (ADS)
Horstmann, T.; Harrington, R. M.; Cochran, E. S.
2012-12-01
Frequently, the lack of distinctive phase arrivals makes locating tectonic tremor more challenging than locating earthquakes. Classic location algorithms based on travel times cannot be directly applied because impulsive phase arrivals are often difficult to recognize. Traditional location algorithms are often modified to use phase arrivals identified from stacks of recurring low-frequency events (LFEs) observed within tremor episodes, rather than single events. Stacking the LFE waveforms improves the signal-to-noise ratio for the otherwise non-distinct phase arrivals. In this study, we apply a different method to locate tectonic tremor: a modified time-reversal imaging approach that potentially exploits the information from the entire tremor waveform instead of phase arrivals from individual LFEs. Time reversal imaging uses the waveforms of a given seismic source recorded by multiple seismometers at discrete points on the surface and a 3D velocity model to rebroadcast the waveforms back into the medium to identify the seismic source location. In practice, the method works by reversing the seismograms recorded at each of the stations in time, and back-propagating them from the receiver location individually into the sub-surface as a new source time function. We use a staggered-grid, finite-difference code with 2.5 ms time steps and a grid node spacing of 50 m to compute the rebroadcast wavefield. We calculate the time-dependent curl field at each grid point of the model volume for each back-propagated seismogram. To locate the tremor, we assume that the source time function back-propagated from each individual station produces a similar curl field at the source position. We then cross-correlate the time dependent curl field functions and calculate a median cross-correlation coefficient at each grid point. The highest median cross-correlation coefficient in the model volume is expected to represent the source location. For our analysis, we use the velocity model of Thurber et al. (2006) interpolated to a grid spacing of 50 m. Such grid spacing corresponds to frequencies of up to 8 Hz, which is suitable to calculate the wave propagation of tremor. Our dataset contains continuous broadband data from 13 STS-2 seismometers deployed from May 2010 to July 2011 along the Cholame segment of the San Andreas Fault as well as data from the HRSN and PBO networks. Initial synthetic results from tests on a 2D plane using a line of 15 receivers suggest that we are able to recover accurate event locations to within 100 m horizontally and 300 m depth. We conduct additional synthetic tests to determine the influence of signal-to-noise ratio, number of stations used, and the uncertainty in the velocity model on the location result by adding noise to the seismograms and perturbations to the velocity model. Preliminary results show accurate show location results to within 400 m with a median signal-to-noise ratio of 3.5 and 5% perturbations in the velocity model. The next steps will entail performing the synthetic tests on the 3D velocity model, and applying the method to tremor waveforms. Furthermore, we will determine the spatial and temporal distribution of the source locations and compare our results to those by Sumy and others.
Oxide vapor distribution from a high-frequency sweep e-beam system
NASA Astrophysics Data System (ADS)
Chow, R.; Tassano, P. L.; Tsujimoto, N.
1995-03-01
Oxide vapor distributions have been determined as a function of operating parameters of a high frequency sweep e-beam source combined with a programmable sweep controller. We will show which parameters are significant, the parameters that yield the broadest oxide deposition distribution, and the procedure used to arrive at these conclusions. A design-of-experimental strategy was used with five operating parameters: evaporation rate, sweep speed, sweep pattern (pre-programmed), phase speed (azimuthal rotation of the pattern), profile (dwell time as a function of radial position). A design was chosen that would show which of the parameters and parameter pairs have a statistically significant effect on the vapor distribution. Witness flats were placed symmetrically across a 25 inches diameter platen. The stationary platen was centered 24 inches above the e-gun crucible. An oxide material was evaporated under 27 different conditions. Thickness measurements were made with a stylus profilometer. The information will enable users of the high frequency e-gun systems to optimally locate the source in a vacuum system and understand which parameters have a major effect on the vapor distribution.
NASA Astrophysics Data System (ADS)
Kempka, Thomas; Norden, Ben; Ivanova, Alexandra; Lüth, Stefan
2017-04-01
Pilot-scale carbon dioxide storage has been performed at the Ketzin pilot site in Germany from June 2007 to August 2013 with about 67 kt of CO2 injected into the Upper Triassic Stuttgart Formation. In this context, the main aims focussed on verification of the technical feasibility of CO2 storage in saline aquifers and development of efficient strategies for CO2 behaviour monitoring and prediction. A static geological model has been already developed at an early stage of this undertaking, and continuously revised with the availability of additional geological and operational data as well as by means of reservoir simulations, allowing for revisions in line with the efforts to achieve a solid history match in view of well bottomhole pressures and CO2 arrival times at the observation wells. Three 3D seismic campaigns followed the 2005 3D seismic baseline in 2009, 2012 and 2015. Consequently, the interpreted seismic data on spatial CO2 thickness distributions in the storage reservoir as well as seismic CO2 detection limits from recent conformity studies enabled us to enhance the previous history-matching results by adding a spatial component to the previous observations, limited to points only. For that purpose, we employed the latest version of the history-matched static geological reservoir model and revised the gridding scheme of the reservoir simulation model by coarsening and introducing local grid refinements at the areas of interest. Further measures to ensure computational efficiency included the application of the MUFITS reservoir simulator (BLACKOIL module) with PVT data derived from the MUFITS GASSTORE module. Observations considered in the inverse model calibration for a simulation time of about 5 years included well bottomhole pressures, CO2 arrival times and seismically determined CO2 thickness maps for 2009 and 2012. Pilot points were employed by means of the PEST++ inverse simulation framework to apply permeability multipliers, interpolated by kriging to the reservoir simulation model grid. Our results exhibit an excellent well bottomhole pressure match, good agreement with the observed CO2 arrival times at the observation wells, a reasonable agreement of the spatial CO2 distribution with the CO2 thickness maps derived from the 2009, 2012 and 2015 3D seismic campaigns as well as a good agreement with hydraulic tests conducted before CO2 injection. Hence, the inversely determined permeability multipliers provide an excellent basis for further revision of the static geological model of the Stuttgart Formation.
Tsunami Waves and Tsunami-Induced Natural Oscillations Determined by HF Radar in Ise Bay, Japan
NASA Astrophysics Data System (ADS)
Toguchi, Y.; Fujii, S.; Hinata, H.
2018-04-01
Tsunami waves and the subsequent natural oscillations generated by the 2011 Tohoku earthquake were observed by two high-frequency (HF) radars and four tidal gauge records in Ise Bay. The radial velocity components of both records increased abruptly at approximately 17:00 (JST) and continued for more than 24 h. This indicated that natural oscillations followed the tsunami in Ise Bay. The spectral analyses showed that the tsunami wave arrivals had periods of 16-19, 30-40, 60-90, and 120-140 min. The three longest periods were remarkably amplified. Time-frequency analysis also showed the energy increase and duration of these periods. We used an Empirical Orthogonal Function (EOF) to analyze the total velocity of the currents to find the underlying oscillation patterns in the three longest periods. To verify the physical properties of the EOF analysis results, we calculated the oscillation modes in Ise Bay using a numerical model proposed by Loomis. The results of EOF analysis showed that the oscillation modes of 120-140 and 60-90 min period bands were distributed widely, whereas the oscillation mode of the 30-40 min period band was distributed locally. The EOF spatial patterns of each period showed good agreement with the eigenmodes calculated by the method of Loomis (1975). Thus, the HF radars were capable of observing the tsunami arrival and the subsequent oscillations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, S. D.; Wieger, B. M.; Enqvist, A.
For the first time, the complete neutron multiplicity distribution has been measured in this study from the photofission of 235U induced by high-energy spallation γ rays arriving ahead of the neutron beam at the Los Alamos Neutron Science Center. The resulting average neutron multiplicity 3.80 ± 0.08 (stat.) neutrons per photofission is in general agreement with previous measurements. In addition, unique measurements of the prompt fission energy spectrum of the neutrons from photofission and the angular correlation of two-neutron energies emitted in photofission also were made. Finally, the results are compared to calculations with the complete event fission model FREYA.
Mid-latitude spread- F structure
NASA Astrophysics Data System (ADS)
From, W. R.; Meehan, D. H.
1988-07-01
Spread- F has been observed at frequencies of 1.98, 3.84 and 5.80 MHz and multiple angles of arrival have been resolved using an HF radar near Brisbane (27°S, 153°E). The spreading of the ionogram trace has been shown to be due to a spread in angles of arrival of echoes, rather than any 'vertical' spreading. The reflection process appears to involve total specular reflection rather than scattering. The previously reported very strong bias for angles of arrival from the north-west at Brisbane is supported. The direction of movement of the reflection points is not radial and therefore, the structure cannot be purely frontal with purely linear movement, as is often supposed. The velocities are much less than for coexisting travelling ionospheric disturbances. The variations of angle of arrival, range and rate of change of range with frequency do not fit previously proposed ideas of the plasma distribution and an alternative is suggested in which the distortions of the isoionic surfaces resemble small, elongated, asymmetrical 'hills' or 'dips'.
Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV.
2017-09-22
Cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature. Clues to their origin come from studying the distribution of their arrival directions. Using 3 × 10 4 cosmic rays with energies above 8 × 10 18 electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 km 2 sr year, we determined the existence of anisotropy in arrival directions. The anisotropy, detected at more than a 5.2σ level of significance, can be described by a dipole with an amplitude of [Formula: see text] percent toward right ascension α d = 100 ± 10 degrees and declination δ d = [Formula: see text] degrees . That direction indicates an extragalactic origin for these ultrahigh-energy particles. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Chen, Shengyun; Sun, Haixin; Zhao, Xingquan; Fu, Paul; Yan, Wang; Yilong, Wang; Hongyan, Jia; Yan, Zhang; Wenzhi, Wang
2013-06-01
Studies have shown that awareness of early stroke symptoms and the use of ambulances are two important factors in decreasing pre-hospital stroke delay. The purpose of this study is to evaluate a comprehensive educational stroke protocol in improving stroke response times. Two urban communities in Beijing (population ≍50 000), matched in economic status and geography, were enrolled in this study. A comprehensive educational protocol, which included public lectures and distribution of instructive material for the community and its medical staff, was implemented from August 2008 to December 2010. Surveillance of new onset stroke in both communities was carried out during the same period. Pre-hospital delay time and percentage of patients using emergency medical services (EMS) were compared between the two communities. After comprehensive educational protocol, we found that: (i) pre-hospital delay (time from stroke symptom onset to hospital arrival) decreased from 180 to 79 minutes, (ii) the proportion of patients arriving within three hours of stroke onset increased from 55·8% to 80·4%, (iii) pre-hospital delay of stroke patients with symptoms of paralysis, numbness, and speech impediments was decreased, and (iv) the proportion of stroke patients calling for EMS increased from 50·4% to 60·7%. The comprehensive educational stroke protocol was significantly effective in decreasing pre-hospital stroke delay.
A matched-peak inversion approach for ocean acoustic travel-time tomography
Skarsoulis
2000-03-01
A new approach for the inversion of travel-time data is proposed, based on the matching between model arrivals and observed peaks. Using the linearized model relations between sound-speed and arrival-time perturbations about a set of background states, arrival times and associated errors are calculated on a fine grid of model states discretizing the sound-speed parameter space. Each model state can explain (identify) a number of observed peaks in a particular reception lying within the uncertainty intervals of the corresponding predicted arrival times. The model states that explain the maximum number of observed peaks are considered as the more likely parametric descriptions of the reception; these model states can be described in terms of mean values and variances providing a statistical answer (matched-peak solution) to the inversion problem. A basic feature of the matched-peak inversion approach is that each reception can be treated independently, i.e., no constraints are posed from previous-reception identification or inversion results. Accordingly, there is no need for initialization of the inversion procedure and, furthermore, discontinuous travel-time data can be treated. The matched-peak inversion method is demonstrated by application to 9-month-long travel-time data from the Thetis-2 tomography experiment in the western Mediterranean sea.
Optimizing correlation techniques for improved earthquake location
Schaff, D.P.; Bokelmann, G.H.R.; Ellsworth, W.L.; Zanzerkia, E.; Waldhauser, F.; Beroza, G.C.
2004-01-01
Earthquake location using relative arrival time measurements can lead to dramatically reduced location errors and a view of fault-zone processes with unprecedented detail. There are two principal reasons why this approach reduces location errors. The first is that the use of differenced arrival times to solve for the vector separation of earthquakes removes from the earthquake location problem much of the error due to unmodeled velocity structure. The second reason, on which we focus in this article, is that waveform cross correlation can substantially reduce measurement error. While cross correlation has long been used to determine relative arrival times with subsample precision, we extend correlation measurements to less similar waveforms, and we introduce a general quantitative means to assess when correlation data provide an improvement over catalog phase picks. We apply the technique to local earthquake data from the Calaveras Fault in northern California. Tests for an example streak of 243 earthquakes demonstrate that relative arrival times with normalized cross correlation coefficients as low as ???70%, interevent separation distances as large as to 2 km, and magnitudes up to 3.5 as recorded on the Northern California Seismic Network are more precise than relative arrival times determined from catalog phase data. Also discussed are improvements made to the correlation technique itself. We find that for large time offsets, our implementation of time-domain cross correlation is often more robust and that it recovers more observations than the cross spectral approach. Longer time windows give better results than shorter ones. Finally, we explain how thresholds and empirical weighting functions may be derived to optimize the location procedure for any given region of interest, taking advantage of the respective strengths of diverse correlation and catalog phase data on different length scales.
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; Desiante, R.
2016-11-01
Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims: The spectral energy distribution of QSO B0218+357 can give information on the energetics of z 1 very high energy gamma-ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z 1. Methods: MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. Results: Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.
QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10–12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma-ray sources. Furthermore, the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. MAGIC performedmore » observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. We detected very high energy gamma-ray emission from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. We also observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.« less
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; ...
2016-11-04
QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components that are spatially indistinguishable by gamma-ray instruments, but separated by a 10–12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma-ray sources. Furthermore, the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. MAGIC performedmore » observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data obtained by Fermi-LAT and MAGIC are used to set constraints on the extragalactic background light. We detected very high energy gamma-ray emission from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray source detected to date. We also observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broadband emission can be modeled in the framework of a two-zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.« less
NASA Astrophysics Data System (ADS)
Murakami, H.; Chen, X.; Hahn, M. S.; Over, M. W.; Rockhold, M. L.; Vermeul, V.; Hammond, G. E.; Zachara, J. M.; Rubin, Y.
2010-12-01
Subsurface characterization for predicting groundwater flow and contaminant transport requires us to integrate large and diverse datasets in a consistent manner, and quantify the associated uncertainty. In this study, we sequentially assimilated multiple types of datasets for characterizing a three-dimensional heterogeneous hydraulic conductivity field at the Hanford 300 Area. The datasets included constant-rate injection tests, electromagnetic borehole flowmeter tests, lithology profile and tracer tests. We used the method of anchored distributions (MAD), which is a modular-structured Bayesian geostatistical inversion method. MAD has two major advantages over the other inversion methods. First, it can directly infer a joint distribution of parameters, which can be used as an input in stochastic simulations for prediction. In MAD, in addition to typical geostatistical structural parameters, the parameter vector includes multiple point values of the heterogeneous field, called anchors, which capture local trends and reduce uncertainty in the prediction. Second, MAD allows us to integrate the datasets sequentially in a Bayesian framework such that it updates the posterior distribution, as a new dataset is included. The sequential assimilation can decrease computational burden significantly. We applied MAD to assimilate different combinations of the datasets, and then compared the inversion results. For the injection and tracer test assimilation, we calculated temporal moments of pressure build-up and breakthrough curves, respectively, to reduce the data dimension. A massive parallel flow and transport code PFLOTRAN is used for simulating the tracer test. For comparison, we used different metrics based on the breakthrough curves not used in the inversion, such as mean arrival time, peak concentration and early arrival time. This comparison intends to yield the combined data worth, i.e. which combination of the datasets is the most effective for a certain metric, which will be useful for guiding the further characterization effort at the site and also the future characterization projects at the other sites.
Timing Comparisons for GLEs and High-energy Proton Events using GPS Proton Measurements
NASA Astrophysics Data System (ADS)
Bernstein, V.; Winter, L. M.; Carver, M.; Morley, S.
