Shiozawa, Kazue; Watanabe, Manabu; Ikehara, Takashi; Shimizu, Ryo; Shinohara, Mie; Igarashi, Yoshinori; Sumino, Yasukiyo
2017-01-01
To determine the usefulness of arrival time parametric imaging (AtPI) using contrast-enhanced ultrasonography (CEUS) with Sonazoid in evaluating early response to sorafenib for hepatocellular carcinoma (HCC). Twenty-one advanced HCC patients with low α-fetoprotein (AFP) levels (≤35 ng/ml) who received sorafenib for at least 4 weeks were enrolled in this study. CEUS was performed before and 2 weeks after treatment, and the images of the target lesion in the arterial phase were analyzed by AtPI. In the color mapping images obtained by AtPI, the mean arrival time of the contrast agent in the target lesion from the reference point (mean time: MT) was calculated. In each patient, differences between MT before and MT 2 weeks after treatment were compared. MT (+) and MT (-) groups were defined as difference of 0 s or greater and less than 0 s, respectively. Overall survival was evaluated between the two groups. In the MT (+) (11 patients) and MT (-) (10 patients) groups, the median survival time was 792 and 403 days, respectively, which was statistically significant. The results suggested that AtPI was useful for evaluating early response to sorafenib for advanced HCC with low AFP level.
Parametric adaptive filtering and data validation in the bar GW detector AURIGA
NASA Astrophysics Data System (ADS)
Ortolan, A.; Baggio, L.; Cerdonio, M.; Prodi, G. A.; Vedovato, G.; Vitale, S.
2002-04-01
We report on our experience gained in the signal processing of the resonant GW detector AURIGA. Signal amplitude and arrival time are estimated by means of a matched-adaptive Wiener filter. The detector noise, entering in the filter set-up, is modelled as a parametric ARMA process; to account for slow non-stationarity of the noise, the ARMA parameters are estimated on an hourly basis. A requirement of the set-up of an unbiased Wiener filter is the separation of time spans with 'almost Gaussian' noise from non-Gaussian and/or strongly non-stationary time spans. The separation algorithm consists basically of a variance estimate with the Chauvenet convergence method and a threshold on the Curtosis index. The subsequent validation of data is strictly connected with the separation procedure: in fact, by injecting a large number of artificial GW signals into the 'almost Gaussian' part of the AURIGA data stream, we have demonstrated that the effective probability distributions of the signal-to-noise ratio χ2 and the time of arrival are those that are expected.
Testing the Einstein's equivalence principle with polarized gamma-ray bursts
NASA Astrophysics Data System (ADS)
Yang, Chao; Zou, Yuan-Chuan; Zhang, Yue-Yang; Liao, Bin; Lei, Wei-Hua
2017-07-01
The Einstein's equivalence principle can be tested by using parametrized post-Newtonian parameters, of which the parameter γ has been constrained by comparing the arrival times of photons with different energies. It has been constrained by a variety of astronomical transient events, such as gamma-ray bursts (GRBs), fast radio bursts as well as pulses of pulsars, with the most stringent constraint of Δγ ≲ 10-15. In this Letter, we consider the arrival times of lights with different circular polarization. For a linearly polarized light, it is the combination of two circularly polarized lights. If the arrival time difference between the two circularly polarized lights is too large, their combination may lose the linear polarization. We constrain the value of Δγp < 1.6 × 10-27 by the measurement of the polarization of GRB 110721A, which is the most stringent constraint ever achieved.
A matched-peak inversion approach for ocean acoustic travel-time tomography
Skarsoulis
2000-03-01
A new approach for the inversion of travel-time data is proposed, based on the matching between model arrivals and observed peaks. Using the linearized model relations between sound-speed and arrival-time perturbations about a set of background states, arrival times and associated errors are calculated on a fine grid of model states discretizing the sound-speed parameter space. Each model state can explain (identify) a number of observed peaks in a particular reception lying within the uncertainty intervals of the corresponding predicted arrival times. The model states that explain the maximum number of observed peaks are considered as the more likely parametric descriptions of the reception; these model states can be described in terms of mean values and variances providing a statistical answer (matched-peak solution) to the inversion problem. A basic feature of the matched-peak inversion approach is that each reception can be treated independently, i.e., no constraints are posed from previous-reception identification or inversion results. Accordingly, there is no need for initialization of the inversion procedure and, furthermore, discontinuous travel-time data can be treated. The matched-peak inversion method is demonstrated by application to 9-month-long travel-time data from the Thetis-2 tomography experiment in the western Mediterranean sea.
Real-Time Ensemble Forecasting of Coronal Mass Ejections Using the Wsa-Enlil+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; Odstrcil, D.; MacNeice, P. J.; Rastaetter, L.; LaSota, J. A.
2014-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions. Real-time ensemble modeling of CME propagation is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL+cone model available at the Community Coordinated Modeling Center (CCMC). To estimate the effect of uncertainties in determining CME input parameters on arrival time predictions, a distribution of n (routinely n=48) CME input parameter sets are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest, including a probability distribution of CME arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). We present the results of ensemble simulations for a total of 38 CME events in 2013-2014. For 28 of the ensemble runs containing hits, the observed CME arrival was within the range of ensemble arrival time predictions for 14 runs (half). The average arrival time prediction was computed for each of the 28 ensembles predicting hits and using the actual arrival time, an average absolute error of 10.0 hours (RMSE=11.4 hours) was found for all 28 ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling sysem was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME. The parameter sensitivity study suggests future directions for the system, such as running ensembles using various magnetogram inputs to the WSA model.
NASA Astrophysics Data System (ADS)
Di Giacomo, Domenico; Harris, James; Villaseñor, Antonio; Storchak, Dmitry A.; Engdahl, E. Robert; Lee, William H. K.
2015-02-01
In order to produce a new global reference earthquake catalogue based on instrumental data covering the last 100+ years of global earthquakes, we collected, digitized and processed an unprecedented amount of printed early instrumental seismological bulletins with fundamental parametric data for relocating and reassessing the magnitude of earthquakes that occurred in the period between 1904 and 1970. This effort was necessary in order to produce an earthquake catalogue with locations and magnitudes as homogeneous as possible. The parametric data obtained and processed during this work fills a large gap in electronic bulletin data availability. This new dataset complements the data publicly available in the International Seismological Centre (ISC) Bulletin starting in 1964. With respect to the amplitude-period data necessary to re-compute magnitude, we searched through the global collection of printed bulletins stored at the ISC and entered relevant station parametric data into the database. As a result, over 110,000 surface and body-wave amplitude-period pairs for re-computing standard magnitudes MS and mb were added to the ISC database. To facilitate earthquake relocation, different sources have been used to retrieve body-wave arrival times. These were entered into the database using optical character recognition methods (International Seismological Summary, 1918-1959) or manually (e.g., British Association for the Advancement of Science, 1913-1917). In total, ∼1,000,000 phase arrival times were added to the ISC database for large earthquakes that occurred in the time interval 1904-1970. The selection of earthquakes for which data was added depends on time period and magnitude: for the early years of last century (until 1917) only very large earthquakes were selected for processing (M ⩾ 7.5), whereas in the periods 1918-1959 and 1960-2009 the magnitude thresholds are 6.25 and 5.5, respectively. Such a selection was mainly dictated by limitations in time and funding. Although the newly available parametric data is only a subset of the station data available in the printed bulletins, its electronic availability will be important for any future study of earthquakes that occurred during the early instrumental period.
Gargano, Julia Warner; Wehner, Susan; Reeves, Mathew J
2009-04-01
Previous studies report that women with stroke may experience longer delays in diagnostic workup than men after arriving at the emergency department. We hypothesized that presenting symptom differences could explain these delays. Data were collected on 1922 acute stroke cases who presented to 15 hospitals participating in a statewide stroke registry. We evaluated 2 in-hospital time intervals: emergency department arrival to physician examination ("door-to-doctor") and emergency department arrival to brain imaging ("door-to-image"). We used parametric survival models to estimate time ratios, which represent the ratio of average times comparing women to men, after adjusting for symptom presentation and other confounders. Women were significantly less likely than men to present with any stroke warning sign or suspected stroke (87.5% versus 91.4%) or to report trouble with walking, balance, or dizziness (9.5% versus 13.7%). Difficulty speaking and loss of consciousness were associated with shorter door-to-doctor times. Weakness, facial droop, difficulty speaking, and loss of consciousness were associated with shorter door-to-image times, whereas difficulty with walking/balance was associated with longer door-to-image times. In adjusted analyses, women had 11% longer door-to-doctor intervals (time ratio, 1.11; 95%, CI 1.02 to 1.22) and 15% longer door-to-image intervals (time ratio, 1.15; 95% CI, 1.08 to 1.25) after accounting for presenting symptoms, age, and other confounders. Furthermore, these sex differences remained evident after restricting to patients who arrived within 6 or within 2 hours of symptom onset. Women with acute stroke experienced greater emergency department delays than men, which were not attributable to differences in presenting symptoms, time of arrival, age, or other confounders.
Real-time Ensemble Forecasting of Coronal Mass Ejections using the WSA-ENLIL+Cone Model
NASA Astrophysics Data System (ADS)
Mays, M. L.; Taktakishvili, A.; Pulkkinen, A. A.; MacNeice, P. J.; Rastaetter, L.; Kuznetsova, M. M.; Odstrcil, D.
2013-12-01
Ensemble forecasting of coronal mass ejections (CMEs) provides significant information in that it provides an estimation of the spread or uncertainty in CME arrival time predictions due to uncertainties in determining CME input parameters. Ensemble modeling of CME propagation in the heliosphere is performed by forecasters at the Space Weather Research Center (SWRC) using the WSA-ENLIL cone model available at the Community Coordinated Modeling Center (CCMC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. A distribution of n (routinely n=48) CME input parameters are generated using the CCMC Stereo CME Analysis Tool (StereoCAT) which employs geometrical triangulation techniques. These input parameters are used to perform n different simulations yielding an ensemble of solar wind parameters at various locations of interest (satellites or planets), including a probability distribution of CME shock arrival times (for hits), and geomagnetic storm strength (for Earth-directed hits). Ensemble simulations have been performed experimentally in real-time at the CCMC since January 2013. We present the results of ensemble simulations for a total of 15 CME events, 10 of which were performed in real-time. The observed CME arrival was within the range of ensemble arrival time predictions for 5 out of the 12 ensemble runs containing hits. The average arrival time prediction was computed for each of the twelve ensembles predicting hits and using the actual arrival time an average absolute error of 8.20 hours was found for all twelve ensembles, which is comparable to current forecasting errors. Some considerations for the accuracy of ensemble CME arrival time predictions include the importance of the initial distribution of CME input parameters, particularly the mean and spread. When the observed arrivals are not within the predicted range, this still allows the ruling out of prediction errors caused by tested CME input parameters. Prediction errors can also arise from ambient model parameters such as the accuracy of the solar wind background, and other limitations. Additionally the ensemble modeling setup was used to complete a parametric event case study of the sensitivity of the CME arrival time prediction to free parameters for ambient solar wind model and CME.
A new approach to evaluate gamma-ray measurements
NASA Technical Reports Server (NTRS)
Dejager, O. C.; Swanepoel, J. W. H.; Raubenheimer, B. C.; Vandervalt, D. J.
1985-01-01
Misunderstandings about the term random samples its implications may easily arise. Conditions under which the phases, obtained from arrival times, do not form a random sample and the dangers involved are discussed. Watson's U sup 2 test for uniformity is recommended for light curves with duty cycles larger than 10%. Under certain conditions, non-parametric density estimation may be used to determine estimates of the true light curve and its parameters.
Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang
2016-01-01
Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system. PMID:27452276
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balasubramoniam, A; Bednarek, D; Rudin, S
Purpose: To create 4D parametric images using biplane Digital Subtraction Angiography (DSA) sequences co-registered with the 3D vascular geometry obtained from Cone Beam-CT (CBCT). Methods: We investigated a method to derive multiple 4D Parametric Imaging (PI) maps using only one CBCT acquisition. During this procedure a 3D-DSA geometry is stored and used subsequently for all 4D images. Each time a biplane DSA is acquired, we calculate 2D parametric maps of Bolus Arrival Time (BAT), Mean Transit Time (MTT) and Time to Peak (TTP). Arterial segments which are nearly parallel with one of the biplane imaging planes in the 2D parametricmore » maps are co-registered with the 3D geometry. The values in the remaining vascular network are found using spline interpolation since the points chosen for co-registration on the vasculature are discrete and remaining regions need to be interpolated. To evaluate the method we used a patient CT volume data set for 3D printing a neurovascular phantom containing a complete Circle of Willis. We connected the phantom to a flow loop with a peristaltic pump, simulating physiological flow conditions. Contrast media was injected with an automatic injector at 10 ml/sec. Images were acquired with a Toshiba Infinix C-arm and 4D parametric image maps of the vasculature were calculated. Results: 4D BAT, MTT, and TTP parametric image maps of the Circle of Willis were derived. We generated color-coded 3D geometries which avoided artifacts due to vessel overlap or foreshortening in the projection direction. Conclusion: The software was tested successfully and multiple 4D parametric images were obtained from biplane DSA sequences without the need to acquire additional 3D-DSA runs. This can benefit the patient by reducing the contrast media and the radiation dose normally associated with these procedures. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
Detection of Objects Hidden in Highly Scattering Media Using Time-Gated Imaging Methods
NASA Technical Reports Server (NTRS)
Galland, Pierre A.; Wang, L.; Liang, X.; Ho, P. P.; Alfano, R. R.
2000-01-01
Non-intrusive and non-invasive optical imaging techniques has generated great interest among researchers for their potential applications to biological study, device characterization, surface defect detection, and jet fuel dynamics. Non-linear optical parametric amplification gate (NLOPG) has been used to detect back-scattered images of objects hidden in diluted Intralipid solutions. To directly detect objects hidden in highly scattering media, the diffusive component of light needs to be sorted out from early arrived ballistic and snake photons. In an optical imaging system, images are collected in transmission or back-scattered geometry. The early arrival photons in the transmission approach, always carry the direct information of the hidden object embedded in the turbid medium. In the back-scattered approach, the result is not so forth coming. In the presence of a scattering host, the first arrival photons in back-scattered approach will be directly photons from the host material. In the presentation, NLOPG was applied to acquire time resolved back-scattered images under the phase matching condition. A time-gated amplified signal was obtained through this NLOPG process. The system's gain was approximately 100 times. The time-gate was achieved through phase matching condition where only coherent photons retain their phase. As a result, the diffusive photons, which were the primary contributor to the background, were removed. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes. Refinements to these techniques may enable drop size measurements in the highly scattering, optically dense region of multi-element rocket injectors. These types of measurements should greatly enhance the design of stable, and higher performing rocket engines.
NASA Astrophysics Data System (ADS)
Rawles, Christopher; Thurber, Clifford
2015-08-01
We present a simple, fast, and robust method for automatic detection of P- and S-wave arrivals using a nearest neighbours-based approach. The nearest neighbour algorithm is one of the most popular time-series classification methods in the data mining community and has been applied to time-series problems in many different domains. Specifically, our method is based on the non-parametric time-series classification method developed by Nikolov. Instead of building a model by estimating parameters from the data, the method uses the data itself to define the model. Potential phase arrivals are identified based on their similarity to a set of reference data consisting of positive and negative sets, where the positive set contains examples of analyst identified P- or S-wave onsets and the negative set contains examples that do not contain P waves or S waves. Similarity is defined as the square of the Euclidean distance between vectors representing the scaled absolute values of the amplitudes of the observed signal and a given reference example in time windows of the same length. For both P waves and S waves, a single pass is done through the bandpassed data, producing a score function defined as the ratio of the sum of similarity to positive examples over the sum of similarity to negative examples for each window. A phase arrival is chosen as the centre position of the window that maximizes the score function. The method is tested on two local earthquake data sets, consisting of 98 known events from the Parkfield region in central California and 32 known events from the Alpine Fault region on the South Island of New Zealand. For P-wave picks, using a reference set containing two picks from the Parkfield data set, 98 per cent of Parkfield and 94 per cent of Alpine Fault picks are determined within 0.1 s of the analyst pick. For S-wave picks, 94 per cent and 91 per cent of picks are determined within 0.2 s of the analyst picks for the Parkfield and Alpine Fault data set, respectively. For the Parkfield data set, our method picks 3520 P-wave picks and 3577 S-wave picks out of 4232 station-event pairs. For the Alpine Fault data set, the method picks 282 P-wave picks and 311 S-wave picks out of a total of 344 station-event pairs. For our testing, we note that the vast majority of station-event pairs have analyst picks, although some analyst picks are excluded based on an accuracy assessment. Finally, our tests suggest that the method is portable, allowing the use of a reference set from one region on data from a different region using relatively few reference picks.
Unternährer, Manuel; Bessire, Bänz; Gasparini, Leonardo; Stoppa, David; Stefanov, André
2016-12-12
We demonstrate coincidence measurements of spatially entangled photons by means of a multi-pixel based detection array. The sensor, originally developed for positron emission tomography applications, is a fully digital 8×16 silicon photomultiplier array allowing not only photon counting but also per-pixel time stamping of the arrived photons with an effective resolution of 265 ps. Together with a frame rate of 500 kfps, this property exceeds the capabilities of conventional charge-coupled device cameras which have become of growing interest for the detection of transversely correlated photon pairs. The sensor is used to measure a second-order correlation function for various non-collinear configurations of entangled photons generated by spontaneous parametric down-conversion. The experimental results are compared to theory.
Implications on 1 + 1 D Tsunami Runup Modeling due to Time Features of the Earthquake Source
NASA Astrophysics Data System (ADS)
Fuentes, M.; Riquelme, S.; Ruiz, J.; Campos, J.
2018-02-01
The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1 + 1 D solution for the shoreline motion time series, from the static case to the kinematic case, by including both rise time and rupture velocity. Our results show that the static case corresponds to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum runup may be affected by very slow ruptures and long rise time. Parametric analysis reveals that runup is strictly decreasing with the rise time while is highly amplified in a certain range of slow rupture velocities. For even lower rupture velocities, the tsunami excitation vanishes and for larger, quicker approaches to the instantaneous case.
Implications on 1 + 1 D Tsunami Runup Modeling due to Time Features of the Earthquake Source
NASA Astrophysics Data System (ADS)
Fuentes, M.; Riquelme, S.; Ruiz, J.; Campos, J.
2018-04-01
The time characteristics of the seismic source are usually neglected in tsunami modeling, due to the difference in the time scale of both processes. Nonetheless, there are just a few analytical studies that intended to explain separately the role of the rise time and the rupture velocity. In this work, we extend an analytical 1 + 1 D solution for the shoreline motion time series, from the static case to the kinematic case, by including both rise time and rupture velocity. Our results show that the static case corresponds to a limit case of null rise time and infinite rupture velocity. Both parameters contribute in shifting the arrival time, but maximum runup may be affected by very slow ruptures and long rise time. Parametric analysis reveals that runup is strictly decreasing with the rise time while is highly amplified in a certain range of slow rupture velocities. For even lower rupture velocities, the tsunami excitation vanishes and for larger, quicker approaches to the instantaneous case.
Ibáñez, Jesús M; Díaz-Moreno, Alejandro; Prudencio, Janire; Zandomeneghi, Daria; Wilcock, William; Barclay, Andrew; Almendros, Javier; Benítez, Carmen; García-Yeguas, Araceli; Alguacil, Gerardo
2017-09-12
Deception Island volcano (Antarctica) is one of the most closely monitored and studied volcanoes on the region. In January 2005, a multi-parametric international experiment was conducted that encompassed both Deception Island and its surrounding waters. We performed this experiment from aboard the Spanish oceanographic vessel 'Hespérides', and from five land-based locations on Deception Island (the Spanish scientific Antarctic base 'Gabriel de Castilla' and four temporary camps). This experiment allowed us to record active seismic signals using a large network of seismic stations that were deployed both on land and on the seafloor. In addition, other geophysical data were acquired, including bathymetric high precision multi-beam data, and gravimetric and magnetic profiles. To date, the seismic and bathymetric data have been analysed but the magnetic and gravimetric data have not. We provide P-wave arrival-time picks and seismic tomography results in velocity and attenuation. In this manuscript, we describe the main characteristics of the experiment, the instruments, the data, and the repositories from which data and information can be obtained.
Ibáñez, Jesús M.; Díaz-Moreno, Alejandro; Prudencio, Janire; Zandomeneghi, Daria; Wilcock, William; Barclay, Andrew; Almendros, Javier; Benítez, Carmen; García-Yeguas, Araceli; Alguacil, Gerardo
2017-01-01
Deception Island volcano (Antarctica) is one of the most closely monitored and studied volcanoes on the region. In January 2005, a multi-parametric international experiment was conducted that encompassed both Deception Island and its surrounding waters. We performed this experiment from aboard the Spanish oceanographic vessel ‘Hespérides’, and from five land-based locations on Deception Island (the Spanish scientific Antarctic base ‘Gabriel de Castilla’ and four temporary camps). This experiment allowed us to record active seismic signals using a large network of seismic stations that were deployed both on land and on the seafloor. In addition, other geophysical data were acquired, including bathymetric high precision multi-beam data, and gravimetric and magnetic profiles. To date, the seismic and bathymetric data have been analysed but the magnetic and gravimetric data have not. We provide P-wave arrival-time picks and seismic tomography results in velocity and attenuation. In this manuscript, we describe the main characteristics of the experiment, the instruments, the data, and the repositories from which data and information can be obtained. PMID:28895947
A Nonparametric Approach to Automated S-Wave Picking
NASA Astrophysics Data System (ADS)
Rawles, C.; Thurber, C. H.
2014-12-01
Although a number of very effective P-wave automatic pickers have been developed over the years, automatic picking of S waves has remained more challenging. Most automatic pickers take a parametric approach, whereby some characteristic function (CF), e.g. polarization or kurtosis, is determined from the data and the pick is estimated from the CF. We have adopted a nonparametric approach, estimating the pick directly from the waveforms. For a particular waveform to be auto-picked, the method uses a combination of similarity to a set of seismograms with known S-wave arrivals and dissimilarity to a set of seismograms that do not contain S-wave arrivals. Significant effort has been made towards dealing with the problem of S-to-P conversions. We have evaluated the effectiveness of our method by testing it on multiple sets of microearthquake seismograms with well-determined S-wave arrivals for several areas around the world, including fault zones and volcanic regions. In general, we find that the results from our auto-picker are consistent with reviewed analyst picks 90% of the time at the 0.2 s level and 80% of the time at the 0.1 s level, or better. For most of the large datasets we have analyzed, our auto-picker also makes far more S-wave picks than were made previously by analysts. We are using these enlarged sets of high-quality S-wave picks to refine tomographic inversions for these areas, resulting in substantial improvement in the quality of the S-wave images. We will show examples from New Zealand, Hawaii, and California.
Zhang, Zheshen; Mower, Jacob; Englund, Dirk; Wong, Franco N C; Shapiro, Jeffrey H
2014-03-28
High-dimensional quantum key distribution (HDQKD) offers the possibility of high secure-key rate with high photon-information efficiency. We consider HDQKD based on the time-energy entanglement produced by spontaneous parametric down-conversion and show that it is secure against collective attacks. Its security rests upon visibility data-obtained from Franson and conjugate-Franson interferometers-that probe photon-pair frequency correlations and arrival-time correlations. From these measurements, an upper bound can be established on the eavesdropper's Holevo information by translating the Gaussian-state security analysis for continuous-variable quantum key distribution so that it applies to our protocol. We show that visibility data from just the Franson interferometer provides a weaker, but nonetheless useful, secure-key rate lower bound. To handle multiple-pair emissions, we incorporate the decoy-state approach into our protocol. Our results show that over a 200-km transmission distance in optical fiber, time-energy entanglement HDQKD could permit a 700-bit/sec secure-key rate and a photon information efficiency of 2 secure-key bits per photon coincidence in the key-generation phase using receivers with a 15% system efficiency.
Waveform inversion for orthorhombic anisotropy with P waves: feasibility and resolution
NASA Astrophysics Data System (ADS)
Kazei, Vladimir; Alkhalifah, Tariq
2018-05-01
Various parametrizations have been suggested to simplify inversions of first arrivals, or P waves, in orthorhombic anisotropic media, but the number and type of retrievable parameters have not been decisively determined. We show that only six parameters can be retrieved from the dynamic linearized inversion of P waves. These parameters are different from the six parameters needed to describe the kinematics of P waves. Reflection-based radiation patterns from the P-P scattered waves are remapped into the spectral domain to allow for our resolution analysis based on the effective angle of illumination concept. Singular value decomposition of the spectral sensitivities from various azimuths, offset coverage scenarios and data bandwidths allows us to quantify the resolution of different parametrizations, taking into account the signal-to-noise ratio in a given experiment. According to our singular value analysis, when the primary goal of inversion is determining the velocity of the P waves, gradually adding anisotropy of lower orders (isotropic, vertically transversally isotropic and orthorhombic) in hierarchical parametrization is the best choice. Hierarchical parametrization reduces the trade-off between the parameters and makes gradual introduction of lower anisotropy orders straightforward. When all the anisotropic parameters affecting P-wave propagation need to be retrieved simultaneously, the classic parametrization of orthorhombic medium with elastic stiffness matrix coefficients and density is a better choice for inversion. We provide estimates of the number and set of parameters that can be retrieved from surface seismic data in different acquisition scenarios. To set up an inversion process, the singular values determine the number of parameters that can be inverted and the resolution matrices from the parametrizations can be used to ascertain the set of parameters that can be resolved.
Temporal Constraint Propagation for Airlift Planning Analysis
1989-12-01
STATIOU KMSP) (OFFLOAD-STATION EGUN ) (AVAILABLE-TIME COIO) (EARLIEST-ARRIVAL-TIME C012) (LATEST-ARRIVAL-TIME COlS) (PRIORITY 001) (BULK-CARGO 200...CODES NIL)) ($F (LOAD-DESIG!ATOR RI) (ONLOAD-STATION KLFI) (OFFLOAD-STATION EGUN ) (AVAILABLE-TIME COOO) (EARLIEST-ARRIVAL-TIME COOS) (LATEST-ARRIVAL...CATEGORY-CODES NIL)) ($F (LOAD-DESIGNATOR RIS) (ONLOAD-STATION KSBD) (OFFLOAD-STATION EGUN ) (AVAILABLE-TIME COO) (EARLIEST-ARRIVAL-TIME COOS) (LATEST
Determining prescription durations based on the parametric waiting time distribution.
Støvring, Henrik; Pottegård, Anton; Hallas, Jesper
2016-12-01
The purpose of the study is to develop a method to estimate the duration of single prescriptions in pharmacoepidemiological studies when the single prescription duration is not available. We developed an estimation algorithm based on maximum likelihood estimation of a parametric two-component mixture model for the waiting time distribution (WTD). The distribution component for prevalent users estimates the forward recurrence density (FRD), which is related to the distribution of time between subsequent prescription redemptions, the inter-arrival density (IAD), for users in continued treatment. We exploited this to estimate percentiles of the IAD by inversion of the estimated FRD and defined the duration of a prescription as the time within which 80% of current users will have presented themselves again. Statistical properties were examined in simulation studies, and the method was applied to empirical data for four model drugs: non-steroidal anti-inflammatory drugs (NSAIDs), warfarin, bendroflumethiazide, and levothyroxine. Simulation studies found negligible bias when the data-generating model for the IAD coincided with the FRD used in the WTD estimation (Log-Normal). When the IAD consisted of a mixture of two Log-Normal distributions, but was analyzed with a single Log-Normal distribution, relative bias did not exceed 9%. Using a Log-Normal FRD, we estimated prescription durations of 117, 91, 137, and 118 days for NSAIDs, warfarin, bendroflumethiazide, and levothyroxine, respectively. Similar results were found with a Weibull FRD. The algorithm allows valid estimation of single prescription durations, especially when the WTD reliably separates current users from incident users, and may replace ad-hoc decision rules in automated implementations. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Assessment of crustal velocity models using seismic refraction and reflection tomography
NASA Astrophysics Data System (ADS)
Zelt, Colin A.; Sain, Kalachand; Naumenko, Julia V.; Sawyer, Dale S.
2003-06-01
Two tomographic methods for assessing velocity models obtained from wide-angle seismic traveltime data are presented through four case studies. The modelling/inversion of wide-angle traveltimes usually involves some aspects that are quite subjective. For example: (1) identifying and including later phases that are often difficult to pick within the seismic coda, (2) assigning specific layers to arrivals, (3) incorporating pre-conceived structure not specifically required by the data and (4) selecting a model parametrization. These steps are applied to maximize model constraint and minimize model non-uniqueness. However, these steps may cause the overall approach to appear ad hoc, and thereby diminish the credibility of the final model. The effect of these subjective choices can largely be addressed by estimating the minimum model structure required by the least subjective portion of the wide-angle data set: the first-arrival times. For data sets with Moho reflections, the tomographic velocity model can be used to invert the PmP times for a minimum-structure Moho. In this way, crustal velocity and Moho models can be obtained that require the least amount of subjective input, and the model structure that is required by the wide-angle data with a high degree of certainty can be differentiated from structure that is merely consistent with the data. The tomographic models are not intended to supersede the preferred models, since the latter model is typically better resolved and more interpretable. This form of tomographic assessment is intended to lend credibility to model features common to the tomographic and preferred models. Four case studies are presented in which a preferred model was derived using one or more of the subjective steps described above. This was followed by conventional first-arrival and reflection traveltime tomography using a finely gridded model parametrization to derive smooth, minimum-structure models. The case studies are from the SE Canadian Cordillera across the Rocky Mountain Trench, central India across the Narmada-Son lineament, the Iberia margin across the Galicia Bank, and the central Chilean margin across the Valparaiso Basin and a subducting seamount. These case studies span the range of modern wide-angle experiments and data sets in terms of shot-receiver spacing, marine and land acquisition, lateral heterogeneity of the study area, and availability of wide-angle reflections and coincident near-vertical reflection data. The results are surprising given the amount of structure in the smooth, tomographically derived models that is consistent with the more subjectively derived models. The results show that exploiting the complementary nature of the subjective and tomographic approaches is an effective strategy for the analysis of wide-angle traveltime data.
NASA Technical Reports Server (NTRS)
To, Wing H.
2005-01-01
Quantum optical experiments require all the components involved to be extremely stable relative to each other. The stability can be "measured" by using an interferometric experiment. A pair of coherent photons produced by parametric down-conversion could be chosen to be orthogonally polarized initially. By rotating the polarization of one of the wave packets, they can be recombined at a beam splitter such that interference will occur. Theoretically, the interference will create four terms in the wave function. Two terms with both photons going to the same detector, and two terms will have the photons each going to different detectors. However, the latter will cancel each other out, thus no photons will arrive at the two detectors simultaneously under ideal conditions. The stability Of the test-bed can then be inferred by the dependence of coincidence count on the rotation angle.
NASA Astrophysics Data System (ADS)
Prawin, J.; Rama Mohan Rao, A.
2018-01-01
The knowledge of dynamic loads acting on a structure is always required for many practical engineering problems, such as structural strength analysis, health monitoring and fault diagnosis, and vibration isolation. In this paper, we present an online input force time history reconstruction algorithm using Dynamic Principal Component Analysis (DPCA) from the acceleration time history response measurements using moving windows. We also present an optimal sensor placement algorithm to place limited sensors at dynamically sensitive spatial locations. The major advantage of the proposed input force identification algorithm is that it does not require finite element idealization of structure unlike the earlier formulations and therefore free from physical modelling errors. We have considered three numerical examples to validate the accuracy of the proposed DPCA based method. Effects of measurement noise, multiple force identification, different kinds of loading, incomplete measurements, and high noise levels are investigated in detail. Parametric studies have been carried out to arrive at optimal window size and also the percentage of window overlap. Studies presented in this paper clearly establish the merits of the proposed algorithm for online load identification.
Navigation analysis for Viking 1979, option B
NASA Technical Reports Server (NTRS)
Mitchell, P. H.
1971-01-01
A parametric study performed for 48 trans-Mars reference missions in support of the Viking program is reported. The launch dates cover several months in the year 1979, and each launch date has multiple arrival dates in 1980. A plot of launch versus arrival dates with case numbers designated for reference purposes is included. The analysis consists of the computation of statistical covariance matrices based on certain assumptions about the ground-based tracking systems. The error model statistics are listed in tables. Tracking systems were assumed at three sites: Goldstone, California; Canberra, Australia; and Madrid, Spain. The tracking data consisted of range and Doppler measurements taken during the tracking intervals starting at E-30(d) and ending at E-10(d) for the control data and ending at E-18(h) for the knowledge data. The control and knowledge covariance matrices were delivered to the Planetary Mission Analysis Branch for inputs into a delta V dispersion analysis.
Goal-oriented Site Characterization in Hydrogeological Applications: An Overview
NASA Astrophysics Data System (ADS)
Nowak, W.; de Barros, F.; Rubin, Y.
2011-12-01
In this study, we address the importance of goal-oriented site characterization. Given the multiple sources of uncertainty in hydrogeological applications, information needs of modeling, prediction and decision support should be satisfied with efficient and rational field campaigns. In this work, we provide an overview of an optimal sampling design framework based on Bayesian decision theory, statistical parameter inference and Bayesian model averaging. It optimizes the field sampling campaign around decisions on environmental performance metrics (e.g., risk, arrival times, etc.) while accounting for parametric and model uncertainty in the geostatistical characterization, in forcing terms, and measurement error. The appealing aspects of the framework lie on its goal-oriented character and that it is directly linked to the confidence in a specified decision. We illustrate how these concepts could be applied in a human health risk problem where uncertainty from both hydrogeological and health parameters are accounted.
Bai, Jing; Yang, Wei; Wang, Song; Guan, Rui-Hong; Zhang, Hui; Fu, Jing-Jing; Wu, Wei; Yan, Kun
2016-07-01
The purpose of this study was to explore the diagnostic value of the arrival time difference between lesions and surrounding lung tissue on contrast-enhanced sonography of subpleural pulmonary lesions. A total of 110 patients with subpleural pulmonary lesions who underwent both conventional and contrast-enhanced sonography and had a definite diagnosis were enrolled. After contrast agent injection, the arrival times in the lesion, lung, and chest wall were recorded. The arrival time differences between various tissues were also calculated. Statistical analysis showed a significant difference in the lesion arrival time, the arrival time difference between the lesion and lung, and the arrival time difference between the chest wall and lesion (all P < .001) for benign and malignant lesions. Receiver operating characteristic curve analysis revealed that the optimal diagnostic criterion was the arrival time difference between the lesion and lung, and that the best cutoff point was 2.5 seconds (later arrival signified malignancy). This new diagnostic criterion showed superior diagnostic accuracy (97.1%) compared to conventional diagnostic criteria. The individualized diagnostic method based on an arrival time comparison using contrast-enhanced sonography had high diagnostic accuracy (97.1%) with good feasibility and could provide useful diagnostic information for subpleural pulmonary lesions.
A Fast-Time Simulation Tool for Analysis of Airport Arrival Traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Meyn, Larry A.; Neuman, Frank
2004-01-01
The basic objective of arrival sequencing in air traffic control automation is to match traffic demand and airport capacity while minimizing delays. The performance of an automated arrival scheduling system, such as the Traffic Management Advisor developed by NASA for the FAA, can be studied by a fast-time simulation that does not involve running expensive and time-consuming real-time simulations. The fast-time simulation models runway configurations, the characteristics of arrival traffic, deviations from predicted arrival times, as well as the arrival sequencing and scheduling algorithm. This report reviews the development of the fast-time simulation method used originally by NASA in the design of the sequencing and scheduling algorithm for the Traffic Management Advisor. The utility of this method of simulation is demonstrated by examining the effect on delays of altering arrival schedules at a hub airport.
1991-03-01
ocean acoustic tomography. A straightforward method of arrival time estimation, based on locating the maximum value of an interpolated arrival, was...used with limited success for analysis of data from the December 1988 Monterey Bay Tomography Experiment. Close examination of the data revealed multiple...estimation of arrival times along an ocean acoustic ray path is an important component of ocean acoustic tomography. A straightforward method of arrival time
A High-Resolution View of Global Seismicity
NASA Astrophysics Data System (ADS)
Waldhauser, F.; Schaff, D. P.
2014-12-01
We present high-precision earthquake relocation results from our global-scale re-analysis of the combined seismic archives of parametric data for the years 1964 to present from the International Seismological Centre (ISC), the USGS's Earthquake Data Report (EDR), and selected waveform data from IRIS. We employed iterative, multistep relocation procedures that initially correct for large location errors present in standard global earthquake catalogs, followed by a simultaneous inversion of delay times formed from regional and teleseismic arrival times of first and later arriving phases. An efficient multi-scale double-difference (DD) algorithm is used to solve for relative event locations to the precision of a few km or less, while incorporating information on absolute hypocenter locations from catalogs such as EHB and GEM. We run the computations on both a 40-core cluster geared towards HTC problems (data processing) and a 500-core HPC cluster for data inversion. Currently, we are incorporating waveform correlation delay time measurements available for events in selected regions, but are continuously building up a comprehensive, global correlation database for densely distributed events recorded at stations with a long history of high-quality waveforms. The current global DD catalog includes nearly one million earthquakes, equivalent to approximately 70% of the number of events in the ISC/EDR catalogs initially selected for relocation. The relocations sharpen the view of seismicity in most active regions around the world, in particular along subduction zones where event density is high, but also along mid-ocean ridges where existing hypocenters are especially poorly located. The new data offers the opportunity to investigate earthquake processes and fault structures along entire plate boundaries at the ~km scale, and provides a common framework that facilitates analysis and comparisons of findings across different plate boundary systems.
NASA Astrophysics Data System (ADS)
Harken, B.; Geiges, A.; Rubin, Y.
2013-12-01
There are several stages in any hydrological modeling campaign, including: formulation and analysis of a priori information, data acquisition through field campaigns, inverse modeling, and forward modeling and prediction of some environmental performance metric (EPM). The EPM being predicted could be, for example, contaminant concentration, plume travel time, or aquifer recharge rate. These predictions often have significant bearing on some decision that must be made. Examples include: how to allocate limited remediation resources between multiple contaminated groundwater sites, where to place a waste repository site, and what extraction rates can be considered sustainable in an aquifer. Providing an answer to these questions depends on predictions of EPMs using forward models as well as levels of uncertainty related to these predictions. Uncertainty in model parameters, such as hydraulic conductivity, leads to uncertainty in EPM predictions. Often, field campaigns and inverse modeling efforts are planned and undertaken with reduction of parametric uncertainty as the objective. The tool of hypothesis testing allows this to be taken one step further by considering uncertainty reduction in the ultimate prediction of the EPM as the objective and gives a rational basis for weighing costs and benefits at each stage. When using the tool of statistical hypothesis testing, the EPM is cast into a binary outcome. This is formulated as null and alternative hypotheses, which can be accepted and rejected with statistical formality. When accounting for all sources of uncertainty at each stage, the level of significance of this test provides a rational basis for planning, optimization, and evaluation of the entire campaign. Case-specific information, such as consequences prediction error and site-specific costs can be used in establishing selection criteria based on what level of risk is deemed acceptable. This framework is demonstrated and discussed using various synthetic case studies. The case studies involve contaminated aquifers where a decision must be made based on prediction of when a contaminant will arrive at a given location. The EPM, in this case contaminant travel time, is cast into the hypothesis testing framework. The null hypothesis states that the contaminant plume will arrive at the specified location before a critical value of time passes, and the alternative hypothesis states that the plume will arrive after the critical time passes. Different field campaigns are analyzed based on effectiveness in reducing the probability of selecting the wrong hypothesis, which in this case corresponds to reducing uncertainty in the prediction of plume arrival time. To examine the role of inverse modeling in this framework, case studies involving both Maximum Likelihood parameter estimation and Bayesian inversion are used.
Combined non-parametric and parametric approach for identification of time-variant systems
NASA Astrophysics Data System (ADS)
Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz
2018-03-01
Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.
Applications of Bayesian spectrum representation in acoustics
NASA Astrophysics Data System (ADS)
Botts, Jonathan M.
This dissertation utilizes a Bayesian inference framework to enhance the solution of inverse problems where the forward model maps to acoustic spectra. A Bayesian solution to filter design inverts a acoustic spectra to pole-zero locations of a discrete-time filter model. Spatial sound field analysis with a spherical microphone array is a data analysis problem that requires inversion of spatio-temporal spectra to directions of arrival. As with many inverse problems, a probabilistic analysis results in richer solutions than can be achieved with ad-hoc methods. In the filter design problem, the Bayesian inversion results in globally optimal coefficient estimates as well as an estimate the most concise filter capable of representing the given spectrum, within a single framework. This approach is demonstrated on synthetic spectra, head-related transfer function spectra, and measured acoustic reflection spectra. The Bayesian model-based analysis of spatial room impulse responses is presented as an analogous problem with equally rich solution. The model selection mechanism provides an estimate of the number of arrivals, which is necessary to properly infer the directions of simultaneous arrivals. Although, spectrum inversion problems are fairly ubiquitous, the scope of this dissertation has been limited to these two and derivative problems. The Bayesian approach to filter design is demonstrated on an artificial spectrum to illustrate the model comparison mechanism and then on measured head-related transfer functions to show the potential range of application. Coupled with sampling methods, the Bayesian approach is shown to outperform least-squares filter design methods commonly used in commercial software, confirming the need for a global search of the parameter space. The resulting designs are shown to be comparable to those that result from global optimization methods, but the Bayesian approach has the added advantage of a filter length estimate within the same unified framework. The application to reflection data is useful for representing frequency-dependent impedance boundaries in finite difference acoustic simulations. Furthermore, since the filter transfer function is a parametric model, it can be modified to incorporate arbitrary frequency weighting and account for the band-limited nature of measured reflection spectra. Finally, the model is modified to compensate for dispersive error in the finite difference simulation, from the filter design process. Stemming from the filter boundary problem, the implementation of pressure sources in finite difference simulation is addressed in order to assure that schemes properly converge. A class of parameterized source functions is proposed and shown to offer straightforward control of residual error in the simulation. Guided by the notion that the solution to be approximated affects the approximation error, sources are designed which reduce residual dispersive error to the size of round-off errors. The early part of a room impulse response can be characterized by a series of isolated plane waves. Measured with an array of microphones, plane waves map to a directional response of the array or spatial intensity map. Probabilistic inversion of this response results in estimates of the number and directions of image source arrivals. The model-based inversion is shown to avoid ambiguities associated with peak-finding or inspection of the spatial intensity map. For this problem, determining the number of arrivals in a given frame is critical for properly inferring the state of the sound field. This analysis is effectively compression of the spatial room response, which is useful for analysis or encoding of the spatial sound field. Parametric, model-based formulations of these problems enhance the solution in all cases, and a Bayesian interpretation provides a principled approach to model comparison and parameter estimation. v
Calculating shock arrival in expansion tubes and shock tunnels using Bayesian changepoint analysis
NASA Astrophysics Data System (ADS)
James, Christopher M.; Bourke, Emily J.; Gildfind, David E.
2018-06-01
To understand the flow conditions generated in expansion tubes and shock tunnels, shock speeds are generally calculated based on shock arrival times at high-frequency wall-mounted pressure transducers. These calculations require that the shock arrival times are obtained accurately. This can be non-trivial for expansion tubes especially because pressure rises may be small and shock speeds high. Inaccurate shock arrival times can be a significant source of uncertainty. To help address this problem, this paper investigates two separate but complimentary techniques. Principally, it proposes using a Bayesian changepoint detection method to automatically calculate shock arrival, potentially reducing error and simplifying the shock arrival finding process. To compliment this, a technique for filtering the raw data without losing the shock arrival time is also presented and investigated. To test the validity of the proposed techniques, tests are performed using both a theoretical step change with different levels of noise and real experimental data. It was found that with conditions added to ensure that a real shock arrival time was found, the Bayesian changepoint analysis method was able to automatically find the shock arrival time, even for noisy signals.
Reuter; Ward; Blanckenhorn
1998-12-07
In most previous work on the yellow dung fly Scathophaga stercoraria (L.), as on other species, adaptive explanations have been sought for male behaviour whereas female behaviour has not been examined in similar detail. Here, the arrival of females at the mating site, fresh cattle droppings, is investigated. While almost all males are present shortly after pat deposition females arrive at a low, decreasing rate over an interval of about 5 hours. We propose that the distribution of female arrival times represents a mixed Evolutionarily Stable Strategy (ESS), formed by different trade-offs between costs and benefits of early and late arrival. Early arrival could be favoured by advantages due to better conditions for oviposition, faster egg development of reduced larval competition. Late arrival could be favoured by negative effects on females of male-male competition being weaker later after deposition. Computer simulations with distributions of arrival times deviating from the natural one were performed to "measure" the costs for females arriving at different times. These costs were compared with estimated benefits corresponding to the females' arrival times. This procedure revealed that females coming to the pat later in a population of females arriving shortly after deposition would be favoured. In a population arriving according to a uniform distribution, early females would have fitness advantages. Thus, evolution should lead to an intermediate distribution of arrival times, as in nature, i.e. female arrival behaviour is probably adaptive. The simulations also revealed that the intensity of sexual selection though male-male competition is highest with the natural pattern of female arrival. Therefore, natural selection generating this pattern amplifies the intensity of male-male interaction as a by-product. Copyright 1998 Academic Press
Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems
NASA Astrophysics Data System (ADS)
Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain
2018-01-01
Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.
41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?
Code of Federal Regulations, 2010 CFR
2010-07-01
... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...
41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?
Code of Federal Regulations, 2013 CFR
2013-07-01
... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...
41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?
Code of Federal Regulations, 2012 CFR
2012-07-01
... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...
41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?
Code of Federal Regulations, 2011 CFR
2011-07-01
... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...
41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?
Code of Federal Regulations, 2014 CFR
2014-07-01
... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and... dates and times on my travel claim? You must record the date of departure from, and arrival at, the... visited. You do not have to record departure/arrival times, but you must annotate your travel claim when...
Patton, John M.; Guy, Michelle R.; Benz, Harley M.; Buland, Raymond P.; Erickson, Brian K.; Kragness, David S.
2016-08-18
This report provides an overview of the capabilities and design of Hydra, the global seismic monitoring and analysis system used for earthquake response and catalog production at the U.S. Geological Survey National Earthquake Information Center (NEIC). Hydra supports the NEIC’s worldwide earthquake monitoring mission in areas such as seismic event detection, seismic data insertion and storage, seismic data processing and analysis, and seismic data output.The Hydra system automatically identifies seismic phase arrival times and detects the occurrence of earthquakes in near-real time. The system integrates and inserts parametric and waveform seismic data into discrete events in a database for analysis. Hydra computes seismic event parameters, including locations, multiple magnitudes, moment tensors, and depth estimates. Hydra supports the NEIC’s 24/7 analyst staff with a suite of seismic analysis graphical user interfaces.In addition to the NEIC’s monitoring needs, the system supports the processing of aftershock and temporary deployment data, and supports the NEIC’s quality assurance procedures. The Hydra system continues to be developed to expand its seismic analysis and monitoring capabilities.
Revision of a local magnitude relation for South Korea
NASA Astrophysics Data System (ADS)
Sheen, D. H.; Seo, K. J.; Oh, J.; Kim, S.; Kang, T. S.; Rhie, J.
2017-12-01
A local magnitude relation in South Korea is revised using synthetic Wood-Anderson seismograms from local earthquakes in the distance range of 10-600 km recorded by broadband seismic networks, operated by the Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administration (KMA) between 2001 and 2016. The magnitudes of the earthquakes ranged from ML 2.0 to 5.8 based on the catalog of the KMA. Total numbers of events and seismic records are about 500 and 10,000, respectively. In order to minimize the location error, inland earthquakes were relocated based on manual picks of P and S arrivals using 1-D velocity model for South Korea developed by a trans-dimensional hierarchical Bayesian inversion. Wood-Anderson peak amplitudes measured on the records whose signal-to-noise ratios are greater than 3.0 and were inverted for the attenuation curve by parametric and non-parametric least-squares inversion methods. The discussion on the comparison of the resulting local magnitude relationships will also be addressed.
Improving arrival time identification in transient elastography
NASA Astrophysics Data System (ADS)
Klein, Jens; McLaughlin, Joyce; Renzi, Daniel
2012-04-01
In this paper, we improve the first step in the arrival time algorithm used for shear wave speed recovery in transient elastography. In transient elastography, a shear wave is initiated at the boundary and the interior displacement of the propagating shear wave is imaged with an ultrasound ultra-fast imaging system. The first step in the arrival time algorithm finds the arrival times of the shear wave by cross correlating displacement time traces (the time history of the displacement at a single point) with a reference time trace located near the shear wave source. The second step finds the shear wave speed from the arrival times. In performing the first step, we observe that the wave pulse decorrelates as it travels through the medium, which leads to inaccurate estimates of the arrival times and ultimately to blurring and artifacts in the shear wave speed image. In particular, wave ‘spreading’ accounts for much of this decorrelation. Here we remove most of the decorrelation by allowing the reference wave pulse to spread during the cross correlation. This dramatically improves the images obtained from arrival time identification. We illustrate the improvement of this method on phantom and in vivo data obtained from the laboratory of Mathias Fink at ESPCI, Paris.
Probabilistic Reasoning for Robustness in Automated Planning
NASA Technical Reports Server (NTRS)
Schaffer, Steven; Clement, Bradley; Chien, Steve
2007-01-01
A general-purpose computer program for planning the actions of a spacecraft or other complex system has been augmented by incorporating a subprogram that reasons about uncertainties in such continuous variables as times taken to perform tasks and amounts of resources to be consumed. This subprogram computes parametric probability distributions for time and resource variables on the basis of user-supplied models of actions and resources that they consume. The current system accepts bounded Gaussian distributions over action duration and resource use. The distributions are then combined during planning to determine the net probability distribution of each resource at any time point. In addition to a full combinatoric approach, several approximations for arriving at these combined distributions are available, including maximum-likelihood and pessimistic algorithms. Each such probability distribution can then be integrated to obtain a probability that execution of the plan under consideration would violate any constraints on the resource. The key idea is to use these probabilities of conflict to score potential plans and drive a search toward planning low-risk actions. An output plan provides a balance between the user s specified averseness to risk and other measures of optimality.
A semi-parametric within-subject mixture approach to the analyses of responses and response times.
Molenaar, Dylan; Bolsinova, Maria; Vermunt, Jeroen K
2018-05-01
In item response theory, modelling the item response times in addition to the item responses may improve the detection of possible between- and within-subject differences in the process that resulted in the responses. For instance, if respondents rely on rapid guessing on some items but not on all, the joint distribution of the responses and response times will be a multivariate within-subject mixture distribution. Suitable parametric methods to detect these within-subject differences have been proposed. In these approaches, a distribution needs to be assumed for the within-class response times. In this paper, it is demonstrated that these parametric within-subject approaches may produce false positives and biased parameter estimates if the assumption concerning the response time distribution is violated. A semi-parametric approach is proposed which resorts to categorized response times. This approach is shown to hardly produce false positives and parameter bias. In addition, the semi-parametric approach results in approximately the same power as the parametric approach. © 2017 The British Psychological Society.
Particle detection and non-detection in a quantum time of arrival measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sombillo, Denny Lane B., E-mail: dsombillo@nip.upd.edu.ph; Galapon, Eric A.
2016-01-15
The standard time-of-arrival distribution cannot reproduce both the temporal and the spatial profile of the modulus squared of the time-evolved wave function for an arbitrary initial state. In particular, the time-of-arrival distribution gives a non-vanishing probability even if the wave function is zero at a given point for all values of time. This poses a problem in the standard formulation of quantum mechanics where one quantizes a classical observable and uses its spectral resolution to calculate the corresponding distribution. In this work, we show that the modulus squared of the time-evolved wave function is in fact contained in one ofmore » the degenerate eigenfunctions of the quantized time-of-arrival operator. This generalizes our understanding of quantum arrival phenomenon where particle detection is not a necessary requirement, thereby providing a direct link between time-of-arrival quantization and the outcomes of the two-slit experiment. -- Highlights: •The time-evolved position density is contained in the standard TOA distribution. •Particle may quantum mechanically arrive at a given point without being detected. •The eigenstates of the standard TOA operator are linked to the two-slit experiment.« less
On Revenue-Optimal Dynamic Auctions for Bidders with Interdependent Values
NASA Astrophysics Data System (ADS)
Constantin, Florin; Parkes, David C.
In a dynamic market, being able to update one's value based on information available to other bidders currently in the market can be critical to having profitable transactions. This is nicely captured by the model of interdependent values (IDV): a bidder's value can explicitly depend on the private information of other bidders. In this paper we present preliminary results about the revenue properties of dynamic auctions for IDV bidders. We adopt a computational approach to design single-item revenue-optimal dynamic auctions with known arrivals and departures but (private) signals that arrive online. In leveraging a characterization of truthful auctions, we present a mixed-integer programming formulation of the design problem. Although a discretization is imposed on bidder signals the solution is a mechanism applicable to continuous signals. The formulation size grows exponentially in the dependence of bidders' values on other bidders' signals. We highlight general properties of revenue-optimal dynamic auctions in a simple parametrized example and study the sensitivity of prices and revenue to model parameters.
NASA Astrophysics Data System (ADS)
Tang, Tie-Qiao; Wang, Tao; Chen, Liang; Huang, Hai-Jun
2018-01-01
In this paper, we introduce the fuel cost into each commuter's trip cost, define a new trip cost without late arrival and its corresponding equilibrium state, and use a car-following model to explore the impacts of the fuel cost on each commuter's departure time, departure interval, arrival time, arrival interval, traveling time, early arrival time and trip cost at the above equilibrium state. The numerical results show that considering the fuel cost in each commuter's trip cost has positive impacts on his trip cost and fuel cost, and the traffic situation in the system without late arrival, i.e., each commuter should explicitly consider the fuel cost in his trip cost.
Automatic pickup of arrival time of channel wave based on multi-channel constraints
NASA Astrophysics Data System (ADS)
Wang, Bao-Li
2018-03-01
Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.
NASA Astrophysics Data System (ADS)
Bennington, N. L.; Thurber, C. H.; Peng, Z.; Zhao, P.
2012-12-01
We present a 3D P-wave velocity (Vp) model of the Parkfield region that utilizes existing P-wave arrival time data, including fault zone head waves (FZHW), plus new data from direct wave secondary arrivals (DWSA). The first-arrival and DWSA travel times are obtained as the global and local minimum travel time paths, respectively. The inclusion of DWSA results in as much as a 10% increase in the across-fault velocity contrast for the Vp model at Parkfield relative to Thurber et al. (2006). Viewed along strike, three pronounced velocity contrast regions are observed: a pair of strong positive velocity contrasts (SW fast), one NW of the 1966 Parkfield hypocenter and the other SE of the 2004 Parkfield hypocenter, and a strong negative velocity contrast (NE fast) between the two hypocenters. The negative velocity contrast partially to entirely encompasses peak coseismic slip estimated in several slip models for the 2004 earthquake, suggesting that the negative velocity contrast played a part in defining the rupture patch of the 2004 Parkfield earthquake. We expand on this work by modifying our seismic tomography algorithm to incorporate arrival polarizations (azimuths). Synthetic tests will be presented to demonstrate the improvements in velocity structure when arrival polarizations are incorporated. These tests will compare the synthetic model recovered when FZHW/DWSA arrivals as well as existing P-wave arrival time data are inverted to that recovered with the same dataset with the inclusion of arrival polarizations. We plan to extend this work to carry out a full scale seismic tomography/relocation inversion at Parkfield, CA utilizing arrival polarizations from all first-P arrivals, and FZHW/DWSA arrivals as well as existing P-wave arrival time data. This effort requires the determination of polarization data for all P-waves and FZHW's at Parkfield. To this end, we use changes in the arrival azimuth from fault normal to source-receiver direction to identify FZHW and DWSA arrivals. We also use an eigenvalue decomposition to determine the direction of the incoming wave field, and to measure the arrival azimuths. This work is supported by the USGS Earthquake Hazards Program under grant numbers G11AP20027 and G11AP20028.
2001-03-01
possibilities to treat many groups in a repeated analysis the parametric methods were preferred. Student’s t-test has been used to identify significant...activation of the adrenal cortical glands and could therefore use the central POMC- serotonin pathway. This effect is observed in moderately trained...their unusual hours of arrival and departure deserves more study. It would be useful to know what selections they have and what they are making
Comparison of hydrodynamic simulations with two-shockwave drive target experiments
NASA Astrophysics Data System (ADS)
Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William
2015-11-01
We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number (A --> - 1) of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments.
Carbon isotope turnover as a measure of arrival time in migratory birds
Oppel, Steffen; Powell, Abby N.
2009-01-01
Arrival time on breeding or non-breeding areas is of interest in many ecological studies exploring fitness consequences of migratory schedules. However, in most field studies, it is difficult to precisely assess arrival time of individuals. Here, we use carbon isotope turnover in avian blood as a technique to estimate arrival time for birds switching from one habitat or environment to another. Stable carbon isotope ratios (δ13C) in blood assimilate to a new equilibrium following a diet switch according to an exponential decay function. This relationship can be used to determine the time a diet switch occurred if δ13C of both the old and new diet are known. We used published data of captive birds to validate that this approach provides reliable estimates of the time since a diet switch within 1–3 weeks after the diet switch. We then explored the utility of this technique for King Eiders (Somateria spectabilis) arriving on terrestrial breeding grounds after wintering and migration at sea. We estimated arrival time on breeding grounds in northern Alaska (95% CI) from red blood cell δ13C turnover to be 4–9 June. This estimate overlapped with arrival time of birds from the same study site tracked with satellite transmitters (5–12 June). Therefore, we conclude that this method provides a simple yet reliable way to assess arrival time of birds moving between isotopically distinct environments.
McDermott, Molly E; DeGroote, Lucas W
2017-01-01
Advanced timing of both seasonal migration and reproduction in birds has been strongly associated with a warming climate for many bird species. Phenological responses to climate linking these stages may ultimately impact fitness. We analyzed five decades of banding data from 17 migratory bird species to investigate 1) how spring arrival related to timing of breeding, 2) if the interval between arrival and breeding has changed with increasing spring temperatures, and 3) whether arrival timing or breeding timing best predicted local productivity. Four of 17 species, all mid- to long-distance migrants, hatched young earlier in years when migrants arrived earlier to the breeding grounds (~1:1 day advancement). The interval between arrival on breeding grounds and appearance of juveniles shortened with warmer spring temperatures for 12 species (1-6 days for every 1°C increase) and over time for seven species (1-8 days per decade), suggesting that some migratory passerines adapt to climate change by laying more quickly after arrival or reducing the time from laying to fledging. We found more support for the former, that the rate of reproductive advancement was higher than that for arrival in warm years. Timing of spring arrival and breeding were both poor predictors of avian productivity for most migrants analyzed. Nevertheless, we found evidence that fitness benefits may occur from shifts to earlier spring arrival for the multi-brooded Song Sparrow. Our results uniquely demonstrate that co-occurring avian species are phenologically plastic in their response to climate change on their breeding grounds. If migrants continue to show a weaker response to temperatures during migration than breeding, and the window between arrival and optimal breeding shortens further, biological constraints to plasticity may limit the ability of species to adapt successfully to future warming.
Parametric Imaging Of Digital Subtraction Angiography Studies For Renal Transplant Evaluation
NASA Astrophysics Data System (ADS)
Gallagher, Joe H.; Meaney, Thomas F.; Flechner, Stuart M.; Novick, Andrew C.; Buonocore, Edward
1981-11-01
A noninvasive method for diagnosing acute tubular necrosis and rejection would be an important tool for the management of renal transplant patients. From a sequence of digital subtraction angiographic images acquired after an intravenous injection of radiographic contrast material, the parametric images of the maximum contrast, the time when the maximum contrast is reached, and two times the time at which one half of the maximum contrast is reached are computed. The parametric images of the time when the maximum is reached clearly distinguish normal from abnormal renal function. However, it is the parametric image of two times the time when one half of the maximum is reached which provides some assistance in differentiating acute tubular necrosis from rejection.
Qiu, Yi; Wei, Xiaoming; Du, Shuxin; Wong, Kenneth K Y; Tsia, Kevin K; Xu, Yiqing
2018-04-16
We propose a passively mode-locked fiber optical parametric oscillator assisted with optical time-stretch. Thanks to the lately developed optical time-stretch technique, the onset oscillating spectral components can be temporally dispersed across the pump envelope and further compete for the parametric gain with the other parts of onset oscillating sidebands within the pump envelope. By matching the amount of dispersion in optical time-stretch with the pulse width of the quasi-CW pump and oscillating one of the parametric sidebands inside the fiber cavity, we numerically show that the fiber parametric oscillator can be operated in a single pulse regime. By varying the amount of the intracavity dispersion, we further verify that the origin of this single pulse mode-locking regime is due to the optical pulse stretching and compression.
Social factors influencing hospital arrival time in acute ischemic stroke patients.
Iosif, Christina; Papathanasiou, Mathilda; Staboulis, Eleftherios; Gouliamos, Athanasios
2012-04-01
This is a multi-center, hospital-based study aiming to estimate social factors influencing pre-hospital times of arrival in acute ischemic stroke, with a perspective of finding ways to reduce arrival time and to augment the number of patients eligible for intra-arterial thrombolysis. Acute ischemic stroke patients who presented at the emergency units of four major general public hospitals were registered. We assessed information concerning demographics, time of presentation, clinical situation, imaging, treatment, and socioeconomic factors. The sample was divided in two sub-samples, based on the time of arrival since onset of symptoms, and was statistically analyzed. During one calendar year (2005), 907 patients were registered. Among them 34.6% arrived in the first 6 h from symptom onset, 38.7% arrived between 6 and 24 h, 18.1% after 24 h and for 8.6% the time of onset was unknown. Younger age (P = 0.007), transfer with ambulatory service (Ρ = 0.002), living with a mate (Ρ = 0.004), and higher educational level (P < 0.005) were factors which correlated significantly with early arrival at the hospital. Instructing patients at high risk for stroke to live with a housemate appears beneficial for timely arrival at the hospital. The establishment of dedicated acute stroke call and transportation center should improve the percentage of early arrival. A national information campaign is needed to increase the level of awareness of the population concerning beneficial social behaviors and optimal reaction to symptoms of acute ischemic stroke.
Emergency department arrival times after acute ischemic stroke during the 1990s.
Kleindorfer, Dawn O; Broderick, Joseph P; Khoury, Jane; Flaherty, Matthew L; Woo, Daniel; Alwell, Kathleen; Moomaw, Charles J; Pancioli, Arthur; Jauch, Edward; Miller, Rosie; Kissela, Brett M
2007-01-01
Only 8% of ischemic stroke (IS) patients are eligible for rt-PA, and the largest exclusion criterion is delayed time of presentation to the ED. We sought to investigate whether patients are arriving to the ED more quickly in 1999 than in 1993/94 within our large biracial population of 1.3 million. Using ICD-9 codes 430-436, we ascertained all stroke events that presented to a local ED within our population in 7/93-6/94 and again in 1999. Times were recorded as documented in the medical record. There were 1,792 IS patients that presented to an ED in 1993/94 and 1,973 in 1999. The percentage of patients with documented times arriving in under 3 h improved slightly in 1999 (26% vs. 23% in 93/94, P = 0.03), however, the percentage arriving in under 2 h did not. Blacks significantly improved in arrivals under 3 h: 26% in 1999 compared to 17% in 1993/94 (P = 0.01), while whites did not (26% vs. 25%, P = 0.29). In 1999, only 9% of patients arrived from 3-8 h after symptom onset, the large majority of times were either estimated, unknown, or >8 h. We found only marginal improvement in arrival times during the 1990s. In our population, blacks improved in early arrival after symptom onset, while whites did not. Very few patients arrive 3-8 h after onset; therefore expansion of the acute treatment time window to 8 h is unlikely to dramatically affect acute treatment of ischemic stroke.
