Science.gov

Sample records for arsenic promotes centrosome

  1. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  2. Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis

    PubMed Central

    Sahota, Navdeep K.; Pelletier, Laurence; Morrison, Ciaran G.

    2015-01-01

    Nek5 is a poorly characterized member of the NIMA-related kinase family, other members of which play roles in cell cycle progression and primary cilia function. Here, we show that Nek5, similar to Nek2, localizes to the proximal ends of centrioles. Depletion of Nek5 or overexpression of kinase-inactive Nek5 caused unscheduled separation of centrosomes in interphase, a phenotype also observed upon overexpression of active Nek2. However, separated centrosomes that resulted from Nek5 depletion remained relatively close together, exhibited excess recruitment of the centrosome linker protein rootletin, and had reduced levels of Nek2. In addition, Nek5 depletion led to loss of PCM components, including γ-tubulin, pericentrin, and Cdk5Rap2, with centrosomes exhibiting reduced microtubule nucleation. Upon mitotic entry, Nek5-depleted cells inappropriately retained centrosome linker components and exhibited delayed centrosome separation and defective chromosome segregation. Hence, Nek5 is required for the loss of centrosome linker proteins and enhanced microtubule nucleation that lead to timely centrosome separation and bipolar spindle formation in mitosis. PMID:25963817

  3. Centrosome Amplification Is Sufficient to Promote Spontaneous Tumorigenesis in Mammals.

    PubMed

    Levine, Michelle S; Bakker, Bjorn; Boeckx, Bram; Moyett, Julia; Lu, James; Vitre, Benjamin; Spierings, Diana C; Lansdorp, Peter M; Cleveland, Don W; Lambrechts, Diether; Foijer, Floris; Holland, Andrew J

    2017-02-06

    Centrosome amplification is a common feature of human tumors, but whether this is a cause or a consequence of cancer remains unclear. Here, we test the consequence of centrosome amplification by creating mice in which centrosome number can be chronically increased in the absence of additional genetic defects. We show that increasing centrosome number elevated tumor initiation in a mouse model of intestinal neoplasia. Most importantly, we demonstrate that supernumerary centrosomes are sufficient to drive aneuploidy and the development of spontaneous tumors in multiple tissues. Tumors arising from centrosome amplification exhibit frequent mitotic errors and possess complex karyotypes, recapitulating a common feature of human cancer. Together, our data support a direct causal relationship among centrosome amplification, genomic instability, and tumor development.

  4. Dynein Transmits Polarized Actomyosin Cortical Flows to Promote Centrosome Separation.

    PubMed

    De Simone, Alessandro; Nédélec, François; Gönczy, Pierre

    2016-03-08

    The two centrosomes present at the onset of mitosis must separate in a timely and accurate fashion to ensure proper bipolar spindle assembly. The minus-end-directed motor dynein plays a pivotal role in centrosome separation, but the underlying mechanisms remain elusive, particularly regarding how dynein coordinates this process in space and time. We addressed these questions in the one-cell C. elegans embryo, using a combination of 3D time-lapse microscopy and computational modeling. Our analysis reveals that centrosome separation is powered by the joint action of dynein at the nuclear envelope and at the cell cortex. Strikingly, we demonstrate that dynein at the cell cortex acts as a force-transmitting device that harnesses polarized actomyosin cortical flows initiated by the centrosomes earlier in the cell cycle. This mechanism elegantly couples cell polarization with centrosome separation, thus ensuring faithful cell division.

  5. Phosphorylation of the centrosomal protein, Cep169, by Cdk1 promotes its dissociation from centrosomes in mitosis.

    PubMed

    Mori, Yusuke; Inoue, Yoko; Taniyama, Yuki; Tanaka, Sayori; Terada, Yasuhiko

    2015-12-25

    Cep169 is a centrosomal protein conserved among vertebrates. In our previous reports, we showed that mammalian Cep169 interacts and collaborates with CDK5RAP2 to regulate microtubule (MT) dynamics and stabilization. Although Cep169 is required for MT regulation, its precise cellular function remains largely elusive. Here we show that Cep169 associates with centrosomes during interphase, but dissociates from these structures from the onset of mitosis, although CDK5RAP2 (Cep215) is continuously located at the centrosomes throughout cell cycle. Interestingly, treatment with purvalanol A, a Cdk1 inhibitor, nearly completely blocked the dissociation of Cep169 from centrosomes during mitosis. In addition, mass spectrometry analyses identified 7 phosphorylated residues of Cep169 corresponding to consensus phosphorylation sequence for Cdk1. These data suggest that the dissociation of Cep169 from centrosomes is controlled by Cdk1/Cyclin B during mitosis, and that Cep169 might regulate MT dynamics of mitotic spindle.

  6. Ensconsin/Map7 promotes microtubule growth and centrosome separation in Drosophila neural stem cells

    PubMed Central

    Gallaud, Emmanuel; Caous, Renaud; Pascal, Aude; Bazile, Franck; Gagné, Jean-Philippe; Huet, Sébastien; Poirier, Guy G.; Chrétien, Denis; Richard-Parpaillon, Laurent

    2014-01-01

    The mitotic spindle is crucial to achieve segregation of sister chromatids. To identify new mitotic spindle assembly regulators, we isolated 855 microtubule-associated proteins (MAPs) from Drosophila melanogaster mitotic or interphasic embryos. Using RNAi, we screened 96 poorly characterized genes in the Drosophila central nervous system to establish their possible role during spindle assembly. We found that Ensconsin/MAP7 mutant neuroblasts display shorter metaphase spindles, a defect caused by a reduced microtubule polymerization rate and enhanced by centrosome ablation. In agreement with a direct effect in regulating spindle length, Ensconsin overexpression triggered an increase in spindle length in S2 cells, whereas purified Ensconsin stimulated microtubule polymerization in vitro. Interestingly, ensc-null mutant flies also display defective centrosome separation and positioning during interphase, a phenotype also detected in kinesin-1 mutants. Collectively, our results suggest that Ensconsin cooperates with its binding partner Kinesin-1 during interphase to trigger centrosome separation. In addition, Ensconsin promotes microtubule polymerization during mitosis to control spindle length independent of Kinesin-1. PMID:24687279

  7. Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication

    PubMed Central

    Yu, Zhixian; Mouillesseaux, Kevin P.; Kushner, Erich J.; Bautch, Victoria L.

    2016-01-01

    Approximately 30% of tumor endothelial cells have over-duplicated (>2) centrosomes, which may contribute to abnormal vessel function and drug resistance. Elevated levels of vascular endothelial growth factor A induce excess centrosomes in endothelial cells, but how other features of the tumor environment affect centrosome over-duplication is not known. To test this, we treated endothelial cells with tumor-derived factors, hypoxia, or reduced p53, and assessed centrosome numbers. We found that hypoxia and elevated levels of bone morphogenetic protein 2, 6 and 7 induced excess centrosomes in endothelial cells through BMPR1A and likely via SMAD signaling. In contrast, inflammatory mediators IL-8 and lipopolysaccharide did not induce excess centrosomes. Finally, down-regulation in endothelial cells of p53, a critical regulator of DNA damage and proliferation, caused centrosome over-duplication. Our findings suggest that some tumor-derived factors and genetic changes in endothelial cells contribute to excess centrosomes in tumor endothelial cells. PMID:27977771

  8. Differential Methylation of the Arsenic (III) Methyltransferase Promoter According to Arsenic Exposure

    PubMed Central

    Gribble, Matthew O.; Tang, Wan-yee; Shang, Yan; Pollak, Jonathan; Umans, Jason G.; Francesconi, Kevin A.; Goessler, Walter; Silbergeld, Ellen K.; Guallar, Eliseo; Cole, Shelley A.; Fallin, M. Daniele; Navas-Acien, Ana

    2013-01-01

    Inorganic arsenic is methylated in the body by arsenic (III) methyltransferase. Arsenic methylation is thought to play a role in arsenic-related epigenetic phenomena including aberrant DNA and histone methylation. However, it is unclear whether the promoter of the AS3MT gene, which codes for arsenic (III) methyltransferase, is differentially methylated as a function of arsenic exposure. In this study we evaluated AS3MT promoter methylation according to exposure, assessed by urinary arsenic excretion in a stratified random sample of 48 participants from the Strong Heart Study who had urine arsenic measured at baseline and DNA available from 1989–1991 and 1998–1999. For this study, all data are from the 1989–1991 visit. We measured AS3MT promoter methylation at its 48 CpG loci by bisulphite sequencing. We compared mean % methylation at each CpG locus by arsenic exposure group using linear regression adjusted for study centre, age and sex. A hypomethylated region in the AS3MT promoter was associated with higher arsenic exposure. In vitro, arsenic induced AS3MT promoter hypomethylation and it increased AS3MT expression in human peripheral blood mononuclear cells. These findings may suggest that arsenic exposure influences the epigenetic regulation of a major arsenic metabolism gene. PMID:24154821

  9. INF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells

    PubMed Central

    Andrés-Delgado, Laura; Antón, Olga M.; Bartolini, Francesca; Ruiz-Sáenz, Ana; Correas, Isabel; Gundersen, Gregg G.

    2012-01-01

    T cell antigen receptor–proximal signaling components, Rho-family GTPases, and formin proteins DIA1 and FMNL1 have been implicated in centrosome reorientation to the immunological synapse of T lymphocytes. However, the role of these molecules in the reorientation process is not yet defined. Here we find that a subset of microtubules became rapidly stabilized and that their α-tubulin subunit posttranslationally detyrosinated after engagement of the T cell receptor. Formation of stabilized, detyrosinated microtubules required the formin INF2, which was also found to be essential for centrosome reorientation, but it occurred independently of T cell receptor–induced massive tyrosine phosphorylation. The FH2 domain, which was mapped as the INF2 region involved in centrosome repositioning, was able to mediate the formation of stable, detyrosinated microtubules and to restore centrosome translocation in DIA1-, FMNL1-, Rac1-, and Cdc42-deficient cells. Further experiments indicated that microtubule stabilization was required for centrosome polarization. Our work identifies INF2 and stable, detyrosinated microtubules as central players in centrosome reorientation in T cells. PMID:22986496

  10. Centrosomal protein of 192 kDa (Cep192) promotes centrosome-driven spindle assembly by engaging in organelle-specific Aurora A activation

    PubMed Central

    Joukov, Vladimir; De Nicolo, Arcangela; Rodriguez, Alison; Walter, Johannes C.; Livingston, David M.

    2010-01-01

    Centrosomes are primary microtubule (MT)-organizing centers (MTOCs). During mitosis, they dramatically increase their size and MT-nucleating activity and participate in spindle assembly from spindle poles. These events require the serine/threonine kinase, Aurora A (AurA), and the centrosomal protein of 192 kDa (Cep192)/spindle defective 2 (Spd-2), but the underlying mechanism remains unclear. We have found that Cep192, unlike targeting protein for Xklp2 (TPX2), a known MT-localizing AurA activator, is an AurA cofactor in centrosome-driven spindle assembly. Cep192, through a direct interaction, targets AurA to mitotic centrosomes where the locally accumulating AurA forms homodimers or oligomers. The dimerization of endogenous AurA, in the presence of bound Cep192, triggers potent kinase activation that, in turn, drives MT assembly. Depletion of Cep192 or specific interference with AurA-Cep192 binding did not prevent AurA oligomerization on MTs but abrogated AurA recruitment to centrosomes and its activation by either sperm nuclei or anti-AurA antibody (αAurA)-induced dimerization. In these settings, MT assembly by both centrosomes and αAurA-coated beads was also abolished or severely compromised. Hence, Cep192 activates AurA by a mechanism different from that previously described for TPX2. The Cep192-mediated mechanism maximizes AurA activity at centrosomes and appears essential for the function of these organelles as MTOCs. PMID:21097701

  11. CEP63 deficiency promotes p53-dependent microcephaly and reveals a role for the centrosome in meiotic recombination.

    PubMed

    Marjanović, Marko; Sánchez-Huertas, Carlos; Terré, Berta; Gómez, Rocío; Scheel, Jan Frederik; Pacheco, Sarai; Knobel, Philip A; Martínez-Marchal, Ana; Aivio, Suvi; Palenzuela, Lluís; Wolfrum, Uwe; McKinnon, Peter J; Suja, José A; Roig, Ignasi; Costanzo, Vincenzo; Lüders, Jens; Stracker, Travis H

    2015-07-09

    CEP63 is a centrosomal protein that facilitates centriole duplication and is regulated by the DNA damage response. Mutations in CEP63 cause Seckel syndrome, a human disease characterized by microcephaly and dwarfism. Here we demonstrate that Cep63-deficient mice recapitulate Seckel syndrome pathology. The attrition of neural progenitor cells involves p53-dependent cell death, and brain size is rescued by the deletion of p53. Cell death is not the result of an aberrant DNA damage response but is triggered by centrosome-based mitotic errors. In addition, Cep63 loss severely impairs meiotic recombination, leading to profound male infertility. Cep63-deficient spermatocytes display numerical and structural centrosome aberrations, chromosome entanglements and defective telomere clustering, suggesting that a reduction in centrosome-mediated chromosome movements underlies recombination failure. Our results provide novel insight into the molecular pathology of microcephaly and establish a role for the centrosome in meiotic recombination.

  12. A p27Kip1 mutant that does not inhibit CDK activity promotes centrosome amplification and micronucleation.

    PubMed

    Sharma, S S; Ma, L; Bagui, T K; Forinash, K D; Pledger, W J

    2012-08-30

    Mitotic catastrophe occurs when cells enter mitosis with damaged DNA or excess centrosomes. Cells overexpressing the centrosome protein CP110 or depleted of cyclin F, which targets CP110 for destruction, have more than two centrosomes and undergo mitotic catastrophe. Our studies show centrosome reduplication and mitotic catastrophe in osteosarcoma cells inducibly expressing a p27Kip1 mutant (termed p27K) that binds cyclins but not cyclin-dependent kinases (CDKs). p27K inhibited cell proliferation but not CDK activity or cell cycle progression. It did not induce apoptosis; however, cells expressing p27K had more than two centrosomes and, indicative of mitotic catastrophe, irregularly shaped nuclei or multiple micronuclei. p27K interacted with cyclin F in vivo (as did endogenous p27Kip1) and displaced cyclin F from CP110. Depletion of CP110 rescued p27K-expressing cells from centrosome reduplication and mitotic catastrophe. Collectively, our data show that p27Kip1 can perturb mitosis and suggest that it does so by sequestering cyclin F, which prevents its interaction with and the subsequent degradation of CP110, ultimately resulting in centrosome reduplication, mitotic catastrophe and abrogation of cell proliferation.

  13. Preventing the degradation of mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells.

    PubMed

    Kasbek, Christopher; Yang, Ching-Hui; Yusof, Adlina Mohd; Chapman, Heather M; Winey, Mark; Fisk, Harold A

    2007-11-01

    Supernumerary centrosomes promote the assembly of abnormal mitotic spindles in many human tumors. In human cells, overexpression of the cyclin-dependent kinase (Cdk)2 partner cyclin A during a prolonged S phase produces extra centrosomes, called centrosome reduplication. Cdk2 activity protects the Mps1 protein kinase from proteasome-mediated degradation, and we demonstrate here that Mps1 mediates cyclin A-dependent centrosome reduplication. Overexpression of cyclin A or a brief proteasome inhibition increases the centrosomal levels of Mps1, whereas depletion of Cdk2 leads to the proteasome-dependent loss of Mps1 from centrosomes only. When a Cdk2 phosphorylation site within Mps1 (T468) is mutated to alanine, Mps1 cannot accumulate at centrosomes or participate in centrosome duplication. In contrast, phosphomimetic mutations at T468 or deletion of the region surrounding T468 prevent the proteasome-dependent removal of Mps1 from centrosomes in the absence of Cdk2 activity. Moreover, cyclin A-dependent centrosome reduplication requires Mps1, and these stabilizing Mps1 mutations cause centrosome reduplication, bypassing cyclin A. Together, our data demonstrate that the region surrounding T468 contains a motif that regulates the accumulation of Mps1 at centrosomes. We suggest that phosphorylation of T468 attenuates the degradation of Mps1 at centrosomes and that preventing this degradation is necessary and sufficient to cause centrosome reduplication in human cells.

  14. Arsenite promotes centrosome abnormalities under a p53 compromised status induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    SciTech Connect

    Liao, W.-T.; Yu, H.-S.; Lin Pinpin; Chang, Louis W.

    2010-02-15

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus an interaction between arsenite and cigarette smoking in lung carcinogenesis was suspected. In the present study, we investigated the interactions of a tobacco-specific carcinogen 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) and arsenite on lung cell transformation. BEAS-2B, an immortalized human lung epithelial cell line, was selected to test the centrosomal abnormalities and colony formation by NNK and arsenite. We found that NNK, alone, could enhance BEAS-2B cell growth at 1-5 muM. Under NNK exposure, arsenite was able to increase centrosomal abnormality as compared with NNK or arsenite treatment alone. NNK treatment could also reduce arsenite-induced G2/M cell cycle arrest and apoptosis, these cellular effects were found to be correlated with p53 dysfunction. Increased anchorage-independent growth (colony formation) of BEAS-2B cells cotreated with NNK and arsenite was also observed in soft agar. Our present investigation demonstrated that NNK could provide a p53 compromised status. Arsenite would act specifically on this p53 compromised status to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenite under tobacco-specific carcinogen co-exposure.