2017-12-01
The newly released LANL GPS particle sensor data offers a unique snapshot of access of relativistic particles into the geomagnetic field. Currently, 23 of the 31 operational GPS satellites host energetic particle detectors which can detect the arrival of high-energy solar protons associated with Ground Level Enhancements (GLEs). We compare the timing profiles of solar energetic proton detections from GPS satellites as well as from ground-based Neutron Monitors and GOES spacecraft at geostationary orbit in order to understand how high-energy protons from the Sun enter the geomagnetic field and investigate potential differences in arrival time of energetic protons at GPS satellites as a function of location. Previous studies could only use one or two spacecraft at a similar altitude to track the arrival of energetic particles. With GPS data, we can now test whether the particles arrive isotropically, as assumed, or whether there exist differences in the timing and energetics viewed by each of the individual satellites. Extensions of this work could lead to improvements in space weather forecasting that predict more localized risk estimates for space-based technology.
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; ...
2016-04-01
Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.
Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less
NASA Astrophysics Data System (ADS)
Ryan, Timothy James
The effects of multiple arrivals on the intelligibility of speech produced by live-sound reinforcement systems are examined. The intent is to determine if correlations exist between the manipulation of sound system optimization parameters and the subjective attribute speech intelligibility. Given the number, and wide range, of variables involved, this exploratory research project attempts to narrow the focus of further studies. Investigated variables are delay time between signals arriving from multiple elements of a loudspeaker array, array type and geometry and the two-way interactions of speech-to-noise ratio and array geometry with delay time. Intelligibility scores were obtained through subjective evaluation of binaural recordings, reproduced via headphone, using the Modified Rhyme Test. These word-score results are compared with objective measurements of Speech Transmission Index (STI). Results indicate that both variables, delay time and array geometry, have significant effects on intelligibility. Additionally, it is seen that all three of the possible two-way interactions have significant effects. Results further reveal that the STI measurement method overestimates the decrease in intelligibility due to short delay times between multiple arrivals.
Clock Synchronization Through Time-Variant Underwater Acoustic Channels
2012-09-01
stage, we analyze a series of chirp responses to identify the least time -varying multipath present in the channel between the two nodes. Based on the... based on the detected arrivals and determines the most stable one based on the correlation coefficient of a model fit to the time -of-arrival estimates...short periods of time . Nevertheless, signal fluctuations can occur due to transceiver motion or inherent changes within the propagation medium
Determination of meteor flux distribution over the celestial sphere
NASA Technical Reports Server (NTRS)
Andreev, V. V.; Belkovich, O. I.; Filimonova, T. K.; Sidorov, V. V.
1992-01-01
A new method of determination of meteor flux density distribution over the celestial sphere is discussed. The flux density was derived from observations by radar together with measurements of angles of arrival of radio waves reflected from meteor trails. The role of small meteor showers over the sporadic background is shown.
A statistical analysis of the daily streamflow hydrograph
NASA Astrophysics Data System (ADS)
Kavvas, M. L.; Delleur, J. W.
1984-03-01
In this study a periodic statistical analysis of daily streamflow data in Indiana, U.S.A., was performed to gain some new insight into the stochastic structure which describes the daily streamflow process. This analysis was performed by the periodic mean and covariance functions of the daily streamflows, by the time and peak discharge -dependent recession limb of the daily streamflow hydrograph, by the time and discharge exceedance level (DEL) -dependent probability distribution of the hydrograph peak interarrival time, and by the time-dependent probability distribution of the time to peak discharge. Some new statistical estimators were developed and used in this study. In general features, this study has shown that: (a) the persistence properties of daily flows depend on the storage state of the basin at the specified time origin of the flow process; (b) the daily streamflow process is time irreversible; (c) the probability distribution of the daily hydrograph peak interarrival time depends both on the occurrence time of the peak from which the inter-arrival time originates and on the discharge exceedance level; and (d) if the daily streamflow process is modeled as the release from a linear watershed storage, this release should depend on the state of the storage and on the time of the release as the persistence properties and the recession limb decay rates were observed to change with the state of the watershed storage and time. Therefore, a time-varying reservoir system needs to be considered if the daily streamflow process is to be modeled as the release from a linear watershed storage.
Battaglia, J.; Got, J.-L.; Okubo, P.
2003-01-01
We present methods for improving the location of long-period (LP) events, deep and shallow, recorded below Kilauea Volcano by the permanent seismic network. LP events might be of particular interest to understanding eruptive processes as their source mechanism is assumed to directly involve fluid transport. However, it is usually difficult or impossible to locate their source using traditional arrival time methods because of emergent wave arrivals. At Kilauea, similar LP waveform signatures suggest the existence of LP multiplets. The waveform similarity suggests spatially close sources, while catalog solutions using arrival time estimates are widely scattered beneath Kilauea's summit caldera. In order to improve estimates of absolute LP location, we use the distribution of seismic amplitudes corrected for station site effects. The decay of the amplitude as a function of hypocentral distance is used for inferring LP location. In a second stage, we use the similarity of the events to calculate their relative positions. The analysis of the entire LP seismicity recorded between January 1997 and December 1999 suggests that a very large part of the LP event population, both deep and shallow, is generated by a small number of compact sources. Deep events are systematically composed of a weak high-frequency onset followed by a low-frequency wave train. Aligning the low-frequency wave trains does not lead to aligning the onsets indicating the two parts of the signal are dissociated. This observation favors an interpretation in terms of triggering and resonance of a magmatic conduit. Instead of defining fault planes, the precise relocation of similar LP events, based on the alignment of the high-energy low-frequency wave trains, defines limited size volumes. Copyright 2003 by the American Geophysical Union.
Adapting to a Warmer Ocean—Seasonal Shift of Baleen Whale Movements over Three Decades
Ramp, Christian; Delarue, Julien; Palsbøll, Per J.; Sears, Richard; Hammond, Philip S.
2015-01-01
Global warming poses particular challenges to migratory species, which face changes to the multiple environments occupied during migration. For many species, the timing of migration between summer and winter grounds and also within-season movements are crucial to maximise exploitation of temporarily abundant prey resources in feeding areas, themselves adapting to the warming planet. We investigated the temporal variation in the occurrence of fin (Balaenoptera physalus) and humpback whales (Megaptera novaeangliae) in a North Atlantic summer feeding ground, the Gulf of St. Lawrence (Canada), from 1984 to 2010 using a long-term study of individually identifiable animals. These two sympatric species both shifted their date of arrival at a previously undocumented rate of more than 1day per year earlier over the study period thus maintaining the approximate 2-week difference in arrival of the two species and enabling the maintenance of temporal niche separation. However, the departure date of both species also shifted earlier but at different rates resulting in increasing temporal overlap over the study period indicating that this separation may be starting to erode. Our analysis revealed that the trend in arrival was strongly related to earlier ice break-up and rising sea surface temperature, likely triggering earlier primary production. The observed changes in phenology in response to ocean warming are a remarkable example of phenotypic plasticity and may partly explain how baleen whales were able to survive a number of changes in climate over the last several million years. However, it is questionable whether the observed rate of change in timing can be maintained. Substantial modification to the distribution or annual life cycle of these species might be required to keep up with the ongoing warming of the oceans. PMID:25785462
Adapting to a warmer ocean--seasonal shift of baleen whale movements over three decades.
Ramp, Christian; Delarue, Julien; Palsbøll, Per J; Sears, Richard; Hammond, Philip S
2015-01-01
Global warming poses particular challenges to migratory species, which face changes to the multiple environments occupied during migration. For many species, the timing of migration between summer and winter grounds and also within-season movements are crucial to maximise exploitation of temporarily abundant prey resources in feeding areas, themselves adapting to the warming planet. We investigated the temporal variation in the occurrence of fin (Balaenoptera physalus) and humpback whales (Megaptera novaeangliae) in a North Atlantic summer feeding ground, the Gulf of St. Lawrence (Canada), from 1984 to 2010 using a long-term study of individually identifiable animals. These two sympatric species both shifted their date of arrival at a previously undocumented rate of more than 1 day per year earlier over the study period thus maintaining the approximate 2-week difference in arrival of the two species and enabling the maintenance of temporal niche separation. However, the departure date of both species also shifted earlier but at different rates resulting in increasing temporal overlap over the study period indicating that this separation may be starting to erode. Our analysis revealed that the trend in arrival was strongly related to earlier ice break-up and rising sea surface temperature, likely triggering earlier primary production. The observed changes in phenology in response to ocean warming are a remarkable example of phenotypic plasticity and may partly explain how baleen whales were able to survive a number of changes in climate over the last several million years. However, it is questionable whether the observed rate of change in timing can be maintained. Substantial modification to the distribution or annual life cycle of these species might be required to keep up with the ongoing warming of the oceans.
An operating system for future aerospace vehicle computer systems
NASA Technical Reports Server (NTRS)
Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.
1984-01-01
The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.
Enhancements to the timing of the OMEGA laser system to improve illumination uniformity
NASA Astrophysics Data System (ADS)
Donaldson, W. R.; Katz, J.; Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Bahr, R. E.
2016-09-01
Two diagnostics have been developed to improve the uniformity on the OMEGA Laser System, which is used for inertial confinement fusion (ICF) research. The first diagnostic measures the phase of an optical modulator (used for the spectral dispersion technique employed on OMEGA to enhance spatial smoothing), which adds bandwidth to the optical pulse. Setting this phase precisely is required to reduce pointing errors. The second diagnostic ensures that the arrival times of all the beams are synchronized. The arrival of each of the 60 OMEGA beams is measured by placing a 1-mm diffusing sphere at target chamber center. By comparing the arrival time of each beam with respect to a reference pulse, the measured timing spread of the OMEGA Laser System is now 3.8 ps.
NASA Astrophysics Data System (ADS)
Goodenough, Anne E.; Hart, Adam G.; Elliot, Simon L.
2011-01-01
Phenological studies have demonstrated changes in the timing of seasonal events across multiple taxonomic groups as the climate warms. Some northern European migrant bird populations, however, show little or no significant change in breeding phenology, resulting in synchrony with key food sources becoming mismatched. This phenological inertia has often been ascribed to migration constraints (i.e. arrival date at breeding grounds preventing earlier laying). This has been based primarily on research in The Netherlands and Germany where time between arrival and breeding is short (often as few as 9 days). Here, we test the arrival constraint hypothesis over a 15-year period for a U.K. pied flycatcher ( Ficedula hypoleuca) population where laying date is not constrained by arrival as the period between arrival and breeding is substantial and consistent (average 27 ± 4.57 days SD). Despite increasing spring temperatures and quantifiably stronger selection for early laying on the basis of number of offspring to fledge, we found no significant change in breeding phenology, in contrast with co-occurring resident blue tits ( Cyanistes caeruleus). We discuss possible non-migratory constraints on phenological adjustment, including limitations on plasticity, genetic constraints and competition, as well as the possibility of counter-selection pressures relating to adult survival, longevity or future reproductive success. We propose that such factors need to be considered in conjunction with the arrival constraint hypothesis.
Goodenough, Anne E; Hart, Adam G; Elliot, Simon L
2011-01-01
Phenological studies have demonstrated changes in the timing of seasonal events across multiple taxonomic groups as the climate warms. Some northern European migrant bird populations, however, show little or no significant change in breeding phenology, resulting in synchrony with key food sources becoming mismatched. This phenological inertia has often been ascribed to migration constraints (i.e. arrival date at breeding grounds preventing earlier laying). This has been based primarily on research in The Netherlands and Germany where time between arrival and breeding is short (often as few as 9 days). Here, we test the arrival constraint hypothesis over a 15-year period for a U.K. pied flycatcher (Ficedula hypoleuca) population where laying date is not constrained by arrival as the period between arrival and breeding is substantial and consistent (average 27 ± 4.57 days SD). Despite increasing spring temperatures and quantifiably stronger selection for early laying on the basis of number of offspring to fledge, we found no significant change in breeding phenology, in contrast with co-occurring resident blue tits (Cyanistes caeruleus). We discuss possible non-migratory constraints on phenological adjustment, including limitations on plasticity, genetic constraints and competition, as well as the possibility of counter-selection pressures relating to adult survival, longevity or future reproductive success. We propose that such factors need to be considered in conjunction with the arrival constraint hypothesis.
Route Optimization for Offloading Congested Meter Fixes
NASA Technical Reports Server (NTRS)
Xue, Min; Zelinski, Shannon
2016-01-01
The Optimized Route Capability (ORC) concept proposed by the FAA facilitates traffic managers to identify and resolve arrival flight delays caused by bottlenecks formed at arrival meter fixes when there exists imbalance between arrival fixes and runways. ORC makes use of the prediction capability of existing automation tools, monitors the traffic delays based on these predictions, and searches the best reroutes upstream of the meter fixes based on the predictions and estimated arrival schedules when delays are over a predefined threshold. Initial implementation and evaluation of the ORC concept considered only reroutes available at the time arrival congestion was first predicted. This work extends previous work by introducing an additional dimension in reroute options such that ORC can find the best time to reroute and overcome the 'firstcome- first-reroute' phenomenon. To deal with the enlarged reroute solution space, a genetic algorithm was developed to solve this problem. Experiments were conducted using the same traffic scenario used in previous work, when an arrival rush was created for one of the four arrival meter fixes at George Bush Intercontinental Houston Airport. Results showed the new approach further improved delay savings. The suggested route changes from the new approach were on average 30 minutes later than those using other approaches, and fewer numbers of reroutes were required. Fewer numbers of reroutes reduce operational complexity and later reroutes help decision makers deal with uncertain situations.
SPX-8 SpaceX Dragon Spacecraft Grappled by SSRMS
2016-04-10
iss047e050978 (4/10/2016) --- The SpaceX Dragon cargo spaceship is grappled by the International Space Station’s Canadarm2. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six.
Time-dependent seismic tomography
Julian, B.R.; Foulger, G.R.
2010-01-01
Of methods for measuring temporal changes in seismic-wave speeds in the Earth, seismic tomography is among those that offer the highest spatial resolution. 3-D tomographic methods are commonly applied in this context by inverting seismic wave arrival time data sets from different epochs independently and assuming that differences in the derived structures represent real temporal variations. This assumption is dangerous because the results of independent inversions would differ even if the structure in the Earth did not change, due to observational errors and differences in the seismic ray distributions. The latter effect may be especially severe when data sets include earthquake swarms or aftershock sequences, and may produce the appearance of correlation between structural changes and seismicity when the wave speeds are actually temporally invariant. A better approach, which makes it possible to assess what changes are truly required by the data, is to invert multiple data sets simultaneously, minimizing the difference between models for different epochs as well as the rms arrival-time residuals. This problem leads, in the case of two epochs, to a system of normal equations whose order is twice as great as for a single epoch. The direct solution of this system would require twice as much memory and four times as much computational effort as would independent inversions. We present an algorithm, tomo4d, that takes advantage of the structure and sparseness of the system to obtain the solution with essentially no more effort than independent inversions require. No claim to original US government works Journal compilation ?? 2010 RAS.
Yang, Jong Min; Park, Yoo Seok; Chung, Sung Phil; Chung, Hyun Soo; Lee, Hye Sun; You, Je Sung; Lee, Shin Ho; Park, Incheol
2014-08-01
Admission on weekends and off-hours has been associated with poor outcomes and mortality from acute stroke. The purpose of this study was to investigate whether an organized clinical pathway (CP) for ischemic stroke can effectively reduce the time from arrival to evaluation and treatment in the emergency department (ED) and improve outcomes, regardless of the time from arrival in the ED. We conducted a retrospective analysis of all consecutive patients included in the prospective registry database in the Brain Salvage through Emergency Stroke Therapy program, which uses the computerized physician order entry (CPOE) system. Patients were classified based on their time of arrival in the ED: group 1, normal working hours on weekdays; group 2, off-hours on weekdays; group 3, normal working hours on weekends; and group 4, off-hours on weekends. Clinical outcomes were categorized according to 30 days in-hospital mortality, in-hospital mortality, and the modified Rankin score during a single length of stay (LOS). No time intervals differed significantly among the 4 patient groups who received intravenous administration of tissue plasminogen activator (IV-tPA). Use of IV-tPA (P = .5110) was not affected by arrival in the ED on off-days or weekends. The overall mortality rate was 3.9%, and the median LOS was 7 days (Interquartile range (IQR), 5-10). By Kaplan-Meier analysis, the cumulative probability of mortality and survival did not differ significantly among the 4 groups over 30 days (P = .1557). An organized CP, based on CPOE, for ischemic stroke can effectively attenuate disparities in the time interval between ED arrival to evaluation and treatment regardless of ED arrival time. This pathway may also help to eliminate off-hour and weekend effects on outcomes from ischemic stroke. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Chevalley, Eric; Parke, Bonny; Kraut, Josh M.; Bienert, Nancy; Omar, Faisal; Palmer, Everett A.