ERIC Educational Resources Information Center
Ronen, Simcha
1981-01-01
Examined the effects of a flexible working hours schedule on the arrival and departure times of 162 public sector employees. Results indicated that workers, when scheduling their own workday, deviate only moderately from their preflexitime arrival/departure times; and they tend to develop relatively stable arrival/departure patterns. (Author/RC)
Kernel-based whole-genome prediction of complex traits: a review.
Morota, Gota; Gianola, Daniel
2014-01-01
Prediction of genetic values has been a focus of applied quantitative genetics since the beginning of the 20th century, with renewed interest following the advent of the era of whole genome-enabled prediction. Opportunities offered by the emergence of high-dimensional genomic data fueled by post-Sanger sequencing technologies, especially molecular markers, have driven researchers to extend Ronald Fisher and Sewall Wright's models to confront new challenges. In particular, kernel methods are gaining consideration as a regression method of choice for genome-enabled prediction. Complex traits are presumably influenced by many genomic regions working in concert with others (clearly so when considering pathways), thus generating interactions. Motivated by this view, a growing number of statistical approaches based on kernels attempt to capture non-additive effects, either parametrically or non-parametrically. This review centers on whole-genome regression using kernel methods applied to a wide range of quantitative traits of agricultural importance in animals and plants. We discuss various kernel-based approaches tailored to capturing total genetic variation, with the aim of arriving at an enhanced predictive performance in the light of available genome annotation information. Connections between prediction machines born in animal breeding, statistics, and machine learning are revisited, and their empirical prediction performance is discussed. Overall, while some encouraging results have been obtained with non-parametric kernels, recovering non-additive genetic variation in a validation dataset remains a challenge in quantitative genetics.
NASA Astrophysics Data System (ADS)
Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; MacNeice, P. J.; Jian, L. K.
2017-12-01
The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model CME propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME leading edge measurements near Earth, STEREO-A and STEREO-B for simulations completed between March 2010-December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B and we observed an arrival (hit), the mean absolute arrival-time prediction error was 10.4 ± 0.9 hours, with a tendency to early prediction error of -4.0 hours. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). There is an increase of 1.7 hours in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.
CAT-PUMA: CME Arrival Time Prediction Using Machine learning Algorithms
NASA Astrophysics Data System (ADS)
Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert
2018-04-01
CAT-PUMA (CME Arrival Time Prediction Using Machine learning Algorithms) quickly and accurately predicts the arrival of Coronal Mass Ejections (CMEs) of CME arrival time. The software was trained via detailed analysis of CME features and solar wind parameters using 182 previously observed geo-effective partial-/full-halo CMEs and uses algorithms of the Support Vector Machine (SVM) to make its predictions, which can be made within minutes of providing the necessary input parameters of a CME.
Shear wave arrival time estimates correlate with local speckle pattern.
Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan
2015-12-01
We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared with the variation with axial position/ local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture.
Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern
McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan
2016-01-01
We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking vector. We show that the arrival time bias is weakly dependent on shear wave amplitude compared to the variation with axial position/local speckle pattern. Apertures of f/3 to f/8 on transmit and f/2 and f/4 on receive were simulated. Arrival time error and correlation with speckle pattern are most strongly determined by the receive aperture. PMID:26670847
Halliday, David M; Senik, Mohd Harizal; Stevenson, Carl W; Mason, Rob
2016-08-01
The ability to infer network structure from multivariate neuronal signals is central to computational neuroscience. Directed network analyses typically use parametric approaches based on auto-regressive (AR) models, where networks are constructed from estimates of AR model parameters. However, the validity of using low order AR models for neurophysiological signals has been questioned. A recent article introduced a non-parametric approach to estimate directionality in bivariate data, non-parametric approaches are free from concerns over model validity. We extend the non-parametric framework to include measures of directed conditional independence, using scalar measures that decompose the overall partial correlation coefficient summatively by direction, and a set of functions that decompose the partial coherence summatively by direction. A time domain partial correlation function allows both time and frequency views of the data to be constructed. The conditional independence estimates are conditioned on a single predictor. The framework is applied to simulated cortical neuron networks and mixtures of Gaussian time series data with known interactions. It is applied to experimental data consisting of local field potential recordings from bilateral hippocampus in anaesthetised rats. The framework offers a non-parametric approach to estimation of directed interactions in multivariate neuronal recordings, and increased flexibility in dealing with both spike train and time series data. The framework offers a novel alternative non-parametric approach to estimate directed interactions in multivariate neuronal recordings, and is applicable to spike train and time series data. Copyright © 2016 Elsevier B.V. All rights reserved.
Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; ...
2014-06-03
A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.« less
NASA Astrophysics Data System (ADS)
Ivanov, A. A.
2013-02-01
One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test—the Wilcoxon signed-rank routine—which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.
How to Make Data a Blessing to Parametric Uncertainty Quantification and Reduction?
NASA Astrophysics Data System (ADS)
Ye, M.; Shi, X.; Curtis, G. P.; Kohler, M.; Wu, J.
2013-12-01
In a Bayesian point of view, probability of model parameters and predictions are conditioned on data used for parameter inference and prediction analysis. It is critical to use appropriate data for quantifying parametric uncertainty and its propagation to model predictions. However, data are always limited and imperfect. When a dataset cannot properly constrain model parameters, it may lead to inaccurate uncertainty quantification. While in this case data appears to be a curse to uncertainty quantification, a comprehensive modeling analysis may help understand the cause and characteristics of parametric uncertainty and thus turns data into a blessing. In this study, we illustrate impacts of data on uncertainty quantification and reduction using an example of surface complexation model (SCM) developed to simulate uranyl (U(VI)) adsorption. The model includes two adsorption sites, referred to as strong and weak sites. The amount of uranium adsorption on these sites determines both the mean arrival time and the long tail of the breakthrough curves. There is one reaction on the weak site but two reactions on the strong site. The unknown parameters include fractions of the total surface site density of the two sites and surface complex formation constants of the three reactions. A total of seven experiments were conducted with different geochemical conditions to estimate these parameters. The experiments with low initial concentration of U(VI) result in a large amount of parametric uncertainty. A modeling analysis shows that it is because the experiments cannot distinguish the relative adsorption affinity of the strong and weak sites on uranium adsorption. Therefore, the experiments with high initial concentration of U(VI) are needed, because in the experiments the strong site is nearly saturated and the weak site can be determined. The experiments with high initial concentration of U(VI) are a blessing to uncertainty quantification, and the experiments with low initial concentration help modelers turn a curse into a blessing. The data impacts on uncertainty quantification and reduction are quantified using probability density functions of model parameters obtained from Markov Chain Monte Carlo simulation using the DREAM algorithm. This study provides insights to model calibration, uncertainty quantification, experiment design, and data collection in groundwater reactive transport modeling and other environmental modeling.
1976-01-28
source-receiver geometry dynamics. For a given time instant, each of the subroutines outputs time variables ( emission time, arrival time...transmission loss, depression/elevation and azimuthal arrival angles, received frequency and range variables (range at emission time, range at arrival time...with the wind equal 24.5 kts. In the double bottom bounce regions, the emission angles (at the virtual surface source) are moderately small (15
Design of a CO2 Twin Rotary Compressor for a Heat Pump Water Heater
NASA Astrophysics Data System (ADS)
Ahn, Jong Min; Kim, Woo Young; Kim, Hyun Jin; Cho, Sung Oug; Seo, Jong Cheun
2010-06-01
For a CO2 heat pump water heater, one-stage twin rotary compressor has been designed. As a design tool, computer simulation program for the compressor performance has been made. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Good agreement on P-V diagram between the simulation and the test was also obtained. With this validated compressor simulation program, parametric study has been performed to arrive at optimum dimensions for the compression chamber.
Quench dynamics in SRF cavities: can we locate the quench origin with 2nd sound?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maximenko, Yulia; /Moscow, MIPT; Segatskov, Dmitri A.
2011-03-01
A newly developed method of locating quenches in SRF cavities by detecting second-sound waves has been gaining popularity in SRF laboratories. The technique is based on measurements of time delays between the quench as determined by the RF system and arrival of the second-sound wave to the multiple detectors placed around the cavity in superfluid helium. Unlike multi-channel temperature mapping, this approach requires only a few sensors and simple readout electronics; it can be used with SRF cavities of almost arbitrary shape. One of its drawbacks is that being an indirect method it requires one to solve an inverse problemmore » to find the location of a quench. We tried to solve this inverse problem by using a parametric forward model. By analyzing the data we found that the approximation where the second-sound emitter is a near-singular source does not describe the physical system well enough. A time-dependent analysis of the quench process can help us to put forward a more adequate model. We present here our current algorithm to solve the inverse problem and discuss the experimental results.« less
NASA Astrophysics Data System (ADS)
Kida, Yukihiro; Shimura, Takuya; Deguchi, Mitsuyasu; Watanabe, Yoshitaka; Ochi, Hiroshi; Meguro, Koji
2017-07-01
In this study, the performance of passive time reversal (PTR) communication techniques in multipath rich underwater acoustic environments is investigated. It is recognized empirically and qualitatively that a large number of multipath arrivals could generally raise the demodulation result of PTR. However, the relationship between multipath and the demodulation result is hardly evaluated quantitatively. In this study, the efficiency of the PTR acoustic communication techniques for multipath interference cancelation was investigated quantitatively by applying a PTR-DFE (decision feed-back filter) scheme to a synthetic dataset of a horizontal underwater acoustic channel. Mainly, in this study, we focused on the relationship between the signal-to-interference ratio (SIR) of datasets and the output signal-to-noise ratio (OSNR) of demodulation results by a parametric study approach. As a result, a proportional relation between SIR and OSNR is confirmed in low-SNR datasets. It was also found that PTR has a performance limitation, that is OSNR converges to a typical value depending on the number of receivers. In conclusion, results indicate that PTR could utilize the multipath efficiently and also withstand the negative effects of multipath interference at a given limitation.
Timing the Random and Anomalous Arrival of Particles in a Geiger Counter with GPS Devices
ERIC Educational Resources Information Center
Blanco, F.; La Rocca, P.; Riggi, F.; Riggi, S.
2008-01-01
The properties of the arrival time distribution of particles in a detector have been studied by the use of a small Geiger counter, with a GPS device to tag the event time. The experiment is intended to check the basic properties of the random arrival time distribution between successive events and to simulate the investigations carried out by…
Number needed to eat: pizza and resident conference attendance.
Cosimini, Michael J; Mackintosh, Liza; Chang, Todd P
2016-12-01
The didactic conference is a common part of the resident education curriculum. Given the demands of clinical responsibilities and restrictions on duty hours, maximising education is a challenge faced by all residency programmes. To date, little research exists with respect to how the provision of complimentary food affects physician and resident conference attendance. The objective of this study was to determine whether complimentary food improves resident arrival times and attendance at educational conferences and, furthermore, to test whether this provision is a potentially cost-effective tool for improving education. A retrospective review of 36 resident educational Friday noon conferences, including 1043 resident arrivals, was performed. Data were analysed for total attendance, arrival times, number needed to eat (NNE) and the percentage of residents arriving on time, and compared between days on which food was and was not provided. Median attendance was 3.7% higher (p = 0.04) on days on which food was provided, at a cost of US$46 for each additional resident in attendance. Arrival times were also statistically significantly improved when food was provided, with a median improvement of 0.7 minutes (p = 0.02) and an 11.0% increase in on-time arrivals (p < 0.001). The NNE was 10.6. Complimentary food improves both attendance and arrival times by a small, but statistically significant, degree. The provision of complimentary food can be considered as an incentive for attendance and on-time arrival at didactic educational sessions, although more cost-effective modalities may exist. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.
NASA Technical Reports Server (NTRS)
Shishir, Pandya; Chaderjian, Neal; Ahmad, Jsaim; Kwak, Dochan (Technical Monitor)
2001-01-01
Flow simulations using the time-dependent Navier-Stokes equations remain a challenge for several reasons. Principal among them are the difficulty to accurately model complex flows, and the time needed to perform the computations. A parametric study of such complex problems is not considered practical due to the large cost associated with computing many time-dependent solutions. The computation time for each solution must be reduced in order to make a parametric study possible. With successful reduction of computation time, the issue of accuracy, and appropriateness of turbulence models will become more tractable.
W-phase estimation of first-order rupture distribution for megathrust earthquakes
NASA Astrophysics Data System (ADS)
Benavente, Roberto; Cummins, Phil; Dettmer, Jan
2014-05-01
Estimating the rupture pattern for large earthquakes during the first hour after the origin time can be crucial for rapid impact assessment and tsunami warning. However, the estimation of coseismic slip distribution models generally involves complex methodologies that are difficult to implement rapidly. Further, while model parameter uncertainty can be crucial for meaningful estimation, they are often ignored. In this work we develop a finite fault inversion for megathrust earthquakes which rapidly generates good first order estimates and uncertainties of spatial slip distributions. The algorithm uses W-phase waveforms and a linear automated regularization approach to invert for rupture models of some recent megathrust earthquakes. The W phase is a long period (100-1000 s) wave which arrives together with the P wave. Because it is fast, has small amplitude and a long-period character, the W phase is regularly used to estimate point source moment tensors by the NEIC and PTWC, among others, within an hour of earthquake occurrence. We use W-phase waveforms processed in a manner similar to that used for such point-source solutions. The inversion makes use of 3 component W-phase records retrieved from the Global Seismic Network. The inverse problem is formulated by a multiple time window method, resulting in a linear over-parametrized problem. The over-parametrization is addressed by Tikhonov regularization and regularization parameters are chosen according to the discrepancy principle by grid search. Noise on the data is addressed by estimating the data covariance matrix from data residuals. The matrix is obtained by starting with an a priori covariance matrix and then iteratively updating the matrix based on the residual errors of consecutive inversions. Then, a covariance matrix for the parameters is computed using a Bayesian approach. The application of this approach to recent megathrust earthquakes produces models which capture the most significant features of their slip distributions. Also, reliable solutions are generally obtained with data in a 30-minute window following the origin time, suggesting that a real-time system could obtain solutions in less than one hour following the origin time.
Mitigating Photon Jitter in Optical PPM Communication
NASA Technical Reports Server (NTRS)
Moision, Bruce
2008-01-01
A theoretical analysis of photon-arrival jitter in an optical pulse-position-modulation (PPM) communication channel has been performed, and now constitutes the basis of a methodology for designing receivers to compensate so that errors attributable to photon-arrival jitter would be minimized or nearly minimized. Photon-arrival jitter is an uncertainty in the estimated time of arrival of a photon relative to the boundaries of a PPM time slot. Photon-arrival jitter is attributable to two main causes: (1) receiver synchronization error [error in the receiver operation of partitioning time into PPM slots] and (2) random delay between the time of arrival of a photon at a detector and the generation, by the detector circuitry, of a pulse in response to the photon. For channels with sufficiently long time slots, photon-arrival jitter is negligible. However, as durations of PPM time slots are reduced in efforts to increase throughputs of optical PPM communication channels, photon-arrival jitter becomes a significant source of error, leading to significant degradation of performance if not taken into account in design. For the purpose of the analysis, a receiver was assumed to operate in a photon- starved regime, in which photon counts follow a Poisson distribution. The analysis included derivation of exact equations for symbol likelihoods in the presence of photon-arrival jitter. These equations describe what is well known in the art as a matched filter for a channel containing Gaussian noise. These equations would yield an optimum receiver if they could be implemented in practice. Because the exact equations may be too complex to implement in practice, approximations that would yield suboptimal receivers were also derived.
Hovdenes, Jan; Røysland, Kjetil; Nielsen, Niklas; Kjaergaard, Jesper; Wanscher, Michael; Hassager, Christian; Wetterslev, Jørn; Cronberg, Tobias; Erlinge, David; Friberg, Hans; Gasche, Yvan; Horn, Janneke; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wise, Matthew P; Åneman, Anders; Bugge, Jan Frederik
2016-10-01
To investigate the association of temperature on arrival to hospital after out-of-hospital-cardiac arrest (OHCA) with the primary outcome of mortality, in the targeted temperature management (TTM) trial. The TTM trial randomized 939 patients to TTM at 33 or 36°C for 24h. Patients were categorized according to their recorded body temperature on arrival and also categorized to groups of patients being actively cooled or passively rewarmed. OHCA patients having a temperature ≤34.0°C on arrival at hospital had a significantly higher mortality compared to the OHCA patients with a higher temperature on arrival. A low body temperature on arrival was associated with a longer time to return of spontaneous circulation (ROSC) and duration of transport time to hospital. Patients who were actively cooled or passively rewarmed during the first 4h had similar mortality. In a multivariate logistic regression model mortality was significantly related to time from OHCA to ROSC, time from OHCA to advanced life support (ALS), age, sex and first registered rhythm. None of the temperature related variables (included the TTM-groups) were significantly related to mortality. OHCA patients with a temperature ≤34.0°C on arrival have a higher mortality than patients with a temperature ≥34.1°C on arrival. A low temperature on arrival is associated with a long time to ROSC. Temperature changes and TTM-groups were not associated with mortality in a regression model. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Perturbation analysis of queueing systems with a time-varying arrival rate
NASA Technical Reports Server (NTRS)
Cassandras, Christos G.; Pan, Jie
1991-01-01
The authors consider an M/G/1 queuing with a time-varying arrival rate. The objective is to obtain infinitesimal perturbation analysis (IPA) gradient estimates for various performance measures of interest with respect to certain system parameters. In particular, the authors consider the mean system time over n arrivals and an arrival rate alternating between two values. By choosing a convenient sample path representation of this system, they derive an unbiased IPA gradient estimator which, however, is not consistent, and investigate the nature of this problem.
Lisovski, Simeon; Fröhlich, Anne; von Tersch, Matthew; Klaassen, Marcel; Peter, Hans-Ulrich; Ritz, Markus S
2016-04-01
In migratory animals, protandry (earlier arrival of males on the breeding grounds) prevails over protogyny (females preceding males). In theory, sex differences in timing of arrival should be driven by the operational sex ratio, shifting toward protogyny in female-biased populations. However, empirical support for this hypothesis is, to date, lacking. To test this hypothesis, we analyzed arrival data from three populations of the long-distance migratory south polar skua (Catharacta maccormicki). These populations differed in their operational sex ratio caused by the unidirectional hybridization of male south polar skuas with female brown skuas (Catharacta antarctica lonnbergi). We found that arrival times were protandrous in allopatry, shifting toward protogyny in female-biased populations when breeding in sympatry. This unique observation is consistent with theoretical predictions that sex-specific arrival times should be influenced by sex ratio and that protogyny should be observed in populations with female-biased operational sex ratio.
NASA Astrophysics Data System (ADS)
Zhang, Chuan; Wang, Xingyuan; Luo, Chao; Li, Junqiu; Wang, Chunpeng
2018-03-01
In this paper, we focus on the robust outer synchronization problem between two nonlinear complex networks with parametric disturbances and mixed time-varying delays. Firstly, a general complex network model is proposed. Besides the nonlinear couplings, the network model in this paper can possess parametric disturbances, internal time-varying delay, discrete time-varying delay and distributed time-varying delay. Then, according to the robust control strategy, linear matrix inequality and Lyapunov stability theory, several outer synchronization protocols are strictly derived. Simple linear matrix controllers are designed to driver the response network synchronize to the drive network. Additionally, our results can be applied on the complex networks without parametric disturbances. Finally, by utilizing the delayed Lorenz chaotic system as the dynamics of all nodes, simulation examples are given to demonstrate the effectiveness of our theoretical results.
Reproductive strategies of northern geese: Why wait?
Ely, Craig R.; Bollinger, K.S.; Densmore, R.V.; Rothe, T.C.; Petrula, M.J.; Takekawa, John Y.; Orthmeyer, D.L.
2007-01-01
Migration and reproductive strategies in waterbirds are tightly linked, with timing of arrival and onset of nesting having important consequences for reproductive success. Whether migratory waterbirds are capital or income breeders is predicated by their spring migration schedule, how long they are on breeding areas before nesting, and how adapted they are to exploiting early spring foods at northern breeding areas. However, for most species, we know little about individual migration schedules, arrival times, and duration of residence on breeding areas before nesting. To document these relationships in a northern nesting goose, we radiotracked winter-marked Tule Greater White-fronted Geese (Anser albifrons elgasi; hereafter “Tule Geese”; n = 116) from the time of their arrival in Alaska through nesting. Tule Geese arrived on coastal feeding areas in mid-April and moved to nesting locations a week later. They initiated nests 15 days (range: 6–24 days) after arrival, a period roughly equivalent to the duration of rapid follicle growth. Tule Geese that arrived the earliest were more likely to nest than geese that arrived later; early arrivals also spent more time on the breeding grounds and nested earlier than geese that arrived later. The length of the prenesting period was comparable to that of other populations of this species, but longer than for goose species that initiate rapid follicle growth before arrival on the breeding grounds. We suggest that Tule Geese nesting in more temperate climates are more likely to delay breeding to exploit local food resources than Arctic-nesting species that may be constrained by short growing seasons.
Fast first arrival picking algorithm for noisy microseismic data
NASA Astrophysics Data System (ADS)
Kim, Dowan; Byun, Joongmoo; Lee, Minho; Choi, Jihoon; Kim, Myungsun
2017-01-01
Most microseismic events occur during hydraulic fracturing. Thus microseismic monitoring, by recording seismic waves from microseismic events, is one of the best methods for locating the positions of hydraulic fractures. However, since microseismic events have very low energy, the data often have a low signal-to-noise ratio (S/N ratio) and it is not easy to pick the first arrival time. In this study, we suggest a new fast picking method optimised for noisy data using cross-correlation and stacking. In this method, a reference trace is selected and the time differences between the first arrivals of the reference trace and those of the other traces are computed by cross-correlation. Then, all traces are aligned with the reference trace by time shifting, and the aligned traces are summed together to produce a stacked reference trace that has a considerably improved S/N ratio. After the first arrival time of the stacked reference trace is picked, the first arrival time of each trace is calculated automatically using the time differences obtained in the cross-correlation process. In experiments with noisy synthetic data and field data, this method produces more reliable results than the traditional method, which picks the first arrival time of each noisy trace separately. In addition, the computation time is dramatically reduced.
Becker, Peter H.; Dittmann, Tobias; Ludwigs, Jan-Dieter; Limmer, Bente; Ludwig, Sonja C.; Bauch, Christina; Braasch, Alexander; Wendeln, Helmut
2008-01-01
In long-lived vertebrates, individuals generally visit potential breeding areas or populations during one or more seasons before reproducing for the first time. During these years of prospecting, they select a future breeding site, colony, or mate and improve various skills and their physical condition to meet the requirements of reproduction. One precondition of successful reproduction is arrival in time on the breeding grounds. Here, we study the intricate links among the date of initial spring arrival, body mass, sex, and the age of first breeding in the common tern Sterna hirundo, a long-lived migratory colonial seabird. The study is based on a unique, individual-based, long-term dataset of sexed birds, marked with transponders, which allow recording their individual arrival, overall attendance, and clutch initiation remotely and automatically year by year over the entire lifetime at the natal colony site. We show that the seasonal date of initial arrival at the breeding grounds predicts the individual age at first reproduction, which mostly occurs years later. Late first-time arrivals remain delayed birds throughout subsequent years. Our findings reveal that timing of arrival at the site of reproduction and timing of reproduction itself are coherent parameters of individual quality, which are linked with the prospects of the breeding career and may have consequences for fitness. PMID:18711134
NASA Technical Reports Server (NTRS)
Glaab, Patricia C.
2012-01-01
The first phase of this study investigated the amount of time a flight can be delayed or expedited within the Terminal Airspace using only speed changes. The Arrival Capacity Calculator analysis tool was used to predict the time adjustment envelope for standard descent arrivals and then for CDA arrivals. Results ranged from 0.77 to 5.38 minutes. STAR routes were configured for the ACES simulation, and a validation of the ACC results was conducted comparing the maximum predicted time adjustments to those seen in ACES. The final phase investigated full runway-to-runway trajectories using ACES. The radial distance used by the arrival scheduler was incrementally increased from 50 to 150 nautical miles (nmi). The increased Planning Horizon radii allowed the arrival scheduler to arrange, path stretch, and speed-adjust flights to more fully load the arrival stream. The average throughput for the high volume portion of the day increased from 30 aircraft per runway for the 50 nmi radius to 40 aircraft per runway for the 150 nmi radius for a traffic set representative of high volume 2018. The recommended radius for the arrival scheduler s Planning Horizon was found to be 130 nmi, which allowed more than 95% loading of the arrival stream.
The degenerate parametric oscillator and Ince's equation
NASA Astrophysics Data System (ADS)
Cordero-Soto, Ricardo; Suslov, Sergei K.
2011-01-01
We construct Green's function for the quantum degenerate parametric oscillator in the coordinate representation in terms of standard solutions of Ince's equation in a framework of a general approach to variable quadratic Hamiltonians. Exact time-dependent wavefunctions and their connections with dynamical invariants and SU(1, 1) group are also discussed. An extension to the degenerate parametric oscillator with time-dependent amplitude and phase is also mentioned.
Delay time between onset of ischemic stroke and hospital arrival.
Biller, J; Patrick, J T; Shepard, A; Adams, H P
1993-01-01
Some current experimental protocols for acute ischemic stroke require the initiation of treatment within hours of the onset of stroke symptoms. We prospectively evaluated 30 patients with acute ischemic stroke based on clinical and computed tomography findings. The time between the onset of stroke symptoms and arrival in the emergency room and subsequently on the stroke service was determined. Within 3, 6,12, and 24 h of the onset of stroke symptoms, 16 (53%), 19 (63%), 22 (73%), and 25 (83%) patients had arrived at the emergency room and 0 (0%), 4 (13%), 14 (47%), and 22 (73%) of them on the stroke service, respectively. From the onset of stroke symptoms, the mean arrival time to the emergency room was 24 h (range, 30 min to 144 h) and to the stroke service was 61 h (range, 4-150 h). The mean time between arrival in the emergency room and stroke service was 8.6 h (range, 0-47 h). Even though 53% and 63% of our patients arrived at the emergency room within 3 and 6 h of the onset of stroke symptoms, only 0% and 13% of them arrived on the stroke service within the same time period for the initiation of treatment, respectively. Thus, in order for more patients to qualify for current experimental protocols, they must arrive on the stroke service more quickly or treatment must be initiated in the emergency room. Copyright © 1993. Published by Elsevier Inc.
Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.
Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben
2017-06-06
Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.
NASA Astrophysics Data System (ADS)
Theodorsen, Audun; Garcia, Odd Erik; Kube, Ralph; Labombard, Brian; Terry, Jim
2017-10-01
In the far scrape-off layer (SOL), radial motion of filamentary structures leads to excess transport of particles and heat. Amplitudes and arrival times of these filaments have previously been studied by conditional averaging in single-point measurements from Langmuir Probes and Gas Puff Imaging (GPI). Conditional averaging can be problematic: the cutoff for large amplitudes is mostly chosen by convention; the conditional windows used may influence the arrival time distribution; and the amplitudes cannot be separated from a background. Previous work has shown that SOL fluctuations are well described by a stochastic model consisting of a super-position of pulses with fixed shape and randomly distributed amplitudes and arrival times. The model can be formulated as a pulse shape convolved with a train of delta pulses. By choosing a pulse shape consistent with the power spectrum of the fluctuation time series, Richardson-Lucy deconvolution can be used to recover the underlying amplitudes and arrival times of the delta pulses. We apply this technique to both L and H-mode GPI data from the Alcator C-Mod tokamak. The pulse arrival times are shown to be uncorrelated and uniformly distributed, consistent with a Poisson process, and the amplitude distribution has an exponential tail.
An Exploratory Study of Runway Arrival Procedures: Time Based Arrival and Self-Spacing
NASA Technical Reports Server (NTRS)
Houston, Vincent E.; Barmore, Bryan
2009-01-01
The ability of a flight crew to deliver their aircraft to its arrival runway on time is important to the overall efficiency of the National Airspace System (NAS). Over the past several years, the NAS has been stressed almost to its limits resulting in problems such as airport congestion, flight delay, and flight cancellation to reach levels that have never been seen before in the NAS. It is predicted that this situation will worsen by the year 2025, due to an anticipated increase in air traffic operations to one-and-a-half to three times its current level. Improved arrival efficiency, in terms of both capacity and environmental impact, is an important part of improving NAS operations. One way to improve the arrival performance of an aircraft is to enable the flight crew to precisely deliver their aircraft to a specified point at either a specified time or specified interval relative to another aircraft. This gives the flight crew more control to make the necessary adjustments to their aircraft s performance with less tactical control from the controller; it may also decrease the controller s workload. Two approaches to precise time navigation have been proposed: Time-Based Arrivals (e.g., required times of arrival) and Self-Spacing. Time-Based Arrivals make use of an aircraft s Flight Management System (FMS) to deliver the aircraft to the runway threshold at a given time. Self-Spacing enables the flight crew to achieve an ATC assigned spacing goals at the runway threshold relative to another aircraft. The Joint Planning and Development Office (JPDO), a multi-agency initiative established to plan and coordinate the development of the Next Generation Air Transportation System (NextGen), has asked for data for both of these concepts to facilitate future research and development. This paper provides a first look at the delivery performance of these two concepts under various initial and environmental conditions in an air traffic simulation environment.
NASA Astrophysics Data System (ADS)
Trifonov, A. P.; Korchagin, Yu. E.; Korol'kov, S. V.
2018-05-01
We synthesize the quasi-likelihood, maximum-likelihood, and quasioptimal algorithms for estimating the arrival time and duration of a radio signal with unknown amplitude and initial phase. The discrepancies between the hardware and software realizations of the estimation algorithm are shown. The characteristics of the synthesized-algorithm operation efficiency are obtained. Asymptotic expressions for the biases, variances, and the correlation coefficient of the arrival-time and duration estimates, which hold true for large signal-to-noise ratios, are derived. The accuracy losses of the estimates of the radio-signal arrival time and duration because of the a priori ignorance of the amplitude and initial phase are determined.
Pseudorange error analysis for precise indoor positioning system
NASA Astrophysics Data System (ADS)
Pola, Marek; Bezoušek, Pavel
2017-05-01
There is a currently developed system of a transmitter indoor localization intended for fire fighters or members of rescue corps. In this system the transmitter of an ultra-wideband orthogonal frequency-division multiplexing signal position is determined by the time difference of arrival method. The position measurement accuracy highly depends on the directpath signal time of arrival estimation accuracy which is degraded by severe multipath in complicated environments such as buildings. The aim of this article is to assess errors in the direct-path signal time of arrival determination caused by multipath signal propagation and noise. Two methods of the direct-path signal time of arrival estimation are compared here: the cross correlation method and the spectral estimation method.
Analysis of Deep Seafloor Arrivals Observed on NPAL04
2012-12-03
transmission station to the scattering point (black line) to compute the time spent on the PE-predicted path to the scattering point. This time would...arrives at the OBSs at times corresponding to caustics of the PE predicted time fronts, there are large amplitude, late arrivals that occur between... caustics and even after the PE predicted coda. Similar analysis was done for T500 to T2300 with similar results and is discussed in Section 4 of
Probing kinematics and fate of the Universe with linearly time-varying deceleration parameter
NASA Astrophysics Data System (ADS)
Akarsu, Özgür; Dereli, Tekin; Kumar, Suresh; Xu, Lixin
2014-02-01
The parametrizations q = q 0+ q 1 z and q = q 0+ q 1(1 - a/ a 0) (Chevallier-Polarski-Linder parametrization) of the deceleration parameter, which are linear in cosmic redshift z and scale factor a , have been frequently utilized in the literature to study the kinematics of the Universe. In this paper, we follow a strategy that leads to these two well-known parametrizations of the deceleration parameter as well as an additional new parametrization, q = q 0+ q 1(1 - t/ t 0), which is linear in cosmic time t. We study the features of this linearly time-varying deceleration parameter in contrast with the other two linear parametrizations. We investigate in detail the kinematics of the Universe by confronting the three models with the latest observational data. We further study the dynamics of the Universe by considering the linearly time-varying deceleration parameter model in comparison with the standard ΛCDM model. We also discuss the future of the Universe in the context of the models under consideration.
Estimating epidemic arrival times using linear spreading theory
NASA Astrophysics Data System (ADS)
Chen, Lawrence M.; Holzer, Matt; Shapiro, Anne
2018-01-01
We study the dynamics of a spatially structured model of worldwide epidemics and formulate predictions for arrival times of the disease at any city in the network. The model is composed of a system of ordinary differential equations describing a meta-population susceptible-infected-recovered compartmental model defined on a network where each node represents a city and the edges represent the flight paths connecting cities. Making use of the linear determinacy of the system, we consider spreading speeds and arrival times in the system linearized about the unstable disease free state and compare these to arrival times in the nonlinear system. Two predictions are presented. The first is based upon expansion of the heat kernel for the linearized system. The second assumes that the dominant transmission pathway between any two cities can be approximated by a one dimensional lattice or a homogeneous tree and gives a uniform prediction for arrival times independent of the specific network features. We test these predictions on a real network describing worldwide airline traffic.
Modelling and mitigating refractive propagation effects in precision pulsar timing observations
NASA Astrophysics Data System (ADS)
Shannon, R. M.; Cordes, J. M.
2017-01-01
To obtain the most accurate pulse arrival times from radio pulsars, it is necessary to correct or mitigate the effects of the propagation of radio waves through the warm and ionized interstellar medium. We examine both the strength of propagation effects associated with large-scale electron-density variations and the methodology used to estimate infinite frequency arrival times. Using simulations of two-dimensional phase-varying screens, we assess the strength and non-stationarity of timing perturbations associated with large-scale density variations. We identify additional contributions to arrival times that are stochastic in both radio frequency and time and therefore not amenable to correction solely using times of arrival. We attribute this to the frequency dependence of the trajectories of the propagating radio waves. We find that this limits the efficacy of low-frequency (metre-wavelength) observations. Incorporating low-frequency pulsar observations into precision timing campaigns is increasingly problematic for pulsars with larger dispersion measures.
NASA Astrophysics Data System (ADS)
Wold, Alexandra M.; Mays, M. Leila; Taktakishvili, Aleksandre; Jian, Lan K.; Odstrcil, Dusan; MacNeice, Peter
2018-03-01
The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations world-wide to model coronal mass ejection (CME) propagation. As such, it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC space weather team. CCMC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in situ interplanetary coronal mass ejection leading edge measurements at Solar TErrestrial RElations Observatory-Ahead (STEREO-A), Solar TErrestrial RElations Observatory-Behind (STEREO-B), and Earth (Wind and ACE) for simulations completed between March 2010 and December 2016 (over 1,800 CMEs). We report hit, miss, false alarm, and correct rejection statistics for all three locations. For all predicted CME arrivals, the hit rate is 0.5, and the false alarm rate is 0.1. For the 273 events where the CME was predicted to arrive at Earth, STEREO-A, or STEREO-B, and was actually observed (hit event), the mean absolute arrival-time prediction error was 10.4 ± 0.9 h, with a tendency to early prediction error of -4.0 h. We show the dependence of the arrival-time error on CME input parameters. We also explore the impact of the multi-spacecraft observations used to initialize the model CME inputs by comparing model verification results before and after the STEREO-B communication loss (since September 2014) and STEREO-A sidelobe operations (August 2014-December 2015). There is an increase of 1.7 h in the CME arrival time error during single, or limited two-viewpoint periods, compared to the three-spacecraft viewpoint period. This trend would apply to a future space weather mission at L5 or L4 as another coronagraph viewpoint to reduce CME arrival time errors compared to a single L1 viewpoint.
Simultsonic: A Simulation Tool for Ultrasonic Inspection
NASA Astrophysics Data System (ADS)
Krishnamurthy, Adarsh; Karthikeyan, Soumya; Krishnamurthy, C. V.; Balasubramaniam, Krishnan
2006-03-01
A simulation program SIMULTSONIC is under development at CNDE to help determine and/or help optimize ultrasonic probe locations for inspection of complex components. SIMULTSONIC provides a ray-trace based assessment initially followed by a displacement or pressure field-based assessment for user-specified probe positions and user-selected component. Immersion and contact modes of inspection are available in SIMULTSONIC. The code written in Visual C++ operating in Microsoft Windows environment provides an interactive user interface. In this paper, the application of SIMULTSONIC to the inspection of very thin-walled pipes (with 450 um wall thickness) is described. Ray trace based assessment was done using SIMULTSONIC to determine the standoff distance and the angle of oblique incidence for an immersion mode focused transducer. A 3-cycle Hanning window pulse was chosen for simulations. Experiments were carried out to validate the simulations. The A-scans and the associated B-Scan images obtained through simulations show good correlation with experimental results, both with the arrival time of the signal as well as with the signal amplitudes. The scope of SIMULTSONIC to deal with parametrically represented surfaces will also be discussed.
Numerical Simulation of Bolide Entry with Ground Footprint Prediction
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Nemec, Marian; Mathias, Donovan L.; Berger, Marsha J.
2016-01-01
As they decelerate through the atmosphere, meteors deposit mass, momentum and energy into the surrounding air at tremendous rates. Trauma from the entry of such bolides produces strong blast waves that can propagate hundreds of kilometers and cause substantial terrestrial damage even when no ground impact occurs. We present a new simulation technique for airburst blast prediction using a fully-conservative, Cartesian mesh, finite-volume solver and investigate the ability of this method to model far- field propagation over hundreds of kilometers. The work develops mathematical models for the deposition of mass, momentum and energy into the atmosphere and presents verification and validation through canonical problems and the comparison of surface overpressures, and blast arrival times with actual results in the literature for known bolides. The discussion also examines the effects of various approximations to the physics of bolide entry that can substantially decrease the computational expense of these simulations. We present parametric studies to quantify the influence of entry-angle, burst-height and other parameters on the ground footprint of the airburst, and these values are related to predictions from analytic and handbook-methods.
A comprehensive review of prehospital and in-hospital delay times in acute stroke care.
Evenson, K R; Foraker, R E; Morris, D L; Rosamond, W D
2009-06-01
The purpose of this study was to systematically review and summarize prehospital and in-hospital stroke evaluation and treatment delay times. We identified 123 unique peer-reviewed studies published from 1981 to 2007 of prehospital and in-hospital delay time for evaluation and treatment of patients with stroke, transient ischemic attack, or stroke-like symptoms. Based on studies of 65 different population groups, the weighted Poisson regression indicated a 6.0% annual decline (P<0.001) in hours/year for prehospital delay, defined from symptom onset to emergency department arrival. For in-hospital delay, the weighted Poisson regression models indicated no meaningful changes in delay time from emergency department arrival to emergency department evaluation (3.1%, P=0.49 based on 12 population groups). There was a 10.2% annual decline in hours/year from emergency department arrival to neurology evaluation or notification (P=0.23 based on 16 population groups) and a 10.7% annual decline in hours/year for delay time from emergency department arrival to initiation of computed tomography (P=0.11 based on 23 population groups). Only one study reported on times from arrival to computed tomography scan interpretation, two studies on arrival to drug administration, and no studies on arrival to transfer to an in-patient setting, precluding generalizations. Prehospital delay continues to contribute the largest proportion of delay time. The next decade provides opportunities to establish more effective community-based interventions worldwide. It will be crucial to have effective stroke surveillance systems in place to better understand and improve both prehospital and in-hospital delays for acute stroke care.
Use of a Novel Airway Kit and Simulation in Resident Training on Emergent Pediatric Airways.
Melzer, Jonathan M; Hamersley, Erin R S; Gallagher, Thomas Q
2017-06-01
Objective Development of a novel pediatric airway kit and implementation with simulation to improve resident response to emergencies with the goal of improving patient safety. Methods Prospective study with 9 otolaryngology residents (postgraduate years 1-5) from our tertiary care institution. Nine simulated pediatric emergency airway drills were carried out with the existing system and a novel portable airway kit. Response times and time to successful airway control were noted with both the extant airway system and the new handheld kit. Results were analyzed to ensure parametric data and compared with t tests. A Bonferroni adjustment indicated that an alpha of 0.025 was needed for significance. Results Use of the airway kit significantly reduced the mean time of resident arrival by 47% ( P = .013) and mean time of successful intubation by 50% ( P = .007). Survey data indicated 100% improved resident comfort with emergent airway scenarios with use of the kit. Discussion Times to response and meaningful intervention were significantly reduced with implementation of the handheld airway kit. Use of simulation training to implement the new kit improved residents' comfort and airway skills. This study describes an affordable novel mobile airway kit and demonstrates its ability to improve response times. Implications for Practice The low cost of this airway kit makes it a tenable option even for smaller hospitals. Simulation provides a safe and effective way to familiarize oneself with novel equipment, and, when possible, realistic emergent airway simulations should be used to improve provider performance.
Hädrich, S; Rothhardt, J; Krebs, M; Demmler, S; Limpert, J; Tünnermann, A
2012-12-01
It is shown that timing jitter in optical parametric chirped-pulse amplification induces spectral drifts that transfer to carrier-envelope phase (CEP) instabilities via dispersion. Reduction of this effect requires temporal synchronization, which is realized with feedback obtained from the angularly dispersed idler. Furthermore, a novel method to measure the CEP drifts by utilizing parasitic second harmonic generation within parametric amplifiers is presented. Stabilization of the timing allows the obtainment of a CEP stability of 86 mrad over 40 min at 150 kHz repetition rate.
Identifying and Correcting Timing Errors at Seismic Stations in and around Iran
Syracuse, Ellen Marie; Phillips, William Scott; Maceira, Monica; ...
2017-09-06
A fundamental component of seismic research is the use of phase arrival times, which are central to event location, Earth model development, and phase identification, as well as derived products. Hence, the accuracy of arrival times is crucial. However, errors in the timing of seismic waveforms and the arrival times based on them may go unidentified by the end user, particularly when seismic data are shared between different organizations. Here, we present a method used to analyze travel-time residuals for stations in and around Iran to identify time periods that are likely to contain station timing problems. For the 14more » stations with the strongest evidence of timing errors lasting one month or longer, timing corrections are proposed to address the problematic time periods. Finally, two additional stations are identified with incorrect locations in the International Registry of Seismograph Stations, and one is found to have erroneously reported arrival times in 2011.« less
Calabro, Finnegan J.; Beardsley, Scott A.; Vaina, Lucia M.
2012-01-01
Estimation of time-to-arrival for moving objects is critical to obstacle interception and avoidance, as well as to timing actions such as reaching and grasping moving objects. The source of motion information that conveys arrival time varies with the trajectory of the object raising the question of whether multiple context-dependent mechanisms are involved in this computation. To address this question we conducted a series of psychophysical studies to measure observers’ performance on time-to-arrival estimation when object trajectory was specified by angular motion (“gap closure” trajectories in the frontoparallel plane), looming (colliding trajectories, TTC) or both (passage courses, TTP). We measured performance of time-to-arrival judgments in the presence of irrelevant motion, in which a perpendicular motion vector was added to the object trajectory. Data were compared to models of expected performance based on the use of different components of optical information. Our results demonstrate that for gap closure, performance depended only on the angular motion, whereas for TTC and TTP, both angular and looming motion affected performance. This dissociation of inputs suggests that gap closures are mediated by a separate mechanism than that used for the detection of time-to-collision and time-to-passage. We show that existing models of TTC and TTP estimation make systematic errors in predicting subject performance, and suggest that a model which weights motion cues by their relative time-to-arrival provides a better account of performance. PMID:22056519
Hardware-software complex of informing passengers of forecasted route transport arrival at stop
NASA Astrophysics Data System (ADS)
Pogrebnoy, V. Yu; Pushkarev, M. I.; Fadeev, A. S.
2017-02-01
The paper presents the hardware-software complex of informing the passengers of the forecasted route transport arrival. A client-server architecture of the forecasting information system is represented and an electronic information board prototype is described. The scheme of information transfer and processing, starting with receiving navigating telemetric data from a transport vehicle and up to the time of passenger public transport arrival at the stop, as well as representation of the information on the electronic board is illustrated and described. Methods and algorithms of determination of the transport vehicle current location in the city route network are considered in detail. The description of the proposed forecasting model of transport vehicle arrival time at the stop is given. The obtained result is applied in Tomsk for forecasting and displaying the arrival time information at the stops.
Weather Impact on Airport Arrival Meter Fix Throughput
NASA Technical Reports Server (NTRS)
Wang, Yao
2017-01-01
Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.
Method of locating underground mines fires
Laage, Linneas; Pomroy, William
1992-01-01
An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.
Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?
Oppel, Steffen; Powell, Abby N.
2009-01-01
Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.
Estimating Controller Intervention Probabilities for Optimized Profile Descent Arrivals
NASA Technical Reports Server (NTRS)
Meyn, Larry A.; Erzberger, Heinz; Huynh, Phu V.
2011-01-01
Simulations of arrival traffic at Dallas/Fort-Worth and Denver airports were conducted to evaluate incorporating scheduling and separation constraints into advisories that define continuous descent approaches. The goal was to reduce the number of controller interventions required to ensure flights maintain minimum separation distances of 5 nmi horizontally and 1000 ft vertically. It was shown that simply incorporating arrival meter fix crossing-time constraints into the advisory generation could eliminate over half of the all predicted separation violations and more than 80% of the predicted violations between two arrival flights. Predicted separation violations between arrivals and non-arrivals were 32% of all predicted separation violations at Denver and 41% at Dallas/Fort-Worth. A probabilistic analysis of meter fix crossing-time errors is included which shows that some controller interventions will still be required even when the predicted crossing-times of the advisories are set to add a 1 or 2 nmi buffer above the minimum in-trail separation of 5 nmi. The 2 nmi buffer was shown to increase average flight delays by up to 30 sec when compared to the 1 nmi buffer, but it only resulted in a maximum decrease in average arrival throughput of one flight per hour.
NASA Astrophysics Data System (ADS)
Romano, M.; Mays, M. L.; Taktakishvili, A.; MacNeice, P. J.; Zheng, Y.; Pulkkinen, A. A.; Kuznetsova, M. M.; Odstrcil, D.
2013-12-01
Modeling coronal mass ejections (CMEs) is of great interest to the space weather research and forecasting communities. We present recent validation work of real-time CME arrival time predictions at different satellites using the WSA-ENLIL+Cone three-dimensional MHD heliospheric model available at the Community Coordinated Modeling Center (CCMC) and performed by the Space Weather Research Center (SWRC). SWRC is an in-house research-based operations team at the CCMC which provides interplanetary space weather forecasting for NASA's robotic missions and performs real-time model validation. The quality of model operation is evaluated by comparing its output to a measurable parameter of interest such as the CME arrival time and geomagnetic storm strength. The Kp index is calculated from the relation given in Newell et al. (2007), using solar wind parameters predicted by the WSA-ENLIL+Cone model at Earth. The CME arrival time error is defined as the difference between the predicted arrival time and the observed in-situ CME shock arrival time at the ACE, STEREO A, or STEREO B spacecraft. This study includes all real-time WSA-ENLIL+Cone model simulations performed between June 2011-2013 (over 400 runs) at the CCMC/SWRC. We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we show the average absolute CME arrival time error, and the dependence of this error on CME input parameters such as speed, width, and direction. We also present the predicted geomagnetic storm strength (using the Kp index) error for Earth-directed CMEs.
If Time Is Brain Where Is the Improvement in Prehospital Time after Stroke?
Pulvers, Jeremy N.; Watson, John D. G.
2017-01-01
Despite the availability of thrombolytic and endovascular therapy for acute ischemic stroke, many patients are ineligible due to delayed hospital arrival. The identification of factors related to either early or delayed hospital arrival may reveal potential targets of intervention to reduce prehospital delay and improve access to time-critical thrombolysis and clot retrieval therapy. Here, we have reviewed studies reporting on factors associated with either early or delayed hospital arrival after stroke, together with an analysis of stroke onset to hospital arrival times. Much effort in the stroke treatment community has been devoted to reducing door-to-needle times with encouraging improvements. However, this review has revealed that the median onset-to-door times and the percentage of stroke patients arriving before the logistically critical 3 h have shown little improvement in the past two decades. Major factors affecting prehospital time were related to emergency medical pathways, stroke symptomatology, patient and bystander behavior, patient health characteristics, and stroke treatment awareness. Interventions addressing these factors may prove effective in reducing prehospital delay, allowing prompt diagnosis, which in turn may increase the rates and/or efficacy of acute treatments such as thrombolysis and clot retrieval therapy and thereby improve stroke outcomes. PMID:29209269
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moestl, C.; Rollett, T.; Temmer, M.
2011-11-01
One of the goals of the NASA Solar TErestrial RElations Observatory (STEREO) mission is to study the feasibility of forecasting the direction, arrival time, and internal structure of solar coronal mass ejections (CMEs) from a vantage point outside the Sun-Earth line. Through a case study, we discuss the arrival time calculation of interplanetary CMEs (ICMEs) in the ecliptic plane using data from STEREO/SECCHI at large elongations from the Sun in combination with different geometric assumptions about the ICME front shape [fixed-{Phi} (FP): a point and harmonic mean (HM): a circle]. These forecasting techniques use single-spacecraft imaging data and are basedmore » on the assumption of constant velocity and direction. We show that for the slow (350 km s{sup -1}) ICME on 2009 February 13-18, observed at quadrature by the two STEREO spacecraft, the results for the arrival time given by the HM approximation are more accurate by 12 hr than those for FP in comparison to in situ observations of solar wind plasma and magnetic field parameters by STEREO/IMPACT/PLASTIC, and by 6 hr for the arrival time at Venus Express (MAG). We propose that the improvement is directly related to the ICME front shape being more accurately described by HM for an ICME with a low inclination of its symmetry axis to the ecliptic. In this case, the ICME has to be tracked to >30{sup 0} elongation to obtain arrival time errors < {+-} 5 hr. A newly derived formula for calculating arrival times with the HM method is also useful for a triangulation technique assuming the same geometry.« less
The interplanetary shock of September 24, 1998: Arrival at Earth
NASA Astrophysics Data System (ADS)
Russell, C. T.; Wang, Y. L.; Raeder, J.; Tokar, R. L.; Smith, C. W.; Ogilvie, K. W.; Lazarus, A. J.; Lepping, R. P.; Szabo, A.; Kawano, H.; Mukai, T.; Savin, S.; Yermolaev, Y. I.; Zhou, X.-Y.; Tsurutani, B. T.
2000-11-01
At close to 2345 UT on September 24, 1998, the magnetosphere was suddenly compressed by the passage of an interplanetary shock. In order to properly interpret the magnetospheric events triggered by the arrival of this shock, we calculate the orientation of the shock, its velocity, and its estimated time of arrival at the nose of the magnetosphere. Our best fit shock normal has an orientation of (-0.981 -0.157 -0.112) in solar ecliptic coordinates, a speed of 769 km/s, and an arrival time of 2344:19 at the magnetopause at 10 RE. Since measurements of the solar wind and interplanetary magnetic field are available from multiple spacecraft, we can compare several different techniques of shock-normal determination. Of the single spacecraft techniques the magnetic coplanarity solution is most accurate and the mixed mode solution is of lesser accuracy. Uncertainty in the timing and location of the IMP 8 spacecraft limits the accuracy of solutions using the time of arrival at the position of IMP 8.
Evaluation of bus transit reliability in the District of Columbia.
DOT National Transportation Integrated Search
2013-11-01
Several performance metrics can be used to assess the reliability of a transit system. These include on-time arrivals, travel-time : adherence, run-time adherence, and customer satisfaction, among others. On-time arrival at bus stops is one of the pe...
Collaborative Arrival Planning: Data Sharing and User Preference Tools
NASA Technical Reports Server (NTRS)
Zelenka, Richard E.; Edwards, Thomas A. (Technical Monitor)
1998-01-01
Air traffic growth and air carrier economic pressures have motivated efforts to increase the flexibility of the air traffic management process and change the relationship between the air traffic control service provider and the system user. One of the most visible of these efforts is the U.S. government/industry "free flight" initiative, in which the service provider concentrates on safety and cross-airline fairness, and the user on their business objectives and operating preferences, including selecting their own path and speed in real-time. In the terminal arrival phase of flight, severe restrictions and rigid control are currently placed on system users, typically without regard for individual user operational preferences. Airborne delays applied to arriving aircraft into capacity constrained airports are imposed on a first-come, first-serve basis, and thus do not allow the system user to plan for or prioritize late arrivals, or to economically optimize their arrival sequence. A central tenant of the free-flight operating paradigm is collaboration between service providers and users in reaching air traffic management decisions. Such collaboration would be particularly beneficial to an airline's "hub" operation, where off-schedule arrival aircraft are a consistent problem, as they cause serious air-port ramp difficulties, rippling airline scheduling effects, and result in large economic inefficiencies. Greater collaboration can also lead to increased airport capacity and decrease the severity of over-capacity rush periods. In the NASA Collaborative Arrival Planning (CAP) project, both independent exchange of real-time data between the service provider and system user and collaborative decision support tools are addressed. Data exchange of real-time arrival scheduling, airspace management, and air carrier fleet data between the FAA service provider and an air carrier is being conducted and evaluated. Collaborative arrival decision support tools to allow intra-airline arrival preferences are being developed and simulated. The CAP project is part of and leveraged from the NASA/FAA Center TRACON Automation System (CTAS), a fielded set of decision support tools that provide computer generated advisories for both enroute and terminal area controllers to manage and control arrival traffic more efficiently. In this paper, the NASA Collaborative Arrival Planning project is outlined and recent results detailed, including the real-time use of CTAS arrival scheduling data by a major air carrier and simulations of tactical and strategic user preference decision support tools.
Multi-Center Traffic Management Advisor Operational Field Test Results
NASA Technical Reports Server (NTRS)
Farley, Todd; Landry, Steven J.; Hoang, Ty; Nickelson, Monicarol; Levin, Kerry M.; Rowe, Dennis W.
2005-01-01
The Multi-Center Traffic Management Advisor (McTMA) is a research prototype system which seeks to bring time-based metering into the mainstream of air traffic control (ATC) operations. Time-based metering is an efficient alternative to traditional air traffic management techniques such as distance-based spacing (miles-in-trail spacing) and managed arrival reservoirs (airborne holding). While time-based metering has demonstrated significant benefit in terms of arrival throughput and arrival delay, its use to date has been limited to arrival operations at just nine airports nationally. Wide-scale adoption of time-based metering has been hampered, in part, by the limited scalability of metering automation. In order to realize the full spectrum of efficiency benefits possible with time-based metering, a much more modular, scalable time-based metering capability is required. With its distributed metering architecture, multi-center TMA offers such a capability.
NASA Astrophysics Data System (ADS)
Yu, Miao; Huang, Deqing; Yang, Wanqiu
2018-06-01
In this paper, we address the problem of unknown periodicity for a class of discrete-time nonlinear parametric systems without assuming any growth conditions on the nonlinearities. The unknown periodicity hides in the parametric uncertainties, which is difficult to estimate with existing techniques. By incorporating a logic-based switching mechanism, we identify the period and bound of unknown parameter simultaneously. Lyapunov-based analysis is given to demonstrate that a finite number of switchings can guarantee the asymptotic tracking for the nonlinear parametric systems. The simulation result also shows the efficacy of the proposed switching periodic adaptive control approach.
Queues with Dropping Functions and General Arrival Processes
Chydzinski, Andrzej; Mrozowski, Pawel
2016-01-01
In a queueing system with the dropping function the arriving customer can be denied service (dropped) with the probability that is a function of the queue length at the time of arrival of this customer. The potential applicability of such mechanism is very wide due to the fact that by choosing the shape of this function one can easily manipulate several performance characteristics of the queueing system. In this paper we carry out analysis of the queueing system with the dropping function and a very general model of arrival process—the model which includes batch arrivals and the interarrival time autocorrelation, and allows for fitting the actual shape of the interarrival time distribution and its moments. For such a system we obtain formulas for the distribution of the queue length and the overall customer loss ratio. The analytical results are accompanied with numerical examples computed for several dropping functions. PMID:26943171
Ward, David; Helmericks, J.; Hupp, Jerry W.; McManus, L.; Budde, Michael; Douglas, David C.; Tape, K.D.
2016-01-01
Warming in the Arctic has caused the transition from winter to summer to occur weeks earlier over the last half century, yet little is known about whether avian migrants have altered their timing of arrival on breeding areas to match this earlier seasonal transition. Over a 50-yr period, we examined trends in the timing of the first arrival for 16 avian migrant species at the terminus of their northward migration along the central Arctic coast of Alaska and compared these trends to factors potentially influencing migration phenology. Date of first arrival occurred an average of 0.12 d yr−1 or 6 d (range = 3–10 d) earlier across all species and did not differ significantly among species between 1964 and 2013. Local climatic variables, particularly temperature, had a greater effect on a species first arrival date than did large-scale climatic predictors. First arrival date was 1.03 d earlier for every 1°C annual change in temperature, but there was nearly a 2-fold difference in the range of responses across species (0.69–1.33 d °C−1), implying that some species did better than others at timing their arrival with changing temperature. There was weak support for an influence of foraging strategy, migration distance, and flight path on timing of first arrival. Our findings, like others from temperate latitudes, indicate that avian migrants are responsive to changing environmental conditions, though some species appear to be more adaptive than others.
Time to antibiotics for septic shock: evaluating a proposed performance measure.
Venkatesh, Arjun K; Avula, Umakanth; Bartimus, Holly; Reif, Justin; Schmidt, Michael J; Powell, Emilie S
2013-04-01
International guidelines recommend antibiotics within 1 hour of septic shock recognition; however, a recently proposed performance measure is focused on measuring antibiotic administration within 3 hours of emergency department (ED) arrival. Our objective was to describe the time course of septic shock and subsequent implications for performance measurement. Cross-sectional study of consecutive ED patients ultimately diagnosed with septic shock. All patients were evaluated at an urban, academic ED in 2006 to 2008. Primary outcomes included time to definition of septic shock and performance on 2 measures: antibiotics within 3 hours of ED arrival vs antibiotics within 1 hour of septic shock definition. Of 267 patients with septic shock, the median time to definition was 88 minutes (interquartile range, 37-156), and 217 patients (81.9%) met the definition within 3 hours of arrival. Of 221 (83.4%) of patients who received antibiotics within 3 hours of arrival, 38 (17.2%) did not receive antibiotics within 1 hour of definition. Of 207 patients who received antibiotics within 1 hour of definition, 11.6% (n = 24) did not receive antibiotics within 3 hours of arrival. The arrival measure did not accurately classify performance in 23.4% of patients. Nearly 1 of 5 patients cannot be captured for performance measurement within 3 hours of ED arrival due to the variable progression of septic shock. Use of this measure would misclassify performance in 23% of patients. Measuring antibiotic administration based on the clinical course of septic shock rather than from ED arrival would be more appropriate. Copyright © 2013 Elsevier Inc. All rights reserved.
Parametric number covariance in quantum chaotic spectra.
Vinayak; Kumar, Sandeep; Pandey, Akhilesh
2016-03-01
We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.
Scheduling and Separating Departures Crossing Arrival Flows in Shared Airspace
NASA Technical Reports Server (NTRS)
Chevalley, Eric; Parke, Bonny K.; Lee, Paul; Omar, Faisal; Lee, Hwasoo; Beinert, Nancy; Kraut, Joshua M.; Palmer, Everett
2013-01-01
Flight efficiency and reduction of flight delays are among the primary goals of NextGen. In this paper, we propose a concept of shared airspace where departures fly across arrival flows, provided gaps are available in these flows. We have explored solutions to separate departures temporally from arrival traffic and pre-arranged procedures to support controllers' decisions. We conducted a Human-in-the-Loop simulation and assessed the efficiency and safety of 96 departures from the San Jose airport (SJC) climbing across the arrival airspace of the Oakland and San Francisco arrival flows. In our simulation, the SJC tower had a tool to schedule departures to fly across predicted gaps in the arrival flow. When departures were mistimed and separation could not be ensured, a safe but less efficient route was provided to the departures to fly under the arrival flows. A coordination using a point-out procedure allowed the arrival controller to control the SJC departures right after takeoff. We manipulated the accuracy of departure time (accurate vs. inaccurate) as well as which sector took control of the departures after takeoff (departure vs. arrival sector) in a 2x2 full factorial plan. Results show that coordination time decreased and climb efficiency increased when the arrival sector controlled the aircraft right after takeoff. Also, climb efficiency increased when the departure times were more accurate. Coordination was shown to be a critical component of tactical operations in shared airspace. Although workload, coordination, and safety were judged by controllers as acceptable in the simulation, it appears that in the field, controllers would need improved tools and coordination procedures to support this procedure.
Substructures in the temporal distribution of atmospheric Cerenkov light in EAS
NASA Astrophysics Data System (ADS)
Bosia, G.; Navarra, G.; Saavedra, O.; Boehm, E.
1980-06-01
Particle density and arrival time distribution of atmospheric Cerenkov light (ACL) was measured simultaneously in individual air showers at Pic du Midi. Substructures were observed in the arrival time distribution of the ACL. The arrival time is related to a position in the shower plane which indicates the existence of density variations, i.e., substructures in the lateral distribution of particles. The frequency of substructures is a few percent, and core distances of up to tens of meters were observed.
Characteristics of stereo reproduction with parametric loudspeakers
NASA Astrophysics Data System (ADS)
Aoki, Shigeaki; Toba, Masayoshi; Tsujita, Norihisa
2012-05-01
A parametric loudspeaker utilizes nonlinearity of a medium and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear ultrasonics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station and street etc. In this paper, we discussed characteristics of stereo reproduction with two parametric loudspeakers by comparing with those with two ordinary dynamic loudspeakers. In subjective tests, three typical listening positions were selected to investigate the possibility of correct sound localization in a wide listening area. The binaural information was ILD (Interaural Level Difference) or ITD (Interaural Time Delay). The parametric loudspeaker was an equilateral hexagon. The inner and outer diameters were 99 and 112 mm, respectively. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. Three young males listened to test signals 10 times in each listening condition. Subjective test results showed that listeners at the three typical listening positions perceived correct sound localization of all signals using the parametric loudspeakers. It was almost similar to those using the ordinary dynamic loudspeakers, however, except for the case of sinusoidal waves with ITD. It was determined the parametric loudspeaker could exclude the contradiction between the binaural information ILD and ITD that occurred in stereo reproduction with ordinary dynamic loudspeakers because the super directivity of parametric loudspeaker suppressed the cross talk components.
Kargarian-Marvasti, Sadegh; Rimaz, Shahnaz; Abolghasemi, Jamileh; Heydari, Iraj
2017-01-01
Cox proportional hazard model is the most common method for analyzing the effects of several variables on survival time. However, under certain circumstances, parametric models give more precise estimates to analyze survival data than Cox. The purpose of this study was to investigate the comparative performance of Cox and parametric models in a survival analysis of factors affecting the event time of neuropathy in patients with type 2 diabetes. This study included 371 patients with type 2 diabetes without neuropathy who were registered at Fereydunshahr diabetes clinic. Subjects were followed up for the development of neuropathy between 2006 to March 2016. To investigate the factors influencing the event time of neuropathy, significant variables in univariate model ( P < 0.20) were entered into the multivariate Cox and parametric models ( P < 0.05). In addition, Akaike information criterion (AIC) and area under ROC curves were used to evaluate the relative goodness of fitted model and the efficiency of each procedure, respectively. Statistical computing was performed using R software version 3.2.3 (UNIX platforms, Windows and MacOS). Using Kaplan-Meier, survival time of neuropathy was computed 76.6 ± 5 months after initial diagnosis of diabetes. After multivariate analysis of Cox and parametric models, ethnicity, high-density lipoprotein and family history of diabetes were identified as predictors of event time of neuropathy ( P < 0.05). According to AIC, "log-normal" model with the lowest Akaike's was the best-fitted model among Cox and parametric models. According to the results of comparison of survival receiver operating characteristics curves, log-normal model was considered as the most efficient and fitted model.