  15. Active promoters and insulators are marked by the centrosomal protein 190

    PubMed Central

    Bartkuhn, Marek; Straub, Tobias; Herold, Martin; Herrmann, Mareike; Rathke, Christina; Saumweber, Harald; Gilfillan, Gregor D; Becker, Peter B; Renkawitz, Rainer

    2009-01-01

    For the compact Drosophila genome, several factors mediating insulator function, such as su(Hw) and dCTCF, have been identified. Recent analyses showed that both these insulator-binding factors are functionally dependent on the same cofactor, CP190. Here we analysed genome-wide binding of CP190 and dCTCF. CP190 binding was detected at CTCF, su(Hw) and GAF sites and unexpectedly at the transcriptional start sites of actively transcribed genes. Both insulator and transcription start site CP190-binding elements are strictly marked by a depletion of histone H3 and, therefore, a loss of nucleosome occupancy. In addition, CP190/dCTCF double occupancy was seen at the borders of many H3K27me3 ‘islands'. As before, these sites were also depleted of H3. Loss of either dCTCF or CP190 causes an increase of H3 and H3K27 trimethylation at these sites. Thus, for both types of cis-regulatory elements, domain borders and promoters, the chromatin structure is dependent on CP190. PMID:19229299

  16. The Centrosome-Specific Phosphorylation of Cnn by Polo/Plk1 Drives Cnn Scaffold Assembly and Centrosome Maturation

    PubMed Central

    Conduit, Paul T.; Feng, Zhe; Richens, Jennifer H.; Baumbach, Janina; Wainman, Alan; Bakshi, Suruchi D.; Dobbelaere, Jeroen; Johnson, Steven; Lea, Susan M.; Raff, Jordan W.

    2014-01-01

    Summary Centrosomes are important cell organizers. They consist of a pair of centrioles surrounded by pericentriolar material (PCM) that expands dramatically during mitosis—a process termed centrosome maturation. How centrosomes mature remains mysterious. Here, we identify a domain in Drosophila Cnn that appears to be phosphorylated by Polo/Plk1 specifically at centrosomes during mitosis. The phosphorylation promotes the assembly of a Cnn scaffold around the centrioles that is in constant flux, with Cnn molecules recruited continuously around the centrioles as the scaffold spreads slowly outward. Mutations that block Cnn phosphorylation strongly inhibit scaffold assembly and centrosome maturation, whereas phosphomimicking mutations allow Cnn to multimerize in vitro and to spontaneously form cytoplasmic scaffolds in vivo that organize microtubules independently of centrosomes. We conclude that Polo/Plk1 initiates the phosphorylation-dependent assembly of a Cnn scaffold around centrioles that is essential for efficient centrosome maturation in flies. PMID:24656740

  17. Arsenic

    MedlinePlus

    ... and minerals. Arsenic compounds are used to preserve wood, as pesticides, and in some industries. Arsenic can ... Breathing sawdust or burning smoke from arsenic-treated wood Living in an area with high levels of ...

  18. A CEP215–HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer

    PubMed Central

    Chavali, Pavithra L.; Chandrasekaran, Gayathri; Barr, Alexis R.; Tátrai, Péter; Taylor, Chris; Papachristou, Evaggelia K.; Woods, C. Geoffrey; Chavali, Sreenivas; Gergely, Fanni

    2016-01-01

    Numerical centrosome aberrations underlie certain developmental abnormalities and may promote cancer. A cell maintains normal centrosome numbers by coupling centrosome duplication with segregation, which is achieved through sustained association of each centrosome with a mitotic spindle pole. Although the microcephaly- and primordial dwarfism-linked centrosomal protein CEP215 has been implicated in this process, the molecular mechanism responsible remains unclear. Here, using proteomic profiling, we identify the minus end-directed microtubule motor protein HSET as a direct binding partner of CEP215. Targeted deletion of the HSET-binding domain of CEP215 in vertebrate cells causes centrosome detachment and results in HSET depletion at centrosomes, a phenotype also observed in CEP215-deficient patient-derived cells. Moreover, in cancer cells with centrosome amplification, the CEP215–HSET complex promotes the clustering of extra centrosomes into pseudo-bipolar spindles, thereby ensuring viable cell division. Therefore, stabilization of the centrosome–spindle pole interface by the CEP215–HSET complex could promote survival of cancer cells containing supernumerary centrosomes. PMID:26987684

  19. Centrosome localization determines neuronal polarity.

    PubMed

    de Anda, Froylan Calderon; Pollarolo, Giulia; Da Silva, Jorge Santos; Camoletto, Paola G; Feiguin, Fabian; Dotti, Carlos G

    2005-08-04

    Neuronal polarization occurs shortly after mitosis. In neurons differentiating in vitro, axon formation follows the segregation of growth-promoting activities to only one of the multiple neurites that form after mitosis. It is unresolved whether such spatial restriction makes use of an intrinsic program, like during C. elegans embryo polarization, or is extrinsic and cue-mediated, as in migratory cells. Here we show that in hippocampal neurons in vitro, the axon consistently arises from the neurite that develops first after mitosis. Centrosomes, the Golgi apparatus and endosomes cluster together close to the area where the first neurite will form, which is in turn opposite from the plane of the last mitotic division. We show that the polarized activities of these organelles are necessary and sufficient for neuronal polarization: (1) polarized microtubule polymerization and membrane transport precedes first neurite formation, (2) neurons with more than one centrosome sprout more than one axon and (3) suppression of centrosome-mediated functions precludes polarization. We conclude that asymmetric centrosome-mediated dynamics in the early post-mitotic stage instruct neuronal polarity, implying that pre-mitotic mechanisms with a role in division orientation may in turn participate in this event.

  20. The centrosome is an actin-organizing center

    PubMed Central

    Farina, Francesca; Gaillard, Jérémie; Guérin, Christophe; Couté, Yohann; Sillibourne, James; Blanchoin, Laurent; Théry, Manuel

    2016-01-01

    Microtubules and actin filaments are the two main cytoskeleton networks supporting intracellular architecture and cell polarity. The centrosome nucleates and anchors microtubules and is therefore considered to be the main microtubule-organizing center. However, recurring, yet unexplained, observations have pointed towards a connection between the centrosome and actin filaments. Here we have used isolated centrosomes to demonstrate that the centrosome can directly promote actin filament assembly. A cloud of centrosome-associated actin filaments could be identified in living cells as well. Actin-filament nucleation at the centrosome was mediated by the nucleation promoting factor WASH in combination with the Arp2/3 complex. Pericentriolar material 1 (PCM1) appeared to modulate the centrosomal actin network by regulating Arp2/3 complex and WASH recruitment to the centrosome. Hence our results reveal an additional facet of the centrosome as an intracellular organizer and provide mechanistic insights into how the centrosome can function as an actin filament-organizing center. PMID:26655833

  1. Arsenic Biotransformation as a Cancer Promoting Factor by Inducing DNA Damage and Disruption of Repair Mechanisms

    PubMed Central

    Martinez, Victor D.; Vucic, Emily A.; Adonis, Marta; Gil, Lionel; Lam, Wan L.

    2011-01-01

    Chronic exposure to arsenic in drinking water poses a major global health concern. Populations exposed to high concentrations of arsenic-contaminated drinking water suffer serious health consequences, including alarming cancer incidence and death rates. Arsenic is biotransformed through sequential addition of methyl groups, acquired from s-adenosylmethionine (SAM). Metabolism of arsenic generates a variety of genotoxic and cytotoxic species, damaging DNA directly and indirectly, through the generation of reactive oxidative species and induction of DNA adducts, strand breaks and cross links, and inhibition of the DNA repair process itself. Since SAM is the methyl group donor used by DNA methyltransferases to maintain normal epigenetic patterns in all human cells, arsenic is also postulated to affect maintenance of normal DNA methylation patterns, chromatin structure, and genomic stability. The biological processes underlying the cancer promoting factors of arsenic metabolism, related to DNA damage and repair, will be discussed here. PMID:22091411

  2. DNA damage-induced centrosome amplification occurs via excessive formation of centriolar satellites.

    PubMed

    Löffler, H; Fechter, A; Liu, F Y; Poppelreuther, S; Krämer, A

    2013-06-13

    Centrosome amplification is a frequent phenomenon in malignancies and may facilitate tumorigenesis by promoting chromosomal instability. On the other hand, a centrosome inactivation checkpoint comprising centrosome amplification leading to elimination of cells by mitotic catastrophe has been described in response to DNA damage by ionizing radiation or cytostatic drugs. So far, the exact nature of DNA damage-induced centrosome amplification, which might be overduplication or fragmentation of existing centrosomes, has been controversial. To solve this controversy, we have established a method to distinguish between these two possibilities using A549 cells expressing photoconvertible CETN2-Dendra2. In response to various DNA-damaging treatments, centrosome amplification but not fragmentation was observed. Moreover, centrosome amplification was preceded by excessive formation of centrin-containing centriolar satellites, which were identified as de novo-generated atypical centrin dots staining positive for centriolar satellite markers but negative or only weakly positive for other established centrosomal markers, and which could be verified as centriolar satellites using immunogold electron microscopy. In line with this notion, disruption of dynein-mediated recruitment of centrosomal proteins via centriolar satellites suppressed centrosome amplification after DNA damage, and excessive formation of centriolar satellites could be inhibited by interference with Chk1, a known mediator of centrosome amplification in response to DNA damage. In conclusion, we provide a model in which a Chk1-mediated DNA damage checkpoint induces excessive formation of centriolar satellites constituting assembly platforms for centrosomal proteins, which subsequently leads to centrosome amplification.

  3. Arsenic

    MedlinePlus

    ... basis for regulation and standard setting worldwide. The current recommended limit of arsenic in drinking-water is 10 μg/litre, although this guideline value is designated as provisional because of measurement difficulties and the practical difficulties in removing arsenic ...

  4. Excess centrosomes perturb dynamic endothelial cell repolarization during blood vessel formation

    PubMed Central

    Kushner, Erich J.; Ferro, Luke S.; Yu, Zhixian; Bautch, Victoria L.

    2016-01-01

    Blood vessel formation requires dynamic movements of endothelial cells (ECs) within sprouts. The cytoskeleton regulates migratory polarity, and centrosomes organize the microtubule cytoskeleton. However, it is not well understood how excess centrosomes, commonly found in tumor stromal cells, affect microtubule dynamics and interphase cell polarity. Here we find that ECs dynamically repolarize during sprouting angiogenesis, and excess centrosomes block repolarization and reduce migration and sprouting. ECs with excess centrosomes initially had more centrosome-derived microtubules but, paradoxically, fewer steady-state microtubules. ECs with excess centrosomes had elevated Rac1 activity, and repolarization was rescued by blockade of Rac1 or actomyosin blockers, consistent with Rac1 activity promoting cortical retrograde actin flow and actomyosin contractility, which precludes cortical microtubule engagement necessary for dynamic repolarization. Thus normal centrosome numbers are required for dynamic repolarization and migration of sprouting ECs that contribute to blood vessel formation. PMID:27099371

  5. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism.

    PubMed

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N; Bibby, Kyle J; Stolz, Donna B; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L; Barchowsky, Aaron; Stolz, John F

    2015-12-15

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes.

  6. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism

    PubMed Central

    Dheer, Rishu; Patterson, Jena; Dudash, Mark; Stachler, Elyse N.; Bibby, Kyle J.; Stolz, Donna B.; Shiva, Sruti; Wang, Zeneng; Hazen, Stanley L.; Barchowsky, Aaron; Stolz, John F.

    2015-01-01

    Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogeneis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10 weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes. PMID:26529668

  7. Interaction between ROCK II and nucleophosmin/B23 in the regulation of centrosome duplication.

    PubMed

    Ma, Zhiyong; Kanai, Masayuki; Kawamura, Kenji; Kaibuchi, Kozo; Ye, Keqiang; Fukasawa, Kenji

    2006-12-01

    Nucleophosmin (NPM)/B23 has been implicated in the regulation of centrosome duplication. NPM/B23 localizes between two centrioles in the unduplicated centrosome. Upon phosphorylation on Thr(199) by cyclin-dependent kinase 2 (CDK2)/cyclin E, the majority of centrosomal NPM/B23 dissociates from centrosomes, but some NPM/B23 phosphorylated on Thr(199) remains at centrosomes. It has been shown that Thr(199) phosphorylation of NPM/B23 is critical for the physical separation of the paired centrioles, an initial event of the centrosome duplication process. Here, we identified ROCK II kinase, an effector of Rho small GTPase, as a protein that localizes to centrosomes and physically interacts with NPM/B23. Expression of the constitutively active form of ROCK II promotes centrosome duplication, while down-regulation of ROCK II expression results in the suppression of centrosome duplication, especially delaying the initiation of centrosome duplication during the cell cycle. Moreover, ROCK II regulates centrosome duplication in its kinase and centrosome localization activity-dependent manner. We further found that ROCK II kinase activity is significantly enhanced by binding to NPM/B23 and that NPM/B23 acquires a higher binding affinity to ROCK II upon phosphorylation on Thr(199). Moreover, physical interaction between ROCK II and NPM/B23 in vivo occurs in association with CDK2/cyclin E activation and the emergence of Thr(199)-phosphorylated NPM/B23. All these findings point to ROCK II as the effector of the CDK2/cyclin E-NPM/B23 pathway in the regulation of centrosome duplication.

  8. Stimulatory Effects of Arsenic-Tolerant Soil Fungi on Plant Growth Promotion and Soil Properties

    PubMed Central

    Srivastava, Pankaj Kumar; Shenoy, Belle Damodara; Gupta, Manjul; Vaish, Aradhana; Mannan, Shivee; Singh, Nandita; Tewari, Shri Krishna; Tripathi, Rudra Deo

    2012-01-01

    Fifteen fungi were obtained from arsenic-contaminated agricultural fields in West Bengal, India and examined for their arsenic tolerance and removal ability in our previous study. Of these, the four best arsenic-remediating isolates were tested for plant growth promotion effects on rice and pea in the present study. A greenhouse-based pot experiment was conducted using soil inocula of individual fungi. The results indicated a significant (P<0.05) increase in plant growth and improvement of soil properties in inoculated soils compared to the control. A significant increase in plant growth was recorded in treated soils and varied from 16–293%. Soil chemical and enzymatic properties varied from 20–222% and 34–760%, respectively, in inoculated soil. Plants inoculated with inocula of Westerdykella and Trichoderma showed better stimulatory effects on plant growth and soil nutrient availability than Rhizopus and Lasiodiplodia. These fungi improved soil nutrient content and enhanced plant growth. These fungi may be used as bioinoculants for plant growth promotion and improved soil properties in arsenic-contaminated agricultural soils. PMID:23047145

  9. Arsenic-induced Aurora-A activation contributes to chromosome instability and tumorigenesis

    NASA Astrophysics Data System (ADS)

    Wu, Chin-Han; Tseng, Ya-Shih; Yang, Chao-Chun; Kao, Yu-Ting; Sheu, Hamm-Ming; Liu, Hsiao-Sheng

    2013-11-01

    Arsenic may cause serious environmental pollution and is a serious industrial problem. Depending on the dosage, arsenic may trigger the cells undergoing either proliferation or apoptosis-related cell death. Because of lack of the proper animal model to study arsenic induced tumorigenesis, the accurate risk level of arsenic exposure has not been determined. Arsenic shows genotoxic effect on human beings who uptake water contaminated by arsenic. Chromosome aberration is frequently detected in arsenic exposure-related diseases and is associated with increased oxidative stress and decreased DNA repairing activity, but the underlying mechanism remains elusive. Aurora-A is a mitotic kinase, over-expression of Aurora-A leads to centrosome amplification, chromosomal instability and cell transformation. We revealed that Aurora-A is over-expressed in the skin and bladder cancer patients from blackfoot-disease endemic areas. Our cell line studies reveal that arsenic exposure between 0.5 μM and 1 μM for 2-7 days are able to induce Aurora-A expression and activation based on promoter activity, RNA and protein analysis. Aurora-A overexpression further increases the frequency of unsymmetrical chromosome segregation through centrosome amplification followed by cell population accumulated at S phase in immortalized keratinocyte (HaCaT) and uroepithelial cells (E7). Furthermore, Aurora-A over-expression was sustained for 1-4 weeks by chronic treatment of immortalized bladder and skin cells with NaAsO2. Aurora-A promoter methylation and gene amplification was not detected in the long-term arsenic treated E7 cells. Furthermore, the expression level of E2F1 transcription factor (E2F1) is increased in the presence of arsenic, and arsenic-related Aurora-A over-expression is transcriptionally regulated by E2F1. We further demonstrated that overexpression of Aurora-A and mutant Ha-ras or Aurora-A and mutant p53 may act additively to trigger arsenic-related bladder and skin cancer

  10. ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics

    PubMed Central

    Stubenvoll, Michael D.; Medley, Jeffrey C.; Irwin, Miranda

    2016-01-01

    Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin), increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics. PMID:27689799

  11. Arsenic Promotes NF-Kb-Mediated Fibroblast Dysfunction and Matrix Remodeling to Impair Muscle Stem Cell Function

    PubMed Central

    Zhang, Changqing; Ferrari, Ricardo; Beezhold, Kevin; Stearns-Reider, Kristen; D’Amore, Antonio; Haschak, Martin; Stolz, Donna; Robbins, Paul D.; Barchowsky, Aaron; Ambrosio, Fabrisia