2015-01-01
In this paper, successful Time-Based Flow Management (TBFM) scheduling systems for arrivals are considered and adapted to apply to departures. We present a concept of operations that integrates Controller-Managed Spacing tools for departures (CMS-D) with existing tactical departure scheduling tools to coordinate demand at departure fixes in a metroplex environment. We tested our concept in a Human-in-the-Loop simulation and compared the effect of two scheduling conditions: 1) "Departure Scheduling" consisting of an emulation of the Integrated Departure and Arrival Capability (IDAC) where Towers and a Planner (Traffic Management Coordinator at the appropriate facility) coordinate aircraft scheduled takeoff times to departure fixes; and 2) "Arrival Sensitive Departure Scheduling" where, in addition, the Tower and Planner also consider arrival Scheduled Time of Arrivals (STAs) at the airport's dependent runway. Results indicate little difference between the two scheduling conditions, but a large difference between the No Tools and the two scheduling conditions with CMS-D tools. The scheduling/CMS-D tools conditions markedly reduced heading, speed clearances, and workload for controllers who were merging flows at the departure fixes. In the tool conditions, departure controllers conditioned departures earlier rather than later when aircraft were tied near the departure fixes. In the scheduling/CMS-D tools conditions, departures crossed the departure fixes 50 seconds earlier and with an 8% error rate (consisting of time ahead or behind desired time of arrival) compared to a 19% error rate in the No Tool condition. Two exploratory runs showed that similar beneficial effects can be obtained only with the CMS-D tools without scheduling takeoff times, but at the cost of a somewhat higher workload for controllers, indicating the benefits of pre-departure scheduling of aircraft with minimal delays. Hence, we found that CMS-D tools were very beneficial in the metroplex environment we tested but that further research is needed to clarify the benefits of the various scheduling approaches.
NASA Astrophysics Data System (ADS)
Donegan, M.; Vandegriff, J.; Ho, G. C.; Julia, S. J.
2004-12-01
We report on an operational system which provides advance warning and predictions of arrival times at Earth of interplanetary (IP) shocks that originate at the Sun. The data stream used in our prediction algorithm is real-time and comes from the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. Since locally accelerated energetic storm particle (ESP) events accompany most IP shocks, their arrival can be predicted using ESP event signatures. We have previously reported on the development and implementation of an algorithm which recognizes the upstream particle signature of approaching IP shocks and provides estimated countdown predictions. A web-based system (see (http://sd-www.jhuapl.edu/UPOS/RISP/index.html) combines this prediction capability with real-time ACE/EPAM data provided by the NOAA Space Environment Center. The most recent ACE data is continually processed and predictions of shock arrival time are updated every five minutes when an event is impending. An operational display is provided to indicate advisories and countdowns for the event. Running the algorithm on a test set of historical events, we obtain a median error of about 10 hours for predictions made 24-36 hours before actual shock arrival and about 6 hours when the shock is 6-12 hours away. This system can provide critical information to mission planners, satellite operations controllers, and scientists by providing significant lead-time for approaching events. Recently, we have made improvements to the triggering mechanism as well as re-training the neural network, and here we report prediction results from the latest system.
Barrett, Jeffrey S; Jayaraman, Bhuvana; Patel, Dimple; Skolnik, Jeffrey M
2008-06-01
Previous exploration of oncology study design efficiency has focused on Markov processes alone (probability-based events) without consideration for time dependencies. Barriers to study completion include time delays associated with patient accrual, inevaluability (IE), time to dose limiting toxicities (DLT) and administrative and review time. Discrete event simulation (DES) can incorporate probability-based assignment of DLT and IE frequency, correlated with cohort in the case of DLT, with time-based events defined by stochastic relationships. A SAS-based solution to examine study efficiency metrics and evaluate design modifications that would improve study efficiency is presented. Virtual patients are simulated with attributes defined from prior distributions of relevant patient characteristics. Study population datasets are read into SAS macros which select patients and enroll them into a study based on the specific design criteria if the study is open to enrollment. Waiting times, arrival times and time to study events are also sampled from prior distributions; post-processing of study simulations is provided within the decision macros and compared across designs in a separate post-processing algorithm. This solution is examined via comparison of the standard 3+3 decision rule relative to the "rolling 6" design, a newly proposed enrollment strategy for the phase I pediatric oncology setting.
Albert, Carlo; Ulzega, Simone; Stoop, Ruedi
2016-04-01
Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.
Experimental Evaluation of CTAS/FMS Integration in TRACON Airspace
NASA Technical Reports Server (NTRS)
Romahn, Stephen; Palmer, Everett; Null, Cynthia H. (Technical Monitor)
1999-01-01
A CTAS/FMS integration project at Ames Research Center addresses extensions to the CTAS air traffic management concept, among them the introduction of arrival routes specially designed for the use with a Flight Management System. These FMS arrival routes shall allow for the use of the INS' lateral and vertical navigation capabilities throughout the arrival until final approach. For the use in this project CTAS controller support tools that compliment the concept have been created. These tools offer controllers access to CTAS' prediction and planning capabilities in terms of speed and route advisories. The objective is to allow for a more strategic way of controlling aircraft. Expected benefits are an increase in arrival rate and a reduction of average travel times through TRACER airspace. A real time simulation is being conducted at Ames to investigate how FMS arrivals and approach transitions - with and without the support of CTAS tools - effect the flow of arriving traffic within TRACER airspace and the controllers' task performance. Four conditions will be investigated and compared to today's technique of controlling traffic with tactical vectoring: 1. FMS arrivals and approach transitions are available for controllers to issue to equipped aircraft - traffic permitting; 2. Speed advisories that match CTAS' runway balancing and sequencing plan are displayed to Feeder controllers; 3. Approach transition advisories (e.g., location of the base turn point) are displayed to Final controllers for tactical clearances ("Turn base now"); and 4. Approach transition advisories (voice and data link) are generated by CTAS and displayed to final controllers for strategic voice clearances ("Turn base five miles after waypoint xyz") or prepared in terms of a trajectory description for strategic data link clearance. Scenarios used in the study will represent current traffic and vary in density of arriving traffic and the kind and mix of equipage of arriving aircraft. Data will be collected from experiment runs with active TRACON controllers on the final approach spacing, the aircraft's speed profiles, the controllers interaction with CTAS tools, and number and timing of pilot controllers communications under the described conditions.
Critical behaviour in charging of electric vehicles
NASA Astrophysics Data System (ADS)
Carvalho, Rui; Buzna, Lubos; Gibbens, Richard; Kelly, Frank
2015-09-01
The increasing penetration of electric vehicles over the coming decades, taken together with the high cost to upgrade local distribution networks and consumer demand for home charging, suggest that managing congestion on low voltage networks will be a crucial component of the electric vehicle revolution and the move away from fossil fuels in transportation. Here, we model the max-flow and proportional fairness protocols for the control of congestion caused by a fleet of vehicles charging on two real-world distribution networks. We show that the system undergoes a continuous phase transition to a congested state as a function of the rate of vehicles plugging to the network to charge. We focus on the order parameter and its fluctuations close to the phase transition, and show that the critical point depends on the choice of congestion protocol. Finally, we analyse the inequality in the charging times as the vehicle arrival rate increases, and show that charging times are considerably more equitable in proportional fairness than in max-flow.
Workload Characterization of a Leadership Class Storage Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngjae; Gunasekaran, Raghul; Shipman, Galen M
2010-01-01
Understanding workload characteristics is critical for optimizing and improving the performance of current systems and software, and architecting new storage systems based on observed workload patterns. In this paper, we characterize the scientific workloads of the world s fastest HPC (High Performance Computing) storage cluster, Spider, at the Oak Ridge Leadership Computing Facility (OLCF). Spider provides an aggregate bandwidth of over 240 GB/s with over 10 petabytes of RAID 6 formatted capacity. OLCFs flagship petascale simulation platform, Jaguar, and other large HPC clusters, in total over 250 thousands compute cores, depend on Spider for their I/O needs. We characterize themore » system utilization, the demands of reads and writes, idle time, and the distribution of read requests to write requests for the storage system observed over a period of 6 months. From this study we develop synthesized workloads and we show that the read and write I/O bandwidth usage as well as the inter-arrival time of requests can be modeled as a Pareto distribution.« less
NASA Astrophysics Data System (ADS)
Morgenstern, Uwe; Daughney, Christopher J.; Stewart, Michael K.; McDonnell, Jeffrey J.
2013-04-01
The transit time distribution of streamflow is a fundamental descriptor of the flowpaths of water through a catchment and the storage of water within it, controlling its response to landuse change, pollution, ecological degradation, and climate change. Significant time lags (catchment memory) in the responses of streams to these stressors and their amelioration or restoration have been observed. Lag time can be quantified via water transit time of the catchment discharge. Mean transit times can be in the order of years and decades (Stewart et al 2012, Morgenstern et al., 2010). If the water passes through large groundwater reservoirs, it is difficult to quantify and predict the lag time. A pulse shaped tracer that moves with the water can allow quantification of the mean transit time. Environmental tritium is the ideal tracer of the water cycle. Tritium is part of the water molecule, is not affected by chemical reactions in the aquifer, and the bomb tritium from the atmospheric nuclear weapons testing represents a pulse shaped tracer input that allows for very accurate measurement of the age distribution parameters of the water in the catchment discharge. Tritium time series data from all catchment discharges (streams and springs) into Lake Rotorua, New Zealand, allow for accurate determination of the age distribution parameters. The Lake Rotorua catchment tritium data from streams and springs are unique, with high-quality tritium data available over more than four decades, encompassing the time when the bomb-tritium moved through the groundwater system, and from a very high number of streams and springs. Together with the well-defined tritium input into the Rotorua catchment, this data set allows for the best understanding of the water dynamics through a large scale catchment, including validation of complicated water mixing models. Mean transit times of the main streams into the lake range between 27 and 170 years. With such old water discharging into the lake, most of the water inflows into the lake are not yet fully representing the nitrate loading in their sub-catchments from current land use practises. These water inflows are still 'diluted' by pristine old water, but over time, the full amount of nitrate load will arrive at the lake. With the age distribution parameters, it is possible to predict the increase in nitrate load to the lake via the groundwater discharges. All sub-catchments have different mean transit times. The mean transit times are not necessarily correlated with observable hydrogeologic properties like hydraulic conductivity and catchment size. Without such age tracer data, it is therefore difficult to predict mean transit times (lag times, memory) of water transfer through catchments. References: Stewart, M.K., Morgenstern, U., McDonnell, J.J., Pfister, L. (2012). The 'hidden streamflow' challenge in catchment hydrology: A call to action for streamwater transit time analysis. Hydrol. Process. 26,2061-2066, Invited commentary. DOI: 10.1002/hyp.9262 Morgenstern, U., Stewart, M.K., and Stenger, R. (2010) Dating of streamwater using tritium in a post nuclear bomb pulse world: continuous variation of mean transit time with streamflow, Hydrol. Earth Syst. Sci, 14, 2289-2301
NASA Astrophysics Data System (ADS)
Gu, Cunchang; Mu, Yundong
2013-03-01
In this paper, we consider a single machine on-line scheduling problem with the special chains precedence and delivery time. All jobs arrive over time. The chains chainsi arrive at time ri , it is known that the processing and delivery time of each job on the chain satisfy one special condition CD a forehand: if the job J(i)j is the predecessor of the job J(i)k on the chain chaini, then they satisfy p(i)j = p(i)k = p >= qj >= qk , i = 1,2, ---,n , where pj and qj denote the processing time and the delivery time of the job Jj respectively. Obviously, if the arrival jobs have no chains precedence, it shows that the length of the corresponding chain is 1. The objective is to minimize the time by which all jobs have been delivered. We provide an on-line algorithm with a competitive ratio of √2 , and the result is the best possible.
Imaging and Rapid-Scanning Ion Mass Spectrometer (IRM) for the CASSIOPE e-POP Mission
NASA Astrophysics Data System (ADS)
Yau, Andrew W.; Howarth, Andrew; White, Andrew; Enno, Greg; Amerl, Peter
2015-06-01
The imaging and rapid-scanning ion mass spectrometer (IRM) is part of the Enhanced Polar Outflow Probe (e-POP) instrument suite on the Canadian CASSIOPE small satellite. Designed to measure the composition and detailed velocity distributions of ions in the ˜1-100 eV/q range on a non-spinning spacecraft, the IRM sensor consists of a planar entrance aperture, a pair of electrostatic deflectors, a time-of-flight (TOF) gate, a hemispherical electrostatic analyzer, and a micro-channel plate (MCP) detector. The TOF gate measures the transit time of each detected ion inside the sensor. The hemispherical analyzer disperses incident ions by their energy-per-charge and azimuth in the aperture plane onto the detector. The two electrostatic deflectors may be optionally programmed to step through a sequence of deflector voltages, to deflect ions of different incident elevation out of the aperture plane and energy-per-charge into the sensor aperture for sampling. The position and time of arrival of each detected ion at the detector are measured, to produce an image of 2-dimensional (2D), mass-resolved ion velocity distribution up to 100 times per second, or to construct a composite 3D velocity distribution by combining successive images in a deflector voltage sequence. The measured distributions are then used to investigate ion composition, density, drift velocity and temperature in polar ion outflows and related acceleration and transport processes in the topside ionosphere.
PREDICTION OF GEOMAGNETIC STORM STRENGTH FROM INNER HELIOSPHERIC IN SITU OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubicka, M.; Möstl, C.; Amerstorfer, T.
2016-12-20
Prediction of the effects of coronal mass ejections (CMEs) on Earth strongly depends on knowledge of the interplanetary magnetic field southward component, B{sub z}. Predicting the strength and duration of B{sub z} inside a CME with sufficient accuracy is currently impossible, forming the so-called B{sub z} problem. Here, we provide a proof-of-concept of a new method for predicting the CME arrival time, speed, B{sub z}, and resulting disturbance storm time ( Dst ) index on Earth based only on magnetic field data, measured in situ in the inner heliosphere (<1 au). On 2012 June 12–16, three approximately Earthward-directed and interactingmore » CMEs were observed by the Solar Terrestrial Relations Observatory imagers and Venus Express (VEX) in situ at 0.72 au, 6° away from the Sun–Earth line. The CME kinematics are calculated using the drag-based and WSA–Enlil models, constrained by the arrival time at VEX , resulting in the CME arrival time and speed on Earth. The CME magnetic field strength is scaled with a power law from VEX to Wind . Our investigation shows promising results for the Dst forecast (predicted: −96 and −114 nT (from 2 Dst models); observed: −71 nT), for the arrival speed (predicted: 531 ± 23 km s{sup −1}; observed: 488 ± 30 km s{sup −1}), and for the timing (6 ± 1 hr after the actual arrival time). The prediction lead time is 21 hr. The method may be applied to vector magnetic field data from a spacecraft at an artificial Lagrange point between the Sun and Earth or to data taken by any spacecraft temporarily crossing the Sun–Earth line.« less
Dandoy, Christopher E; Hariharan, Selena; Weiss, Brian; Demmel, Kathy; Timm, Nathan; Chiarenzelli, Janis; Dewald, Mary Katherine; Kennebeck, Stephanie; Langworthy, Shawna; Pomales, Jennifer; Rineair, Sylvia; Sandfoss, Erin; Volz-Noe, Pamela; Nagarajan, Rajaram; Alessandrini, Evaline
2016-02-01
Timely delivery of antibiotics to febrile immunocompromised (F&I) paediatric patients in the emergency department (ED) and outpatient clinic reduces morbidity and mortality. The aim of this quality improvement initiative was to increase the percentage of F&I patients who received antibiotics within goal in the clinic and ED from 25% to 90%. Using the Model of Improvement, we performed Plan-Do-Study-Act cycles to design, test and implement high-reliability interventions to decrease time to antibiotics. Pre-arrival interventions were tested and implemented, followed by post-arrival interventions in the ED. Many processes were spread successfully to the outpatient clinic. The Chronic Care Model was used, in addition to active family engagement, to inform and improve processes. The study period was from January 2010 to January 2015. Pre-arrival planning improved our F&I time to antibiotics in the ED from 137 to 88 min. This was sustained until October 2012, when further interventions including a pre-arrival huddle decreased the median time to <50 min. Implementation of the various processes to the clinic delivery system increased the mean percentage of patients receiving antibiotics within 60 min to >90%. In September 2014, we implemented a rapid response team to improve reliable venous access in the ED, which increased our mean percentage of patients receiving timely antibiotics to its highest rate (95%). This stepwise approach with pre-arrival planning using the Chronic Care Model, followed by standardisation of processes, created a sustainable improvement of timely antibiotic delivery in F&I patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea.