Disorganized junior doctors fail the MRCP (UK).
Stanley, Adrian G; Khan, Khalid M; Hussain, Walayat; Tweed, Michael
2006-02-01
Career progression during undergraduate and early postgraduate years is currently determined by successfully passing examinations. Both academic factors (secondary school examination results, learning style and training opportunities) and non-academic factors (maturity, ethnic origin, gender and motivation) have been identified as predicting examination outcome. Few studies have examined organization skills. Disorganized medical students are more likely to perform poorly in end-of-year examinations but this observation has not been examined in junior doctors. This study asked whether organization skills relate to examination outcome amongst junior doctors taking the clinical Part II examination for the Membership of the Royal College of Physicians (Practical Assessment of Clinical Examination Skills). The study was conducted prospectively at four consecutive clinical courses that provided clinical teaching and practice to prepare trainees for the examination. Arrival time at registration for the course was the chosen surrogate for organization skills. Trainees were advised that they should arrive promptly at 8.00 a.m. for registration and it was explained that the course would start at 8.30 a.m. Recorded arrival times were compared with the pass lists published by the Royal College of Physicians. The mean arrival time was 8.17 a.m. A total of 81 doctors (53.3%) passed the examination with a mean arrival time of 8.14 a.m. However, 71 doctors failed the exam and arrived, on average, six minutes later than doctors who passed (p?=?0.006). Better-prepared junior doctors were more likely to pass the final examination. Arriving on time represents a composite of several skills involved in the planning of appropriate travel arrangements and is therefore a valid marker of organization skills and preparation. This novel study has shown that good time-keeping skills are positively associated with examination outcome.
Amplitude and angle of arrival measurements on a 28.56 GHz Earth-space path
NASA Technical Reports Server (NTRS)
Devasirvatham, D. M. J.; Hodge, D. B.
1981-01-01
The amplitude and angle of arrival measurements on an Earth-space path using the 28.56 GHz COMSTAR D3 satellite beacon are described. These measurements were made by the Ohio State University ElectroScience Laboratory during the period September 1978 to September 1979. Monthly, quarterly, and annual distributions of attenuation, angle of arrival, and variance of both these parameters are reported. During this period, fades exceeding 29 dB for .00% of the time and angle of arrival fluctuations exceeding .12 degrees for .01% of the time were observed.
NASA Astrophysics Data System (ADS)
Macmynowski, Dena P.; Root, Terry L.
2007-05-01
The intra- and inter-season complexity of bird migration has received limited attention in climatic change research. Our phenological analysis of 22 species collected in Chicago, USA, (1979 2002) evaluates the relationship between multi-scalar climate variables and differences (1) in arrival timing between sexes, (2) in arrival distributions among species, and (3) between spring and fall migration. The early migratory period for earliest arriving species (i.e., short-distance migrants) and earliest arriving individuals of a species (i.e., males) most frequently correlate with climate variables. Compared to long-distance migrant species, four times as many short-distance migrants correlate with spring temperature, while 8 of 11 (73%) of long-distance migrant species’ arrival is correlated with the North Atlantic Oscillation (NAO). While migratory phenology has been correlated with NAO in Europe, we believe that this is the first documentation of a significant association in North America. Geographically proximate conditions apparently influence migratory timing for short-distance migrants while continental-scale climate (e.g., NAO) seemingly influences the phenology of Neotropical migrants. The preponderance of climate correlations is with the early migratory period, not the median of arrival, suggesting that early spring conditions constrain the onset or rate of migration for some species. The seasonal arrival distribution provides considerable information about migratory passage beyond what is apparent from statistical analyses of phenology. A relationship between climate and fall phenology is not detected at this location. Analysis of the within-season complexity of migration, including multiple metrics of arrival, is essential to detect species’ responses to changing climate as well as evaluate the underlying biological mechanisms.
A Cartesian parametrization for the numerical analysis of material instability
Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.; ...
2016-02-25
We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, themore » performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.« less
A Cartesian parametrization for the numerical analysis of material instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.
We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, themore » performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.« less
Back to the Future: Long-Term Seismic Archives Revisited
NASA Astrophysics Data System (ADS)
Waldhauser, F.; Schaff, D. P.
2007-12-01
Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring seismic activity. These archives typically consist of waveforms of seismic events and associated parametric data such as phase arrival time picks and the location of hypocenters. Catalogs of earthquake locations are fundamental data in seismology, and even in the Earth sciences in general. Yet, these locations have notoriously low spatial resolution because of errors in both the picks and the models commonly used to locate events one at a time. This limits their potential to address fundamental questions concerning the physics of earthquakes, the structure and composition of the Earth's interior, and the seismic hazards associated with active faults. We report on the comprehensive use of modern waveform cross-correlation based methodologies for high- resolution earthquake location - as applied to regional and global long-term seismic databases. By simultaneous re-analysis of two decades of the digital seismic archive of Northern California, reducing pick errors via cross-correlation and model errors via double-differencing, we achieve up to three orders of magnitude resolution improvement over existing hypocenter locations. The relocated events image networks of discrete faults at seismogenic depths across various tectonic settings that until now have been hidden in location uncertainties. Similar location improvements are obtained for earthquakes recorded at global networks by re- processing 40 years of parametric data from the ISC and corresponding waveforms archived at IRIS. Since our methods are scaleable and run on inexpensive Beowulf clusters, periodic re-analysis of entire archives may thus become a routine procedure to continuously improve resolution in existing catalogs. We demonstrate the role of seismic archives in obtaining the precise location of new events in real-time. Such information has considerable social and economic impact in the evaluation and mitigation of seismic hazards, for example, and highlights the need for consistent long-term seismic monitoring and archiving of records.
Arrival metering fuel consumption analysis
DOT National Transportation Integrated Search
2011-01-01
Arrival metering is a method of time-based traffic management that is used by the Federal Aviation Administration to plan and manage streams of arrival traffic during periods of : high demand at busy airports. The Traffic Management Advisor is an aut...
First arrival time picking for microseismic data based on DWSW algorithm
NASA Astrophysics Data System (ADS)
Li, Yue; Wang, Yue; Lin, Hongbo; Zhong, Tie
2018-03-01
The first arrival time picking is a crucial step in microseismic data processing. When the signal-to-noise ratio (SNR) is low, however, it is difficult to get the first arrival time accurately with traditional methods. In this paper, we propose the double-sliding-window SW (DWSW) method based on the Shapiro-Wilk (SW) test. The DWSW method is used to detect the first arrival time by making full use of the differences between background noise and effective signals in the statistical properties. Specifically speaking, we obtain the moment corresponding to the maximum as the first arrival time of microseismic data when the statistic of our method reaches its maximum. Hence, in our method, there is no need to select the threshold, which makes the algorithm more facile when the SNR of microseismic data is low. To verify the reliability of the proposed method, a series of experiments is performed on both synthetic and field microseismic data. Our method is compared with the traditional short-time and long-time average (STA/LTA) method, the Akaike information criterion, and the kurtosis method. Analysis results indicate that the accuracy rate of the proposed method is superior to that of the other three methods when the SNR is as low as - 10 dB.
NASA Astrophysics Data System (ADS)
Hajicek, Joshua J.; Selesnick, Ivan W.; Henin, Simon; Talmadge, Carrick L.; Long, Glenis R.
2018-05-01
Stimulus frequency otoacoustic emissions (SFOAEs) were evoked and estimated using swept-frequency tones with and without the use of swept suppressor tones. SFOAEs were estimated using a least-squares fitting procedure. The estimated SFOAEs for the two paradigms (with- and without-suppression) were similar in amplitude and phase. The fitting procedure minimizes the square error between a parametric model of total ear-canal pressure (with unknown amplitudes and phases) and ear-canal pressure acquired during each paradigm. Modifying the parametric model to allow SFOAE amplitude and phase to vary over time revealed additional amplitude and phase fine structure in the without-suppressor, but not the with-suppressor paradigm. The use of a time-varying parametric model to estimate SFOAEs without-suppression may provide additional information about cochlear mechanics not available when using a with-suppressor paradigm.
Order of arrival affects competition in two reef fishes.
Geange, Shane W; Stier, Adrian C
2009-10-01
Many communities experience repeated periods of colonization due to seasonally regenerating habitats or pulsed arrival of young-of-year. When an individual's persistence in a community depends upon the strength of competitive interactions, changes in the timing of arrival relative to the arrival of a competitor can modify competitive strength and, ultimately, establishment in the community. We investigated whether the strength of intracohort competitive interactions between recent settlers of the reef fishes Thalassoma hardwicke and T. quinquevittatum are dependent on the sequence and temporal separation of their arrival into communities. To achieve this, we manipulated the sequence and timing of arrival of each species onto experimental patch reefs by simulating settlement pulses and monitoring survival and aggressive interactions. Both species survived best in the absence of competitors, but when competitors were present, they did best when they arrived at the same time. Survival declined as each species entered the community progressively later than its competitor and as aggression by its competitor increased. Intraspecific effects of resident T. hardwicke were similar to interspecific effects. This study shows that the strength of competition depends not only on the identity of competitors, but also on the sequence and timing of their interactions, suggesting that when examining interaction strengths, it is important to identify temporal variability in the direction and magnitude of their effects. Furthermore, our findings provide empirical evidence for the importance of competitive lotteries in the maintenance of species diversity in demographically open marine systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Ryuichi
In this study we demonstrate that general relativity predicts arrival time differences between gravitational wave (GW) and electromagnetic (EM) signals caused by the wave effects in gravitational lensing. The GW signals can arrive earlier than the EM signals in some cases if the GW/EM signals have passed through a lens, even if both signals were emitted simultaneously by a source. GW wavelengths are much larger than EM wavelengths; therefore, the propagation of the GWs does not follow the laws of geometrical optics, including the Shapiro time delay, if the lens mass is less than approximately 10{sup 5} M {sub ⊙}(more » f /Hz){sup −1}, where f is the GW frequency. The arrival time difference can reach ∼0.1 s ( f /Hz){sup −1} if the signals have passed by a lens of mass ∼8000 M {sub ⊙}( f /Hz){sup −1} with the impact parameter smaller than the Einstein radius; therefore, it is more prominent for lower GW frequencies. For example, when a distant supermassive black hole binary (SMBHB) in a galactic center is lensed by an intervening galaxy, the time lag becomes of the order of 10 days. Future pulsar timing arrays including the Square Kilometre Array and X-ray detectors may detect several time lags by measuring the orbital phase differences between the GW/EM signals in the SMBHBs. Gravitational lensing imprints a characteristic modulation on a chirp waveform; therefore, we can deduce whether a measured arrival time lag arises from intrinsic source properties or gravitational lensing. Determination of arrival time differences would be extremely useful in multimessenger observations and tests of general relativity.« less
Prevalence Incidence Mixture Models
The R package and webtool fits Prevalence Incidence Mixture models to left-censored and irregularly interval-censored time to event data that is commonly found in screening cohorts assembled from electronic health records. Absolute and relative risk can be estimated for simple random sampling, and stratified sampling (the two approaches of superpopulation and a finite population are supported for target populations). Non-parametric (absolute risks only), semi-parametric, weakly-parametric (using B-splines), and some fully parametric (such as the logistic-Weibull) models are supported.
Hanaki, Nao; Yamashita, Kazuto; Kunisawa, Susumu; Imanaka, Yuichi
2016-12-09
In Japan, ambulance staff sometimes must make request calls to find hospitals that can accept patients because of an inadequate information sharing system. This study aimed to quantify effects of the number of request calls on the time interval between an emergency call and hospital arrival. A cross-sectional study of an ambulance records database in Nara prefecture, Japan. A total of 43 663 patients (50% women; 31.2% aged 80 years and over): (1) transported by ambulance from April 2013 to March 2014, (2) aged 15 years and over, and (3) with suspected major illness. The time from call to hospital arrival, defined as the time interval from receipt of an emergency call to ambulance arrival at a hospital. The mean time interval from emergency call to hospital arrival was 44.5 min, and the mean number of requests was 1.8. Multilevel linear regression analysis showed that ∼43.8% of variations in transportation times were explained by patient age, sex, season, day of the week, time, category of suspected illness, person calling for the ambulance, emergency status at request call, area and number of request calls. A higher number of request calls was associated with longer time intervals to hospital arrival (addition of 6.3 min per request call; p<0.001). In an analysis dividing areas into three groups, there were differences in transportation time for diseases needing cardiologists, neurologists, neurosurgeons and orthopaedists. The study revealed 6.3 additional minutes needed in transportation time for every refusal of a request call, and also revealed disease-specific delays among specific areas. An effective system should be collaboratively established by policymakers and physicians to ensure the rapid identification of an available hospital for patient transportation in order to reduce the time from the initial emergency call to hospital arrival. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Hanaki, Nao; Yamashita, Kazuto; Kunisawa, Susumu; Imanaka, Yuichi
2016-01-01
Objectives In Japan, ambulance staff sometimes must make request calls to find hospitals that can accept patients because of an inadequate information sharing system. This study aimed to quantify effects of the number of request calls on the time interval between an emergency call and hospital arrival. Design and setting A cross-sectional study of an ambulance records database in Nara prefecture, Japan. Cases A total of 43 663 patients (50% women; 31.2% aged 80 years and over): (1) transported by ambulance from April 2013 to March 2014, (2) aged 15 years and over, and (3) with suspected major illness. Primary outcome measures The time from call to hospital arrival, defined as the time interval from receipt of an emergency call to ambulance arrival at a hospital. Results The mean time interval from emergency call to hospital arrival was 44.5 min, and the mean number of requests was 1.8. Multilevel linear regression analysis showed that ∼43.8% of variations in transportation times were explained by patient age, sex, season, day of the week, time, category of suspected illness, person calling for the ambulance, emergency status at request call, area and number of request calls. A higher number of request calls was associated with longer time intervals to hospital arrival (addition of 6.3 min per request call; p<0.001). In an analysis dividing areas into three groups, there were differences in transportation time for diseases needing cardiologists, neurologists, neurosurgeons and orthopaedists. Conclusions The study revealed 6.3 additional minutes needed in transportation time for every refusal of a request call, and also revealed disease-specific delays among specific areas. An effective system should be collaboratively established by policymakers and physicians to ensure the rapid identification of an available hospital for patient transportation in order to reduce the time from the initial emergency call to hospital arrival. PMID:27940625
Agarwal, Shikhar; Gallo, Justin J; Parashar, Akhil; Agarwal, Kanika K; Ellis, Stephen G; Khot, Umesh N; Spooner, Robin; Murat Tuzcu, Emin; Kapadia, Samir R
2016-03-01
Operational inefficiencies are ubiquitous in several healthcare processes. To improve the operational efficiency of our catheterization laboratory (Cath Lab), we implemented a lean six sigma process improvement initiative, starting in June 2010. We aimed to study the impact of lean six sigma implementation on improving the efficiency and the patient throughput in our Cath Lab. All elective and urgent cardiac catheterization procedures including diagnostic coronary angiography, percutaneous coronary interventions, structural interventions and peripheral interventions performed between June 2009 and December 2012 were included in the study. Performance metrics utilized for analysis included turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start and manual sheath-pulls inside the Cath Lab. After implementation of lean six sigma in the Cath Lab, we observed a significant improvement in turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. The percentage of cases with optimal turn-time increased from 43.6% in 2009 to 56.6% in 2012 (p-trend<0.001). Similarly, the percentage of cases with an aggregate on-time start increased from 41.7% in 2009 to 62.8% in 2012 (p-trend<0.001). In addition, the percentage of manual sheath-pulls performed in the Cath Lab decreased from 60.7% in 2009 to 22.7% in 2012 (p-trend<0.001). The current longitudinal study illustrates the impact of successful implementation of a well-known process improvement initiative, lean six sigma, on improving and sustaining efficiency of our Cath Lab operation. After the successful implementation of this continuous quality improvement initiative, there was a significant improvement in the selected performance metrics namely turn-time, physician downtime, on-time patient arrival, on-time physician arrival, on-time start as well as sheath-pulls inside the Cath Lab. Copyright © 2016 Elsevier Inc. All rights reserved.
An experimental study on real time bus arrival time prediction with GPS data
DOT National Transportation Integrated Search
2001-01-01
Bus headway in a rural area is usually much larger than that in an urban area. Providing real-time bus : arrival information could make the public transit system more user-friendly and thus enhance its : competitiveness among various transportation m...
An experimental study on real time bus arrival time prediction with GPS data
DOT National Transportation Integrated Search
1999-01-01
Bus headway in a rural area usually is much larger than that in an urban area. Providing real-time bus arrival information could make the public transit system more user-friendly and thus enhance its competitiveness among various transportation modes...
OPCPA front end and contrast optimization for the OMEGA EP kilojoule, picosecond laser
Dorrer, C.; Consentino, A.; Irwin, D.; ...
2015-09-01
OMEGA EP is a large-scale laser system that combines optical parametric amplification and solid-state laser amplification on two beamlines to deliver high-intensity, high-energy optical pulses. The temporal contrast of the output pulse is limited by the front-end parametric fluorescence and other features that are specific to parametric amplification. The impact of the two-crystal parametric preamplifier, pump-intensity noise, and pump-signal timing is experimentally studied. The implementation of a parametric amplifier pumped by a short pump pulse before stretching, further amplification, and recompression to enhance the temporal contrast of the high-energy short pulse is described.
Evaluation of the real-time earthquake information system in Japan
NASA Astrophysics Data System (ADS)
Nakamura, Hiromitsu; Horiuchi, Shigeki; Wu, Changjiang; Yamamoto, Shunroku; Rydelek, Paul A.
2009-01-01
The real-time earthquake information system (REIS) of the Japanese seismic network is developed for automatically determining earthquake parameters within a few seconds after the P-waves arrive at the closest stations using both the P-wave arrival times and the timing data that P-waves have not yet arrived at other stations. REIS results play a fundamental role in the real-time information for earthquake early warning in Japan. We show the rapidity and accuracy of REIS from the analysis of 4,050 earthquakes in three years since 2005; 44 percent of the first reports are issued within 5 seconds after the first P-wave arrival and 80 percent of the events have a difference in epicenter distance less than 20 km relative to manually determined locations. We compared the formal catalog to the estimated magnitude from the real-time analysis and found that 94 percent of the events had a magnitude difference of +/-1.0 unit.
Time structure of the EAS electron and muon components measured by the KASCADE Grande experiment
NASA Astrophysics Data System (ADS)
Apel, W. D.; Arteaga, J. C.; Badea, A. F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kickelbick, D.; Klages, H. O.; Kolotaev, Y.; Luczak, P.; Mathes, H. J.; Mayer, H. J.; Meurer, C.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Plewnia, S.; Rebel, H.; Roth, M.; Schieler, H.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G. C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.
2008-06-01
Extensive air showers measured by the KASCADE-Grande experiment at the Forschungszentrum Karlsruhe are studied with respect to the arrival times of electrons and muons at observation level. The mean and the spread of the arrival time distributions have been used to determine the average time profile of the electromagnetic and muonic shower disk. For core distances R>200m particles of the muonic shower component arrive on average earlier at observation level than particles of the electromagnetic shower component. The difference increases with the core distance from Δ
Bounded Parametric Model Checking for Elementary Net Systems
NASA Astrophysics Data System (ADS)
Knapik, Michał; Szreter, Maciej; Penczek, Wojciech
Bounded Model Checking (BMC) is an efficient verification method for reactive systems. BMC has been applied so far to verification of properties expressed in (timed) modal logics, but never to their parametric extensions. In this paper we show, for the first time that BMC can be extended to PRTECTL - a parametric extension of the existential version of CTL. To this aim we define a bounded semantics and a translation from PRTECTL to SAT. The implementation of the algorithm for Elementary Net Systems is presented, together with some experimental results.
An Investigation of the Combat Air Patrol Stationing in an Integrated Air Defense Scenario
1990-12-01
interceptor to go to CAP station takes off at time t = 0. At time t = toc this interceptor arrives at station and, because no attacker arrives, it...has arrived on station and for this to be possible, the third interceptor has taken off at time t = toc + 2tn - to= = 2t. Meanwhile, the first...that tc > 0 and (tbc + tnp + tA) > 0. Under these assumptions we have that aircraft number 2 will always be used because ( toc + t= + tj, + te + tAI
Parametric, nonparametric and parametric modelling of a chaotic circuit time series
NASA Astrophysics Data System (ADS)
Timmer, J.; Rust, H.; Horbelt, W.; Voss, H. U.
2000-09-01
The determination of a differential equation underlying a measured time series is a frequently arising task in nonlinear time series analysis. In the validation of a proposed model one often faces the dilemma that it is hard to decide whether possible discrepancies between the time series and model output are caused by an inappropriate model or by bad estimates of parameters in a correct type of model, or both. We propose a combination of parametric modelling based on Bock's multiple shooting algorithm and nonparametric modelling based on optimal transformations as a strategy to test proposed models and if rejected suggest and test new ones. We exemplify this strategy on an experimental time series from a chaotic circuit where we obtain an extremely accurate reconstruction of the observed attractor.
The linear transformation model with frailties for the analysis of item response times.
Wang, Chun; Chang, Hua-Hua; Douglas, Jeffrey A
2013-02-01
The item response times (RTs) collected from computerized testing represent an underutilized source of information about items and examinees. In addition to knowing the examinees' responses to each item, we can investigate the amount of time examinees spend on each item. In this paper, we propose a semi-parametric model for RTs, the linear transformation model with a latent speed covariate, which combines the flexibility of non-parametric modelling and the brevity as well as interpretability of parametric modelling. In this new model, the RTs, after some non-parametric monotone transformation, become a linear model with latent speed as covariate plus an error term. The distribution of the error term implicitly defines the relationship between the RT and examinees' latent speeds; whereas the non-parametric transformation is able to describe various shapes of RT distributions. The linear transformation model represents a rich family of models that includes the Cox proportional hazards model, the Box-Cox normal model, and many other models as special cases. This new model is embedded in a hierarchical framework so that both RTs and responses are modelled simultaneously. A two-stage estimation method is proposed. In the first stage, the Markov chain Monte Carlo method is employed to estimate the parametric part of the model. In the second stage, an estimating equation method with a recursive algorithm is adopted to estimate the non-parametric transformation. Applicability of the new model is demonstrated with a simulation study and a real data application. Finally, methods to evaluate the model fit are suggested. © 2012 The British Psychological Society.
Lee, Soomin; Katsuura, Tetsuo; Shimomura, Yoshihiro
2011-01-01
In recent years, a new type of speaker called the parametric speaker has been used to generate highly directional sound, and these speakers are now commercially available. In our previous study, we verified that the burden of the parametric speaker was lower than that of the general speaker for endocrine functions. However, nothing has yet been demonstrated about the effects of the shorter distance than 2.6 m between parametric speakers and the human body. Therefore, we investigated the distance effect on endocrinological function and subjective evaluation. Nine male subjects participated in this study. They completed three consecutive sessions: a 20-min quiet period as a baseline, a 30-min mental task period with general speakers or parametric speakers, and a 20-min recovery period. We measured salivary cortisol and chromogranin A (CgA) concentrations. Furthermore, subjects took the Kwansei-gakuin Sleepiness Scale (KSS) test before and after the task and also a sound quality evaluation test after it. Four experiments, one with a speaker condition (general speaker and parametric speaker), the other with a distance condition (0.3 m and 1.0 m), were conducted, respectively, at the same time of day on separate days. We used three-way repeated measures ANOVA (speaker factor × distance factor × time factor) to examine the effects of the parametric speaker. We found that the endocrinological functions were not significantly different between the speaker condition and the distance condition. The results also showed that the physiological burdens increased with progress in time independent of the speaker condition and distance condition.
Impulse propagation in the nocturnal boundary layer: analysis of the geometric component.
Blom, Philip; Waxler, Roger
2012-05-01
On clear dry nights over flat land, a temperature inversion and stable nocturnal wind jet lead to an acoustic duct in the lowest few hundred meters of the atmosphere. An impulsive signal propagating in such a duct is received at long ranges from the source as an extended wave train consisting of a series of weakly dispersed distinct arrivals followed by a strongly dispersed low-frequency tail. The leading distinct arrivals have been previously shown to be well modeled by geometric acoustics. In this paper, the geometric acoustics approximation for the leading arrivals is investigated. Using the solutions of the eikonal and transport equations, travel times, amplitudes, and caustic structures of the distinct arrivals have been determined. The time delay between and relative amplitudes of the direct-refracted and single ground reflection arrivals have been investigated as parameters for an inversion scheme. A two parameter quadratic approximation to the effective sound speed profile has been fit and found to be in strong agreement with meteorological measurements from the time of propagation.
Strengthening economy through tourism sector by tourist arrival prediction
NASA Astrophysics Data System (ADS)
Supriatna, A.; Subartini, B.; Hertini, E.; Sukono; Rumaisha; Istiqamah, N.
2018-03-01
Tourism sector has a tendency to be proposed as a support for national economy to many countries with various of natural resources, such as Indonesia. The number of tourist is very related with the success rate of a tourist attraction, since it is also related with planning and strategy. Hence, it is important to predict the climate of tourism in Indonesia, especially the number of domestic or international tourist in the future. This study uses Seasonal Autoregressive Integrated Moving Average (SARIMA) time series method to predict the number of tourist arrival to tourism strategic areas in Nusa Tenggara Barat. The prediction was done using the international and domestic tourist arrival to Nusa Tenggara Barat data from January 2008 to June 2016. The established SARIMA method was (0,1,1)(0,0,2)12 with MAPE error of 15.76. The prediction for the next six time periods showed that the highest number of tourist arrival is during September 2016 with 330,516 tourist arrivals. Prediction of tourist arrival hopefully might be used as reference for local and national government to make policies to strengthen national economy for a long period of time
Nonlinear Localized Dissipative Structures for Long-Time Solution of Wave Equation
2009-07-01
are described in this chapter. These details are required to compute interference. WC can be used to generate constant arrival time ( Eikonal phase...complicated using Eikonal schemes. Some recent developments in Eikonal methods [2] can treat multiple arrival times but, these methods require extra
Ruiz-Sanchez, Eduardo
2015-12-01
The Neotropical woody bamboo genus Otatea is one of five genera in the subtribe Guaduinae. Of the eight described Otatea species, seven are endemic to Mexico and one is also distributed in Central and South America. Otatea acuminata has the widest geographical distribution of the eight species, and two of its recently collected populations do not match the known species morphologically. Parametric and non-parametric methods were used to delimit the species in Otatea using five chloroplast markers, one nuclear marker, and morphological characters. The parametric coalescent method and the non-parametric analysis supported the recognition of two distinct evolutionary lineages. Molecular clock estimates were used to estimate divergence times in Otatea. The results for divergence time in Otatea estimated the origin of the speciation events from the Late Miocene to Late Pleistocene. The species delimitation analyses (parametric and non-parametric) identified that the two populations of O. acuminata from Chiapas and Hidalgo are from two separate evolutionary lineages and these new species have morphological characters that separate them from O. acuminata s.s. The geological activity of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec may have isolated populations and limited the gene flow between Otatea species, driving speciation. Based on the results found here, I describe Otatea rzedowskiorum and Otatea victoriae as two new species, morphologically different from O. acuminata. Copyright © 2015 Elsevier Inc. All rights reserved.
Separation of the electromagnetic and the muon component in EAS by their arrival times
NASA Astrophysics Data System (ADS)
Brüggemann, M.; Apel, W.D.; Arteaga, J.C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Buchholz, P.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P.L.; Gils, H.J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J.R.; Huege, T.; Isar, P.G.; Kampert, K.-H.; Kickelbick, D.; Klages, H.O.; Kolotaev, Y.; Luczak, P.; Mathes, H.J.; Mayer, H.J.; Meurer, C.; Milke, J.; Mitrica, B.; Morales, A.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Plewnia, S.; Rebel, H.; Roth, M.; Schieler, H.; Sima, O.; Stümpert, M.; Toma, G.; Trinchero, G.C.; Ulrich, H.; van Buren, J.; Walkowiak, W.; Weindl, A.; Wochele, J.; Zabierowski, J.
The KASCADE-Grande experiment at Forschungszentrum Karlsruhe, Germany, measures extensive air showers initiated by primary particles with energies between 100 TeV and 1 EeV. Detector pulses digitized by a Flash-ADC based data acquisition system were unfolded to study the arrival times of secondary particles separately for the electromagnetic and the muonic shower component. Muons arrive on average earlier at ground level than electrons. A cut on the particle arrival time has been determined as a function of the distance to the shower core for the separation of electrons and muons. This cut is intended to be used for the determination of the muon content of air showers in experiments without dedicated muon detectors but with time resolving detector electronics. The muon content is essential for the reconstruction of the cosmic ray energy spectrum separated into individual elemental groups.
Empirical estimation of the arrival time of ICME Shocks
NASA Astrophysics Data System (ADS)
Shaltout, Mosalam
Empirical estimation of the arrival time of ICME Shocks Mosalam Shaltout1 ,M.Youssef 1and R.Mawad2 1 National Research Institute of Astronomy and Geophysics (NRIAG) ,Helwan -Cairo-Egypt Email: mosalamshaltout@hotmail.com 2 Faculty of Science-Monifiia University-Physics Department-Shiben Al-Koum -Monifiia-Egypt We are got the Data of the SSC events from Preliminary Reports of the ISGI (Institut de Physique du Globe, France) .Also we are selected the same CME interval 1996-2005 from SOHO/LASCO/C2.We have estimated the arrival time of ICME shocks during solar cycle 23rd (1996-2005), we take the Sudden storm commencement SSC as a indicator of the arrival of CMEs at the Earth's Magnetosphere (ICME).Under our model ,we selected 203 ICME shock-SSC associated events, we got an imperial relation between CME velocity and their travel time, from which we obtained high correlation between them, R=0.75.
Parametric estimation for reinforced concrete relief shelter for Aceh cases
NASA Astrophysics Data System (ADS)
Atthaillah; Saputra, Eri; Iqbal, Muhammad
2018-05-01
This paper was a work in progress (WIP) to discover a rapid parametric framework for post-disaster permanent shelter’s materials estimation. The intended shelters were reinforced concrete construction with bricks as its wall. Inevitably, in post-disaster cases, design variations were needed to help suited victims condition. It seemed impossible to satisfy a beneficiary with a satisfactory design utilizing the conventional method. This study offered a parametric framework to overcome slow construction-materials estimation issue against design variations. Further, this work integrated parametric tool, which was Grasshopper to establish algorithms that simultaneously model, visualize, calculate and write the calculated data to a spreadsheet in a real-time. Some customized Grasshopper components were created using GHPython scripting for a more optimized algorithm. The result from this study was a partial framework that successfully performed modeling, visualization, calculation and writing the calculated data simultaneously. It meant design alterations did not escalate time needed for modeling, visualization, and material estimation. Further, the future development of the parametric framework will be made open source.
Temporal evolution of the spin-wave intensity and phase in a local parametric amplifier
NASA Astrophysics Data System (ADS)
Brächer, T.; Heussner, F.; Meyer, T.; Fischer, T.; Geilen, M.; Heinz, B.; Lägel, B.; Hillebrands, B.; Pirro, P.
2018-03-01
We present a time-resolved study of the evolution of the spin-wave intensity and phase in a local parametric spin-wave amplifier at pumping powers close to the threshold of parametric generation. We show that the phase of the amplified spin waves is determined by the phase of the incoming signal-carrying spin waves and that it can be preserved on long time scales as long as the energy input by the input spin waves is provided. In contrast, the phase-information is lost in such a local spin-wave amplifier as soon as the input spin-wave is switched off. These findings are an important benchmark for the use of parametric amplifiers in logic circuits relying on the spin-wave phase as information carrier.
A study on the impact of prioritising emergency department arrivals on the patient waiting time.
Van Bockstal, Ellen; Maenhout, Broos
2018-05-03
In the past decade, the crowding of the emergency department has gained considerable attention of researchers as the number of medical service providers is typically insufficient to fulfil the demand for emergency care. In this paper, we solve the stochastic emergency department workforce planning problem and consider the planning of nurses and physicians simultaneously for a real-life case study in Belgium. We study the patient arrival pattern of the emergency department in depth and consider different patient acuity classes by disaggregating the arrival pattern. We determine the personnel staffing requirements and the design of the shifts based on the patient arrival rates per acuity class such that the resource staffing cost and the weighted patient waiting time are minimised. In order to solve this multi-objective optimisation problem, we construct a Pareto set of optimal solutions via the -constraints method. For a particular staffing composition, the proposed model minimises the patient waiting time subject to upper bounds on the staffing size using the Sample Average Approximation Method. In our computational experiments, we discern the impact of prioritising the emergency department arrivals. Triaging results in lower patient waiting times for higher priority acuity classes and to a higher waiting time for the lowest priority class, which does not require immediate care. Moreover, we perform a sensitivity analysis to verify the impact of the arrival and service pattern characteristics, the prioritisation weights between different acuity classes and the incorporated shift flexibility in the model.
Weiss, Jonathan D.
1995-01-01
A shock velocity and damage location sensor providing a means of measuring shock speed and damage location. The sensor consists of a long series of time-of-arrival "points" constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the "points" of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor.
Weiss, J.D.
1995-08-29
A shock velocity and damage location sensor providing a means of measuring shock speed and damage location is disclosed. The sensor consists of a long series of time-of-arrival ``points`` constructed with fiber optics. The fiber optic sensor apparatus measures shock velocity as the fiber sensor is progressively crushed as a shock wave proceeds in a direction along the fiber. The light received by a receiving means changes as time-of-arrival points are destroyed as the sensor is disturbed by the shock. The sensor may comprise a transmitting fiber bent into a series of loops and fused to a receiving fiber at various places, time-of-arrival points, along the receiving fibers length. At the ``points`` of contact, where a portion of the light leaves the transmitting fiber and enters the receiving fiber, the loops would be required to allow the light to travel backwards through the receiving fiber toward a receiving means. The sensor may also comprise a single optical fiber wherein the time-of-arrival points are comprised of reflection planes distributed along the fibers length. In this configuration, as the shock front proceeds along the fiber it destroys one reflector after another. The output received by a receiving means from this sensor may be a series of downward steps produced as the shock wave destroys one time-of-arrival point after another, or a nonsequential pattern of steps in the event time-of-arrival points are destroyed at any point along the sensor. 6 figs.
Crossing fitness canyons by a finite population
NASA Astrophysics Data System (ADS)
Saakian, David B.; Bratus, Alexander S.; Hu, Chin-Kun
2017-06-01
We consider the Wright-Fisher model of the finite population evolution on a fitness landscape defined in the sequence space by a path of nearly neutral mutations. We study a specific structure of the fitness landscape: One of the intermediate mutations on the mutation path results in either a large fitness value (climbing up a fitness hill) or a low fitness value (crossing a fitness canyon), the rest of the mutations besides the last one are neutral, and the last sequence has much higher fitness than any intermediate sequence. We derive analytical formulas for the first arrival time of the mutant with two point mutations. For the first arrival problem for the further mutants in the case of canyon crossing, we analytically deduce how the mean first arrival time scales with the population size and fitness difference. The location of the canyon on the path of sequences has a crucial role. If the canyon is at the beginning of the path, then it significantly prolongs the first arrival time; otherwise it just slightly changes it. Furthermore, the fitness hill at the beginning of the path strongly prolongs the arrival time period; however, the hill located near the end of the path shortens it. We optimize the first arrival time by applying a nonzero selection to the intermediate sequences. We extend our results and provide a scaling for the valley crossing time via the depth of the canyon and population size in the case of a fitness canyon at the first position. Our approach is useful for understanding some complex evolution systems, e.g., the evolution of cancer.
Bibok, Maximilian B; Votova, Kristine; Balshaw, Robert F; Lesperance, Mary L; Croteau, Nicole S; Trivedi, Anurag; Morrison, Jaclyn; Sedgwick, Colin; Penn, Andrew M
2018-02-27
To evaluate the performance of a novel triage system for Transient Ischemic Attack (TIA) units built upon an existent clinical prediction rule (CPR) to reduce time to unit arrival, relative to the time of symptom onset, for true TIA and minor stroke patients. Differentiating between true and false TIA/minor stroke cases (mimics) is necessary for effective triage as medical intervention for true TIA/minor stroke is time-sensitive and TIA unit spots are a finite resource. Prospective cohort study design utilizing patient referral data and TIA unit arrival times from a regional fast-track TIA unit on Vancouver Island, Canada, accepting referrals from emergency departments (ED) and general practice (GP). Historical referral cohort (N = 2942) from May 2013-Oct 2014 was triaged using the ABCD2 score; prospective referral cohort (N = 2929) from Nov 2014-Apr 2016 was triaged using the novel system. A retrospective survival curve analysis, censored at 28 days to unit arrival, was used to compare days to unit arrival from event date between cohort patients matched by low (0-3), moderate (4-5) and high (6-7) ABCD2 scores. Survival curve analysis indicated that using the novel triage system, prospectively referred TIA/minor stroke patients with low and moderate ABCD2 scores arrived at the unit 2 and 1 day earlier than matched historical patients, respectively. The novel triage process is associated with a reduction in time to unit arrival from symptom onset for referred true TIA/minor stroke patients with low and moderate ABCD2 scores.
Characterization of compounds by time-of-flight measurement utilizing random fast ions
Conzemius, R.J.
1989-04-04
An apparatus is described for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions. 8 figs.
Characterization of compounds by time-of-flight measurement utilizing random fast ions
Conzemius, Robert J.
1989-01-01
An apparatus for characterizing the mass of sample and daughter particles, comprising a source for providing sample ions; a fragmentation region wherein a fraction of the sample ions may fragment to produce daughter ion particles; an electrostatic field region held at a voltage level sufficient to effect ion-neutral separation and ion-ion separation of fragments from the same sample ion and to separate ions of different kinetic energy; a detector system for measuring the relative arrival times of particles; and processing means operatively connected to the detector system to receive and store the relative arrival times and operable to compare the arrival times with times detected at the detector when the electrostatic field region is held at a different voltage level and to thereafter characterize the particles. Sample and daughter particles are characterized with respect to mass and other characteristics by detecting at a particle detector the relative time of arrival for fragments of a sample ion at two different electrostatic voltage levels. The two sets of particle arrival times are used in conjunction with the known altered voltage levels to mathematically characterize the sample and daughter fragments. In an alternative embodiment the present invention may be used as a detector for a conventional mass spectrometer. In this embodiment, conventional mass spectrometry analysis is enhanced due to further mass resolving of the detected ions.
Processing of the Liquid Xenon calorimeter's signals for timing measurements
NASA Astrophysics Data System (ADS)
Epshteyn, L. B.; Yudin, Yu V.
2014-09-01
One of the goals of the Cryogenic Magnetic Detector at Budker Institute of Nuclear Physics SB RAS (Novosibirsk, Russia) is a study of nucleons production in electron-positron collisions near threshold. The neutron-antineutron pair production events can be detected only by the calorimeters. In the barrel calorimeter the antineutron annihilation typically occurs by 5 ns or later after beams crossing. For identification of such events it is necessary to measure the time of flight of particles to the LXe-calorimeter with accuracy of about 3 ns. The LXe-calorimeter consists of 14 layers of ionization chambers with anode and cathode readout. The duration of charge collection to the anodes is about 4.5 mks, while the required accuracy of measuring of the signal arrival time is less than 1/1000 of that. Besides, the signals' shapes differ substantially from event to event, so the signal arrival time is measured in two stages. At the first stage, the signal arrival time is determined with an accuracy of 1-2 discretization periods, and initial values of parameters for subsequent fitting procedure are calculated. At the second stage, the signal arrival time is determined with the required accuracy by means of fitting of the signal waveform with a template waveform. To implement that, a special electronics has been developed which performs waveform digitization and On-Line measurement of signals' arrival times and amplitudes.
Mommsen, Philipp; Bradt, Nikolas; Zeckey, Christian; Andruszkow, Hagen; Petri, Max; Frink, Michael; Hildebrand, Frank; Krettek, Christian; Probst, Christian
2012-01-01
In consideration of rising cost pressure in the German health care system, the usefulness of helicopter emergency medical service (HEMS) in terms of time- and cost-effectiveness is controversially discussed. The aim of the present study was to investigate whether HEMS is associated with significantly decreased arrival and transportation times compared to ground EMS. In a retrospective study, we evaluated 1,548 primary emergency missions for time sensitive diagnoses (multiple trauma, traumatic brain and burn injury, heart-attack, stroke, and pediatric emergency) performed by a German HEMS using the medical database, NADIN, of the German Air Rescue Service. Arrival and transportation times were compared to calculated ground EMS times. HEMS showed significantly reduced arrival times at the scene in case of heart-attack, stroke and pediatric emergencies. In contrast, HEMS and ground EMS showed comparable arrival times in patients with multiple trauma, traumatic brain and burn injury due to an increased flight distance. HEMS showed a significantly decreased transportation time to the closest centre capable of specialist care in all diagnosis groups (p<0.001). The results of the present study indicate the time-effectiveness of German air ambulance services with significantly decreased transportation times.
Kwena, Zachary A; Njoroge, Betty W; Cohen, Craig R; Oyaro, Patrick; Shikari, Rosemary; Kibaara, Charles K; Bukusi, Elizabeth A
2015-01-01
As efforts are made to reach universal access to ART in Kenya, the problem of congestion at HIV care clinics is likely to worsen. We evaluated the feasibility and the economic benefits of a designated time appointment system as a solution to decongest HIV care clinics. This was an explanatory two-arm open-label randomized controlled trial that enrolled 354 consenting participants during their normal clinic days and followed-up at subsequent clinic appointments for up to nine months. Intervention arm participants were given specific dates and times to arrive at the clinic for their next appointment while those in the control arm were only given the date and had the discretion to decide on the time to arrive as is the standard practice. At follow-up visits, we recorded arrival and departure times and asked the monetary value of work participants engaged in before and after clinic. We conducted multiple imputation to replace missing data in our primary outcome variables to allow for intention-to-treat analysis; and analyzed the data using Mann-Whitney U test. Overall, 72.1% of the intervention participants arrived on time, 13.3% arrived ahead of time and 14.6% arrived past scheduled time. Intervention arm participants spent a median of 65 [interquartile range (IQR), 52-87] minutes at the clinic compared to 197 (IQR, 173-225) minutes for control participants (p<0.01). Furthermore, intervention arm participants were more productively engaged on their clinic days valuing their cumulative work at a median of USD 10.5 (IQR, 60.0-16.8) compared to participants enrolled in the control arm who valued their work at USD 8.3 (IQR, 5.5-12.9; p=0.02). A designated time appointment system is feasible and provides substantial time savings associated with greater economic productivity for HIV patients attending a busy HIV care clinic.
Observation of arrival times of EAS with energies or = 6 x 10 (14) eV
NASA Technical Reports Server (NTRS)
Sun, L.
1985-01-01
The Earth's atmosphere is continually being bombarded by primary cosmic ray particles which are generally believed to be high-energy nuclei. The fact that the majority of cosmic ray primaries are charged particles and that space is permeated with random magnetic fields, means that the particles do not travel in straight lines. The arrival time distribution of EAS may also transfer some information about the primary particles. Actually, if the particles come to our Earth in a completely random process, the arrival time distribution of pairs of successive particles should fit an exponential law. The work reported here was arried out at Sydney University from May 1982 to January 1983. All the data are used to plot the arrival-time distribution of the events, that is, the distribution of time-separation between consecutive events on a 1 minute bin size. During this period more than 2300 showers were recorded. The results are discussed and compared with that of some other experiments.
Harmonic generation and parametric decay in the ion cyclotron frequency range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skiff, F.N.; Wong, K.L.; Ono, M.
1984-06-01
Harmonic generation and parametric decay are examined in a toroidal ACT-I plasma using electrostatic plate antennas. The harmonic generation, which is consistent with sheath rectification, is sufficiently strong that the nonlinearly generated harmonic modes themselves decay parametrically. Resonant and nonresonant parametric decay of the second harmonic are observed and compared with uniform pump theory. Resonant decay of lower hybrid waves into lower hybrid waves and slow ion cyclotron waves is seen for the first time. Surprisingly, the decay processes are nonlinearly saturated, indicating absolute instability.
Research on simplified parametric finite element model of automobile frontal crash
NASA Astrophysics Data System (ADS)
Wu, Linan; Zhang, Xin; Yang, Changhai
2018-05-01
The modeling method and key technologies of the automobile frontal crash simplified parametric finite element model is studied in this paper. By establishing the auto body topological structure, extracting and parameterizing the stiffness properties of substructures, choosing appropriate material models for substructures, the simplified parametric FE model of M6 car is built. The comparison of the results indicates that the simplified parametric FE model can accurately calculate the automobile crash responses and the deformation of the key substructures, and the simulation time is reduced from 6 hours to 2 minutes.
Accurate seismic phase identification and arrival time picking of glacial icequakes
NASA Astrophysics Data System (ADS)
Jones, G. A.; Doyle, S. H.; Dow, C.; Kulessa, B.; Hubbard, A.
2010-12-01
A catastrophic lake drainage event was monitored continuously using an array of 6, 4.5 Hz 3 component geophones in the Russell Glacier catchment, Western Greenland. Many thousands of events and arrival time phases (e.g., P- or S-wave) were recorded, often with events occurring simultaneously but at different locations. In addition, different styles of seismic events were identified from 'classical' tectonic earthquakes to tremors usually observed in volcanic regions. The presence of such a diverse and large dataset provides insight into the complex system of lake drainage. One of the most fundamental steps in seismology is the accurate identification of a seismic event and its associated arrival times. However, the collection of such a large and complex dataset makes the manual identification of a seismic event and picking of the arrival time phases time consuming with variable results. To overcome the issues of consistency and manpower, a number of different methods have been developed including short-term and long-term averages, spectrograms, wavelets, polarisation analyses, higher order statistics and auto-regressive techniques. Here we propose an automated procedure which establishes the phase type and accurately determines the arrival times. The procedure combines a number of different automated methods to achieve this, and is applied to the recently acquired lake drainage data. Accurate identification of events and their arrival time phases are the first steps in gaining a greater understanding of the extent of the deformation and the mechanism of such drainage events. A good knowledge of the propagation pathway of lake drainage meltwater through a glacier will have significant consequences for interpretation of glacial and ice sheet dynamics.
Electrical Evaluation of RCA MWS5501D Random Access Memory, Volume 2, Appendix a
NASA Technical Reports Server (NTRS)
Klute, A.
1979-01-01
The electrical characterization and qualification test results are presented for the RCA MWS5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. The address access time, address readout time, the data hold time, and the data setup time are some of the results surveyed.
NASA Astrophysics Data System (ADS)
Amsallem, David; Tezaur, Radek; Farhat, Charbel
2016-12-01
A comprehensive approach for real-time computations using a database of parametric, linear, projection-based reduced-order models (ROMs) based on arbitrary underlying meshes is proposed. In the offline phase of this approach, the parameter space is sampled and linear ROMs defined by linear reduced operators are pre-computed at the sampled parameter points and stored. Then, these operators and associated ROMs are transformed into counterparts that satisfy a certain notion of consistency. In the online phase of this approach, a linear ROM is constructed in real-time at a queried but unsampled parameter point by interpolating the pre-computed linear reduced operators on matrix manifolds and therefore computing an interpolated linear ROM. The proposed overall model reduction framework is illustrated with two applications: a parametric inverse acoustic scattering problem associated with a mockup submarine, and a parametric flutter prediction problem associated with a wing-tank system. The second application is implemented on a mobile device, illustrating the capability of the proposed computational framework to operate in real-time.
Comparison of hydrodynamic simulations with two-shockwave drive target experiments
NASA Astrophysics Data System (ADS)
Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William
2015-11-01
We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number
Zago, Myrka; Lacquaniti, Francesco
2005-08-01
Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.
Ogle, Kiona; Caron, Melanie; Marks, Jane C.; Rogg, Helmuth W.
2016-01-01
Invasive species alter ecosystems, threaten native and endangered species, and have negative economic impacts. Knowing where invading individuals are from and when they arrive to a new site can guide management. Here, we evaluated how well the stable hydrogen isotope composition (δ2H) records the recent origin and time since arrival of specimens of the invasive Japanese beetle (Popillia japonica Newman) captured near the Portland International Airport (Oregon, U.S.A.). The δ2H of Japanese beetle specimens collected from sites across the contiguous U.S.A. reflected the δ2H of local precipitation, a relationship similar to that documented for other organisms, and one confirming the utility of δ2H as a geographic fingerprint. Within weeks after experimental relocation to a new isotopic environment, the δ2H of beetles changed linearly with time, demonstrating the potential for δ2H to also mark the timing of arrival to a new location. We used a hierarchical Bayesian model to estimate the recent geographical origin and timing of arrival of each specimen based on its δ2H value. The geographic resolution was broad, with values consistent with multiple regions of origin in the eastern U.S.A., slightly favoring the southeastern U.S.A. as the more likely source. Beetles trapped from 2007–2010 had arrived 30 or more days prior to trapping, whereas the median time since arrival declined to 3–7 days for beetles trapped from 2012–2014. This reduction in the time between arrival and trapping at the Portland International Airport supports the efficacy of trapping and spraying to prevent establishment. More generally, our analysis shows how stable isotopes can serve as sentinels of biological invasions, verifying the efficacy of control measures, or, alternatively, indicating when those measures show signs of failure. PMID:26959686
Raman-noise-induced noise-figure limit for chi (3) parametric amplifiers
NASA Astrophysics Data System (ADS)
Voss, Paul L.; Kumar, Prem
2004-03-01
The nonzero response time of the Kerr [chi (3)] nonlinearity determines the quantum-limited noise figure of c3 parametric amplifiers. This nonzero response time of the nonlinearity requires coupling of the parametric amplification process to a molecular-vibration phonon bath, causing the addition of excess noise through Raman gain or loss at temperatures above 0 K. The effect of this excess noise on the noise figure can be surprisingly significant. We derive analytical expressions for this quantum-limited noise figure for phase-insensitive operation of a chi (3) amplifier and show good agreement with published noise-figure measurements.
First photon detection in time-resolved transillumination imaging: a theoretical evaluation.
Behin-Ain, S; van Doorn, T; Patterson, J R
2004-09-07
First photon detection, as a special case of time-resolved transillumination imaging, is studied through the derivation of the temporal probability density function (pdf) for the first arriving photon. The pdf for different laser intensities, media and second and later arriving photons were generated. The arrival time of the first detected photon reduced as the laser power increased and also when the scattering and absorption coefficients decreased. The pdf for an imbedded totally absorbing 3 mm inhomogeneity may be distinguished from the pdf of a homogeneous turbid medium similar to that of human breast in dimensions and optical properties.
NASA Astrophysics Data System (ADS)
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; Carlson, Thomas J.
2016-04-01
Locating the position of fixed or mobile sources (i.e., transmitters) based on measurements obtained from sensors (i.e., receivers) is an important research area that is attracting much interest. In this paper, we review several representative localization algorithms that use time of arrivals (TOAs) and time difference of arrivals (TDOAs) to achieve high signal source position estimation accuracy when a transmitter is in the line-of-sight of a receiver. Circular (TOA) and hyperbolic (TDOA) position estimation approaches both use nonlinear equations that relate the known locations of receivers and unknown locations of transmitters. Estimation of the location of transmitters using the standard nonlinear equations may not be very accurate because of receiver location errors, receiver measurement errors, and computational efficiency challenges that result in high computational burdens. Least squares and maximum likelihood based algorithms have become the most popular computational approaches to transmitter location estimation. In this paper, we summarize the computational characteristics and position estimation accuracies of various positioning algorithms. By improving methods for estimating the time-of-arrival of transmissions at receivers and transmitter location estimation algorithms, transmitter location estimation may be applied across a range of applications and technologies such as radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.
Locating Microseism Sources Using Spurious Arrivals in Intercontinental Noise Correlations
NASA Astrophysics Data System (ADS)
Retailleau, Lise; Boué, Pierre; Stehly, Laurent; Campillo, Michel
2017-10-01
The accuracy of Green's functions retrieved from seismic noise correlations in the microseism frequency band is limited by the uneven distribution of microseism sources at the surface of the Earth. As a result, correlation functions are often biased as compared to the expected Green's functions, and they can include spurious arrivals. These spurious arrivals are seismic arrivals that are visible on the correlation and do not belong to the theoretical impulse response. In this article, we propose to use Rayleigh wave spurious arrivals detected on correlation functions computed between European and United States seismic stations to locate microseism sources in the Atlantic Ocean. We perform a slant stack on a time distance gather of correlations obtained from an array of stations that comprises a regional deployment and a distant station. The arrival times and the apparent slowness of the spurious arrivals lead to the location of their source, which is obtained through a grid search procedure. We discuss improvements in the location through this methodology as compared to classical back projection of microseism energy. This method is interesting because it only requires an array and a distant station on each side of an ocean, conditions that can be met relatively easily.
Mofid, Omid; Mobayen, Saleh
2018-01-01
Adaptive control methods are developed for stability and tracking control of flight systems in the presence of parametric uncertainties. This paper offers a design technique of adaptive sliding mode control (ASMC) for finite-time stabilization of unmanned aerial vehicle (UAV) systems with parametric uncertainties. Applying the Lyapunov stability concept and finite-time convergence idea, the recommended control method guarantees that the states of the quad-rotor UAV are converged to the origin with a finite-time convergence rate. Furthermore, an adaptive-tuning scheme is advised to guesstimate the unknown parameters of the quad-rotor UAV at any moment. Finally, simulation results are presented to exhibit the helpfulness of the offered technique compared to the previous methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Only Above Barrier Energy Components Contribute to Barrier Traversal Time
NASA Astrophysics Data System (ADS)
Galapon, Eric A.
2012-04-01
A time of arrival operator across a square potential barrier is constructed. The expectation value of the barrier time of arrival operator for a sufficiently localized incident wave packet is compared with the expectation value of the free particle time of arrival operator for the same wave packet. The comparison yields an expression for the expected traversal time across the barrier. It is shown that only the above barrier components of the momentum distribution of the incident wave packet contribute to the barrier traversal time, implying that below the barrier components are transmitted without delay. This is consistent with the recent experiment in attosecond ionization in helium indicating that there is no real tunneling delay time [P. Eckle , Science 322, 1525 (2008)SCIEAS0036-807510.1126/science.1163439].
Aging persons' estimates of vehicular motion.
Schiff, W; Oldak, R; Shah, V
1992-12-01
Estimated arrival times of moving autos were examined in relation to viewer age, gender, motion trajectory, and velocity. Direct push-button judgments were compared with verbal estimates derived from velocity and distance, which were based on assumptions that perceivers compute arrival time from perceived distance and velocity. Experiment 1 showed that direct estimates of younger Ss were most accurate. Older women made the shortest (highly cautious) estimates of when cars would arrive. Verbal estimates were much lower than direct estimates, with little correlation between them. Experiment 2 extended target distances and velocities of targets, with the results replicating the main findings of Experiment 1. Judgment accuracy increased with target velocity, and verbal estimates were again poorer estimates of arrival time than direct ones, with different patterns of findings. Using verbal estimates to approximate judgments in traffic situations appears questionable.
Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.
2016-01-01
In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration (High Freq) performed similarly to non-parametric methods, but had the highest recall values, suggesting that this method could be employed for automatic tremor detection. PMID:27258018
Timelines in the management of adrenal crisis - targets, limits and reality.
Hahner, Stefanie; Hemmelmann, Nina; Quinkler, Marcus; Beuschlein, Felix; Spinnler, Christina; Allolio, Bruno
2015-04-01
To evaluate current management timelines in adrenal crisis (AC) and to establish time targets and time limits for emergency treatment. Patients from a prospective study who had reported an AC (n = 46) were contacted and asked about management of their AC. A survey among 24 European endocrinologists collected expert recommendations concerning time targets and time limits for contact-arrival time of emergency health professionals and presentation of emergency card-glucocorticoid (GC) injection time. Median time targets and time limits regarded by experts as adequate for contact-arrival time were 45 and 90 min, respectively, and for card-injection time 15 and 30 min, respectively. Thirty-seven of 46 patients could be interviewed. All patients were equipped with an emergency card but only 23 (62%) with an emergency kit. Seven patients (19%) were trained in GC self-injection. The median time interval between contacting a health professional and arrival was 20 min (range 2-2880 min); ≤45 min: n = 32 (86%), <90 min: n = 34 (92%). The median time interval between arrival and administration of GC was 30 min (range 2-2400 min); ≤15 min: n = 17 (46%), ≤30 min: n = 20 (54%). While the time between contacting health professionals and their arrival was within the limits set by experts, initiation of GC administration was delayed in 46% of patients. Thus, improved management of AC needs to focus on shortening the presentation of card-injection time. Given the current reality in the management of AC, promotion of self-injection of GC (s.c. or i.m.) is warranted. © 2014 John Wiley & Sons Ltd.
Wavelength-agile near-IR optical parametric oscillator using a deposited silicon waveguide.
Wang, Ke-Yao; Foster, Mark A; Foster, Amy C
2015-06-15
Using a deposited hydrogenated amorphous silicon (a-Si:H) waveguide, we demonstrate ultra-broad bandwidth (60 THz) parametric amplification via four-wave mixing (FWM), and subsequently achieve the first silicon optical parametric oscillator (OPO) at near-IR wavelengths. Utilization of the time-dispersion-tuned technique provides an optical source with active wavelength tuning over 42 THz with a fixed pump wave.
Ensemble Modeling of the July 23, 2012 CME Event
NASA Astrophysics Data System (ADS)
Cash, M. D.; Biesecker, D. A.; Millward, G.; Arge, C. N.; Henney, C. J.
2013-12-01
On July 23, 2012 a large and very fast coronal mass ejection (CME) was observed by STEREO A. This CME was unusual in that the estimates of the speed of the CME ranged from 2125 km/s to 2780 km/s based on dividing the distance of STEREO A from the Sun by the transit time of the CME. Modeling of this CME event with the WSA-Enlil model has also suggested that a very fast speed is required in order to obtain the correct arrival time at 1 AU. We present a systematic study of parameter space for the July 23, 2012 CME event through an ensemble study using the WSA-Enlil model to predict the arrival time of the CME at STEREO A. We investigate how variations in the initial speed, angular width, and direction affect the predicted arrival time. We also explore how variations in the background solar wind influence CME arrival time by using varying ADAPT maps within our ensemble study. Factors involved in the fast transit time of this large CME are discussed and the optimal CME parameters are presented.
Madsen, Tracy E; Roberts, Eric T; Kuczynski, Heather; Goldmann, Emily; Parikh, Nina S; Boden-Albala, Bernadette
2017-12-01
The study aimed to investigate the effect of gender on the association between social networks and stroke preparedness as measured by emergency department (ED) arrival within 3 hours of symptom onset. As part of the Stroke Warning Information and Faster Treatment study, baseline data on demographics, social networks, and time to ED arrival were collected from 1193 prospectively enrolled stroke/transient ischemic attack (TIA) patients at Columbia University Medical Center. Logistic regression was conducted with arrival to the ED ≤3 hours as the outcome, social network characteristics as explanatory variables, and gender as a potential effect modifier. Men who lived alone or were divorced were significantly less likely to arrive ≤3 hours than men who lived with a spouse (adjusted odds ratio [aOR]: .31, 95% confidence interval [CI]: .15-0.64) or were married (aOR: .45, 95% CI: .23-0.86). Among women, those who lived alone or were divorced had similar odds of arriving ≤3 hours compared with those who lived with a spouse (aOR: 1.25, 95% CI: .63-2.49) or were married (aOR: .73, 95% CI: .4-1.35). In patients with stroke/TIA, living with someone or being married improved time to arrival in men only. Behavioral interventions to improve stroke preparedness should incorporate gender differences in how social networks affect arrival times. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Passive imaging of hydrofractures in the South Belridge diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilderton, D.C.; Patzek, T.W.; Rector, J.W.
1996-03-01
The authors present the results of a seismic analysis of two hydrofractures spanning the entire diatomite column (1,110--1,910 ft or 338--582 m) in Shell`s Phase 2 steam drive pilot in South Belridge, California. These hydrofractures were induced at two depths (1,110--1,460 and 1,560--1,910 ft) and imaged passively using the seismic energy released during fracturing. The arrivals of shear waves from the cracking rock (microseismic events) were recorded at a 1 ms sampling rate by 56 geophones in three remote observation wells, resulting in 10 GB of raw data. These arrival times were then inverted for the event locations, from whichmore » the hydrofracture geometry was inferred. A five-dimensional conjugate-gradient algorithm with a depth-dependent, but otherwise constant shear wave velocity model (CVM) was developed for the inversions. To validate CVM, they created a layered shear wave velocity model of the formation and used it to calculate synthetic arrival times from known locations chosen at various depths along the estimated fracture plane. These arrival times were then inverted with CVM and the calculated locations compared with the known ones, quantifying the systematic error associated with the assumption of constant shear wave velocity. They also performed Monte Carlo sensitivity analyses on the synthetic arrival times to account for all other random errors that exist in field data. After determining the limitations of the inversion algorithm, they hand-picked the shear wave arrival times for both hydrofractures and inverted them with CVM.« less
NASA Astrophysics Data System (ADS)
Verdhora Ry, Rexha; Septyana, T.; Widiyantoro, S.; Nugraha, A. D.; Ardjuna, A.
2017-04-01
Microseismic monitoring and constraining its hypocenters in and around hydrocarbon reservoirs provides insight into induced deformation related to hydraulic fracturing. In this study, we used data from a single vertical array of sensors in a borehole, providing measures of arrival times and polarizations. Microseismic events are located using 1-D velocity models and arrival times of P- and S-waves. However, in the case of all the sensors being deployed in a near-vertical borehole, there is a high ambiguity in the source location. Herein, we applied a procedure using azimuth of P-wave particle motion to constrain and improve the source location. We used a dataset acquired during 1-day of fracture stimulation at a CBM field in Indonesia. We applied five steps of location procedure to investigate microseismic events induced by these hydraulic fracturing activities. First, arrival times for 1584 candidate events were manually picked. Then we refined the arrival times using energy ratio method to obtain high consistency picking. Using these arrival times, we estimated back-azimuth using P-wave polarization analysis. We also added the combination of polarities analysis to remove 180° ambiguity. In the end, we determined hypocenter locations using grid-search method that guided in the back-azimuth trace area to minimize the misfit function of arrival times. We have successfully removed the ambiguity and produced a good solution for hypocenter locations as indicated statistically by small RMS. Most of the events clusters highlight coherent structures around the treatment well site and revealed faults. The same procedure can be applied to various other cases such as microseismic monitoring in the field of geothermal and shale gas/oil exploration, also CCS (Carbon Capture and Storage) development.
Wavelet-based automatic determination of the P- and S-wave arrivals
NASA Astrophysics Data System (ADS)
Bogiatzis, P.; Ishii, M.