    2016-01-01

    Arsenic is a global health hazard that impacts over 140 million individuals worldwide. Epidemiological studies reveal prominent muscle dysfunction and mobility declines following arsenic exposure; yet, mechanisms underlying such declines are unknown. The objective of this study was to test the novel hypothesis that arsenic drives a maladaptive fibroblast phenotype to promote pathogenic myomatrix remodeling and compromise the muscle stem (satellite) cell (MuSC) niche. Mice were exposed to environmentally relevant levels of arsenic in drinking water before receiving a local muscle injury. Arsenic-exposed muscles displayed pathogenic matrix remodeling, defective myofiber regeneration and impaired functional recovery, relative to controls. When naïve human MuSCs were seeded onto three-dimensional decellularized muscle constructs derived from arsenic-exposed muscles, cells displayed an increased fibrogenic conversion and decreased myogenicity, compared with cells seeded onto control constructs. Consistent with myomatrix alterations, fibroblasts isolated from arsenic-exposed muscle displayed sustained expression of matrix remodeling genes, the majority of which were mediated by NF-κB. Inhibition of NF-κB during arsenic exposure preserved normal myofiber structure and functional recovery after injury, suggesting that NF-κB signaling serves as an important mechanism of action for the deleterious effects of arsenic on tissue healing. Taken together, the results from this study implicate myomatrix biophysical and/or biochemical characteristics as culprits in arsenic-induced MuSC dysfunction and impaired muscle regeneration. It is anticipated that these findings may aid in the development of strategies to prevent or revert the effects of arsenic on tissue healing and, more broadly, provide insight into the influence of the native myomatrix on stem cell behavior. PMID:26537186

  12. Arsenic promotes angiogenesis in vitro via a heme oxygenase-1-dependent mechanism

    SciTech Connect

    Meng Dan; Wang Xin; Chang Qingshan; Hitron, Andrew; Zhang Zhuo; Xu Mei; Chen Gang; Luo Jia; Jiang Binghua; Fang Jing; Shi Xianglin

    2010-05-01

    Angiogenesis and vessel remodeling are fundamental to the pathogenesis of a number of diseases caused by environmental arsenic exposure, including tumorigenesis and cardiovascular diseases. Arsenic (AsIII) has been shown to stimulate angiogenesis and vascular remodeling in vivo. However, the exact molecular mechanisms accounting for arsenic-induced angiogenesis are not clear. The present study investigates the role of heme oxygenase-1 (HO-1) in sodium arsenite-mediated angiogenesis in vitro. Transwell assay, three-dimensional Matrigel assay, RT-PCR, ELISA and immunoblotting were used to determine cell migration, vascular tube formation, mRNA and protein expression. Chromatin immunoprecipitation and luciferase assay were applied to examine the DNA binding with protein and HO-1 transcriptional activity. Here, we report that low concentrations of arsenite (0.1-1 muM) stimulated cell migration and vascular tube formation in human microvascular endothelial cells (HMVEC). Arsenite induced HO-1 mRNA and protein expression. Knock down of HO-1 expression decreased arsenite-induced VEGF expression, cell migration, and tube formation. We showed that arsenite promoted dissociation of Bach1 (a transcriptional repressor) from the HO-1 enhancers and increased Nrf2 binding to these elements. Site directed mutagenesis assay identified that Bach1 cysteine residues 557 and 574 were essential for the induction of HO-1 gene in response to arsenite. These findings demonstrate a role for HO-1 in arsenite-mediated angiogenesis in vitro.

  13. Loss of KLF14 triggers centrosome amplification and tumorigenesis

    PubMed Central

    Fan, Guangjian; Sun, Lianhui; Shan, Peipei; Zhang, Xianying; Huan, Jinliang; Zhang, Xiaohong; Li, Dali; Wang, Tingting; Wei, Tingting; Zhang, Xiaohong; Gu, Xiaoyang; Yao, Liangfang; Xuan, Yang; Hou, Zhaoyuan; Cui, Yongping; Cao, Liu; Li, Xiaotao; Zhang, Shengping; Wang, Chuangui

    2015-01-01

    Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer. PMID:26439168

  14. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L.

    PubMed

    Singh, Namrata; Marwa, Naina; Mishra, Shashank K; Mishra, Jyoti; Verma, Praveen C; Rathaur, Sushma; Singh, Nandita

    2016-03-01

    Arsenic (As), a toxic metalloid adversely affects plant growth in polluted areas. In the present study, we investigated the possibility of improving phytostablization of arsenic through application of new isolated strain Brevundimonas diminuta (NBRI012) in rice plant [Oryza sativa (L.) Var. Sarju 52] at two different concentrations [10ppm (low toxic) and 50ppm (high toxic)] of As. The plant growth promoting traits of bacterial strains revealed the inherent ability of siderophores, phosphate solubilisation, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production which may be associated with increased biomass, chlorophyll and MDA content of rice and thereby promoting plant growth. The study also revealed the As accumulation property of NBRI012 strain which could play an important role in As removal from contaminated soil. Furthermore, NBRI012 inoculation significantly restored the hampered root epidermal and cortical cell growth of rice plant and root hair elimination. Altogether our study highlights the multifarious role of B. diminuta in mediating stress tolerance and modulating translocation of As in edible part of rice plant.

  15. Meeting report - building a centrosome.

    PubMed

    Baffet, Alexandre D; Martin, Carol-Anne; Scarfone, Ilaria; Daly, Owen M; David, Ahuvit; Tibelius, Alexandra; Lattao, Ramona; Hussain, Muhammad S; Woodruff, Jeffrey B

    2013-08-01

    Located in the 16th century Wiston House in West Sussex, UK, the 'Building a Centrosome' Workshop was organised by The Company of Biologists and chaired by Fanni Gergely and David Glover (University of Cambridge). Held in March 2013, the Workshop gathered together many of the leaders in the field of centrosome biology, as well as postdocs and students who were given the opportunity to meet and interact with many of the scientists who inspired their early careers. The diverse range of speakers provided a multi-disciplinary forum for the exchange of ideas, and gave fresh impetus to tackling outstanding questions related to centrosome biology. Here, we provide an overview of the meeting and highlight the main themes that were discussed.

  16. Centrosome Positioning in 1D Cell Migration

    NASA Astrophysics Data System (ADS)

    Adlerz, Katrina; Aranda-Espinoza, Helim

    During cell migration, the positioning of the centrosome and nucleus define a cell's polarity. For a cell migrating on a two-dimensional substrate the centrosome is positioned in front of the nucleus. Under one-dimensional confinement, however, the centrosome is positioned behind the nucleus in 60% of cells. It is known that the centrosome is positioned by CDC42 and dynein for cells moving on a 2D substrate in a wound-healing assay. It is currently unknown, however, if this is also true for cells moving under 1D confinement, where the centrosome position is often reversed. Therefore, centrosome positioning was studied in cells migrating under 1D confinement, which mimics cells migrating through 3D matrices. 3 to 5 μm fibronectin lines were stamped onto a glass substrate and cells with fluorescently labeled nuclei and centrosomes migrated on the lines. Our results show that when a cell changes directions the centrosome position is maintained. That is, when the centrosome is between the nucleus and the cell's trailing edge and the cell changes direction, the centrosome will be translocated across the nucleus to the back of the cell again. A dynein inhibitor did have an influence on centrosome positioning in 1D migration and change of directions.

  17. Evidence of arsenic release promoted by disinfection by-products within drinking-water distribution systems.

    PubMed

    Andra, Syam S; Makris, Konstantinos C; Botsaris, George; Charisiadis, Pantelis; Kalyvas, Harris; Costa, Costas N

    2014-02-15

    Changes in disinfectant type could trigger a cascade of reactions releasing pipe-anchored metals/metalloids into finished water. However, the effect of pre-formed disinfection by-products on the release of sorbed contaminants (arsenic-As in particular) from drinking water distribution system pipe scales remains unexplored. A bench-scale study using a factorial experimental design was performed to evaluate the independent and interaction effects of trihalomethanes (TTHM) and haloacetic acids (HAA) on arsenic (As) release from either scales-only or scale-biofilm conglomerates (SBC) both anchored on asbestos/cement pipe coupons. A model biofilm (Pseudomonas aeruginosa) was allowed to grow on select pipe coupons prior experimentation. Either TTHM or HAA individual dosing did not promote As release from either scales only or SBC, detecting <6 μg AsL(-1) in finished water. In the case of scales-only coupons, the combination of the highest spike level of TTHM and HAA significantly (p<0.001) increased dissolved and total As concentrations to levels up to 16 and 95 μg L(-1), respectively. Similar treatments in the presence of biofilm (SBC) resulted in significant (p<0.001) increase in dissolved and total recoverable As up to 20 and 47 μg L(-1), respectively, exceeding the regulatory As limit. Whether or not, our laboratory-based results truly represent mechanisms operating in disinfected finished water in pipe networks remains to be investigated in the field.

  18. Centrosome number is controlled by a centrosome-intrinsic block to reduplication.

    PubMed

    Wong, Connie; Stearns, Tim

    2003-06-01

    The centrosome duplicates once in S phase. To determine whether there is a block in centrosome reduplication, we used a cell fusion assay to compare the duplication potential of unduplicated G1 centrosomes and recently duplicated G2 centrosomes. By fusing cells in different cell cycle stages, we found that G2 centrosomes were unable to reduplicate in a cellular environment that supports centrosome duplication. Furthermore, G2 cytoplasm did not inhibit centrosome duplication in fused cells, indicating that the block to reduplication is intrinsic to the centrosomes rather than the cytoplasm. To test the underlying mechanism, we created mononucleate G1 cells with two centrosomes by fusing cells with enucleated cytoplasts. Both centrosomes duplicated, indicating that the block is not controlled by centrosome:nucleus ratio. We also found that human primary cells have tight control over centrosome number during prolonged S-phase arrest and that this control is partially abrogated in transformed cells. This suggests a link between the control of centrosome duplication and maintenance of genomic stability.

  19. Evolutionary problems in centrosome and centriole biology.

    PubMed

    Ross, L; Normark, B B

    2015-05-01

    Centrosomes have been an enigma to evolutionary biologists. Either they have been the subject of ill-founded speculation or they have been ignored. Here, we highlight evolutionary paradoxes and problems of centrosome and centriole evolution and seek to understand them in the light of recent advances in centrosome biology. Most evolutionary accounts of centrosome evolution have been based on the hypothesis that centrosomes are replicators, independent of the nucleus and cytoplasm. It is now clear, however, that this hypothesis is not tenable. Instead, centrosomes are formed de novo each cell division, with the presence of an old centrosome regulating, but not essential for, the assembly of a new one. Centrosomes are the microtubule-organizing centres of cells. They can potentially affect sensory and motor characters (as the basal body of cilia), as well as the movements of chromosomes during cell division. This latter role does not seem essential, however, except in male meiosis, and the reasons for this remain unclear. Although the centrosome is absent in some taxa, when it is present, its structure is extraordinarily conserved: in most taxa across eukaryotes, it does not appear to evolve at all. And yet a few insect groups display spectacular hypertrophy of the centrioles. We discuss how this might relate to the unusual reproductive system found in these insects. Finally, we discuss why the fate of centrosomes in sperm and early embryos might differ between different groups of animals.

  20. Epithelial to mesenchymal transition in arsenic-transformed cells promotes angiogenesis through activating β-catenin–vascular endothelial growth factor pathway

    SciTech Connect

    Wang, Zhishan; Humphries, Brock; Xiao, Hua; Jiang, Yiguo; Yang, Chengfeng

    2013-08-15

    Arsenic exposure represents a major health concern increasing cancer risks, yet the mechanism of arsenic carcinogenesis has not been elucidated. We and others recently reported that cell malignant transformation by arsenic is accompanied by epithelial to mesenchymal transition (EMT). However, the role of EMT in arsenic carcinogenesis is not well understood. Although previous studies showed that short term exposure of endothelial cells to arsenic stimulated angiogenesis, it remains to be determined whether cells that were malignantly transformed by long term arsenic exposure have a pro-angiogenic effect. The objective of this study was to investigate the effect of arsenic-transformed human bronchial epithelial cells that underwent EMT on angiogenesis and the underlying mechanism. It was found that the conditioned medium from arsenic-transformed cells strongly stimulated tube formation by human umbilical vein endothelial cells (HUVECs). Moreover, enhanced angiogenesis was detected in mouse xenograft tumor tissues resulting from inoculation of arsenic-transformed cells. Mechanistic studies revealed that β-catenin was activated in arsenic-transformed cells up-regulating its target gene expression including angiogenic-stimulating vascular endothelial growth factor (VEGF). Stably expressing microRNA-200b in arsenic-transformed cells that reversed EMT inhibited β-catenin activation, decreased VEGF expression and reduced tube formation by HUVECs. SiRNA knockdown β-catenin decreased VEGF expression. Adding a VEGF neutralizing antibody into the conditioned medium from arsenic-transformed cells impaired tube formation by HUVECs. Reverse transcriptase-PCR analysis revealed that the mRNA levels of canonical Wnt ligands were not increased in arsenic-transformed cells. These findings suggest that EMT in arsenic-transformed cells promotes angiogenesis through activating β-catenin–VEGF pathway. - Highlights: • Arsenic-transformed cells that underwent EMT displayed a pro

  1. Exploring the evolutionary history of centrosomes

    PubMed Central

    Azimzadeh, Juliette

    2014-01-01

    The centrosome is the main organizer of the microtubule cytoskeleton in animals, higher fungi and several other eukaryotic lineages. Centrosomes are usually located at the centre of cell in tight association with the nuclear envelope and duplicate at each cell cycle. Despite a great structural diversity between the different types of centrosomes, they are functionally equivalent and share at least some of their molecular components. In this paper, we explore the evolutionary origin of the different centrosomes, in an attempt to understand whether they are derived from an ancestral centrosome or evolved independently from the motile apparatus of distinct flagellated ancestors. We then discuss the evolution of centrosome structure and function within the animal lineage. PMID:25047607

  2. The mammalian centrosome and its functional significance

    PubMed Central

    2008-01-01

    Primarily known for its role as major microtubule organizing center, the centrosome is increasingly being recognized for its functional significance in key cell cycle regulating events. We are now at the beginning of understanding the centrosome’s functional complexities and its major impact on directing complex interactions and signal transduction cascades important for cell cycle regulation. The centrosome orchestrates entry into mitosis, anaphase onset, cytokinesis, G1/S transition, and monitors DNA damage. Recently, the centrosome has also been recognized as major docking station where regulatory complexes accumulate including kinases and phosphatases as well as numerous other cell cycle regulators that utilize the centrosome as platform to coordinate multiple cell cycle-specific functions. Vesicles that are translocated along microtubules to and away from centrosomes may also carry enzymes or substrates that use centrosomes as main docking station. The centrosome’s role in various diseases has been recognized and a wealth of data has been accumulated linking dysfunctional centrosomes to cancer, Alstrom syndrome, various neurological disorders, and others. Centrosome abnormalities and dysfunctions have been associated with several types of infertility. The present review highlights the centrosome’s significant roles in cell cycle events in somatic and reproductive cells and discusses centrosome abnormalities and implications in disease. PMID:18437411

  3. Arsenic in private well water part 2 of 3: Who benefits the most from traditional testing promotion?

    PubMed

    Flanagan, Sara V; Spayd, Steven E; Procopio, Nicholas A; Chillrud, Steven N; Ross, James; Braman, Stuart; Zheng, Yan

    2016-08-15

    Arsenic, a toxic element naturally found in groundwater, is a public health concern for households drinking from wells. Private well water is not regulated to meet the federal drinking water arsenic Maximum Contaminant Level (MCL) of 10μg/L, or the more protective 5μg/L New Jersey (NJ) state MCL. In the absence of consistent private well regulation, public health efforts have relied on promoting testing in affected communities to various degrees of success. Few interventions publish results, and more often focus on the outcome of tested wells rather than who completed a test, and more importantly, who did not. Through our survey of randomly selected addresses (n=670) in 17 NJ towns we find higher rates of arsenic testing in areas with a history of testing promotion. However, we also see a stronger correlation of testing behavior with income and education in high promotion areas, suggesting that community engagement activities may be exacerbating socioeconomic status (SES) testing disparities. Well owners with a bachelor's degree had ten times greater odds of participating in our direct mail testing intervention than those with less education when tests cost $40. After all households (n=255) were offered free tests to overcome many of the usual testing barriers - awareness, convenience, and cost - only 47% participated and those who chose to return water samples were of higher income and education than those who did not. Our findings highlight that while efforts to promote and provide arsenic testing succeed in testing more wells, community testing interventions risk increasing SES disparities if those with more education and resources are more likely to take advantage of testing programs. Therefore, testing interventions can benefit by better targeting socially vulnerable populations in an effort to overcome SES-patterned self-selection when individuals are left alone with the responsibility of managing their drinking water quality.