Rideout, Brendan P; Dosso, Stan E; Hannay, David E
2013-09-01
This paper develops and applies a linearized Bayesian localization algorithm based on acoustic arrival times of marine mammal vocalizations at spatially-separated receivers which provides three-dimensional (3D) location estimates with rigorous uncertainty analysis. To properly account for uncertainty in receiver parameters (3D hydrophone locations and synchronization times) and environmental parameters (water depth and sound-speed correction), these quantities are treated as unknowns constrained by prior estimates and prior uncertainties. Unknown scaling factors on both the prior and arrival-time uncertainties are estimated by minimizing Akaike's Bayesian information criterion (a maximum entropy condition). Maximum a posteriori estimates for sound source locations and times, receiver parameters, and environmental parameters are calculated simultaneously using measurements of arrival times for direct and interface-reflected acoustic paths. Posterior uncertainties for all unknowns incorporate both arrival time and prior uncertainties. Monte Carlo simulation results demonstrate that, for the cases considered here, linearization errors are small and the lack of an accurate sound-speed profile does not cause significant biases in the estimated locations. A sequence of Pacific walrus vocalizations, recorded in the Chukchi Sea northwest of Alaska, is localized using this technique, yielding a track estimate and uncertainties with an estimated speed comparable to normal walrus swim speeds.
An Earthquake Source Sensitivity Analysis for Tsunami Propagation in the Eastern Mediterranean
NASA Astrophysics Data System (ADS)
Necmioglu, Ocal; Meral Ozel, Nurcan
2013-04-01
An earthquake source parameter sensitivity analysis for tsunami propagation in the Eastern Mediterranean has been performed based on 8 August 1303 Crete and Dodecanese Islands earthquake resulting in destructive inundation in the Eastern Mediterranean. The analysis involves 23 cases describing different sets of strike, dip, rake and focal depth, while keeping the fault area and displacement, thus the magnitude, same. The main conclusions of the evaluation are drawn from the investigation of the wave height distributions at Tsunami Forecast Points (TFP). The earthquake vs. initial tsunami source parameters comparison indicated that the maximum initial wave height values correspond in general to the changes in rake angle. No clear depth dependency is observed within the depth range considered and no strike angle dependency is observed in terms of amplitude change. Directivity sensitivity analysis indicated that for the same strike and dip, 180° shift in rake may lead to 20% change in the calculated tsunami wave height. Moreover, an approximately 10 min difference in the arrival time of the initial wave has been observed. These differences are, however, greatly reduced in the far field. The dip sensitivity analysis, performed separately for thrust and normal faulting, has both indicated that an increase in the dip angle results in the decrease of the tsunami wave amplitude in the near field approximately 40%. While a positive phase shift is observed, the period and the shape of the initial wave stays nearly the same for all dip angles at respective TFPs. These affects are, however, not observed at the far field. The resolution of the bathymetry, on the other hand, is a limiting factor for further evaluation. Four different cases were considered for the depth sensitivity indicating that within the depth ranges considered (15-60 km), the increase of the depth has only a smoothing effect on the synthetic tsunami wave height measurements at the selected TFPs. The strike sensitivity analysis showed clear phase shift with respect to the variation of the strike angles, without leading to severe variation of the initial and maximum waves at locations considered. Travel time maps for two cases corresponding to difference in the strike value (60° vs 150°) presented a more complex wave propagation for the case with 60° strike angle due to the fact that the normal of the fault plane is orthogonal to the main bathymetric structure in the region, namely the Eastern section of the Hellenic Arc between Crete and Rhodes Islands. For a given set of strike, dip and focal depth parameters, the effect of the variation in the rake angle has been evaluated in the rake sensitivity analysis. A waveform envelope composed of symmetric synthetic recordings at one TFPs could be clearly observed as a result of rake angle variations in 0-180° range. This could also lead to the conclusion that for a given magnitude (fault size and displacement), the expected maximum and minimum tsunami wave amplitudes could be evaluated as a waveform envelope rather limited to a single point of time or amplitude. The Evaluation of the initial wave arrival times follows an expected pattern controlled by the distance, wheras maximum wave arrival time distribution presents no clear pattern. Nevertheless, the distribution is rather concentrated in time domain for some TFPs. Maximum positive and minimum negative wave amplitude distributions indicates a broader range for a subgroup of TFPs, wheras for the remaining TFPs the distributions are narrow. Any deviation from the expected trend of calculating narrower ranges of amplitude distributions could be interpreted as the result o the bathymetry and focusing effects. As similar studies conducted in the different parts of the globe indicated, the main characteristics of the tsunami propagation are unique for each basin. It should be noted, however, that the synthetic measurements obtained at the TFPs in the absence of high-resolution bathymetric data, should be considered only an overall guidance. The results indicate the importance of the accuracy of earthquake source parameters for reliable tsunami predictions and the need for high-resolution bathymetric data to be able to perform calculations with higher accuracy. On the other hand, this study did not address other parameters, such as heterogeneous slip distribution and rupture duration, which affect the tsunami initiation and propagation process.
48 CFR 10.000 - Scope of part.
Code of Federal Regulations, 2010 CFR
2010-10-01
... MARKET RESEARCH 10.000 Scope of part. This part prescribes policies and procedures for conducting market research to arrive at the most suitable approach to acquiring, distributing, and supporting supplies and...
48 CFR 10.000 - Scope of part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MARKET RESEARCH 10.000 Scope of part. This part prescribes policies and procedures for conducting market research to arrive at the most suitable approach to acquiring, distributing, and supporting supplies and...
Determining prescription durations based on the parametric waiting time distribution.
Støvring, Henrik; Pottegård, Anton; Hallas, Jesper
2016-12-01
The purpose of the study is to develop a method to estimate the duration of single prescriptions in pharmacoepidemiological studies when the single prescription duration is not available. We developed an estimation algorithm based on maximum likelihood estimation of a parametric two-component mixture model for the waiting time distribution (WTD). The distribution component for prevalent users estimates the forward recurrence density (FRD), which is related to the distribution of time between subsequent prescription redemptions, the inter-arrival density (IAD), for users in continued treatment. We exploited this to estimate percentiles of the IAD by inversion of the estimated FRD and defined the duration of a prescription as the time within which 80% of current users will have presented themselves again. Statistical properties were examined in simulation studies, and the method was applied to empirical data for four model drugs: non-steroidal anti-inflammatory drugs (NSAIDs), warfarin, bendroflumethiazide, and levothyroxine. Simulation studies found negligible bias when the data-generating model for the IAD coincided with the FRD used in the WTD estimation (Log-Normal). When the IAD consisted of a mixture of two Log-Normal distributions, but was analyzed with a single Log-Normal distribution, relative bias did not exceed 9%. Using a Log-Normal FRD, we estimated prescription durations of 117, 91, 137, and 118 days for NSAIDs, warfarin, bendroflumethiazide, and levothyroxine, respectively. Similar results were found with a Weibull FRD. The algorithm allows valid estimation of single prescription durations, especially when the WTD reliably separates current users from incident users, and may replace ad-hoc decision rules in automated implementations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Computing arrival times of firefighting resources for initial attack
Romain M. Mees
1978-01-01
Dispatching of firefighting resources requires instantaneous or precalculated decisions. A FORTRAN computer program has been developed that can provide a list of resources in order of computed arrival time for initial attack on a fire. The program requires an accurate description of the existing road system and a list of all resources available on a planning unit....
Upgraded FAA Airfield Capacity Model. Volume 1. Supplemental User’s Guide
1981-02-01
SIGMAR (P4.0) cc 1-4 -standard deviation, in seconds, of arrival runway occupancy time (R.O.T.). SIGMAA (F4.0) cc 5-8 -standard deviation, in seconds...iI SI GMAC - The standard deviation of the time from departure clearance to start of roll. SIGMAR - The standard deviation of the arrival runway
A new prototype system for earthquake early warning in Taiwan
NASA Astrophysics Data System (ADS)
Hsiao, N.; Wu, Y.; Chen, D.; Kuo, K.; Shin, T.
2009-12-01
Earthquake early warning (EEW) system has already been developed and tested in Taiwan for more than ten years. With the implementation of a real-time strong-motion network by the Central Weather Bureau (CWB), a virtual sub-network (VSN) system based on regional early warning approach was utilized at the first attempt. In order to shorten the processing time, seismic waveforms in a 10-sec time window starting from the first P-wave arrival time at the nearest station are used to determine the hypocenter and earthquake magnitude which is dubbed ML10. Since 2001, this EEW system has responded to a total of 255 events with magnitude greater than 4.5 occurred inland or off the coast of Taiwan. The system is capable of issuing an earthquake report within 20 sec of its occurrence with good magnitude estimations for events up to magnitude 6.5. This will provide early warning for metropolitan areas located 70 km away from the epicentre. In the latest development, a new prototype EEW system based on P-wave method was developed. Instead of ML10, we adopt the “Pd magnitude”, MPd, as our magnitude indicator in the new system. Pd is defined as the peak amplitude of the initial P-wave displacement. In the previous studies, by analyzing the Pd attenuation relationship with earthquake magnitudes, Pd was proved to be a good magnitude estimator for EEW purpose. Therefore, we adopt the Pd magnitude in developing our next generation EEW system. The new system is designed and constructed based on the Central Weather Bureau Seismographic Network (CWBSN). The CWBSN is a real-time seismographic network with more than one hundred digital telemetered seismic stations distributed over the entire Taiwan. Currently, there are three types of seismic instruments installed at the stations, either co-site or separately installed, including short-period seismographs, accelerometers, and broadband instruments. For the need of integral data processing, we use the Earthworm system as a common platform to integrate all real-time signals. In the process, strong-motion and broadband signals are used for automatic P-wave arrival time and Pd determination. However, short-period signals are only used for P-wave arrival time picking. This new system is still under development and being improved, with the hope of replacing the current operational EEW system in the future.
The SPARC_LAB femtosecond synchronization for electron and photon pulsed beams
NASA Astrophysics Data System (ADS)
Bellaveglia, M.; Gallo, A.; Piersanti, L.; Pompili, R.; Gatti, G.; Anania, M. P.; Petrarca, M.; Villa, F.; Chiadroni, E.; Biagioni, A.; Mostacci, A.
2015-05-01
The SPARC LAB complex hosts a 150 MeV electron photo-injector equipped with an undulator for FEL production (SPARC) together with a high power TW laser (FLAME). Recently the synchronization system reached the performance of < 100 fsRMS relative jitter between lasers, electron beam and RF accelerating fields. This matches the requirements for next future experiments: (i) the production of X-rays by means of Thomson scattering (first collisions achieved in 2014) and (ii) the particle driven PWFA experiment by means of multiple electron bunches. We report about the measurements taken during the machine operation using BAMs (Bunch Arrival Monitors) and EOS (Electro-Optical Sampling) system. A new R and D activity concerning the LWFA using the external injection of electron bunches in a plasma generated by the FLAME laser pulse is under design. The upgrade of the synchronization system is under way to guarantee the < 30 fs RMS jitter required specification. It foresees the transition from electrical to optical architecture that mainly affects the reference signal distribution and the time of arrival detection performances. The new system architecture is presented together with the related experimental data.
An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT
Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan
2016-01-01
In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process. PMID:27827909
An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT.
Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan
2016-11-04
In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process.
DRAW: Dynamic Routes for Arrivals in Weather: Concept and Trial Planning Overview
NASA Technical Reports Server (NTRS)
Gong, Chester
2016-01-01
Presentation for FAA sponsored meeting to discuss time-based metering trial planning. This presentation describes the Dynamic Routes for Arrivals in Weather (DRAW) concept and the associated trial planning functionality.
Flood return level analysis of Peaks over Threshold series under changing climate
NASA Astrophysics Data System (ADS)
Li, L.; Xiong, L.; Hu, T.; Xu, C. Y.; Guo, S.
2016-12-01
Obtaining insights into future flood estimation is of great significance for water planning and management. Traditional flood return level analysis with the stationarity assumption has been challenged by changing environments. A method that takes into consideration the nonstationarity context has been extended to derive flood return levels for Peaks over Threshold (POT) series. With application to POT series, a Poisson distribution is normally assumed to describe the arrival rate of exceedance events, but this distribution assumption has at times been reported as invalid. The Negative Binomial (NB) distribution is therefore proposed as an alternative to the Poisson distribution assumption. Flood return levels were extrapolated in nonstationarity context for the POT series of the Weihe basin, China under future climate scenarios. The results show that the flood return levels estimated under nonstationarity can be different with an assumption of Poisson and NB distribution, respectively. The difference is found to be related to the threshold value of POT series. The study indicates the importance of distribution selection in flood return level analysis under nonstationarity and provides a reference on the impact of climate change on flood estimation in the Weihe basin for the future.
High resolution time of arrival estimation for a cooperative sensor system
NASA Astrophysics Data System (ADS)
Morhart, C.; Biebl, E. M.
2010-09-01
Distance resolution of cooperative sensors is limited by the signal bandwidth. For the transmission mainly lower frequency bands are used which are more narrowband than classical radar frequencies. To compensate this resolution problem the combination of a pseudo-noise coded pulse compression system with superresolution time of arrival estimation is proposed. Coded pulsecompression allows secure and fast distance measurement in multi-user scenarios which can easily be adapted for data transmission purposes (Morhart and Biebl, 2009). Due to the lack of available signal bandwidth the measurement accuracy degrades especially in multipath scenarios. Superresolution time of arrival algorithms can improve this behaviour by estimating the channel impulse response out of a band-limited channel view. For the given test system the implementation of a MUSIC algorithm permitted a two times better distance resolution as the standard pulse compression.
A Comparison of Center/TRACON Automation System and Airline Time of Arrival Predictions
NASA Technical Reports Server (NTRS)
Heere, Karen R.; Zelenka, Richard E.
2000-01-01
Benefits from information sharing between an air traffic service provider and a major air carrier are evaluated. Aircraft arrival time schedules generated by the NASA/FAA Center/TRACON Automation System (CTAS) were provided to the American Airlines System Operations Control Center in Fort Worth, Texas, during a field trial of a specialized CTAS display. A statistical analysis indicates that the CTAS schedules, based on aircraft trajectories predicted from real-time radar and weather data, are substantially more accurate than the traditional airline arrival time estimates, constructed from flight plans and en route crew updates. The improvement offered by CTAS is especially advantageous during periods of heavy traffic and substantial terminal area delay, allowing the airline to avoid large predictive errors with serious impact on the efficiency and profitability of flight operations.
Using late arriving photons for diffuse optical tomography of biological objects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proskurin, S G
2011-05-31
The issues of detecting the inhomogeneities are studied aimed at mapping the distribution of absorption and scattering in soft tissues. A modification of the method of diffuse optical tomography is proposed for detecting directly and determining the region of spatial localisation of such absorbing and scattering inhomogeneities as a cyst, a hematoma, a tumour, as well as for measuring the degree of oxygenation or deoxygenation of blood, in which the late arriving photons that diffuse through the scattering object are used. (optical technologies in biophysics and medicine)
Measurement of trapped proton fluences in main stack of P0006 experiment
NASA Technical Reports Server (NTRS)
Nefedov, N.; Csige, I.; Benton, E. V.; Henke, R. P.; Benton, E. R.; Frigo, L. A.
1995-01-01
We have measured directional distribution and Eastward directed mission fluence of trapped protons at two different energies with plastic nuclear track detectors (CR-39 with DOP) in the main stack of the P0006 experiment on LDEF. Results show arriving directions of trapped protons have very high anisotropy with most protons arriving from the West direction. Selecting these particles we have determined the mission fluence of Eastward directed trapped protons. We found experimental fluences are slightly higher than results of the model calculations of Armstrong and Colborn.