2013-12-01
The detection of P- and S-wave arrivals is important for a variety of seismological applications including earthquake detection and characterization, and seismic tomography problems such as imaging of hydrocarbon reservoirs. For many years, dedicated human-analysts manually selected the arrival times of P and S waves. However, with the rapid expansion of seismic instrumentation, automatic techniques that can process a large number of seismic traces are becoming essential in tomographic applications, and for earthquake early-warning systems. In this work, we present a pair of algorithms for efficient picking of P and S onset times. The algorithms are based on the continuous wavelet transform of the seismic waveform that allows examination of a signal in both time and frequency domains. Unlike Fourier transform, the basis functions are localized in time and frequency, therefore, wavelet decomposition is suitable for analysis of non-stationary signals. For detecting the P-wave arrival, the wavelet coefficients are calculated using the vertical component of the seismogram, and the onset time of the wave is identified. In the case of the S-wave arrival, we take advantage of the polarization of the shear waves, and cross-examine the wavelet coefficients from the two horizontal components. In addition to the onset times, the automatic picking program provides estimates of uncertainty, which are important for subsequent applications. The algorithms are tested with synthetic data that are generated to include sudden changes in amplitude, frequency, and phase. The performance of the wavelet approach is further evaluated using real data by comparing the automatic picks with manual picks. Our results suggest that the proposed algorithms provide robust measurements that are comparable to manual picks for both P- and S-wave arrivals.
Hossain, Monir; Wright, Steven; Petersen, Laura A
2002-04-01
One way to monitor patient access to emergent health care services is to use patient characteristics to predict arrival time at the hospital after onset of symptoms. This predicted arrival time can then be compared with actual arrival time to allow monitoring of access to services. Predicted arrival time could also be used to estimate potential effects of changes in health care service availability, such as closure of an emergency department or an acute care hospital. Our goal was to determine the best statistical method for prediction of arrival intervals for patients with acute myocardial infarction (AMI) symptoms. We compared the performance of multinomial logistic regression (MLR) and discriminant analysis (DA) models. Models for MLR and DA were developed using a dataset of 3,566 male veterans hospitalized with AMI in 81 VA Medical Centers in 1994-1995 throughout the United States. The dataset was randomly divided into a training set (n = 1,846) and a test set (n = 1,720). Arrival times were grouped into three intervals on the basis of treatment considerations: <6 hours, 6-12 hours, and >12 hours. One model for MLR and two models for DA were developed using the training dataset. One DA model had equal prior probabilities, and one DA model had proportional prior probabilities. Predictive performance of the models was compared using the test (n = 1,720) dataset. Using the test dataset, the proportions of patients in the three arrival time groups were 60.9% for <6 hours, 10.3% for 6-12 hours, and 28.8% for >12 hours after symptom onset. Whereas the overall predictive performance by MLR and DA with proportional priors was higher, the DA models with equal priors performed much better in the smaller groups. Correct classifications were 62.6% by MLR, 62.4% by DA using proportional prior probabilities, and 48.1% using equal prior probabilities of the groups. The misclassifications by MLR for the three groups were 9.5%, 100.0%, 74.2% for each time interval, respectively. Misclassifications by DA models were 9.8%, 100.0%, and 74.4% for the model with proportional priors and 47.6%, 79.5%, and 51.0% for the model with equal priors. The choice of MLR or DA with proportional priors, or DA with equal priors for monitoring time intervals of predicted hospital arrival time for a population should depend on the consequences of misclassification errors.
2010-02-01
98 8.4.5 Training Screening ............................. .................................................................99 8.5 Experimental...associated with the proposed parametric model. Several im- portant issues are discussed, including model order selection, training screening , and time...parameters associated with the NS-AR model. In addition, we develop model order selection, training screening , and time-series based whitening and
Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 4, Appendix C
NASA Technical Reports Server (NTRS)
Klute, A.
1979-01-01
The electrical characterization and qualification test results are presented for the RCA MWS5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. Statistical analysis data is supplied along with write pulse width, read cycle time, write cycle time, and chip enable time data.
ERIC Educational Resources Information Center
Tynell, Lena Lyngholt; Wimmelmann, Camilla Lawaetz; Jervelund, Signe Smith
2017-01-01
Objective: In most European countries, immigrants do not systematically learn about the host countries' healthcare system when arriving. This study investigated how newly arrived immigrants perceived the information they received about the Danish healthcare system. Methods: Immigrants attending a language school in Copenhagen in 2012 received…
From medium heterogeneity to flow and transport: A time-domain random walk approach
NASA Astrophysics Data System (ADS)
Hakoun, V.; Comolli, A.; Dentz, M.
2017-12-01
The prediction of flow and transport processes in heterogeneous porous media is based on the qualitative and quantitative understanding of the interplay between 1) spatial variability of hydraulic conductivity, 2) groundwater flow and 3) solute transport. Using a stochastic modeling approach, we study this interplay through direct numerical simulations of Darcy flow and advective transport in heterogeneous media. First, we study flow in correlated hydraulic permeability fields and shed light on the relationship between the statistics of log-hydraulic conductivity, a medium attribute, and the flow statistics. Second, we determine relationships between Eulerian and Lagrangian velocity statistics, this means, between flow and transport attributes. We show how Lagrangian statistics and thus transport behaviors such as late particle arrival times are influenced by the medium heterogeneity on one hand and the initial particle velocities on the other. We find that equidistantly sampled Lagrangian velocities can be described by a Markov process that evolves on the characteristic heterogeneity length scale. We employ a stochastic relaxation model for the equidistantly sampled particle velocities, which is parametrized by the velocity correlation length. This description results in a time-domain random walk model for the particle motion, whose spatial transitions are characterized by the velocity correlation length and temporal transitions by the particle velocities. This approach relates the statistical medium and flow properties to large scale transport, and allows for conditioning on the initial particle velocities and thus to the medium properties in the injection region. The approach is tested against direct numerical simulations.
Ilan, Ezgi; Sandström, Mattias; Velikyan, Irina; Sundin, Anders; Eriksson, Barbro; Lubberink, Mark
2017-05-01
68 Ga-DOTATOC and 68 Ga-DOTATATE are radiolabeled somatostatin analogs used for the diagnosis of somatostatin receptor-expressing neuroendocrine tumors (NETs), and SUV measurements are suggested for treatment monitoring. However, changes in net influx rate ( K i ) may better reflect treatment effects than those of the SUV, and accordingly there is a need to compute parametric images showing K i at the voxel level. The aim of this study was to evaluate parametric methods for computation of parametric K i images by comparison to volume of interest (VOI)-based methods and to assess image contrast in terms of tumor-to-liver ratio. Methods: Ten patients with metastatic NETs underwent a 45-min dynamic PET examination followed by whole-body PET/CT at 1 h after injection of 68 Ga-DOTATOC and 68 Ga-DOTATATE on consecutive days. Parametric K i images were computed using a basis function method (BFM) implementation of the 2-tissue-irreversible-compartment model and the Patlak method using a descending aorta image-derived input function, and mean tumor K i values were determined for 50% isocontour VOIs and compared with K i values based on nonlinear regression (NLR) of the whole-VOI time-activity curve. A subsample of healthy liver was delineated in the whole-body and K i images, and tumor-to-liver ratios were calculated to evaluate image contrast. Correlation ( R 2 ) and agreement between VOI-based and parametric K i values were assessed using regression and Bland-Altman analysis. Results: The R 2 between NLR-based and parametric image-based (BFM) tumor K i values was 0.98 (slope, 0.81) and 0.97 (slope, 0.88) for 68 Ga-DOTATOC and 68 Ga-DOTATATE, respectively. For Patlak analysis, the R 2 between NLR-based and parametric-based (Patlak) tumor K i was 0.95 (slope, 0.71) and 0.92 (slope, 0.74) for 68 Ga-DOTATOC and 68 Ga-DOTATATE, respectively. There was no bias between NLR and parametric-based K i values. Tumor-to-liver contrast was 1.6 and 2.0 times higher in the parametric BFM K i images and 2.3 and 3.0 times in the Patlak images than in the whole-body images for 68 Ga-DOTATOC and 68 Ga-DOTATATE, respectively. Conclusion: A high R 2 and agreement between NLR- and parametric-based K i values was found, showing that K i images are quantitatively accurate. In addition, tumor-to-liver contrast was superior in the parametric K i images compared with whole-body images for both 68 Ga-DOTATOC and 68 Ga DOTATATE. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Improved Results for Route Planning in Stochastic Transportation Networks
NASA Technical Reports Server (NTRS)
Boyan, Justin; Mitzenmacher, Michael
2000-01-01
In the bus network problem, the goal is to generate a plan for getting from point X to point Y within a city using buses in the smallest expected time. Because bus arrival times are not determined by a fixed schedule but instead may be random. the problem requires more than standard shortest path techniques. In recent work, Datar and Ranade provide algorithms in the case where bus arrivals are assumed to be independent and exponentially distributed. We offer solutions to two important generalizations of the problem, answering open questions posed by Datar and Ranade. First, we provide a polynomial time algorithm for a much wider class of arrival distributions, namely those with increasing failure rate. This class includes not only exponential distributions but also uniform, normal, and gamma distributions. Second, in the case where bus arrival times are independent and geometric discrete random variable,. we provide an algorithm for transportation networks of buses and trains, where trains run according to a fixed schedule.
Roecker, S.; Thurber, C.; McPhee, D.
2004-01-01
Taking advantage of large datasets of both gravity and elastic wave arrival time observations available for the Parkfield, California region, we generated an image consistent with both types of data. Among a variety of strategies, the best result was obtained from a simultaneous inversion with a stability requirement that encouraged the perturbed model to remain close to a starting model consisting of a best fit to the arrival time data. The preferred model looks essentially the same as the best-fit arrival time model in areas where ray coverage is dense, with differences being greatest at shallow depths and near the edges of the model where ray paths are few. Earthquake locations change by no more than about 100 m, the general effect being migration of the seismic zone to the northeast, closer to the surface trace of the San Andreas Fault. Copyright 2004 by the American Geophysical Union.
Wide-band profile domain pulsar timing analysis
NASA Astrophysics Data System (ADS)
Lentati, L.; Kerr, M.; Dai, S.; Hobson, M. P.; Shannon, R. M.; Hobbs, G.; Bailes, M.; Bhat, N. D. Ramesh; Burke-Spolaor, S.; Coles, W.; Dempsey, J.; Lasky, P. D.; Levin, Y.; Manchester, R. N.; Osłowski, S.; Ravi, V.; Reardon, D. J.; Rosado, P. A.; Spiewak, R.; van Straten, W.; Toomey, L.; Wang, J.; Wen, L.; You, X.; Zhu, X.
2017-04-01
We extend profile domain pulsar timing to incorporate wide-band effects such as frequency-dependent profile evolution and broad-band shape variation in the pulse profile. We also incorporate models for temporal variations in both pulse width and in the separation in phase of the main pulse and interpulse. We perform the analysis with both nested sampling and Hamiltonian Monte Carlo methods. In the latter case, we introduce a new parametrization of the posterior that is extremely efficient in the low signal-to-noise regime and can be readily applied to a wide range of scientific problems. We apply this methodology to a series of simulations, and to between seven and nine years of observations for PSRs J1713+0747, J1744-1134 and J1909-3744 with frequency coverage that spans 700-3600 Mhz. We use a smooth model for profile evolution across the full frequency range, and compare smooth and piecewise models for the temporal variations in dispersion measure (DM). We find that the profile domain framework consistently results in improved timing precision compared to the standard analysis paradigm by as much as 40 per cent for timing parameters. Incorporating smoothness in the DM variations into the model further improves timing precision by as much as 30 per cent. For PSR J1713+0747, we also detect pulse shape variation uncorrelated between epochs, which we attribute to variation intrinsic to the pulsar at a level consistent with previously published analyses. Not accounting for this shape variation biases the measured arrival times at the level of ˜30 ns, the same order of magnitude as the expected shift due to gravitational waves in the pulsar timing band.
Ray-based acoustic localization of cavitation in a highly reverberant environment.
Chang, Natasha A; Dowling, David R
2009-05-01
Acoustic detection and localization of cavitation have inherent advantages over optical techniques because cavitation bubbles are natural sound sources, and acoustic transduction of cavitation sounds does not require optical access to the region of cavitating flow. In particular, near cavitation inception, cavitation bubbles may be visually small and occur infrequently, but may still emit audible sound pulses. In this investigation, direct-path acoustic recordings of cavitation events are made with 16 hydrophones mounted on the periphery of a water tunnel test section containing a low-cavitation-event-rate vortical flow. These recordings are used to localize the events in three dimensions via cross correlations to obtain arrival time differences. Here, bubble localization is hindered by reverberation, background noise, and the fact that both the pulse emission time and waveform are unknown. These hindrances are partially mitigated by a signal-processing scheme that incorporates straight-ray acoustic propagation and Monte-Carlo techniques for compensating ray-path, sound-speed, and hydrophone-location uncertainties. The acoustic localization results are compared to simultaneous optical localization results from dual-camera high-speed digital-video recordings. For 53 bubbles and a peak-signal to noise ratio frequency of 6.7 kHz, the root-mean-square spatial difference between optical and acoustic bubble location results was 1.94 cm. Parametric dependences in acoustic localization performance are also presented.
New test of weak equivalence principle using polarized light from astrophysical events
NASA Astrophysics Data System (ADS)
Wu, Xue-Feng; Wei, Jun-Jie; Lan, Mi-Xiang; Gao, He; Dai, Zi-Gao; Mészáros, Peter
2017-05-01
Einstein's weak equivalence principle (WEP) states that any freely falling, uncharged test particle follows the same identical trajectory independent of its internal structure and composition. Since the polarization of a photon is considered to be part of its internal structure, we propose that polarized photons from astrophysical transients, such as gamma-ray bursts (GRBs) and fast radio bursts (FRBs), can be used to constrain the accuracy of the WEP through the Shapiro time delay effect. Assuming that the arrival time delays of photons with different polarizations are mainly attributed to the gravitational potential of the Laniakea supercluster of galaxies, we show that a strict upper limit on the differences of the parametrized post-Newtonian parameter γ value for the polarized optical emission of GRB 120308A is Δ γ <1.2 ×10-10 , for the polarized gamma-ray emission of GRB 100826A is Δ γ <1.2 ×10-10 , and for the polarized radio emission of FRB 150807 is Δ γ <2.2 ×10-16 . These are the first direct verifications of the WEP for multiband photons with different polarizations. In particular, the result from FRB 150807 provides the most stringent limit to date on a deviation from the WEP, improving by one order of magnitude the previous best result based on Crab pulsar photons with different energies.
Cho, Han-Jin; Lee, Kyung Yul; Nam, Hyo Suk; Kim, Young Dae; Song, Tae-Jin; Jung, Yo Han; Choi, Hye-Yeon; Heo, Ji Hoe
2014-10-01
Process improvement (PI) is an approach for enhancing the existing quality improvement process by making changes while keeping the existing process. We have shown that implementation of a stroke code program using a computerized physician order entry system is effective in reducing the in-hospital time delay to thrombolysis in acute stroke patients. We investigated whether implementation of this PI could further reduce the time delays by continuous improvement of the existing process. After determining a key indicator [time interval from emergency department (ED) arrival to intravenous (IV) thrombolysis] and conducting data analysis, the target time from ED arrival to IV thrombolysis in acute stroke patients was set at 40 min. The key indicator was monitored continuously at a weekly stroke conference. The possible reasons for the delay were determined in cases for which IV thrombolysis was not administered within the target time and, where possible, the problems were corrected. The time intervals from ED arrival to the various evaluation steps and treatment before and after implementation of the PI were compared. The median time interval from ED arrival to IV thrombolysis in acute stroke patients was significantly reduced after implementation of the PI (from 63.5 to 45 min, p=0.001). The variation in the time interval was also reduced. A reduction in the evaluation time intervals was achieved after the PI [from 23 to 17 min for computed tomography scanning (p=0.003) and from 35 to 29 min for complete blood counts (p=0.006)]. PI is effective for continuous improvement of the existing process by reducing the time delays between ED arrival and IV thrombolysis in acute stroke patients.
Real-time Upstream Monitoring System: Using ACE Data to Predict the Arrival of Interplanetary Shocks
NASA Astrophysics Data System (ADS)
Donegan, M. M.; Wagstaff, K. L.; Ho, G. C.; Vandegriff, J.
2003-12-01
We have developed an algorithm to predict Earth arrival times for interplanetary (IP) shock events originating at the Sun. Our predictions are generated from real-time data collected by the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. The high intensities of energetic ions that occur prior to and during an IP shock pose a radiation hazard to astronauts as well as to electronics in Earth orbit. The potential to predict such events is based on characteristic signatures in the Energetic Storm Particle (ESP) event ion intensities which are often associated with IP shocks. We have previously reported on the development and implementation of an algorithm to forecast the arrival of ESP events. Historical ion data from ACE/EPAM was used to train an artificial neural network which uses the signature of an approaching event to predict the time remaining until the shock arrives. Tests on the trained network have been encouraging, with an average error of 9.4 hours for predictions made 24 hours in advance, and an reduced average error of 4.9 hours when the shock is 12 hours away. The prediction engine has been integrated into a web-based system that uses real-time ACE/EPAM data provided by the NOAA Space Environment Center (http://sd-www.jhuapl.edu/UPOS/RISP/ index.html.) This system continually processes the latest ACE data, reports whether or not there is an impending shock, and predicts the time remaining until the shock arrival. Our predictions are updated every five minutes and provide significant lead-time, thereby supplying critical information that can be used by mission planners, satellite operations controllers, and scientists. We have continued to refine the prediction capabilities of this system; in addition to forecasting arrival times for shocks, we now provide confidence estimates for those predictions.
NASA Astrophysics Data System (ADS)
Juranić, P. N.; Stepanov, A.; Peier, P.; Hauri, C. P.; Ischebeck, R.; Schlott, V.; Radović, M.; Erny, C.; Ardana-Lamas, F.; Monoszlai, B.; Gorgisyan, I.; Patthey, L.; Abela, R.
2014-03-01
The recent entry of X-ray free electron lasers (FELs) to all fields of physics has created an enormous need, both from scientists and operators, for better characterization of the beam created by these facilities. Of particular interest is the measurement of the arrival time of the FEL pulse relative to a laser pump, for pump-probe experiments, and the measurement of the FEL pulse length. This article describes a scheme that corrects one of the major sources of uncertainty in these types of measurements, namely the jitter in the arrival time of the FEL relative to an experimental laser beam. The setup presented here uses a combination of THz streak cameras and a spectral encoding setup to reduce the effect of an FEL's jitter, leaving the pulse length as the only variable that can affect the accuracy of the pulse length and arrival time measurement. A discussion of underlying principles is also provided.
NASA Technical Reports Server (NTRS)
Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.
1985-01-01
Detection of air showers with primary energies above 10 to the 19th power eV with sufficient statistics is extremely important in an astrophysical aspect related to the Greisen cut off and the origin of such high energy cosmic rays. Recently, a method is proposed to observe such giant air showers by measuring the arrival time distributions of air-shower particles at large core distances with a mini array. Experiments to measure the arrival time distributions of muons were started in 1981 and those of electrons in early 1983 in the Akeno air-shower array (930 gcm cm squared atmospheric depth, 900m above sea level). During the time of observation, the detection area of the Akeno array was expanded from 1 sq km to sq km in 1982 and to 20 sq km in 1984. Now the arrival time distribution of electrons and muons can be measured for showers with primary energies above 1019eV at large core distances.
Coupled oscillators in identification of nonlinear damping of a real parametric pendulum
NASA Astrophysics Data System (ADS)
Olejnik, Paweł; Awrejcewicz, Jan
2018-01-01
A damped parametric pendulum with friction is identified twice by means of its precise and imprecise mathematical model. A laboratory test stand designed for experimental investigations of nonlinear effects determined by a viscous resistance and the stick-slip phenomenon serves as the model mechanical system. An influence of accurateness of mathematical modeling on the time variability of the nonlinear damping coefficient of the oscillator is proved. A free decay response of a precisely and imprecisely modeled physical pendulum is dependent on two different time-varying coefficients of damping. The coefficients of the analyzed parametric oscillator are identified with the use of a new semi-empirical method based on a coupled oscillators approach, utilizing the fractional order derivative of the discrete measurement series treated as an input to the numerical model. Results of application of the proposed method of identification of the nonlinear coefficients of the damped parametric oscillator have been illustrated and extensively discussed.
NASA Astrophysics Data System (ADS)
Voss, Paul L.; Köprülü, Kahraman G.; Kumar, Prem
2006-04-01
We present a quantum theory of nondegenerate phase-sensitive parametric amplification in a χ(3) nonlinear medium. The nonzero response time of the Kerr (χ(3)) nonlinearity determines the quantum-limited noise figure of χ(3) parametric amplification, as well as the limit on quadrature squeezing. This nonzero response time of the nonlinearity requires coupling of the parametric process to a molecular vibration phonon bath, causing the addition of excess noise through spontaneous Raman scattering. We present analytical expressions for the quantum-limited noise figure of frequency nondegenerate and frequency degenerate χ(3) parametric amplifiers operated as phase-sensitive amplifiers. We also present results for frequency nondegenerate quadrature squeezing. We show that our nondegenerate squeezing theory agrees with the degenerate squeezing theory of Boivin and Shapiro as degeneracy is approached. We have also included the effect of linear loss on the phase-sensitive process.
Optimal Time Advance In Terminal Area Arrivals: Throughput vs. Fuel Savings
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V .; Swenson, Harry N.; Haskell, William B.; Rakas, Jasenka
2011-01-01
The current operational practice in scheduling air traffic arriving at an airport is to adjust flight schedules by delay, i.e. a postponement of an aircrafts arrival at a scheduled location, to manage safely the FAA-mandated separation constraints between aircraft. To meet the observed and forecast growth in traffic demand, however, the practice of time advance (speeding up an aircraft toward a scheduled location) is envisioned for future operations as a practice additional to delay. Time advance has two potential advantages. The first is the capability to minimize, or at least reduce, the excess separation (the distances between pairs of aircraft immediately in-trail) and thereby to increase the throughput of the arriving traffic. The second is to reduce the total traffic delay when the traffic sample is below saturation density. A cost associated with time advance is the fuel expenditure required by an aircraft to speed up. We present an optimal control model of air traffic arriving in a terminal area and solve it using the Pontryagin Maximum Principle. The admissible controls allow time advance, as well as delay, some of the way. The cost function reflects the trade-off between minimizing two competing objectives: excess separation (negatively correlated with throughput) and fuel burn. A number of instances are solved using three different methods, to demonstrate consistency of solutions.
A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem
NASA Technical Reports Server (NTRS)
Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad
2010-01-01
Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.
Maximum Likelihood Time-of-Arrival Estimation of Optical Pulses via Photon-Counting Photodetectors
NASA Technical Reports Server (NTRS)
Erkmen, Baris I.; Moision, Bruce E.
2010-01-01
Many optical imaging, ranging, and communications systems rely on the estimation of the arrival time of an optical pulse. Recently, such systems have been increasingly employing photon-counting photodetector technology, which changes the statistics of the observed photocurrent. This requires time-of-arrival estimators to be developed and their performances characterized. The statistics of the output of an ideal photodetector, which are well modeled as a Poisson point process, were considered. An analytical model was developed for the mean-square error of the maximum likelihood (ML) estimator, demonstrating two phenomena that cause deviations from the minimum achievable error at low signal power. An approximation was derived to the threshold at which the ML estimator essentially fails to provide better than a random guess of the pulse arrival time. Comparing the analytic model performance predictions to those obtained via simulations, it was verified that the model accurately predicts the ML performance over all regimes considered. There is little prior art that attempts to understand the fundamental limitations to time-of-arrival estimation from Poisson statistics. This work establishes both a simple mathematical description of the error behavior, and the associated physical processes that yield this behavior. Previous work on mean-square error characterization for ML estimators has predominantly focused on additive Gaussian noise. This work demonstrates that the discrete nature of the Poisson noise process leads to a distinctly different error behavior.
Analysis of delay reducing and fuel saving sequencing and spacing algorithms for arrival traffic
NASA Technical Reports Server (NTRS)
Neuman, Frank; Erzberger, Heinz
1991-01-01
The air traffic control subsystem that performs sequencing and spacing is discussed. The function of the sequencing and spacing algorithms is to automatically plan the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several algorithms are described and their statistical performance is examined. Sequencing brings order to an arrival sequence for aircraft. First-come-first-served sequencing (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the arriving traffic, gaps will remain in the sequence of aircraft. Delays are reduced by time-advancing the leading aircraft of each group while still preserving the FCFS order. Tightly spaced groups of aircraft remain with a mix of heavy and large aircraft. Spacing requirements differ for different types of aircraft trailing each other. Traffic is reordered slightly to take advantage of this spacing criterion, thus shortening the groups and reducing average delays. For heavy traffic, delays for different traffic samples vary widely, even when the same set of statistical parameters is used to produce each sample. This report supersedes NASA TM-102795 on the same subject. It includes a new method of time-advance as well as an efficient method of sequencing and spacing for two dependent runways.
SPX-8 Dragon Spacecraft Approach
2016-04-10
ISS047e052707 (04/10/2016) --- The SpaceX Dragon cargo spaceship begins the final approach to the International Space Station. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six.
Monitoring molecular interactions using photon arrival-time interval distribution analysis
Laurence, Ted A [Livermore, CA; Weiss, Shimon [Los Angels, CA
2009-10-06
A method for analyzing/monitoring the properties of species that are labeled with fluorophores. A detector is used to detect photons emitted from species that are labeled with one or more fluorophores and located in a confocal detection volume. The arrival time of each of the photons is determined. The interval of time between various photon pairs is then determined to provide photon pair intervals. The number of photons that have arrival times within the photon pair intervals is also determined. The photon pair intervals are then used in combination with the corresponding counts of intervening photons to analyze properties and interactions of the molecules including brightness, concentration, coincidence and transit time. The method can be used for analyzing single photon streams and multiple photon streams.
Urban sprawl and delayed ambulance arrival in the U.S.
Trowbridge, Matthew J; Gurka, Matthew J; O'Connor, Robert E
2009-11-01
Minimizing emergency medical service (EMS) response time is a central objective of prehospital care, yet the potential influence of built environment features such as urban sprawl on EMS system performance is often not considered. This study measures the association between urban sprawl and EMS response time to test the hypothesis that features of sprawling development increase the probability of delayed ambulance arrival. In 2008, EMS response times for 43,424 motor-vehicle crashes were obtained from the Fatal Analysis Reporting System, a national census of crashes involving > or =1 fatality. Sprawl at each crash location was measured using a continuous county-level index previously developed by Ewing et al. The association between sprawl and the probability of a delayed ambulance arrival (> or =8 minutes) was then measured using generalized linear mixed modeling to account for correlation among crashes from the same county. Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival (p=0.03). This probability increases quadratically as the severity of sprawl increases while controlling for nighttime crash occurrence, road conditions, and presence of construction. For example, in sprawling counties (e.g., Fayette County GA), the probability of a delayed ambulance arrival for daytime crashes in dry conditions without construction was 69% (95% CI=66%, 72%) compared with 31% (95% CI=28%, 35%) in counties with prominent smart-growth characteristics (e.g., Delaware County PA). Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival following motor-vehicle crashes in the U.S. The results of this study suggest that promotion of community design and development that follows smart-growth principles and regulates urban sprawl may improve EMS performance and reliability.
Estimation of flow properties using surface deformation and head data: A trajectory-based approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasco, D.W.
2004-07-12
A trajectory-based algorithm provides an efficient and robust means to infer flow properties from surface deformation and head data. The algorithm is based upon the concept of an ''arrival time'' of a drawdown front, which is defined as the time corresponding to the maximum slope of the drawdown curve. The technique involves three steps: the inference of head changes as a function of position and time, the use of the estimated head changes to define arrival times, and the inversion of the arrival times for flow properties. Trajectories, computed from the output of a numerical simulator, are used to relatemore » the drawdown arrival times to flow properties. The inversion algorithm is iterative, requiring one reservoir simulation for each iteration. The method is applied to data from a set of 14 tiltmeters, located at the Raymond Quarry field site in California. Using the technique, I am able to image a high-conductivity channel which extends to the south of the pumping well. The presence of th is permeable pathway is supported by an analysis of earlier cross-well transient pressure test data.« less
NASA Astrophysics Data System (ADS)
Reymond, Dominique
2017-04-01
We present a tool for computing the complete arrival times of the dispersed wave-train of a tsunami. The calculus is made using the exact formulation of the tsunami dispersion (and without approximations), at any desired periods between one hour or more (concerning the gravity waves propagation) until 10s (the highly dispersed mode). The computation of the travel times is based on the a summation of the necessary time for a tsunami to cross all the elementary blocs of a grid of bathymetry following a path between the source and receiver at a given period. In addition the source dimensions and the focal mechanism are taken into account to adjust the minimum travel time to the different possible points of emission of the source. A possible application of this tool is to forecast the arrival time of late arrivals of tsunami waves that could produce the resonnance of some bays and sites at higher frequencies than the gravity mode. The theoretical arrival times are compared to the observed ones and to the results obtained by TTT (P. Wessel, 2009) and the ones obtained by numerical simulations. References: Wessel, P. (2009). Analysis of oberved and predicted tsunami travel times for the Pacic and Indian oceans. Pure Appl. Geophys., 166:301-324.
NASA Astrophysics Data System (ADS)
Franzini, Guilherme Rosa; Santos, Rebeca Caramêz Saraiva; Pesce, Celso Pupo
2017-12-01
This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation (i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation.
Do Arctic breeding geese track or overtake a green wave during spring migration?
Si, Yali; Xin, Qinchuan; de Boer, Willem F; Gong, Peng; Ydenberg, Ronald C; Prins, Herbert H T
2015-03-04
Geese breeding in the Arctic have to do so in a short time-window while having sufficient body reserves. Hence, arrival time and body condition upon arrival largely influence breeding success. The green wave hypothesis posits that geese track a successively delayed spring flush of plant development on the way to their breeding sites. The green wave has been interpreted as representing either the onset of spring or the peak in nutrient biomass. However, geese tend to adopt a partial capital breeding strategy and might overtake the green wave to accomplish a timely arrival on the breeding site. To test the green wave hypothesis, we link the satellite-derived onset of spring and peak in nutrient biomass with the stopover schedule of individual Barnacle Geese. We find that geese track neither the onset of spring nor the peak in nutrient biomass. Rather, they arrive at the southernmost stopover site around the peak in nutrient biomass, and gradually overtake the green wave to match their arrival at the breeding site with the local onset of spring, thereby ensuring gosling benefit from the peak in nutrient biomass. Our approach for estimating plant development stages is critical in testing the migration strategies of migratory herbivores.
NASA Astrophysics Data System (ADS)
Yang, Yang; Peng, Zhike; Dong, Xingjian; Zhang, Wenming; Clifton, David A.
2018-03-01
A challenge in analysing non-stationary multi-component signals is to isolate nonlinearly time-varying signals especially when they are overlapped in time and frequency plane. In this paper, a framework integrating time-frequency analysis-based demodulation and a non-parametric Gaussian latent feature model is proposed to isolate and recover components of such signals. The former aims to remove high-order frequency modulation (FM) such that the latter is able to infer demodulated components while simultaneously discovering the number of the target components. The proposed method is effective in isolating multiple components that have the same FM behavior. In addition, the results show that the proposed method is superior to generalised demodulation with singular-value decomposition-based method, parametric time-frequency analysis with filter-based method and empirical model decomposition base method, in recovering the amplitude and phase of superimposed components.
NASA Astrophysics Data System (ADS)
Rollett, T.; Möstl, C.; Isavnin, A.; Davies, J. A.; Kubicka, M.; Amerstorfer, U. V.; Harrison, R. A.
2016-06-01
In this study, we present a new method for forecasting arrival times and speeds of coronal mass ejections (CMEs) at any location in the inner heliosphere. This new approach enables the adoption of a highly flexible geometrical shape for the CME front with an adjustable CME angular width and an adjustable radius of curvature of its leading edge, I.e., the assumed geometry is elliptical. Using, as input, Solar TErrestrial RElations Observatory (STEREO) heliospheric imager (HI) observations, a new elliptic conversion (ElCon) method is introduced and combined with the use of drag-based model (DBM) fitting to quantify the deceleration or acceleration experienced by CMEs during propagation. The result is then used as input for the Ellipse Evolution Model (ElEvo). Together, ElCon, DBM fitting, and ElEvo form the novel ElEvoHI forecasting utility. To demonstrate the applicability of ElEvoHI, we forecast the arrival times and speeds of 21 CMEs remotely observed from STEREO/HI and compare them to in situ arrival times and speeds at 1 AU. Compared to the commonly used STEREO/HI fitting techniques (Fixed-ϕ, Harmonic Mean, and Self-similar Expansion fitting), ElEvoHI improves the arrival time forecast by about 2 to ±6.5 hr and the arrival speed forecast by ≈ 250 to ±53 km s-1, depending on the ellipse aspect ratio assumed. In particular, the remarkable improvement of the arrival speed prediction is potentially beneficial for predicting geomagnetic storm strength at Earth.
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Smith, Nancy M.; Bienert, Nancy; Brasil, Connie; Buckley, Nathan; Chevalley, Eric; Homola, Jeffrey; Omar, Faisal; Parke, Bonny; Yoo, Hyo-Sang
2016-01-01
LaGuardia (LGA) departure delay was identified by the stakeholders and subject matter experts as a significant bottleneck in the New York metropolitan area. Departure delay at LGA is primarily due to dependency between LGA's arrival and departure runways: LGA departures cannot begin takeoff until arrivals have cleared the runway intersection. If one-in one-out operations are not maintained and a significant arrival-to-departure imbalance occurs, the departure backup can persist through the rest of the day. At NASA Ames Research Center, a solution called "Departure-sensitive Arrival Spacing" (DSAS) was developed to maximize the departure throughput without creating significant delays in the arrival traffic. The concept leverages a Terminal Sequencing and Spacing (TSS) operations that create and manage the arrival schedule to the runway threshold and added an interface enhancement to the traffic manager's timeline to provide the ability to manually adjust inter-arrival spacing to build precise gaps for multiple departures between arrivals. A more complete solution would include a TSS algorithm enhancement that could automatically build these multi-departure gaps. With this set of capabilities, inter-arrival spacing could be controlled for optimal departure throughput. The concept was prototyped in a human-in-the- loop (HITL) simulation environment so that operational requirements such as coordination procedures, timing and magnitude of TSS schedule adjustments, and display features for Tower, TRACON and Traffic Management Unit could be determined. A HITL simulation was conducted in August 2014 to evaluate the concept in terms of feasibility, controller workload impact, and potential benefits. Three conditions were tested, namely a Baseline condition without scheduling, TSS condition that schedules the arrivals to the runway threshold, and TSS+DSAS condition that adjusts the arrival schedule to maximize the departure throughput. The results showed that during high arrival demand period, departure throughput could be incrementally increased under TSS and TSS+DSAS conditions without compromising the arrival throughput. The concept, operational procedures, and summary results were originally published in ATM20151 but detailed results were omitted. This paper expands on the earlier paper to provide the detailed results on throughput, conformance, safety, flight time/distance, etc. that provide extra insights into the feasibility and the potential benefits on the concept.
Takakuwa, Kevin M; Burek, Gregory A; Estepa, Adrian T; Shofer, Frances S
2009-10-01
The objectives were to determine if an emergency department (ED) could improve the adherence to a door-to-electrocardiogram (ECG) time goal of 10 minutes or less for patients who presented to an ED with chest pain and the effect of this adherence on door-to-balloon (DTB) time for ST-segment elevation myocardial infarction (STEMI) cardiac catheterization (cath) alert patients. This was a planned 1-month before-and-after interventional study design for implementing a new process for obtaining ECGs in patients presenting to the study ED with chest pain. Prior to the change, patients were registered and triaged before an ECG was obtained. The new procedure required registration clerks to identify those with chest pain and directly overhead page or call a designated ECG technician. This technician had other ED duties, but prioritized performing ECGs and delivering them to attending physicians. A full registration process occurred after the clinical staff performed their initial assessment. The primary outcome was the total percentage of patients with chest pain who received an ECG within 10 minutes of ED arrival. The secondary outcome was DTB time for patients with STEMI who were emergently cath alerted. Data were analyzed using mean differences, 95% confidence intervals (CIs), and relative risk (RR) regression to adjust for possible confounders. A total of 719 patients were studied: 313 before and 405 after the intervention. The mean (+/-standard deviation [SD]) age was 50 (+/-16) years, 54% were women, 57% were African American, and 36% were white. Patients walked in 89% of the time; 11% arrived by ambulance. Thirty-nine percent were triaged as emergent and 61% as nonemergent. Patients presented during daytime 68% of the time, and 32% presented during the night. Before the intervention, 16% received an ECG at 10 minutes or less. After the intervention, 64% met the time requirement, for a mean difference of 47.3% (95% CI = 40.8% to 53.3%, p < 0.0001). Results were not affected by age, sex, race, mode of arrival, triage classification, or time of arrival. For patients with STEMI cath alerts, four were seen before and seven after the intervention. No patients before the intervention had ECG time within 10 minutes, and one of four had DTB time of <90 minutes. After the intervention, all seven patients had ECG time within 10 minutes; the three arriving during weekday hours when the cath team was on site had DTB times of <90 minutes, but the four arriving at night and on weekends when the cath team was off site had DTB times of >90 minutes. The overall percentage of patients with a door-to-ECG time within 10 minutes improved without increasing staffing. An ECG was performed within 10 minutes of arrival for all patients who were STEMI cath alerted, but DTB time under 90 minutes was achieved only when the cath team was on site.
Tidal Analysis and Arrival Process Mining Using Automatic Identification System (AIS) Data
2017-01-01
elevation at the time of vessel movement and calculating the tidal dependence (TD) parameter to 23 U.S. port areas for the years 2012– 2014. Tidal prediction...predictions, obtained from the National Oceanographic and Atmospheric Administration, are used to rank relative tidal dependence for arriving cargo and...sector traffic percentages and tidal dependence metric ............................. 11 Arrival process mining
Optimizing correlation techniques for improved earthquake location
Schaff, D.P.; Bokelmann, G.H.R.; Ellsworth, W.L.; Zanzerkia, E.; Waldhauser, F.; Beroza, G.C.
2004-01-01
Earthquake location using relative arrival time measurements can lead to dramatically reduced location errors and a view of fault-zone processes with unprecedented detail. There are two principal reasons why this approach reduces location errors. The first is that the use of differenced arrival times to solve for the vector separation of earthquakes removes from the earthquake location problem much of the error due to unmodeled velocity structure. The second reason, on which we focus in this article, is that waveform cross correlation can substantially reduce measurement error. While cross correlation has long been used to determine relative arrival times with subsample precision, we extend correlation measurements to less similar waveforms, and we introduce a general quantitative means to assess when correlation data provide an improvement over catalog phase picks. We apply the technique to local earthquake data from the Calaveras Fault in northern California. Tests for an example streak of 243 earthquakes demonstrate that relative arrival times with normalized cross correlation coefficients as low as ???70%, interevent separation distances as large as to 2 km, and magnitudes up to 3.5 as recorded on the Northern California Seismic Network are more precise than relative arrival times determined from catalog phase data. Also discussed are improvements made to the correlation technique itself. We find that for large time offsets, our implementation of time-domain cross correlation is often more robust and that it recovers more observations than the cross spectral approach. Longer time windows give better results than shorter ones. Finally, we explain how thresholds and empirical weighting functions may be derived to optimize the location procedure for any given region of interest, taking advantage of the respective strengths of diverse correlation and catalog phase data on different length scales.
NASA Astrophysics Data System (ADS)
Wang, Xiang; Cannon, Patrick; Zhou, Chen; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu
2016-04-01
Recent ionospheric modification experiments performed at Tromsø, Norway, have indicated that X-mode pump wave is capable of stimulating high-frequency enhanced plasma lines, which manifests the excitation of parametric instability. This paper investigates theoretically how the observation can be explained by the excitation of parametric instability driven by X-mode pump wave. The threshold of the parametric instability has been calculated for several recent experimental observations at Tromsø, illustrating that our derived equations for the excitation of parametric instability for X-mode heating can explain the experimental observations. According to our theoretical calculation, a minimum fraction of pump wave electric field needs to be directed along the geomagnetic field direction in order for the parametric instability threshold to be met. A full-wave finite difference time domain simulation has been performed to demonstrate that a small parallel component of pump wave electric field can be achieved during X-mode heating in the presence of inhomogeneous plasma.
Timing Comparisons for GLEs and High-energy Proton Events using GPS Proton Measurements
NASA Astrophysics Data System (ADS)
Bernstein, V.; Winter, L. M.; Carver, M.; Morley, S.
2017-12-01
The newly released LANL GPS particle sensor data offers a unique snapshot of access of relativistic particles into the geomagnetic field. Currently, 23 of the 31 operational GPS satellites host energetic particle detectors which can detect the arrival of high-energy solar protons associated with Ground Level Enhancements (GLEs). We compare the timing profiles of solar energetic proton detections from GPS satellites as well as from ground-based Neutron Monitors and GOES spacecraft at geostationary orbit in order to understand how high-energy protons from the Sun enter the geomagnetic field and investigate potential differences in arrival time of energetic protons at GPS satellites as a function of location. Previous studies could only use one or two spacecraft at a similar altitude to track the arrival of energetic particles. With GPS data, we can now test whether the particles arrive isotropically, as assumed, or whether there exist differences in the timing and energetics viewed by each of the individual satellites. Extensions of this work could lead to improvements in space weather forecasting that predict more localized risk estimates for space-based technology.
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.; ...
2016-04-01
Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinya; Deng, Zhiqun Daniel; Rauchenstein, Lynn T.
Locating the position of fixed or mobile sources (i.e., transmitters) based on received measurements from sensors is an important research area that is attracting much research interest. In this paper, we present localization algorithms using time of arrivals (TOA) and time difference of arrivals (TDOA) to achieve high accuracy under line-of-sight conditions. The circular (TOA) and hyperbolic (TDOA) location systems both use nonlinear equations that relate the locations of the sensors and tracked objects. These nonlinear equations can develop accuracy challenges because of the existence of measurement errors and efficiency challenges that lead to high computational burdens. Least squares-based andmore » maximum likelihood-based algorithms have become the most popular categories of location estimators. We also summarize the advantages and disadvantages of various positioning algorithms. By improving measurement techniques and localization algorithms, localization applications can be extended into the signal-processing-related domains of radar, sonar, the Global Positioning System, wireless sensor networks, underwater animal tracking, mobile communications, and multimedia.« less
NASA Astrophysics Data System (ADS)
Ryan, Timothy James
The effects of multiple arrivals on the intelligibility of speech produced by live-sound reinforcement systems are examined. The intent is to determine if correlations exist between the manipulation of sound system optimization parameters and the subjective attribute speech intelligibility. Given the number, and wide range, of variables involved, this exploratory research project attempts to narrow the focus of further studies. Investigated variables are delay time between signals arriving from multiple elements of a loudspeaker array, array type and geometry and the two-way interactions of speech-to-noise ratio and array geometry with delay time. Intelligibility scores were obtained through subjective evaluation of binaural recordings, reproduced via headphone, using the Modified Rhyme Test. These word-score results are compared with objective measurements of Speech Transmission Index (STI). Results indicate that both variables, delay time and array geometry, have significant effects on intelligibility. Additionally, it is seen that all three of the possible two-way interactions have significant effects. Results further reveal that the STI measurement method overestimates the decrease in intelligibility due to short delay times between multiple arrivals.
flexsurv: A Platform for Parametric Survival Modeling in R
Jackson, Christopher H.
2018-01-01
flexsurv is an R package for fully-parametric modeling of survival data. Any parametric time-to-event distribution may be fitted if the user supplies a probability density or hazard function, and ideally also their cumulative versions. Standard survival distributions are built in, including the three and four-parameter generalized gamma and F distributions. Any parameter of any distribution can be modeled as a linear or log-linear function of covariates. The package also includes the spline model of Royston and Parmar (2002), in which both baseline survival and covariate effects can be arbitrarily flexible parametric functions of time. The main model-fitting function, flexsurvreg, uses the familiar syntax of survreg from the standard survival package (Therneau 2016). Censoring or left-truncation are specified in ‘Surv’ objects. The models are fitted by maximizing the full log-likelihood, and estimates and confidence intervals for any function of the model parameters can be printed or plotted. flexsurv also provides functions for fitting and predicting from fully-parametric multi-state models, and connects with the mstate package (de Wreede, Fiocco, and Putter 2011). This article explains the methods and design principles of the package, giving several worked examples of its use. PMID:29593450
Clock Synchronization Through Time-Variant Underwater Acoustic Channels
2012-09-01
stage, we analyze a series of chirp responses to identify the least time -varying multipath present in the channel between the two nodes. Based on the... based on the detected arrivals and determines the most stable one based on the correlation coefficient of a model fit to the time -of-arrival estimates...short periods of time . Nevertheless, signal fluctuations can occur due to transceiver motion or inherent changes within the propagation medium
Enhancements to the timing of the OMEGA laser system to improve illumination uniformity
NASA Astrophysics Data System (ADS)
Donaldson, W. R.; Katz, J.; Kosc, T. Z.; Kelly, J. H.; Hill, E. M.; Bahr, R. E.
2016-09-01
Two diagnostics have been developed to improve the uniformity on the OMEGA Laser System, which is used for inertial confinement fusion (ICF) research. The first diagnostic measures the phase of an optical modulator (used for the spectral dispersion technique employed on OMEGA to enhance spatial smoothing), which adds bandwidth to the optical pulse. Setting this phase precisely is required to reduce pointing errors. The second diagnostic ensures that the arrival times of all the beams are synchronized. The arrival of each of the 60 OMEGA beams is measured by placing a 1-mm diffusing sphere at target chamber center. By comparing the arrival time of each beam with respect to a reference pulse, the measured timing spread of the OMEGA Laser System is now 3.8 ps.
NASA Astrophysics Data System (ADS)
Goodenough, Anne E.; Hart, Adam G.; Elliot, Simon L.
2011-01-01
Phenological studies have demonstrated changes in the timing of seasonal events across multiple taxonomic groups as the climate warms. Some northern European migrant bird populations, however, show little or no significant change in breeding phenology, resulting in synchrony with key food sources becoming mismatched. This phenological inertia has often been ascribed to migration constraints (i.e. arrival date at breeding grounds preventing earlier laying). This has been based primarily on research in The Netherlands and Germany where time between arrival and breeding is short (often as few as 9 days). Here, we test the arrival constraint hypothesis over a 15-year period for a U.K. pied flycatcher ( Ficedula hypoleuca) population where laying date is not constrained by arrival as the period between arrival and breeding is substantial and consistent (average 27 ± 4.57 days SD). Despite increasing spring temperatures and quantifiably stronger selection for early laying on the basis of number of offspring to fledge, we found no significant change in breeding phenology, in contrast with co-occurring resident blue tits ( Cyanistes caeruleus). We discuss possible non-migratory constraints on phenological adjustment, including limitations on plasticity, genetic constraints and competition, as well as the possibility of counter-selection pressures relating to adult survival, longevity or future reproductive success. We propose that such factors need to be considered in conjunction with the arrival constraint hypothesis.
Goodenough, Anne E; Hart, Adam G; Elliot, Simon L
2011-01-01
Phenological studies have demonstrated changes in the timing of seasonal events across multiple taxonomic groups as the climate warms. Some northern European migrant bird populations, however, show little or no significant change in breeding phenology, resulting in synchrony with key food sources becoming mismatched. This phenological inertia has often been ascribed to migration constraints (i.e. arrival date at breeding grounds preventing earlier laying). This has been based primarily on research in The Netherlands and Germany where time between arrival and breeding is short (often as few as 9 days). Here, we test the arrival constraint hypothesis over a 15-year period for a U.K. pied flycatcher (Ficedula hypoleuca) population where laying date is not constrained by arrival as the period between arrival and breeding is substantial and consistent (average 27 ± 4.57 days SD). Despite increasing spring temperatures and quantifiably stronger selection for early laying on the basis of number of offspring to fledge, we found no significant change in breeding phenology, in contrast with co-occurring resident blue tits (Cyanistes caeruleus). We discuss possible non-migratory constraints on phenological adjustment, including limitations on plasticity, genetic constraints and competition, as well as the possibility of counter-selection pressures relating to adult survival, longevity or future reproductive success. We propose that such factors need to be considered in conjunction with the arrival constraint hypothesis.
Route Optimization for Offloading Congested Meter Fixes
NASA Technical Reports Server (NTRS)
Xue, Min; Zelinski, Shannon
2016-01-01
The Optimized Route Capability (ORC) concept proposed by the FAA facilitates traffic managers to identify and resolve arrival flight delays caused by bottlenecks formed at arrival meter fixes when there exists imbalance between arrival fixes and runways. ORC makes use of the prediction capability of existing automation tools, monitors the traffic delays based on these predictions, and searches the best reroutes upstream of the meter fixes based on the predictions and estimated arrival schedules when delays are over a predefined threshold. Initial implementation and evaluation of the ORC concept considered only reroutes available at the time arrival congestion was first predicted. This work extends previous work by introducing an additional dimension in reroute options such that ORC can find the best time to reroute and overcome the 'firstcome- first-reroute' phenomenon. To deal with the enlarged reroute solution space, a genetic algorithm was developed to solve this problem. Experiments were conducted using the same traffic scenario used in previous work, when an arrival rush was created for one of the four arrival meter fixes at George Bush Intercontinental Houston Airport. Results showed the new approach further improved delay savings. The suggested route changes from the new approach were on average 30 minutes later than those using other approaches, and fewer numbers of reroutes were required. Fewer numbers of reroutes reduce operational complexity and later reroutes help decision makers deal with uncertain situations.
SPX-8 SpaceX Dragon Spacecraft Grappled by SSRMS
2016-04-10
iss047e050978 (4/10/2016) --- The SpaceX Dragon cargo spaceship is grappled by the International Space Station’s Canadarm2. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six.
Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Masayuki
Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T{sub i} {approx} 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less
Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Masayuki.
Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T[sub i] [approx] 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less
Chain Rule Approach for Calculating the Time-Derivative of Flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenbrunner, James R.; Booker, Jane M.
The reaction history (gamma-flux observable) is mathematically studied by using the chain rule for taking the total-time derivatives. That is, the total time-derivative of flux is written as the product of the ion temperature derivative with respect to time and the derivative of the flux with respect to ion temperature. Some equations are derived using the further simplification that the fusion reactivity is a parametrized function of ion temperature, T. Deuterium-tritium (D-T) fusion is used as the application with reactivity calculations from three established reactivity parametrizations.
Yang, Jong Min; Park, Yoo Seok; Chung, Sung Phil; Chung, Hyun Soo; Lee, Hye Sun; You, Je Sung; Lee, Shin Ho; Park, Incheol
2014-08-01
Admission on weekends and off-hours has been associated with poor outcomes and mortality from acute stroke. The purpose of this study was to investigate whether an organized clinical pathway (CP) for ischemic stroke can effectively reduce the time from arrival to evaluation and treatment in the emergency department (ED) and improve outcomes, regardless of the time from arrival in the ED. We conducted a retrospective analysis of all consecutive patients included in the prospective registry database in the Brain Salvage through Emergency Stroke Therapy program, which uses the computerized physician order entry (CPOE) system. Patients were classified based on their time of arrival in the ED: group 1, normal working hours on weekdays; group 2, off-hours on weekdays; group 3, normal working hours on weekends; and group 4, off-hours on weekends. Clinical outcomes were categorized according to 30 days in-hospital mortality, in-hospital mortality, and the modified Rankin score during a single length of stay (LOS). No time intervals differed significantly among the 4 patient groups who received intravenous administration of tissue plasminogen activator (IV-tPA). Use of IV-tPA (P = .5110) was not affected by arrival in the ED on off-days or weekends. The overall mortality rate was 3.9%, and the median LOS was 7 days (Interquartile range (IQR), 5-10). By Kaplan-Meier analysis, the cumulative probability of mortality and survival did not differ significantly among the 4 groups over 30 days (P = .1557). An organized CP, based on CPOE, for ischemic stroke can effectively attenuate disparities in the time interval between ED arrival to evaluation and treatment regardless of ED arrival time. This pathway may also help to eliminate off-hour and weekend effects on outcomes from ischemic stroke. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Chevalley, Eric; Parke, Bonny; Kraut, Josh M.; Bienert, Nancy; Omar, Faisal; Palmer, Everett A.
2015-01-01
In this paper, successful Time-Based Flow Management (TBFM) scheduling systems for arrivals are considered and adapted to apply to departures. We present a concept of operations that integrates Controller-Managed Spacing tools for departures (CMS-D) with existing tactical departure scheduling tools to coordinate demand at departure fixes in a metroplex environment. We tested our concept in a Human-in-the-Loop simulation and compared the effect of two scheduling conditions: 1) "Departure Scheduling" consisting of an emulation of the Integrated Departure and Arrival Capability (IDAC) where Towers and a Planner (Traffic Management Coordinator at the appropriate facility) coordinate aircraft scheduled takeoff times to departure fixes; and 2) "Arrival Sensitive Departure Scheduling" where, in addition, the Tower and Planner also consider arrival Scheduled Time of Arrivals (STAs) at the airport's dependent runway. Results indicate little difference between the two scheduling conditions, but a large difference between the No Tools and the two scheduling conditions with CMS-D tools. The scheduling/CMS-D tools conditions markedly reduced heading, speed clearances, and workload for controllers who were merging flows at the departure fixes. In the tool conditions, departure controllers conditioned departures earlier rather than later when aircraft were tied near the departure fixes. In the scheduling/CMS-D tools conditions, departures crossed the departure fixes 50 seconds earlier and with an 8% error rate (consisting of time ahead or behind desired time of arrival) compared to a 19% error rate in the No Tool condition. Two exploratory runs showed that similar beneficial effects can be obtained only with the CMS-D tools without scheduling takeoff times, but at the cost of a somewhat higher workload for controllers, indicating the benefits of pre-departure scheduling of aircraft with minimal delays. Hence, we found that CMS-D tools were very beneficial in the metroplex environment we tested but that further research is needed to clarify the benefits of the various scheduling approaches.
NASA Astrophysics Data System (ADS)
Donegan, M.; Vandegriff, J.; Ho, G. C.; Julia, S. J.
2004-12-01
We report on an operational system which provides advance warning and predictions of arrival times at Earth of interplanetary (IP) shocks that originate at the Sun. The data stream used in our prediction algorithm is real-time and comes from the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. Since locally accelerated energetic storm particle (ESP) events accompany most IP shocks, their arrival can be predicted using ESP event signatures. We have previously reported on the development and implementation of an algorithm which recognizes the upstream particle signature of approaching IP shocks and provides estimated countdown predictions. A web-based system (see (http://sd-www.jhuapl.edu/UPOS/RISP/index.html) combines this prediction capability with real-time ACE/EPAM data provided by the NOAA Space Environment Center. The most recent ACE data is continually processed and predictions of shock arrival time are updated every five minutes when an event is impending. An operational display is provided to indicate advisories and countdowns for the event. Running the algorithm on a test set of historical events, we obtain a median error of about 10 hours for predictions made 24-36 hours before actual shock arrival and about 6 hours when the shock is 6-12 hours away. This system can provide critical information to mission planners, satellite operations controllers, and scientists by providing significant lead-time for approaching events. Recently, we have made improvements to the triggering mechanism as well as re-training the neural network, and here we report prediction results from the latest system.
Stick balancing with reflex delay in case of parametric forcing
NASA Astrophysics Data System (ADS)
Insperger, Tamas
2011-04-01
The effect of parametric forcing on a PD control of an inverted pendulum is analyzed in the presence of feedback delay. The stability of the time-periodic and time-delayed system is determined numerically using the first-order semi-discretization method in the 5-dimensional parameter space of the pendulum's length, the forcing frequency, the forcing amplitude, the proportional and the differential gains. It is shown that the critical length of the pendulum (that can just be balanced against the time-delay) can significantly be decreased by parametric forcing even if the maximum forcing acceleration is limited. The numerical analysis showed that the critical stick length about 30 cm corresponding to the unforced system with reflex delay 0.1 s can be decreased to 18 cm with keeping maximum acceleration below the gravitational acceleration.
NASA Astrophysics Data System (ADS)
Most, S.; Dentz, M.; Bolster, D.; Bijeljic, B.; Nowak, W.
2017-12-01
Transport in real porous media shows non-Fickian characteristics. In the Lagrangian perspective this leads to skewed distributions of particle arrival times. The skewness is triggered by particles' memory of velocity that persists over a characteristic length. Capturing process memory is essential to represent non-Fickianity thoroughly. Classical non-Fickian models (e.g., CTRW models) simulate the effects of memory but not the mechanisms leading to process memory. CTRWs have been applied successfully in many studies but nonetheless they have drawbacks. In classical CTRWs each particle makes a spatial transition for which each particle adapts a random transit time. Consecutive transit times are drawn independently from each other, and this is only valid for sufficiently large spatial transitions. If we want to apply a finer numerical resolution than that, we have to implement memory into the simulation. Recent CTRW methods use transitions matrices to simulate correlated transit times. However, deriving such transition matrices require transport data of a fine-scale transport simulation, and the obtained transition matrix is solely valid for this single Péclet regime. The CTRW method we propose overcomes all three drawbacks: 1) We simulate transport without restrictions in transition length. 2) We parameterize our CTRW without requiring a transport simulation. 3) Our parameterization scales across Péclet regimes. We do so by sampling the pore-scale velocity distribution to generate correlated transit times as a Lévy flight on the CDF-axis of velocities with reflection at 0 and 1. The Lévy flight is parametrized only by the correlation length. We explicitly model memory including the evolution and decay of non-Fickianity, so it extends from local via pre-asymptotic to asymptotic scales.
Experimental Evaluation of CTAS/FMS Integration in TRACON Airspace
NASA Technical Reports Server (NTRS)
Romahn, Stephen; Palmer, Everett; Null, Cynthia H. (Technical Monitor)
1999-01-01
A CTAS/FMS integration project at Ames Research Center addresses extensions to the CTAS air traffic management concept, among them the introduction of arrival routes specially designed for the use with a Flight Management System. These FMS arrival routes shall allow for the use of the INS' lateral and vertical navigation capabilities throughout the arrival until final approach. For the use in this project CTAS controller support tools that compliment the concept have been created. These tools offer controllers access to CTAS' prediction and planning capabilities in terms of speed and route advisories. The objective is to allow for a more strategic way of controlling aircraft. Expected benefits are an increase in arrival rate and a reduction of average travel times through TRACER airspace. A real time simulation is being conducted at Ames to investigate how FMS arrivals and approach transitions - with and without the support of CTAS tools - effect the flow of arriving traffic within TRACER airspace and the controllers' task performance. Four conditions will be investigated and compared to today's technique of controlling traffic with tactical vectoring: 1. FMS arrivals and approach transitions are available for controllers to issue to equipped aircraft - traffic permitting; 2. Speed advisories that match CTAS' runway balancing and sequencing plan are displayed to Feeder controllers; 3. Approach transition advisories (e.g., location of the base turn point) are displayed to Final controllers for tactical clearances ("Turn base now"); and 4. Approach transition advisories (voice and data link) are generated by CTAS and displayed to final controllers for strategic voice clearances ("Turn base five miles after waypoint xyz") or prepared in terms of a trajectory description for strategic data link clearance. Scenarios used in the study will represent current traffic and vary in density of arriving traffic and the kind and mix of equipage of arriving aircraft. Data will be collected from experiment runs with active TRACON controllers on the final approach spacing, the aircraft's speed profiles, the controllers interaction with CTAS tools, and number and timing of pilot controllers communications under the described conditions.
Optimization of space manufacturing systems
NASA Technical Reports Server (NTRS)
Akin, D. L.
1979-01-01
Four separate analyses are detailed: transportation to low earth orbit, orbit-to-orbit optimization, parametric analysis of SPS logistics based on earth and lunar source locations, and an overall program option optimization implemented with linear programming. It is found that smaller vehicles are favored for earth launch, with the current Space Shuttle being right at optimum payload size. Fully reusable launch vehicles represent a savings of 50% over the Space Shuttle; increased reliability with less maintenance could further double the savings. An optimization of orbit-to-orbit propulsion systems using lunar oxygen for propellants shows that ion propulsion is preferable by a 3:1 cost margin over a mass driver reaction engine at optimum values; however, ion engines cannot yet operate in the lower exhaust velocity range where the optimum lies, and total program costs between the two systems are ambiguous. Heavier payloads favor the use of a MDRE. A parametric model of a space manufacturing facility is proposed, and used to analyze recurring costs, total costs, and net present value discounted cash flows. Parameters studied include productivity, effects of discounting, materials source tradeoffs, economic viability of closed-cycle habitats, and effects of varying degrees of nonterrestrial SPS materials needed from earth. Finally, candidate optimal scenarios are chosen, and implemented in a linear program with external constraints in order to arrive at an optimum blend of SPS production strategies in order to maximize returns.
Vers des boites quantiques a base de graphene
NASA Astrophysics Data System (ADS)
Branchaud, Simon
Le graphene est un materiau a base de carbone qui est etudie largement depuis 2004. De tres nombreux articles ont ete publies tant sur les proprietes electroniques, qu'optiques ou mecaniques de ce materiel. Cet ouvrage porte sur l'etude des fluctuations de conductance dans le graphene, et sur la fabrication et la caracterisation de nanostructures gravees dans des feuilles de ce cristal 2D. Des mesures de magnetoresistance a basse temperature ont ete faites pres du point de neutralite de charge (PNC) ainsi qu'a haute densite electronique. On trouve deux origines aux fluctuations de conductance pres du PNC, soit des oscillations mesoscopiques provenant de l'interference quantique, et des fluctuations dites Hall quantique apparaissant a plus haut champ (>0.5T), semblant suivre les facteurs de remplissage associes aux monocouches de graphene. Ces dernieres fluctuations sont attribuees a la charge d'etats localises, et revelent un precurseur a l'effet Hall quantique, qui lui, ne se manifeste pas avant 2T. On arrive a extraire les parametres caracterisant l'echantillon a partir de ces donnees. A la fin de cet ouvrage, on effectue des mesures de transport dans des constrictions et ilots de graphene, ou des boites quantiques sont formees. A partir de ces mesures, on extrait les parametres importants de ces boites quantiques, comme leur taille et leur energie de charge.
NASA Astrophysics Data System (ADS)
Gu, Cunchang; Mu, Yundong
2013-03-01
In this paper, we consider a single machine on-line scheduling problem with the special chains precedence and delivery time. All jobs arrive over time. The chains chainsi arrive at time ri , it is known that the processing and delivery time of each job on the chain satisfy one special condition CD a forehand: if the job J(i)j is the predecessor of the job J(i)k on the chain chaini, then they satisfy p(i)j = p(i)k = p >= qj >= qk , i = 1,2, ---,n , where pj and qj denote the processing time and the delivery time of the job Jj respectively. Obviously, if the arrival jobs have no chains precedence, it shows that the length of the corresponding chain is 1. The objective is to minimize the time by which all jobs have been delivered. We provide an on-line algorithm with a competitive ratio of √2 , and the result is the best possible.