  4. Centrosome loss in the evolution of planarians.

    PubMed

    Azimzadeh, Juliette; Wong, Mei Lie; Downhour, Diane Miller; Sánchez Alvarado, Alejandro; Marshall, Wallace F

    2012-01-27

    The centrosome, a cytoplasmic organelle formed by cylinder-shaped centrioles surrounded by a microtubule-organizing matrix, is a hallmark of animal cells. The centrosome is conserved and essential for the development of all animal species described so far. Here, we show that planarians, and possibly other flatworms, lack centrosomes. In planarians, centrioles are only assembled in terminally differentiating ciliated cells through the acentriolar pathway to trigger the assembly of cilia. We identified a large set of conserved proteins required for centriole assembly in animals and note centrosome protein families that are missing from the planarian genome. Our study uncovers the molecular architecture and evolution of the animal centrosome and emphasizes the plasticity of animal cell biology and development.

  5. The Centrosomal Linker and Microtubules Provide Dual Levels of Spatial Coordination of Centrosomes

    PubMed Central

    Panic, Marko; Hata, Shoji; Neuner, Annett; Schiebel, Elmar

    2015-01-01

    The centrosome is the principal microtubule organizing center in most animal cells. It consists of a pair of centrioles surrounded by pericentriolar material. The centrosome, like DNA, duplicates exactly once per cell cycle. During interphase duplicated centrosomes remain closely linked by a proteinaceous linker. This centrosomal linker is composed of rootletin filaments that are anchored to the centrioles via the protein C-Nap1. At the onset of mitosis the linker is dissolved by Nek2A kinase to support the formation of the bipolar mitotic spindle. The importance of the centrosomal linker for cell function during interphase awaits characterization. Here we assessed the phenotype of human RPE1 C-Nap1 knockout (KO) cells. The absence of the linker led to a modest increase in the average centrosome separation from 1 to 2.5 μm. This small impact on the degree of separation is indicative of a second level of spatial organization of centrosomes. Microtubule depolymerisation or stabilization in C-Nap1 KO cells dramatically increased the inter-centrosomal separation (> 8 μm). Thus, microtubules position centrosomes relatively close to one another in the absence of linker function. C-Nap1 KO cells had a Golgi organization defect with a two-fold expansion of the area occupied by the Golgi. When the centrosomes of C-Nap1 KO cells showed considerable separation, two spatially distinct Golgi stacks could be observed. Furthermore, migration of C-Nap1 KO cells was slower than their wild type RPE1 counterparts. These data show that the spatial organization of centrosomes is modulated by a combination of centrosomal cohesion and microtubule forces. Furthermore a modest increase in centrosome separation has major impact on Golgi organization and cell migration. PMID:26001056

  6. The Centrosome, a Multitalented Renaissance Organelle.

    PubMed

    Vertii, Anastassiia; Hehnly, Heidi; Doxsey, Stephen

    2016-12-01

    The centrosome acts as a microtubule-organizing center (MTOC) from the G1 to G2 phases of the cell cycle; it can mature into a spindle pole during mitosis and/or transition into a cilium by elongating microtubules (MTs) from the basal body on cell differentiation or cell cycle arrest. New studies hint that the centrosome functions in more than MT organization. For instance, it has recently been shown that a specific substructure of the centrosome-the mother centriole appendages-are required for the recycling of endosomes back to the plasma membrane. This alone could have important implications for a renaissance in our understanding of the development of primary cilia, endosome recycling, and the immune response. Here, we review newly identified roles for the centrosome in directing membrane traffic, the immunological synapse, and the stress response.

  7. The centrosome and its duplication cycle.

    PubMed

    Fu, Jingyan; Hagan, Iain M; Glover, David M

    2015-02-02

    The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease.

  8. The Centrosome and Its Duplication Cycle

    PubMed Central

    Fu, Jingyan; Hagan, Iain M.; Glover, David M.

    2015-01-01

    The centrosome was discovered in the late 19th century when mitosis was first described. Long recognized as a key organelle of the spindle pole, its core component, the centriole, was realized more than 50 or so years later also to comprise the basal body of the cilium. Here, we chart the more recent acquisition of a molecular understanding of centrosome structure and function. The strategies for gaining such knowledge were quickly developed in the yeasts to decipher the structure and function of their distinctive spindle pole bodies. Only within the past decade have studies with model eukaryotes and cultured cells brought a similar degree of sophistication to our understanding of the centrosome duplication cycle and the multiple roles of this organelle and its component parts in cell division and signaling. Now as we begin to understand these functions in the context of development, the way is being opened up for studies of the roles of centrosomes in human disease. PMID:25646378

  9. Promotion of well-switching to mitigate the current arsenic crisis in Bangladesh.

    PubMed Central

    Van Geen, Alexander; Ahsan, Habibul; Horneman, Allan H.; Dhar, Ratan K.; Zheng, Yan; Hussain, Iftikhhar; Ahmed, Kazi Matin; Gelman, Andrew; Stute, Martin; Simpson, H. James; Wallace, Sean; Small, Christopher; Parvez, Faruque; Slavkovich, Vesna; Loiacono, Nancy J.; Becker, Marck; Cheng, Zhongqi; Momotaj, Hassina; Shahnewaz, Mohammad; Seddique, Ashraf Ali; Graziano, Joseph H.

    2002-01-01

    OBJECTIVE: To survey tube wells and households in Araihazar upazila, Bangladesh, to set the stage for a long-term epidemiological study of the consequences of chronic arsenic exposure. METHODS: Water samples and household data were collected over a period of 4 months in 2000 from 4997 contiguous tube wells serving a population of 55000, the position of each well being determined to within +/- 30 m using Global Positioning System receivers. Arsenic concentrations were determined by graphite-furnace atomic-absorption spectrometry. In addition, groundwater samples collected every 2 weeks for an entire year from six tube wells were analysed for arsenic by high-resolution inductively coupled plasma-mass spectrometry. FINDINGS: Half of the wells surveyed in Araihazar had been installed in the previous 5 years; 94% were privately owned. Only about 48% of the surveyed wells supplied water with an arsenic content below 50 micro g/l, the current Bangladesh standard for drinking-water. Similar to other regions of Bangladesh and West Bengal, India, the distribution of arsenic in Araihazar is spatially highly variable (range: 5-860 micro g/l) and therefore difficult to predict. Because of this variability, however, close to 90% of the inhabitants live within 100 m of a safe well. Monitoring of six tube wells currently meeting the 50 micro g/l standard showed no indication of a seasonal cycle in arsenic concentrations coupled to the hydrological cycle. This suggests that well-switching is a viable option in Araihazar, at least for the short term. CONCLUSIONS: Well-switching should be more systematically encouraged in Araihazar and many other parts of Bangladesh and West Bengal, India. Social barriers to well-switching need to be better understood and, if possible, overcome. PMID:12378292

  10. The cyclin A centrosomal localization sequence recruits MCM5 and Orc1 to regulate centrosome reduplication.

    PubMed

    Ferguson, Rebecca L; Pascreau, Gaetan; Maller, James L

    2010-08-15

    Centrosomes are the major microtubule-organizing centers in animal cells and regulate formation of a bipolar mitotic spindle. Aberrant centrosome number causes chromosome mis-segregation, and has been implicated in genomic instability and tumor development. Previous studies have demonstrated a role for the DNA replication factors MCM5 and Orc1 in preventing centrosome reduplication. Cyclin A-Cdk2 localizes on centrosomes by means of a modular centrosomal localization sequence (CLS) that is distinct from that of cyclin E. Here, we show that cyclin A interacts with both MCM5 and Orc1 in a CLS-dependent but Cdk-independent manner. Although the MRAIL hydrophobic patch is contained within the cyclin A CLS, binding of both MCM5 and Orc1 to cyclin A does not require a wild-type hydrophobic patch. The same domain in MCM5 that mediates interaction with cyclin E also binds cyclin A, resulting in centrosomal localization of MCM5. Finally, unlike its function in DNA synthesis, MCM5-mediated inhibition of centrosome reduplication in S-phase-arrested CHO cells does not require binding to other MCM family members. These results suggest that cyclins E and A sequentially prevent centrosome reduplication throughout interphase by recruitment of DNA replication factors such as MCM5 and Orc1.

  11. Centrin 3 is an inhibitor of centrosomal Mps1 and antagonizes centrin 2 function

    PubMed Central

    Sawant, Dwitiya B.; Majumder, Shubhra; Perkins, Jennifer L.; Yang, Ching-Hui; Eyers, Patrick A.; Fisk, Harold A.

    2015-01-01

    Centrins are a family of small, calcium-binding proteins with diverse cellular functions that play an important role in centrosome biology. We previously identified centrin 2 and centrin 3 (Cetn2 and Cetn3) as substrates of the protein kinase Mps1. However, although Mps1 phosphorylation sites control the function of Cetn2 in centriole assembly and promote centriole overproduction, Cetn2 and Cetn3 are not functionally interchangeable, and we show here that Cetn3 is both a biochemical inhibitor of Mps1 catalytic activity and a biological inhibitor of centrosome duplication. In vitro, Cetn3 inhibits Mps1 autophosphorylation at Thr-676, a known site of T-loop autoactivation, and interferes with Mps1-dependent phosphorylation of Cetn2. The cellular overexpression of Cetn3 attenuates the incorporation of Cetn2 into centrioles and centrosome reduplication, whereas depletion of Cetn3 generates extra centrioles. Finally, overexpression of Cetn3 reduces Mps1 Thr-676 phosphorylation at centrosomes, and mimicking Mps1-dependent phosphorylation of Cetn2 bypasses the inhibitory effect of Cetn3, suggesting that the biological effects of Cetn3 are due to the inhibition of Mps1 function at centrosomes. PMID:26354417

  12. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes

    PubMed Central

    van Ree, Janine H.; Nam, Hyun-Ja; Jeganathan, Karthik B.; Kanakkanthara, Arun; van Deursen, Jan M.

    2016-01-01

    Phosphatase and tensin homologue (Pten) suppresses neoplastic growth by negatively regulating PI(3)K signalling through its phosphatase activity1. To gain insight into the actions of non-catalytic Pten domains in normal physiological processes and tumorigenesis2,3, we engineered mice lacking the PDZ-binding domain (PDZ-BD). Here, we show that the PDZ-BD regulates centrosome movement and that its heterozygous or homozygous deletion promotes aneuploidy and tumour formation. We found that Pten is recruited to pre-mitotic centrosomes in a Plk1-dependent fashion to create a docking site for protein complexes containing the PDZ-domain-containing protein Dlg1 (also known as Sap97) and Eg5 (also known as Kif11), a kinesin essential for centrosome movement and bipolar spindle formation4. Docking of Dlg1–Eg5 complexes to Pten depended on Eg5 phosphorylation by the Nek9–Nek6 mitotic kinase cascade and Cdk1. PDZ-BD deletion or Dlg1 ablation impaired loading of Eg5 onto centrosomes and spindle pole motility, yielding asymmetrical spindles that are prone to chromosome missegregation. Collectively, these data demonstrate that Pten, through the Dlg1-binding ability of its PDZ-BD, accumulates phosphorylated Eg5 at duplicated centrosomes to establish symmetrical bipolar spindles that properly segregate chromosomes, and suggest that this function contributes to tumour suppression. PMID:27240320

  13. TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning.

    PubMed

    Gonçalves, João; Nolasco, Sofia; Nascimento, Rute; Lopez Fanarraga, Mónica; Zabala, Juan Carlos; Soares, Helena

    2010-03-01

    In animal cells the centrosome is positioned at the cell centre in close association with the nucleus. The mechanisms responsible for this are not completely understood. Here, we report the first characterization of human TBCC-domain containing 1 (TBCCD1), a protein related to tubulin cofactor C. TBCCD1 localizes at the centrosome and at the spindle midzone, midbody and basal bodies of primary and motile cilia. Knockdown of TBCCD1 in RPE-1 cells caused the dissociation of the centrosome from the nucleus and disorganization of the Golgi apparatus. TBCCD1-depleted cells are larger, less efficient in primary cilia assembly and their migration is slower in wound-healing assays. However, the major microtubule-nucleating activity of the centrosome is not affected by TBCCD1 silencing. We propose that TBCCD1 is a key regulator of centrosome positioning and consequently of internal cell organization.

  14. TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning

    PubMed Central

    Gonçalves, João; Nolasco, Sofia; Nascimento, Rute; Fanarraga, Mónica Lopez; Zabala, Juan Carlos; Soares, Helena

    2010-01-01

    In animal cells the centrosome is positioned at the cell centre in close association with the nucleus. The mechanisms responsible for this are not completely understood. Here, we report the first characterization of human TBCC-domain containing 1 (TBCCD1), a protein related to tubulin cofactor C. TBCCD1 localizes at the centrosome and at the spindle midzone, midbody and basal bodies of primary and motile cilia. Knockdown of TBCCD1 in RPE-1 cells caused the dissociation of the centrosome from the nucleus and disorganization of the Golgi apparatus. TBCCD1-depleted cells are larger, less efficient in primary cilia assembly and their migration is slower in wound-healing assays. However, the major microtubule-nucleating activity of the centrosome is not affected by TBCCD1 silencing. We propose that TBCCD1 is a key regulator of centrosome positioning and consequently of internal cell organization. PMID:20168327

  15. CP91 is a component of the Dictyostelium centrosome involved in centrosome biogenesis.

    PubMed

    Putzler, Sascha; Meyer, Irene; Gräf, Ralph

    2016-01-01

    The Dictyostelium centrosome is a model for acentriolar centrosomes and it consists of a three-layered core structure surrounded by a corona harboring microtubule nucleation complexes. Its core structure duplicates once per cell cycle at the G2/M transition. Through proteomic analysis of isolated centrosomes we have identified CP91, a 91-kDa coiled coil protein that was localized at the centrosomal core structure. While GFP-CP91 showed almost no mobility in FRAP experiments during interphase, both GFP-CP91 and endogenous CP91 dissociated during mitosis and were absent from spindle poles from late prophase to anaphase. Since this behavior correlates with the disappearance of the central layer upon centrosome duplication, CP91 is a putative component of this layer. When expressed as GFP-fusions, CP91 fragments corresponding to the central coiled coil domain and the preceding N-terminal part (GFP-CP91cc and GFP-CP91N, respectively) also localized to the centrosome but did not show the mitotic redistribution of the full length protein suggesting a regulatory role of the C-terminal domain. Expression of all GFP-fusion proteins suppressed expression of endogenous CP91 and elicited supernumerary centrosomes. This was also very prominent upon depletion of CP91 by RNAi. Additionally, CP91-RNAi cells exhibited heavily increased ploidy due to severe defects in chromosome segregation along with increased cell size and defects in the abscission process during cytokinesis. Our results indicate that CP91 is a central centrosomal core component required for centrosomal integrity, proper centrosome biogenesis and, independently, for abscission during cytokinesis.

  16. Activation of maternal centrosomes in unfertilized sea urchin eggs

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Walter, M.; Biessmann, H.; Schatten, G.

    1992-01-01

    Centrosomes are undetectable in unfertilized sea urchin eggs, and normally the sperm introduces the cell's microtubule-organizing center (MTOC) at fertilization. However, artificial activation or parthenogenesis triggers microtubule assembly in the unfertilized egg, and this study explores the reappearance and behavior of the maternal centrosome. During activation with A23187 or ammonia, microtubules appear first at the cortex; centrosomal antigen is detected diffusely throughout the entire cytoplasm. Later, the centrosome becomes more distinct and organizes a radial microtubule shell, and eventually a compact centrosome at the egg center organizes a monaster. In these activated eggs, centrosomes undergo cycles of compaction and decompaction in synchrony with the chromatin, which also undergoes cycles of condensation and decondensation. Parthenogenetic activation with heavy water (50% D2O) or the microtubule-stabilizing drug taxol (10 microM) induces numerous centrosomal foci in the unfertilized sea urchin egg. Within 15 min after incubation in D2O, numerous fine centrosomal foci are detected, and they organize a connected network of numerous asters which fill the entire egg. Taxol induces over 100 centrosomal foci by 15 min after treatment, which organize a corresponding number of asters. The centrosomal material in either D2O- or taxol-treated eggs aggregates with time to form fewer but denser foci, resulting in fewer and larger asters. Fertilization of eggs pretreated with either D2O or taxol shows that the paternal centrosome is dominant over the maternal centrosome. The centrosomal material gradually becomes associated with the enlarged sperm aster. These experiments demonstrate that maternal centrosomal material is present in the unfertilized egg, likely as dispersed undetectable material, which can be activated without paternal contributions. At fertilization, paternal centrosomes become dominant over the maternal centrosomal material.

  17. The centrosome-Golgi apparatus nexus.

    PubMed

    Rios, Rosa M

    2014-09-05

    A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis-face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.

  18. The Seckel syndrome and centrosomal protein Ninein localizes asymmetrically to stem cell centrosomes but is not required for normal development, behavior, or DNA damage response in Drosophila

    PubMed Central

    Zheng, Yiming; Mennella, Vito; Marks, Steven; Wildonger, Jill; Elnagdi, Esraa; Agard, David; Megraw, Timothy L.