Distributed Trajectory Flexibility Preservation for Traffic Complexity Mitigation
NASA Technical Reports Server (NTRS)
Idris, Husni; Wing, David; Delahaye, Daniel
2009-01-01
The growing demand for air travel is increasing the need for mitigation of air traffic congestion and complexity problems, which are already at high levels. At the same time new information and automation technologies are enabling the distribution of tasks and decisions from the service providers to the users of the air traffic system, with potential capacity and cost benefits. This distribution of tasks and decisions raises the concern that independent user actions will decrease the predictability and increase the complexity of the traffic system, hence inhibiting and possibly reversing any potential benefits. In answer to this concern, the authors propose the introduction of decision-making metrics for preserving user trajectory flexibility. The hypothesis is that such metrics will make user actions naturally mitigate traffic complexity. In this paper, the impact of using these metrics on traffic complexity is investigated. The scenarios analyzed include aircraft in en route airspace with each aircraft meeting a required time of arrival in a one-hour time horizon while mitigating the risk of loss of separation with the other aircraft, thus preserving its trajectory flexibility. The experiments showed promising results in that the individual trajectory flexibility preservation induced self-separation and self-organization effects in the overall traffic situation. The effects were quantified using traffic complexity metrics based on Lyapunov exponents and traffic proximity.
Inventory slack routing application in emergency logistics and relief distributions.
Yang, Xianfeng; Hao, Wei; Lu, Yang
2018-01-01
Various natural and manmade disasters during last decades have highlighted the need of further improving on governmental preparedness to emergency events, and a relief supplies distribution problem named Inventory Slack Routing Problem (ISRP) has received increasing attentions. In an ISRP, inventory slack is defined as the duration between reliefs arriving time and estimated inventory stock-out time. Hence, a larger inventory slack could grant more responsive time in facing of various factors (e.g., traffic congestion) that may lead to delivery lateness. In this study, the relief distribution problem is formulated as an optimization model that maximize the minimum slack among all dispensing sites. To efficiently solve this problem, we propose a two-stage approach to tackle the vehicle routing and relief allocation sub-problems. By analyzing the inter-relations between these two sub-problems, a new objective function considering both delivery durations and dispensing rates of demand sites is applied in the first stage to design the vehicle routes. A hierarchical routing approach and a sweep approach are also proposed in this stage. Given the vehicle routing plan, the relief allocation could be easily solved in the second stage. Numerical experiment with a comparison of multi-vehicle Traveling Salesman Problem (TSP) has demonstrated the need of ISRP and the capability of the proposed solution approaches.
Inventory slack routing application in emergency logistics and relief distributions
Yang, Xianfeng; Lu, Yang
2018-01-01
Various natural and manmade disasters during last decades have highlighted the need of further improving on governmental preparedness to emergency events, and a relief supplies distribution problem named Inventory Slack Routing Problem (ISRP) has received increasing attentions. In an ISRP, inventory slack is defined as the duration between reliefs arriving time and estimated inventory stock-out time. Hence, a larger inventory slack could grant more responsive time in facing of various factors (e.g., traffic congestion) that may lead to delivery lateness. In this study, the relief distribution problem is formulated as an optimization model that maximize the minimum slack among all dispensing sites. To efficiently solve this problem, we propose a two-stage approach to tackle the vehicle routing and relief allocation sub-problems. By analyzing the inter-relations between these two sub-problems, a new objective function considering both delivery durations and dispensing rates of demand sites is applied in the first stage to design the vehicle routes. A hierarchical routing approach and a sweep approach are also proposed in this stage. Given the vehicle routing plan, the relief allocation could be easily solved in the second stage. Numerical experiment with a comparison of multi-vehicle Traveling Salesman Problem (TSP) has demonstrated the need of ISRP and the capability of the proposed solution approaches. PMID:29902196
NASA Astrophysics Data System (ADS)
McKenna, Mihan H.; Stump, Brian W.; Hayward, Chris
2008-06-01
The Chulwon Seismo-Acoustic Array (CHNAR) is a regional seismo-acoustic array with co-located seismometers and infrasound microphones on the Korean peninsula. Data from forty-two days over the course of a year between October 1999 and August 2000 were analyzed; 2052 infrasound-only arrivals and 23 seismo-acoustic arrivals were observed over the six week study period. A majority of the signals occur during local working hours, hour 0 to hour 9 UT and appear to be the result of cultural activity located within a 250 km radius. Atmospheric modeling is presented for four sample days during the study period, one in each of November, February, April, and August. Local meteorological data sampled at six hour intervals is needed to accurately model the observed arrivals and this data produced highly temporally variable thermal ducts that propagated infrasound signals within 250 km, matching the temporal variation in the observed arrivals. These ducts change dramatically on the order of hours, and meteorological data from the appropriate sampled time frame was necessary to interpret the observed arrivals.
Using the ENTLN lightning catalog to identify thunder signals in the USArray Transportable Array
NASA Astrophysics Data System (ADS)
Tytell, J. E.; Reyes, J. C.; Vernon, F.; Sloop, C.; Heckman, S.
2013-12-01
Severe weather events can pose a challenge for seismic analysts who regularly see non-seismic signals recorded at the stations. Sometimes, the noise from thunder can be confused with signals from seismic events such as quarry blasts or earthquakes depending on where and when the noise is observed. Automatic analysis of data is also severely affected by big amplitude arrivals that we could safely ignore. A comprehensive lightning catalog for the continental US in conjunction with a travel time model for thunder arrivals can help analysts identify some of these unknown sources. Researchers from Earthscope's USArray Transportable Array (TA) have partnered with the Earth Networks Total Lightning Network (ENTLN) in an effort to create such a catalog. Predicted thunder arrivals from some powerful meteorological systems affecting the main TA footprint will undergo extensive evaluation. We will examine the veracity of the predicted arrivals at different distances and azimuths and the time accuracy of the model. A combination of barometric pressure and seismic signals will be use to verify these arrivals.
The Forest as a Resource: From Prehistory to History in the Arkansas Ozarks
George Sabo; Jami Joe Lockhart; Jerry E. Hilliard
2004-01-01
Study of past human land use in the Lee Creek Unit of the Ozark National Forest challenges the existence of "pristine" forests predating the arrival of historic Americans. The distribution of early nineteenth century American settlements corresponds closely to the distribution of late prehistoric Native American archeological sites. One explanation for this...
Solar wind modulation of UK lightning
NASA Astrophysics Data System (ADS)
Davis, Chris; Harrison, Giles; Lockwood, Mike; Owens, Mathew; Barnard, Luke
2013-04-01
The response of lightning rates in the UK to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. The fast solar wind streams' arrivals are determined from modulation of the solar wind Vy component, measured by the Advanced Composition Explorer (ACE) spacecraft. Lightning rate changes around these event times are then determined from the very low frequency Arrival Time Difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream's source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 day rate of the Sun. Arrival of the high speed stream at Earth also coincides with a rapid decrease in cosmic ray flux and an increase in lightning rates over the UK, persisting for around 40 days. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again for around 40 days after the arrival of a high speed solar wind stream. This increase in lightning may be beneficial to medium range forecasting of hazardous weather.
PULSAR SIGNAL DENOISING METHOD BASED ON LAPLACE DISTRIBUTION IN NO-SUBSAMPLING WAVELET PACKET DOMAIN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenbo, Wang; Yanchao, Zhao; Xiangli, Wang
2016-11-01
In order to improve the denoising effect of the pulsar signal, a new denoising method is proposed in the no-subsampling wavelet packet domain based on the local Laplace prior model. First, we count the true noise-free pulsar signal’s wavelet packet coefficient distribution characteristics and construct the true signal wavelet packet coefficients’ Laplace probability density function model. Then, we estimate the denosied wavelet packet coefficients by using the noisy pulsar wavelet coefficients based on maximum a posteriori criteria. Finally, we obtain the denoisied pulsar signal through no-subsampling wavelet packet reconstruction of the estimated coefficients. The experimental results show that the proposed method performs better when calculating the pulsar time of arrival than the translation-invariant wavelet denoising method.
The influence of random element displacement on DOA estimates obtained with (Khatri-Rao-)root-MUSIC.
Inghelbrecht, Veronique; Verhaevert, Jo; van Hecke, Tanja; Rogier, Hendrik
2014-11-11
Although a wide range of direction of arrival (DOA) estimation algorithms has been described for a diverse range of array configurations, no specific stochastic analysis framework has been established to assess the probability density function of the error on DOA estimates due to random errors in the array geometry. Therefore, we propose a stochastic collocation method that relies on a generalized polynomial chaos expansion to connect the statistical distribution of random position errors to the resulting distribution of the DOA estimates. We apply this technique to the conventional root-MUSIC and the Khatri-Rao-root-MUSIC methods. According to Monte-Carlo simulations, this novel approach yields a speedup by a factor of more than 100 in terms of CPU-time for a one-dimensional case and by a factor of 56 for a two-dimensional case.
Horn, B J; Lake, R J
2013-10-03
Differentiation between travel-related and domestic cases of infectious disease is important in managing risk. Incubation periods of cases from several outbreaks of campylobacteriosis in Canada, Europe, and the United States with defined exposure time of less than 24 hours were collated to provide information on the incubation period distribution. This distribution was consistent across the varied outbreaks considered, with 84% (702/832) of cases having an incubation period of four days or less and 1% having an incubation period of eight days or more. The incubation period distribution was incorporated into a model for the number of travel-related cases presenting with symptom onset at given dates after return to their country of residence. Using New Zealand notification data between 2006 and 2010 for cases who had undertaken foreign travel within 10 days prior to symptom onset, we found that 29.6% (67/227 cases; 95% confidence interval (CI): 28.3–30.8%) of these cases were likely to have been domestic cases. When cases with symptom onset prior to arrival were included, the probable domestic cases represented 11.8% (67/571; 95% CI: 11.2–12.3%). Consideration of incubation time distributions and consistent collection of travel start/end dates with symptom onset dates would assist attribution of cases to foreign travel.
Population-based learning of load balancing policies for a distributed computer system
NASA Technical Reports Server (NTRS)
Mehra, Pankaj; Wah, Benjamin W.
1993-01-01
Effective load-balancing policies use dynamic resource information to schedule tasks in a distributed computer system. We present a novel method for automatically learning such policies. At each site in our system, we use a comparator neural network to predict the relative speedup of an incoming task using only the resource-utilization patterns obtained prior to the task's arrival. Outputs of these comparator networks are broadcast periodically over the distributed system, and the resource schedulers at each site use these values to determine the best site for executing an incoming task. The delays incurred in propagating workload information and tasks from one site to another, as well as the dynamic and unpredictable nature of workloads in multiprogrammed multiprocessors, may cause the workload pattern at the time of execution to differ from patterns prevailing at the times of load-index computation and decision making. Our load-balancing policy accommodates this uncertainty by using certain tunable parameters. We present a population-based machine-learning algorithm that adjusts these parameters in order to achieve high average speedups with respect to local execution. Our results show that our load-balancing policy, when combined with the comparator neural network for workload characterization, is effective in exploiting idle resources in a distributed computer system.
Hamzehpour, Hossein; Rasaei, M Reza; Sahimi, Muhammad
2007-05-01
We describe a method for the development of the optimal spatial distributions of the porosity phi and permeability k of a large-scale porous medium. The optimal distributions are constrained by static and dynamic data. The static data that we utilize are limited data for phi and k, which the method honors in the optimal model and utilizes their correlation functions in the optimization process. The dynamic data include the first-arrival (FA) times, at a number of receivers, of seismic waves that have propagated in the porous medium, and the time-dependent production rates of a fluid that flows in the medium. The method combines the simulated-annealing method with a simulator that solves numerically the three-dimensional (3D) acoustic wave equation and computes the FA times, and a second simulator that solves the 3D governing equation for the fluid's pressure as a function of time. To our knowledge, this is the first time that an optimization method has been developed to determine simultaneously the global minima of two distinct total energy functions. As a stringent test of the method's accuracy, we solve for flow of two immiscible fluids in the same porous medium, without using any data for the two-phase flow problem in the optimization process. We show that the optimal model, in addition to honoring the data, also yields accurate spatial distributions of phi and k, as well as providing accurate quantitative predictions for the single- and two-phase flow problems. The efficiency of the computations is discussed in detail.
Pitts, Eric P
2011-01-01
This study looked at the medication ordering error frequency and the length of inpatient hospital stay in a subpopulation of stroke patients (n-60) as a function of time of patient admission to an inpatient rehabilitation hospital service. A total of 60 inpatient rehabilitation patients, 30 arriving before 4 pm, and 30 arriving after 4 pm, with as admitting diagnosis of stroke were randomly selected from a larger sample (N=426). There was a statistically significant increase in medication ordering errors and the number of inpatient rehabilitation hospital days in the group of patients who arrived after 4 pm.
Rise Time of the Simulated VERITAS 12 m Davies-Cotton Reflector
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Richard J.
The Very Energetic Radiation Imaging Telescope Array System (VERITAS) will utilise Imaging Atmospheric Cherenkov Telescopes (IACTs) based on a Davies-Cotton design with f-number f/1.0 to detect cosmic gamma-rays. Unlike a parabolic reflector, light from the Davies-Cotton does not arrive isochronously at the camera. Here the effect of the telescope geometry on signal rise-time is examined. An almost square-pulse arrival time profile with a rise time of 1.7 ns is found analytically and confirmed through simulation.
Then and Now: Comparing the Flow of Foreign Fighters to AQI and the Islamic State
2016-12-01
State during separate blocks of time . Second, it provides insight into the local travel and flow of foreign fighters across time , and the mobilization...who joined the Islamic State during that latter time period also traveled alone more frequently. When they didn’t travel alone, they arrived in...arriving at the caliphate are larger than they were during the time period covered by the Sinjar records. A couple of cases of group travel to Syria
Techniques for measuring arrival times of pulsar signals 1: DSN observations from 1968 to 1980
NASA Technical Reports Server (NTRS)
Downs, G. S.; Reichley, P. E.
1980-01-01
Techniques used in the ground based observations of pulsars are described, many of them applicable in a navigation scheme. The arrival times of the pulses intercepting Earth are measured at time intervals from a few days to a few months. Low noise, wide band receivers, amplify signals intercepted by 26 m, 34, and 64 m antennas. Digital recordings of total received signal power versus time are cross correlated with the appropriate pulse template.
Park, Yoo Seok; Chung, Sung Phil; You, Je Sung; Kim, Min Joung; Chung, Hyun Soo; Hong, Jung Hwa; Lee, Hye Sun; Wang, Jinwon; Park, Incheol
2016-08-16
The purpose of this study was to investigate whether a multidisciplinary organised critical pathway (CP) for ST-segment elevation myocardial infarction (STEMI) management can significantly attenuate differences in the duration from emergency department (ED) arrival to evaluation and treatment, regardless of the arrival time, by eliminating off-hour and weekend effects. Retrospective observational cohort study. 2 tertiary academic hospitals. Consecutive patients in the Fast Interrogation Rule for STEMI (FIRST) program. A study was conducted on patients in the FIRST program, which uses a computerised physician order entry (CPOE) system. The patient demographics, time intervals and clinical outcomes were analysed based on the arrival time at the ED: group 1, normal working hours on weekdays; group 2, off-hours on weekdays; group 3, normal working hours on weekends; and group 4, off-hours on weekends. Clinical outcomes categorised according to 30-day mortality, in-hospital mortality and the length of stay. The duration from door-to-data or FIRST activation did not differ significantly among the 4 groups. The median duration between arrival and balloon placement during percutaneous coronary intervention did not significantly exceed 90 min, and the proportions (89.6-95.1%) of patients with door-to-balloon times within 90 min did not significantly differ among the 4 groups, regardless of the ED arrival time (p=0.147). Moreover, no differences in the 30-day (p=0.8173) and in-hospital mortality (p=0.9107) were observed in patients with STEMI. A multidisciplinary CP for STEMI based on a CPOE system can effectively decrease disparities in the door-to-data duration and proportions of patients with door-to-balloon times within 90 min, regardless of the ED arrival time. The application of a multidisciplinary CP may also help attenuate off-hour and weekend effects in STEMI clinical outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Performance of BEBE-prototype: A BEam-BEam counter prototype for the MPD-NICA experiment at JINR
NASA Astrophysics Data System (ADS)
Fernández, Cristian Heber Zepeda
2018-01-01
In this work we show the arrival time resolution for the Beam Monitoring Detector (BMD). We made the study for Au+Au collision at √s = 8 Gev and a smearing of σ = 300 cm. The arrival time resolution we found is Δσ = 57.982 ± 0.509 ps. We show preliminary results of the time resolution for a cell of the BMD.
AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times
NASA Astrophysics Data System (ADS)
Lou, X.; van der Lee, S.; Lloyd, S.
2013-12-01
Python is an open-source, platform-independent, and object-oriented scripting language. It became more popular in the seismologist community since the appearance of ObsPy (Beyreuther et al. 2010, Megies et al. 2011), which provides a powerful framework for seismic data access and processing. This study introduces a new Python-based tool named AIMBAT (Automated and Interactive Measurement of Body-wave Arrival Times) for measuring teleseismic body-wave arrival times on large-scale seismic event data (Lou et al. 2013). Compared to ObsPy, AIMBAT is a lighter tool that is more focused on a particular aspect of seismic data processing. It originates from the widely used MCCC (Multi-Channel Cross-Correlation) method developed by VanDecar and Crosson (1990). On top of the original MCCC procedure, AIMBAT is automated in initial phase picking and is interactive in quality control. The core cross-correlation function is implemented in Fortran to boost up performance in addition to Python. The GUI (graphical user interface) of AIMBAT depends on Matplotlib's GUI-neutral widgets and event-handling API. A number of sorting and (de)selecting options are designed to facilitate the quality control of seismograms. By using AIMBAT, both relative and absolute teleseismic body-wave arrival times are measured. AIMBAT significantly improves efficiency and quality of the measurements. User interaction is needed only to pick the target phase arrival and to set a time window on the array stack. The package is easy to install and use, open-source, and is publicly available. Graphical user interface of AIMBAT.
Behavioral tactics of male sockeye salmon (Oncorhynchus nerka) under varying operating sex ratios
Quinn, Thomas P.; Adkison, Milo D.; Ward, Michael B.
1996-01-01
Previous studies have demonstrated several reproductive-behavior patterns in male salmon, including competitive and sneaking tactics, the formation of hierarchies, and non-hierarchical aggregations around ripe females. Through behavioral observations at varying spatial and temporal scales, we examined the hypothesis that operational sex ratio (OSR) determines male sockeye salmon (Oncorhynchus nerka) distribution and breeding tactics. Patterns of male distribution and behavior varied over both coarse and fine scales, associated with apparent shifts in reproductive opportunities, the physical characteristics of the breeding sites, and the deterioration of the fish as they approached death. Females spawned completely within a few days of arriving on the spawning grounds, whereas males courted the available ripe females from the date of their arrival on the spawning ground until their death. This difference in reproductive lifespans tended to elevate late-season OSRs but was partially counterbalanced by male departures and the arrival of other ripe females. The proportion of males able to dominate access to ripe females decreased and the number of large courting groups increased over the course of the season, apparently related to both increasing OSR and the deteriorating physical condition of males. However, great variation in OSR was observed within the spawning sites on a given day. OSRs were generally higher in shallow than in deep water, perhaps because larger females or more desirable breeding sites were concentrated in shallow water. The aggregations of males courting females were not stable (i.e. many arrivals and departures took place) and male aggression varied with group size. Aggression was most frequent at low OSRs and in groups of intermediate size (2–4 males per female), and much less frequent in larger groups, consistent with the needs of maximizing reproductive opportunities while minimizing unproductive energy expenditure. These results indicate that, while OSR strongly influences male distribution and behavior, other factors such as physical condition, limited movement and habitat choice may also affect male reproductive opportunities.
Initial condition of stochastic self-assembly
NASA Astrophysics Data System (ADS)
Davis, Jason K.; Sindi, Suzanne S.
2016-02-01
The formation of a stable protein aggregate is regarded as the rate limiting step in the establishment of prion diseases. In these systems, once aggregates reach a critical size the growth process accelerates and thus the waiting time until the appearance of the first critically sized aggregate is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation is a central step of many physical, chemical, and biological process. Previous studies have examined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the assumption that at time t =0 the system was in the all-monomer state. However, in order to compare to in vivo biological experiments where protein constituents inherited by a newly born cell likely contain intermediate aggregates, other possibilities must be considered. We consider one such possibility by conditioning the unique ergodic size distribution on subcritical aggregate sizes; this least-informed distribution is then used as an initial condition. We make the claim that this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield significantly different averaged waiting times relative to the all-monomer condition under various models of assembly.
Spatial and temporal variability of lightings over Greece
NASA Astrophysics Data System (ADS)
Nastos, P. T.; Matsangouras, J. T.
2010-09-01
Lightings are the most powerful and spectacular natural phenomena in the lower atmosphere, being a major cause of storm related deaths. Cloud-to-ground lightning can kill and injure people by direct or indirect means. Lightning affects the many electrochemical systems in the body causing nerve damage, memory loss, personality change, and emotional problems. Besides, among the various nitrogen oxides sources, the contribution from lightning likely represents the largest uncertainty. In this study, the spatial and temporal variability of recorded lightings over Greece during the period from January 1, 2008 to December 31, 2009, were analyzed. The data for retrieving the location and time-of-occurrence of lightning were acquired from Hellenic National Meteorological Service (HNMS) archive dataset. An operational lighting detector network was established in 2007 by HNMS consisted of eight time-of-arrival sensors (TOA), spatially distributed across Greek territory. The spatial variability of lightings revealed their incidence within specific geographical sub-regions while the temporal variability concerning the seasonal, monthly and daily distributions resulted in better understanding of the time of lightings’ occurrence. All the analyses were carried out with respect to cloud to cloud, cloud to ground and ground to cloud lightings, within the examined time period.
CME Arrival-time Validation of Real-time WSA-ENLIL+Cone Simulations at the CCMC/SWRC
NASA Astrophysics Data System (ADS)
Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Jian, L.; Odstrcil, D.; MacNeice, P. J.
2016-12-01
The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations worldwide to model CME propagation, as such it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). The SWRC is a CCMC sub-team that provides space weather services to NASA robotic mission operators and science campaigns, and also prototypes new forecasting models and techniques. CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME shock observations near Earth (ACE, Wind), STEREO-A and B for simulations completed between March 2010 - July 2016 (over 1500 runs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we compute the bias, RMSE, and average absolute CME arrival time error, and the dependence of these errors on CME input parameters. We compare the predicted geomagnetic storm strength (Kp index) to the CME arrival time error for Earth-directed CMEs. The predicted Kp index is computed using the WSA-ENLIL+Cone plasma parameters at Earth with a modified Newell et al. (2007) coupling function. We also explore the impact of the multi-spacecraft observations on the CME parameters used initialize the model by comparing model validation results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). This model validation exercise has significance for future space weather mission planning such as L5 missions.
Signal restoration through deconvolution applied to deep mantle seismic probes
NASA Astrophysics Data System (ADS)
Stefan, W.; Garnero, E.; Renaut, R. A.
2006-12-01
We present a method of signal restoration to improve the signal-to-noise ratio, sharpen seismic arrival onset, and act as an empirical source deconvolution of specific seismic arrivals. Observed time-series gi are modelled as a convolution of a simpler time-series fi, and an invariant point spread function (PSF) h that attempts to account for the earthquake source process. The method is used on the shear wave time window containing SKS and S, whereby using a Gaussian PSF produces more impulsive, narrower, signals in the wave train. The resulting restored time-series facilitates more accurate and objective relative traveltime estimation of the individual seismic arrivals. We demonstrate the accuracy of the reconstruction method on synthetic seismograms generated by the reflectivity method. Clean and sharp reconstructions are obtained with real data, even for signals with relatively high noise content. Reconstructed signals are simpler, more impulsive, and narrower, which allows highlighting of some details of arrivals that are not readily apparent in raw waveforms. In particular, phases nearly coincident in time can be separately identified after processing. This is demonstrated for two seismic wave pairs used to probe deep mantle and core-mantle boundary structure: (1) the Sab and Scd arrivals, which travel above and within, respectively, a 200-300-km-thick, higher than average shear wave velocity layer at the base of the mantle, observable in the 88-92 deg epicentral distance range and (2) SKS and SPdiff KS, which are core waves with the latter having short arcs of P-wave diffraction, and are nearly identical in timing near 108-110 deg in distance. A Java/Matlab algorithm was developed for the signal restoration, which can be downloaded from the authors web page, along with example data and synthetic seismograms.
The fully actuated traffic control problem solved by global optimization and complementarity
NASA Astrophysics Data System (ADS)
Ribeiro, Isabel M.; de Lurdes de Oliveira Simões, Maria
2016-02-01
Global optimization and complementarity are used to determine the signal timing for fully actuated traffic control, regarding effective green and red times on each cycle. The average values of these parameters can be used to estimate the control delay of vehicles. In this article, a two-phase queuing system for a signalized intersection is outlined, based on the principle of minimization of the total waiting time for the vehicles. The underlying model results in a linear program with linear complementarity constraints, solved by a sequential complementarity algorithm. Departure rates of vehicles during green and yellow periods were treated as deterministic, while arrival rates of vehicles were assumed to follow a Poisson distribution. Several traffic scenarios were created and solved. The numerical results reveal that it is possible to use global optimization and complementarity over a reasonable number of cycles and determine with efficiency effective green and red times for a signalized intersection.
NASA Astrophysics Data System (ADS)
Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun
2016-01-01
Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.
Complex analysis of neuronal spike trains of deep brain nuclei in patients with Parkinson's disease.
Chan, Hsiao-Lung; Lin, Ming-An; Lee, Shih-Tseng; Tsai, Yu-Tai; Chao, Pei-Kuang; Wu, Tony
2010-04-05
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been used to alleviate symptoms of Parkinson's disease. During image-guided stereotactic surgery, signals from microelectrode recordings are used to distinguish the STN from adjacent areas, particularly from the substantia nigra pars reticulata (SNr). Neuronal firing patterns based on interspike intervals (ISI) are commonly used. In the present study, arrival time-based measures, including Lempel-Ziv complexity and deviation-from-Poisson index were employed. Our results revealed significant differences in the arrival time-based measures among non-motor STN, motor STN and SNr and better discrimination than the ISI-based measures. The larger deviations from the Poisson process in the SNr implied less complex dynamics of neuronal discharges. If spike classification was not used, the arrival time-based measures still produced statistical differences among STN subdivisions and SNr, but the ISI-based measures only showed significant differences between motor and non-motor STN. Arrival time-based measures are less affected by spike misclassifications, and may be used as an adjunct for the identification of the STN during microelectrode targeting. Copyright 2010 Elsevier Inc. All rights reserved.
Aloni, Irith; Markman, Shai; Ziv, Yaron
2017-02-01
Numerous studies report shifts in bird migration phenology, presumably owing to global warming. However, most studies focus on migration patterns in the Northern Hemisphere. In this study, we investigated associations between weather conditions in African wintering grounds of the lesser whitethroat, Sylvia curruca, and spring arrival time in Eilat, Israel. Using multivariate regression models, we analysed a 30-year dataset in order to examine correlations between median springtime arrival and 46 climate variables of the wintering quarters. The model obtained exhibited a highly statistical fit, involving mean precipitation in February and March with negative effects and number of wet days during November-February. February precipitation levels were also the major factor associated with the interquartile range of arrival time. Interestingly and contrary to published results, annual or seasonal precipitation showed no correlation with spring arrival time, nor did temperature. Moreover, winter in this region falls into dry season with negligible rainfall quantities. Hence, it is unlikely that precipitation effect on habitat productivity is a driving force of migration, as suggested by other studies. Instead, we propose that precipitation in February acts as a cue for the birds, indicating the approach of spring and migration time.
Discordance between 'actual' and 'scheduled' check-in times at a heart failure clinic
Joyce, Emer; Gandesbery, Benjamin T.; Blackstone, Eugene H.; Taylor, David O.; Tang, W. H. Wilson; Starling, Randall C.; Hachamovitch, Rory
2017-01-01
Introduction A 2015 Institute Of Medicine statement “Transforming Health Care Scheduling and Access: Getting to Now”, has increased concerns regarding patient wait times. Although waiting times have been widely studied, little attention has been paid to the role of patient arrival times as a component of this phenomenon. To this end, we investigated patterns of patient arrival at scheduled ambulatory heart failure (HF) clinic appointments and studied its predictors. We hypothesized that patients are more likely to arrive later than scheduled, with progressively later arrivals later in the day. Methods and results Using a business intelligence database we identified 6,194 unique patients that visited the Cleveland Clinic Main Campus HF clinic between January, 2015 and January, 2017. This clinic served both as a tertiary referral center and a community HF clinic. Transplant and left ventricular assist device (LVAD) visits were excluded. Punctuality was defined as the difference between ‘actual’ and ‘scheduled’ check-in times, whereby negative values (i.e., early punctuality) were patients who checked-in early. Contrary to our hypothesis, we found that patients checked-in late only a minority of the time (38% of visits). Additionally, examining punctuality by appointment hour slot we found that patients scheduled after 8AM had progressively earlier check-in times as the day progressed (P < .001 for trend). In both a Random Forest-Regression framework and linear regression models the most important risk-adjusted predictors of early punctuality were: later in the day appointment hour slot, patient having previously been to the hospital, age in the early 70s, and white race. Conclusions Patients attending a mixed population ambulatory HF clinic check-in earlier than scheduled times, with progressive discrepant intervals throughout the day. This finding may have significant implications for provider utilization and resource planning in order to maximize clinic efficiency. The impact of elective early arrival on patient’s perceived wait times requires further study. PMID:29136649
Discordance between 'actual' and 'scheduled' check-in times at a heart failure clinic.
Gorodeski, Eiran Z; Joyce, Emer; Gandesbery, Benjamin T; Blackstone, Eugene H; Taylor, David O; Tang, W H Wilson; Starling, Randall C; Hachamovitch, Rory
2017-01-01
A 2015 Institute Of Medicine statement "Transforming Health Care Scheduling and Access: Getting to Now", has increased concerns regarding patient wait times. Although waiting times have been widely studied, little attention has been paid to the role of patient arrival times as a component of this phenomenon. To this end, we investigated patterns of patient arrival at scheduled ambulatory heart failure (HF) clinic appointments and studied its predictors. We hypothesized that patients are more likely to arrive later than scheduled, with progressively later arrivals later in the day. Using a business intelligence database we identified 6,194 unique patients that visited the Cleveland Clinic Main Campus HF clinic between January, 2015 and January, 2017. This clinic served both as a tertiary referral center and a community HF clinic. Transplant and left ventricular assist device (LVAD) visits were excluded. Punctuality was defined as the difference between 'actual' and 'scheduled' check-in times, whereby negative values (i.e., early punctuality) were patients who checked-in early. Contrary to our hypothesis, we found that patients checked-in late only a minority of the time (38% of visits). Additionally, examining punctuality by appointment hour slot we found that patients scheduled after 8AM had progressively earlier check-in times as the day progressed (P < .001 for trend). In both a Random Forest-Regression framework and linear regression models the most important risk-adjusted predictors of early punctuality were: later in the day appointment hour slot, patient having previously been to the hospital, age in the early 70s, and white race. Patients attending a mixed population ambulatory HF clinic check-in earlier than scheduled times, with progressive discrepant intervals throughout the day. This finding may have significant implications for provider utilization and resource planning in order to maximize clinic efficiency. The impact of elective early arrival on patient's perceived wait times requires further study.
Imam, Neena; Barhen, Jacob
2009-01-01
For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less
An Analysis of the Relationship Between the Heat Index and Arrivals in the Emergency Department
Levy, Matthew; Broccoli, Morgan; Cole, Gai; Jenkins, J Lee; Klein, Eili Y.