Changing space and sound: Parametric design and variable acoustics
NASA Astrophysics Data System (ADS)
Norton, Christopher William
This thesis examines the potential for parametric design software to create performance based design using acoustic metrics as the design criteria. A former soundstage at the University of Southern California used by the Thornton School of Music is used as a case study for a multiuse space for orchestral, percussion, master class and recital use. The criteria used for each programmatic use include reverberation time, bass ratio, and the early energy ratios of the clarity index and objective support. Using a panelized ceiling as a design element to vary the parameters of volume, panel orientation and type of absorptive material, the relationships between these parameters and the design criteria are explored. These relationships and subsequently derived equations are applied to Grasshopper parametric modeling software for Rhino 3D (a NURBS modeling software). Using the target reverberation time and bass ratio for each programmatic use as input for the parametric model, the genomic optimization function of Grasshopper - Galapagos - is run to identify the optimum ceiling geometry and material distribution.
First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO
NASA Astrophysics Data System (ADS)
Blair, Carl; Gras, Slawek; Abbott, Richard; Aston, Stuart; Betzwieser, Joseph; Blair, David; DeRosa, Ryan; Evans, Matthew; Frolov, Valera; Fritschel, Peter; Grote, Hartmut; Hardwick, Terra; Liu, Jian; Lormand, Marc; Miller, John; Mullavey, Adam; O'Reilly, Brian; Zhao, Chunnong; Abbott, B. P.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gray, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Izumi, K.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Mittleman, R.; Moreno, G.; Mueller, G.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors
2017-04-01
Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.
PREDICTION OF GEOMAGNETIC STORM STRENGTH FROM INNER HELIOSPHERIC IN SITU OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubicka, M.; Möstl, C.; Amerstorfer, T.
2016-12-20
Prediction of the effects of coronal mass ejections (CMEs) on Earth strongly depends on knowledge of the interplanetary magnetic field southward component, B{sub z}. Predicting the strength and duration of B{sub z} inside a CME with sufficient accuracy is currently impossible, forming the so-called B{sub z} problem. Here, we provide a proof-of-concept of a new method for predicting the CME arrival time, speed, B{sub z}, and resulting disturbance storm time ( Dst ) index on Earth based only on magnetic field data, measured in situ in the inner heliosphere (<1 au). On 2012 June 12–16, three approximately Earthward-directed and interactingmore » CMEs were observed by the Solar Terrestrial Relations Observatory imagers and Venus Express (VEX) in situ at 0.72 au, 6° away from the Sun–Earth line. The CME kinematics are calculated using the drag-based and WSA–Enlil models, constrained by the arrival time at VEX , resulting in the CME arrival time and speed on Earth. The CME magnetic field strength is scaled with a power law from VEX to Wind . Our investigation shows promising results for the Dst forecast (predicted: −96 and −114 nT (from 2 Dst models); observed: −71 nT), for the arrival speed (predicted: 531 ± 23 km s{sup −1}; observed: 488 ± 30 km s{sup −1}), and for the timing (6 ± 1 hr after the actual arrival time). The prediction lead time is 21 hr. The method may be applied to vector magnetic field data from a spacecraft at an artificial Lagrange point between the Sun and Earth or to data taken by any spacecraft temporarily crossing the Sun–Earth line.« less
Dandoy, Christopher E; Hariharan, Selena; Weiss, Brian; Demmel, Kathy; Timm, Nathan; Chiarenzelli, Janis; Dewald, Mary Katherine; Kennebeck, Stephanie; Langworthy, Shawna; Pomales, Jennifer; Rineair, Sylvia; Sandfoss, Erin; Volz-Noe, Pamela; Nagarajan, Rajaram; Alessandrini, Evaline
2016-02-01
Timely delivery of antibiotics to febrile immunocompromised (F&I) paediatric patients in the emergency department (ED) and outpatient clinic reduces morbidity and mortality. The aim of this quality improvement initiative was to increase the percentage of F&I patients who received antibiotics within goal in the clinic and ED from 25% to 90%. Using the Model of Improvement, we performed Plan-Do-Study-Act cycles to design, test and implement high-reliability interventions to decrease time to antibiotics. Pre-arrival interventions were tested and implemented, followed by post-arrival interventions in the ED. Many processes were spread successfully to the outpatient clinic. The Chronic Care Model was used, in addition to active family engagement, to inform and improve processes. The study period was from January 2010 to January 2015. Pre-arrival planning improved our F&I time to antibiotics in the ED from 137 to 88 min. This was sustained until October 2012, when further interventions including a pre-arrival huddle decreased the median time to <50 min. Implementation of the various processes to the clinic delivery system increased the mean percentage of patients receiving antibiotics within 60 min to >90%. In September 2014, we implemented a rapid response team to improve reliable venous access in the ED, which increased our mean percentage of patients receiving timely antibiotics to its highest rate (95%). This stepwise approach with pre-arrival planning using the Chronic Care Model, followed by standardisation of processes, created a sustainable improvement of timely antibiotic delivery in F&I patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea.
Rideout, Brendan P; Dosso, Stan E; Hannay, David E
2013-09-01
This paper develops and applies a linearized Bayesian localization algorithm based on acoustic arrival times of marine mammal vocalizations at spatially-separated receivers which provides three-dimensional (3D) location estimates with rigorous uncertainty analysis. To properly account for uncertainty in receiver parameters (3D hydrophone locations and synchronization times) and environmental parameters (water depth and sound-speed correction), these quantities are treated as unknowns constrained by prior estimates and prior uncertainties. Unknown scaling factors on both the prior and arrival-time uncertainties are estimated by minimizing Akaike's Bayesian information criterion (a maximum entropy condition). Maximum a posteriori estimates for sound source locations and times, receiver parameters, and environmental parameters are calculated simultaneously using measurements of arrival times for direct and interface-reflected acoustic paths. Posterior uncertainties for all unknowns incorporate both arrival time and prior uncertainties. Monte Carlo simulation results demonstrate that, for the cases considered here, linearization errors are small and the lack of an accurate sound-speed profile does not cause significant biases in the estimated locations. A sequence of Pacific walrus vocalizations, recorded in the Chukchi Sea northwest of Alaska, is localized using this technique, yielding a track estimate and uncertainties with an estimated speed comparable to normal walrus swim speeds.
Computing arrival times of firefighting resources for initial attack
Romain M. Mees
1978-01-01
Dispatching of firefighting resources requires instantaneous or precalculated decisions. A FORTRAN computer program has been developed that can provide a list of resources in order of computed arrival time for initial attack on a fire. The program requires an accurate description of the existing road system and a list of all resources available on a planning unit....
Upgraded FAA Airfield Capacity Model. Volume 1. Supplemental User’s Guide
1981-02-01
SIGMAR (P4.0) cc 1-4 -standard deviation, in seconds, of arrival runway occupancy time (R.O.T.). SIGMAA (F4.0) cc 5-8 -standard deviation, in seconds...iI SI GMAC - The standard deviation of the time from departure clearance to start of roll. SIGMAR - The standard deviation of the arrival runway
An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT
Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan
2016-01-01
In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process. PMID:27827909
An Arrival and Departure Time Predictor for Scheduling Communication in Opportunistic IoT.
Pozza, Riccardo; Georgoulas, Stylianos; Moessner, Klaus; Nati, Michele; Gluhak, Alexander; Krco, Srdjan
2016-11-04
In this article, an Arrival and Departure Time Predictor (ADTP) for scheduling communication in opportunistic Internet of Things (IoT) is presented. The proposed algorithm learns about temporal patterns of encounters between IoT devices and predicts future arrival and departure times, therefore future contact durations. By relying on such predictions, a neighbour discovery scheduler is proposed, capable of jointly optimizing discovery latency and power consumption in order to maximize communication time when contacts are expected with high probability and, at the same time, saving power when contacts are expected with low probability. A comprehensive performance evaluation with different sets of synthetic and real world traces shows that ADTP performs favourably with respect to previous state of the art. This prediction framework opens opportunities for transmission planners and schedulers optimizing not only neighbour discovery, but the entire communication process.
DRAW: Dynamic Routes for Arrivals in Weather: Concept and Trial Planning Overview
NASA Technical Reports Server (NTRS)
Gong, Chester
2016-01-01
Presentation for FAA sponsored meeting to discuss time-based metering trial planning. This presentation describes the Dynamic Routes for Arrivals in Weather (DRAW) concept and the associated trial planning functionality.
A Methodology for the Parametric Reconstruction of Non-Steady and Noisy Meteorological Time Series
NASA Astrophysics Data System (ADS)
Rovira, F.; Palau, J. L.; Millán, M.
2009-09-01
Climatic and meteorological time series often show some persistence (in time) in the variability of certain features. One could regard annual, seasonal and diurnal time variability as trivial persistence in the variability of some meteorological magnitudes (as, e.g., global radiation, air temperature above surface, etc.). In these cases, the traditional Fourier transform into frequency space will show the principal harmonics as the components with the largest amplitude. Nevertheless, meteorological measurements often show other non-steady (in time) variability. Some fluctuations in measurements (at different time scales) are driven by processes that prevail on some days (or months) of the year but disappear on others. By decomposing a time series into time-frequency space through the continuous wavelet transformation, one is able to determine both the dominant modes of variability and how those modes vary in time. This study is based on a numerical methodology to analyse non-steady principal harmonics in noisy meteorological time series. This methodology combines both the continuous wavelet transform and the development of a parametric model that includes the time evolution of the principal and the most statistically significant harmonics of the original time series. The parameterisation scheme proposed in this study consists of reproducing the original time series by means of a statistically significant finite sum of sinusoidal signals (waves), each defined by using the three usual parameters: amplitude, frequency and phase. To ensure the statistical significance of the parametric reconstruction of the original signal, we propose a standard statistical t-student analysis of the confidence level of the amplitude in the parametric spectrum for the different wave components. Once we have assured the level of significance of the different waves composing the parametric model, we can obtain the statistically significant principal harmonics (in time) of the original time series by using the Fourier transform of the modelled signal. Acknowledgements The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (València, Spain). This study has been partially funded by the European Commission (FP VI, Integrated Project CIRCE - No. 036961) and by the Ministerio de Ciencia e Innovación, research projects "TRANSREG” (CGL2007-65359/CLI) and "GRACCIE” (CSD2007-00067, Program CONSOLIDER-INGENIO 2010).
High resolution time of arrival estimation for a cooperative sensor system
NASA Astrophysics Data System (ADS)
Morhart, C.; Biebl, E. M.
2010-09-01
Distance resolution of cooperative sensors is limited by the signal bandwidth. For the transmission mainly lower frequency bands are used which are more narrowband than classical radar frequencies. To compensate this resolution problem the combination of a pseudo-noise coded pulse compression system with superresolution time of arrival estimation is proposed. Coded pulsecompression allows secure and fast distance measurement in multi-user scenarios which can easily be adapted for data transmission purposes (Morhart and Biebl, 2009). Due to the lack of available signal bandwidth the measurement accuracy degrades especially in multipath scenarios. Superresolution time of arrival algorithms can improve this behaviour by estimating the channel impulse response out of a band-limited channel view. For the given test system the implementation of a MUSIC algorithm permitted a two times better distance resolution as the standard pulse compression.
A Comparison of Center/TRACON Automation System and Airline Time of Arrival Predictions
NASA Technical Reports Server (NTRS)
Heere, Karen R.; Zelenka, Richard E.
2000-01-01
Benefits from information sharing between an air traffic service provider and a major air carrier are evaluated. Aircraft arrival time schedules generated by the NASA/FAA Center/TRACON Automation System (CTAS) were provided to the American Airlines System Operations Control Center in Fort Worth, Texas, during a field trial of a specialized CTAS display. A statistical analysis indicates that the CTAS schedules, based on aircraft trajectories predicted from real-time radar and weather data, are substantially more accurate than the traditional airline arrival time estimates, constructed from flight plans and en route crew updates. The improvement offered by CTAS is especially advantageous during periods of heavy traffic and substantial terminal area delay, allowing the airline to avoid large predictive errors with serious impact on the efficiency and profitability of flight operations.
An analysis of the geodesy and relativity experiments of BepiColombo
NASA Astrophysics Data System (ADS)
Imperi, Luigi; Iess, Luciano; Mariani, Mirco J.
2018-02-01
BepiColombo is a ESA-JAXA mission aimed to a comprehensive exploration of Mercury, the innermost planet of the solar system. The Mercury Orbiter Radio science Experiment (MORE) will exploit a state of the art microwave tracking system, including an advanced Ka-band transponder, to determine the gravity field and the rotational state of the planet, and to perform extensive tests of relativistic gravity. In this work we analyze all the aspects of the radio science investigation, which include: (i) the solar conjunction experiment in cruise; (ii) the gravimetry and rotation experiments; (iii) the fundamental physics test. We report on the results of numerical simulations based on the latest mission scenario, with launch in October 2018 and arrival at Mercury in December 2025. We show that the gravity and rotation measurements expected from BepiColombo will allow to better characterize the size of an inner solid core inside the outer liquid core, and the properties of the outer mantle and the crust. We discuss how the current estimate of several parametrized post-Newtonian (PPN) parameters can be improved by MORE through the determination of the heliocentric motion of Mercury and by measuring the propagation time of radio waves. We also assess in a quantitative way the benefits of an extended mission.
NASA Astrophysics Data System (ADS)
McKenna, Mihan H.; Stump, Brian W.; Hayward, Chris
2008-06-01
The Chulwon Seismo-Acoustic Array (CHNAR) is a regional seismo-acoustic array with co-located seismometers and infrasound microphones on the Korean peninsula. Data from forty-two days over the course of a year between October 1999 and August 2000 were analyzed; 2052 infrasound-only arrivals and 23 seismo-acoustic arrivals were observed over the six week study period. A majority of the signals occur during local working hours, hour 0 to hour 9 UT and appear to be the result of cultural activity located within a 250 km radius. Atmospheric modeling is presented for four sample days during the study period, one in each of November, February, April, and August. Local meteorological data sampled at six hour intervals is needed to accurately model the observed arrivals and this data produced highly temporally variable thermal ducts that propagated infrasound signals within 250 km, matching the temporal variation in the observed arrivals. These ducts change dramatically on the order of hours, and meteorological data from the appropriate sampled time frame was necessary to interpret the observed arrivals.
Using the ENTLN lightning catalog to identify thunder signals in the USArray Transportable Array
NASA Astrophysics Data System (ADS)
Tytell, J. E.; Reyes, J. C.; Vernon, F.; Sloop, C.; Heckman, S.
2013-12-01
Severe weather events can pose a challenge for seismic analysts who regularly see non-seismic signals recorded at the stations. Sometimes, the noise from thunder can be confused with signals from seismic events such as quarry blasts or earthquakes depending on where and when the noise is observed. Automatic analysis of data is also severely affected by big amplitude arrivals that we could safely ignore. A comprehensive lightning catalog for the continental US in conjunction with a travel time model for thunder arrivals can help analysts identify some of these unknown sources. Researchers from Earthscope's USArray Transportable Array (TA) have partnered with the Earth Networks Total Lightning Network (ENTLN) in an effort to create such a catalog. Predicted thunder arrivals from some powerful meteorological systems affecting the main TA footprint will undergo extensive evaluation. We will examine the veracity of the predicted arrivals at different distances and azimuths and the time accuracy of the model. A combination of barometric pressure and seismic signals will be use to verify these arrivals.
Solar wind modulation of UK lightning
NASA Astrophysics Data System (ADS)
Davis, Chris; Harrison, Giles; Lockwood, Mike; Owens, Mathew; Barnard, Luke
2013-04-01
The response of lightning rates in the UK to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. The fast solar wind streams' arrivals are determined from modulation of the solar wind Vy component, measured by the Advanced Composition Explorer (ACE) spacecraft. Lightning rate changes around these event times are then determined from the very low frequency Arrival Time Difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream's source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 day rate of the Sun. Arrival of the high speed stream at Earth also coincides with a rapid decrease in cosmic ray flux and an increase in lightning rates over the UK, persisting for around 40 days. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again for around 40 days after the arrival of a high speed solar wind stream. This increase in lightning may be beneficial to medium range forecasting of hazardous weather.
Pitts, Eric P
2011-01-01
This study looked at the medication ordering error frequency and the length of inpatient hospital stay in a subpopulation of stroke patients (n-60) as a function of time of patient admission to an inpatient rehabilitation hospital service. A total of 60 inpatient rehabilitation patients, 30 arriving before 4 pm, and 30 arriving after 4 pm, with as admitting diagnosis of stroke were randomly selected from a larger sample (N=426). There was a statistically significant increase in medication ordering errors and the number of inpatient rehabilitation hospital days in the group of patients who arrived after 4 pm.
Spatiotemporal structure of biphoton entanglement in type-II parametric down-conversion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brambilla, E.; Caspani, L.; Lugiato, L. A.
2010-07-15
We investigate the spatiotemporal structure of the biphoton correlation in type-II parametric down-conversion (PDC). As in type-I PDC [Phys. Rev. Lett. 102, 223601 (2009)], we find that the correlation is nonfactorizable in space and time. Differently from type I, the type-II correlation in the spontaneous regime displays an asymmetric V-shaped structure in any cross section including time and one transverse dimension. This asymmetry along the temporal coordinate originates from the signal-idler group velocity mismatch and tends to disappear as the parametric gain is raised. We observe a progressive transition toward a symmetric X-shaped geometry similar to that found in typemore » I when stimulated PDC becomes dominant. We also give quantitative evaluations of the localization in space and in time of the correlation, analyze its behavior for different crystal tuning angles, and underline qualitative differences with respect to type-I PDC.« less
Nonparametric autocovariance estimation from censored time series by Gaussian imputation.
Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K
2009-02-01
One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.
Rise Time of the Simulated VERITAS 12 m Davies-Cotton Reflector
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Richard J.
The Very Energetic Radiation Imaging Telescope Array System (VERITAS) will utilise Imaging Atmospheric Cherenkov Telescopes (IACTs) based on a Davies-Cotton design with f-number f/1.0 to detect cosmic gamma-rays. Unlike a parabolic reflector, light from the Davies-Cotton does not arrive isochronously at the camera. Here the effect of the telescope geometry on signal rise-time is examined. An almost square-pulse arrival time profile with a rise time of 1.7 ns is found analytically and confirmed through simulation.
Then and Now: Comparing the Flow of Foreign Fighters to AQI and the Islamic State
2016-12-01
State during separate blocks of time . Second, it provides insight into the local travel and flow of foreign fighters across time , and the mobilization...who joined the Islamic State during that latter time period also traveled alone more frequently. When they didn’t travel alone, they arrived in...arriving at the caliphate are larger than they were during the time period covered by the Sinjar records. A couple of cases of group travel to Syria
Techniques for measuring arrival times of pulsar signals 1: DSN observations from 1968 to 1980
NASA Technical Reports Server (NTRS)
Downs, G. S.; Reichley, P. E.
1980-01-01
Techniques used in the ground based observations of pulsars are described, many of them applicable in a navigation scheme. The arrival times of the pulses intercepting Earth are measured at time intervals from a few days to a few months. Low noise, wide band receivers, amplify signals intercepted by 26 m, 34, and 64 m antennas. Digital recordings of total received signal power versus time are cross correlated with the appropriate pulse template.
Park, Yoo Seok; Chung, Sung Phil; You, Je Sung; Kim, Min Joung; Chung, Hyun Soo; Hong, Jung Hwa; Lee, Hye Sun; Wang, Jinwon; Park, Incheol
2016-08-16
The purpose of this study was to investigate whether a multidisciplinary organised critical pathway (CP) for ST-segment elevation myocardial infarction (STEMI) management can significantly attenuate differences in the duration from emergency department (ED) arrival to evaluation and treatment, regardless of the arrival time, by eliminating off-hour and weekend effects. Retrospective observational cohort study. 2 tertiary academic hospitals. Consecutive patients in the Fast Interrogation Rule for STEMI (FIRST) program. A study was conducted on patients in the FIRST program, which uses a computerised physician order entry (CPOE) system. The patient demographics, time intervals and clinical outcomes were analysed based on the arrival time at the ED: group 1, normal working hours on weekdays; group 2, off-hours on weekdays; group 3, normal working hours on weekends; and group 4, off-hours on weekends. Clinical outcomes categorised according to 30-day mortality, in-hospital mortality and the length of stay. The duration from door-to-data or FIRST activation did not differ significantly among the 4 groups. The median duration between arrival and balloon placement during percutaneous coronary intervention did not significantly exceed 90 min, and the proportions (89.6-95.1%) of patients with door-to-balloon times within 90 min did not significantly differ among the 4 groups, regardless of the ED arrival time (p=0.147). Moreover, no differences in the 30-day (p=0.8173) and in-hospital mortality (p=0.9107) were observed in patients with STEMI. A multidisciplinary CP for STEMI based on a CPOE system can effectively decrease disparities in the door-to-data duration and proportions of patients with door-to-balloon times within 90 min, regardless of the ED arrival time. The application of a multidisciplinary CP may also help attenuate off-hour and weekend effects in STEMI clinical outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Performance of BEBE-prototype: A BEam-BEam counter prototype for the MPD-NICA experiment at JINR
NASA Astrophysics Data System (ADS)
Fernández, Cristian Heber Zepeda
2018-01-01
In this work we show the arrival time resolution for the Beam Monitoring Detector (BMD). We made the study for Au+Au collision at √s = 8 Gev and a smearing of σ = 300 cm. The arrival time resolution we found is Δσ = 57.982 ± 0.509 ps. We show preliminary results of the time resolution for a cell of the BMD.
AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times
NASA Astrophysics Data System (ADS)
Lou, X.; van der Lee, S.; Lloyd, S.
2013-12-01
Python is an open-source, platform-independent, and object-oriented scripting language. It became more popular in the seismologist community since the appearance of ObsPy (Beyreuther et al. 2010, Megies et al. 2011), which provides a powerful framework for seismic data access and processing. This study introduces a new Python-based tool named AIMBAT (Automated and Interactive Measurement of Body-wave Arrival Times) for measuring teleseismic body-wave arrival times on large-scale seismic event data (Lou et al. 2013). Compared to ObsPy, AIMBAT is a lighter tool that is more focused on a particular aspect of seismic data processing. It originates from the widely used MCCC (Multi-Channel Cross-Correlation) method developed by VanDecar and Crosson (1990). On top of the original MCCC procedure, AIMBAT is automated in initial phase picking and is interactive in quality control. The core cross-correlation function is implemented in Fortran to boost up performance in addition to Python. The GUI (graphical user interface) of AIMBAT depends on Matplotlib's GUI-neutral widgets and event-handling API. A number of sorting and (de)selecting options are designed to facilitate the quality control of seismograms. By using AIMBAT, both relative and absolute teleseismic body-wave arrival times are measured. AIMBAT significantly improves efficiency and quality of the measurements. User interaction is needed only to pick the target phase arrival and to set a time window on the array stack. The package is easy to install and use, open-source, and is publicly available. Graphical user interface of AIMBAT.
Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 10 18 eV
Aab, Alexander; et al.
2017-09-22
We report that cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature. Clues to their origin come from studying the distribution of their arrival directions. Usingmore » $$3 \\times 10^4$$ cosmic rays above $$8 \\times 10^{18}$$ electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 square kilometers steradian year, we report an anisotropy in the arrival directions. The anisotropy, detected at more than the 5.2$$\\sigma$$ level of significance, can be described by a dipole with an amplitude of $$6.5_{-0.9}^{+1.3}$$% towards right ascension $$\\alpha_{d} = 100 \\pm 10$$ degrees and declination $$\\delta_{d} = -24_{-13}^{+12}$$ degrees. Lastly, that direction indicates an extragalactic origin for these ultra-high energy particles.« less
Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 10 18 eV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aab, Alexander; et al.
We report that cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature. Clues to their origin come from studying the distribution of their arrival directions. Usingmore » $$3 \\times 10^4$$ cosmic rays above $$8 \\times 10^{18}$$ electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 square kilometers steradian year, we report an anisotropy in the arrival directions. The anisotropy, detected at more than the 5.2$$\\sigma$$ level of significance, can be described by a dipole with an amplitude of $$6.5_{-0.9}^{+1.3}$$% towards right ascension $$\\alpha_{d} = 100 \\pm 10$$ degrees and declination $$\\delta_{d} = -24_{-13}^{+12}$$ degrees. Lastly, that direction indicates an extragalactic origin for these ultra-high energy particles.« less
Parametric Methods for Dynamic 11C-Phenytoin PET Studies.
Mansor, Syahir; Yaqub, Maqsood; Boellaard, Ronald; Froklage, Femke E; de Vries, Anke; Bakker, Esther D M; Voskuyl, Rob A; Eriksson, Jonas; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan A
2017-03-01
In this study, the performance of various methods for generating quantitative parametric images of dynamic 11 C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic 11 C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (V T ) and influx rate ( K 1 ) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K 1 and V T values. Results: Biases in V T observed with all parametric methods were less than 5%. For K 1 , spectral analysis showed a negative bias of 16%. The mean TRT variabilities of V T and K 1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar V T and K 1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric V T and K 1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Non-Parametric Collision Probability for Low-Velocity Encounters
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell
2007-01-01
An implicit, but not necessarily obvious, assumption in all of the current techniques for assessing satellite collision probability is that the relative position uncertainty is perfectly correlated in time. If there is any mis-modeling of the dynamics in the propagation of the relative position error covariance matrix, time-wise de-correlation of the uncertainty will increase the probability of collision over a given time interval. The paper gives some examples that illustrate this point. This paper argues that, for the present, Monte Carlo analysis is the best available tool for handling low-velocity encounters, and suggests some techniques for addressing the issues just described. One proposal is for the use of a non-parametric technique that is widely used in actuarial and medical studies. The other suggestion is that accurate process noise models be used in the Monte Carlo trials to which the non-parametric estimate is applied. A further contribution of this paper is a description of how the time-wise decorrelation of uncertainty increases the probability of collision.
CME Arrival-time Validation of Real-time WSA-ENLIL+Cone Simulations at the CCMC/SWRC
NASA Astrophysics Data System (ADS)
Wold, A. M.; Mays, M. L.; Taktakishvili, A.; Jian, L.; Odstrcil, D.; MacNeice, P. J.
2016-12-01
The Wang-Sheeley-Arge (WSA)-ENLIL+Cone model is used extensively in space weather operations worldwide to model CME propagation, as such it is important to assess its performance. We present validation results of the WSA-ENLIL+Cone model installed at the Community Coordinated Modeling Center (CCMC) and executed in real-time by the CCMC/Space Weather Research Center (SWRC). The SWRC is a CCMC sub-team that provides space weather services to NASA robotic mission operators and science campaigns, and also prototypes new forecasting models and techniques. CCMC/SWRC uses the WSA-ENLIL+Cone model to predict CME arrivals at NASA missions throughout the inner heliosphere. In this work we compare model predicted CME arrival-times to in-situ ICME shock observations near Earth (ACE, Wind), STEREO-A and B for simulations completed between March 2010 - July 2016 (over 1500 runs). We report hit, miss, false alarm, and correct rejection statistics for all three spacecraft. For hits we compute the bias, RMSE, and average absolute CME arrival time error, and the dependence of these errors on CME input parameters. We compare the predicted geomagnetic storm strength (Kp index) to the CME arrival time error for Earth-directed CMEs. The predicted Kp index is computed using the WSA-ENLIL+Cone plasma parameters at Earth with a modified Newell et al. (2007) coupling function. We also explore the impact of the multi-spacecraft observations on the CME parameters used initialize the model by comparing model validation results before and after the STEREO-B communication loss (since September 2014) and STEREO-A side-lobe operations (August 2014-December 2015). This model validation exercise has significance for future space weather mission planning such as L5 missions.
Signal restoration through deconvolution applied to deep mantle seismic probes
NASA Astrophysics Data System (ADS)
Stefan, W.; Garnero, E.; Renaut, R. A.
2006-12-01
We present a method of signal restoration to improve the signal-to-noise ratio, sharpen seismic arrival onset, and act as an empirical source deconvolution of specific seismic arrivals. Observed time-series gi are modelled as a convolution of a simpler time-series fi, and an invariant point spread function (PSF) h that attempts to account for the earthquake source process. The method is used on the shear wave time window containing SKS and S, whereby using a Gaussian PSF produces more impulsive, narrower, signals in the wave train. The resulting restored time-series facilitates more accurate and objective relative traveltime estimation of the individual seismic arrivals. We demonstrate the accuracy of the reconstruction method on synthetic seismograms generated by the reflectivity method. Clean and sharp reconstructions are obtained with real data, even for signals with relatively high noise content. Reconstructed signals are simpler, more impulsive, and narrower, which allows highlighting of some details of arrivals that are not readily apparent in raw waveforms. In particular, phases nearly coincident in time can be separately identified after processing. This is demonstrated for two seismic wave pairs used to probe deep mantle and core-mantle boundary structure: (1) the Sab and Scd arrivals, which travel above and within, respectively, a 200-300-km-thick, higher than average shear wave velocity layer at the base of the mantle, observable in the 88-92 deg epicentral distance range and (2) SKS and SPdiff KS, which are core waves with the latter having short arcs of P-wave diffraction, and are nearly identical in timing near 108-110 deg in distance. A Java/Matlab algorithm was developed for the signal restoration, which can be downloaded from the authors web page, along with example data and synthetic seismograms.
EEG Correlates of Fluctuation in Cognitive Performance in an Air Traffic Control Task
2014-11-01
using non-parametric statistical analysis to identify neurophysiological patterns due to the time-on-task effect. Significant changes in EEG power...EEG, Cognitive Performance, Power Spectral Analysis , Non-Parametric Analysis Document is available to the public through the Internet...3 Performance Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 EEG
Distributional Effects of Word Frequency on Eye Fixation Durations
ERIC Educational Resources Information Center
Staub, Adrian; White, Sarah J.; Drieghe, Denis; Hollway, Elizabeth C.; Rayner, Keith
2010-01-01
Recent research using word recognition paradigms, such as lexical decision and speeded pronunciation, has investigated how a range of variables affect the location and shape of response time distributions, using both parametric and non-parametric techniques. In this article, we explore the distributional effects of a word frequency manipulation on…
Parametric resonance in the early Universe—a fitting analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Figueroa, Daniel G.; Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es
Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanningmore » over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.« less
Intervening on risk factors for coronary heart disease: an application of the parametric g-formula.
Taubman, Sarah L; Robins, James M; Mittleman, Murray A; Hernán, Miguel A
2009-12-01
Estimating the population risk of disease under hypothetical interventions--such as the population risk of coronary heart disease (CHD) were everyone to quit smoking and start exercising or to start exercising if diagnosed with diabetes--may not be possible using standard analytic techniques. The parametric g-formula, which appropriately adjusts for time-varying confounders affected by prior exposures, is especially well suited to estimating effects when the intervention involves multiple factors (joint interventions) or when the intervention involves decisions that depend on the value of evolving time-dependent factors (dynamic interventions). We describe the parametric g-formula, and use it to estimate the effect of various hypothetical lifestyle interventions on the risk of CHD using data from the Nurses' Health Study. Over the period 1982-2002, the 20-year risk of CHD in this cohort was 3.50%. Under a joint intervention of no smoking, increased exercise, improved diet, moderate alcohol consumption and reduced body mass index, the estimated risk was 1.89% (95% confidence interval: 1.46-2.41). We discuss whether the assumptions required for the validity of the parametric g-formula hold in the Nurses' Health Study data. This work represents the first large-scale application of the parametric g-formula in an epidemiologic cohort study.
NASA Astrophysics Data System (ADS)
Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun
2016-01-01
Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.
Complex analysis of neuronal spike trains of deep brain nuclei in patients with Parkinson's disease.
Chan, Hsiao-Lung; Lin, Ming-An; Lee, Shih-Tseng; Tsai, Yu-Tai; Chao, Pei-Kuang; Wu, Tony
2010-04-05
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been used to alleviate symptoms of Parkinson's disease. During image-guided stereotactic surgery, signals from microelectrode recordings are used to distinguish the STN from adjacent areas, particularly from the substantia nigra pars reticulata (SNr). Neuronal firing patterns based on interspike intervals (ISI) are commonly used. In the present study, arrival time-based measures, including Lempel-Ziv complexity and deviation-from-Poisson index were employed. Our results revealed significant differences in the arrival time-based measures among non-motor STN, motor STN and SNr and better discrimination than the ISI-based measures. The larger deviations from the Poisson process in the SNr implied less complex dynamics of neuronal discharges. If spike classification was not used, the arrival time-based measures still produced statistical differences among STN subdivisions and SNr, but the ISI-based measures only showed significant differences between motor and non-motor STN. Arrival time-based measures are less affected by spike misclassifications, and may be used as an adjunct for the identification of the STN during microelectrode targeting. Copyright 2010 Elsevier Inc. All rights reserved.
Aloni, Irith; Markman, Shai; Ziv, Yaron
2017-02-01
Numerous studies report shifts in bird migration phenology, presumably owing to global warming. However, most studies focus on migration patterns in the Northern Hemisphere. In this study, we investigated associations between weather conditions in African wintering grounds of the lesser whitethroat, Sylvia curruca, and spring arrival time in Eilat, Israel. Using multivariate regression models, we analysed a 30-year dataset in order to examine correlations between median springtime arrival and 46 climate variables of the wintering quarters. The model obtained exhibited a highly statistical fit, involving mean precipitation in February and March with negative effects and number of wet days during November-February. February precipitation levels were also the major factor associated with the interquartile range of arrival time. Interestingly and contrary to published results, annual or seasonal precipitation showed no correlation with spring arrival time, nor did temperature. Moreover, winter in this region falls into dry season with negligible rainfall quantities. Hence, it is unlikely that precipitation effect on habitat productivity is a driving force of migration, as suggested by other studies. Instead, we propose that precipitation in February acts as a cue for the birds, indicating the approach of spring and migration time.
Discordance between 'actual' and 'scheduled' check-in times at a heart failure clinic
Joyce, Emer; Gandesbery, Benjamin T.; Blackstone, Eugene H.; Taylor, David O.; Tang, W. H. Wilson; Starling, Randall C.; Hachamovitch, Rory
2017-01-01
Introduction A 2015 Institute Of Medicine statement “Transforming Health Care Scheduling and Access: Getting to Now”, has increased concerns regarding patient wait times. Although waiting times have been widely studied, little attention has been paid to the role of patient arrival times as a component of this phenomenon. To this end, we investigated patterns of patient arrival at scheduled ambulatory heart failure (HF) clinic appointments and studied its predictors. We hypothesized that patients are more likely to arrive later than scheduled, with progressively later arrivals later in the day. Methods and results Using a business intelligence database we identified 6,194 unique patients that visited the Cleveland Clinic Main Campus HF clinic between January, 2015 and January, 2017. This clinic served both as a tertiary referral center and a community HF clinic. Transplant and left ventricular assist device (LVAD) visits were excluded. Punctuality was defined as the difference between ‘actual’ and ‘scheduled’ check-in times, whereby negative values (i.e., early punctuality) were patients who checked-in early. Contrary to our hypothesis, we found that patients checked-in late only a minority of the time (38% of visits). Additionally, examining punctuality by appointment hour slot we found that patients scheduled after 8AM had progressively earlier check-in times as the day progressed (P < .001 for trend). In both a Random Forest-Regression framework and linear regression models the most important risk-adjusted predictors of early punctuality were: later in the day appointment hour slot, patient having previously been to the hospital, age in the early 70s, and white race. Conclusions Patients attending a mixed population ambulatory HF clinic check-in earlier than scheduled times, with progressive discrepant intervals throughout the day. This finding may have significant implications for provider utilization and resource planning in order to maximize clinic efficiency. The impact of elective early arrival on patient’s perceived wait times requires further study. PMID:29136649
Discordance between 'actual' and 'scheduled' check-in times at a heart failure clinic.
Gorodeski, Eiran Z; Joyce, Emer; Gandesbery, Benjamin T; Blackstone, Eugene H; Taylor, David O; Tang, W H Wilson; Starling, Randall C; Hachamovitch, Rory
2017-01-01
A 2015 Institute Of Medicine statement "Transforming Health Care Scheduling and Access: Getting to Now", has increased concerns regarding patient wait times. Although waiting times have been widely studied, little attention has been paid to the role of patient arrival times as a component of this phenomenon. To this end, we investigated patterns of patient arrival at scheduled ambulatory heart failure (HF) clinic appointments and studied its predictors. We hypothesized that patients are more likely to arrive later than scheduled, with progressively later arrivals later in the day. Using a business intelligence database we identified 6,194 unique patients that visited the Cleveland Clinic Main Campus HF clinic between January, 2015 and January, 2017. This clinic served both as a tertiary referral center and a community HF clinic. Transplant and left ventricular assist device (LVAD) visits were excluded. Punctuality was defined as the difference between 'actual' and 'scheduled' check-in times, whereby negative values (i.e., early punctuality) were patients who checked-in early. Contrary to our hypothesis, we found that patients checked-in late only a minority of the time (38% of visits). Additionally, examining punctuality by appointment hour slot we found that patients scheduled after 8AM had progressively earlier check-in times as the day progressed (P < .001 for trend). In both a Random Forest-Regression framework and linear regression models the most important risk-adjusted predictors of early punctuality were: later in the day appointment hour slot, patient having previously been to the hospital, age in the early 70s, and white race. Patients attending a mixed population ambulatory HF clinic check-in earlier than scheduled times, with progressive discrepant intervals throughout the day. This finding may have significant implications for provider utilization and resource planning in order to maximize clinic efficiency. The impact of elective early arrival on patient's perceived wait times requires further study.
Parametric dense stereovision implementation on a system-on chip (SoC).
Gardel, Alfredo; Montejo, Pablo; García, Jorge; Bravo, Ignacio; Lázaro, José L
2012-01-01
This paper proposes a novel hardware implementation of a dense recovery of stereovision 3D measurements. Traditionally 3D stereo systems have imposed the maximum number of stereo correspondences, introducing a large restriction on artificial vision algorithms. The proposed system-on-chip (SoC) provides great performance and efficiency, with a scalable architecture available for many different situations, addressing real time processing of stereo image flow. Using double buffering techniques properly combined with pipelined processing, the use of reconfigurable hardware achieves a parametrisable SoC which gives the designer the opportunity to decide its right dimension and features. The proposed architecture does not need any external memory because the processing is done as image flow arrives. Our SoC provides 3D data directly without the storage of whole stereo images. Our goal is to obtain high processing speed while maintaining the accuracy of 3D data using minimum resources. Configurable parameters may be controlled by later/parallel stages of the vision algorithm executed on an embedded processor. Considering hardware FPGA clock of 100 MHz, image flows up to 50 frames per second (fps) of dense stereo maps of more than 30,000 depth points could be obtained considering 2 Mpix images, with a minimum initial latency. The implementation of computer vision algorithms on reconfigurable hardware, explicitly low level processing, opens up the prospect of its use in autonomous systems, and they can act as a coprocessor to reconstruct 3D images with high density information in real time.
VISIR-I: small vessels, least-time nautical routes using wave forecasts
NASA Astrophysics Data System (ADS)
Mannarini, G.; Pinardi, N.; Coppini, G.; Oddo, P.; Iafrati, A.
2015-09-01
A new numerical model for the on-demand computation of optimal ship routes based on sea-state forecasts has been developed. The model, named VISIR (discoVerIng Safe and effIcient Routes) is designed to support decision-makers when planning a marine voyage. The first version of the system, VISIR-I, considers medium and small motor vessels with lengths of up to a few tens of meters and a displacement hull. The model is made up of three components: the route optimization algorithm, the mechanical model of the ship, and the environmental fields. The optimization algorithm is based on a graph-search method with time-dependent edge weights. The algorithm is also able to compute a voluntary ship speed reduction. The ship model accounts for calm water and added wave resistance by making use of just the principal particulars of the vessel as input parameters. The system also checks the optimal route for parametric roll, pure loss of stability, and surfriding/broaching-to hazard conditions. Significant wave height, wave spectrum peak period, and wave direction forecast fields are employed as an input. Examples of VISIR-I routes in the Mediterranean Sea are provided. The optimal route may be longer in terms of miles sailed and yet it is faster and safer than the geodetic route between the same departure and arrival locations. Route diversions result from the safety constraints and the fact that the algorithm takes into account the full temporal evolution and spatial variability of the environmental fields.
An Analysis of the Relationship Between the Heat Index and Arrivals in the Emergency Department
Levy, Matthew; Broccoli, Morgan; Cole, Gai; Jenkins, J Lee; Klein, Eili Y.
2015-01-01
Background: Heatwaves are one of the most deadly weather-related events in the United States and account for more deaths annually than hurricanes, tornadoes, floods, and earthquakes combined. However, there are few statistically rigorous studies of the effect of heatwaves on emergency department (ED) arrivals. A better understanding of this relationship can help hospitals plan better and provide better care for patients during these types of events. Methods: A retrospective review of all ED patient arrivals that occurred from April 15 through August 15 for the years 2008 through 2013 was performed. Daily patient arrival data were combined with weather data (temperature and humidity) to examine the potential relationships between the heat index and ED arrivals as well as the length of time patients spend in the ED using generalized additive models. In particular the effect the 2012 heat wave that swept across the United States, and which was hypothesized to increase arrivals was examined. Results: While there was no relationship found between the heat index and arrivals on a single day, a non-linear relationship was found between the mean three-day heat index and the number of daily arrivals. As the mean three-day heat index initially increased, the number of arrivals significantly declined. However, as the heat index continued to increase, the number of arrivals increased. It was estimated that there was approximately a 2% increase in arrivals when the mean heat index for three days approached 100°F. This relationship was strongest for adults aged 18-64, as well as for patients arriving with lower acuity. Additionally, a positive relationship was noted between the mean three-day heat index and the length of stay (LOS) for patients in the ED, but no relationship was found for the time from which a patient was first seen to when a disposition decision was made. No significant relationship was found for the effect of the 2012 heat wave on ED arrivals, though it did have an effect on patient LOS. Conclusion: A single hot day has only a limited effect on ED arrivals, but continued hot weather has a cumulative effect. When the heat index is high (~90°F) for a number of days in a row, this curtails peoples activities, but if the heat index is very hot (~100°F) this likely results in an exacerbation of underlying conditions as well as heat-related events that drives an increase in ED arrivals. Periods of high heat also affects the length of stay of patients either by complicating care or by making it more difficult to discharge patients. PMID:26579329
Piloted simulation of a ground-based time-control concept for air traffic control
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Green, Steven M.
1989-01-01
A concept for aiding air traffic controllers in efficiently spacing traffic and meeting scheduled arrival times at a metering fix was developed and tested in a real time simulation. The automation aid, referred to as the ground based 4-D descent advisor (DA), is based on accurate models of aircraft performance and weather conditions. The DA generates suggested clearances, including both top-of-descent-point and speed-profile data, for one or more aircraft in order to achieve specific time or distance separation objectives. The DA algorithm is used by the air traffic controller to resolve conflicts and issue advisories to arrival aircraft. A joint simulation was conducted using a piloted simulator and an advanced concept air traffic control simulation to study the acceptability and accuracy of the DA automation aid from both the pilot's and the air traffic controller's perspectives. The results of the piloted simulation are examined. In the piloted simulation, airline crews executed controller issued descent advisories along standard curved path arrival routes, and were able to achieve an arrival time precision of + or - 20 sec at the metering fix. An analysis of errors generated in turns resulted in further enhancements of the algorithm to improve the predictive accuracy. Evaluations by pilots indicate general support for the concept and provide specific recommendations for improvement.
Optical parametric amplification of arbitrarily polarized light in periodically poled LiNbO3.
Shao, Guang-hao; Song, Xiao-shi; Xu, Fei; Lu, Yan-qing
2012-08-13
Optical parametric amplification (OPA) of arbitrarily polarized light is proposed in a multi-section periodically poled Lithium Niobate (PPLN). External electric field is applied on selected sections to induce the polarization rotation of involved lights, thus the quasi-phase matched optical parametric processes exhibit polarization insensitivity under suitable voltage. In addition to the amplified signal wave, an idler wave with the same polarization is generated simultaneously. As an example, a ~10 times OPA showing polarization independency is simulated. Applications of this technology are also discussed.
Testing model for prediction system of 1-AU arrival times of CME-associated interplanetary shocks
NASA Astrophysics Data System (ADS)
Ogawa, Tomoya; den, Mitsue; Tanaka, Takashi; Sugihara, Kohta; Takei, Toshifumi; Amo, Hiroyoshi; Watari, Shinichi
We test a model to predict arrival times of interplanetary shock waves associated with coronal mass ejections (CMEs) using a three-dimensional adaptive mesh refinement (AMR) code. The model is used for the prediction system we develop, which has a Web-based user interface and aims at people who is not familiar with operation of computers and numerical simulations or is not researcher. We apply the model to interplanetary CME events. We first choose coronal parameters so that property of background solar wind observed by ACE space craft is reproduced. Then we input CME parameters observed by SOHO/LASCO. Finally we compare the predicted arrival times with observed ones. We describe results of the test and discuss tendency of the model.
Search for tachyons associated with extensive air showers in the ground level cosmic radiation
NASA Technical Reports Server (NTRS)
Masjed, H. F.; Ashton, F.
1985-01-01
Events detected in a shielded plastic scintillation counter occurring in the 26 microsec preceding the arrival of an extensive air shower at ground level with local electron density or = 20 m to the -2 power and the 240 microsec after its arrival have been studied. No significant excess of events (tachyons) arriving in the early time domain have been observed in a sample of 11,585 air shower triggers.
Analysis of sequencing and scheduling methods for arrival traffic
NASA Technical Reports Server (NTRS)
Neuman, Frank; Erzberger, Heinz
1990-01-01
The air traffic control subsystem that performs scheduling is discussed. The function of the scheduling algorithms is to plan automatically the most efficient landing order and to assign optimally spaced landing times to all arrivals. Several important scheduling algorithms are described and the statistical performance of the scheduling algorithms is examined. Scheduling brings order to an arrival sequence for aircraft. First-come-first-served scheduling (FCFS) establishes a fair order, based on estimated times of arrival, and determines proper separations. Because of the randomness of the traffic, gaps will remain in the scheduled sequence of aircraft. These gaps are filled, or partially filled, by time-advancing the leading aircraft after a gap while still preserving the FCFS order. Tightly scheduled groups of aircraft remain with a mix of heavy and large aircraft. Separation requirements differ for different types of aircraft trailing each other. Advantage is taken of this fact through mild reordering of the traffic, thus shortening the groups and reducing average delays. Actual delays for different samples with the same statistical parameters vary widely, especially for heavy traffic.
NASA Technical Reports Server (NTRS)
Morey, Susan; Prevot, Thomas; Mercer, Joey; Martin, Lynne; Bienert, Nancy; Cabrall, Christopher; Hunt, Sarah; Homola, Jeffrey; Kraut, Joshua
2013-01-01
A human-in-the-loop simulation was conducted to examine the effects of varying levels of trajectory prediction uncertainty on air traffic controller workload and performance, as well as how strategies and the use of decision support tools change in response. This paper focuses on the strategies employed by two controllers from separate teams who worked in parallel but independently under identical conditions (airspace, arrival traffic, tools) with the goal of ensuring schedule conformance and safe separation for a dense arrival flow in en route airspace. Despite differences in strategy and methods, both controllers achieved high levels of schedule conformance and safe separation. Overall, results show that trajectory uncertainties introduced by wind and aircraft performance prediction errors do not affect the controllers' ability to manage traffic. Controller strategies were fairly robust to changes in error, though strategies were affected by the amount of delay to absorb (scheduled time of arrival minus estimated time of arrival). Using the results and observations, this paper proposes an ability to dynamically customize the display of information including delay time based on observed error to better accommodate different strategies and objectives.
Stochastic sediment property inversion in Shallow Water 06.
Michalopoulou, Zoi-Heleni
2017-11-01
Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.
Electrical Evaluation of RCA MWS5001D Random Access Memory, Volume 5, Appendix D
NASA Technical Reports Server (NTRS)
Klute, A.
1979-01-01
The electrical characterization and qualification test results are presented for the RCA MWS 5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. Average input high current, worst case input high current, output low current, and data setup time are some of the results presented.
Zhu, Xiang; Zhang, Dianwen
2013-01-01
We present a fast, accurate and robust parallel Levenberg-Marquardt minimization optimizer, GPU-LMFit, which is implemented on graphics processing unit for high performance scalable parallel model fitting processing. GPU-LMFit can provide a dramatic speed-up in massive model fitting analyses to enable real-time automated pixel-wise parametric imaging microscopy. We demonstrate the performance of GPU-LMFit for the applications in superresolution localization microscopy and fluorescence lifetime imaging microscopy. PMID:24130785
NASA Astrophysics Data System (ADS)
Sun, W.; Dryer, M.; Fry, C. D.; Deehr, C. S.; Smith, Z.; Akasofu, S.-I.; Kartalev, M. D.; Grigorov, K. G.
2002-07-01
The Sun was extremely active during the "April Fool’s Day" epoch of 2001. We chose this period between a solar flare on 28 March 2001 to a final shock arrival at Earth on 21 April 2001. The activity consisted of two presumed helmet-streamer blowouts, seven M-class flares, and nine X-class flares, the last of which was behind the west limb. We have been experimenting since February 1997 with real-time, end-to-end forecasting of interplanetary coronal mass ejection (ICME) shock arrival times. Since August 1998, these forecasts have been distributed in real-time by e-mail to a list of interested scientists and operational USAF and NOAA forecasters. They are made using three different solar wind models. We describe here the solar events observed during the April Fool’s 2001 epoch, along with the predicted and actual shock arrival times, and the ex post facto correction to the real-time coronal shock speed observations. It appears that the initial estimates of coronal shock speeds from Type II radio burst observations and coronal mass ejections were too high by as much as 30%. We conclude that a 3-dimensional coronal density model should be developed for application to observations of solar flares and their Type II radio burst observations.
Signal Quality and the Reliability of Seismic Observations
NASA Astrophysics Data System (ADS)
Zeiler, C. P.; Velasco, A. A.; Pingitore, N. E.
2009-12-01
The ability to detect, time and measure seismic phases depends on the location, size, and quality of the recorded signals. Additional constraints are an analyst’s familiarity with a seismogenic zone and with the seismic stations that record the energy. Quantification and qualification of an analyst’s ability to detect, time and measure seismic signals has not been calculated or fully assessed. The fundamental measurement for computing the accuracy of a seismic measurement is the signal quality. Several methods have been proposed to measure signal quality; however, the signal-to-noise ratio (SNR) has been adopted as a short-term average over the long-term average. While the standard SNR is an easy and computationally inexpensive term, the overall statistical significance has not been computed for seismic measurement analysis. The prospect of canonizing the process of cataloging seismic arrivals hinges on the ability to repeat measurements made by different methods and analysts. The first step in canonizing phase measurements has been done by the IASPEI, which established a reference for accepted practices in naming seismic phases. The New Manual for Seismological Observatory Practices (NMSOP, 2002) outlines key observations for seismic phases recorded at different distances and proposes to quantify timing uncertainty with a user-specified windowing technique. However, this added measurement would not completely remove bias introduced by different techniques used by analysts to time seismic arrivals. The general guideline to time a seismic arrival is to record the time where a noted change in frequency and/or amplitude begins. This is generally achieved by enhancing the arrivals through filtering or beam forming. However, these enhancements can alter the characteristics of the arrival and how the arrival will be measured. Furthermore, each enhancement has user-specified parameters that can vary between analysts and this results in reduced ability to repeat measurements between analysts. The SPEAR project (Zeiler and Velasco, 2009) has started to explore the effects of comparing measurements from the same seismograms. Initial results showed that experience and the signal quality are the leading contributors to pick differences. However, the traditional SNR method of measuring signal quality was replaced by a Wide-band Spectral Ratio (WSR) due to a decrease in scatter. This observation brings up an important question of what is the best way to measure signal quality. We compare various methods (traditional SNR, WSR, power spectral density plots, Allan Variance) that have been proposed to measure signal quality and discuss which method provides the best tool to compare arrival time uncertainty.
Parametric spatiotemporal oscillation in reaction-diffusion systems.
Ghosh, Shyamolina; Ray, Deb Shankar
2016-03-01
We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.
Parametric spatiotemporal oscillation in reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Ghosh, Shyamolina; Ray, Deb Shankar
2016-03-01
We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.
Deep seafloor arrivals in long range ocean acoustic propagation.
Stephen, Ralph A; Bolmer, S Thompson; Udovydchenkov, Ilya A; Worcester, Peter F; Dzieciuch, Matthew A; Andrew, Rex K; Mercer, James A; Colosi, John A; Howe, Bruce M
2013-10-01
Ocean bottom seismometer observations at 5000 m depth during the long-range ocean acoustic propagation experiment in the North Pacific in 2004 show robust, coherent, late arrivals that are not readily explained by ocean acoustic propagation models. These "deep seafloor" arrivals are the largest amplitude arrivals on the vertical particle velocity channel for ranges from 500 to 3200 km. The travel times for six (of 16 observed) deep seafloor arrivals correspond to the sea surface reflection of an out-of-plane diffraction from a seamount that protrudes to about 4100 m depth and is about 18 km from the receivers. This out-of-plane bottom-diffracted surface-reflected energy is observed on the deep vertical line array about 35 dB below the peak amplitude arrivals and was previously misinterpreted as in-plane bottom-reflected surface-reflected energy. The structure of these arrivals from 500 to 3200 km range is remarkably robust. The bottom-diffracted surface-reflected mechanism provides a means for acoustic signals and noise from distant sources to appear with significant strength on the deep seafloor.
33 CFR 401.79 - Advance notice of arrival, vessels requiring inspection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Notice of Arrival (NOA) prior to entering at call in point 2 (CIP 2) as follows: (1) If your voyage time to CIP 2 is 96 hours or more, you must submit an electronic NOA 96 hours before entering the Seaway at CIP 2. (2) If your voyage time to CIP 2 is less than 96 hours, you must submit an electronic NOA...
33 CFR 401.79 - Advance notice of arrival, vessels requiring inspection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Notice of Arrival (NOA) prior to entering at call in point 2 (CIP 2) as follows: (1) If your voyage time to CIP 2 is 96 hours or more, you must submit an electronic NOA 96 hours before entering the Seaway at CIP 2. (2) If your voyage time to CIP 2 is less than 96 hours, you must submit an electronic NOA...
NASA Astrophysics Data System (ADS)
Ho, G.; Donegan, M.; Vandegriff, J.; Wagstaff, K.
We have created a system for predicting the arrival times at Earth of interplanetary (IP) shocks that originate at the Sun. This system is currently available on the web (http://sd-www.jhuapl.edu/UPOS/RISP/index.html) and runs in real-time. Input data to our prediction algorithm is energetic particle data from the Electron, Proton, and Alpha Monitor (EPAM) instrument on NASA's Advanced Composition Explorer (ACE) spacecraft. Real-time EPAM data is obtained from the National Oceanic and Atmospheric Administration (NOAA) Space Environment Center (SEC). Our algorithm operates in two stages. First it watches for a velocity dispersion signature (energetic ions show flux enhancement followed by subsequent enhancements in lower energies), which is commonly seen upstream of a large IP shock. Once a precursor signature has been detected, a pattern recognition algorithm is used to analyze the time series profile of the particle data and generate an estimate for the shock arrival time. Tests on the algorithm show an average error of roughly 9 hours for predictions made 24 hours before the shock arrival and roughly 5 hours when the shock is 12 hours away. This can provide significant lead-time and deliver critical information to mission planners, satellite operations controllers, and scientists. As of February 4, 2004, the ACE real-time stream has been switched to include data from another detector on EPAM. We are now processing the new real-time data stream and have made improvements to our algorithm based on this data. In this paper, we report prediction results from the updated algorithm.
Time of arrival in quantum and Bohmian mechanics
NASA Astrophysics Data System (ADS)
Leavens, C. R.
1998-08-01
In a recent paper Grot, Rovelli, and Tate (GRT) [Phys. Rev. A 54, 4676 (1996)] derived an expression for the probability distribution π(TX) of intrinsic arrival times T(X) at position x=X for a quantum particle with initial wave function ψ(x,t=0) freely evolving in one dimension. This was done by quantizing the classical expression for the time of arrival of a free particle at X, assuming a particular choice of operator ordering, and then regulating the resulting time of arrival operator. For the special case of a minimum-uncertainty-product wave packet at t=0 with average wave number
Seismicity of the Bering Glacier Region: Inferences from Relocations Using Data from STEEP
NASA Astrophysics Data System (ADS)
Panessa, A. L.; Pavlis, G. L.; Hansen, R. A.; Ruppert, N.
2008-12-01
We relocated earthquakes recorded from 1990 to 2007 in the area of the Bering Glacier in southeastern Alaska to test a hypothesis that faults in this area are linked to glaciers. We used waveform correlation to improve arrival time measurements for data from all broadband channels including all the data from the STEEP experiment. We used a novel form of correlation based on interactive array processing of common receiver gathers linked to a three-dimensional grid of control points. This procedure produced 8556 gathers that we processed interactively to produce improved arrival time estimates. The interactive procedure allowed us to select which events in each gather were sufficiently similar to warrant correlation. Redundancy in the result was resolved in a secondary correlation that aligned event stacks of the same station-event pair associated with multiple control points. This procedure yielded only 2240 waveforms that correlated and modified only a total of 524 arrivals in a total database of 12263 arrivals. The correlation procedure changed arrival times on 145 of 509 events in this database. Events with arrivals constrained by correlation were not clustered but were randomly distributed throughout the study area. We used a version of the Progressive Multiple Event Location (PMEL) that analyzed data at each control point to invert for relative locations and a set of path anomalies for each control point. We applied the PMEL procedure with different velocity models and constraints and compared the results to a HypoDD solution produced from the original arrival time data. The relocations are all significant improvements from the standard single-event, catalog locations. The relocations suggest the seismicity in this region is mostly linked to fold and thrust deformation in the Yakatat block. There is a suggestion of a north-dipping trend to much of the seismicity, but the dominant trend is a fairly diffuse cloud of events largely confined to the Yakatat block south of the Bagley Icefield. This is consistent with the recently published tectonic model by Berger et al. (2008).
Weidner, Lauren M; Monzon, Michael A; Hamilton, George C
2016-11-01
Some insect taxa can be of critical importance for criminal investigations because they can be used to assist with a time since death determination. Blow flies (Diptera: Calliphoridae) often are the initial colonizers of a carcass, usually arriving within minutes to hours after carcass exposure during the day. Other insects, such as coleopterans and hymenopterans, can arrive to a carcass during early colonization and affect blow fly development. However, the extent of these interactions remains unclear. This study analyzed the initial 6 h after a piglet carcass was placed out in two locations (rural and urban) in diurnal and nocturnal conditions with continuous video recording and hourly observations. Four piglets were placed out every 2 weeks over the summer of 2014. Initial blow fly arrivals to the carcasses were only recorded during diurnal conditions, and a checklist of orders associated with each environment (time and location) was created. During diurnal conditions, initial blow fly arrival times in rural environments were significantly faster than those in urban, arriving as quickly as 23 s after exposure. These observations also included a novel interaction with Vespidae, which to the best of our knowledge has not been seen in the literature before. This experiment provides baseline data on early insect colonization in two environments in New Jersey, and lends insight into insect interactions that could affect initial colonization.
A Parametric Oscillator Experiment for Undergraduates
NASA Astrophysics Data System (ADS)
Huff, Alison; Thompson, Johnathon; Pate, Jacob; Kim, Hannah; Chiao, Raymond; Sharping, Jay
We describe an upper-division undergraduate-level analytic mechanics experiment or classroom demonstration of a weakly-damped pendulum driven into parametric resonance. Students can derive the equations of motion from first principles and extract key oscillator features, such as quality factor and parametric gain, from experimental data. The apparatus is compact, portable and easily constructed from inexpensive components. Motion control and data acquisition are accomplished using an Arduino micro-controller incorporating a servo motor, laser sensor, and data logger. We record the passage time of the pendulum through its equilibrium position and obtain the maximum speed per oscillation as a function of time. As examples of the interesting physics which the experiment reveals, we present contour plots depicting the energy of the system as functions of driven frequency and modulation depth. We observe the transition to steady state oscillation and compare the experimental oscillation threshold with theoretical expectations. A thorough understanding of this hands-on laboratory exercise provides a foundation for current research in quantum information and opto-mechanics, where damped harmonic motion, quality factor, and parametric amplification are central.
Numerical modelling of nonlinear full-wave acoustic propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on amore » GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.« less
SPX-8 SpaceX Dragon Spacecraft Approach
2016-04-10
iss047e050943 (4/10/2016) --- The SpaceX Dragon cargo spaceship begins the final approach to the International Space Station. On the left, the solar arrays of Orbital ATK’s Cygnus cargo craft can be seen. Dragon’s arrival marked the first time two commercial cargo vehicles have been docked simultaneously at the space station. Orbital ATK’s Cygnus spacecraft arrived to the station just over two weeks ago. With the arrival of Dragon, the space station ties the record for most vehicles on station at one time – six. The spacecraft is delivering about 7,000 pounds of science and research investigations, including the Bigelow Expandable Activity Module, known as BEAM.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Rakovec, O.; Kumar, R.; Samaniego, L. E.
2015-12-01
Accurate and reliable streamflow prediction is essential to mitigate social and economic damage coming from water-related disasters such as flood and drought. Sequential data assimilation (DA) may facilitate improved streamflow prediction using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. However, if parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by model ensemble may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we evaluate impacts of streamflow data assimilation over European river basins. Especially, a multi-parametric ensemble approach is tested to consider the effects of parametric uncertainty in DA. Because augmentation of parameters is not required within an assimilation window, the approach could be more stable with limited ensemble members and have potential for operational uses. To consider the response times and non-Gaussian characteristics of internal hydrologic processes, lagged particle filtering is utilized. The presentation will be focused on gains and limitations of streamflow data assimilation and multi-parametric ensemble method over large-scale basins.
Petzoldt, Tibor
2016-10-01
Crashes at railway level crossings are a key problem for railway operations. It has been suggested that a potential explanation for such crashes might lie in a so-called size speed bias, which describes the phenomenon that observers underestimate the speed of larger objects, such as aircraft or trains. While there is some evidence that this size speed bias indeed exists, it is somewhat at odds with another well researched phenomenon, the size arrival effect. When asked to judge the time it takes an approaching object to arrive at a predefined position (time to arrival, TTA), observers tend to provide lower estimates for larger objects. In that case, road users' crossing decisions when confronted with larger vehicles should be rather conservative, which has been confirmed in multiple studies on gap acceptance. The aim of the experiment reported in this paper was to clarify the relationship between size speed bias and size arrival effect. Employing a relative judgment task, both speed and TTA estimates were assessed for virtual depictions of a train and a truck, using a car as a reference to compare against. The results confirmed the size speed bias for the speed judgments, with both train and truck being perceived as travelling slower than the car. A comparable bias was also present in the TTA estimates for the truck. In contrast, no size arrival effect could be found for the train or the truck, neither in the speed nor the TTA judgments. This finding is inconsistent with the fact that crossing behaviour when confronted with larger vehicles appears to be consistently more conservative. This discrepancy might be interpreted as an indication that factors other than perceived speed or TTA play an important role for the differences in gap acceptance between different types of vehicles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cascading Delay Risk of Airline Workforce Deployments with Crew Pairing and Schedule Optimization.