    2016-01-01

    Ninein (Nin) is a centrosomal protein whose gene is mutated in Seckel syndrome (SCKL, MIM 210600), an inherited recessive disease that results in primordial dwarfism, cognitive deficiencies, and increased sensitivity to genotoxic stress. Nin regulates neural stem cell self-renewal, interkinetic nuclear migration, and microtubule assembly in mammals. Nin is evolutionarily conserved, yet its role in cell division and development has not been investigated in a model organism. Here we characterize the single Nin orthologue in Drosophila. Drosophila Nin localizes to the periphery of the centrosome but not at centriolar structures as in mammals. However, Nin shares the property of its mammalian orthologue of promoting microtubule assembly. In neural and germline stem cells, Nin localizes asymmetrically to the younger (daughter) centrosome, yet it is not required for the asymmetric division of stem cells. In wing epithelia and muscle, Nin localizes to noncentrosomal microtubule-organizing centers. Surprisingly, loss of nin expression from a nin mutant does not significantly affect embryonic and brain development, fertility, or locomotor performance of mutant flies or their survival upon exposure to DNA-damaging agents. Although it is not essential, our data suggest that Nin plays a supportive role in centrosomal and extracentrosomal microtubule organization and asymmetric stem cell division. PMID:27053665

  19. The 14-3-3 protein Bmh1 functions in the spindle position checkpoint by breaking Bfa1 asymmetry at yeast centrosomes.

    PubMed

    Caydasi, Ayse Koca; Micoogullari, Yagmur; Kurtulmus, Bahtiyar; Palani, Saravanan; Pereira, Gislene

    2014-07-15

    In addition to their well-known role in microtubule organization, centrosomes function as signaling platforms and regulate cell cycle events. An important example of such a function is the spindle position checkpoint (SPOC) of budding yeast. SPOC is a surveillance mechanism that ensures alignment of the mitotic spindle along the cell polarity axis. Upon spindle misalignment, phosphorylation of the SPOC component Bfa1 by Kin4 kinase engages the SPOC by changing the centrosome localization of Bfa1 from asymmetric (one centrosome) to symmetric (both centrosomes). Here we show that, unexpectedly, Kin4 alone is unable to break Bfa1 asymmetry at yeast centrosomes. Instead, phosphorylation of Bfa1 by Kin4 creates a docking site on Bfa1 for the 14-3-3 family protein Bmh1, which in turn weakens Bfa1-centrosome association and promotes symmetric Bfa1 localization. Consistently, BMH1-null cells are SPOC deficient. Our work thus identifies Bmh1 as a new SPOC component and refines the molecular mechanism that breaks Bfa1 centrosome asymmetry upon SPOC activation.

  20. The 14-3-3 protein Bmh1 functions in the spindle position checkpoint by breaking Bfa1 asymmetry at yeast centrosomes

    PubMed Central

    Caydasi, Ayse Koca; Micoogullari, Yagmur; Kurtulmus, Bahtiyar; Palani, Saravanan; Pereira, Gislene

    2014-01-01

    In addition to their well-known role in microtubule organization, centrosomes function as signaling platforms and regulate cell cycle events. An important example of such a function is the spindle position checkpoint (SPOC) of budding yeast. SPOC is a surveillance mechanism that ensures alignment of the mitotic spindle along the cell polarity axis. Upon spindle misalignment, phosphorylation of the SPOC component Bfa1 by Kin4 kinase engages the SPOC by changing the centrosome localization of Bfa1 from asymmetric (one centrosome) to symmetric (both centrosomes). Here we show that, unexpectedly, Kin4 alone is unable to break Bfa1 asymmetry at yeast centrosomes. Instead, phosphorylation of Bfa1 by Kin4 creates a docking site on Bfa1 for the 14-3-3 family protein Bmh1, which in turn weakens Bfa1–centrosome association and promotes symmetric Bfa1 localization. Consistently, BMH1-null cells are SPOC deficient. Our work thus identifies Bmh1 as a new SPOC component and refines the molecular mechanism that breaks Bfa1 centrosome asymmetry upon SPOC activation. PMID:24850890

  1. Amplified centrosomes may underlie aggressive disease course in pancreatic ductal adenocarcinoma

    PubMed Central

    Mittal, Karuna; Ogden, Angela; Reid, Michelle D; Rida, Padmashree CG; Varambally, Sooryanarayana; Aneja, Ritu

    2015-01-01

    Centrosome amplification (CA), the presence of centrosomes that are abnormally numerous or enlarged, is a well-established driver of tumor initiation and progression associated with poor prognosis across a diversity of malignancies. Pancreatic ductal adenocarcinoma (PDAC) carries one of the most dismal prognoses of all cancer types. A majority of these tumors are characterized by numerical and structural centrosomal aberrations, but it is unknown how CA contributes to the disease and patient outcomes. In this study, we sought to determine whether CA was associated with worse clinical outcomes, poor prognostic indicators, markers of epithelial-mesenchymal transition (EMT), and ethnicity in PDAC. We also evaluated whether CA could precipitate more aggressive phenotypes in a panel of cultured PDAC cell lines. Using publicly available microarray data, we found that increased expression of genes whose dysregulation promotes CA was associated with worse overall survival and increased EMT marker expression in PDAC. Quantitative analysis of centrosomal profiles in PDAC cell lines and tissue sections uncovered varying levels of CA, and the expression of CA markers was associated with the expression of EMT markers. We induced CA in PDAC cells and found that CA empowered them with enhanced invasive and migratory capabilities. In addition, we discovered that PDACs from African American (AA) patients exhibited a greater extent of both numerical and structural CA than PDACs from European American (EA) patients. Taken together, these findings suggest that CA may fuel a more aggressive disease course in PDAC patients. PMID:26151406

  2. Centrosome – a promising anti-cancer target

    PubMed Central

    Rivera-Rivera, Yainyrette; Saavedra, Harold I

    2016-01-01

    The centrosome, an organelle discovered >100 years ago, is the main microtubule-organizing center in mammalian organisms. The centrosome is composed of a pair of centrioles surrounded by the pericentriolar material (PMC) and plays a major role in the regulation of cell cycle transitions (G1-S, G2-M, and metaphase-anaphase), ensuring the normality of cell division. Hundreds of proteins found in the centrosome exert a variety of roles, including microtubule dynamics, nucleation, and kinetochore–microtubule attachments that allow correct chromosome alignment and segregation. Errors in these processes lead to structural (shape, size, number, position, and composition), functional (abnormal microtubule nucleation and disorganized spindles), and numerical (centrosome amplification [CA]) centrosome aberrations causing aneuploidy and genomic instability. Compelling data demonstrate that centrosomes are implicated in cancer, because there are important oncogenic and tumor suppressor proteins that are localized in this organelle and drive centrosome aberrations. Centrosome defects have been found in pre-neoplasias and tumors from breast, ovaries, prostate, head and neck, lung, liver, and bladder among many others. Several drugs/compounds against centrosomal proteins have shown promising results. Other drugs have higher toxicity with modest or no benefits, and there are more recently developed agents being tested in clinical trials. All of this emerging evidence suggests that targeting centrosome aberrations may be a future avenue for therapeutic intervention in cancer research. PMID:28008224

  3. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.

    PubMed

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Stanton, Bruce A

    2012-05-18

    Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.

  4. Centrosome Amplification: A Potential Marker of Breast Cancer Agressiveness

    DTIC Science & Technology

    2006-07-01

    generation of aneuploid cancer cells (25, 26). Inhibition of centrosome reduplication depends on the balance between oncogene and tumor suppressor...suppressor p53 preserves the stability of the genome by inhibiting centrosome reduplication . The ability of p53 in preventing centrosome... reduplication in the absence of DNA replication is linked to over-expression of the cdk inhibitor p21, inhibition of cyclin/cdk2 activity and consequent

  5. Bisphenol A and its analogues disrupt centrosome cycle and microtubule dynamics in prostate cancer.

    PubMed

    Ho, Shuk-Mei; Rao, Rahul; To, Sarah; Schoch, Emma; Tarapore, Pheruza

    2017-02-01

    Humans are increasingly exposed to structural analogues of bisphenol A (BPA), as BPA is being replaced by these compounds in BPA-free consumer products. We have previously shown that chronic and developmental exposure to BPA is associated with increased prostate cancer (PCa) risk in human and animal models. Here, we examine whether exposure of PCa cells (LNCaP, C4-2) to low-dose BPA and its structural analogues (BPS, BPF, BPAF, TBBPA, DMBPA and TMBPA) affects centrosome amplification (CA), a hallmark of cancer initiation and progression. We found that exposure to BPA, BPS, DMBPA and TBBPA, in descending order, increased the number of cells with CA, in a non-monotonic dose-response manner. Furthermore, cells treated with BPA and their analogues initiated centrosome duplication at 8 h after release from serum starvation, significantly earlier in G-1 phase than control cells. This response was attended by earlier release of nucleophosmin from unduplicated centrosomes. BPA-exposed cells exhibited increased expression of cyclin-dependent kinase CDK6 and decreased expression of CDK inhibitors (p21(Waf1/CIP1) and p27(KIP1)). Using specific antagonists for estrogen/androgen receptors, CA in the presence of BPA or its analogues was likely to be mediated via ESR1 signaling. Change in microtubule dynamics was observed on exposure to these analogues, which, for BPA, was accompanied by increased expression of centrosome-associated protein CEP350 Similar to BPA, chronic treatment of cells with DMBPA, but not other analogues, resulted in the enhancement of anchorage-independent growth. We thus conclude that selected BPA analogues, similar to BPA, disrupt centrosome function and microtubule organization, with DMBPA displaying the broadest spectrum of cancer-promoting effects.

  6. The centrosome and asymmetric cell division

    PubMed Central

    2009-01-01

    Asymmetric stem cell division is a mechanism widely employed by the cell to maintain tissue homeostasis, resulting in the production of one stem cell and one differentiating cell. However, asymmetric cell division is not limited to stem cells and is widely observed even in unicellular organisms as well as in cells that make up highly complex tissues. In asymmetric cell division, cells must organize their intracellular components along the axis of asymmetry (sometimes in the context of extracellular architecture). Recent studies have described cell asymmetry in many cell types and in many cases such asymmetry involves the centrosome (or spindle pole body in yeast) as the center of cytoskeleton organization. In this review, I summarize recent discoveries in cellular polarity that lead to an asymmetric outcome, with a focus on centrosome function. PMID:19458491

  7. Microtubule nucleation and release from the neuronal centrosome

    PubMed Central

    1993-01-01

    We have proposed that microtubules (MTs) destined for axons and dendrites are nucleated at the centrosome within the cell body of the neuron, and are then released for translocation into these neurites (Baas, P. W., and H. C. Joshi. 1992. J. Cell Biol. 119:171-178). In the present study, we have tested the capacity of the neuronal centrosome to act as a generator of MTs for relocation into other regions of the neuron. In cultured sympathetic neurons undergoing active axonal outgrowth, MTs are present throughout the cell body including the region around the centrosome, but very few (< 10) are directly attached to the centrosome. These results indicate either that the neuronal centrosome is relatively inactive with regard to MT nucleation, or that most of the MTs nucleated at the centrosome are rapidly released. Treatment for 6 h with 10 micrograms/ml nocodazole results in the depolymerization of greater than 97% of the MT polymer in the cell body. Within 5 min after removal of the drug, hundreds of MTs have assembled in the region of the centrosome, and most of these MTs are clearly attached to the centrosome. A portion of the MTs are not attached to the centrosome, but are aligned side-by-side with the attached MTs, suggesting that the unattached MTs were released from the centrosome after nucleation. In addition, unattached MTs are present in the cell body at decreasing levels with increasing distance from the centrosome. By 30 min, the MT array of the cell body is indistinguishable from that of controls. The number of MTs attached to the centrosome is once again diminished to fewer than 10, suggesting that the hundreds of MTs nucleated from the centrosome after 5 min were subsequently released and translocated away from the centrosome. These results indicate that the neuronal centrosome is a highly potent MT- nucleating structure, and provide strong indirect evidence that MTs nucleated from the centrosome are released for translocation into other regions of the

  8. CEP proteins: the knights of centrosome dynasty.

    PubMed

    Kumar, Ambuj; Rajendran, Vidya; Sethumadhavan, Rao; Purohit, Rituraj

    2013-10-01

    Centrosome forms the backbone of cell cycle progression mechanism. Recent debates have occurred regarding the essentiality of centrosome in cell cycle regulation. CEP family protein is the active component of centrosome and plays a vital role in centriole biogenesis and cell cycle progression control. A total of 31 proteins have been categorized into CEP family protein category and many more are under candidate evaluation. Furthermore, by the recent advancements in genomics and proteomics researches, several new CEP proteins have also been characterized. Here we have summarized the importance of CEP family proteins and their regulation mechanism involved in proper cell cycle progression. Further, we have reviewed the detailed molecular mechanism behind the associated pathological phenotypes and the possible therapeutic approaches. Proteins such as CEP57, CEP63, CEP152, CEP164, and CEP215 have been extensively studied with a detailed description of their molecular mechanisms, which are among the primary targets for drug discovery. Moreover, CEP27, CEP55, CEP70, CEP110, CEP120, CEP135, CEP192, CEP250, CEP290, and CEP350 also seem promising for future drug discovery approaches. Since the overview implicates that the overall researches on CEP proteins are not yet able to present significant details required for effective therapeutics development, thus, it is timely to discuss the importance of future investigations in this field.

  9. A fraction of Crm1 locates at centrosomes by its CRIME domain and regulates the centrosomal localization of pericentrin

    SciTech Connect

    Liu, Qinying; Jiang, Qing; Zhang, Chuanmao

    2009-07-03

    Crm1 plays a role in exporting proteins containing nuclear export signals (NESs) from the nucleus to the cytoplasm. Some proteins that are capable of interacting with Ran/Crm1 were reported to be localized at centrosomes and to function as centrosome checkpoints. But it remains unclear how Crm1 locates at centrosomes. In this study, we found that a fraction of Crm1 is located at centrosomes through its N-terminal CRM1, importin {beta} etc. (CRIME) domain, which is responsible for interacting with RanGTP, suggesting that Crm1 might target to centrosomes through binding centrosomal RanGTP. Moreover, overexpression of the CRIME domain, which is free of NES binding domain, resulted in the dissociation of pericentrin and {gamma}-tubulin complex from centrosomes and the disruption of microtubule nucleation. Deficiency of Crm1 provoked by RNAi also decreased the spindle poles localization of pericentrin and {gamma}-tubulin complex, coupled with mitotic defects. Since pericentrin was sensitive to Crm1 specific inhibitor leptomycin B, we propose that the centrosomal Crm1 might interact with pericentrin and regulate the localization and function of pericentrin at centrosomes.

  10. The endocytic adaptor protein ARH associates with motor and centrosomal proteins and is involved in centrosome assembly and cytokinesis.

    PubMed

    Lehtonen, Sanna; Shah, Mehul; Nielsen, Rikke; Iino, Noriaki; Ryan, Jennifer J; Zhou, Huilin; Farquhar, Marilyn G

    2008-07-01

    Numerous proteins involved in endocytosis at the plasma membrane have been shown to be present at novel intracellular locations and to have previously unrecognized functions. ARH (autosomal recessive hypercholesterolemia) is an endocytic clathrin-associated adaptor protein that sorts members of the LDL receptor superfamily (LDLR, megalin, LRP). We report here that ARH also associates with centrosomes in several cell types. ARH interacts with centrosomal (gamma-tubulin and GPC2 and GPC3) and motor (dynein heavy and intermediate chains) proteins. ARH cofractionates with gamma-tubulin on isolated centrosomes, and gamma-tubulin and ARH interact on isolated membrane vesicles. During mitosis, ARH sequentially localizes to the nuclear membrane, kinetochores, spindle poles and the midbody. Arh(-/-) embryonic fibroblasts (MEFs) show smaller or absent centrosomes suggesting ARH plays a role in centrosome assembly. Rat-1 fibroblasts depleted of ARH by siRNA and Arh(-/-) MEFs exhibit a slower rate of growth and prolonged cytokinesis. Taken together the data suggest that the defects in centrosome assembly in ARH depleted cells may give rise to cell cycle and mitotic/cytokinesis defects. We propose that ARH participates in centrosomal and mitotic dynamics by interacting with centrosomal proteins. Whether the centrosomal and mitotic functions of ARH are related to its endocytic role remains to be established.

  11. A fraction of Crm1 locates at centrosomes by its CRIME domain and regulates the centrosomal localization of pericentrin.

    PubMed

    Liu, Qinying; Jiang, Qing; Zhang, Chuanmao

    2009-07-03

    Crm1 plays a role in exporting proteins containing nuclear export signals (NESs) from the nucleus to the cytoplasm. Some proteins that are capable of interacting with Ran/Crm1 were reported to be localized at centrosomes and to function as centrosome checkpoints. But it remains unclear how Crm1 locates at centrosomes. In this study, we found that a fraction of Crm1 is located at centrosomes through its N-terminal CRM1, importin beta etc. (CRIME) domain, which is responsible for interacting with RanGTP, suggesting that Crm1 might target to centrosomes through binding centrosomal RanGTP. Moreover, overexpression of the CRIME domain, which is free of NES binding domain, resulted in the dissociation of pericentrin and gamma-tubulin complex from centrosomes and the disruption of microtubule nucleation. Deficiency of Crm1 provoked by RNAi also decreased the spindle poles localization of pericentrin and gamma-tubulin complex, coupled with mitotic defects. Since pericentrin was sensitive to Crm1 specific inhibitor leptomycin B, we propose that the centrosomal Crm1 might interact with pericentrin and regulate the localization and function of pericentrin at centrosomes.

  12. Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants.