2015-01-01
Background: Heatwaves are one of the most deadly weather-related events in the United States and account for more deaths annually than hurricanes, tornadoes, floods, and earthquakes combined. However, there are few statistically rigorous studies of the effect of heatwaves on emergency department (ED) arrivals. A better understanding of this relationship can help hospitals plan better and provide better care for patients during these types of events. Methods: A retrospective review of all ED patient arrivals that occurred from April 15 through August 15 for the years 2008 through 2013 was performed. Daily patient arrival data were combined with weather data (temperature and humidity) to examine the potential relationships between the heat index and ED arrivals as well as the length of time patients spend in the ED using generalized additive models. In particular the effect the 2012 heat wave that swept across the United States, and which was hypothesized to increase arrivals was examined. Results: While there was no relationship found between the heat index and arrivals on a single day, a non-linear relationship was found between the mean three-day heat index and the number of daily arrivals. As the mean three-day heat index initially increased, the number of arrivals significantly declined. However, as the heat index continued to increase, the number of arrivals increased. It was estimated that there was approximately a 2% increase in arrivals when the mean heat index for three days approached 100°F. This relationship was strongest for adults aged 18-64, as well as for patients arriving with lower acuity. Additionally, a positive relationship was noted between the mean three-day heat index and the length of stay (LOS) for patients in the ED, but no relationship was found for the time from which a patient was first seen to when a disposition decision was made. No significant relationship was found for the effect of the 2012 heat wave on ED arrivals, though it did have an effect on patient LOS. Conclusion: A single hot day has only a limited effect on ED arrivals, but continued hot weather has a cumulative effect. When the heat index is high (~90°F) for a number of days in a row, this curtails peoples activities, but if the heat index is very hot (~100°F) this likely results in an exacerbation of underlying conditions as well as heat-related events that drives an increase in ED arrivals. Periods of high heat also affects the length of stay of patients either by complicating care or by making it more difficult to discharge patients. PMID:26579329
Piloted simulation of a ground-based time-control concept for air traffic control
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Green, Steven M.
1989-01-01
A concept for aiding air traffic controllers in efficiently spacing traffic and meeting scheduled arrival times at a metering fix was developed and tested in a real time simulation. The automation aid, referred to as the ground based 4-D descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent-point and speed-profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is used by the air traffic controller to resolve conflicts and issue advisories to arrival aircraft. A joint simulation was conducted using a piloted simulator and an advanced concept air traffic control simulation to study the acceptability and accuracy of the DA automation aid from both the pilot's and the air traffic controller's perspectives. The results of the piloted simulation are examined. In the piloted simulation, airline crews executed controller issued descent advisories along standard curved path arrival routes, and were able to achieve an arrival time precision of + or - 20 sec at the metering fix. An analysis of errors generated in turns resulted in further enhancements of the algorithm to improve the predictive accuracy. Evaluations by pilots indicate general support for the concept and provide specific recommendations for improvement.
Xu, Lei; Jeavons, Peter
2015-11-01
Leader election in anonymous rings and complete networks is a very practical problem in distributed computing. Previous algorithms for this problem are generally designed for a classical message passing model where complex messages are exchanged. However, the need to send and receive complex messages makes such algorithms less practical for some real applications. We present some simple synchronous algorithms for distributed leader election in anonymous rings and complete networks that are inspired by the development of the neural system of the fruit fly. Our leader election algorithms all assume that only one-bit messages are broadcast by nodes in the network and processors are only able to distinguish between silence and the arrival of one or more messages. These restrictions allow implementations to use a simpler message-passing architecture. Even with these harsh restrictions our algorithms are shown to achieve good time and message complexity both analytically and experimentally.
Bayesian tomography by interacting Markov chains
NASA Astrophysics Data System (ADS)
Romary, T.
2017-12-01
In seismic tomography, we seek to determine the velocity of the undergound from noisy first arrival travel time observations. In most situations, this is an ill posed inverse problem that admits several unperfect solutions. Given an a priori distribution over the parameters of the velocity model, the Bayesian formulation allows to state this problem as a probabilistic one, with a solution under the form of a posterior distribution. The posterior distribution is generally high dimensional and may exhibit multimodality. Moreover, as it is known only up to a constant, the only sensible way to addressthis problem is to try to generate simulations from the posterior. The natural tools to perform these simulations are Monte Carlo Markov chains (MCMC). Classical implementations of MCMC algorithms generally suffer from slow mixing: the generated states are slow to enter the stationary regime, that is to fit the observations, and when one mode of the posterior is eventually identified, it may become difficult to visit others. Using a varying temperature parameter relaxing the constraint on the data may help to enter the stationary regime. Besides, the sequential nature of MCMC makes them ill fitted toparallel implementation. Running a large number of chains in parallel may be suboptimal as the information gathered by each chain is not mutualized. Parallel tempering (PT) can be seen as a first attempt to make parallel chains at different temperatures communicate but only exchange information between current states. In this talk, I will show that PT actually belongs to a general class of interacting Markov chains algorithm. I will also show that this class enables to design interacting schemes that can take advantage of the whole history of the chain, by authorizing exchanges toward already visited states. The algorithms will be illustrated with toy examples and an application to first arrival traveltime tomography.
Testing model for prediction system of 1-AU arrival times of CME-associated interplanetary shocks
NASA Astrophysics Data System (ADS)
Ogawa, Tomoya; den, Mitsue; Tanaka, Takashi; Sugihara, Kohta; Takei, Toshifumi; Amo, Hiroyoshi; Watari, Shinichi
We test a model to predict arrival times of interplanetary shock waves associated with coronal mass ejections (CMEs) using a three-dimensional adaptive mesh refinement (AMR) code. The model is used for the prediction system we develop, which has a Web-based user interface and aims at people who is not familiar with operation of computers and numerical simulations or is not researcher. We apply the model to interplanetary CME events. We first choose coronal parameters so that property of background solar wind observed by ACE space craft is reproduced. Then we input CME parameters observed by SOHO/LASCO. Finally we compare the predicted arrival times with observed ones. We describe results of the test and discuss tendency of the model.
Search for tachyons associated with extensive air showers in the ground level cosmic radiation
NASA Technical Reports Server (NTRS)
Masjed, H. F.; Ashton, F.
1985-01-01
Events detected in a shielded plastic scintillation counter occurring in the 26 microsec preceding the arrival of an extensive air shower at ground level with local electron density or = 20 m to the -2 power and the 240 microsec after its arrival have been studied. No significant excess of events (tachyons) arriving in the early time domain have been observed in a sample of 11,585 air shower triggers.
Analysis of sequencing and scheduling methods for arrival traffic
NASA Technical Reports Server (NTRS)
Neuman, Frank; Erzberger, Heinz
1990-01-01
The air traffic control subsystem that performs scheduling is discussed. The function of the scheduling algorithms is to plan automatically the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several important scheduling algorithms are described and the statistical performance of the scheduling algorithms is examined. Scheduling brings order to an arrival sequence for aircraft. First-come-first-served scheduling (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the traffic, gaps will remain in the scheduled sequence of aircraft. These gaps are filled, or partially filled, by time-advancing the leading aircraft after a gap while still preserving the FCFS order. Tightly scheduled groups of aircraft remain with a mix of heavy and large aircraft. Separation requirements differ for different types of aircraft trailing each other. Advantage is taken of this fact through mild reordering of the traffic, thus shortening the groups and reducing average delays. Actual delays for different samples with the same statistical parameters vary widely, especially for heavy traffic.
NASA Technical Reports Server (NTRS)
Morey, Susan; Prevot, Thomas; Mercer, Joey; Martin, Lynne; Bienert, Nancy; Cabrall, Christopher; Hunt, Sarah; Homola, Jeffrey; Kraut, Joshua
2013-01-01
A human-in-the-loop simulation was conducted to examine the effects of varying levels of trajectory prediction uncertainty on air traffic controller workload and performance, as well as how strategies and the use of decision support tools change in response. This paper focuses on the strategies employed by two controllers from separate teams who worked in parallel but independently under identical conditions (airspace, arrival traffic, tools) with the goal of ensuring schedule conformance and safe separation for a dense arrival flow in en route airspace. Despite differences in strategy and methods, both controllers achieved high levels of schedule conformance and safe separation. Overall, results show that trajectory uncertainties introduced by wind and aircraft performance prediction errors do not affect the controllers' ability to manage traffic. Controller strategies were fairly robust to changes in error, though strategies were affected by the amount of delay to absorb (scheduled time of arrival minus estimated time of arrival). Using the results and observations, this paper proposes an ability to dynamically customize the display of information including delay time based on observed error to better accommodate different strategies and objectives.
Stochastic sediment property inversion in Shallow Water 06.
Michalopoulou, Zoi-Heleni
2017-11-01
Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.
Signal Quality and the Reliability of Seismic Observations
NASA Astrophysics Data System (ADS)
Zeiler, C. P.; Velasco, A. A.; Pingitore, N. E.
2009-12-01
The ability to detect, time and measure seismic phases depends on the location, size, and quality of the recorded signals. Additional constraints are an analyst’s familiarity with a seismogenic zone and with the seismic stations that record the energy. Quantification and qualification of an analyst’s ability to detect, time and measure seismic signals has not been calculated or fully assessed. The fundamental measurement for computing the accuracy of a seismic measurement is the signal quality. Several methods have been proposed to measure signal quality; however, the signal-to-noise ratio (SNR) has been adopted as a short-term average over the long-term average. While the standard SNR is an easy and computationally inexpensive term, the overall statistical significance has not been computed for seismic measurement analysis. The prospect of canonizing the process of cataloging seismic arrivals hinges on the ability to repeat measurements made by different methods and analysts. The first step in canonizing phase measurements has been done by the IASPEI, which established a reference for accepted practices in naming seismic phases. The New Manual for Seismological Observatory Practices (NMSOP, 2002) outlines key observations for seismic phases recorded at different distances and proposes to quantify timing uncertainty with a user-specified windowing technique. However, this added measurement would not completely remove bias introduced by different techniques used by analysts to time seismic arrivals. The general guideline to time a seismic arrival is to record the time where a noted change in frequency and/or amplitude begins. This is generally achieved by enhancing the arrivals through filtering or beam forming. However, these enhancements can alter the characteristics of the arrival and how the arrival will be measured. Furthermore, each enhancement has user-specified parameters that can vary between analysts and this results in reduced ability to repeat measurements between analysts. The SPEAR project (Zeiler and Velasco, 2009) has started to explore the effects of comparing measurements from the same seismograms. Initial results showed that experience and the signal quality are the leading contributors to pick differences. However, the traditional SNR method of measuring signal quality was replaced by a Wide-band Spectral Ratio (WSR) due to a decrease in scatter. This observation brings up an important question of what is the best way to measure signal quality. We compare various methods (traditional SNR, WSR, power spectral density plots, Allan Variance) that have been proposed to measure signal quality and discuss which method provides the best tool to compare arrival time uncertainty.
A second catalog of gamma ray bursts: 1978 - 1980 localizations from the interplanetary network
NASA Technical Reports Server (NTRS)
Atteia, J. L.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Evans, W. D.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.; Cline, T. L.
1985-01-01
Eighty-two gamma ray bursts were detected between 1978 September 14 and 1980 February 13 by the experiments of the interplanetary network (Prognoz 7, Venera 11 and 12 SIGNE experiments, Pioneer Venus Orbiter, International Sun-Earth Explorer 3, Helios 2, and Vela). Sixty-five of these events have been localized to annuli or error boxes by the method of arrival time analysis. The distribution of sources is consistent with isotropy, and there is no statistically convincing evidence for the detection of more than one burst from any source position. The localizations are compared with those of two previous catalogs.
One billion year-old Mid-continent Rift leaves virtually no clues in the mantle
NASA Astrophysics Data System (ADS)
Bollmann, T. A.; Frederiksen, A. W.; van der Lee, S.; Wolin, E.; Revenaugh, J.; Wiens, D.; Darbyshire, F. A.; Aleqabi, G. I.; Wysession, M. E.; Stein, S.; Jurdy, D. M.
2017-12-01
We measured the relative arrival times of more than forty-six thousand teleseismic P waves recorded by seismic stations of Earthscope's Superior Province Rifting Earthscope Experiment (SPREE) and combined them with a similar amount of such measurements from other seismic stations in the larger region. SPREE recorded seismic waves for two and a half years around the prominent, one billion year-old Mid-continent Rift structure. The curvilinear Mid-continent Rift (MR) is distinguished by voluminous one billion year-old lava flows, which produce a prominent gravity high along the MR. As for other seismic waves, these lava flows along with their underplated counterpart, slightly slow down the measured teleseismic P waves, on average, compared to P waves that did not traverse structures beneath the Mid-continent Rift. However, the variance in the P wave arrival times in these two groups is nearly ten times higher than their average difference. In a seismic-tomographic inversion, we mapped all measured arrival times into structures deep beneath the crust, in the Earth's mantle. Beneath the crust we generally find relatively high P velocities, indicating relatively cool and undeformable mantle structures. However, the uppermost mantle beneath the MR shows several patches of slightly decreased P velocities. These patches are coincident with where the gravity anomalies peak, in Iowa and along the northern Minnesota/Wisconsin border. We will report on the likelihood that these anomalies are indeed a remaining mantle-lithospheric signature of the MR or whether these patches indirectly reflect the presence of the lava flows and their underplated counterparts at the crust-mantle interface. Other structures of interest and of varying depth extent in our tomographic image locate at 1) the intersection of the Superior Craton with the Penokean Province and the Marshfield Terrane west of the MR in southern Minnesota, 2) the intersection of the Penokean, Yavapai, and Mazatzal Terranes along the eastern edge of the Michigan arm of the MR, and 3) beneath Lake Nipigon, north of Lake Superior. Our tomographic image also reveals an intricate distribution of deep high-velocity anomalies, including in the lower mantle, potentially related to Mesozoic subduction of the Kula and/or Farallon Plates.
A Direction Finding Method with A 3-D Array Based on Aperture Synthesis
NASA Astrophysics Data System (ADS)
Li, Shiwen; Chen, Liangbing; Gao, Zhaozhao; Ma, Wenfeng
2018-01-01
Direction finding for electronic warfare application should provide a wider field of view as possible. But the maximum unambiguous field of view for conventional direction finding methods is a hemisphere. It cannot distinguish the direction of arrival of the signals from the back lobe of the array. In this paper, a full 3-D direction finding method based on aperture synthesis radiometry is proposed. The model of the direction finding system is illustrated, and the fundamentals are presented. The relationship between the outputs of the measurements of a 3-D array and the 3-D power distribution of the point sources can be represented by a 3-D Fourier transform, and then the 3-D power distribution of the point sources can be reconstructed by an inverse 3-D Fourier transform. And in order to display the 3-D power distribution of the point sources conveniently, the whole spherical distribution is represented by two 2-D circular distribution images, one of which is for the upper hemisphere, and the other is for the lower hemisphere. Then a numeric simulation is designed and conducted to demonstrate the feasibility of the method. The results show that the method can estimate the arbitrary direction of arrival of the signals in the 3-D space correctly.
A framework for stochastic simulation of distribution practices for hotel reservations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halkos, George E.; Tsilika, Kyriaki D.
The focus of this study is primarily on the Greek hotel industry. The objective is to design and develop a framework for stochastic simulation of reservation requests, reservation arrivals, cancellations and hotel occupancy with a planning horizon of a tourist season. In Greek hospitality industry there have been two competing policies for reservation planning process up to 2003: reservations coming directly from customers and a reservations management relying on tour operator(s). Recently the Internet along with other emerging technologies has offered the potential to disrupt enduring distribution arrangements. The focus of the study is on the choice of distribution intermediaries.more » We present an empirical model for the hotel reservation planning process that makes use of a symbolic simulation, Monte Carlo method, as, requests for reservations, cancellations, and arrival rates are all sources of uncertainty. We consider as a case study the problem of determining the optimal booking strategy for a medium size hotel in Skiathos Island, Greece. Probability distributions and parameters estimation result from the historical data available and by following suggestions made in the relevant literature. The results of this study may assist hotel managers define distribution strategies for hotel rooms and evaluate the performance of the reservations management system.« less
Deep seafloor arrivals in long range ocean acoustic propagation.
Stephen, Ralph A; Bolmer, S Thompson; Udovydchenkov, Ilya A; Worcester, Peter F; Dzieciuch, Matthew A; Andrew, Rex K; Mercer, James A; Colosi, John A; Howe, Bruce M
2013-10-01
Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean acoustic propagation models. These "deep seafloor" arrivals are the largest amplitude arrivals on the vertical particle velocity channel for ranges from 500 to 3200 km. The travel times for six (of 16 observed) deep seafloor arrivals correspond to the sea surface reflection of an out-of-plane diffraction from a seamount that protrudes to about 4100 m depth and is about 18 km from the receivers. This out-of-plane bottom-diffracted surface-reflected energy is observed on the deep vertical line array about 35 dB below the peak amplitude arrivals and was previously misinterpreted as in-plane bottom-reflected surface-reflected energy. The structure of these arrivals from 500 to 3200 km range is remarkably robust. The bottom-diffracted surface-reflected mechanism provides a means for acoustic signals and noise from distant sources to appear with significant strength on the deep seafloor.