Chung, Sai Ho; Ma, Hoi Lam; Chan, Hing Kai
2017-08-01
This article concerns the assignment of buffer time between two connected flights and the number of reserve crews in crew pairing to mitigate flight disruption due to flight arrival delay. Insufficient crew members for a flight will lead to flight disruptions such as delays or cancellations. In reality, most of these disruption cases are due to arrival delays of the previous flights. To tackle this problem, many research studies have examined the assignment method based on the historical flight arrival delay data of the concerned flights. However, flight arrival delays can be triggered by numerous factors. Accordingly, this article proposes a new forecasting approach using a cascade neural network, which considers a massive amount of historical flight arrival and departure data. The approach also incorporates learning ability so that unknown relationships behind the data can be revealed. Based on the expected flight arrival delay, the buffer time can be determined and a new dynamic reserve crew strategy can then be used to determine the required number of reserve crews. Numerical experiments are carried out based on one year of flight data obtained from 112 airports around the world. The results demonstrate that by predicting the flight departure delay as the input for the prediction of the flight arrival delay, the prediction accuracy can be increased. Moreover, by using the new dynamic reserve crew strategy, the total crew cost can be reduced. This significantly benefits airlines in flight schedule stability and cost saving in the current big data era. © 2016 Society for Risk Analysis.
Cernicchiaro, Natalia; White, Brad J; Renter, David G; Babcock, Abram H
2013-02-01
To evaluate associations between economic and performance outcomes with the number of treatments after an initial diagnosis of bovine respiratory disease (BRD) in commercial feedlot cattle. 212,867 cattle arriving in a Midwestern feedlot between 2001 and 2006. An economic model was created to estimate net returns. Generalized linear mixed models were used to determine associations between the frequency of BRD treatments and other demographic variables with economic and performance outcomes. Net returns decreased with increasing number of treatments for BRD. However, the magnitude depended on the season during which cattle arrived at the feedlot, with significantly higher returns for cattle arriving during fall and summer than for cattle arriving during winter and spring. For fall arrivals, there were higher mean net returns for cattle that were never treated ($39.41) than for cattle treated once ($29.49), twice ($16.56), or ≥ 3 times (-$33.00). For summer arrivals, there were higher least squares mean net returns for cattle that were never treated ($31.83) than for cattle treated once ($20.22), twice ($6.37), or ≥ 3 times ($-42.56). Carcass traits pertaining to weight and quality grade were deemed responsible for differences in net returns among cattle receiving different numbers of treatments after an initial diagnosis of BRD. Differences in economic net returns and performance outcomes for feedlot cattle were determined on the basis of number of treatments after an initial diagnosis of BRD; the analysis accounted for the season of arrival, sex, and weight class.
Crowther, Michael J; Look, Maxime P; Riley, Richard D
2014-09-28
Multilevel mixed effects survival models are used in the analysis of clustered survival data, such as repeated events, multicenter clinical trials, and individual participant data (IPD) meta-analyses, to investigate heterogeneity in baseline risk and covariate effects. In this paper, we extend parametric frailty models including the exponential, Weibull and Gompertz proportional hazards (PH) models and the log logistic, log normal, and generalized gamma accelerated failure time models to allow any number of normally distributed random effects. Furthermore, we extend the flexible parametric survival model of Royston and Parmar, modeled on the log-cumulative hazard scale using restricted cubic splines, to include random effects while also allowing for non-PH (time-dependent effects). Maximum likelihood is used to estimate the models utilizing adaptive or nonadaptive Gauss-Hermite quadrature. The methods are evaluated through simulation studies representing clinically plausible scenarios of a multicenter trial and IPD meta-analysis, showing good performance of the estimation method. The flexible parametric mixed effects model is illustrated using a dataset of patients with kidney disease and repeated times to infection and an IPD meta-analysis of prognostic factor studies in patients with breast cancer. User-friendly Stata software is provided to implement the methods. Copyright © 2014 John Wiley & Sons, Ltd.
Knight, Vickie; Guy, Rebecca J; Handan, Wand; Lu, Heng; McNulty, Anna
2014-06-01
In 2010, we introduced an express sexually transmitted infection/HIV testing service at a large metropolitan sexual health clinic, which significantly increased clinical service capacity. However, it also increased reception staff workload and caused backlogs of patients waiting to register or check in for appointments. We therefore implemented a new electronic self-registration and appointment self-arrival system in March 2012 to increase administrative efficiency and reduce waiting time for patients. We compared the median processing time overall and for each step of the registration and arrival process as well as the completeness of patient contact information recorded, in a 1-week period before and after the redesign of the registration system. χ2 Test and rank sum tests were used. Before the redesign, the median processing time was 8.33 minutes (interquartile range [IQR], 6.82-15.43), decreasing by 30% to 5.83 minutes (IQR, 4.75-7.42) when the new electronic self-registration and appointment self-arrival system was introduced (P < 0.001). The largest gain in efficiency was in the time taken to prepare the medical record for the clinician, reducing from a median of 5.31 minutes (IQR, 4.02-8.29) to 0.57 minutes (IQR, 0.38-1) in the 2 periods. Before implementation, 20% of patients provided a postal address and 31% an e-mail address, increasing to 60% and 70% post redesign, respectively (P < 0.001). Our evaluation shows that an electronic patient self-registration and appointment self-arrival system can improve clinic efficiency and save patient time. Systems like this one could be used by any outpatient service with large patient volumes as an integrated part of the electronic patient management system or as a standalone feature.
Stochastic stability of parametrically excited random systems
NASA Astrophysics Data System (ADS)
Labou, M.
2004-01-01
Multidegree-of-freedom dynamic systems subjected to parametric excitation are analyzed for stochastic stability. The variation of excitation intensity with time is described by the sum of a harmonic function and a stationary random process. The stability boundaries are determined by the stochastic averaging method. The effect of random parametric excitation on the stability of trivial solutions of systems of differential equations for the moments of phase variables is studied. It is assumed that the frequency of harmonic component falls within the region of combination resonances. Stability conditions for the first and second moments are obtained. It turns out that additional parametric excitation may have a stabilizing or destabilizing effect, depending on the values of certain parameters of random excitation. As an example, the stability of a beam in plane bending is analyzed.
NASA Astrophysics Data System (ADS)
Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David
2009-02-01
This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.
Improving ED efficiency to capture additional revenue.
Mandavia, Sujal; Samaniego, Loretta
2016-06-01
An increase in the number of patients visiting emergency departments (EDs) presents an opportunity for additional revenue if hospitals take four steps to optimize resources: Streamline the patient pathway and reduce the amount of time each patient occupies a bed in the ED. Schedule staff according to the busy and light times for patient arrivals. Perform registration and triage bedside, reducing initial wait times. Create an area for patients to wait for test results so beds can be freed up for new arrivals.
Tests of general relativity using pulsars
NASA Technical Reports Server (NTRS)
Reichley, P. E.
1971-01-01
The arrival times of the pulses from each pulsar are measured by a cesium clock. The observations are all made at a frequency of 2388 MHz (12.5 cm wavelength) on a 26 m dish antenna. The effect of interstellar charged particles is a random one that increases the noise level on the arrival time measurements. The variation in clock rate is shown consisting of two effects: the time dilation effect of special relativity and the red shift effect of general relativity.
Phase-sensitive fiber-based parametric all-optical switch.
Parra-Cetina, Josué; Kumpera, Aleš; Karlsson, Magnus; Andrekson, Peter A
2015-12-28
We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented.
NASA Astrophysics Data System (ADS)
Warchoł, Piotr
2018-06-01
The public transportation system of Cuernavaca, Mexico, exhibits random matrix theory statistics. In particular, the fluctuation of times between the arrival of buses on a given bus stop, follows the Wigner surmise for the Gaussian unitary ensemble. To model this, we propose an agent-based approach in which each bus driver tries to optimize his arrival time to the next stop with respect to an estimated arrival time of his predecessor. We choose a particular form of the associated utility function and recover the appropriate distribution in numerical experiments for a certain value of the only parameter of the model. We then investigate whether this value of the parameter is otherwise distinguished within an information theoretic approach and give numerical evidence that indeed it is associated with a minimum of averaged pairwise mutual information.
Single Station System and Method of Locating Lightning Strikes
NASA Technical Reports Server (NTRS)
Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)
2003-01-01
An embodiment of the present invention uses a single detection system to approximate a location of lightning strikes. This system is triggered by a broadband RF detector and measures a time until the arrival of a leading edge of the thunder acoustic pulse. This time difference is used to determine a slant range R from the detector to the closest approach of the lightning. The azimuth and elevation are determined by an array of acoustic sensors. The leading edge of the thunder waveform is cross-correlated between the various acoustic sensors in the array to determine the difference in time of arrival, AT. A set of AT S is used to determine the direction of arrival, AZ and EL. The three estimated variables (R, AZ, EL) are used to locate a probable point of the lightning strike.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jian; Casey, Cameron P.; Zheng, Xueyun
Motivation: Drift tube ion mobility spectrometry (DTIMS) is increasingly implemented in high throughput omics workflows, and new informatics approaches are necessary for processing the associated data. To automatically extract arrival times for molecules measured by DTIMS coupled with mass spectrometry and compute their associated collisional cross sections (CCS) we created the PNNL Ion Mobility Cross Section Extractor (PIXiE). The primary application presented for this algorithm is the extraction of information necessary to create a reference library containing accu-rate masses, DTIMS arrival times and CCSs for use in high throughput omics analyses. Results: We demonstrate the utility of this approach bymore » automatically extracting arrival times and calculating the associated CCSs for a set of endogenous metabolites and xenobiotics. The PIXiE-generated CCS values were identical to those calculated by hand and within error of those calcu-lated using commercially available instrument vendor software.« less
Mao, Pengcheng; Wang, Zhuan; Dang, Wei; Weng, Yuxiang
2015-12-01
Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300-1/100 when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10(-5)M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Pengcheng; Wang, Zhuan; Dang, Wei
Superfluorescence appears as an intense background in femtosecond time-resolved fluorescence noncollinear optical parametric amplification spectroscopy, which severely interferes the reliable acquisition of the time-resolved fluorescence spectra especially for an optically dilute sample. Superfluorescence originates from the optical amplification of the vacuum quantum noise, which would be inevitably concomitant with the amplified fluorescence photons during the optical parametric amplification process. Here, we report the development of a femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectrometer assisted with a 32-channel lock-in amplifier for efficient rejection of the superfluorescence background. With this spectrometer, the superfluorescence background signal can be significantly reduced to 1/300–1/100more » when the seeding fluorescence is modulated. An integrated 32-bundle optical fiber is used as a linear array light receiver connected to 32 photodiodes in one-to-one mode, and the photodiodes are further coupled to a home-built 32-channel synchronous digital lock-in amplifier. As an implementation, time-resolved fluorescence spectra for rhodamine 6G dye in ethanol solution at an optically dilute concentration of 10{sup −5}M excited at 510 nm with an excitation intensity of 70 nJ/pulse have been successfully recorded, and the detection limit at a pump intensity of 60 μJ/pulse was determined as about 13 photons/pulse. Concentration dependent redshift starting at 30 ps after the excitation in time-resolved fluorescence spectra of this dye has also been observed, which can be attributed to the formation of the excimer at a higher concentration, while the blueshift in the earlier time within 10 ps is attributed to the solvation process.« less
Robert, Engdah E.; Van Hilst, R. D.; Buland, Raymond P.
1998-01-01
We relocate nearly 100, 000 events that occurred during the period 1964 to 1995 and are well-constrained teleseismically by arrival-time data reported to the International Seismological Centre (ISC) and to the U. S. Geological Survey's National Earthquake Information Center (NEIC). Hypocenter determination is significantly improved by using, in addition to regional and teleseismic P and S phases, the arrival times of PKiKP, PKPdf, and the teleseismic depth phases pP, pwP, and sP in the relocation procedure. A global probability model developed for later-arriving phases is used to independently identify the depth phases. The relocations are compared to hypocenters reported in the ISC and NEIC catalogs and by other sources. Differences in our epicenters with respect to ISC and NEIC estimates are generally small and regionally systematic due to the combined effects of the observing station network and plate geometry regionally, differences in upper mantle travel times between the reference earth models used, and the use of later-arriving phases. Focal depths are improved substantially over most other independent estimates, demonstrating (for example) how regional structures such as downgoing slabs can severely bias depth estimation when only regional and teleseismic P arrivals are used to determine the hypocenter. The new data base, which is complete to about Mw 5. 2 and includes all events for which moment-tensor solutions are available, has immediate application to high-resolution definition of Wadati-Benioff Zones (WBZs) worldwide, regional and global tomographic imaging, and other studies of earth structure.
Adherence to peritoneal dialysis training schedule.
Chow, Kai Ming; Szeto, Cheuk Chun; Leung, Chi Bon; Law, Man Ching; Kwan, Bonnie Ching-Ha; Li, Philip Kam-Tao
2007-02-01
Shortening behaviour during peritoneal dialysis training can be easily measured, and likened to the skipping behaviour in haemodialysis subjects, although its effect on peritoneal dialysis outcomes is now well understood. We studied the clinical impact of failing to adhere to a peritoneal dialysis training programme among incident dialysis patients. This study included 159 consecutive inception peritoneal dialysis patients in a single centre from September 1999 through November 2002. We evaluated the effects of behavioural compliance quantified by the per cent time arriving late for scheduled peritoneal dialysis training. The patients were categorized by whether they arrived late in >20% of their peritoneal dialysis training sessions. Of the 159 incident peritoneal dialysis patients (mean age 57 +/- 13 years) who attended peritoneal dialysis training, 70 subjects (44%) arrived late in >20% of the sessions. They were younger by 5 years than patients who arrived late < or =20%. Mean peritonitis-free time for subjects who arrived late for training in >20% the of sessions was 30.9 months, as compared with 41.8 months in subjects with < or =20% late attendance behaviour (log rank test, P = 0.038). Multivariable Cox proportional hazards analysis showed that late attendance behaviour and baseline serum albumin were the only independent risk factors for the time to a first peritonitis after adjustment for diabetes mellitus and relevant coexisting medical factors. Late arrival in >20% of the peritoneal dialysis training sessions was associated with >50% increased likelihood of subsequent peritonitis, with an adjusted risk ratio of 1.56 (95% confidence interval, 1.02-2.39; P = 0.04). These findings show that the behavioural measure of late attendance for peritoneal dialysis training has a crucial role in predicting peritonitis. It may therefore represent a practical strategy for identifying poor adherence or predicting medical outcomes.
Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Koshino, K.; Nakamura, Y.
While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.
Incorporating parametric uncertainty into population viability analysis models
McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.
2011-01-01
Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arzoumanian, Zaven; Brazier, Adam; Chatterjee, Shami
2015-11-01
We present high-precision timing observations spanning up to nine years for 37 millisecond pulsars monitored with the Green Bank and Arecibo radio telescopes as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We describe the observational and instrumental setups used to collect the data, and methodology applied for calculating pulse times of arrival; these include novel methods for measuring instrumental offsets and characterizing low signal-to-noise ratio timing results. The time of arrival data are fit to a physical timing model for each source, including terms that characterize time-variable dispersion measure and frequency-dependent pulse shape evolution. Inmore » conjunction with the timing model fit, we have performed a Bayesian analysis of a parameterized timing noise model for each source, and detect evidence for excess low-frequency, or “red,” timing noise in 10 of the pulsars. For 5 of these cases this is likely due to interstellar medium propagation effects rather than intrisic spin variations. Subsequent papers in this series will present further analysis of this data set aimed at detecting or limiting the presence of nanohertz-frequency gravitational wave signals.« less
NASA Astrophysics Data System (ADS)
Kar, Leow Soo
2014-07-01
Two important factors that influence customer satisfaction in large supermarkets or hypermarkets are adequate parking facilities and short waiting times at the checkout counters. This paper describes the simulation analysis of a large supermarket to determine the optimal levels of these two factors. SAS Simulation Studio is used to model a large supermarket in a shopping mall with car park facility. In order to make the simulation model more realistic, a number of complexities are introduced into the model. For example, arrival patterns of customers vary with the time of the day (morning, afternoon and evening) and with the day of the week (weekdays or weekends), the transport mode of arriving customers (by car or other means), the mode of payment (cash or credit card), customer shopping pattern (leisurely, normal, exact) or choice of checkout counters (normal or express). In this study, we focus on 2 important components of the simulation model, namely the parking area, the normal and express checkout counters. The parking area is modeled using a Resource Pool block where one resource unit represents one parking bay. A customer arriving by car seizes a unit of the resource from the Pool block (parks car) and only releases it when he exits the system. Cars arriving when the Resource Pool is empty (no more parking bays) leave without entering the system. The normal and express checkouts are represented by Server blocks with appropriate service time distributions. As a case study, a supermarket in a shopping mall with a limited number of parking bays in Bangsar was chosen for this research. Empirical data on arrival patterns, arrival modes, payment modes, shopping patterns, service times of the checkout counters were collected and analyzed to validate the model. Sensitivity analysis was also performed with different simulation scenarios to identify the parameters for the optimal number the parking spaces and checkout counters.
33 CFR 146.405 - Safety and Security notice of arrival for vessels arriving at a place on the OCS.
Code of Federal Regulations, 2012 CFR
2012-07-01
... or operator of that vessel must revise and re-submit the NOA within the times required in paragraph (e) of this section. An owner or operator does not need to revise and re-submit an NOA for the... site at http://www.nvmc.uscg.gov/. (e) Required reporting time of an NOA update. The owner or operator...
33 CFR 146.405 - Safety and Security notice of arrival for vessels arriving at a place on the OCS.
Code of Federal Regulations, 2014 CFR
2014-07-01
... or operator of that vessel must revise and re-submit the NOA within the times required in paragraph (e) of this section. An owner or operator does not need to revise and re-submit an NOA for the... site at http://www.nvmc.uscg.gov/. (e) Required reporting time of an NOA update. The owner or operator...
Evaluation of Trajectory Errors in an Automated Terminal-Area Environment
NASA Technical Reports Server (NTRS)
Oseguera-Lohr, Rosa M.; Williams, David H.
2003-01-01
A piloted simulation experiment was conducted to document the trajectory errors associated with use of an airplane's Flight Management System (FMS) in conjunction with a ground-based ATC automation system, Center-TRACON Automation System (CTAS) in the terminal area. Three different arrival procedures were compared: current-day (vectors from ATC), modified (current-day with minor updates), and data link with FMS lateral navigation. Six active airline pilots flew simulated arrivals in a fixed-base simulator. The FMS-datalink procedure resulted in the smallest time and path distance errors, indicating that use of this procedure could reduce the CTAS arrival-time prediction error by about half over the current-day procedure. Significant sources of error contributing to the arrival-time error were crosstrack errors and early speed reduction in the last 2-4 miles before the final approach fix. Pilot comments were all very positive, indicating the FMS-datalink procedure was easy to understand and use, and the increased head-down time and workload did not detract from the benefit. Issues that need to be resolved before this method of operation would be ready for commercial use include development of procedures acceptable to controllers, better speed conformance monitoring, and FMS database procedures to support the approach transitions.
NASA Astrophysics Data System (ADS)
Hamilton, Mark F.
1989-08-01
Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.
Lamp, William O.
2015-01-01
Climate change can benefit individual species, but when pest species are enhanced by warmer temperatures agricultural productivity may be placed at greater risk. We analyzed the effects of temperature anomaly on arrival date and infestation severity of potato leafhopper, Empoasca fabae Harris, a classic new world long distance migrant, and a significant pest in several agricultural crops. We compiled E. fabae arrival dates and infestation severity data at different states in USA from existing literature reviews and agricultural extension records from 1951–2012, and examined the influence of temperature anomalies at each target state or overwintering range on the date of arrival and severity of infestation. Average E. fabae arrival date at different states reveal a clear trend along the south-north axis, with earliest arrival closest to the overwintering range. E. fabae arrival has advanced by 10 days over the last 62 years. E. fabae arrived earlier in warmer years in relation to each target state level temperature anomaly (3.0 days / °C increase in temperature anomaly). Increased temperature had a significant and positive effect on the severity of infestation, and arrival date had a marginal negative effect on severity. These relationships suggest that continued warming could advance the time of E. fabae colonization and increase their impact on affected crops. PMID:25970705
Stability analysis of a time-periodic 2-dof MEMS structure
NASA Astrophysics Data System (ADS)
Kniffka, Till Jochen; Welte, Johannes; Ecker, Horst
2012-11-01
Microelectromechanical systems (MEMS) are becoming important for all kinds of industrial applications. Among them are filters in communication devices, due to the growing demand for efficient and accurate filtering of signals. In recent developments single degree of freedom (1-dof) oscillators, that are operated at a parametric resonances, are employed for such tasks. Typically vibration damping is low in such MEM systems. While parametric excitation (PE) is used so far to take advantage of a parametric resonance, this contribution suggests to also exploit parametric anti-resonances in order to improve the damping behavior of such systems. Modeling aspects of a 2-dof MEM system and first results of the analysis of the non-linear and the linearized system are the focus of this paper. In principle the investigated system is an oscillating mechanical system with two degrees of freedom x = [x1x2]T that can be described by Mx+Cx+K1x+K3(x2)x+Fes(x,V(t)) = 0. The system is inherently non-linear because of the cubic mechanical stiffness K3 of the structure, but also because of electrostatic forces (1+cos(ωt))Fes(x) that act on the system. Electrostatic forces are generated by comb drives and are proportional to the applied time-periodic voltage V(t). These drives also provide the means to introduce time-periodic coefficients, i.e. parametric excitation (1+cos(ωt)) with frequency ω. For a realistic MEM system the coefficients of the non-linear set of differential equations need to be scaled for efficient numerical treatment. The final mathematical model is a set of four non-linear time-periodic homogeneous differential equations of first order. Numerical results are obtained from two different methods. The linearized time-periodic (LTP) system is studied by calculating the Monodromy matrix of the system. The eigenvalues of this matrix decide on the stability of the LTP-system. To study the unabridged non-linear system, the bifurcation software ManLab is employed. Continuation analysis including stability evaluations are executed and show the frequency ranges for which the 2-dof system becomes unstable due to parametric resonances. Moreover, the existence of frequency intervals are shown where enhanced damping for the system is observed for this MEMS. The results from the stability studies are confirmed by simulation results.
Paling, David; Thade Petersen, Esben; Tozer, Daniel J; Altmann, Daniel R; Wheeler-Kingshott, Claudia AM; Kapoor, Raju; Miller, David H; Golay, Xavier
2014-01-01
Alterations in the overall cerebral hemodynamics have been reported in multiple sclerosis (MS); however, their cause and significance is unknown. While potential venous causes have been examined, arterial causes have not. In this study, a multiple delay time arterial spin labeling magnetic resonance imaging sequence at 3T was used to quantify the arterial hemodynamic parameter bolus arrival time (BAT) and cerebral blood flow (CBF) in normal-appearing white matter (NAWM) and deep gray matter in 33 controls and 35 patients with relapsing–remitting MS. Bolus arrival time was prolonged in MS in NAWM (1.0±0.2 versus 0.9±0.2 seconds, P=0.031) and deep gray matter (0.90±0.18 versus 0.80±0.14 seconds, P=0.001) and CBF was increased in NAWM (14±4 versus 10±2 mL/100 g/min, P=0.001). Prolonged BAT in NAWM (P=0.042) and deep gray matter (P=0.01) were associated with higher expanded disability status score. This study demonstrates alteration in cerebral arterial hemodynamics in MS. One possible cause may be widespread inflammation. Bolus arrival time was longer in patients with greater disability independent of atrophy and T2 lesion load, suggesting alterations in cerebral arterial hemodynamics may be a marker of clinically relevant pathology. PMID:24045400
NASA Astrophysics Data System (ADS)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-06-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density profile can be overestimated, underestimated or spatially distorted. Among the six cases, only the velocity-density parametrization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.
2016-03-03
for each shot, as well as "raw" data that includes time-of-arrival (TOA) and direction-of-arrival (DOA) of the muzzle blast (MB) produced by the weapon...angle of arrival, muzzle blast, shock wave, bullet deceleration, fusion REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR...of the muzzle blast (MB) produced by the weapon and the shock wave (SW) produced by the supersonic bullet. The localization accuracy is improved
NASA Technical Reports Server (NTRS)
Toups, Larry; Simon, Matthew; Smitherman, David; Spexarth, Gary
2012-01-01
NASA's Human Space Flight Architecture Team (HAT) is a multi-disciplinary, cross-agency study team that conducts strategic analysis of integrated development approaches for human and robotic space exploration architectures. During each analysis cycle, HAT iterates and refines the definition of design reference missions (DRMs), which inform the definition of a set of integrated capabilities required to explore multiple destinations. An important capability identified in this capability-driven approach is habitation, which is necessary for crewmembers to live and work effectively during long duration transits to and operations at exploration destinations beyond Low Earth Orbit (LEO). This capability is captured by an element referred to as the Deep Space Habitat (DSH), which provides all equipment and resources for the functions required to support crew safety, health, and work including: life support, food preparation, waste management, sleep quarters, and housekeeping.The purpose of this paper is to describe the design of the DSH capable of supporting crew during exploration missions. First, the paper describes the functionality required in a DSH to support the HAT defined exploration missions, the parameters affecting its design, and the assumptions used in the sizing of the habitat. Then, the process used for arriving at parametric sizing estimates to support additional HAT analyses is detailed. Finally, results from the HAT Cycle C DSH sizing are presented followed by a brief description of the remaining design trades and technological advancements necessary to enable the exploration habitation capability.
The mental health of unaccompanied refugee minors on arrival in the host country.
Vervliet, Marianne; Meyer Demott, Melinda A; Jakobsen, Marianne; Broekaert, Eric; Heir, Trond; Derluyn, Ilse
2014-02-01
Despite increasing numbers of unaccompanied refugee minors (UM) in Europe and heightened concerns for this group, research on their mental health has seldom included the factor "time since arrival." As a result, our knowledge of the mental health statuses of UM at specific points in time and over periods in their resettlement trajectories in European host countries is limited. This study therefore examined the mental health of UM shortly after their arrival in Norway (n = 204) and Belgium (n = 103) through the use of self-report questionnaires (HSCL-37A, SLE, RATS, HTQ). High prevalence scores of anxiety, depression and posttraumatic stress disorder (PTSD) symptoms were found. In addition, particular associations were found with the number of traumatic events the UM reported. The results indicate that all UM have high support needs on arrival in the host country. Longitudinal studies following up patterns of continuity and change in their mental health during their trajectories in the host country are necessary. © 2014 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
The Use of Metaphors as a Parametric Design Teaching Model: A Case Study
ERIC Educational Resources Information Center
Agirbas, Asli
2018-01-01
Teaching methodologies for parametric design are being researched all over the world, since there is a growing demand for computer programming logic and its fabrication process in architectural education. The computer programming courses in architectural education are usually done in a very short period of time, and so students have no chance to…
NASA Astrophysics Data System (ADS)
Okishev, Andrey V.; Zuegel, Jonathan D.
2006-12-01
Intracavity-pumped Raman laser action in a fiber-laser pumped, single-resonant, continuous-wave (cw) MgO:PPLN optical parametric oscillator with a high-Q linear resonator has been observed for the first time to our knowledge. Experimental results of this phenomenon investigation will be discussed.
Robustness against parametric noise of nonideal holonomic gates
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Aniello, Paolo; Napolitano, Mario; Florio, Giuseppe
2007-07-01
Holonomic gates for quantum computation are commonly considered to be robust against certain kinds of parametric noise, the cause of this robustness being the geometric character of the transformation achieved in the adiabatic limit. On the other hand, the effects of decoherence are expected to become more and more relevant when the adiabatic limit is approached. Starting from the system described by Florio [Phys. Rev. A 73, 022327 (2006)], here we discuss the behavior of nonideal holonomic gates at finite operational time, i.e., long before the adiabatic limit is reached. We have considered several models of parametric noise and studied the robustness of finite-time gates. The results obtained suggest that the finite-time gates present some effects of cancellation of the perturbations introduced by the noise which mimic the geometrical cancellation effect of standard holonomic gates. Nevertheless, a careful analysis of the results leads to the conclusion that these effects are related to a dynamical instead of a geometrical feature.
Sleep analysis for wearable devices applying autoregressive parametric models.
Mendez, M O; Villantieri, O; Bianchi, A; Cerutti, S
2005-01-01
We applied time-variant and time-invariant parametric models in both healthy subjects and patients with sleep disorder recordings in order to assess the skills of those approaches to sleep disorders diagnosis in wearable devices. The recordings present the Obstructive Sleep Apnea (OSA) pathology which is characterized by fluctuations in the heart rate, bradycardia in apneonic phase and tachycardia at the recovery of ventilation. Data come from a web database in www.physionet.org. During OSA the spectral indexes obtained by time-variant lattice filters presented oscillations that correspond to the changes brady-tachycardia of the RR intervals and greater values than healthy ones. Multivariate autoregressive models showed an increment in very low frequency component (PVLF) at each apneic event. Also a rise in high frequency component (PHF) occurred over the breathing restore in the spectrum of both quadratic coherence and cross-spectrum in OSA. These autoregressive parametric approaches could help in the diagnosis of Sleep Disorder inside of the wearable devices.
Effects of Regularisation Priors and Anatomical Partial Volume Correction on Dynamic PET Data
NASA Astrophysics Data System (ADS)
Caldeira, Liliana L.; Silva, Nuno da; Scheins, Jürgen J.; Gaens, Michaela E.; Shah, N. Jon
2015-08-01
Dynamic PET provides temporal information about the tracer uptake. However, each PET frame has usually low statistics, resulting in noisy images. Furthermore, PET images suffer from partial volume effects. The goal of this study is to understand the effects of prior regularisation on dynamic PET data and subsequent anatomical partial volume correction. The Median Root Prior (MRP) regularisation method was used in this work during reconstruction. The quantification and noise in image-domain and time-domain (time-activity curves) as well as the impact on parametric images is assessed and compared with Ordinary Poisson Ordered Subset Expectation Maximisation (OP-OSEM) reconstruction with and without Gaussian filter. This study shows the improvement in PET images and time-activity curves (TAC) in terms of noise as well as in the parametric images when using prior regularisation in dynamic PET data. Anatomical partial volume correction improves the TAC and consequently, parametric images. Therefore, the use of MRP with anatomical partial volume correction is of interest for dynamic PET studies.
Reduced rank models for travel time estimation of low order mode pulses.
Chandrayadula, Tarun K; Wage, Kathleen E; Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Howe, Bruce M
2013-10-01
Mode travel time estimation in the presence of internal waves (IWs) is a challenging problem. IWs perturb the sound speed, which results in travel time wander and mode scattering. A standard approach to travel time estimation is to pulse compress the broadband signal, pick the peak of the compressed time series, and average the peak time over multiple receptions to reduce variance. The peak-picking approach implicitly assumes there is a single strong arrival and does not perform well when there are multiple arrivals due to scattering. This article presents a statistical model for the scattered mode arrivals and uses the model to design improved travel time estimators. The model is based on an Empirical Orthogonal Function (EOF) analysis of the mode time series. Range-dependent simulations and data from the Long-range Ocean Acoustic Propagation Experiment (LOAPEX) indicate that the modes are represented by a small number of EOFs. The reduced-rank EOF model is used to construct a travel time estimator based on the Matched Subspace Detector (MSD). Analysis of simulation and experimental data show that the MSDs are more robust to IW scattering than peak picking. The simulation analysis also highlights how IWs affect the mode excitation by the source.
Accurate identification of microseismic P- and S-phase arrivals using the multi-step AIC algorithm
NASA Astrophysics Data System (ADS)
Zhu, Mengbo; Wang, Liguan; Liu, Xiaoming; Zhao, Jiaxuan; Peng, Ping'an
2018-03-01
Identification of P- and S-phase arrivals is the primary work in microseismic monitoring. In this study, a new multi-step AIC algorithm is proposed. This algorithm consists of P- and S-phase arrival pickers (P-picker and S-picker). The P-picker contains three steps: in step 1, a preliminary P-phase arrival window is determined by the waveform peak. Then a preliminary P-pick is identified using the AIC algorithm. Finally, the P-phase arrival window is narrowed based on the above P-pick. Thus the P-phase arrival can be identified accurately by using the AIC algorithm again. The S-picker contains five steps: in step 1, a narrow S-phase arrival window is determined based on the P-pick and the AIC curve of amplitude biquadratic time-series. In step 2, the S-picker automatically judges whether the S-phase arrival is clear to identify. In step 3 and 4, the AIC extreme points are extracted, and the relationship between the local minimum and the S-phase arrival is researched. In step 5, the S-phase arrival is picked based on the maximum probability criterion. To evaluate of the proposed algorithm, a P- and S-picks classification criterion is also established based on a source location numerical simulation. The field data tests show a considerable improvement of the multi-step AIC algorithm in comparison with the manual picks and the original AIC algorithm. Furthermore, the technique is independent of the kind of SNR. Even in the poor-quality signal group which the SNRs are below 5, the effective picking rates (the corresponding location error is <15 m) of P- and S-phase arrivals are still up to 80.9% and 76.4% respectively.
GLASS 2.0: An Operational, Multimodal, Bayesian Earthquake Data Association Engine
NASA Astrophysics Data System (ADS)
Benz, H.; Johnson, C. E.; Patton, J. M.; McMahon, N. D.; Earle, P. S.
2015-12-01
The legacy approach to automated detection and determination of hypocenters is arrival time stacking algorithms. Examples of such algorithms are the associator, Binder, which has been in continuous use in many USGS-supported regional seismic networks since the 1980s and the spherical earth successor, GLASS 1.0, currently in service at the USGS National Earthquake Information Center for over 10 years. The principle short-comings of the legacy approach are 1) it can only use phase arrival times, 2) it does not adequately address the problems of extreme variations in station density worldwide, 3) it cannot incorporate multiple phase models or statistical attributes of phases with distance, and 4) it cannot incorporate noise model attributes of individual stations. Previously we introduced a theoretical framework of a new associator using a Bayesian kernel stacking approach to approximate a joint probability density function for hypocenter localization. More recently we added station- and phase-specific Bayesian constraints to the association process. GLASS 2.0 incorporates a multiplicity of earthquake related data including phase arrival times, back-azimuth and slowness information from array beamforming, arrival times from waveform cross correlation processing, and geographic constraints from real-time social media reports of ground shaking. We demonstrate its application by modeling an aftershock sequence using dozens of stations that recorded tens of thousands of earthquakes over a period of one month. We also demonstrate Glass 2.0 performance regionally and teleseismically using the globally distributed real-time monitoring system at NEIC.
A model of seismic coda arrivals to suppress spurious events.
NASA Astrophysics Data System (ADS)
Arora, N.; Russell, S.
2012-04-01
We describe a model of coda arrivals which has been added to NET-VISA (Network processing Vertically Integrated Seismic Analysis) our probabilistic generative model of seismic events, their transmission, and detection on a global seismic network. The scattered energy that follows a seismic phase arrival tends to deceive typical STA/LTA based arrival picking software into believing that a real seismic phase has been detected. These coda arrivals which tend to follow all seismic phases cause most network processing software including NET-VISA to believe that multiple events have taken place. It is not a simple matter of ignoring closely spaced arrivals since arrivals from multiple events can indeed overlap. The current practice in NET-VISA of pruning events within a small space-time neighborhood of a larger event works reasonably well, but it may mask real events produced in an after-shock sequence. Our new model allows any seismic arrival, even coda arrivals, to trigger a subsequent coda arrival. The probability of such a triggered arrival depends on the amplitude of the triggering arrival. Although real seismic phases are more likely to generate such coda arrivals. Real seismic phases also tend to generate coda arrivals with more strongly correlated parameters, for example azimuth and slowness. However, the SNR (Signal to Noise Ratio) of a coda arrival immediately following a phase arrival tends to be lower because of the nature of the SNR calculation. We have calibrated our model on historical statistics of such triggered arrivals and our inference accounts for them while searching for the best explanation of seismic events their association to the arrivals and the coda arrivals. We have tested our new model on one week of global seismic data spanning March 22, 2009 to March 29, 2009. Our model was trained on two and half months of data from April 5, 2009 to June 20, 2009. We use the LEB bulletin produced by the IDC (International Data Center) as the ground truth and computed the precision (percentage of reported events which are true) and recall (percentage of true events which are reported). The existing model has a precision of 32.2 and recall of 88.6 which changes to a precision of 50.7 and recall of 88.5 after pruning. The new model has a precision of 56.8 and recall of 86.9 without any pruning and the corresponding precision recall curve is dramatically improved. In contrast, the performance of the current automated bulletin at the IDC, SEL3, has a precision of 46.2 and recall of 69.7.
Changes in spring arrival dates and temperature sensitivity of migratory birds over two centuries
NASA Astrophysics Data System (ADS)
Kolářová, Eva; Matiu, Michael; Menzel, Annette; Nekovář, Jiří; Lumpe, Petr; Adamík, Peter
2017-07-01
Long-term phenological data have been crucial at documenting the effects of climate change in organisms. However, in most animal taxa, time series length seldom exceeds 35 years. Therefore, we have limited evidence on animal responses to climate prior to the recent warm period. To fill in this gap, we present time series of mean first arrival dates to Central Europe for 13 bird species spanning 183 years (1828-2010). We found a uniform trend of arrival dates advancing in the most recent decades (since the late 1970s). Interestingly, birds were arriving earlier during the cooler early part of the nineteenth century than in the recent warm period. Temperature sensitivity was slightly stronger in the warmest 30-year period (-1.70 ± SD 0.47 day °C-1) than in the coldest period (-1.42 ± SD 0.89 day °C-1); however, the difference was not statistically significant. In the most recent decades, the temperature sensitivity of both short- and long-distance migrants significantly increased. Our results demonstrate how centennial time series can provide a much more comprehensive perspective on avian responses to climate change.
Tracking fin whales in the northeast Pacific Ocean with a seafloor seismic network.
Wilcock, William S D
2012-10-01
Ocean bottom seismometer (OBS) networks represent a tool of opportunity to study fin and blue whales. A small OBS network on the Juan de Fuca Ridge in the northeast Pacific Ocean in ~2.3 km of water recorded an extensive data set of 20-Hz fin whale calls. An automated method has been developed to identify arrival times based on instantaneous frequency and amplitude and to locate calls using a grid search even in the presence of a few bad arrival times. When only one whale is calling near the network, tracks can generally be obtained up to distances of ~15 km from the network. When the calls from multiple whales overlap, user supervision is required to identify tracks. The absolute and relative amplitudes of arrivals and their three-component particle motions provide additional constraints on call location but are not useful for extending the distance to which calls can be located. The double-difference method inverts for changes in relative call locations using differences in residuals for pairs of nearby calls recorded on a common station. The method significantly reduces the unsystematic component of the location error, especially when inconsistencies in arrival time observations are minimized by cross-correlation.
Trauma deaths in the first hour: are they all unsalvageable injuries?
MacLeod, Jana B A; Cohn, Stephen M; Johnson, E William; McKenney, Mark G
2007-02-01
With the advent of trauma systems, time to definitive care has been decreased. We hypothesized that a subset of patients who are in extremis from the time of prehospital transport to arrival at the trauma center, and who ultimately die early after arrival, may in fact have a potentially salvageable single-organ injury. We reviewed all deaths that occurred in the first hour after hospital admission. Trauma registry, medical records, and autopsy reports for 556 patients were evaluated. The median time to arrival was 39 minutes, and the median Injury Severity Score was 29. Blunt injuries (53%) were most commonly auto-accident injuries (134 of 285 patients; 47%). Penetrating wounds (42%) were mostly gunshot wounds to the chest (73 of 233 patients; 31%). For patients with initial vital signs, the most common cause of death was isolated brain injury (26 patients; 28%). Possibly survivable injuries (single organ or vessel) occurred in 35 (38%) patients, of which 4 were isolated spleen injuries (4%). Some patients with potentially survivable single organ injuries did not have associated head injuries. An aggressive approach is warranted on patients with detectable vital signs on at least one occasion in the field but who arrive at the trauma center in extremis.
Dethleff, Dirk; Weinrich, Nils; Kowald, Birgitt; Hory, Dorothea; Franz, Rüdiger; Nielsen, Maja Verena; Seide, Klaus; Jürgens, Christian; Stuhr, Markus
2016-01-01
Our purpose was 2-fold: 1) to show emergency-related traumatic injury and acute disease patterns and 2) to evaluate air rescue process times in a remotely located German offshore wind farm. Optimally, this will support methodologies to reduce offshore help time (time from the incoming emergency call until offshore arrival of the helicopter). The type and severity of traumatic injuries and acute diseases were retrospectively analyzed for 39 air medevacs from August 2011 to December 2013, and the process times of air rescue missions were evaluated in detail. Forty-nine percent of the medevacs were related to traumatic injuries, whereas 41% were associated with acute diseases and 10% remained unclear. Cardiovascular and gastrointestinal disorders accounted for 90% of internal medical cases. About 69% of the trauma was related to contusions, lacerations, and cuts. The main body regions injured were limbs (∼59%) and head (∼32%). The total rescue time until arrival at the destination facility averaged 175.3 minutes (standard deviation = 54.4 minutes). The mean helicopter offshore arrival time was 106.9 minutes (standard deviation = 57.4 minutes) after the incoming emergency call. In 64% of the medevacs, the helicopter arrived on scene within a help time of 90 minutes. A reduction of help time (≤ 60 minutes) for time-critical severe trauma and acute diseases may be anticipated through rapid and focused medical and logistic decision-making processes by the onshore dispatch center combined with professional, qualified, and well-trained flight and rescue personnel. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Funada, Akira; Goto, Yoshikazu; Tada, Hayato; Shimojima, Masaya; Hayashi, Kenshi; Kawashiri, Masa-Aki; Yamagishi, Masakazu
2018-06-23
The effects of prehospital epinephrine administration on post-arrest neurological outcome in out-of-hospital cardiac arrest (OHCA) patients with non-shockable rhythm remain unclear. To examine the time-dependent effectiveness of prehospital epinephrine administration, we analyzed 118,396 bystander-witnessed OHCA patients with non-shockable rhythm from the prospectively recorded all-Japan OHCA registry between 2011 and 2014. Patients who achieved prehospital return of spontaneous circulation without prehospital epinephrine administration were excluded. Patients with prehospital epinephrine administration were stratified according to the time from the initiation of cardiopulmonary resuscitation (CPR) by emergency medical service (EMS) providers to the first epinephrine administration (≤ 10, 11-19, and ≥ 20 min). Patients without prehospital epinephrine administration were stratified according to the time from CPR initiation by EMS providers to hospital arrival (≤ 10, 11-19, and ≥ 20 min). The primary outcome was 1-month neurologically intact survival (cerebral performance category 1 or 2; CPC 1-2). Multivariate logistic regression analysis demonstrated that there was no significant difference in the chance of 1-month CPC 1-2 between patients who arrived at hospital in ≤ 10 min without prehospital epinephrine administration and patients with time to epinephrine administration ≤ 19 min. However, compared to patients who arrived at hospital in ≤ 10 min without prehospital epinephrine administration, patients with time to epinephrine administration ≥ 20 min and patients who arrived at hospital in 11-19, and ≥ 20 min without prehospital epinephrine administration were significantly associated with decreased chance of 1-month CPC 1-2 (p < 0.05, < 0.05, and < 0.001, respectively). In conclusion, when prehospital CPR duration from CPR initiation by EMS providers to hospital arrival estimated to be ≥ 11 min, prehospital epinephrine administered ≤ 19 min from CPR initiation by EMS providers could improve neurologically intact survival in bystander-witnessed OHCA patients with non-shockable rhythm.
Modeling personnel turnover in the parametric organization
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1991-01-01
A model is developed for simulating the dynamics of a newly formed organization, credible during all phases of organizational development. The model development process is broken down into the activities of determining the tasks required for parametric cost analysis (PCA), determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the model, implementing the model, and testing it. The model, parameterized by the likelihood of job function transition, has demonstrated by the capability to represent the transition of personnel across functional boundaries within a parametric organization using a linear dynamical system, and the ability to predict required staffing profiles to meet functional needs at the desired time. The model can be extended by revisions of the state and transition structure to provide refinements in functional definition for the parametric and extended organization.
Noise-enhanced Parametric Resonance in Perturbed Galaxies
NASA Astrophysics Data System (ADS)
Sideris, Ioannis V.; Kandrup, Henry E.
2004-02-01
This paper describes how parametric resonances associated with a galactic potential subjected to relatively low-amplitude, strictly periodic time-dependent perturbations can be impacted by pseudo-random variations in the pulsation frequency, modeled as colored noise. One aim thereby is to allow for the effects of a changing oscillation frequency as the density distribution associated with a galaxy evolves during violent relaxation. Another is to mimic the possible effects of internal substructures, satellite galaxies, and/or a high-density environment. The principal conclusions are that allowing for a variable frequency does not vitiate the effects of parametric resonance, and that, in at least some cases, such variations can increase the overall importance of parametric resonance associated with systematic pulsations. In memory of Professor H. E. Kandrup, a brilliant scientist, excellent teacher, and good friend. His genius and sense of humor will be greatly missed.
Acoustic time-of-flight for proton range verification in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Kevin C.; Avery, Stephen, E-mail: Stephen.A
2016-09-15
Purpose: Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Methods: Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10{sup 7} protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom,more » and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. Results: A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10{sup 7} protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%–90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone’s acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (−2.0, 0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = − 4.5 mm and standard deviation = 2.0 mm. Conclusions: Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beam’s position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.« less
Acoustic time-of-flight for proton range verification in water.
Jones, Kevin C; Vander Stappen, François; Sehgal, Chandra M; Avery, Stephen
2016-09-01
Measurement of the arrival times of thermoacoustic waves induced by pulsed proton dose depositions (protoacoustics) may provide a proton range verification method. The goal of this study is to characterize the required dose and protoacoustic proton range (distance) verification accuracy in a homogeneous water medium at a hospital-based clinical cyclotron. Gaussian-like proton pulses with 17 μs widths and instantaneous currents of 480 nA (5.6 × 10(7) protons/pulse, 3.4 cGy/pulse at the Bragg peak) were generated by modulating the cyclotron proton source with a function generator. After energy degradation, the 190 MeV proton pulses irradiated a water phantom, and the generated protoacoustic emissions were measured by a hydrophone. The detector position and proton pulse characteristics were varied. The experimental results were compared to simulations. Different arrival time metrics derived from acoustic waveforms were compared, and the accuracy of protoacoustic time-of-flight distance calculations was assessed. A 27 mPa noise level was observed in the treatment room during irradiation. At 5 cm from the proton beam, an average maximum pressure of 5.2 mPa/1 × 10(7) protons (6.1 mGy at the Bragg peak) was measured after irradiation with a proton pulse with 10%-90% rise time of 11 μs. Simulation and experiment arrival times agreed well, and the observed 2.4 μs delay between simulation and experiment is attributed to the difference between the hydrophone's acoustic and geometric centers. Based on protoacoustic arrival times, the beam axis position was measured to within (x, y) = (-2.0, 0.5) ± 1 mm. After deconvolution of the exciting proton pulse, the protoacoustic compression peak provided the most consistent measure of the distance to the Bragg peak, with an error distribution with mean = - 4.5 mm and standard deviation = 2.0 mm. Based on water tank measurements at a clinical hospital-based cyclotron, protoacoustics is a potential method for measuring the beam's position (x and y within 2.0 mm) and Bragg peak range (2.0 mm standard deviation), although range verification will require simulation or experimental calibration to remove systematic error. Based on extrapolation, a protoacoustic arrival time reproducibility of 1.5 μs (2.2 mm) is achievable with 2 Gy of total deposited dose. Of the compared methods, deconvolution of the excitation proton pulse is the best technique for extracting protoacoustic arrival times, particularly if there is variation in the proton pulse shape.
Ouwehand, Janne; Both, Christiaan
2017-01-01
Properly timed spring migration enhances reproduction and survival. Climate change requires organisms to respond to changes such as advanced spring phenology. Pied flycatchers Ficedula hypoleuca have become a model species to study such phenological adaptations of long-distance migratory songbirds to climate change, but data on individuals' time schedules outside the breeding season are still lacking. Using light-level geolocators, we studied variation in migration schedules across the year in a pied flycatcher population in the Netherlands, which sheds light on the ability for individual adjustments in spring arrival timing to track environmental changes at their breeding grounds. We show that variation in arrival dates to breeding sites in 2014 was caused by variation in departure date from sub-Saharan Africa and not by environmental conditions encountered en route. Spring migration duration was short for all individuals, on average 2 weeks. Males migrated ahead of females in spring, while migration schedules in autumn were flexibly adjusted according to breeding duties. Individuals were therefore not consistently early or late throughout the year. In fast migrants like our Dutch pied flycatchers, advancement of arrival to climate change likely requires changes in spring departure dates. Adaptation for earlier arrival may be slowed down by harsh circumstances in winter, or years with high costs associated with early migration. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Han, Meng; Wang, Na; Guo, Shifang; Chang, Nan; Lu, Shukuan; Wan, Mingxi
2018-07-01
Nowadays, both thermal and mechanical ablation techniques of HIFU associated with cavitation have been developed for noninvasive treatment. A specific challenge for the successful clinical implementation of HIFU is to achieve real-time imaging for the evaluation and determination of therapy outcomes such as necrosis or homogenization. Ultrasound Nakagami-m parametric imaging highlights the degrading shadowing effects of bubbles and can be used for tissue characterization. The aim of this study is to investigate the performance of Nakagami-m parametric imaging for evaluating and differentiating thermal coagulation and cavitation erosion induced by HIFU. Lesions were induced in basic bovine serum albumin (BSA) phantoms and ex vivo porcine livers using a 1.6 MHz single-element transducer. Thermal and mechanical lesions induced by two types of HIFU sequences respectively were evaluated using Nakagami-m parametric imaging and ultrasound B-mode imaging. The lesion sizes estimated using Nakagami-m parametric imaging technique were all closer to the actual sizes than those of B-mode imaging. The p-value obtained from the t-test between the mean m values of thermal coagulation and cavitation erosion was smaller than 0.05, demonstrating that the m values of thermal lesions were significantly different from that of mechanical lesions, which was confirmed by ex vivo experiments and histologic examination showed that different changes result from HIFU exposure, one of tissue dehydration resulting from the thermal effect, and the other of tissue homogenate resulting from mechanical effect. This study demonstrated that Nakagami-m parametric imaging is a potential real-time imaging technique for evaluating and differentiating thermal coagulation and cavitation erosion. Copyright © 2018 Elsevier B.V. All rights reserved.
Eisenbrey, John R; Dave, Jaydev K; Merton, Daniel A; Palazzo, Juan P; Hall, Anne L; Forsberg, Flemming
2011-01-01
Parametric maps showing perfusion of contrast media can be useful tools for characterizing lesions in breast tissue. In this study we show the feasibility of parametric subharmonic imaging (SHI), which allows imaging of a vascular marker (the ultrasound contrast agent) while providing near complete tissue suppression. Digital SHI clips of 16 breast lesions from 14 women were acquired. Patients were scanned using a modified LOGIQ 9 scanner (GE Healthcare, Waukesha, WI) transmitting/receiving at 4.4/2.2 MHz. Using motion-compensated cumulative maximum intensity (CMI) sequences, parametric maps were generated for each lesion showing the time to peak (TTP), estimated perfusion (EP), and area under the time-intensity curve (AUC). Findings were grouped and compared according to biopsy results as benign lesions (n = 12, including 5 fibroadenomas and 3 cysts) and carcinomas (n = 4). For each lesion CMI, TTP, EP, and AUC parametric images were generated. No significant variations were detected with CMI (P = .80), TTP (P = .35), or AUC (P = .65). A statistically significant variation was detected for the average pixel EP (P = .002). Especially, differences were seen between carcinoma and benign lesions (mean ± SD, 0.10 ± 0.03 versus 0.05 ± 0.02 intensity units [IU]/s; P = .0014) and between carcinoma and fibroadenoma (0.10 ± 0.03 versus 0.04 ± 0.01 IU/s; P = .0044), whereas differences between carcinomas and cysts were found to be nonsignificant. In conclusion, a parametric imaging method for characterization of breast lesions using the high contrast to tissue signal provided by SHI has been developed. While the preliminary sample size was limited, results show potential for breast lesion characterization based on perfusion flow parameters.
Comparison of Salmonella enteritidis phage types isolated from layers and humans in Belgium in 2005.
Welby, Sarah; Imberechts, Hein; Riocreux, Flavien; Bertrand, Sophie; Dierick, Katelijne; Wildemauwe, Christa; Hooyberghs, Jozef; Van der Stede, Yves
2011-08-01
The aim of this study was to investigate the available results for Belgium of the European Union coordinated monitoring program (2004/665 EC) on Salmonella in layers in 2005, as well as the results of the monthly outbreak reports of Salmonella Enteritidis in humans in 2005 to identify a possible statistical significant trend in both populations. Separate descriptive statistics and univariate analysis were carried out and the parametric and/or non-parametric hypothesis tests were conducted. A time cluster analysis was performed for all Salmonella Enteritidis phage types (PTs) isolated. The proportions of each Salmonella Enteritidis PT in layers and in humans were compared and the monthly distribution of the most common PT, isolated in both populations, was evaluated. The time cluster analysis revealed significant clusters during the months May and June for layers and May, July, August, and September for humans. PT21, the most frequently isolated PT in both populations in 2005, seemed to be responsible of these significant clusters. PT4 was the second most frequently isolated PT. No significant difference was found for the monthly trend evolution of both PT in both populations based on parametric and non-parametric methods. A similar monthly trend of PT distribution in humans and layers during the year 2005 was observed. The time cluster analysis and the statistical significance testing confirmed these results. Moreover, the time cluster analysis showed significant clusters during the summer time and slightly delayed in time (humans after layers). These results suggest a common link between the prevalence of Salmonella Enteritidis in layers and the occurrence of the pathogen in humans. Phage typing was confirmed to be a useful tool for identifying temporal trends.
NASA Astrophysics Data System (ADS)
Środa, Piotr; Dec, Monika
2016-04-01
The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the refractions from the anomalous zone, also the off-line reflections from the top of the intrusion were used for inversion. Presented results provide new information about the depth and horizontal extent of the high-velocity intrusion. The model is also compared with other seismic studies of similar velocity anomalies observed at continental margins.
Williams, Claire; Lewsey, James D; Briggs, Andrew H; Mackay, Daniel F
2017-05-01
This tutorial provides a step-by-step guide to performing cost-effectiveness analysis using a multi-state modeling approach. Alongside the tutorial, we provide easy-to-use functions in the statistics package R. We argue that this multi-state modeling approach using a package such as R has advantages over approaches where models are built in a spreadsheet package. In particular, using a syntax-based approach means there is a written record of what was done and the calculations are transparent. Reproducing the analysis is straightforward as the syntax just needs to be run again. The approach can be thought of as an alternative way to build a Markov decision-analytic model, which also has the option to use a state-arrival extended approach. In the state-arrival extended multi-state model, a covariate that represents patients' history is included, allowing the Markov property to be tested. We illustrate the building of multi-state survival models, making predictions from the models and assessing fits. We then proceed to perform a cost-effectiveness analysis, including deterministic and probabilistic sensitivity analyses. Finally, we show how to create 2 common methods of visualizing the results-namely, cost-effectiveness planes and cost-effectiveness acceptability curves. The analysis is implemented entirely within R. It is based on adaptions to functions in the existing R package mstate to accommodate parametric multi-state modeling that facilitates extrapolation of survival curves.
Meizoso, Jonathan P; Ray, Juliet J; Karcutskie, Charles A; Allen, Casey J; Zakrison, Tanya L; Pust, Gerd D; Koru-Sengul, Tulay; Ginzburg, Enrique; Pizano, Louis R; Schulman, Carl I; Livingstone, Alan S; Proctor, Kenneth G; Namias, Nicholas
2016-10-01
Timely hemorrhage control is paramount in trauma; however, a critical time interval from emergency department arrival to operation for hypotensive gunshot wound (GSW) victims is not established. We hypothesize that delaying surgery for more than 10 minutes from arrival increases all-cause mortality in hypotensive patients with GSW. Data of adults (n = 309) with hypotension and GSW to the torso requiring immediate operation from January 2004 to September 2013 were retrospectively reviewed. Patients with resuscitative thoracotomies, traumatic brain injury, transfer from outside institutions, and operations occurring more than 1 hour after arrival were excluded. Survival analysis using multivariate Cox regression models was used for comparison. Hazard ratios (HRs) and 95% confidence intervals (CIs) are reported. Statistical significance was considered at p ≤ 0.05. The study population was aged 32 ± 12 years, 92% were male, Injury Severity Score was 24 ± 15, systolic blood pressure was 81 ± 29 mm Hg, Glasgow Coma Scale score was 13 ± 4. Overall mortality was 27%. Mean time to operation was 19 ± 13 minutes. After controlling for organ injury, patients who arrived to the operating room after 10 minutes had a higher likelihood of mortality compared with those who arrived in 10 minutes or less (HR, 1.89; 95% CI, 1.10-3.26; p = 0.02); this was also true in the severely hypotensive patients with systolic blood pressure of 70 mm Hg or less (HR, 2.67; 95% CI, 0.97-7.34; p = 0.05). The time associated with a 50% cumulative mortality was 16 minutes. Delay to the operating room of more than 10 minutes increases the risk of mortality by almost threefold in hypotensive patients with GSW. Protocols should be designed to shorten time in the emergency department. Further prospective observational studies are required to validate these findings. Therapeutic study, level IV.
McLaughlin, Joyce; Renzi, Daniel; Parker, Kevin; Wu, Zhe
2007-04-01
Two new experiments were created to characterize the elasticity of soft tissue using sonoelastography. In both experiments the spectral variance image displayed on a GE LOGIC 700 ultrasound machine shows a moving interference pattern that travels at a very small fraction of the shear wave speed. The goal of this paper is to devise and test algorithms to calculate the speed of the moving interference pattern using the arrival times of these same patterns. A geometric optics expansion is used to obtain Eikonal equations relating the moving interference pattern arrival times to the moving interference pattern speed and then to the shear wave speed. A cross-correlation procedure is employed to find the arrival times; and an inverse Eikonal solver called the level curve method computes the speed of the interference pattern. The algorithm is tested on data from a phantom experiment performed at the University of Rochester Center for Biomedical Ultrasound.
FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.
Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan
2018-01-01
The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.
Clues on the origin of post-2000 earthquakes at Campi Flegrei caldera (Italy).
Chiodini, G; Selva, J; Del Pezzo, E; Marsan, D; De Siena, L; D'Auria, L; Bianco, F; Caliro, S; De Martino, P; Ricciolino, P; Petrillo, Z
2017-06-30
The inter-arrival times of the post 2000 seismicity at Campi Flegrei caldera are statistically distributed into different populations. The low inter-arrival times population represents swarm events, while the high inter-arrival times population marks background seismicity. Here, we show that the background seismicity is increasing at the same rate of (1) the ground uplift and (2) the concentration of the fumarolic gas specie more sensitive to temperature. The seismic temporal increase is strongly correlated with the results of recent simulations, modelling injection of magmatic fluids in the Campi Flegrei hydrothermal system. These concurrent variations point to a unique process of temperature-pressure increase of the hydrothermal system controlling geophysical and geochemical signals at the caldera. Our results thus show that the occurrence of background seismicity is an excellent parameter to monitor the current unrest of the caldera.
Knowledge-Based Scheduling of Arrival Aircraft in the Terminal Area
NASA Technical Reports Server (NTRS)
Krzeczowski, K. J.; Davis, T.; Erzberger, H.; Lev-Ram, Israel; Bergh, Christopher P.
1995-01-01
A knowledge based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real time simulation. The scheduling system automatically sequences, assigns landing times, and assign runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithm is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reductions, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithm is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper describes the scheduling algorithms, gives examples of their use, and presents data regarding their potential benefits to the air traffic system.
Knowledge-based scheduling of arrival aircraft
NASA Technical Reports Server (NTRS)
Krzeczowski, K.; Davis, T.; Erzberger, H.; Lev-Ram, I.; Bergh, C.
1995-01-01
A knowledge-based method for scheduling arrival aircraft in the terminal area has been implemented and tested in real-time simulation. The scheduling system automatically sequences, assigns landing times, and assigns runways to arrival aircraft by utilizing continuous updates of aircraft radar data and controller inputs. The scheduling algorithms is driven by a knowledge base which was obtained in over two thousand hours of controller-in-the-loop real-time simulation. The knowledge base contains a series of hierarchical 'rules' and decision logic that examines both performance criteria, such as delay reduction, as well as workload reduction criteria, such as conflict avoidance. The objective of the algorithms is to devise an efficient plan to land the aircraft in a manner acceptable to the air traffic controllers. This paper will describe the scheduling algorithms, give examples of their use, and present data regarding their potential benefits to the air traffic system.
Rakvongthai, Yothin; Ouyang, Jinsong; Guerin, Bastien; Li, Quanzheng; Alpert, Nathaniel M.; El Fakhri, Georges
2013-01-01
Purpose: Our research goal is to develop an algorithm to reconstruct cardiac positron emission tomography (PET) kinetic parametric images directly from sinograms and compare its performance with the conventional indirect approach. Methods: Time activity curves of a NCAT phantom were computed according to a one-tissue compartmental kinetic model with realistic kinetic parameters. The sinograms at each time frame were simulated using the activity distribution for the time frame. The authors reconstructed the parametric images directly from the sinograms by optimizing a cost function, which included the Poisson log-likelihood and a spatial regularization terms, using the preconditioned conjugate gradient (PCG) algorithm with the proposed preconditioner. The proposed preconditioner is a diagonal matrix whose diagonal entries are the ratio of the parameter and the sensitivity of the radioactivity associated with parameter. The authors compared the reconstructed parametric images using the direct approach with those reconstructed using the conventional indirect approach. Results: At the same bias, the direct approach yielded significant relative reduction in standard deviation by 12%–29% and 32%–70% for 50 × 106 and 10 × 106 detected coincidences counts, respectively. Also, the PCG method effectively reached a constant value after only 10 iterations (with numerical convergence achieved after 40–50 iterations), while more than 500 iterations were needed for CG. Conclusions: The authors have developed a novel approach based on the PCG algorithm to directly reconstruct cardiac PET parametric images from sinograms, and yield better estimation of kinetic parameters than the conventional indirect approach, i.e., curve fitting of reconstructed images. The PCG method increases the convergence rate of reconstruction significantly as compared to the conventional CG method. PMID:24089922
Rakvongthai, Yothin; Ouyang, Jinsong; Guerin, Bastien; Li, Quanzheng; Alpert, Nathaniel M; El Fakhri, Georges
2013-10-01
Our research goal is to develop an algorithm to reconstruct cardiac positron emission tomography (PET) kinetic parametric images directly from sinograms and compare its performance with the conventional indirect approach. Time activity curves of a NCAT phantom were computed according to a one-tissue compartmental kinetic model with realistic kinetic parameters. The sinograms at each time frame were simulated using the activity distribution for the time frame. The authors reconstructed the parametric images directly from the sinograms by optimizing a cost function, which included the Poisson log-likelihood and a spatial regularization terms, using the preconditioned conjugate gradient (PCG) algorithm with the proposed preconditioner. The proposed preconditioner is a diagonal matrix whose diagonal entries are the ratio of the parameter and the sensitivity of the radioactivity associated with parameter. The authors compared the reconstructed parametric images using the direct approach with those reconstructed using the conventional indirect approach. At the same bias, the direct approach yielded significant relative reduction in standard deviation by 12%-29% and 32%-70% for 50 × 10(6) and 10 × 10(6) detected coincidences counts, respectively. Also, the PCG method effectively reached a constant value after only 10 iterations (with numerical convergence achieved after 40-50 iterations), while more than 500 iterations were needed for CG. The authors have developed a novel approach based on the PCG algorithm to directly reconstruct cardiac PET parametric images from sinograms, and yield better estimation of kinetic parameters than the conventional indirect approach, i.e., curve fitting of reconstructed images. The PCG method increases the convergence rate of reconstruction significantly as compared to the conventional CG method.