    PubMed

    Armendariz, Ana L; Talano, Melina A; Wevar Oller, Ana L; Medina, María I; Agostini, Elizabeth

    2015-07-01

    Bacterial ability to colonize the rhizosphere of plants in arsenic (As) contaminated soils is highly important for symbiotic and free-living plant growth-promoting rhizobacteria (PGPR) used as inoculants, since they can contribute to enhance plant As tolerance and limit metalloid uptake by plants. The aim of this work was to study the effect of As on growth, exopolysaccharide (EPS) production, biofilm formation and motility of two strains used as soybean inoculants, Bradyrhizobium japonicum E109 and Azospirillum brasilense Az39. The metabolism of arsenate (As(V)) and arsenite (As(III)) and their removal and/or possible accumulation were also evaluated. The behavior of both bacteria under As treatment was compared and discussed in relation to their potential for colonizing plant rhizosphere with high content of the metalloid. B. japonicum E109 growth was reduced with As(III) concentration from 10 μM while A. brasilense Az39 showed a reduction of growth with As(III) from 500 μM. EPS and biofilm production increased significantly under 25 μM As(III) for both strains. Moreover, this was more notorious for Azospirillum under 500 μM As(III), where motility was seriously affected. Both bacterial strains showed a similar ability to reduce As(V). However, Azospirillum was able to oxidize more As(III) (around 53%) than Bradyrhizobium (17%). In addition, both strains accumulated As in cell biomass. The behavior of Azospirillum under As treatments suggests that this strain would be able to colonize efficiently As contaminated soils. In this way, inoculation with A. brasilense Az39 would positively contribute to promoting growth of different plant species under As treatment.

  13. Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective

    PubMed Central

    Lampis, Silvia; Santi, Chiara; Ciurli, Adriana; Andreolli, Marco; Vallini, Giovanni

    2015-01-01

    A greenhouse pot experiment was carried out to evaluate the efficiency of arsenic phytoextraction by the fern Pteris vittata growing in arsenic-contaminated soil, with or without the addition of selected rhizobacteria isolated from the polluted site. The bacterial strains were selected for arsenic resistance, the ability to reduce arsenate to arsenite, and the ability to promote plant growth. P. vittata plants were cultivated for 4 months in a contaminated substrate consisting of arsenopyrite cinders and mature compost. Four different experimental conditions were tested: (i) non-inoculated plants; (ii) plants inoculated with the siderophore-producing and arsenate-reducing bacteria Pseudomonas sp. P1III2 and Delftia sp. P2III5 (A); (iii) plants inoculated with the siderophore and indoleacetic acid-producing bacteria Bacillus sp. MPV12, Variovorax sp. P4III4, and Pseudoxanthomonas sp. P4V6 (B), and (iv) plants inoculated with all five bacterial strains (AB). The presence of growth-promoting rhizobacteria increased plant biomass by up to 45% and increased As removal efficiency from 13% without bacteria to 35% in the presence of the mixed inoculum. Molecular analysis confirmed the persistence of the introduced bacterial strains in the soil and resulted in a significant impact on the structure of the bacterial community. PMID:25741356

  14. GT-repeat polymorphism in the heme oxygenase-1 gene promoter is associated with cardiovascular mortality risk in an arsenic-exposed population in northeastern Taiwan

    SciTech Connect

    Wu, Meei-Maan; Chiou, Hung-Yi; Chen, Chi-Ling; Wang, Yuan-Hung; Hsieh, Yi-Chen; Lien, Li-Ming; Lee, Te-Chang; Chen, Chien-Jen

    2010-11-01

    Inorganic arsenic has been associated with increased risk of atherosclerotic vascular disease and mortality in humans. A functional GT-repeat polymorphism in the heme oxygenase-1 (HO-1) gene promoter is inversely correlated with the development of coronary artery disease and restenosis after clinical angioplasty. The relationship of HO-1 genotype with arsenic-associated cardiovascular disease has not been studied. In this study, we evaluated the relationship between the HO-1 GT-repeat polymorphism and cardiovascular mortality in an arsenic-exposed population. A total of 504 study participants were followed up for a median of 10.7 years for occurrence of cardiovascular deaths (coronary heart disease, cerebrovascular disease, and peripheral arterial disease). Cardiovascular risk factors and DNA samples for determination of HO-1 GT repeats were obtained at recruitment. GT repeats variants were grouped into the S (< 27 repeats) or L allele ({>=} 27 repeats). Relative mortality risk was estimated using Cox regression analysis, adjusted for competing risk of cancer and other causes. For the L/L, L/S, and S/S genotype groups, the crude mortalities for cardiovascular disease were 8.42, 3.10, and 2.85 cases/1000 person-years, respectively. After adjusting for conventional cardiovascular risk factors and competing risk of cancer and other causes, carriers with class S allele (L/S or S/S genotypes) had a significantly reduced risk of cardiovascular mortality compared to non-carriers (L/L genotype) [OR, 0.38; 95% CI, 0.16-0.90]. In contrast, no significant association was observed between HO-1 genotype and cancer mortality or mortality from other causes. Shorter (GT)n repeats in the HO-1 gene promoter may confer protective effects against cardiovascular mortality related to arsenic exposure.

  15. Towards a molecular architecture of the centrosome in Toxoplasma gondii.

    PubMed

    Morlon-Guyot, Juliette; Francia, Maria E; Dubremetz, Jean-François; Daher, Wassim

    2017-02-01

    Toxoplasma gondii is the causative agent of toxoplasmosis. The pathogenicity of this unicellular parasite is tightly linked to its ability to efficiently proliferate within its host. Tachyzoites, the fast dividing form of the parasite, divide by endodyogeny. This process involves a single round of DNA replication, closed nuclear mitosis, and assembly of two daughter cells within a mother. The successful completion of endodyogeny relies on the temporal and spatial coordination of a plethora of simultaneous events. It has been shown that the Toxoplasma centrosome serves as signaling hub which nucleates spindle microtubules during mitosis and organizes the scaffolding of daughter cells components during cytokinesis. In addition, the centrosome is essential for inheriting both the apicoplast (a chloroplast-like organelle) and the Golgi apparatus. A growing body of evidence supports the notion that the T. gondii centrosome diverges in protein composition, structure and organization from its counterparts in higher eukaryotes making it an attractive source of potentially druggable targets. Here, we summarize the current knowledge on T. gondii centrosomal proteins and extend the putative centrosomal protein repertoire by in silico identification of mammalian centrosomal protein orthologs. We propose a working model for the organization and architecture of the centrosome in Toxoplasma parasites. Experimental validation of our proposed model will uncover how each predicted protein translates into the biology of centrosome, cytokinesis, karyokinesis, and organelle inheritance in Toxoplasma parasites.

  16. Apicomplexan cell cycle flexibility: centrosome controls the clutch

    PubMed Central

    Chen, Chun-Ti; Gubbels, Marc-Jan

    2015-01-01

    The centrosome serves as a central hub coordinating multiple cellular events in eukaryotes. A recent study in Toxoplasma gondii revealed a unique bipartite structure of the centrosome, which coordinates the nuclear cycle (S-phase and mitosis) and budding cycle (cytokinesis) of the parasite, and deciphers the principle behind flexible apicomplexan cell division modes. PMID:25899747

  17. Novel centrosomal protein reveals the presence of multiple centrosomes in turkey (Meleagris gallopavo) bnbn binucleated erythrocytes.

    PubMed

    Woods, C M; Zhu, J; Coleman, T; Bloom, S E; Lazarides, E

    1995-02-01

    The phenotype of the bnbn hemolytic anemia mutation in the domestic turkey is manifested as binucleation specifically in the definitive erythrocyte lineage, most likely as the consequence of anomolous centrosomal activity (Bloom et al., 1970; Searle and Bloom, 1979). Here we have identified in turkey two variants of the novel, centrosomally-associated erythroid-specific protein p23. One variant is Ca(2+)-sensitive and is highly homologous to its chick counterpart (Zhu et al., 1995, accompanying paper). The other, p21 is a truncated form resulting from a 62 amino acid deletion from the 3' end and a 40 amino acid insertion at the 5' end, and appears to lack Ca(2+)-sensitivity. These proteins are localized at the marginal band, centrosomes and nuclear membrane of differentiated erythrocytes. Anti-p23/p21 immunofluorescence revealed the presence of multiple centrosomes in bnbn erythrocytes. We therefore undertook a detailed genetic analysis to determine whether the p21 variant represented the bn mutation. Initial tests of normal BnBn and mutant bnbn individuals suggested that the p23/p21 proteins might be encoded by the Bn/bn genes. However, further genetic tests demonstrated independent segregation for these two genetic loci. Thus, these proteins are encoded by the heretofore undescribed genes, p23/p21, mapping to an autosomal locus in the turkey genome.

  18. Cold-treated centrosome: isolation of centrosomes from mitotic sea urchin eggs, production of an anticentrosomal antibody, and novel ultrastructural imaging.

    PubMed

    Thompson-Coffe, C; Coffe, G; Schatten, H; Mazia, D; Schatten, G

    1996-01-01

    A novel isolation of centrosomes is described and it was used to both generate a centrosome-specific monoclonal antibody and to image with high-resolution low-voltage scanning electron microscopy the surface details of the isolated centrosome. At first mitotic prometaphase, sea urchin zygotes are chilled on ice overnight. While most of the microtubules disassemble, the mitotic centrosomes collapse into aggregated masses. These centrosomes have been isolated, and used to generate a monoclonal antibody, designated 4D2, which is reactive with interphase and mitotic centrosomes. 4D2 staining of centrosomes is similar, but not identical, to that of other centrosomal antibodies like Ah6 and 5051. Centrosomal material is detected as a compact sphere after cold treatment; upon recovery the sphere expands and undergoes the shape changes previously described [Mazia et al., 1987: J. Cell Biol. 105:206a] to eventually reorganize a normal mitotic apparatus.

  19. The PIDDosome activates p53 in response to supernumerary centrosomes

    PubMed Central

    Fava, Luca L.; Schuler, Fabian; Sladky, Valentina; Haschka, Manuel D.; Soratroi, Claudia; Eiterer, Lisa; Demetz, Egon; Weiss, Guenter; Geley, Stephan; Nigg, Erich A.; Villunger, Andreas

    2017-01-01

    Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here, we report that an increase in the number of mature centrosomes, generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. This pathway also restrains the extent of developmentally scheduled polyploidization by regulating p53 levels in hepatocytes during liver organogenesis. Taken together, the PIDDosome acts as a first barrier, engaging p53 to halt the proliferation of cells carrying more than one mature centrosome to maintain genome integrity. PMID:28130345

  20. Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs

    NASA Technical Reports Server (NTRS)

    Schatten, Heide; Schatten, Gerald; Balczon, Ron; Simerly, Calvin; Mazia, Daniel

    1986-01-01

    The behavior of centrosomes during the stages of fertilization and cell division in mouse oocytes and in sea urchin eggs was monitored in an immunofluorescence microscope, using autoimmune centrosomal antiserum derived from a patient with scleroderma to label the centrosomal material. These observations showed that centrosomes reproduce during the interphase and aggregate and separate during cell mitosis. Results supported the hypothesis of Mazia (1984), who proposed that centrosomes are 'flexible bodies'. It was also found that, while the sea urchin centrosomes are paternally inherited as was initially proposed by Bovery (1904), the mouse centrosomes are of maternal origin.

  1. Centrosome centering and decentering by microtubule network rearrangement

    PubMed Central

    Letort, Gaëlle; Nedelec, Francois; Blanchoin, Laurent; Théry, Manuel

    2016-01-01

    The centrosome is positioned at the cell center by pushing and pulling forces transmitted by microtubules (MTs). Centrosome decentering is often considered to result from asymmetric, cortical pulling forces exerted in particular by molecular motors on MTs and controlled by external cues affecting the cell cortex locally. Here we used numerical simulations to investigate the possibility that it could equally result from the redistribution of pushing forces due to a reorientation of MTs. We first showed that MT gliding along cell edges and pivoting around the centrosome regulate MT rearrangement and thereby direct the spatial distribution of pushing forces, whereas the number, dynamics, and stiffness of MTs determine the magnitude of these forces. By modulating these parameters, we identified different regimes, involving both pushing and pulling forces, characterized by robust centrosome centering, robust off-centering, or “reactive” positioning. In the last-named conditions, weak asymmetric cues can induce a misbalance of pushing and pulling forces, resulting in an abrupt transition from a centered to an off-centered position. Taken together, these results point to the central role played by the configuration of the MTs on the distribution of pushing forces that position the centrosome. We suggest that asymmetric external cues should not be seen as direct driver of centrosome decentering and cell polarization but instead as inducers of an effective reorganization of the MT network, fostering centrosome motion to the cell periphery. PMID:27440925

  2. Centrosome centering and decentering by microtubule network rearrangement.

    PubMed

    Letort, Gaëlle; Nedelec, Francois; Blanchoin, Laurent; Théry, Manuel

    2016-09-15

    The centrosome is positioned at the cell center by pushing and pulling forces transmitted by microtubules (MTs). Centrosome decentering is often considered to result from asymmetric, cortical pulling forces exerted in particular by molecular motors on MTs and controlled by external cues affecting the cell cortex locally. Here we used numerical simulations to investigate the possibility that it could equally result from the redistribution of pushing forces due to a reorientation of MTs. We first showed that MT gliding along cell edges and pivoting around the centrosome regulate MT rearrangement and thereby direct the spatial distribution of pushing forces, whereas the number, dynamics, and stiffness of MTs determine the magnitude of these forces. By modulating these parameters, we identified different regimes, involving both pushing and pulling forces, characterized by robust centrosome centering, robust off-centering, or "reactive" positioning. In the last-named conditions, weak asymmetric cues can induce a misbalance of pushing and pulling forces, resulting in an abrupt transition from a centered to an off-centered position. Taken together, these results point to the central role played by the configuration of the MTs on the distribution of pushing forces that position the centrosome. We suggest that asymmetric external cues should not be seen as direct driver of centrosome decentering and cell polarization but instead as inducers of an effective reorganization of the MT network, fostering centrosome motion to the cell periphery.

  3. Physical association between a novel plasma-membrane structure and centrosome orients cell division

    PubMed Central

    Negishi, Takefumi; Miyazaki, Naoyuki; Murata, Kazuyoshi; Yasuo, Hitoyoshi; Ueno, Naoto

    2016-01-01

    In the last mitotic division of the epidermal lineage in the ascidian embryo, the cells divide stereotypically along the anterior-posterior axis. During interphase, we found that a unique membrane structure invaginates from the posterior to the centre of the cell, in a microtubule-dependent manner. The invagination projects toward centrioles on the apical side of the nucleus and associates with one of them. Further, a cilium forms on the posterior side of the cell and its basal body remains associated with the invagination. A laser ablation experiment suggests that the invagination is under tensile force and promotes the posterior positioning of the centrosome. Finally, we showed that the orientation of the invaginations is coupled with the polarized dynamics of centrosome movements and the orientation of cell division. Based on these findings, we propose a model whereby this novel membrane structure orchestrates centrosome positioning and thus the orientation of cell division axis. DOI: http://dx.doi.org/10.7554/eLife.16550.001 PMID:27502556

  4. The centrosomal deubiquitylase USP21 regulates Gli1 transcriptional activity and stability

    PubMed Central

    Heride, Claire; Rigden, Daniel J.; Bertsoulaki, Erithelgi; Cucchi, Danilo; De Smaele, Enrico; Clague, Michael J.; Urbé, Sylvie

    2016-01-01

    ABSTRACT USP21 is a centrosome-associated deubiquitylase (DUB) that has been implicated in the formation of primary cilia – crucial organelles for the regulation of the Hedgehog (Hh) signaling pathway in vertebrates. Here, we identify KCTD6 – a cullin-3 E3-ligase substrate adapter that has been previously linked to Hh signaling – as well as Gli1, the key transcription factor responsible for Hh signal amplification, as new interacting partners of USP21. We identify a cryptic structured protein interaction domain in KCTD6, which is predicted to have a similar fold to Smr domains. Importantly, we show that both depletion and overexpression of catalytically active USP21 suppress Gli1-dependent transcription. Gli proteins are negatively regulated through protein kinase A (PKA)-dependent phosphorylation. We provide evidence that USP21 recruits and stabilises Gli1 at the centrosome where it promotes its phosphorylation by PKA. By revealing an intriguing functional pairing between a spatially restricted deubiquitylase and a kinase, our study highlights the centrosome as an important hub for signal coordination. PMID:27621083

  5. Centrosome-Dependent Bypass of the DNA Damage Checkpoint by the Polo Kinase Cdc5.

    PubMed

    Ratsima, Hery; Serrano, Diego; Pascariu, Mirela; D'Amours, Damien

    2016-02-16

    Cell-cycle checkpoints are essential feedback mechanisms that promote genome integrity. However, in the face of unrepairable DNA lesions, bypass mechanisms can suppress checkpoint activity and allow cells to resume proliferation. The molecular mechanisms underlying this biological response are currently not understood. Taking advantage of unique separation-of-function mutants, we show that the Polo-like kinase (PLK) Cdc5 uses a phosphopriming-based interaction mechanism to suppress G2/M checkpoint arrest by targeting Polo kinase activity to centrosomes. We also show that key subunits of the evolutionarily conserved RSC complex are critical downstream effectors of Cdc5 activity in checkpoint suppression. Importantly, the lethality and checkpoint defects associated with loss of Cdc5 Polo box activity can be fully rescued by artificially anchoring Cdc5 kinase domain to yeast centrosomes. Collectively, our results highlight a previously unappreciated role for centrosomes as key signaling centers for the suppression of cell-cycle arrest induced by persistent or unrepairable DNA damage.