33 CFR 401.79 - Advance notice of arrival, vessels requiring inspection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Notice of Arrival (NOA) prior to entering at call in point 2 (CIP 2) as follows: (1) If your voyage time to CIP 2 is 96 hours or more, you must submit an electronic NOA 96 hours before entering the Seaway at CIP 2. (2) If your voyage time to CIP 2 is less than 96 hours, you must submit an electronic NOA...
33 CFR 401.79 - Advance notice of arrival, vessels requiring inspection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Notice of Arrival (NOA) prior to entering at call in point 2 (CIP 2) as follows: (1) If your voyage time to CIP 2 is 96 hours or more, you must submit an electronic NOA 96 hours before entering the Seaway at CIP 2. (2) If your voyage time to CIP 2 is less than 96 hours, you must submit an electronic NOA...
NASA Astrophysics Data System (ADS)
Ho, G.; Donegan, M.; Vandegriff, J.; Wagstaff, K.
We have created a system for predicting the arrival times at Earth of interplanetary (IP) shocks that originate at the Sun. This system is currently available on the web (http://sd-www.jhuapl.edu/UPOS/RISP/index.html) and runs in real-time. Input data to our prediction algorithm is energetic particle data from the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. Real-time EPAM data is obtained from the National Oceanic and Atmospheric Administration (NOAA) Space Environment Center (SEC). Our algorithm operates in two stages. First it watches for a velocity dispersion signature (energetic ions show flux enhancement followed by subsequent enhancements in lower energies), which is commonly seen upstream of a large IP shock. Once a precursor signature has been detected, a pattern recognition algorithm is used to analyze the time series profile of the particle data and generate an estimate for the shock arrival time. Tests on the algorithm show an average error of roughly 9 hours for predictions made 24 hours before the shock arrival and roughly 5 hours when the shock is 12 hours away. This can provide significant lead-time and deliver critical information to mission planners, satellite operations controllers, and scientists. As of February 4, 2004, the ACE real-time stream has been switched to include data from another detector on EPAM. We are now processing the new real-time data stream and have made improvements to our algorithm based on this data. In this paper, we report prediction results from the updated algorithm.
Weidner, Lauren M; Monzon, Michael A; Hamilton, George C
2016-11-01
Some insect taxa can be of critical importance for criminal investigations because they can be used to assist with a time since death determination. Blow flies (Diptera: Calliphoridae) often are the initial colonizers of a carcass, usually arriving within minutes to hours after carcass exposure during the day. Other insects, such as coleopterans and hymenopterans, can arrive to a carcass during early colonization and affect blow fly development. However, the extent of these interactions remains unclear. This study analyzed the initial 6 h after a piglet carcass was placed out in two locations (rural and urban) in diurnal and nocturnal conditions with continuous video recording and hourly observations. Four piglets were placed out every 2 weeks over the summer of 2014. Initial blow fly arrivals to the carcasses were only recorded during diurnal conditions, and a checklist of orders associated with each environment (time and location) was created. During diurnal conditions, initial blow fly arrival times in rural environments were significantly faster than those in urban, arriving as quickly as 23 s after exposure. These observations also included a novel interaction with Vespidae, which to the best of our knowledge has not been seen in the literature before. This experiment provides baseline data on early insect colonization in two environments in New Jersey, and lends insight into insect interactions that could affect initial colonization.
Queue theory for triangular and weibull arrival distribution models (case study of Banyumanik toll)
NASA Astrophysics Data System (ADS)
Sugito; Rahmawati, Rita; Kusuma Wardhani, Jenesia
2018-05-01
Queuing is one of the most common phenomena in daily life. Queued also happens on highway during busy time. The Electronic Toll Collection (ETC) was the new system of the Banyumanik toll gate which operates in 2014. Before ETC, Banyumanik toll gate users got regular service (regular toll gate) by paying in cash only. The ETC benefits more than regular service, but automatic toll gate (ETC) users are still few compared to regular toll gate users. To know the effectiveness of substance service, this paper used analysis of queuing system. The research was conducted at Toll Gate Banyumanik with the implementation time on 26-28 December 2016 for Ungaran-Semarang direction, and 29-31 December 2016 for Semarang- Ungaran direction. In one day, observation was done for 11 hours. That was at 07.00 a.m. until 06.00 p.m. There are 4 models of queues at Banyumanik toll gate. Here the four models will be used on the number of arrival and service time. Based on the simulation with Arena, the result showed that queue model regular toll gate in Ugaran-Semarang direction is (Tria/G/3):(GD/∞/∞) and the queue model for automatic toll gate is (G/G/3):(GD/∞/∞). While the queue model for the direction of Semarang-Ungaran regular toll gate is (G/G/3):(GD/∞/∞) and the queue model of automatic toll gate is (Weib/G/3):(GD/∞/∞).
Identifying the potential of changes to blood sample logistics using simulation.
Jørgensen, Pelle; Jacobsen, Peter; Poulsen, Jørgen Hjelm
2013-01-01
Using simulation as an approach to display and improve internal logistics at hospitals has great potential. This study shows how a simulation model displaying the morning blood-taking round at a Danish public hospital can be developed and utilized with the aim of improving the logistics. The focus of the simulation was to evaluate changes made to the transportation of blood samples between wards and the laboratory. The average- (AWT) and maximum waiting time (MWT) from a blood sample was drawn at the ward until it was received at the laboratory, and the distribution of arrivals of blood samples in the laboratory were used as the evaluation criteria. Four different scenarios were tested and compared with the current approach: (1) Using AGVs (mobile robots), (2) using a pneumatic tube system, (3) using porters that are called upon, or (4) using porters that come to the wards every 45 minutes. Furthermore, each of the scenarios was tested in terms of what amount of resources would give the optimal result. The simulations showed a big improvement potential in implementing a new technology/mean for transporting the blood samples. The pneumatic tube system showed the biggest potential lowering the AWT and MWT with approx. 36% and 18%, respectively. Additionally, all of the scenarios had a more even distribution of arrivals except for porters coming to the wards every 45 min. As a consequence of the results obtained in the study, the hospital decided to implement a pneumatic tube system.
Transoceanic drift and the domestication of African bottle gourds in the Americas.
Kistler, Logan; Montenegro, Alvaro; Smith, Bruce D; Gifford, John A; Green, Richard E; Newsom, Lee A; Shapiro, Beth
2014-02-25
Bottle gourd (Lagenaria siceraria) was one of the first domesticated plants, and the only one with a global distribution during pre-Columbian times. Although native to Africa, bottle gourd was in use by humans in east Asia, possibly as early as 11,000 y ago (BP) and in the Americas by 10,000 BP. Despite its utilitarian importance to diverse human populations, it remains unresolved how the bottle gourd came to be so widely distributed, and in particular how and when it arrived in the New World. A previous study using ancient DNA concluded that Paleoindians transported already domesticated gourds to the Americas from Asia when colonizing the New World [Erickson et al. (2005) Proc Natl Acad Sci USA 102(51):18315-18320]. However, this scenario requires the propagation of tropical-adapted bottle gourds across the Arctic. Here, we isolate 86,000 base pairs of plastid DNA from a geographically broad sample of archaeological and living bottle gourds. In contrast to the earlier results, we find that all pre-Columbian bottle gourds are most closely related to African gourds, not Asian gourds. Ocean-current drift modeling shows that wild African gourds could have simply floated across the Atlantic during the Late Pleistocene. Once they arrived in the New World, naturalized gourd populations likely became established in the Neotropics via dispersal by megafaunal mammals. These wild populations were domesticated in several distinct New World locales, most likely near established centers of food crop domestication.
Transoceanic drift and the domestication of African bottle gourds in the Americas
Kistler, Logan; Montenegro, Álvaro; Smith, Bruce D.; Gifford, John A.; Green, Richard E.; Newsom, Lee A.; Shapiro, Beth
2014-01-01
Bottle gourd (Lagenaria siceraria) was one of the first domesticated plants, and the only one with a global distribution during pre-Columbian times. Although native to Africa, bottle gourd was in use by humans in east Asia, possibly as early as 11,000 y ago (BP) and in the Americas by 10,000 BP. Despite its utilitarian importance to diverse human populations, it remains unresolved how the bottle gourd came to be so widely distributed, and in particular how and when it arrived in the New World. A previous study using ancient DNA concluded that Paleoindians transported already domesticated gourds to the Americas from Asia when colonizing the New World [Erickson et al. (2005) Proc Natl Acad Sci USA 102(51):18315–18320]. However, this scenario requires the propagation of tropical-adapted bottle gourds across the Arctic. Here, we isolate 86,000 base pairs of plastid DNA from a geographically broad sample of archaeological and living bottle gourds. In contrast to the earlier results, we find that all pre-Columbian bottle gourds are most closely related to African gourds, not Asian gourds. Ocean-current drift modeling shows that wild African gourds could have simply floated across the Atlantic during the Late Pleistocene. Once they arrived in the New World, naturalized gourd populations likely became established in the Neotropics via dispersal by megafaunal mammals. These wild populations were domesticated in several distinct New World locales, most likely near established centers of food crop domestication. PMID:24516122
Compound earthquakes on a bimaterial interface and implications for rupture mechanics
NASA Astrophysics Data System (ADS)
Wang, E.; Rubin, A. M.
2011-12-01
Rubin and Ampuero [2007] simulated slip-weakening ruptures on a 2-D (line fault) bimaterial interface and observed differences in the timescales for the two edges to experience their peak stress after being slowed by barriers. The barrier on the "negative" side reached its peak stress when the P-wave stopping phase arrives from the opposite end, which takes ~20 ms for a 100 m event. This may be long enough for a potential secondary rupture to be observed as a distinct subevent. In contrast, the same timescale for a barrier at the "positive" front is nearly instantaneous (really the distance from the stopped rupture edge to the barrier divided by the shear wave speed), possibly making a secondary event there indistinguishable from the main rupture. Rubin and Gillard [2000] observed that of a family of 72 similar earthquakes along the San Andreas fault in Northern California, 5 were identified as compound and in all cases the second event was located on the negative (NW) side of the main event. Based on their simulations, Rubin and Ampuero interpreted this as being due to the above-mentioned asymmetry in the dynamic stressing-rate history on the two sides of a rupture on a bimaterial interface. To test this hypothesis for the asymmetric distribution of subevents within compound earthquakes, we search more systematically for secondary arrivals within 0.15 s of the first P arrival for microearthquakes on the San Andreas. We take advantage of similarity between waveforms of adjacent events and deconvolve the first 0.64 s following the P arrival of a target event using a nearby Empirical Green's Function (EGF). We use the iterative deconvolution method described in Kikuchi & Kanamori [1982]. When the EGF is a simple earthquake and the target is compound, the deconvolution is expected to show two spikes, corresponding to the main and secondary events. Due to the existence of noise, a second spike is considered robust only when the difference between the waveforms of the target event and the aligned and scaled EGF is similar enough (cross-correlation coefficient higher than 0.6) to the EGF at multiple stations. The azimuthal consistency of delays between the main and secondary arrivals is more convincing evidence that the target is a compound event. Using these criteria we temporarily identified ~70 compound events out of ~8200 in our catalog. Future work will include improving the quality of the inter-event delay time by using Monte Carlo simulations to allow the amplitudes and arrival times of both spikes (as opposed to just the second spike) to vary. Accurate relative locations and times can improve our understanding of the triggering mechanism of the subevents and perhaps the longer-timescale aftershock asymmetry observed in this region as well. For example, it has been proposed that the deficit of longer-timescale aftershocks in the SE (positive) direction could be due to triggering by propagation of a tensile stress pulse down the fault as the mainshock is stopped.
SPX-8 SpaceX Dragon Spacecraft Approach
2016-04-10
iss047e050943 (4/10/2016) --- The SpaceX Dragon cargo spaceship begins the final approach to the International Space Station. On the left, the solar arrays of Orbital ATK’s Cygnus cargo craft can be seen. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM.
Petzoldt, Tibor
2016-10-01
Crashes at railway level crossings are a key problem for railway operations. It has been suggested that a potential explanation for such crashes might lie in a so-called size speed bias, which describes the phenomenon that observers underestimate the speed of larger objects, such as aircraft or trains. While there is some evidence that this size speed bias indeed exists, it is somewhat at odds with another well researched phenomenon, the size arrival effect. When asked to judge the time it takes an approaching object to arrive at a predefined position (time to arrival, TTA), observers tend to provide lower estimates for larger objects. In that case, road users' crossing decisions when confronted with larger vehicles should be rather conservative, which has been confirmed in multiple studies on gap acceptance. The aim of the experiment reported in this paper was to clarify the relationship between size speed bias and size arrival effect. Employing a relative judgment task, both speed and TTA estimates were assessed for virtual depictions of a train and a truck, using a car as a reference to compare against. The results confirmed the size speed bias for the speed judgments, with both train and truck being perceived as travelling slower than the car. A comparable bias was also present in the TTA estimates for the truck. In contrast, no size arrival effect could be found for the train or the truck, neither in the speed nor the TTA judgments. This finding is inconsistent with the fact that crossing behaviour when confronted with larger vehicles appears to be consistently more conservative. This discrepancy might be interpreted as an indication that factors other than perceived speed or TTA play an important role for the differences in gap acceptance between different types of vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Global Instrumental Seismic Catalog: earthquake relocations for 1900-present
NASA Astrophysics Data System (ADS)
Villasenor, A.; Engdahl, E.; Storchak, D. A.; Bondar, I.
2010-12-01
We present the current status of our efforts to produce a set of homogeneous earthquake locations and improved focal depths towards the compilation of a Global Catalog of instrumentally recorded earthquakes that will be complete down to the lowest magnitude threshold possible on a global scale and for the time period considered. This project is currently being carried out under the auspices of GEM (Global Earthquake Model). The resulting earthquake catalog will be a fundamental dataset not only for earthquake risk modeling and assessment on a global scale, but also for a large number of studies such as global and regional seismotectonics; the rupture zones and return time of large, damaging earthquakes; the spatial-temporal pattern of moment release along seismic zones and faults etc. Our current goal is to re-locate all earthquakes with available station arrival data using the following magnitude thresholds: M5.5 for 1964-present, M6.25 for 1918-1963, M7.5 (complemented with significant events in continental regions) for 1900-1917. Phase arrival time data for earthquakes after 1963 are available in digital form from the International Seismological Centre (ISC). For earthquakes in the time period 1918-1963, phase data is obtained by scanning the printed International Seismological Summary (ISS) bulletins and applying optical character recognition routines. For earlier earthquakes we will collect phase data from individual station bulletins. We will illustrate some of the most significant results of this relocation effort, including aftershock distributions for large earthquakes, systematic differences in epicenter and depth with respect to previous location, examples of grossly mislocated events, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poad, Berwyck L. J.; Zheng, Xueyun; Mitchell, Todd W.
One of the most significant challenges in contemporary lipidomics lies in the separation and identification of lipid isomers that differ only in site(s) of unsaturation or geometric configuration of the carbon-carbon double bonds. While analytical separation techniques including ion mobility spectrometry (IMS) and liquid chromatography (LC) can separate isomeric lipids under appropriate conditions, conventional tandem mass spectrometry cannot provide unequivocal identification. To address this challenge, we have implemented ozone-induced dissociation (OzID) in-line with LC, IMS and high resolution mass spectrometry. Modification of an IMS- capable quadrupole time-of-flight mass spectrometer was undertaken to allow the introduction of ozone into the high-pressuremore » trapping ion funnel region preceding the IMS cell. This enabled the novel LC-OzID-IMS-MS configuration where ozonolysis of ionized lipids occurred rapidly (10 ms) without prior mass-selection. LC-elution time alignment combined with accurate mass and arrival time extraction of ozonolysis products facilitated correlation of precursor and product ions without mass-selection (and associated reductions in duty cycle). Unsaturated lipids across 11 classes were examined using this workflow in both positive and negative ion modalities and in all cases the positions of carbon-carbon double bonds were unequivocally assigned based on predictable OzID transitions. Under these conditions geometric isomers exhibited different IMS arrival time distributions and distinct OzID product ion ratios providing a means for discrimination of cis/trans double bonds in complex lipids. The combination of OzID with multidimensional separations shows significant promise for facile profiling of unsaturation patterns within complex lipidomes.« less