Method and apparatus for signal processing in a sensor system for use in spectroscopy
O'Connor, Paul [Bellport, NY; DeGeronimo, Gianluigi [Nesconset, NY; Grosholz, Joseph [Natrona Heights, PA
2008-05-27
A method for processing pulses arriving randomly in time on at least one channel using multiple peak detectors includes asynchronously selecting a non-busy peak detector (PD) in response to a pulse-generated trigger signal, connecting the channel to the selected PD in response to the trigger signal, and detecting a pulse peak amplitude. Amplitude and time of arrival data are output in first-in first-out (FIFO) sequence. An apparatus includes trigger comparators to generate the trigger signal for the pulse-receiving channel, PDs, a switch for connecting the channel to the selected PD, and logic circuitry which maintains the write pointer. Also included, time-to-amplitude converters (TACs) convert time of arrival to analog voltage and an analog multiplexer provides FIFO output. A multi-element sensor system for spectroscopy includes detector elements, channels, trigger comparators, PDs, a switch, and a logic circuit with asynchronous write pointer. The system includes TACs, a multiplexer and analog-to-digital converter.
Continuous time-of-flight ion mass spectrometer
Funsten, Herbert O.; Feldman, William C.
2004-10-19
A continuous time-of-flight mass spectrometer having an evacuated enclosure with means for generating an electric field located in the evacuated enclosure and means for injecting a sample material into the electric field. A source of continuous ionizing radiation injects ionizing radiation into the electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between arrival of a secondary electron out of said ionized atoms or molecules at a first predetermined location and arrival of a sample ion out of said ionized atoms or molecules at a second predetermined location.
Viana, Duarte S; Santamaría, Luis; Figuerola, Jordi
2016-02-01
Propagule retention time is a key factor in determining propagule dispersal distance and the shape of "seed shadows". Propagules dispersed by animal vectors are either ingested and retained in the gut until defecation or attached externally to the body until detachment. Retention time is a continuous variable, but it is commonly measured at discrete time points, according to pre-established sampling time-intervals. Although parametric continuous distributions have been widely fitted to these interval-censored data, the performance of different fitting methods has not been evaluated. To investigate the performance of five different fitting methods, we fitted parametric probability distributions to typical discretized retention-time data with known distribution using as data-points either the lower, mid or upper bounds of sampling intervals, as well as the cumulative distribution of observed values (using either maximum likelihood or non-linear least squares for parameter estimation); then compared the estimated and original distributions to assess the accuracy of each method. We also assessed the robustness of these methods to variations in the sampling procedure (sample size and length of sampling time-intervals). Fittings to the cumulative distribution performed better for all types of parametric distributions (lognormal, gamma and Weibull distributions) and were more robust to variations in sample size and sampling time-intervals. These estimated distributions had negligible deviations of up to 0.045 in cumulative probability of retention times (according to the Kolmogorov-Smirnov statistic) in relation to original distributions from which propagule retention time was simulated, supporting the overall accuracy of this fitting method. In contrast, fitting the sampling-interval bounds resulted in greater deviations that ranged from 0.058 to 0.273 in cumulative probability of retention times, which may introduce considerable biases in parameter estimates. We recommend the use of cumulative probability to fit parametric probability distributions to propagule retention time, specifically using maximum likelihood for parameter estimation. Furthermore, the experimental design for an optimal characterization of unimodal propagule retention time should contemplate at least 500 recovered propagules and sampling time-intervals not larger than the time peak of propagule retrieval, except in the tail of the distribution where broader sampling time-intervals may also produce accurate fits.
NASA Astrophysics Data System (ADS)
Ferriere, D.; Rucinski, A.; Jankowski, T.
2007-04-01
Establishing a Virtual Sea Border by performing a real-time, satellite-accessible Internet-based bio-metric supported threat assessment of arriving foreign-flagged cargo ships, their management and ownership, their arrival terminal operator and owner, and rewarding proven legitimate operators with an economic incentive for their transparency will simultaneously improve port security and maritime transportation efficiencies.
Häggström, Ida; Beattie, Bradley J; Schmidtlein, C Ross
2016-06-01
To develop and evaluate a fast and simple tool called dpetstep (Dynamic PET Simulator of Tracers via Emission Projection), for dynamic PET simulations as an alternative to Monte Carlo (MC), useful for educational purposes and evaluation of the effects of the clinical environment, postprocessing choices, etc., on dynamic and parametric images. The tool was developed in matlab using both new and previously reported modules of petstep (PET Simulator of Tracers via Emission Projection). Time activity curves are generated for each voxel of the input parametric image, whereby effects of imaging system blurring, counting noise, scatters, randoms, and attenuation are simulated for each frame. Each frame is then reconstructed into images according to the user specified method, settings, and corrections. Reconstructed images were compared to MC data, and simple Gaussian noised time activity curves (GAUSS). dpetstep was 8000 times faster than MC. Dynamic images from dpetstep had a root mean square error that was within 4% on average of that of MC images, whereas the GAUSS images were within 11%. The average bias in dpetstep and MC images was the same, while GAUSS differed by 3% points. Noise profiles in dpetstep images conformed well to MC images, confirmed visually by scatter plot histograms, and statistically by tumor region of interest histogram comparisons that showed no significant differences (p < 0.01). Compared to GAUSS, dpetstep images and noise properties agreed better with MC. The authors have developed a fast and easy one-stop solution for simulations of dynamic PET and parametric images, and demonstrated that it generates both images and subsequent parametric images with very similar noise properties to those of MC images, in a fraction of the time. They believe dpetstep to be very useful for generating fast, simple, and realistic results, however since it uses simple scatter and random models it may not be suitable for studies investigating these phenomena. dpetstep can be downloaded free of cost from https://github.com/CRossSchmidtlein/dPETSTEP.
Close range fault tolerant noncontacting position sensor
Bingham, D.N.; Anderson, A.A.
1996-02-20
A method and system are disclosed for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations. 3 figs.
Evaluation of the Aircraft Ground Equipment (AGE) at Pacific Air Force (PACAF) Locations
2018-01-16
repair • Dash 95: TC-21; Old DRMO, arrived at Kunsan 2001 • 7000 lb Bomb lift; MH10 Arrived at Kunsan 2011; CAT3 and never been painted • C1-12 stand...aluminum Sample taken by swabbing PBS soaked gauze back and forth three times K-MH10 Bomb lift and front of AGE Sample taken by swabbing PBS...soaked gauze back and forth three times Non-corroded area of bomb lift Sample taken by swabbing PBS soaked gauze back and forth three times
Creating A Data Base For Design Of An Impeller
NASA Technical Reports Server (NTRS)
Prueger, George H.; Chen, Wei-Chung
1993-01-01
Report describes use of Taguchi method of parametric design to create data base facilitating optimization of design of impeller in centrifugal pump. Data base enables systematic design analysis covering all significant design parameters. Reduces time and cost of parametric optimization of design: for particular impeller considered, one can cover 4,374 designs by computational simulations of performance for only 18 cases.
Spacelab mission dependent training parametric resource requirements study
NASA Technical Reports Server (NTRS)
Ogden, D. H.; Watters, H.; Steadman, J.; Conrad, L.
1976-01-01
Training flows were developed for typical missions, resource relationships analyzed, and scheduling optimization algorithms defined. Parametric analyses were performed to study the effect of potential changes in mission model, mission complexity and training time required on the resource quantities required to support training of payload or mission specialists. Typical results of these analyses are presented both in graphic and tabular form.
Realization of High-Fidelity, on Chip Readout of Solid-state Quantum Bits
2017-08-29
estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the...and characterized Josephson Traveling Wave Parametric Amplifiers (JTWPA or TWPA), superconducting amplifiers providing significantly greater...Publications/Patents: 2015: • C. Macklin, et al., “A near-quantum-limited Josephson traveling -wave parametric amplifier”, Science, (2015). • N
ACCELERATING MR PARAMETER MAPPING USING SPARSITY-PROMOTING REGULARIZATION IN PARAMETRIC DIMENSION
Velikina, Julia V.; Alexander, Andrew L.; Samsonov, Alexey
2013-01-01
MR parameter mapping requires sampling along additional (parametric) dimension, which often limits its clinical appeal due to a several-fold increase in scan times compared to conventional anatomic imaging. Data undersampling combined with parallel imaging is an attractive way to reduce scan time in such applications. However, inherent SNR penalties of parallel MRI due to noise amplification often limit its utility even at moderate acceleration factors, requiring regularization by prior knowledge. In this work, we propose a novel regularization strategy, which utilizes smoothness of signal evolution in the parametric dimension within compressed sensing framework (p-CS) to provide accurate and precise estimation of parametric maps from undersampled data. The performance of the method was demonstrated with variable flip angle T1 mapping and compared favorably to two representative reconstruction approaches, image space-based total variation regularization and an analytical model-based reconstruction. The proposed p-CS regularization was found to provide efficient suppression of noise amplification and preservation of parameter mapping accuracy without explicit utilization of analytical signal models. The developed method may facilitate acceleration of quantitative MRI techniques that are not suitable to model-based reconstruction because of complex signal models or when signal deviations from the expected analytical model exist. PMID:23213053
Tutsoy, Onder; Barkana, Duygun Erol; Tugal, Harun
2018-05-01
In this paper, an adaptive controller is developed for discrete time linear systems that takes into account parametric uncertainty, internal-external non-parametric random uncertainties, and time varying control signal delay. Additionally, the proposed adaptive control is designed in such a way that it is utterly model free. Even though these properties are studied separately in the literature, they are not taken into account all together in adaptive control literature. The Q-function is used to estimate long-term performance of the proposed adaptive controller. Control policy is generated based on the long-term predicted value, and this policy searches an optimal stabilizing control signal for uncertain and unstable systems. The derived control law does not require an initial stabilizing control assumption as in the ones in the recent literature. Learning error, control signal convergence, minimized Q-function, and instantaneous reward are analyzed to demonstrate the stability and effectiveness of the proposed adaptive controller in a simulation environment. Finally, key insights on parameters convergence of the learning and control signals are provided. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Kattner, Florian; Cochrane, Aaron; Green, C Shawn
2017-09-01
The majority of theoretical models of learning consider learning to be a continuous function of experience. However, most perceptual learning studies use thresholds estimated by fitting psychometric functions to independent blocks, sometimes then fitting a parametric function to these block-wise estimated thresholds. Critically, such approaches tend to violate the basic principle that learning is continuous through time (e.g., by aggregating trials into large "blocks" for analysis that each assume stationarity, then fitting learning functions to these aggregated blocks). To address this discrepancy between base theory and analysis practice, here we instead propose fitting a parametric function to thresholds from each individual trial. In particular, we implemented a dynamic psychometric function whose parameters were allowed to change continuously with each trial, thus parameterizing nonstationarity. We fit the resulting continuous time parametric model to data from two different perceptual learning tasks. In nearly every case, the quality of the fits derived from the continuous time parametric model outperformed the fits derived from a nonparametric approach wherein separate psychometric functions were fit to blocks of trials. Because such a continuous trial-dependent model of perceptual learning also offers a number of additional advantages (e.g., the ability to extrapolate beyond the observed data; the ability to estimate performance on individual critical trials), we suggest that this technique would be a useful addition to each psychophysicist's analysis toolkit.
NASA Technical Reports Server (NTRS)
Pandya, Shishir; Chaderjian, Neal; Ahmad, Jasim; Kwak, Dochan (Technical Monitor)
2002-01-01
A process is described which enables the generation of 35 time-dependent viscous solutions for a YAV-8B Harrier in ground effect in one week. Overset grids are used to model the complex geometry of the Harrier aircraft and the interaction of its jets with the ground plane and low-speed ambient flow. The time required to complete this parametric study is drastically reduced through the use of process automation, modern computational platforms, and parallel computing. Moreover, a dual-time-stepping algorithm is described which improves solution robustness. Unsteady flow visualization and a frequency domain analysis are also used to identify and correlated key flow structures with the time variation of lift.
Gover, Bradford N; Ryan, James G; Stinson, Michael R
2002-11-01
A measurement system has been developed that is capable of analyzing the directional and spatial variations in a reverberant sound field. A spherical, 32-element array of microphones is used to generate a narrow beam that is steered in 60 directions. Using an omnidirectional loudspeaker as excitation, the sound pressure arriving from each steering direction is measured as a function of time, in the form of pressure impulse responses. By subsequent analysis of these responses, the variation of arriving energy with direction is studied. The directional diffusion and directivity index of the arriving sound can be computed, as can the energy decay rate in each direction. An analysis of the 32 microphone responses themselves allows computation of the point-to-point variation of reverberation time and of sound pressure level, as well as the spatial cross-correlation coefficient, over the extent of the array. The system has been validated in simple sound fields in an anechoic chamber and in a reverberation chamber. The system characterizes these sound fields as expected, both quantitatively from the measures and qualitatively from plots of the arriving energy versus direction. It is anticipated that the system will be of value in evaluating the directional distribution of arriving energy and the degree and diffuseness of sound fields in rooms.
Three-Dimensional Unstained Live-Cell Imaging Using Stimulated Parametric Emission Microscopy
NASA Astrophysics Data System (ADS)
Dang, Hieu M.; Kawasumi, Takehito; Omura, Gen; Umano, Toshiyuki; Kajiyama, Shin'ichiro; Ozeki, Yasuyuki; Itoh, Kazuyoshi; Fukui, Kiichi
2009-09-01
The ability to perform high-resolution unstained live imaging is very important to in vivo study of cell structures and functions. Stimulated parametric emission (SPE) microscopy is a nonlinear-optical microscopy based on ultra-fast electronic nonlinear-optical responses. For the first time, we have successfully applied this technique to archive three-dimensional (3D) images of unstained sub-cellular structures, such as, microtubules, nuclei, nucleoli, etc. in live cells. Observation of a complete cell division confirms the ability of SPE microscopy for long time-scale imaging.
Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process
NASA Astrophysics Data System (ADS)
Turner, Douglas C.; Ladde, Gangaram S.
2018-03-01
Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.
A Parametric Computational Model of the Action Potential of Pacemaker Cells.
Ai, Weiwei; Patel, Nitish D; Roop, Partha S; Malik, Avinash; Andalam, Sidharta; Yip, Eugene; Allen, Nathan; Trew, Mark L
2018-01-01
A flexible, efficient, and verifiable pacemaker cell model is essential to the design of real-time virtual hearts that can be used for closed-loop validation of cardiac devices. A new parametric model of pacemaker action potential is developed to address this need. The action potential phases are modeled using hybrid automaton with one piecewise-linear continuous variable. The model can capture rate-dependent dynamics, such as action potential duration restitution, conduction velocity restitution, and overdrive suppression by incorporating nonlinear update functions. Simulated dynamics of the model compared well with previous models and clinical data. The results show that the parametric model can reproduce the electrophysiological dynamics of a variety of pacemaker cells, such as sinoatrial node, atrioventricular node, and the His-Purkinje system, under varying cardiac conditions. This is an important contribution toward closed-loop validation of cardiac devices using real-time heart models.
NASA Astrophysics Data System (ADS)
Dai, Jun; Zhou, Haigang; Zhao, Shaoquan
2017-01-01
This paper considers a multi-scale future hedge strategy that minimizes lower partial moments (LPM). To do this, wavelet analysis is adopted to decompose time series data into different components. Next, different parametric estimation methods with known distributions are applied to calculate the LPM of hedged portfolios, which is the key to determining multi-scale hedge ratios over different time scales. Then these parametric methods are compared with the prevailing nonparametric kernel metric method. Empirical results indicate that in the China Securities Index 300 (CSI 300) index futures and spot markets, hedge ratios and hedge efficiency estimated by the nonparametric kernel metric method are inferior to those estimated by parametric hedging model based on the features of sequence distributions. In addition, if minimum-LPM is selected as a hedge target, the hedging periods, degree of risk aversion, and target returns can affect the multi-scale hedge ratios and hedge efficiency, respectively.
NASA Astrophysics Data System (ADS)
Machiwal, Deepesh; Kumar, Sanjay; Dayal, Devi
2016-05-01
This study aimed at characterization of rainfall dynamics in a hot arid region of Gujarat, India by employing time-series modeling techniques and sustainability approach. Five characteristics, i.e., normality, stationarity, homogeneity, presence/absence of trend, and persistence of 34-year (1980-2013) period annual rainfall time series of ten stations were identified/detected by applying multiple parametric and non-parametric statistical tests. Furthermore, the study involves novelty of proposing sustainability concept for evaluating rainfall time series and demonstrated the concept, for the first time, by identifying the most sustainable rainfall series following reliability ( R y), resilience ( R e), and vulnerability ( V y) approach. Box-whisker plots, normal probability plots, and histograms indicated that the annual rainfall of Mandvi and Dayapar stations is relatively more positively skewed and non-normal compared with that of other stations, which is due to the presence of severe outlier and extreme. Results of Shapiro-Wilk test and Lilliefors test revealed that annual rainfall series of all stations significantly deviated from normal distribution. Two parametric t tests and the non-parametric Mann-Whitney test indicated significant non-stationarity in annual rainfall of Rapar station, where the rainfall was also found to be non-homogeneous based on the results of four parametric homogeneity tests. Four trend tests indicated significantly increasing rainfall trends at Rapar and Gandhidham stations. The autocorrelation analysis suggested the presence of persistence of statistically significant nature in rainfall series of Bhachau (3-year time lag), Mundra (1- and 9-year time lag), Nakhatrana (9-year time lag), and Rapar (3- and 4-year time lag). Results of sustainability approach indicated that annual rainfall of Mundra and Naliya stations ( R y = 0.50 and 0.44; R e = 0.47 and 0.47; V y = 0.49 and 0.46, respectively) are the most sustainable and dependable compared with that of other stations. The highest values of sustainability index at Mundra (0.120) and Naliya (0.112) stations confirmed the earlier findings of R y- R e- V y approach. In general, annual rainfall of the study area is less reliable, less resilient, and moderately vulnerable, which emphasizes the need of developing suitable strategies for managing water resources of the area on sustainable basis. Finally, it is recommended that multiple statistical tests (at least two) should be used in time-series modeling for making reliable decisions. Moreover, methodology and findings of the sustainability concept in rainfall time series can easily be adopted in other arid regions of the world.
Age at Arrival and Life Chances Among Childhood Immigrants.
Hermansen, Are Skeie
2017-02-01
This study examines the causal relationship between childhood immigrants' age at arrival and their life chances as adults. I analyze panel data on siblings from Norwegian administrative registries, which enables me to disentangle the effect of age at arrival on adult socioeconomic outcomes from all fixed family-level conditions and endowments shared by siblings. Results from sibling fixed-effects models reveal a progressively stronger adverse influence of immigration at later stages of childhood on completed education, employment, adult earnings, occupational attainment, and social welfare assistance. The persistence of these relationships within families indicates that experiences related to the timing of childhood immigration have causal effects on later-life outcomes. These age-at-arrival effects are considerably stronger among children who arrive from geographically distant and economically less-developed origin regions than among children originating from developed countries. The age-at-arrival effects vary less by parental education and child gender. On the whole, the findings indicate that childhood immigration after an early-life formative period tends to constrain later human capital formation and economic opportunities over the life course.
Evolution of spherical cavitation bubbles: Parametric and closed-form solutions
NASA Astrophysics Data System (ADS)
Mancas, Stefan C.; Rosu, Haret C.
2016-02-01
We present an analysis of the Rayleigh-Plesset equation for a three dimensional vacuous bubble in water. In the simplest case when the effects of surface tension are neglected, the known parametric solutions for the radius and time evolution of the bubble in terms of a hypergeometric function are briefly reviewed. By including the surface tension, we show the connection between the Rayleigh-Plesset equation and Abel's equation, and obtain the parametric rational Weierstrass periodic solutions following the Abel route. In the same Abel approach, we also provide a discussion of the nonintegrable case of nonzero viscosity for which we perform a numerical integration.
Frequency comb generation in a continuously pumped optical parametric oscillator
NASA Astrophysics Data System (ADS)
Mosca, S.; Parisi, M.; Ricciardi, I.; Leo, F.; Hansson, T.; Erkintalo, M.; Maddaloni, P.; De Natale, P.; Wabnitz, S.; De Rosa, M.
2018-02-01
We demonstrate optical frequency comb generation in a continuously pumped optical parametric oscillator, in the parametric region around half of the pump frequency. We also model the dynamics of such quadratic combs using a single time-domain mean-field equation, and obtain simulation results that are in good agreement with experimentally observed spectra. Moreover, we numerically investigate the coherence properties of simulated combs, showing the existence of correlated and phase-locked combs. Our work could pave the way for a new class of frequency comb sources, which may enable straightforward access to new spectral regions and stimulate novel applications of frequency combs.
Broët, Philippe; Tsodikov, Alexander; De Rycke, Yann; Moreau, Thierry
2004-06-01
This paper presents two-sample statistics suited for testing equality of survival functions against improper semi-parametric accelerated failure time alternatives. These tests are designed for comparing either the short- or the long-term effect of a prognostic factor, or both. These statistics are obtained as partial likelihood score statistics from a time-dependent Cox model. As a consequence, the proposed tests can be very easily implemented using widely available software. A breast cancer clinical trial is presented as an example to demonstrate the utility of the proposed tests.
Spring resource phenology and timing of songbird migration across the Gulf of Mexico
Paxton, Eben H.; Cohen, Emily B.; Németh, Zoltan; Zenzal, Theodore J.; Paxton, Kristina L.; Diehl, Robert H.; Moore, Frank R.
2015-01-01
Migratory songbirds are advancing their arrival to breeding areas in response to climatic warming at temperate latitudes. Less is understood about the impacts of climate changes outside the breeding period. Every spring, millions of migrating songbirds that overwinter in the Caribbean and Central and South America stop to rest and refuel in the first available habitats after crossing the Gulf of Mexico. We used capture data from a long-term banding station (20 years: 1993 to 2012) located on the northern coast of the Gulf to assess the passage timing of 17 species making northward migrations into eastern North America. We further assessed spring resource phenology as measured by normalized difference vegetation index (NDVI) on nonbreeding ranges and en route. We tested the hypotheses that spring passage timing has advanced during the past two decades and that annual variability in passage timing into eastern North America is related to spring resource phenology on stationary nonbreeding ranges and during passage south of the Gulf. Further, we assessed whether annual variability in resource phenology south of the Gulf was a good indicator of the conditions that migrants encountered upon first landfall in eastern North America. We found no trend in migration timing for species that migrate from South America and annual variability in their passage timing was unrelated to environmental conditions in nonbreeding ranges or en route. Species that migrate from Central America and the Caribbean delayed arrival by 2 to 3 days over the 20-year period and arrived later during years when conditions were dryer in nonbreeding ranges and passage areas south of the Gulf. Further, year to year variability in spring resource phenology in nonbreeding ranges and passage areas south of the Gulf were not good indicators of resource phenology upon arrival in eastern North America. Therefore, despite the fact that many migrant species have been arriving increasingly earlier to breeding grounds, the passage timing of 17 species into eastern North America has either not changed or is slightly later, due to drying spring conditions in Central America and the Caribbean. Our results suggest that Nearctic–Neotropical migratory birds adjust the rate of migration primarily within eastern North America and, in light of warmer temperatures in the temperate zone and earlier arrival timing to breeding ranges, species that overwinter in Central America and the Caribbean may be increasing the speed of migration within eastern North America.
Direct Parametric Reconstruction With Joint Motion Estimation/Correction for Dynamic Brain PET Data.
Jiao, Jieqing; Bousse, Alexandre; Thielemans, Kris; Burgos, Ninon; Weston, Philip S J; Schott, Jonathan M; Atkinson, David; Arridge, Simon R; Hutton, Brian F; Markiewicz, Pawel; Ourselin, Sebastien
2017-01-01
Direct reconstruction of parametric images from raw photon counts has been shown to improve the quantitative analysis of dynamic positron emission tomography (PET) data. However it suffers from subject motion which is inevitable during the typical acquisition time of 1-2 hours. In this work we propose a framework to jointly estimate subject head motion and reconstruct the motion-corrected parametric images directly from raw PET data, so that the effects of distorted tissue-to-voxel mapping due to subject motion can be reduced in reconstructing the parametric images with motion-compensated attenuation correction and spatially aligned temporal PET data. The proposed approach is formulated within the maximum likelihood framework, and efficient solutions are derived for estimating subject motion and kinetic parameters from raw PET photon count data. Results from evaluations on simulated [ 11 C]raclopride data using the Zubal brain phantom and real clinical [ 18 F]florbetapir data of a patient with Alzheimer's disease show that the proposed joint direct parametric reconstruction motion correction approach can improve the accuracy of quantifying dynamic PET data with large subject motion.
NASA Technical Reports Server (NTRS)
Coverse, G. L.
1984-01-01
A turbine modeling technique has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. This technique is applicable to both axial and radial flow turbine with flow sizes ranging from about one pound per second to several hundred pounds per second. The axial flow turbines may or may not include variable geometry in the first stage nozzle. A user-specified option will also permit the calculation of design point cooling flow levels and corresponding changes in efficiency for the axial flow turbines. The modeling technique has been incorporated into a time-sharing program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual. This report is the second of a three volume set. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulation Flow Fan).
Timing is everything: priority effects alter community invasibility after disturbance.
Symons, Celia C; Arnott, Shelley E
2014-02-01
Theory suggests that communities should be more open to the establishment of regional species following disturbance because disturbance may make more resources available to dispersers. However, after an initial period of high invasibility, growth of the resident community may lead to the monopolization of local resources and decreased probability of successful colonist establishment. During press disturbances (i.e., directional environmental change), it remains unclear what effect regional dispersal will have on local community structure if the establishment of later arriving species is affected by early arriving species (i.e., if priority effects are important). To determine the relationship between time-since-disturbance and invasibility, we conducted a fully factorial field mesocosm experiment that exposed tundra zooplankton communities to two emerging stressors - nutrient and salt addition, and manipulated the arrival timing of regional dispersers. Our results demonstrate that invasibility decreases with increasing time-since-disturbance as abundance (nutrient treatments) or species richness (salt treatments) increases in the resident community. Results suggest that the relative timing of dispersal and environmental change will modify the importance of priority effects in determining species composition after a press disturbance.
Real-time Interplanetary Shock Prediciton System
NASA Astrophysics Data System (ADS)
Vandegriff, J.; Ho, G.; Plauger, J.
A system is being developed to predict the arrival times and maximum intensities of energetic storm particle (ESP) events at the earth. Measurements of particle flux values at L1 being made by the Electron, Proton, and Alpha Monitor (EPAM) instrument aboard NASA's ACE spacecraft are made available in real-time by the NOAA Space Environment Center as 5 minute averages of several proton and electron energy channels. Past EPAM flux measurements can be used to train forecasting algorithms which then run on the real-time data. Up to 3 days before the arrival of the interplanetary shock associated with an ESP event, characteristic changes in the particle intensities (such as decreased spectral slope and increased overall flux level) are easily discernable. Once the onset of an event is detected, a neural net is used to forecast the arrival time and flux level for the event. We present results obtained with this technique for forecasting the largest of the ESP events detected by EPAM. Forecasting information will be made publicly available through http://sd-www.jhuapl.edu/ACE/EPAM/, the Johns Hopkins University Applied Physics Lab web site for the ACE/EPAM instrument.
NASA Astrophysics Data System (ADS)
Anurose, T. J.; Subrahamanyam, D. Bala
2013-06-01
We discuss the impact of the differential treatment of the roughness lengths for momentum and heat (z_{0m} and z_{0h}) in the flux parametrization scheme of the high-resolution regional model (HRM) for a heterogeneous terrain centred around Thiruvananthapuram, India (8.5°N, 76.9°E). The magnitudes of sensible heat flux ( H) obtained from HRM simulations using the original parametrization scheme differed drastically from the concurrent in situ observations. With a view to improving the performance of this parametrization scheme, two distinct modifications are incorporated: (1) In the first method, a constant value of 100 is assigned to the z_{0m}/z_{0h} ratio; (2) and in the second approach, this ratio is treated as a function of time. Both these modifications in the HRM model showed significant improvements in the H simulations for Thiruvananthapuram and its adjoining regions. Results obtained from the present study provide a first-ever comparison of H simulations using the modified parametrization scheme in the HRM model with in situ observations for the Indian coastal region, and suggest a differential treatment of z_{0m} and z_{0h} in the flux parametrization scheme.
Ultra-Broad-Band Optical Parametric Amplifier or Oscillator
NASA Technical Reports Server (NTRS)
Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatolly; Maleki, Lute
2009-01-01
A concept for an ultra-broad-band optical parametric amplifier or oscillator has emerged as a by-product of a theoretical study in fundamental quantum optics. The study was originally intended to address the question of whether the two-photon temporal correlation function of light [in particular, light produced by spontaneous parametric down conversion (SPDC)] can be considerably narrower than the inverse of the spectral width (bandwidth) of the light. The answer to the question was found to be negative. More specifically, on the basis of the universal integral relations between the quantum two-photon temporal correlation and the classical spectrum of light, it was found that the lower limit of two-photon correlation time is set approximately by the inverse of the bandwidth. The mathematical solution for the minimum two-photon correlation time also provides the minimum relative frequency dispersion of the down-converted light components; in turn, the minimum relative frequency dispersion translates to the maximum bandwidth, which is important for the design of an ultra-broad-band optical parametric oscillator or amplifier. In the study, results of an analysis of the general integral relations were applied in the case of an optically nonlinear, frequency-dispersive crystal in which SPDC produces collinear photons. Equations were found for the crystal orientation and pump wavelength, specific for each parametric-down-converting crystal, that eliminate the relative frequency dispersion of collinear degenerate (equal-frequency) signal and idler components up to the fourth order in the frequency-detuning parameter
Ackermann, Hans D.; Pankratz, Leroy W.; Dansereau, Danny A.
1983-01-01
The computer programs published in Open-File Report 82-1065, A comprehensive system for interpreting seismic-refraction arrival-time data using interactive computer methods (Ackermann, Pankratz, and Dansereau, 1982), have been modified to run on a mini-computer. The new version uses approximately 1/10 of the memory of the initial version, is more efficient and gives the same results.
Cardoso, Márcio Zikán
2010-01-01
While butterfly responses to climate change are well studied, detailed analyses of the seasonal dynamics of range expansion are few. Therefore, the seasonal range expansion of the butterfly Heliconius charithonia L. (Lepidoptera: Nymphalidae) was analyzed using a database of sightings and collection records dating from 1884 to 1992 from Texas. First and last sightings for each year were noted, and residency time calculated, for each collection locality. To test whether sighting dates were a consequence of distance from source (defined as the southernmost location of permanent residence), the distance between source and other locations was calculated. Additionally, consistent directional change over time of arrival dates was tested in a well-sampled area (San Antonio). Also, correlations between temperature, rainfall, and butterfly distribution were tested to determine whether butterfly sightings were influenced by climate. Both arrival date and residency interval were influenced by distance from source: butterflies arrived later and residency time was shorter at more distant locations. Butterfly occurrence was correlated with temperature but not rainfall. Residency time was also correlated with temperature but not rainfall. Since temperature follows a north-south gradient this may explain the inverse relationship between residency and distance from entry point. No long-term directional change in arrival dates was found in San Antonio. The biological meaning of these findings is discussed suggesting that naturalist notes can be a useful tool in reconstructing spatial dynamics. PMID:20672989
Interaction Between Strategic and Local Traffic Flow Controls
NASA Technical Reports Server (NTRS)
Grabbe, Son; Sridhar, Banavar; Mukherjee, Avijit; Morando, Alexander
2010-01-01
The loosely coordinated sets of traffic flow management initiatives that are operationally implemented at the national- and local-levels have the potential to under, over, and inconsistently control flights. This study is designed to explore these interactions through fast-time simulations with an emphasis on identifying inequitable situations in which flights receive multiple uncoordinated delays. Two operationally derived scenarios were considered in which flights arriving into the Dallas/Fort Worth International Airport were first controlled at the national-level, either with a Ground Delay Program or a playbook reroute. These flights were subsequently controlled at the local level. The Traffic Management Advisor assigned them arrival scheduling delays. For the Ground Delay Program scenarios, between 51% and 53% of all arrivals experience both pre-departure delays from the Ground Delay Program and arrival scheduling delays from the Traffic Management Advisor. Of the subset of flights that received multiple delays, between 5.7% and 6.4% of the internal departures were first assigned a pre-departure delay by the Ground Delay Program, followed by a second pre-departure delay as a result of the arrival scheduling. For the playbook reroute scenario, Dallas/Fort Worth International Airport arrivals were first assigned pre-departure reroutes based on the MW_2_DALLAS playbook plan, and were subsequently assigned arrival scheduling delays by the Traffic Management Advisor. Since the airport was operating well below capacity when the playbook reroute was in effect, only 7% of the arrivals were observed to receive both rerouting and arrival scheduling delays. Findings from these initial experiments confirm field observations that Ground Delay Programs operated in conjunction with arrival scheduling can result in inequitable situations in which flights receive multiple uncoordinated delays.
NASA Astrophysics Data System (ADS)
Wei, L.; Mosley-Thompson, E.
2006-12-01
The Laki (Iceland) volcanic event was a basaltic flood lava eruption lasting from June 8, 1783 to February 7, 1784. The timing of the arrival of the sulfate aerosols and volcanic fragments to the Greenland Ice Sheet (GIS) remains uncertain, but is important to confirm as the highly conductive sulfate layer has been consistently used as a time stratigraphic marker (1783 AD) in ice cores collected across Greenland. However, in the GISP2 ice core a few glass shards were found within the annual layer lying just below that containing the sulfate aerosols from Laki suggesting that the ash arrived first, in 1783, while the aerosols arrived the following year [Fiacco et al., 1994]. Additional published ice core results have neither confirmed nor refuted this observation. We have taken advantage of the accurately dated, high temporal resolution ice cores collected by PARCA (Program for Arctic Regional Climate Assessment) to (1) determine more precisely the timing of the arrival of Laki's sulfate aerosols and (2) assess the spatial variability of the excess sulfate contributed by Laki to the GIS. Our results indicate that the sulfate emitted from the Laki eruption most likely arrived on the GIS in the late summer or early fall of 1783 AD. This is also supported by contemporary weather logs and official reports of the appearance of Laki haze [Thordarson and Self, 2003]. The flux of Laki sulfate varies significantly over the GIS, largely as a function of the regional annual accumulation rate. Laki sulfate aerosols also arrived as a single pulse in most of the PARCA cores, suggesting that only a small fraction of the gases emitted from Laki reached the stratosphere. References: Fiacco, R.J.,et al., Atmospheric aerosol loading and transport due to the 1783-84 Laki eruption in Iceland, interpreted from ash particles and acidity in the GISP2 ice core, Quat. Res., 42, 231-240, 1994. Thordarson, T, and S. Self, Atmospheric and environmental effects of the 1783-1784 Laki eruption: A review and reassessment, J. Geophy. Res., 108, 4011-4039, 2003.
Parametric excitation and squeezing in a many-body spinor condensate
Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.
2016-01-01
Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states. PMID:27044675
Parametric excitation and squeezing in a many-body spinor condensate
NASA Astrophysics Data System (ADS)
Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.
2016-04-01
Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draelos, Timothy J.; Ballard, Sanford; Young, Christopher J.
Given a set of observations within a specified time window, a fitness value is calculated at each grid node by summing station-specific conditional fitness values. Assuming each observation was generated by a refracted P wave, these values are proportional to the conditional probabilities that each observation was generated by a seismic event at the grid node. The node with highest fitness value is accepted as a hypothetical event location, subject to some minimal fitness value, and all arrivals within a longer time window consistent with that event are associated with it. During the association step, a variety of different phasesmore » are considered. In addition, once associated with an event, an arrival is removed from further consideration. While unassociated arrivals remain, the search for other events is repeated until none are identified.« less
Flow and transport in digitized images of Berea sandstone: ergodicity, stationarity and upscaling
NASA Astrophysics Data System (ADS)
Puyguiraud, A.; Dentz, M.; Gouze, P.
2017-12-01
We perform Stokes flow simulations on digitized images of a Berea sandstone sample obtained through micro-tomography imaging and segmentation processes. We obtain accurate information on the transport using a streamline reconstruction algorithm which uses the velocity field obtained from the flow simulation as input data. This technique is based on the method proposed by Pollock (Groundwater, 1988) but employs a quadratic interpolation near the rock mesh cells of the domain similarly to Mostaghimi et al. (SPE, 2012). This allows an accurate resolution of the velocity field near the solid interface which plays an important role on the transport characteristics, such as the probability density of first arrival times and the growth of the mean squared displacement, among others, which exhibit non-Fickian behavior. We analyze Lagrangian and Eulerian velocity statistics and their relation, and then focus on the ergodicity and the stationarity properties of the transport.We analyze the temporal evolution of Lagrangian velocity statistics for different injection conditions, and findd quick convergence to a limiting velocity distribution, indicating the transport to be near-stationary. The equivalence between velocity samplings within and across streamlines, as well as the independency of the statistics on the number of sampled streamlines, lead as to conclude that the transport may be modeled as ergodic.These characteristics then allow us to upscale the 3-dimensional simulations using a 1-dimensional Continuous Time Random Walk model. This model, parametrized by the velocity results and the characteristic correlation length obtained from the above mentioned simulations, is able to efficiently reproduce the results and to predict larger scale behaviors.
Arrival-time picking method based on approximate negentropy for microseismic data
NASA Astrophysics Data System (ADS)
Li, Yue; Ni, Zhuo; Tian, Yanan
2018-05-01
Accurate and dependable picking of the first arrival time for microseismic data is an important part in microseismic monitoring, which directly affects analysis results of post-processing. This paper presents a new method based on approximate negentropy (AN) theory for microseismic arrival time picking in condition of much lower signal-to-noise ratio (SNR). According to the differences in information characteristics between microseismic data and random noise, an appropriate approximation of negentropy function is selected to minimize the effect of SNR. At the same time, a weighted function of the differences between maximum and minimum value of AN spectrum curve is designed to obtain a proper threshold function. In this way, the region of signal and noise is distinguished to pick the first arrival time accurately. To demonstrate the effectiveness of AN method, we make many experiments on a series of synthetic data with different SNR from -1 dB to -12 dB and compare it with previously published Akaike information criterion (AIC) and short/long time average ratio (STA/LTA) methods. Experimental results indicate that these three methods can achieve well picking effect when SNR is from -1 dB to -8 dB. However, when SNR is as low as -8 dB to -12 dB, the proposed AN method yields more accurate and stable picking result than AIC and STA/LTA methods. Furthermore, the application results of real three-component microseismic data also show that the new method is superior to the other two methods in accuracy and stability.
Jones, Christopher W; Sonnad, Seema S; Augustine, James J; Reese, Charles L
2014-10-01
Performance of percutaneous coronary intervention (PCI) within 90 minutes of hospital arrival for ST-segment elevation myocardial infarction patients is a commonly cited clinical quality measure. The Centers for Medicare and Medicaid Services use this measure to adjust hospital reimbursement via the Value-Based Purchasing Program. This study investigated the relationship between hospital performance on this quality measure and emergency department (ED) operational efficiency. Hospital-level data from Centers for Medicare and Medicaid Services on PCI quality measure performance was linked to information on operational performance from 272 US EDs obtained from the Emergency Department Benchmarking Alliance annual operations survey. Standard metrics of ED size, acuity, and efficiency were compared across hospitals grouped by performance on the door-to-balloon time quality measure. Mean hospital performance on the 90-minute arrival to PCI measure was 94.0% (range, 42-100). Among hospitals failing to achieve the door-to-balloon time performance standard, median ED length of stay was 209 minutes, compared with 173 minutes among those hospitals meeting the benchmark standard (P < .001). Similarly, median time from ED patient arrival to physician evaluation was 39 minutes for hospitals below the performance standard and 23 minutes for hospitals at the benchmark standard (P < .001). Markers of ED size and acuity, including annual patient volume, admission rate, and the percentage of patients arriving via ambulance did not vary with door-to-balloon time. Better performance on measures associated with ED efficiency is associated with more timely PCI performance. Copyright © 2014 Elsevier Inc. All rights reserved.
Murres, capelin and ocean climate: Inter-annual associations across a decadal shift
Regular, P.M.; Shuhood, F.; Power, T.; Montevecchi, W.A.; Robertson, G.J.; Ballam, D.; Piatt, John F.; Nakashima, B.
2009-01-01
To ensure energy demands for reproduction are met, it is essential that marine birds breed during periods of peak food availability. We examined associations of the breeding chronology of common murres (Uria aalge) with the timing of the inshore arrival of their primary prey, capelin (Mallotus villosus) from 1980 to 2006 across a period of pervasive change in the Northwest Atlantic ecosystem. We also assessed the influence of ocean temperature and the North Atlantic Oscillation (NAO; an index of winter climate and oceanography) on these interactions. We found a lagged linear relationship between variations in murre breeding chronology and the timing of capelin arrival in the previous year. On a decadal level, we found a non-linear threshold relationship between ocean temperature and the timing of capelin arrival and murre breeding. Centennially anomalous cold water temperatures in 1991 generated a marked shift in the timing of capelin spawning inshore and murre breeding, delaying both by more than 2 weeks. By the mid-1990s, ocean temperatures returned to pre-perturbation levels, whereas the temporal breeding responses of capelin and murres were delayed for a decade or more. Oceanographic conditions (temperature, NAO) were poor predictors of the timing of capelin arrival inshore in the current year compared to the previous one. Our findings suggest that knowledge of the timing of capelin availability in the previous year provides a robust cue for the long-lived murres, allowing them to achieve temporal overlap between breeding and peak capelin availability. ?? Springer Science+Business Media B.V. 2008.
Richeson, John T; Pinedo, Pablo J; Kegley, Elizabeth B; Powell, Jeremy G; Gadberry, M Shane; Beck, Paul A; Falkenberg, Shollie M
2013-10-01
To determine the association of CBC variables and castration status at the time of arrival at a research facility with the risk of development of bovine respiratory disease (BRD). Retrospective cohort study. 1,179 crossbred beef bull (n = 588) and steer (591) calves included in 4 experiments at 2 University of Arkansas research facilities. Calves underwent processing and treatments in accordance with the experiment in which they were enrolled. Castration status and values of CBC variables were determined at the time of arrival at the facilities. Calves were monitored to detect signs of BRD during a 42-day period. The areas under the receiving operator characteristic curves for CBC variables with significant contrast test results ranged from 0.51 (neutrophil count) to 0.67 (eosinophil count), indicating they were limited predictors of BRD in calves. The only CBC variables that had significant associations with BRD in calves as determined via multivariable logistic regression analysis were eosinophil and RBC counts. The odds of BRD for bulls were 3.32 times the odds of BRD for steers. Results of this study indicated that low eosinophil and high RBC counts in blood samples may be useful for identification of calves with a high risk for development of BRD. Further research may be warranted to validate these variables for prediction of BRD in calves. Calves that were bulls at the time of arrival had a higher risk of BRD, versus calves that were steers at that time.
Country of infection among HIV-infected patients born abroad living in French Guiana.
Nacher, Mathieu; Adriouch, Leila; Van Melle, Astrid; Parriault, Marie-Claire; Adenis, Antoine; Couppié, Pierre
2018-01-01
Over 75% of patients in the HIV cohort in French Guiana are of foreign origin. Our objective was to estimate what proportion of the migrant population of HIV-infected patients in Cayenne had been infected in French Guiana. We included patients of known foreign origin who were followed in Cayenne, for whom the year of arrival in French Guiana was known and the initial CD4 count at the time of diagnosis was available. The time between seroconversion and time at diagnosis was estimated using the formula [square root (CD4 at seroconversion)-square root(CD4 at HIV diagnosis)] / slope of CD4 decline.CD4 counts at the time of infection and the slope were computed in an age and ethnicity-dependent variable. The median estimated time between infection and diagnosis was 4.5 years (IQR = 0.2-9.2). Overall, using a median estimate of CD4 count at the time of infection, it was estimated that 53.2% (95% CI = 48.3-58%) of HIV infected foreign patients had acquired HIV after having arrived in French Guiana. Patients having arrived in French Guiana before and during the 1990s and those receiving their HIV diagnosis before 2010 were more likely to have been infected in French Guiana. Contrary to widespread belief suggesting that most migrants are already HIV-infected when they arrive in French Guiana, a large proportion of foreign HIV patients seem acquire the virus in French Guiana.There is still much to do in terms of primary prevention and testing among migrants.
Greenberg, Marna Rayl; Miller, Andrew C; Mackenzie, Richard S; Richardson, David M; Ahnert, Amy M; Sclafani, Mia J; Jozefick, Jennifer L; Goyke, Terrence E; Rupp, Valerie A; Burmeister, David B
2012-10-01
Many reports suggest gender disparity in cardiac care as a contributor to the increased mortality among women with heart disease. We sought to identify gender differences in the management of Myocardial Infarction (MI) Alert-activated ST-segment elevation myocardial infarction (STEMI) patients that may have resulted from prehospital initiation. A retrospective database was created for MI Alert STEMI patients who presented to the emergency department (ED) of an academic community hospital with 74,000 annual visits from April 2000 through December 2008. Included were patients meeting criteria for an MI Alert (an institutional clinical practice guideline designed to expedite cardiac catheterization for STEMI patients). Data points (before and after initiation of a prehospital alert protocol) were compared and used as markers of therapy: time to ECG, receiving β-blockers, and time to the catheterization laboratory (cath lab). Differences in categorical variables by patient sex were assessed using the χ(2) test. Medians were estimated as the measure of central tendency. Quantile regression models were used to assess differences in median times between subgroups. A total of 1231 MI Alert charts were identified and analyzed. The majority of the study population were male (70%), arrived at the ED via ambulance (60.1%), and were taking a β-blocker (67.8%) or aspirin (91.6%) at the time of the ED admission. Female patients were more likely than male patients to arrive at the ED via ambulance (65.9% vs 57.6%, respectively; P = 0.014). The median age of female patients was 68 years, whereas male patients were significantly younger (median age, 59 years; P < 0.001). The proportion of patients currently taking a β-blocker or low-dose aspirin did not vary by gender. Overall, 78.2% of the MI Alert patients arriving at the ED were MI2 (alert initiated by ED physician), and this did not vary by gender (P = 0.33). A total of 1064 MI Alert patients went to the cath lab: 766 male patients (88.9%) and 298 female patients (80.8%). Overall, the median time to cath lab arrival was 79 minutes for men and 81 minutes for women (P = 0.38). Overall, the median time to cath lab arrival significantly decreased from MI1 to MI3, (P(trend) < 0.001). For prehospital-initiated alerts (MI3), the median time to cath lab arrival was the same for men and women (64 minutes; P = 1.0). For hospital-initiated alerts, time to cath lab arrival was 82 minutes for male patients and 84 minutes for female patients (P = 0.38). Prehospital activation of the process decreased the time to the cath lab by 19 minutes (P < 0.001; 95% CI, 13.2-24.8). No significant gender differences were apparent in the STEMI patients analyzed, whether the MI Alert was initiated in the ED or prehospital initiated. Initiating prehospital-based alerts significantly decreased the time to the cath lab. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.
Enhancing outpatient clinics management software by reducing patients' waiting time.
Almomani, Iman; AlSarheed, Ahlam
The Kingdom of Saudi Arabia (KSA) gives great attention to improving the quality of services provided by health care sectors including outpatient clinics. One of the main drawbacks in outpatient clinics is long waiting time for patients-which affects the level of patient satisfaction and the quality of services. This article addresses this problem by studying the Outpatient Management Software (OMS) and proposing solutions to reduce waiting times. Many hospitals around the world apply solutions to overcome the problem of long waiting times in outpatient clinics such as hospitals in the USA, China, Sri Lanka, and Taiwan. These clinics have succeeded in reducing wait times by 15%, 78%, 60% and 50%, respectively. Such solutions depend mainly on adding more human resources or changing some business or management policies. The solutions presented in this article reduce waiting times by enhancing the software used to manage outpatient clinics services. Both quantitative and qualitative methods have been used to understand current OMS and examine level of patient's satisfaction. Five main problems that may cause high or unmeasured waiting time have been identified: appointment type, ticket numbering, doctor late arrival, early arriving patient and patients' distribution list. These problems have been mapped to the corresponding OMS components. Solutions to the above problems have been introduced and evaluated analytically or by simulation experiments. Evaluation of the results shows a reduction in patient waiting time. When late doctor arrival issues are solved, this can reduce the clinic service time by up to 20%. However, solutions for early arriving patients reduces 53.3% of vital time, 20% of the clinic time and overall 30.3% of the total waiting time. Finally, well patient-distribution lists make improvements by 54.2%. Improvements introduced to the patients' waiting time will consequently affect patients' satisfaction and improve the quality of health care services. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Design for disassembly and sustainability assessment to support aircraft end-of-life treatment
NASA Astrophysics Data System (ADS)
Savaria, Christian
Gas turbine engine design is a multidisciplinary and iterative process. Many design iterations are necessary to address the challenges among the disciplines. In the creation of a new engine architecture, the design time is crucial in capturing new business opportunities. At the detail design phase, it was proven very difficult to correct an unsatisfactory design. To overcome this difficulty, the concept of Multi-Disciplinary Optimization (MDO) at the preliminary design phase (Preliminary MDO or PMDO) is used allowing more freedom to perform changes in the design. PMDO also reduces the design time at the preliminary design phase. The concept of PMDO was used was used to create parametric models, and new correlations for high pressure gas turbine housing and shroud segments towards a new design process. First, dedicated parametric models were created because of their reusability and versatility. Their ease of use compared to non-parameterized models allows more design iterations thus reduces set up and design time. Second, geometry correlations were created to minimize the number of parameters used in turbine housing and shroud segment design. Since the turbine housing and the shroud segment geometries are required in tip clearance analyses, care was taken as to not oversimplify the parametric formulation. In addition, a user interface was developed to interact with the parametric models and improve the design time. Third, the cooling flow predictions require many engine parameters (i.e. geometric and performance parameters and air properties) and a reference shroud segments. A second correlation study was conducted to minimize the number of engine parameters required in the cooling flow predictions and to facilitate the selection of a reference shroud segment. Finally, the parametric models, the geometry correlations, and the user interface resulted in a time saving of 50% and an increase in accuracy of 56% in the new design system compared to the existing design system. Also, regarding the cooling flow correlations, the number of engine parameters was reduced by a factor of 6 to create a simplified prediction model and hence a faster shroud segment selection process. None
Failure Time Distributions: Estimates and Asymptotic Results.
1980-01-01
of the models. A parametric family of distributions is proposed for approximating life distri- butions whose hazard rate is bath-tub shaped, this...of the limiting dirtributions of the models. A parametric family of distributions is proposed for approximating life distribution~s whose hazard rate...12. always justified. But, because of this gener- ality, the possible limit laws for the maximum form a very large family . The
Space--time patterns during the establishmentof a nonindigenous species
Patrick C. Tobin
2007-01-01
Increasing rates of global trade and travel have the invariable consequence of an increase in the likelihood of nonindigenous species arrival, and some new arrivals are successful in establishing themselves. Quantifying the pattern of establishment of nonindigenous species across both spatial and temporal scales is paramount in early detection efforts, yet very...
Radio Frequency Emitter Geolocation Using Cubesats
2014-03-27
CUBESATS Andrew J. Small, B.S.E.E. Captain, USAF Approved: //signed// Maj Marshall Haker , PhD (Chairman) //signed// Jonathan Black, PhD (Member) //signed...Cubesat, Direct Position Determination, Angle of Arrival, Time Difference of Arrival, Instantaneous Received Frequency U U U UU 101 Maj Marshall Haker (ENG) (937) 255-3636 x4603 marshall.haker@afit.edu
An automatic P‐Phase arrival‐time picker
Kalkan, Erol
2016-01-01
Presented is a new approach for picking P‐phase arrival time in single‐component acceleration or broadband velocity records without requiring detection interval or threshold settings. The algorithm PPHASEPICKER transforms the signal into a response domain of a single‐degree‐of‐freedom (SDOF) oscillator with viscous damping and then tracks the rate of change of dissipated damping energy to pick P‐wave phases. The SDOF oscillator has a short natural period and a correspondingly high resonant frequency, which is higher than most frequencies in a seismic wave. It also has a high damping ratio (60% of critical). At this damping level, the frequency response approaches the Butterworth maximally flat magnitude filter, and phase angles are preserved. The relative input energy imparted to the oscillator by the input signal is converted to elastic strain energy and then dissipated by the damping element as damping energy. The damping energy yields a smooth envelope over time; it is zero in the beginning of the signal, zero or near zero before theP‐phase arrival, and builds up rapidly with the P wave. Because the damping energy function changes considerably at the onset of the P wave, it is used as a metric to track and pick the P‐phase arrival time. The PPHASEPICKER detects P‐phase onset using the histogram method. Its performance is compared with picking techniques using short‐term‐average to long‐term‐average ratio, and a picking method that finds the first P‐phase arrival time using the Akaike information criterion. A large set of records with various intensities and signal‐to‐noise ratios is used for testing the PPHASEPICKER, and it is demonstrated thatPPHASEPICKER is able to more accurately pick the onset of genuine signals against the background noise and to correctly distinguish between whether the first arrival is a P wave (emergent or impulsive) or whether the signal is from a faulty sensor.
Fast-Time Evaluations of Airborne Merging and Spacing in Terminal Arrival Operations
NASA Technical Reports Server (NTRS)
Krishnamurthy, Karthik; Barmore, Bryan; Bussink, Frank; Weitz, Lesley; Dahlene, Laura
2005-01-01
NASA researchers are developing new airborne technologies and procedures to increase runway throughput at capacity-constrained airports by improving the precision of inter-arrival spacing at the runway threshold. In this new operational concept, pilots of equipped aircraft are cleared to adjust aircraft speed to achieve a designated spacing interval at the runway threshold, relative to a designated lead aircraft. A new airborne toolset, prototypes of which are being developed at the NASA Langley Research Center, assists pilots in achieving this objective. The current prototype allows precision spacing operations to commence even when the aircraft and its lead are not yet in-trail, but are on merging arrival routes to the runway. A series of fast-time evaluations of the new toolset were conducted at the Langley Research Center during the summer of 2004. The study assessed toolset performance in a mixed fleet of aircraft on three merging arrival streams under a range of operating conditions. The results of the study indicate that the prototype possesses a high degree of robustness to moderate variations in operating conditions.
CTAS: Computer intelligence for air traffic control in the terminal area
NASA Technical Reports Server (NTRS)
Erzberger, Heinz
1992-01-01
A system for the automated management and control of arrival traffic, referred to as the Center-TRACON Automation System (CTAS), has been designed by the ATC research group at NASA Ames research center. In a cooperative program, NASA and the FAA have efforts underway to install and evaluate the system at the Denver and Dallas/Ft. Worth airports. CTAS consists of three types of integrated tools that provide computer-generated intelligence for both Center and TRACON controllers to guide them in managing and controlling arrival traffic efficiently. One tool, the Traffic Management Advisor (TMA), establishes optimized landing sequences and landing times for aircraft arriving in the center airspace several hundred miles from the airport. In TRACON, TMA frequencies missed approach aircraft and unanticipated arrivals. Another tool, the Descent Advisor (DA), generates clearances for the center controllers handling at crossing times provided by TMA. In the TRACON, the final approach spacing tool (FAST) provides heading and speed clearances that produce and accurately spaced flow of aircraft on the final approach course. A data base consisting of aircraft performance models, airline preferred operational procedures and real time wind measurements contribute to the effective operation of CTAS. Extensive simulator evaluations of CTAS have demonstrated controller acceptance, delay reductions, and fuel savings.
Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Xiao, Z.; Zhang, D. H.
2012-02-01
In this paper, evidence of quake-excited infrasonic waves is provided first by a multi-instrument observation of Japan's Tohoku earthquake. The observations of co-seismic infrasonic waves are as follows: 1, effects of surface oscillations are observed by local infrasonic detector, and it seems these effects are due to surface oscillation-excited infrasonic waves instead of direct influence of seismic vibration on the detector; 2, these local excited infrasonic waves propagate upwards and correspond to ionospheric disturbances observed by Doppler shift measurements and GPS/TEC; 3, interactions between electron density variation and currents in the ionosphere caused by infrasonic waves manifest as disturbances in the geomagnetic field observed via surface magnetogram; 4, within 4 hours after this strong earthquake, disturbances in the ionosphere related to arrivals of Rayleigh waves were observed by Doppler shift sounding three times over. Two of the arrivals were from epicenter along the minor arc of the great circle (with the second arrival due to a Rayleigh wave propagating completely around the planet) and the other one from the opposite direction. All of these seismo-ionospheric effects observed by HF Doppler shift appear after local arrivals of surface Rayleigh waves, with a time delay of 8-10 min. This is the time required for infrasonic wave to propagate upwards to the ionosphere.
Access block in NSW hospitals, 1999-2001: does the definition matter?
Forero, Roberto; Mohsin, Mohammed; Bauman, Adrian E; Ieraci, Sue; Young, Lis; Phung, Hai N; Hillman, Kenneth M; McCarthy, Sally M; Hugelmeyer, C David
2004-01-19
To estimate the magnitude of access block and its trend over time in New South Wales hospitals, using different definitions of access block, and to explore its association with clinical and non-clinical factors. An epidemiological study using the Emergency Department Information System datasets (1 January 1999 to 31 December 2001) from a sample of 55 NSW hospitals. Prevalence of access block measured by four different definitions; strength of association between access block, type of hospital, year of presentation, mode and time of arrival, triage category (an indicator of urgency), age and sex. Rates of access block (for all four definitions) increased between 1999 and 2001 by 1%-2% per year. There were increases across all regions of NSW, but urban regions in particular. Patients presenting to Principal Referral hospitals and those who arrived at night were more likely to experience access block. After adjusting for triage category and year of presentation, the mode of arrival, time of arrival, type of hospital, age and sex were significantly associated with access block. Access block continues to increase across NSW, whatever the definition used. We recommend that hospitals in NSW and Australia move to the use of one standard definition of access block, as our study suggests there is no significant additional information emerging from the use of multiple definitions.
The economic benefits of malaria elimination: do they include increases in tourism?
Modrek, Sepideh; Liu, Jenny; Gosling, Roland; Feachem, Richard G A
2012-07-28
Policy makers have speculated that one of the economic benefits of malaria elimination includes increases in foreign direct investment, particularly tourism. This study examines the empirical relationship between the demand for travel and malaria cases in two countries with large tourism industries around the time in which they carried out malaria-elimination campaigns. In Mauritius, this analysis examines historical, yearly tourist arrivals and malaria cases from 1978-1999, accounting for the background secular trend of increasing international travel. In Dominican Republic, a country embarking upon malaria elimination, it employs a time-series analysis of the monthly, international tourist arrivals from 1998-2010 to determine whether the timing of significant deviations in tourist arrivals coincides with malaria outbreaks. While naïve relationships exist in both cases, the results show that the relationships between tourist arrivals and malaria cases are relatively weak and statistically insignificant once secular confounders are accounted for. This suggests that any economic benefits from tourism that may be derived from actively pursuing elimination in countries that have high tourism potential are likely to be small when measured at a national level. Rather, tourism benefits are likely to be experienced with greater impact in more concentrated tourist areas within countries, and future studies should seek to assess these relationships at a regional or local level.
Lehan, Nora E; Murphy, Julia R; Thorburn, Lukas P; Bradley, Bethany A
2013-07-01
Preventing new plant invasions is critical for reducing large-scale ecological change. Most studies have focused on the deliberate introduction of nonnatives via the ornamental plant trade. However, accidental introduction may be an important source of nonnative, invasive plants. Using Web and literature searches, we compiled pathways of introduction to the United States for 1112 nonnative plants identified as invasive in the continental United States. We assessed how the proportion of accidentally and deliberately introduced invasive plants varies over time and space and by growth habit across the lower 48 states. Deliberate introductions of ornamentals are the primary source of invasive plants in the United States, but accidental introductions through seed contaminants are an important secondary source. Invasive forbs and grasses are the most likely to have arrived accidentally through seed contaminants, while almost all nonnative, invasive trees were introduced deliberately. Nonnative plants invading eastern states primarily arrived deliberately as ornamentals, while a high proportion of invasive plants in western states arrived accidentally as seed contaminants. Accidental introductions may be increasing in importance through time. Before 1850, 10 of 89 (11%) of invasive plants arrived accidentally. After 1900, 20 of 65 (31%) arrived accidentally. Recently enacted screening protocols and weed risk assessments aim to reduce the number of potentially invasive species arriving to the United States via deliberate introduction pathways. Increasing proportions of accidentally introduced invasive plants, particularly associated with contaminated seed imports across the western states, suggest that accidental introduction pathways also need to be considered in future regulatory decisions.
Empirical analysis and modeling of manual turnpike tollbooths in China
NASA Astrophysics Data System (ADS)
Zhang, Hao
2017-03-01
To deal with low-level of service satisfaction at tollbooths of many turnpikes in China, we conduct an empirical study and use a queueing model to investigate performance measures. In this paper, we collect archived data from six tollbooths of a turnpike in China. Empirical analysis on vehicle's time-dependent arrival process and collector's time-dependent service time is conducted. It shows that the vehicle arrival process follows a non-homogeneous Poisson process while the collector service time follows a log-normal distribution. Further, we model the process of collecting tolls at tollbooths with MAP / PH / 1 / FCFS queue for mathematical tractability and present some numerical examples.
Expanding the Use of Time-Based Metering: Multi-Center Traffic Management Advisor
NASA Technical Reports Server (NTRS)
Landry, Steven J.; Farley, Todd; Hoang, Ty
2005-01-01
Time-based metering is an efficient air traffic management alternative to the more common practice of distance-based metering (or "miles-in-trail spacing"). Despite having demonstrated significant operational benefit to airspace users and service providers, time-based metering is used in the United States for arrivals to just nine airports and is not used at all for non-arrival traffic flows. The Multi-Center Traffic Management Advisor promises to bring time-based metering into the mainstream of air traffic management techniques. Not constrained to operate solely on arrival traffic, Multi-Center Traffic Management Advisor is flexible enough to work in highly congested or heavily partitioned airspace for any and all traffic flows in a region. This broader and more general application of time-based metering is expected to bring the operational benefits of time-based metering to a much wider pool of beneficiaries than is possible with existing technology. It also promises to facilitate more collaborative traffic management on a regional basis. This paper focuses on the operational concept of the Multi-Center Traffic Management Advisor, touching also on its system architecture, field test results, and prospects for near-term deployment to the United States National Airspace System.
Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths
NASA Astrophysics Data System (ADS)
Green, David N.; Vergoz, Julien; Gibson, Robert; Le Pichon, Alexis; Ceranna, Lars
2011-05-01
Infrasound propagation paths through the atmosphere are controlled by the temporally and spatially varying sound speed and wind speed amplitudes. Because of the complexity of atmospheric acoustic propagation it is often difficult to reconcile observed infrasonic arrivals with the sound speed profiles predicted by meteorological specifications. This paper provides analyses of unexpected arrivals recorded in Europe and north Africa from two series of accidental munitions dump explosions, recorded at ranges greater than 1000 km: two explosions at Gerdec, Albania, on 2008 March 15 and four explosions at Chelopechene, Bulgaria, on 2008 July 3. The recorded signal characteristics include multiple pulsed arrivals, celerities between 0.24 and 0.34 km s-1 and some signal frequency content above 1 Hz. Often such characteristics are associated with waves that have propagated within a ground-to-stratosphere waveguide, although the observed celerities extend both above and below the conventional range for stratospheric arrivals. However, state-of-the-art meteorological specifications indicate that either weak, or no, ground-to-stratosphere waveguides are present along the source-to-receiver paths. By incorporating realistic gravity-wave induced horizontal velocity fluctuations into time-domain Parabolic Equation models the pulsed nature of the signals is simulated, and arrival times are predicted to within 30 s of the observed values (<1 per cent of the source-to-receiver transit time). Modelling amplitudes is highly dependent upon estimates of the unknown acoustic source strength (or equivalent chemical explosive yield). Current empirical explosive yield relationships, derived from infrasonic amplitude measurements from point-source chemical explosions, suggest that the equivalent chemical yield of the largest Gerdec explosion was of the order of 1 kt and the largest Chelopechene explosion was of the order of 100 t. When incorporating these assumed yields, the Parabolic Equation simulations predict peak signal amplitudes to within an order of magnitude of the observed values. As gravity wave velocity perturbations can significantly influence both infrasonic arrival times and signal amplitudes they need to be accounted for in source location and yield estimation routines, both of which are important for explosion monitoring, especially in the context of the Comprehensive Nuclear-Test-Ban Treaty.
Core-Mantle Boundary Complexities beneath the Mid-Pacific
NASA Astrophysics Data System (ADS)
Sun, D.; Helmberger, D. V.; Jackson, J. M.
2016-12-01
The detailed core-mantle boundary (CMB) structures beneath the Mid-Pacific are important to map the boundary of Large Low Shear Velocity Province (LLSVP) and the location of ultra-low velocity zone (ULVZ) related to the LLSVP and the D" layer, which are crucial for answering the key questions regarding to the mantle dynamics. Seismic data from deep earthquakes in the Fiji-Tonga region recorded by stations of USArray provide great sampling of the CMB beneath the Mid-Pacific. Here we explore the USArray data with different seismic phases to study the CMB complexities beneath the Mid-Pacific. First, we examined the differential travel time and amplitude between ScS and S for data at western US and confirm the northeastern boundary of the mid-Pacific LLSVP. The delayed ScS-S travel times and smaller amplitude of ScS require the existence of ULVZ locally. Secondly, the Sdiff data recorded by stations at central US shows variation in multi-pathing, that is, the presence of secondary arrivals following the S phase at diffracted distances (Sdiff) which suggests that the waveform complexity is due to structures at the eastern edge of the mid-Pacific LLSVP. This study reinforces previous studies that indicate late arrivals occurring after the primary Sdiff arrivals. A tapered wedge structure with low shear velocity allows for wave energy trapping, producing the observed waveform complexity and delayed arrivals at large distances. The location of the low velocity anomaly agrees with that inferred from the ScS-S measurements. We also observed advanced SV arrivals, which can be explained by the emerging of the D" discontinuity to the east of the boundary of the LLSVP to produce a "pseudo anisotropy". Thirdly, the arrivals of the SPdKS phase support the presence of an ULVZ within a two-humped LLSVP. A sharp 10 secs jump of the differential travel time between S and SKS (TS-SKS) across distance range of 5° is observed. The associated SKS waveform distortions suggest that the differential travel time anomaly is mainly controlled by the SKS, which is explained by a possible slab subducted to the lower mantle.
Ohta, Shoichi; Yoda, Ikushi; Takeda, Munekazu; Kuroshima, Satomi; Uchida, Kotaro; Kawai, Kentaro; Yukioka, Tetsuo
2015-02-01
Though many governmental and nongovernmental efforts for disaster prevention have been sought throughout Japan since the Great East Japan Earthquake on March 11, 2011, most of the preparation efforts for disasters have been based more on structural and conventionalized regulations than on scientific and objective grounds. Problem There has been a lack of scientific knowledge for space utilization for triage posts in disaster drill sessions. This report addresses how participants occupy and make use of the space within a triage post in terms of areas of use and occupied time. The trajectories of human movement by using Ubiquitous Stereo Vision (USV) cameras during two emergency drill sessions held in 2012 in a large commercial building have been measured. The USV cameras collect each participant's travel distance and the wait time before, during, and after undergoing triage. The correlation between the wait time and the space utilization of patients at a triage post has been analyzed. In the first session, there were some spaces not entirely used. This was caused largely by a patient who arrived earlier than others and lingered in the middle area, which caused the later arrivals to crowd the entrance area. On the other hand, in the second session, the area was used in a more evenly-distributed manner. This is mainly because the earlier arrivals were guided to the back space of the triage post (ie, the opposite side of the entrance), and the late arrivals were also guided to the front half, which was not occupied by anyone. As a result, the entire space was effectively utilized without crowding the entrance. This study has shown that this system could measure people's arrival times and the speed of their movements at the triage post, as well as where they are placed until they receive triage. Space utilization can be improved by efficiently planning and controlling the positioning of arriving patients. Based on the results, it has been suggested that for triage operation, it is necessary to efficiently plan and control the placement of patients in order to use strategically limited spatial resources.
Mathieu, Julie; Bootsma, Reinoud J; Berthelon, Catherine; Montagne, Gilles
2017-02-01
Using a fixed-base driving simulator we compared the effects of the size and type of traffic vehicles (i.e., normal-sized or double-sized cars or motorcycles) approaching an intersection in two different tasks. In the perceptual judgment task, passively moving participants estimated when a traffic vehicle would reach the intersection for actual arrival times (ATs) of 1, 2, or 3s. In line with earlier findings, ATs were generally underestimated, the more so the longer the actual AT. Results revealed that vehicle size affected judgments in particular for the larger actual ATs (2 and 3s), with double-sized vehicles then being judged as arriving earlier than normal-sized vehicles. Vehicle type, on the other hand, affected judgments at the smaller actual ATs (1 and 2s), with cars then being judged as arriving earlier than motorcycles. In the behavioral task participants actively drove the simulator to cross the intersection by passing through a gap in a train of traffic. Analyses of the speed variations observed during the active intersection-crossing task revealed that the size and type of vehicles in the traffic train did not affect driving behavior in the same way as in the AT judgment task. First, effects were considerably smaller, affecting driving behavior only marginally. Second, effects were opposite to expectations based on AT judgments: driver approach speeds were smaller (rather than larger) when confronted with double-sized vehicles as compared to their normal-sized counterparts and when confronted with cars as compared to motorcycles. Finally, the temporality of the effects was different on the two tasks: vehicle size affected driver approach speed in the final stages of approach rather than early on, while vehicle type affected driver approach speed early on rather than later. Overall, we conclude that the active control of approach to the intersection is not based on successive judgments of traffic vehicle arrival times. These results thereby question the general belief that arrival time estimates are crucial for safe interaction with traffic. Copyright © 2016 Elsevier B.V. All rights reserved.
The timing of life history events in the presence of soft disturbances.
Bertacchi, Daniela; Zucca, Fabio; Ambrosini, Roberto
2016-01-21
We study a model for the evolutionarily stable strategy (ESS) used by biological populations for choosing the time of life-history events, such as arrival from migration and breeding. In our model we account for both intra-species competition (early individuals have a competitive advantage) and a disturbance which strikes at a random time, killing a fraction 1-p of the population. Disturbances include spells of bad weather, such as freezing or heavily raining days. It has been shown by Iwasa and Levin (1995) that when the disturbance is so strong that it kills any individual present when it strikes (hard disturbance, p=0), then the ESS is a mixed strategy (individuals choose their arrival date in an interval of possible dates, according to a certain probability distribution). In this case, individuals wait for a certain time and afterwards start arriving (or breeding) every day. In this paper we explore a biologically more realistic situation whereby the disturbance kills only a fraction of the individuals (soft disturbance, p>0). We also remove some technical assumptions which Iwasa and Levin made on the distribution of the disturbance. We prove that the ESS is still a mixed choice of times, however with respect to the case of hard disturbance, a new phenomenon arises: whenever the disturbance is soft, if the competition is sufficiently strong, the waiting time disappears and a fraction of the population arrives at the earliest day possible, while the rest will arrive throughout the whole period during which the disturbance may occur. This means that under strong competition, the payoff of early arrival balances the increased risk of being killed by the disturbance. We study the behaviour of the ESS and of the average fitness of the population, depending on the parameters involved. We also investigate how the population may be affected by climate change: namely the occurrence of more extreme weather events, which may kill a larger fraction of the population, and time shifts of the distribution of the disturbance. We show how the ESS and the average fitness change under the new climate and discuss which is the impact of the new climate on a population that still follows the old strategy. In particular, we show that, at least under some conditions, extreme weather events imply a temporary decrease of the average fitness of the population due to an increased mortality. In addition, if the population adapts to the new climate, the population may have a larger fitness. Copyright © 2015 Elsevier Ltd. All rights reserved.
A time-motion study of ambulance-to-emergency department radio communications.
Penner, Mark S; Cone, David C; MacMillan, Don
2003-01-01
A prospective time-motion study of radio communication between inbound ambulances and emergency department (ED) triage personnel was conducted to assess hospital triage staff time utilized, and how often radio reports result in actions taken in the ED to prepare for patient arrival. The study hypothesis was that reports for "priority 2" (P2, nonemergent) patients rarely provide information that is acted upon in the ED prior to the patient's arrival. The study was conducted at an academic adult ED receiving 22,000 ambulances per year. An observer in the ED monitored and timed (to the second) all radio reports as well as the activities of triage nurses and arriving emergency medical services (EMS) personnel. A convenience sample of 437 reports was collected: 83 priority 1 (P1, emergent) and 354 P2. Average report times (minutes:seconds) with ranges were 0:53 (0:07-1:57) for P1, and 0:44 (0:04-3:50) for P2. Only 16% of the P2 reports resulted in any preparatory action, and 55% of these were requests to have hospital police officers available to receive intoxicated patients, as per local protocol. An in-person report was given in the ED for 61% of the P2 cases, and in 48% of these, the in-person report was longer than the radio report. In the system studied, P2 reports rarely provide information that is acted on prior to the patient's arrival. The time spent giving a radio report is frequently duplicated in the ED. Radio reports for low-priority patients may not be an efficient or productive use of providers' or nurses' time.
Analysis of electric vehicle's trip cost allowing late arrival
NASA Astrophysics Data System (ADS)
Leng, Jun-Qiang; Liu, Wei-Yi; Zhao, Lin
2017-05-01
In this paper, we use a car-following model to study each electric vehicle's trip cost and the total trip cost allowing late arrival. The numerical result show that the electricity cost has great effects on each commuter's trip cost and the total trip costs and that these effects are dependent on each commuter's time headway at the origin, but the electricity cost has no prominent impacts on the minimum value of total trip cost under each commuter's different time headway at the origin.
Mettler, Raeann; Segelbacher, Gernot; Schaefer, H Martin
2015-01-01
Avian research has begun to reveal associations between candidate genes and migratory behaviors of captive birds, yet few studies utilize genotypic, morphometric, and phenological data from wild individuals. Previous studies have identified an association between ADCYAP1 polymorphism and autumn migratory behavior (restlessness, or zugunruhe), but little is known about the relationship between ADCYAP1 and spring migratory behavior. The timing of spring migration and arrival to the breeding ground are phenological traits which could be particularly favorable for establishing territories and acquiring mates, thus important to fitness and reproductive success. Here, we investigated how individual genotypic ADCYAP1 variation and phenotypic variation (wing length and shape) of blackcaps (Sylvia atricapilla) affect spring arrival date across nine natural populations in Europe. We hypothesized that longer alleles should be associated with earlier spring arrival dates and expected the effect on arrival date to be stronger for males as they arrive earlier. However, we found that longer wings were associated with earlier spring arrival to the breeding grounds for females, but not for males. Another female-specific effect indicated an interaction between ADCYAP1 allele size and wing pointedness on the response of spring arrival: greater allele size had a positive effect on spring arrival date for females with rounder wings, while a negative effect was apparent for females with more pointed wings. Also, female heterozygotes with pointed wing tips arrived significantly earlier than both homozygotes with pointed wings and heterozygotes with round wings. Stable isotope ratios (δ2H) of a subset of blackcaps captured in Freiburg in 2011 allowed us also to assign individuals to their main overwintering areas in northwest (NW) and southwest (SW) Europe. NW males arrived significantly earlier to the Freiburg breeding site than both SW males and females in 2011. NW females had more pointed wing tips compared to SW females, but no difference in ADCYAP1 allele size was found between the different migration routes.
Masmas, Tania Nicole; Møller, Eva; Buhmannr, Caecilie; Bunch, Vibeke; Jensen, Jean Hald; Hansen, Trine Nørregård; Jørgensen, Louise Møller; Kjaer, Claes; Mannstaedt, Maiken; Oxholm, Annemette; Skau, Jutta; Theilade, Lotte; Worm, Lise; Ekstrøm, Morten
2008-01-01
An unknown number of asylum seekers arriving in Denmark have been exposed to torture or have experienced other traumatising events in their country of origin. The health of traumatised asylum seekers, both physically and mentally, is affected upon arrival to Denmark, and time in asylum centres leads to further deterioration in health. One hundred forty-two (N=142) newly arrived asylum seekers were examined at Center Sandholm by Amnesty International Danish Medical Group from the 1st of September until the 31st of December 2007. The asylum seekers came from 33 different countries, primarily representing Afghanistan, Iraq, Iran, Syria, and Chechnya. Of the asylum seekers, 45 percent had been exposed to torture--approximately one-third within the year of arrival to Denmark. Unsystematic blows, personal threats or threats to family, degrading treatment, isolation, and witnessing torture of others were the main torture methods reported. The majority of the asylum seekers had witnessed armed conflict, persecution, and imprisonment. The study showed that physical symptoms were approximately twice as frequent and psychological symptoms were approximately two to three times as frequent among torture survivors as among non-tortured asylum seekers. However, even the health of non-tortured asylum seekers was affected. Among the torture survivors, 63 percent fulfilled the criteria for post-traumatic stress disorder, and 30-40 percent of the torture survivors were depressed, in anguish, anxious, and tearful in comparison to 5-10 percent of the non-tortured asylum seekers. Further, 42 percent of torture survivors had torture-related scars. Torture survivors amid newly arrived asylum seekers are an extremely vulnerable group, hence examination and inquiry about the torture history is extremely important in order to identify this population to initiate the necessary medical treatment and social assistance. Amnesty International Danish Medical group is currently planning a follow-up study of the present population which will focus on changes in health status during their time in Denmark.
Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems
NASA Astrophysics Data System (ADS)
Koutserimpas, Theodoros T.; Fleury, Romain
2018-02-01
We explore the unconventional wave scattering properties of non-Hermitian systems in which amplification or damping are induced by time-periodic modulation. These non-Hermitian time-Floquet systems are capable of nonreciprocal operations in the frequency domain, which can be exploited to induce novel physical phenomena such as unidirectional wave amplification and perfect nonreciprocal response with zero or even negative insertion losses. This unique behavior is obtained by imparting a specific low-frequency time-periodic modulation to the complex coupling between lossless resonators, promoting only upward frequency conversion, and leading to nonreciprocal parametric gain. We provide a full-wave demonstration of our findings in a one-way microwave amplifier, and establish the potential of non-Hermitian time-Floquet devices for insertion-loss free microwave isolation and unidirectional parametric amplification.
NASA Astrophysics Data System (ADS)
Hakim Halim, Abdul; Ernawati; Hidayat, Nita P. A.
2018-03-01
This paper deals with a model of batch scheduling for a single batch processor on which a number of parts of a single items are to be processed. The process needs two kinds of setups, i. e., main setups required before processing any batches, and additional setups required repeatedly after the batch processor completes a certain number of batches. The parts to be processed arrive at the shop floor at the times coinciding with their respective starting times of processing, and the completed parts are to be delivered at multiple due dates. The objective adopted for the model is that of minimizing total inventory holding cost consisting of holding cost per unit time for a part in completed batches, and that in in-process batches. The formulation of total inventory holding cost is derived from the so-called actual flow time defined as the interval between arrival times of parts at the production line and delivery times of the completed parts. The actual flow time satisfies not only minimum inventory but also arrival and delivery just in times. An algorithm to solve the model is proposed and a numerical example is shown.
Rayleigh-type parametric chemical oscillation.
Ghosh, Shyamolina; Ray, Deb Shankar
2015-09-28
We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, J.R.; Heger, A.S.; Koen, B.V.
1984-04-01
This report is the result of a preliminary feasibility study of the applicability of Stein and related parametric empirical Bayes (PEB) estimators to the Nuclear Plant Reliability Data System (NPRDS). A new estimator is derived for the means of several independent Poisson distributions with different sampling times. This estimator is applied to data from NPRDS in an attempt to improve failure rate estimation. Theoretical and Monte Carlo results indicate that the new PEB estimator can perform significantly better than the standard maximum likelihood estimator if the estimation of the individual means can be combined through the loss function or throughmore » a parametric class of prior distributions.« less
Operational Concept for Flight Crews to Participate in Merging and Spacing of Aircraft
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.
2006-01-01
The predicted tripling of air traffic within the next 15 years is expected to cause significant aircraft delays and create a major financial burden for the airline industry unless the capacity of the National Airspace System can be increased. One approach to improve throughput and reduce delay is to develop new ground tools, airborne tools, and procedures to reduce the variance of aircraft delivery to the airport, thereby providing an increase in runway throughput capacity and a reduction in arrival aircraft delay. The first phase of the Merging and Spacing Concept employs a ground based tool used by Air Traffic Control that creates an arrival time to the runway threshold based on the aircraft s current position and speed, then makes minor adjustments to that schedule to accommodate runway throughput constraints such as weather and wake vortex separation criteria. The Merging and Spacing Concept also employs arrival routing that begins at an en route metering fix at altitude and continues to the runway threshold with defined lateral, vertical, and velocity criteria. This allows the desired spacing interval between aircraft at the runway to be translated back in time and space to the metering fix. The tool then calculates a specific speed for each aircraft to fly while enroute to the metering fix based on the adjusted land timing for that aircraft. This speed is data-linked to the crew who fly this speed, causing the aircraft to arrive at the metering fix with the assigned spacing interval behind the previous aircraft in the landing sequence. The second phase of the Merging and Spacing Concept increases the timing precision of the aircraft delivery to the runway threshold by having flight crews using an airborne system make minor speed changes during enroute, descent, and arrival phases of flight. These speed changes are based on broadcast aircraft state data to determine the difference between the actual and assigned time interval between the aircraft pair. The airborne software then calculates a speed adjustment to null that difference over the remaining flight trajectory. Follow-on phases still under development will expand the concept to all types of aircraft, arriving from any direction, merging at different fixes and altitudes, and to any airport. This paper describes the implementation phases of the Merging and Spacing Concept, and provides high-level results of research conducted to date.
Selection for territory acquisition is modulated by social network structure in a wild songbird
Farine, D R; Sheldon, B C
2015-01-01
The social environment may be a key mediator of selection that operates on animals. In many cases, individuals may experience selection not only as a function of their phenotype, but also as a function of the interaction between their phenotype and the phenotypes of the conspecifics they associate with. For example, when animals settle after dispersal, individuals may benefit from arriving early, but, in many cases, these benefits will be affected by the arrival times of other individuals in their local environment. We integrated a recently described method for calculating assortativity on weighted networks, which is the correlation between an individual's phenotype and that of its associates, into an existing framework for measuring the magnitude of social selection operating on phenotypes. We applied this approach to large-scale data on social network structure and the timing of arrival into the breeding area over three years. We found that late-arriving individuals had a reduced probability of breeding. However, the probability of breeding was also influenced by individuals’ social networks. Associating with late-arriving conspecifics increased the probability of successfully acquiring a breeding territory. Hence, social selection could offset the effects of nonsocial selection. Given parallel theoretical developments of the importance of local network structure on population processes, and increasing data being collected on social networks in free-living populations, the integration of these concepts could yield significant insights into social evolution. PMID:25611344
Simulation Results for Airborne Precision Spacing along Continuous Descent Arrivals
NASA Technical Reports Server (NTRS)
Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.; Baxley, Brian T.
2008-01-01
This paper describes the results of a fast-time simulation experiment and a high-fidelity simulator validation with merging streams of aircraft flying Continuous Descent Arrivals through generic airspace to a runway at Dallas-Ft Worth. Aircraft made small speed adjustments based on an airborne-based spacing algorithm, so as to arrive at the threshold exactly at the assigned time interval behind their Traffic-To-Follow. The 40 aircraft were initialized at different altitudes and speeds on one of four different routes, and then merged at different points and altitudes while flying Continuous Descent Arrivals. This merging and spacing using flight deck equipment and procedures to augment or implement Air Traffic Management directives is called Flight Deck-based Merging and Spacing, an important subset of a larger Airborne Precision Spacing functionality. This research indicates that Flight Deck-based Merging and Spacing initiated while at cruise altitude and well prior to the Terminal Radar Approach Control entry can significantly contribute to the delivery of aircraft at a specified interval to the runway threshold with a high degree of accuracy and at a reduced pilot workload. Furthermore, previously documented work has shown that using a Continuous Descent Arrival instead of a traditional step-down descent can save fuel, reduce noise, and reduce emissions. Research into Flight Deck-based Merging and Spacing is a cooperative effort between government and industry partners.
NASA Astrophysics Data System (ADS)
Olafsen, L. J.; Olafsen, J. S.; Eaves, I. K.
2018-06-01
We report on an experimental investigation of the time-dependent spatial intensity distribution of near-infrared idler pulses from an optical parametric oscillator measured using an infrared (IR) camera, in contrast to beam profiles obtained using traditional knife-edge techniques. Comparisons show the information gained by utilizing the thermal camera provides more detail than the spatially- or time-averaged measurements from a knife-edge profile. Synchronization, averaging, and thresholding techniques are applied to enhance the images acquired. The additional information obtained can improve the process by which semiconductor devices and other IR lasers are characterized for their beam quality and output response and thereby result in IR devices with higher performance.
Hoover, D R; Peng, Y; Saah, A J; Detels, R R; Day, R S; Phair, J P
A simple non-parametric approach is developed to simultaneously estimate net incidence and morbidity time from specific AIDS illnesses in populations at high risk for death from these illnesses and other causes. The disease-death process has four-stages that can be recast as two sandwiching three-state multiple decrement processes. Non-parametric estimation of net incidence and morbidity time with error bounds are achieved from these sandwiching models through modification of methods from Aalen and Greenwood, and bootstrapping. An application to immunosuppressed HIV-1 infected homosexual men reveals that cytomegalovirus disease, Kaposi's sarcoma and Pneumocystis pneumonia are likely to occur and cause significant morbidity time.
BROËT, PHILIPPE; TSODIKOV, ALEXANDER; DE RYCKE, YANN; MOREAU, THIERRY
2010-01-01
This paper presents two-sample statistics suited for testing equality of survival functions against improper semi-parametric accelerated failure time alternatives. These tests are designed for comparing either the short- or the long-term effect of a prognostic factor, or both. These statistics are obtained as partial likelihood score statistics from a time-dependent Cox model. As a consequence, the proposed tests can be very easily implemented using widely available software. A breast cancer clinical trial is presented as an example to demonstrate the utility of the proposed tests. PMID:15293627
Multicutter machining of compound parametric surfaces
NASA Astrophysics Data System (ADS)
Hatna, Abdelmadjid; Grieve, R. J.; Broomhead, P.
2000-10-01
Parametric free forms are used in industries as disparate as footwear, toys, sporting goods, ceramics, digital content creation, and conceptual design. Optimizing tool path patterns and minimizing the total machining time is a primordial issue in numerically controlled (NC) machining of free form surfaces. We demonstrate in the present work that multi-cutter machining can achieve as much as 60% reduction in total machining time for compound sculptured surfaces. The given approach is based upon the pre-processing as opposed to the usual post-processing of surfaces for the detection and removal of interference followed by precise tracking of unmachined areas.
Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection
NASA Astrophysics Data System (ADS)
Becker, Werner; Kramer, Michael; Sesana, Alberto
2018-02-01
Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_{GW}˜ 10^{-9} - 10^{-7} Hz) gravitational waves. We present the current status and provide an outlook for the future.
Arrival Metering Precision Study
NASA Technical Reports Server (NTRS)
Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.
2015-01-01
This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.
NASA Technical Reports Server (NTRS)
Anderson, R. E.; Frey, R. L.; Lewis, J. R.
1980-01-01
Position surveillance using one active ranging/communication satellite and the time-of-arrival of signals from an independent satellite was shown to be feasible and practical. A towboat on the Mississippi River was equipped with a tone-code ranging transponder and a receiver tuned to the timing signals of the GOES satellite. A similar transponder was located at the office of the towing company. Tone-code ranging interrogations were transmitted from the General Electric Earth Station Laboratory through ATS-6 to the towboat and to the ground truth transponder office. Their automatic responses included digital transmissions of time-of-arrival measurements derived from the GOES signals. The Earth Station Laboratory determined ranges from the satellites to the towboat and computed position fixes. The ATS-6 lines-of-position were more precise than 0.1 NMi, 1 sigma, and the GOES lines-of-position were more precise than 1.6 NMi, 1 sigma. High quality voice communications were accomplished with the transponders using a nondirectional antenna on the towboat. The simple and effective surveillance technique merits further evaluation using operational maritime satellites.
Human-in-the-Loop Assessment of Alternative Clearances in Interval Management Arrival Operations
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Wilson, Sara R.; Swieringa, Kurt A.; Johnson, William C.; Roper, Roy D.; Hubbs, Clay E.; Goess, Paul A.; Shay, Richard F.
2016-01-01
Interval Management Alternative Clearances (IMAC) was a human-in-the-loop simulation experiment conducted to explore the Air Traffic Management (ATM) Technology Demonstration (ATD-1) Concept of Operations (ConOps), which combines advanced arrival scheduling, controller decision support tools, and aircraft avionics to enable multiple time deconflicted, efficient arrival streams into a high-density terminal airspace. Interval Management (IM) is designed to support the ATD-1 concept by having an "Ownship" (IM-capable) aircraft achieve or maintain a specific time or distance behind a "Target" (preceding) aircraft. The IM software uses IM clearance information and the Ownship data (route of flight, current location, and wind) entered by the flight crew, and the Target aircraft's Automatic Dependent Surveillance-Broadcast state data, to calculate the airspeed necessary for the IM-equipped aircraft to achieve or maintain the assigned spacing goal.
Ultrafast propagation of Schroedinger waves in absorbing media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgado, F.; Muga, J.G.; Ruschhaupt, A.
2004-02-01
We show that the temporal peak of a quantum wave may arrive at different locations simultaneously in an absorbing medium. The arrival occurs at the lifetime of the particle in the medium from the instant when a point source with a sharp onset is turned on. We also identify other characteristic times. In particular, the 'traversal' or 'Buettiker-Landauer' time (which grows linearly with the distance to the source) for the Hermitian, non-absorbing case is substituted by several characteristic quantities in the absorbing case. The simultaneous arrival due to absorption, unlike the Hartman effect, occurs for carrier frequencies under or abovemore » the cutoff, and for arbitrarily large distances. It holds also in a relativistic generalization but limited by causality. A possible physical realization is proposed by illuminating a two-level atom with a detuned laser.« less
Draelos, Timothy J.; Ballard, Sanford; Young, Christopher J.; ...
2015-10-01
Given a set of observations within a specified time window, a fitness value is calculated at each grid node by summing station-specific conditional fitness values. Assuming each observation was generated by a refracted P wave, these values are proportional to the conditional probabilities that each observation was generated by a seismic event at the grid node. The node with highest fitness value is accepted as a hypothetical event location, subject to some minimal fitness value, and all arrivals within a longer time window consistent with that event are associated with it. During the association step, a variety of different phasesmore » are considered. In addition, once associated with an event, an arrival is removed from further consideration. While unassociated arrivals remain, the search for other events is repeated until none are identified.« less
Cancellation of spurious arrivals in Green's function extraction and the generalized optical theorem
Snieder, R.; Van Wijk, K.; Haney, M.; Calvert, R.
2008-01-01
The extraction of the Green's function by cross correlation of waves recorded at two receivers nowadays finds much application. We show that for an arbitrary small scatterer, the cross terms of scattered waves give an unphysical wave with an arrival time that is independent of the source position. This constitutes an apparent inconsistency because theory predicts that such spurious arrivals do not arise, after integration over a complete source aperture. This puzzling inconsistency can be resolved for an arbitrary scatterer by integrating the contribution of all sources in the stationary phase approximation to show that the stationary phase contributions to the source integral cancel the spurious arrival by virtue of the generalized optical theorem. This work constitutes an alternative derivation of this theorem. When the source aperture is incomplete, the spurious arrival is not canceled and could be misinterpreted to be part of the Green's function. We give an example of how spurious arrivals provide information about the medium complementary to that given by the direct and scattered waves; the spurious waves can thus potentially be used to better constrain the medium. ?? 2008 The American Physical Society.
Driven Bose-Hubbard model with a parametrically modulated harmonic trap
NASA Astrophysics Data System (ADS)
Mann, N.; Bakhtiari, M. Reza; Massel, F.; Pelster, A.; Thorwart, M.
2017-04-01
We investigate a one-dimensional Bose-Hubbard model in a parametrically driven global harmonic trap. The delicate interplay of both the local interaction of the atoms in the lattice and the driving of the global trap allows us to control the dynamical stability of the trapped quantum many-body state. The impact of the atomic interaction on the dynamical stability of the driven quantum many-body state is revealed in the regime of weak interaction by analyzing a discretized Gross-Pitaevskii equation within a Gaussian variational ansatz, yielding a Mathieu equation for the condensate width. The parametric resonance condition is shown to be modified by the atom interaction strength. In particular, the effective eigenfrequency is reduced for growing interaction in the mean-field regime. For a stronger interaction, the impact of the global parametric drive is determined by the numerically exact time-evolving block decimation scheme. When the trapped bosons in the lattice are in a Mott insulating state, the absorption of energy from the driving field is suppressed due to the strongly reduced local compressibility of the quantum many-body state. In particular, we find that the width of the local Mott region shows a breathing dynamics. Finally, we observe that the global modulation also induces an effective time-independent inhomogeneous hopping strength for the atoms.
NASA Astrophysics Data System (ADS)
Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.
2018-01-01
This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.
Neugebauer, Romain; Fireman, Bruce; Roy, Jason A; Raebel, Marsha A; Nichols, Gregory A; O'Connor, Patrick J
2013-08-01
Clinical trials are unlikely to ever be launched for many comparative effectiveness research (CER) questions. Inferences from hypothetical randomized trials may however be emulated with marginal structural modeling (MSM) using observational data, but success in adjusting for time-dependent confounding and selection bias typically relies on parametric modeling assumptions. If these assumptions are violated, inferences from MSM may be inaccurate. In this article, we motivate the application of a data-adaptive estimation approach called super learning (SL) to avoid reliance on arbitrary parametric assumptions in CER. Using the electronic health records data from adults with new-onset type 2 diabetes, we implemented MSM with inverse probability weighting (IPW) estimation to evaluate the effect of three oral antidiabetic therapies on the worsening of glomerular filtration rate. Inferences from IPW estimation were noticeably sensitive to the parametric assumptions about the associations between both the exposure and censoring processes and the main suspected source of confounding, that is, time-dependent measurements of hemoglobin A1c. SL was successfully implemented to harness flexible confounding and selection bias adjustment from existing machine learning algorithms. Erroneous IPW inference about clinical effectiveness because of arbitrary and incorrect modeling decisions may be avoided with SL. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.
2018-01-01
The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract, such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purpose we have developed a code that semianalytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in an optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations.
77 FR 55777 - Security Zones; Dignitary Arrival/Departure and United Nations Meetings, New York, NY
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... 1625-AA87 Security Zones; Dignitary Arrival/Departure and United Nations Meetings, New York, NY AGENCY... a permanent security zone on the waters of the East River and Bronx Kill, in the vicinity of... security zone on the East River, New York; and clarify the enforcement times and locations of the security...
Developmental Education in Utah: A Demographic Overview. Issue Brief No. 2017-6
ERIC Educational Resources Information Center
Curtin, Joseph A.; Hartley, Julie
2017-01-01
Students who arrive on campuses unprepared for college-level work find that it costs them potentially extra time and money to complete developmental courses they would not have needed had they arrived fully prepared in all subjects. Institutions of higher education face their own costs and capacity challenges when trying to teach students the…
Parametric versus Cox's model: an illustrative analysis of divorce in Canada.
Balakrishnan, T R; Rao, K V; Krotki, K J; Lapierre-adamcyk, E
1988-06-01
Recent demographic literature clearly recognizes the importance of survival modes in the analysis of cross-sectional event histories. Of the various survival models, Cox's (1972) partial parametric model has been very popular due to its simplicity, and readily available computer software for estimation, sometimes at the cost of precision and parsimony of the model. This paper focuses on parametric failure time models for event history analysis such as Weibell, lognormal, loglogistic, and exponential models. The authors also test the goodness of fit of these parametric models versus the Cox's proportional hazards model taking Kaplan-Meier estimate as base. As an illustration, the authors reanalyze the Canadian Fertility Survey data on 1st marriage dissolution with parametric models. Though these parametric model estimates were not very different from each other, there seemed to be a slightly better fit with loglogistic. When 8 covariates were used in the analysis, it was found that the coefficients were similar in the models, and the overall conclusions about the relative risks would not have been different. The findings reveal that in marriage dissolution, the differences according to demographic and socioeconomic characteristics may be far more important than is generally found in many studies. Therefore, one should not treat the population as homogeneous in analyzing survival probabilities of marriages, other than for cursory analysis of overall trends.
A New Tool for CME Arrival Time Prediction using Machine Learning Algorithms: CAT-PUMA
NASA Astrophysics Data System (ADS)
Liu, Jiajia; Ye, Yudong; Shen, Chenglong; Wang, Yuming; Erdélyi, Robert
2018-03-01
Coronal mass ejections (CMEs) are arguably the most violent eruptions in the solar system. CMEs can cause severe disturbances in interplanetary space and can even affect human activities in many aspects, causing damage to infrastructure and loss of revenue. Fast and accurate prediction of CME arrival time is vital to minimize the disruption that CMEs may cause when interacting with geospace. In this paper, we propose a new approach for partial-/full halo CME Arrival Time Prediction Using Machine learning Algorithms (CAT-PUMA). Via detailed analysis of the CME features and solar-wind parameters, we build a prediction engine taking advantage of 182 previously observed geo-effective partial-/full halo CMEs and using algorithms of the Support Vector Machine. We demonstrate that CAT-PUMA is accurate and fast. In particular, predictions made after applying CAT-PUMA to a test set unknown to the engine show a mean absolute prediction error of ∼5.9 hr within the CME arrival time, with 54% of the predictions having absolute errors less than 5.9 hr. Comparisons with other models reveal that CAT-PUMA has a more accurate prediction for 77% of the events investigated that can be carried out very quickly, i.e., within minutes of providing the necessary input parameters of a CME. A practical guide containing the CAT-PUMA engine and the source code of two examples are available in the Appendix, allowing the community to perform their own applications for prediction using CAT-PUMA.
Seismic Observations of the Mid-Pacific Large Low Shear Velocity Province
NASA Astrophysics Data System (ADS)
Chan, A.; Helmberger, D. V.; Sun, D.; Li, D.; Jackson, J. M.
2015-12-01
Seismic data from earthquakes originating in the Fiji-Tonga region exhibits waveform complexity of a number of phases which may be attributed to various structures along ray paths to stations of USArray, including anomalous structures at the core-mantle boundary. The data shows variation in multipathing, that is, the presence of secondary arrivals following the S phase at diffracted distances (Sdiff) which suggests that the waveform complexity is due to structures at the eastern edge of the mid-Pacific Large Low Shear Velocity Province (LLSVP). This study examines data from earthquake events while the Transportable Array portion of USArray was situated in the midwest United States, reinforcing previous studies that indicate late arrivals occurring as long as 26 seconds after the primary arrivals (To et al., 2011). Using earth flattening transformations and finite difference methods, simulations of tapered wedge structures of low velocity material allow for wave energy trapping, producing the observed waveform complexity and delayed arrivals at large distances, with such structures having characteristic properties of, for example, a height of 70 km, in-plane extent more than 1000 km, and shear wave velocity drop of 3% at the top to 15% at the bottom relative to PREM. Differential arrival times for SH and SV components suggest anisotropy and possible wave propagation through downgoing slabs beneath the source region. The arrivals of the SPdKS phase further support the presence of an ultra-low velocity zone (ULVZ) within a two-humped LLSVP. Some systematic delays in arrival times of multiple phases for distances less than 102º are accounted for and attributed to the presence of a mantle slab underneath the continental United States. Comparisons to seismic data from earthquakes originating from other locations further constrain depths of the deep mantle structures. Possible explanations include iron-enrichment of deep mantle phases.
Benefits Assessment for Tactical Runway Configuration Management Tool
NASA Technical Reports Server (NTRS)
Oseguera-Lohr, Rosa; Phojanamongkolkij, Nipa; Lohr, Gary; Fenbert, James W.
2013-01-01
The Tactical Runway Configuration Management (TRCM) software tool was developed to provide air traffic flow managers and supervisors with recommendations for airport configuration changes and runway usage. The objective for this study is to conduct a benefits assessment at Memphis (MEM), Dallas Fort-Worth (DFW) and New York's John F. Kennedy (JFK) airports using the TRCM tool. Results from simulations using the TRCM-generated runway configuration schedule are compared with results using historical schedules. For the 12 days of data used in this analysis, the transit time (arrival fix to spot on airport movement area for arrivals, or spot to departure fix for departures) for MEM departures is greater (7%) than for arrivals (3%); for JFK, there is a benefit for arrivals (9%) but not for departures (-2%); for DFW, arrivals show a slight benefit (1%), but this is offset by departures (-2%). Departure queue length benefits show fewer aircraft in queue for JFK (29%) and MEM (11%), but not for DFW (-13%). Fuel savings for surface operations at MEM are seen for both arrivals and departures. At JFK there are fuel savings for arrivals, but these are offset by increased fuel use for departures. In this study, no surface fuel benefits resulted for DFW. Results suggest that the TRCM algorithm requires modifications for complex surface traffic operations that can cause taxi delays. For all three airports, the average number of changes in flow direction (runway configuration) recommended by TRCM was many times greater than the historical data; TRCM would need to be adapted to a particular airport's needs, to limit the number of changes to acceptable levels. The results from this analysis indicate the TRCM tool can provide benefits at some high-capacity airports. The magnitude of these benefits depends on many airport-specific factors and would require adaptation of the TRCM tool; a detailed assessment is needed prior to determining suitability for a particular airport.
NASA Astrophysics Data System (ADS)
Mays, M. L.; Thompson, B. J.; Jian, L.; Evans, R. M.; Savani, N.; Odstrcil, D.; Nieves-Chinchilla, T.; Richardson, I. G.
2014-12-01
We present a case study of the 7 January 2014 event in order to highlight current challenges in space weather forecasting of CME arrival time and geomagnetic storm strength. On 7 January 2014 an X1.2 flare and CME with a radial speed ~2400 km/s was observed from active region 11943. The flaring region was only ten degrees southwest of disk center with extensive dimming south of the active region and preliminary analysis indicated a fairly rapid arrival at Earth (~36 hours). Of the eleven forecasting groups world-wide who participated in CCMC's Space Weather Scoreboard (http://kauai.ccmc.gsfc.nasa.gov/SWScoreBoard), nine predicted early arrivals and six predicted dramatic geomagnetic storm impacts (Kp predictions ranged from 6 to 9). However, the CME only had a glancing blow arrival at Earth - Kp did not rise above 3 and there was no geomagnetic storm. What happened? One idea is that the large coronal hole to the northeast of the active region could have deflected the CME. This coronal hole produced a high speed stream near Earth reaching an uncommon speed of 900 km/s four days after the observed CME arrival. However, no clear CME deflection was observed in the outer coronagraph fields of view (~5-20Rs) where CME measurements are derived to initiate models, therefore deflection seems unlikely. Another idea is the effect of the CME flux rope orientation with respect to Earth orbit. We show that using elliptical major and minor axis widths obtained by GCS fitting for the initial CME parameters in ENLIL would have improved the forecast to better reflect the observed glancing blow in-situ signature. We also explore the WSA-ENLIL+Cone simulations, the background solar wind solution, and compare with the observed CME arrival at Venus (from Venus Express) and Earth.
Anchorage Arrival Scheduling Under Off-Nominal Weather Conditions
NASA Technical Reports Server (NTRS)
Grabbe, Shon; Chan, William N.; Mukherjee, Avijit
2012-01-01
Weather can cause flight diversions, passenger delays, additional fuel consumption and schedule disruptions at any high volume airport. The impacts are particularly acute at the Ted Stevens Anchorage International Airport in Anchorage, Alaska due to its importance as a major international portal. To minimize the impacts due to weather, a multi-stage scheduling process is employed that is iteratively executed, as updated aircraft demand and/or airport capacity data become available. The strategic scheduling algorithm assigns speed adjustments for flights that originate outside of Anchorage Center to achieve the proper demand and capacity balance. Similarly, an internal departure-scheduling algorithm assigns ground holds for pre-departure flights that originate from within Anchorage Center. Tactical flight controls in the form of airborne holding are employed to reactively account for system uncertainties. Real-world scenarios that were derived from the January 16, 2012 Anchorage visibility observations and the January 12, 2012 Anchorage arrival schedule were used to test the initial implementation of the scheduling algorithm in fast-time simulation experiments. Although over 90% of the flights in the scenarios arrived at Anchorage without requiring any delay, pre-departure scheduling was the dominant form of control for Anchorage arrivals. Additionally, tactical scheduling was used extensively in conjunction with the pre-departure scheduling to reactively compensate for uncertainties in the arrival demand. For long-haul flights, the strategic scheduling algorithm performed best when the scheduling horizon was greater than 1,000 nmi. With these long scheduling horizons, it was possible to absorb between ten and 12 minutes of delay through speed control alone. Unfortunately, the use of tactical scheduling, which resulted in airborne holding, was found to increase as the strategic scheduling horizon increased because of the additional uncertainty in the arrival times of the aircraft. Findings from these initial experiments indicate that it is possible to schedule arrivals into Anchorage with minimal delays under low-visibility conditions with less disruption to high-cost, international flights.
GIS Based System for Post-Earthquake Crisis Managment Using Cellular Network
NASA Astrophysics Data System (ADS)
Raeesi, M.; Sadeghi-Niaraki, A.
2013-09-01
Earthquakes are among the most destructive natural disasters. Earthquakes happen mainly near the edges of tectonic plates, but they may happen just about anywhere. Earthquakes cannot be predicted. Quick response after disasters, like earthquake, decreases loss of life and costs. Massive earthquakes often cause structures to collapse, trapping victims under dense rubble for long periods of time. After the earthquake and destroyed some areas, several teams are sent to find the location of the destroyed areas. The search and rescue phase usually is maintained for many days. Time reduction for surviving people is very important. A Geographical Information System (GIS) can be used for decreasing response time and management in critical situations. Position estimation in short period of time time is important. This paper proposes a GIS based system for post-earthquake disaster management solution. This system relies on several mobile positioning methods such as cell-ID and TA method, signal strength method, angel of arrival method, time of arrival method and time difference of arrival method. For quick positioning, the system can be helped by any person who has a mobile device. After positioning and specifying the critical points, the points are sent to a central site for managing the procedure of quick response for helping. This solution establishes a quick way to manage the post-earthquake crisis.
A general framework for parametric survival analysis.
Crowther, Michael J; Lambert, Paul C
2014-12-30
Parametric survival models are being increasingly used as an alternative to the Cox model in biomedical research. Through direct modelling of the baseline hazard function, we can gain greater understanding of the risk profile of patients over time, obtaining absolute measures of risk. Commonly used parametric survival models, such as the Weibull, make restrictive assumptions of the baseline hazard function, such as monotonicity, which is often violated in clinical datasets. In this article, we extend the general framework of parametric survival models proposed by Crowther and Lambert (Journal of Statistical Software 53:12, 2013), to incorporate relative survival, and robust and cluster robust standard errors. We describe the general framework through three applications to clinical datasets, in particular, illustrating the use of restricted cubic splines, modelled on the log hazard scale, to provide a highly flexible survival modelling framework. Through the use of restricted cubic splines, we can derive the cumulative hazard function analytically beyond the boundary knots, resulting in a combined analytic/numerical approach, which substantially improves the estimation process compared with only using numerical integration. User-friendly Stata software is provided, which significantly extends parametric survival models available in standard software. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Wallace, Dolores R.
2003-01-01
In FY01 we learned that hardware reliability models need substantial changes to account for differences in software, thus making software reliability measurements more effective, accurate, and easier to apply. These reliability models are generally based on familiar distributions or parametric methods. An obvious question is 'What new statistical and probability models can be developed using non-parametric and distribution-free methods instead of the traditional parametric method?" Two approaches to software reliability engineering appear somewhat promising. The first study, begin in FY01, is based in hardware reliability, a very well established science that has many aspects that can be applied to software. This research effort has investigated mathematical aspects of hardware reliability and has identified those applicable to software. Currently the research effort is applying and testing these approaches to software reliability measurement, These parametric models require much project data that may be difficult to apply and interpret. Projects at GSFC are often complex in both technology and schedules. Assessing and estimating reliability of the final system is extremely difficult when various subsystems are tested and completed long before others. Parametric and distribution free techniques may offer a new and accurate way of modeling failure time and other project data to provide earlier and more accurate estimates of system reliability.
Parametric-Studies and Data-Plotting Modules for the SOAP
NASA Technical Reports Server (NTRS)
2008-01-01
"Parametric Studies" and "Data Table Plot View" are the names of software modules in the Satellite Orbit Analysis Program (SOAP). Parametric Studies enables parameterization of as many as three satellite or ground-station attributes across a range of values and computes the average, minimum, and maximum of a specified metric, the revisit time, or 21 other functions at each point in the parameter space. This computation produces a one-, two-, or three-dimensional table of data representing statistical results across the parameter space. Inasmuch as the output of a parametric study in three dimensions can be a very large data set, visualization is a paramount means of discovering trends in the data (see figure). Data Table Plot View enables visualization of the data table created by Parametric Studies or by another data source: this module quickly generates a display of the data in the form of a rotatable three-dimensional-appearing plot, making it unnecessary to load the SOAP output data into a separate plotting program. The rotatable three-dimensionalappearing plot makes it easy to determine which points in the parameter space are most desirable. Both modules provide intuitive user interfaces for ease of use.
Experimental Infrasound Studies in Nevada
NASA Astrophysics Data System (ADS)
Herrin, E. T.; Negraru, P. T.; Golden, P.; Williams, A.
2009-12-01
An experimental propagation study was carried out in Nevada in June 2009 on Julian days 173-177. During this field experiment we deployed 16 single channel digital infrasound recorders to monitor the munitions disposal activities near Hawthorne, NV. The sensors were deployed in a single line and placed approximately 12 km apart at distances ranging from 2 to 177 km. A four element semi-permanent infrasound array named FNIAR was installed approximately 154 km north of the detonation site in line with the individual temporary recorders. Tropospheric arrivals were observed during all days of the experiment, but during day 176 the observed arrivals had very large amplitudes. A large signal was observed at 58 km from the detonation site with amplitude as large as 4 Pascals, while at 94 km no signal was observed. At FNIAR the amplitude of the tropospheric arrival was 1 Pascal. During this day meteorological data acquired in the propagation path showed a strong jet stream to the north. On day 177 we were not able to identify tropospheric arrivals beyond 34 km, but at stations beyond 152 km we observed stratospheric arrivals. Continuous monitoring of these signals at FNIAR shows that stratospheric arrivals are the most numerous. In a two month period, from 06/15/2009 to 08/15/2009 there were 35 operational days at the Hawthorne disposal facility resulting in 212 explosions with known origin times. Based on the celerity values there were 115 explosions that have only stratospheric arrivals (celerities of 300-275 m/s), 72 explosions with both tropospheric (celerities above 330 m/s) and stratospheric arrivals, 20 explosions that were not detected and five explosions that have only tropospheric arrivals.
When, not if: The inescapability of an uncertain future
NASA Astrophysics Data System (ADS)
Lewandowsky, S.; Ballard, T.
2014-12-01
Uncertainty is an inherent feature of most scientific endeavours, and many political decisions must be made in the presence of scientific uncertainty. In the case of climate change, there is evidence that greater scientific uncertainty increases the risk associated with the impact of climate change. Scientific uncertainty thus provides an impetus for cutting emissions rather than delaying action. In contrast to those normative considerations, uncertainty is frequently cited in political and public discourse as a reason to delay mitigation. We examine ways in which this gap between public and scientific understanding of uncertainty can be bridged. In particular, we sought ways to communicate uncertainty in a way that better calibrates people's risk perceptions with the projected impact of climate change. We report two behavioural experiments in which uncertainty about the future was expressed either as outcome uncertainty or temporal uncertainty. The conventional presentation of uncertainty involves uncertainty about an outcome at a given time—for example, the range of possible sea level rise (say 50cm +/- 20cm) by a certain date. An alternative presentation of the same situation presents a certain outcome ("sea levels will rise by 50cm") but places the uncertainty into the time of arrival ("this may occur as early as 2040 or as late as 2080"). We presented participants with a series of statements and graphs indicating projected increases in temperature, sea levels, ocean acidification, and a decrease in artic sea ice. In the uncertain magnitude condition, the statements and graphs reported the upper and lower confidence bounds of the projected magnitude and the mean projected time of arrival. In the uncertain time of arrival condition, they reported the upper and lower confidence bounds of the projected time of arrival and the mean projected magnitude. The results show that when uncertainty was presented as uncertain time of arrival rather than an uncertain outcome, people expressed greater concern about the projected outcomes. In a further experiment involving repeated "games" with a simulated economy, we similarly showed that people allocate more resources to mitigation if there is uncertainty about the timing of an adverse event rather than about the magnitude of its impact.
Testing ElEvoHI on a multi-point in situ detected Coronal Mass Ejection
NASA Astrophysics Data System (ADS)
Amerstorfer, Tanja; Möstl, Christian; Hess, Phillip; Mays, M. Leila; Temmer, Manuela
2017-04-01
The Solar TErrestrial RElations Observatory (STEREO) has provided us a deep insight into the interplanetary propagation of coronal mass ejections (CMEs). Especially the wide-angle heliospheric imagers (HI) enabled the development of a multitude of methods for analyzing the evolution of CMEs through interplanetary (IP) space. Methods able to forecast arrival times and speeds at Earth (or other targets) use the advantage of following a CME's path of propagation up to 1 AU. However, these methods were not able to reduce today's errors in arrival time forecasts to less than ±6 hours, arrival speeds are mostly overestimated by some 100 km s-1. One reason for that is the assumption of constant propagation speed, which is clearly incorrect for most CMEs—especially for those being faster than the ambient solar wind. ElEvoHI, the Ellipse Evolution model (ElEvo) based on HI observations, is a new prediction tool, which uses the benefits of different methods and observations. It provides the possibility to adjust the CME frontal shape (angular width, ellipse aspect ratio) and the direction of motion for each CME event individually. This information can be gained from Graduated Cylindrical Shell (GCS) flux-rope fitting within coronagraph images. Using the Ellipse Conversion (ElCon) method, the observed HI elongation angle is converted into a unit of distance, which reveals the kinematics of the event. After fitting the time-distance profile of the CME using the drag-based equation of motion, where real-time in situ solar wind speed from 1 AU is used as additional input, we receive all input parameters needed to run a forecast using the ElEvo model and to predict arrival times and speeds at any target of interest in IP space. Here, we present a test on a slow CME event of 3 November 2010, in situ detected by the lined-up spacecraft MESSENGER and STEREO Behind. We gain the shape of the CME front from a cut of the 3D GCS CME shape with the ecliptic plane, resulting in an almost ideal ElEvoHI forecast of arrival time and speed at 1 AU.
Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation
NASA Astrophysics Data System (ADS)
Zhang, Chi; Xu, Jianbing; Chui, P. C.; Wong, Kenneth K. Y.
2013-06-01
Real-time optical spectrum analysis is an essential tool in observing ultrafast phenomena, such as the dynamic monitoring of spectrum evolution. However, conventional method such as optical spectrum analyzers disperse the spectrum in space and allocate it in time sequence by mechanical rotation of a grating, so are incapable of operating at high speed. A more recent method all-optically stretches the spectrum in time domain, but is limited by the allowable input condition. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a frame rate as high as 100 MHz and accommodates various input conditions. As a proof of concept and also for the first time, we verify its applications in observing the dynamic spectrum of a Fourier domain mode-locked laser, and the spectrum evolution of a laser cavity during its stabilizing process.
Lee, James S; Franc, Jeffrey M
2015-08-01
A high influx of patients during a mass-casualty incident (MCI) may disrupt patient flow in an already overcrowded emergency department (ED) that is functioning beyond its operating capacity. This pilot study examined the impact of a two-step ED triage model using Simple Triage and Rapid Treatment (START) for pre-triage, followed by triage with the Canadian Triage and Acuity Scale (CTAS), on patient flow during a MCI simulation exercise. Hypothesis/Problem It was hypothesized that there would be no difference in time intervals nor patient volumes at each patient-flow milestone. Physicians and nurses participated in a computer-based tabletop disaster simulation exercise. Physicians were randomized into the intervention group using START, then CTAS, or the control group using START alone. Patient-flow milestones including time intervals and patient volumes from ED arrival to triage, ED arrival to bed assignment, ED arrival to physician assessment, and ED arrival to disposition decision were compared. Triage accuracy was compared for secondary purposes. There were no significant differences in the time interval from ED arrival to triage (mean difference 108 seconds; 95% CI, -353 to 596 seconds; P=1.0), ED arrival to bed assignment (mean difference 362 seconds; 95% CI, -1,269 to 545 seconds; P=1.0), ED arrival to physician assessment (mean difference 31 seconds; 95% CI, -1,104 to 348 seconds; P=0.92), and ED arrival to disposition decision (mean difference 175 seconds; 95% CI, -1,650 to 1,300 seconds; P=1.0) between the two groups. There were no significant differences in the volume of patients to be triaged (32% vs 34%; 95% CI for the difference -16% to 21%; P=1.0), assigned a bed (16% vs 21%; 95% CI for the difference -11% to 20%; P=1.0), assessed by a physician (20% vs 22%; 95% CI for the difference -14% to 19%; P=1.0), and with a disposition decision (20% vs 9%; 95% CI for the difference -25% to 4%; P=.34) between the two groups. The accuracy of triage was similar in both groups (57% vs 70%; 95% CI for the difference -15% to 41%; P=.46). Experienced triage nurses were able to apply CTAS effectively during a MCI simulation exercise. A two-step ED triage model using START, then CTAS, had similar patient flow and triage accuracy when compared to START alone.
Numerical simulation of a 100-ton ANFO detonation
NASA Astrophysics Data System (ADS)
Weber, P. W.; Millage, K. K.; Crepeau, J. E.; Happ, H. J.; Gitterman, Y.; Needham, C. E.
2015-03-01
This work describes the results from a US government-owned hydrocode (SHAMRC, Second-Order Hydrodynamic Automatic Mesh Refinement Code) that simulated an explosive detonation experiment with 100,000 kg of Ammonium Nitrate-Fuel Oil (ANFO) and 2,080 kg of Composition B (CompB). The explosive surface charge was nearly hemispherical and detonated in desert terrain. Two-dimensional axisymmetric (2D) and three-dimensional (3D) simulations were conducted, with the 3D model providing a more accurate representation of the experimental setup geometry. Both 2D and 3D simulations yielded overpressure and impulse waveforms that agreed qualitatively with experiment, including the capture of the secondary shock observed in the experiment. The 2D simulation predicted the primary shock arrival time correctly but secondary shock arrival time was early. The 2D-predicted impulse waveforms agreed very well with the experiment, especially at later calculation times, and prediction of the early part of the impulse waveform (associated with the initial peak) was better quantitatively for 2D compared to 3D. The 3D simulation also predicted the primary shock arrival time correctly, and secondary shock arrival times in 3D were closer to the experiment than in the 2D results. The 3D-predicted impulse waveform had better quantitative agreement than 2D for the later part of the impulse waveform. The results of this numerical study show that SHAMRC may be used reliably to predict phenomena associated with the 100-ton detonation. The ultimate fidelity of the simulations was limited by both computer time and memory. The results obtained provide good accuracy and indicate that the code is well suited to predicting the outcomes of explosive detonations.
Variations in population vulnerability to tectonic and landslide-related tsunami hazards in Alaska
Wood, Nathan J.; Peters, Jeff
2015-01-01
Effective tsunami risk reduction requires an understanding of how at-risk populations are specifically vulnerable to tsunami threats. Vulnerability assessments primarily have been based on single hazard zones, even though a coastal community may be threatened by multiple tsunami sources that vary locally in terms of inundation extents and wave arrival times. We use the Alaskan coastal communities of Cordova, Kodiak, Seward, Valdez, and Whittier (USA), as a case study to explore population vulnerability to multiple tsunami threats. We use anisotropic pedestrian evacuation models to assess variations in population exposure as a function of travel time out of hazard zones associated with tectonic and landslide-related tsunamis (based on scenarios similar to the 1964 M w9.2 Good Friday earthquake and tsunami disaster). Results demonstrate that there are thousands of residents, employees, and business customers in tsunami hazard zones associated with tectonically generated waves, but that at-risk individuals will likely have sufficient time to evacuate to high ground before waves are estimated to arrive 30–60 min after generation. Tsunami hazard zones associated with submarine landslides initiated by a subduction zone earthquake are smaller and contain fewer people, but many at-risk individuals may not have enough time to evacuate as waves are estimated to arrive in 1–2 min and evacuations may need to occur during earthquake ground shaking. For all hazard zones, employees and customers at businesses far outnumber residents at their homes and evacuation travel times are highest on docks and along waterfronts. Results suggest that population vulnerability studies related to tsunami hazards should recognize non-residential populations and differences in wave arrival times if emergency managers are to develop realistic preparedness and outreach efforts.
Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex.
Razak, Khaleel A
2013-01-01
Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.
NASA Astrophysics Data System (ADS)
Luo, B.; Bu, X.; Liu, S.; Gong, J.
2017-12-01
Coronal holes are sources of high-speed steams (HSS) of solar wind. When coronal holes appear at mid/low latitudes on the Sun, consequential HSSs may impact Earth and cause recurrent geospace environment disturbances, such as geomagnetic storms, relativistic electron enhancements at the geosynchronous orbit, and thermosphere density enhancements. Thus, it is of interests for space weather forecasters to predict when (arrival times), how long (time durations), and how severe (intensities) HSSs may impact Earth when they notice coronal holes on the sun and are anticipating their geoeffectiveness. In this study, relationship between coronal holes and high speed streams will be statistically investigated. Several coronal hole parameters, including passage times of solar central meridian, coronal hole longitudinal widths, intensities reflected by mean brightness, are derived using Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA) images for years 2011 to 2016. These parameters will be correlated with in-situ solar wind measurements measured at the L1 point by the ACE spacecraft, which can give some results that are useful for space weather forecaster in predicting the arrival times, durations, and intensities of coronal hole high-speed streams in about 3 days advance.
THE NANOGRAV NINE-YEAR DATA SET: EXCESS NOISE IN MILLISECOND PULSAR ARRIVAL TIMES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, M. T.; Jones, M. L.; McLaughlin, M. A.
Gravitational wave (GW) astronomy using a pulsar timing array requires high-quality millisecond pulsars (MSPs), correctable interstellar propagation delays, and high-precision measurements of pulse times of arrival. Here we identify noise in timing residuals that exceeds that predicted for arrival time estimation for MSPs observed by the North American Nanohertz Observatory for Gravitational Waves. We characterize the excess noise using variance and structure function analyses. We find that 26 out of 37 pulsars show inconsistencies with a white-noise-only model based on the short timescale analysis of each pulsar, and we demonstrate that the excess noise has a red power spectrum formore » 15 pulsars. We also decompose the excess noise into chromatic (radio-frequency-dependent) and achromatic components. Associating the achromatic red-noise component with spin noise and including additional power-spectrum-based estimates from the literature, we estimate a scaling law in terms of spin parameters (frequency and frequency derivative) and data-span length and compare it to the scaling law of Shannon and Cordes. We briefly discuss our results in terms of detection of GWs at nanohertz frequencies.« less
Stochastic Resonance and First Arrival Time for Excitable Systems
NASA Astrophysics Data System (ADS)
Duki, Solomon Fekade; Taye, Mesfin Asfaw
2018-04-01
We study the noise induced thermally activated barrier crossing of Brownian particles that hop in a piecewise linear potential. Using the exact analytic solutions and via numerical simulations not only we explore the dependence for the first passage time of a single particle but also we calculate the first arrival time for one particle out of N particles. The first arrival time decreases as the number of particles increases as expected. We then explore the thermally activated barrier crossing rate of the system in the presence of time varying signal. The dependence of signal to noise ratio SNR as well as the power amplification (η ) on model parameters is explored. η and SNR depict a pronounced peak at particular noise strength. In the presence of N particles, η is considerably amplified as N steps up showing the weak periodic signal plays a vital role in controlling the noise induced dynamics of the system. Moreover, for the sake of generality, the viscous friction γ is considered to decrease exponentially when the temperature T of the medium increases (γ =Be^{-A T} ) as proposed originally by Reynolds (Philos Trans R Soc Lond 177:157, 1886).
Stochastic Resonance and First Arrival Time for Excitable Systems
NASA Astrophysics Data System (ADS)
Duki, Solomon Fekade; Taye, Mesfin Asfaw
2018-06-01
We study the noise induced thermally activated barrier crossing of Brownian particles that hop in a piecewise linear potential. Using the exact analytic solutions and via numerical simulations not only we explore the dependence for the first passage time of a single particle but also we calculate the first arrival time for one particle out of N particles. The first arrival time decreases as the number of particles increases as expected. We then explore the thermally activated barrier crossing rate of the system in the presence of time varying signal. The dependence of signal to noise ratio SNR as well as the power amplification (η ) on model parameters is explored. η and SNR depict a pronounced peak at particular noise strength. In the presence of N particles, η is considerably amplified as N steps up showing the weak periodic signal plays a vital role in controlling the noise induced dynamics of the system. Moreover, for the sake of generality, the viscous friction γ is considered to decrease exponentially when the temperature T of the medium increases (γ =Be^{-A T}) as proposed originally by Reynolds (Philos Trans R Soc Lond 177:157, 1886).
Timler, Dariusz; Bogusiak, Katarzyna; Kasielska-Trojan, Anna; Neskoromna-Jędrzejczak, Aneta; Gałązkowski, Robert; Szarpak, Łukasz
2016-02-01
The aim of the study was to verify the effectiveness of short text messages (short message service, or SMS) as an additional notification tool in case of fire or a mass casualty incident in a hospital. A total of 2242 SMS text messages were sent to 59 hospital workers divided into 3 groups (n=21, n=19, n=19). Messages were sent from a Samsung GT-S8500 Wave cell phone and Orange Poland was chosen as the telecommunication provider. During a 3-month trial period, messages were sent between 3:35 PM and midnight with no regular pattern. Employees were asked to respond by telling how much time it would take them to reach the hospital in case of a mass casualty incident. The mean reaction time (SMS reply) was 36.41 minutes. The mean declared time of arrival to the hospital was 100.5 minutes. After excluding 10% of extreme values for declared arrival time, the mean arrival time was estimated as 38.35 minutes. Short text messages (SMS) can be considered an additional tool for notifying medical staff in case of a mass casualty incident.