  6. Inhibition of Cdk2 activity decreases Aurora-A kinase centrosomal localization and prevents centrosome amplification in breast cancer cells.

    PubMed

    Leontovich, Alexey A; Salisbury, Jeffrey L; Veroux, Massimiliano; Tallarita, Tiziano; Billadeau, Daniel; McCubrey, James; Ingle, James; Galanis, Evanthia; D'Assoro, Antonino B

    2013-05-01

    Centrosome amplification plays a key role in the origin of chromosomal instability (CIN) during cancer development and progression. In this study, MCF-7 breast cancer cell lines harboring abrogated p53 function (vMCF-7DNp53) were employed to investigate the relationship between induction of genotoxic stress, activation of cyclin-A/Cdk2 and Aurora-A oncogenic signalings and development of centrosome amplification. Introduction of genotoxic stress in the vMCF-7DNp53 cell line by treatment with hydroxyurea (HU) induced centrosome amplification that was mechanistically linked to Aurora-A kinase activity. In cells carrying defective p53, the development of centrosome amplification also occurred following treatment with another DNA damaging agent, methotrexate. Importantly, we demonstrated that Aurora-A kinase-induced centrosome amplification was mediated by Cdk2 kinase since molecular inhibition of Cdk2 activity by SU9516 suppressed Aurora-A centrosomal localization and consequent centrosome amplification. In addition, we employed vMCF-7DRaf-1 cells that display high levels of endogenous cyclin-A and demonstrated that molecular targeting of Aurora-A by Alisertib reduces cyclin-A expression. Taken together, these findings demonstrate a novel positive feed-back loop between cyclin-A/Cdk2 and Aurora-A pathways in the development of centrosome amplification in breast cancer cells. They also provide the translational rationale for targeting 'druggable cell cycle regulators' as an innovative therapeutic strategy to inhibit centrosome amplification and CIN in breast tumors resistant to conventional chemotherapeutic drugs.

  7. Targeting of Fzr/Cdh1 for timely activation of the APC/C at the centrosome during mitotic exit

    PubMed Central

    Meghini, Francesco; Martins, Torcato; Tait, Xavier; Fujimitsu, Kazuyuki; Yamano, Hiroyuki; Glover, David M.; Kimata, Yuu

    2016-01-01

    A multi-subunit ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), regulates critical cellular processes including the cell cycle. To accomplish its diverse functions, APC/C activity must be precisely regulated in time and space. The interphase APC/C activator Fizzy-related (Fzr or Cdh1) is localized at centrosomes in animal cells. However, neither the mechanism of its localization nor its importance is clear. Here we identify the centrosome component Spd2 as a major partner of Fzr in Drosophila. The localization of Fzr to the centriole during interphase depends on direct interaction with Spd2. By generating Spd2 mutants unable to bind Fzr, we show that centrosomal localization of Fzr is essential for optimal APC/C activation towards its centrosomal substrate Aurora A. Finally, we show that Spd2 is also a novel APC/CFzr substrate. Our study is the first to demonstrate the critical importance of distinct subcellular pools of APC/C activators in the spatiotemporal control of APC/C activity. PMID:27558644

  8. Besnoitia besnoiti and Toxoplasma gondii: two apicomplexan strategies to manipulate the host cell centrosome and Golgi apparatus.

    PubMed

    Cardoso, Rita; Nolasco, Sofia; Gonçalves, João; Cortes, Helder C; Leitão, Alexandre; Soares, Helena

    2014-09-01

    Besnoitia besnoiti and Toxoplasma gondii are two closely related parasites that interact with the host cell microtubule cytoskeleton during host cell invasion. Here we studied the relationship between the ability of these parasites to invade and to recruit the host cell centrosome and the Golgi apparatus. We observed that T. gondii recruits the host cell centrosome towards the parasitophorous vacuole (PV), whereas B. besnoiti does not. Notably, both parasites recruit the host Golgi apparatus to the PV but its organization is affected in different ways. We also investigated the impact of depleting and over-expressing the host centrosomal protein TBCCD1, involved in centrosome positioning and Golgi apparatus integrity, on the ability of these parasites to invade and replicate. Toxoplasma gondii replication rate decreases in cells over-expressing TBCCD1 but not in TBCCD1-depleted cells; while for B. besnoiti no differences were found. However, B. besnoiti promotes a reorganization of the Golgi ribbon previously fragmented by TBCCD1 depletion. These results suggest that successful establishment of PVs in the host cell requires modulation of the Golgi apparatus which probably involves modifications in microtubule cytoskeleton organization and dynamics. These differences in how T. gondii and B. besnoiti interact with their host cells may indicate different evolutionary paths.

  9. Arsenic Methyltransferase

    EPA Science Inventory

    The metalloid arsenic enters the environment by natural processes (volcanic activity, weathering of rocks) and by human activity (mining, smelting, herbicides and pesticides). Although arsenic has been exploited for homicidal and suicidal purposes since antiquity, its significan...

  10. Centrosome maturation requires YB-1 to regulate dynamic instability of microtubules for nucleus reassembly

    PubMed Central

    Kawaguchi, Atsushi; Asaka, Masamitsu N.; Matsumoto, Ken; Nagata, Kyosuke

    2015-01-01

    Microtubule formation from the centrosome increases dramatically at the onset of mitosis. This process is termed centrosome maturation. However, regulatory mechanisms of microtubule assembly from the centrosome in response to the centrosome maturation are largely unknown. Here we found that YB-1, a cellular cancer susceptibility protein, is required for the centrosome maturation. Phosphorylated YB-1 accumulated in the centrosome at mitotic phase. By YB-1 knockdown, microtubules were found detached from the centrosome at telophase and an abnormal nuclear shape called nuclear lobulation was found due to defective reassembly of nuclear envelope by mis-localization of non-centrosomal microtubules. In conclusion, we propose that YB-1 is important for the assembly of centrosomal microtubule array for temporal and spatial regulation of microtubules. PMID:25740062

  11. Inactivation of E2F3 results in centrosome amplification.

    PubMed

    Saavedra, Harold I; Maiti, Baidehi; Timmers, Cynthia; Altura, Rachel; Tokuyama, Yukari; Fukasawa, Kenji; Leone, Gustavo

    2003-04-01

    The E2F family of transcription factors is critical for the control of cell cycle progression. We now show that the specific inactivation of E2F3 in mouse embryo fibroblasts (MEFs) results in a disruption of the centrosome duplication cycle. Loss of E2F3, but not E2F1, E2F2, E2F4, or E2F5 results in unregulated cyclin E-dependent kinase activity, defects in nucleophosmin B association with centrosomes, and premature centriole separation and duplication. Consequently, this defect leads to centrosome amplification, mitotic spindle defects, and aneuploidy. Our findings implicate the E2F3 transcription factor as an important link that orchestrates DNA and centrosome duplication cycles, ensuring the faithful transmission of genetic material to daughter cells.

  12. Merlin/ERM proteins establish cortical asymmetry and centrosome position

    PubMed Central

    Hebert, Alan M.; DuBoff, Brian; Casaletto, Jessica B.; Gladden, Andrew B.; McClatchey, Andrea I.

    2012-01-01

    The ability to generate asymmetry at the cell cortex underlies cell polarization and asymmetric cell division. Here we demonstrate a novel role for the tumor suppressor Merlin and closely related ERM proteins (Ezrin, Radixin, and Moesin) in generating cortical asymmetry in the absence of external cues. Our data reveal that Merlin functions to restrict the cortical distribution of the actin regulator Ezrin, which in turn positions the interphase centrosome in single epithelial cells and three-dimensional organotypic cultures. In the absence of Merlin, ectopic cortical Ezrin yields mispositioned centrosomes, misoriented spindles, and aberrant epithelial architecture. Furthermore, in tumor cells with centrosome amplification, the failure to restrict cortical Ezrin abolishes centrosome clustering, yielding multipolar mitoses. These data uncover fundamental roles for Merlin/ERM proteins in spatiotemporally organizing the cell cortex and suggest that Merlin's role in restricting cortical Ezrin may contribute to tumorigenesis by disrupting cell polarity, spindle orientation, and, potentially, genome stability. PMID:23249734

  13. Centrosome dynamics as a source of chromosomal instability

    PubMed Central

    Nam, Hyun-Ja; Naylor, Ryan; van Deursen, Jan M.

    2014-01-01

    Accurate segregation of duplicated chromosomes between two daughter cells depends on bi-polar spindle formation, a metaphase state in which sister kinetochores are attached to microtubules emanating from opposite spindle poles. To ensure bi-orientation, cells possess surveillance systems that safeguard against microtubule-kinetochore attachment defects, including the spindle assembly checkpoint and the error correction machinery. However, recent developments have identified centrosome dynamics – that is, centrosome disjunction and poleward movement of duplicated centrosomes – as a central target for deregulation of bi-orientation in cancer cells. Here we review novel insights into the mechanisms that underlie centrosome dynamics and discuss how these mechanisms are perturbed in cancer cells to drive chromosome missegregation and advance neoplastic transformation. PMID:25455111

  14. The nucleoporin Nup205/NPP-3 is lost near centrosomes at mitotic onset and can modulate the timing of this process in Caenorhabditis elegans embryos

    PubMed Central

    Hachet, Virginie; Busso, Coralie; Toya, Mika; Sugimoto, Asako; Askjaer, Peter; Gönczy, Pierre

    2012-01-01

    Regulation of mitosis in time and space is critical for proper cell division. We conducted an RNA interference–based modifier screen to identify novel regulators of mitosis in Caenorhabditis elegans embryos. Of particular interest, this screen revealed that the Nup205 nucleoporin NPP-3 can negatively modulate the timing of mitotic onset. Furthermore, we discovered that NPP-3 and nucleoporins that are associated with it are lost from the nuclear envelope (NE) in the vicinity of centrosomes at the onset of mitosis. We demonstrate that centrosomes are both necessary and sufficient for NPP-3 local loss, which also requires the activity of the Aurora-A kinase AIR-1. Our findings taken together support a model in which centrosomes and AIR-1 promote timely onset of mitosis by locally removing NPP-3 and associated nucleoporins from the NE. PMID:22740626

  15. Linking Microbial Activity with Arsenic Fate during Cow Dung Disposal of Arsenic-Bearing Wastes

    NASA Astrophysics Data System (ADS)

    Clancy, T. M.; Reddy, R.; Tan, J.; Hayes, K. F.; Raskin, L.

    2014-12-01

    To address widespread arsenic contamination of drinking water sources numerous technologies have been developed to remove arsenic. All technologies result in the production of an arsenic-bearing waste that must be evaluated and disposed in a manner to limit the potential for environmental release and human exposure. One disposal option that is commonly recommended for areas without access to landfills is the mixing of arsenic-bearing wastes with cow dung. These recommendations are made based on the ability of microorganisms to create volatile arsenic species (including mono-, di-, and tri-methylarsine gases) to be diluted in the atmosphere. However, most studies of environmental microbial communities have found only a small fraction (<0.1 %) of the total arsenic present in soils or rice paddies is released via volatilization. Additionally, past studies often have not monitored arsenic release in the aqueous phase. Two main pathways for microbial arsenic volatilization are known and include methylation of arsenic during methanogenesis and methylation by arsenite S-adenosylmethionine methyltransferase. In this study, we compare the roles of these two pathways in arsenic volatilization and aqueous mobilization through mesocosm experiments with cow dung and arsenic-bearing wastes produced during drinking water treatment in West Bengal, India. Arsenic in gaseous, aqueous, and solid phases was measured. Consistent with previous reports, less than 0.02% of the total arsenic present was volatilized. A much higher amount (~5%) of the total arsenic was mobilized into the liquid phase. Through the application of molecular tools, including 16S rRNA sequencing and quantification of gene transcripts involved in methanogenesis, this study links microbial community activity with arsenic fate in potential disposal environments. These results illustrate that disposal of arsenic-bearing wastes by mixing with cow dung does not achieve its end goal of promoting arsenic volatilization

  16. Cyclin B1–Cdk1 Activation Continues after Centrosome Separation to Control Mitotic Progression

    PubMed Central

    Lindqvist, Arne; van Zon, Wouter; Karlsson Rosenthal, Christina; Wolthuis, Rob M. F

    2007-01-01

    Activation of cyclin B1–cyclin-dependent kinase 1 (Cdk1), triggered by a positive feedback loop at the end of G2, is the key event that initiates mitotic entry. In metaphase, anaphase-promoting complex/cyclosome–dependent destruction of cyclin B1 inactivates Cdk1 again, allowing mitotic exit and cell division. Several models describe Cdk1 activation kinetics in mitosis, but experimental data on how the activation proceeds in mitotic cells have largely been lacking. We use a novel approach to determine the temporal development of cyclin B1–Cdk1 activity in single cells. By quantifying both dephosphorylation of Cdk1 and phosphorylation of the Cdk1 target anaphase-promoting complex/cyclosome 3, we disclose how cyclin B1–Cdk1 continues to be activated after centrosome separation. Importantly, we discovered that cytoplasmic cyclin B1–Cdk1 activity can be maintained even when cyclin B1 translocates to the nucleus in prophase. These experimental data are fitted into a model describing cyclin B1–Cdk1 activation in human cells, revealing a striking resemblance to a bistable circuit. In line with the observed kinetics, cyclin B1–Cdk1 levels required to enter mitosis are lower than the amount of cyclin B1–Cdk1 needed for mitotic progression. We propose that gradually increasing cyclin B1–Cdk1 activity after centrosome separation is critical to coordinate mitotic progression. PMID:17472438

  17. Critical Importance of Protein 4.1 in Centrosome and Mitotic Spindle Aberrations in Breast Cancer Pathogenesis

    DTIC Science & Technology

    2006-09-01

    centrosome duplication because centrosomes have reduplicated but have not sufficiently matured (which occurs at G2 of the cell cycle) to acquire 4.1R. Due...centrosomes in these breast cancer cells is unlicensed centrosome reduplication , a process known to occur during S phase. Furthermore, the fact that 4.1R is

  18. Polar expeditions--provisioning the centrosome for mitosis.

    PubMed

    Blagden, Sarah P; Glover, David M

    2003-06-01

    It is now clear that both centrioles and their surrounding pericentriolar material (PCM) are capable of self-assembly. Whereas centrioles are normally duplicated during G1-S phase, PCM components may be loaded onto centrosomes in both a microtubule-dependent and -independent manner at all stages of the cell cycle. Centrosomes enlarge dramatically after mitotic entry, when both Aurora A and Polo-like kinases cooperate to recruit additional gamma-tubulin ring complexes and microtubule-associated proteins to assist spindle formation.

  19. A Phytoremediation Strategy for Arsenic

    SciTech Connect

    Meagher, Richard B.

    2005-06-01

    . Phytochelatins bind diverse thiol-reactive elements like As(III) and are synthesized from amino acids in a three-step enzymatic pathway utilizing three enzymes: ECS = gamma-glutamylcysteine synthetase; GS = GSH synthetase; and PS = phytochelatin synthase. We cloned each of the genes that encode these enzymes and used at least two different plant promoters to express them in transgenic Arabidopsis. We have shown that all three confer significant resistance to arsenic and allow rapid growth on a concentration of arsenic (300 micromolar) that kills wild-type seeds and plants.

  20. Arsenic sulfide promotes apoptosis in retinoid acid resistant human acute promyelocytic leukemic NB4-R1 cells through downregulation of SET protein.

    PubMed

    Tian, Yuwang; Liu, Yanfeng; He, Pengcheng; Liu, Feng; Zhou, Naicen; Cheng, Xiaoyan; Shi, Lili; Zhu, Huachao; Zhao, Jing; Wang, Yuan; Zhang, Mei

    2014-01-01

    Tetra-arsenic tetra-sulfide (As4S4) is an arsenic compound with anti-tumor activity, especially in acute promyelocytic leukemia (APL) that are resistant to retinoic acid (RA). Although recent studies revealed that the therapeutic action of As4S4 is closely associated with the induction of cellular apoptosis, the exact molecular mechanism of action of As4S4 in RA-resistant APL remains to be clarified. In this study, we found that As4S4-induced apoptosis was accompanied by reduced mRNA and protein expression of SET gene in RA-resistant NB4-R1 cells. Moreover, RNAi knockdown of SET gene further promoted As4S4-induced apoptosis, while SET over-expression inhibited it, suggesting that As4S4 induces apoptosis through the reduction of SET protein in NB4-R1 cells. We also demonstrated that the knockdown of SET gene resulted in the upregulation of protein phosphatase 2 (PP2A) expression and the downregulation of promyelocytic leukemia and retinoic acid receptor α fusion gene (PML-RARα) expression, which were enhanced by As4S4 treatments. By contrast, over-expression of SET gene resulted in PP2A downregulation and PML-RARα upregulation, which were abolished by As4S4 pretreatment. Since PP2A is a pro-apoptotic factor and PMLRARα is an anti-apoptotic factor, our results suggest that As4S4-induced apoptosis in NB4-R1 cells is through the downregulation of SET protein expression, which in turn increases PP2A and reduces PML-RARα expressions to lead to cell apoptosis.

  1. Rootletin prevents Cep68 from VHL-mediated proteasomal degradation to maintain centrosome cohesion.

    PubMed

    Yin, Huilong; Zheng, Lu; Liu, Weixiao; Zhang, Dachuan; Li, Wei; Yuan, Li

    2017-04-01

    Centrosome cohesion, mostly regarded as a proteinaceous linker between parental centrioles, ensures the interphase centrosome(s) to function as a single microtubule-organizing center. Maintenance of centrosome cohesion counts on a number of centrosomal linker proteins because depletion of any of those leads to premature centrosome separation in interphase, termed centrosome splitting. However, the underlying mechanisms of the dependence are unknown. Here, we show that absence of Rootletin triggers the von Hippel-Lindau tumour suppressor protein (VHL)-mediated proteasomal degradation of Cep68 and, in turn, results in centrosome splitting. The VHL E3 ligase complex ubiquitinates Cep68 in vitro and in vivo. Co-silencing of Rootletin and VHL reverts Cep68 loss and centrosome splitting. Expression of a stable mutant of Cep68, either diminishing its polyubiquitylation or eliminating binding to β-domain of VHL, also suppresses centrosome splitting provoked by Rootletin depletion. We propose that the archetypal linker protein Rootletin maintains centrosome cohesion in part through inhibition of VHL-mediated Cep68 degradation.

  2. Dynamics of centrosome translocation and microtubule organization in neocortical neurons during distinct modes of polarization.

    PubMed

    Sakakibara, Akira; Sato, Toshiyuki; Ando, Ryota; Noguchi, Namiko; Masaoka, Makoto; Miyata, Takaki

    2014-05-01

    Neuronal migration and process formation require cytoskeletal organization and remodeling. Recent studies suggest that centrosome translocation is involved in initial axon outgrowth, while the role of centrosomal positioning is not clear. Here, we examine relations between centrosomal positioning, axonogenesis, and microtubule (MT) polarization in multipolar and bipolar neocortical neurons. We monitored dynamic movements of centrosomes and MT plus ends in migratory neurons in embryonic mouse cerebral slices. In locomoting bipolar neurons, the centrosome oriented toward the pia-directed leading process. Bipolar neurons displayed dense MT plus end dynamics in leading processes, while trailing processes showed clear bidirectional MTs. In migrating multipolar neurons, new processes emerged irrespective of centrosome localization, followed by centrosome reorientations toward the dominant process. Anterograde movements of MT plus ends occurred in growing processes and retrograde movements were observed after retraction of the distal tip. In multipolar neurons, axon formed by tangential extension of a dominant process and the centrosome oriented toward the growing axon, while in locomoting neurons, an axon formed opposite to the direction of migration and the centrosome localized to the base of the leading process. Our data suggest that MT organization may alter centrosomal localization and that centrosomal positioning does not necessarily direct process formation.

  3. 14-3-3γ Prevents Centrosome Amplification and Neoplastic Progression

    PubMed Central

    Mukhopadhyay, Amitabha; Sehgal, Lalit; Bose, Arunabha; Gulvady, Anushree; Senapati, Parijat; Thorat, Rahul; Basu, Srikanta; Bhatt, Khyati; Hosing, Amol S.; Balyan, Renu; Borde, Lalit; Kundu, Tapas K.; Dalal, Sorab N.

    2016-01-01

    More than 80% of malignant tumors show centrosome amplification and clustering. Centrosome amplification results from aberrations in the centrosome duplication cycle, which is strictly coordinated with DNA-replication-cycle. However, the relationship between cell-cycle regulators and centrosome duplicating factors is not well understood. This report demonstrates that 14-3-3γ localizes to the centrosome and 14-3-3γ loss leads to centrosome amplification. Loss of 14-3-3γ results in the phosphorylation of NPM1 at Thr-199, causing early centriole disjunction and centrosome hyper-duplication. The centrosome amplification led to aneuploidy and increased tumor formation in mice. Importantly, an increase in passage of the 14-3-3γ-knockdown cells led to an increase in the number of cells containing clustered centrosomes leading to the generation of pseudo-bipolar spindles. The increase in pseudo-bipolar spindles was reversed and an increase in the number of multi-polar spindles was observed upon expression of a constitutively active 14-3-3-binding-defective-mutant of cdc25C (S216A) in the 14-3-3γ knockdown cells. The increase in multi-polar spindle formation was associated with decreased cell viability and a decrease in tumor growth. Our findings uncover the molecular basis of regulation of centrosome duplication by 14-3-3γ and inhibition of tumor growth by premature activation of the mitotic program and the disruption of centrosome clustering. PMID:27253419

  4. Aurora-A recruitment and centrosomal maturation are regulated by a Golgi-activated pool of Src during G2

    PubMed Central

    Barretta, Maria Luisa; Spano, Daniela; D'Ambrosio, Chiara; Cervigni, Romina Ines; Scaloni, Andrea; Corda, Daniela; Colanzi, Antonino

    2016-01-01

    The Golgi apparatus is composed of stacks of cisternae laterally connected by tubules to form a ribbon-like structure. At the onset of mitosis, the Golgi ribbon is broken down into discrete stacks, which then undergo further fragmentation. This ribbon cleavage is required for G2/M transition, which thus indicates that a ‘Golgi mitotic checkpoint' couples Golgi inheritance with cell cycle transition. We previously showed that the Golgi-checkpoint regulates the centrosomal recruitment of the mitotic kinase Aurora-A; however, how the Golgi unlinking regulates this recruitment was unknown. Here we show that, in G2, Aurora-A recruitment is promoted by activated Src at the Golgi. Our data provide evidence that Src and Aurora-A interact upon Golgi ribbon fragmentation; Src phosphorylates Aurora-A at tyrosine 148 and this specific phosphorylation is required for Aurora-A localization at the centrosomes. This process, pivotal for centrosome maturation, is a fundamental prerequisite for proper spindle formation and chromosome segregation. PMID:27242098

  5. A Clinical Overview of Centrosome Amplification in Human Cancers

    PubMed Central

    Chan, Jason Yongsheng

    2011-01-01

    The turn of the 21st century had witnessed a surge of interest in the centrosome and its causal relation to human cancer development - a postulate that has existed for almost a century. Centrosome amplification (CA) is frequently detected in a growing list of human cancers, both solid and haematological, and is a candidate "hallmark" of cancer cells. Several lines of evidence support the progressive involvement of CA in the transition from early to advanced stages of carcinogenesis, being also found in pre-neoplastic lesions and even in histopathologically-normal tissue. CA constitutes the major mechanism leading to chromosomal instability and aneuploidy, via the formation of multipolar spindles and chromosomal missegregation. Clinically, CA may translate to a greater risk for initiation of malignant transformation, tumour progression, chemoresistance and ultimately, poor patient prognosis. As mechanisms underlying CA are progressively being unravelled, the centrosome has emerged as a novel candidate target for cancer treatment. This Review summarizes mainly the clinical studies performed to date focusing on the mechanisms underlying CA in human neoplasia, and highlights the potential utility of centrosomes in the diagnosis, prognosis and treatment of human cancers. PMID:22043171

  6. A clinical overview of centrosome amplification in human cancers.

    PubMed

    Chan, Jason Yongsheng

    2011-01-01

    The turn of the 21st century had witnessed a surge of interest in the centrosome and its causal relation to human cancer development - a postulate that has existed for almost a century. Centrosome amplification (CA) is frequently detected in a growing list of human cancers, both solid and haematological, and is a candidate "hallmark" of cancer cells. Several lines of evidence support the progressive involvement of CA in the transition from early to advanced stages of carcinogenesis, being also found in pre-neoplastic lesions and even in histopathologically-normal tissue. CA constitutes the major mechanism leading to chromosomal instability and aneuploidy, via the formation of multipolar spindles and chromosomal missegregation. Clinically, CA may translate to a greater risk for initiation of malignant transformation, tumour progression, chemoresistance and ultimately, poor patient prognosis. As mechanisms underlying CA are progressively being unravelled, the centrosome has emerged as a novel candidate target for cancer treatment. This Review summarizes mainly the clinical studies performed to date focusing on the mechanisms underlying CA in human neoplasia, and highlights the potential utility of centrosomes in the diagnosis, prognosis and treatment of human cancers.

  7. Contribution of spermatozoal centrosomes to the microtubule-organizing centre in Antarctic minke whale ( Balaenoptera bonaerensis ).

    PubMed

    Kobayashi, Toshihiro; Amemiya, Kazue; Takeuchi, Kana; Tsujioka, Tomomi; Tominaga, Keiichiro; Hirabayashi, Masumi; Ishikawa, Hajime; Fukui, Yutaka; Hochi, Shinichi

    2006-02-01

    Using an interspecies microinsemination assay with bovine oocytes, it was examined whether centrosomes of Antarctic minke whale spermatozoa function as the microtubule-organizing centre (MTOC). Bull and rat spermatozoa were used as positive and negative controls, respectively. Vitrified-warmed bovine mature oocytes were subjected to immunostaining against alpha-tubulin 4-6 h after intracytoplasmic injection (ICSI) of 5 mM dithiothreitol-treated spermatozoa. Aster formation occurred from whale spermatozoa (33%) and bull spermatozoa (33%), but very little from rat spermatozoa (3%). Activation treatment for the microinseminated oocytes with 7% ethanol + 2 mM 6-dimethylaminopurine resulted in a similar proportion of oocytes forming a whale sperm aster (35% vs 27% in the non-treated group; 4 h after ICSI) but a significantly larger aster (ratio of aster diameter to oocyte diameter, 0.57 vs 0.30 in the non-treated group). These results indicate that the centrosome introduced into bovine oocytes by whale spermatozoa contributes to the MTOC and that assembly of the microtubule network is promoted by oocyte activation.

  8. Arsenic Trioxide Activate Transcription of Heme Oxygenase-1 by Promoting Nuclear Translocation of NFE2L2.

    PubMed

    Yue, Zhen; Zhong, Lingzhi; Mou, Yan; Wang, Xiaotong; Zhang, Haiying; Wang, Yang; Xia, Jianxin; Li, Ronggui; Wang, Zonggui

    2015-01-01

    In a previous study, we found that induced expression of Heme Oxygenase-1 (HO-1) is responsible for the resistance of human osteosarcoma MG63 cells to the chemotherapeutic agent arsenic trioxide (ATO). The present study was aimed at investigating the molecular mechanisms underlying the induction of HO-1 that occurs after exposure of MG63 cells to ATO. First, using RT-QPCT and Western-blot, we found that ATO strongly induced the expression of heme oxygenase-1 (HO-1) in these human osteosarcoma cells. Then by analyzing HO-1 mRNA of MG63 cells exposed to ATO in the presence and absence of a transcription inhibitor Actinomycin-D (Act-D), we demonstrated that ATO activates HO-1 expression in MG63 cells by regulating the transcription of the gene. Finally, through the analysis of the NFE2L2 protein levels among the total cellular and nuclear proteins by Western-blot and Immunocytochemical staning, we determined that ATO enhanced the nuclear translocation of nuclear factor erythroid 2-like 2 (NFE2L2), also known as Nrf2. From these results we have concluded that transcription activation of HO-1 resulting from the nuclear translocation of NFE2L2 is the underlying molecular mechanism for its high induction, which, in turn, is responsible for the resistance of human osteosarcoma cells to ATO treatment.

  9. Centrosome motility is essential for initial axon formation in the neocortex.

    PubMed

    de Anda, Froylan Calderon; Meletis, Konstantinos; Ge, Xuecai; Rei, Damien; Tsai, Li-Huei

    2010-08-04

    The mechanisms underlying the normal development of neuronal morphology remain a fundamental question in neurobiology. Studies in cultured neurons have suggested that the position of the centrosome and the Golgi may predict the site of axon outgrowth. During neuronal migration in the developing cortex, however, the centrosome and Golgi are oriented toward the cortical plate at a time when axons grow toward the ventricular zone. In the current work, we use in situ live imaging to demonstrate that the centrosome and the accompanying polarized cytoplasm exhibit apical translocation in newborn cortical neurons preceding initial axon outgrowth. Disruption of centrosomal activity or downregulation of the centriolar satellite protein PCM-1 affects axon formation. We further show that downregulation of the centrosomal protein Cep120 impairs microtubule organization, resulting in increased centrosome motility. Decreased centrosome motility resulting from microtubule stabilization causes an aberrant centrosomal localization, leading to misplaced axonal outgrowth. Our results reveal the dynamic nature of the centrosome in developing cortical neurons, and implicate centrosome translocation and microtubule organization during the multipolar stage as important determinants of axon formation.

  10. Dishevelled is a NEK2 kinase substrate controlling dynamics of centrosomal linker proteins

    PubMed Central

    Cervenka, Igor; Valnohova, Jana; Bernatik, Ondrej; Harnos, Jakub; Radsetoulal, Matej; Sedova, Katerina; Hanakova, Katerina; Potesil, David; Sedlackova, Miroslava; Salasova, Alena; Steinhart, Zachary; Angers, Stephane; Schulte, Gunnar; Hampl, Ales; Zdrahal, Zbynek; Bryja, Vitezslav

    2016-01-01

    Dishevelled (DVL) is a key scaffolding protein and a branching point in Wnt signaling pathways. Here, we present conclusive evidence that DVL regulates the centrosomal cycle. We demonstrate that DVL dishevelled and axin (DIX) domain, but not DIX domain-mediated multimerization, is essential for DVL’s centrosomal localization. DVL accumulates during the cell cycle and associates with NIMA-related kinase 2 (NEK2), which is able to phosphorylate DVL at a multitude of residues, as detected by a set of novel phospho-specific antibodies. This creates interfaces for efficient binding to CDK5 regulatory subunit-associated protein 2 (CDK5RAP2) and centrosomal Nek2-associated protein 1 (C-NAP1), two proteins of the centrosomal linker. Displacement of DVL from the centrosome and its release into the cytoplasm on NEK2 phosphorylation is coupled to the removal of linker proteins, an event necessary for centrosomal separation and proper formation of the mitotic spindle. Lack of DVL prevents NEK2-controlled dissolution of loose centrosomal linker and subsequent centrosomal separation. Increased DVL levels, in contrast, sequester centrosomal NEK2 and mimic monopolar spindle defects induced by a dominant negative version of this kinase. Our study thus uncovers molecular crosstalk between centrosome and Wnt signaling. PMID:27486244

  11. Centrosomal amplification and aneuploidy induced by the antiretroviral drug AZT in hamster and human cells

    PubMed Central

    Borojerdi, Jennifer P.; Ming, Jessica; Cooch, Catherine; Ward, Yvona; Semino-Mora, Cristina; Yu, Mia; Braun, Hannan M.; Taylor, Barbara J.; Poirier, Miriam C.; Olivero, Ofelia A.

    2009-01-01

    The centrosome directs chromosomal migration by a complex process of tubulin-chromatin binding. In this contribution centrosomal abnormalities, including centrosomal amplification, were explored in Chinese Hamster Ovary (CHO) and Normal Human Mammary Epithelial (NHMEC) cells exposed to the antiretroviral drug zidovudine (3’-azido-3’-deoxythymidine, AZT). Centrosomal amplification/fragmentation was observed in both cell types and kinetochore positive micronuclei were found in AZT-exposed CHO cells in correlation with dose. Normal human mammary epithelial cell (NMHEC), strain M99005, previously identified as a strain that incorporates high levels of AZT into DNA (High incorporator, HI), showed greater centrosomal amplification when compared with a second strain, NHMEC M98040, which did not incorporate AZT into DNA (Low incorporator, LI). Additionally, an abnormal tubulin distribution was observed in AZT-exposed HI cells bearing multiple centrosomes. Immunofluorescent staining of human cells with Aurora A, a kinase involved in the maturation of the centrosome, confirmed the induction of centrosomal amplification and revealed multipolar mitotic figures. Flow cytometric studies revealed that cells bearing abnormal numbers of centrosomes and abnormal tubulin distribution had similar S-phase percentages suggesting that cells bearing unbalanced chromosomal segregation could divide. Therefore, AZT induces genomic instability and clastogenicity as well as alterations in proteins involved in centrosomal activation, all of which may contribute to the carcinogenic properties of this compound. PMID:19427513

  12. Biochar in Co-Contaminated Soil Manipulates Arsenic Solubility and Microbiological Community Structure, and Promotes Organochlorine Degradation

    PubMed Central

    Gregory, Samuel J.; Anderson, Christopher W. N.; Camps-Arbestain, Marta; Biggs, Patrick J.; Ganley, Austen R. D.; O’Sullivan, Justin M.; McManus, Michael T.

    2015-01-01

    We examined the effect of biochar on the water-soluble arsenic (As) concentration and the extent of organochlorine degradation in a co-contaminated historic sheep-dip soil during a 180-d glasshouse incubation experiment. Soil microbial activity, bacterial community and structure diversity were also investigated. Biochar made from willow feedstock (Salix sp) was pyrolysed at 350 or 550°C and added to soil at rates of 10 g kg-1 and 20 g kg-1 (representing 30 t ha-1 and 60 t ha-1). The isomers of hexachlorocyclohexane (HCH) alpha-HCH and gamma-HCH (lindane), underwent 10-fold and 4-fold reductions in concentration as a function of biochar treatment. Biochar also resulted in a significant reduction in soil DDT levels (P < 0.01), and increased the DDE:DDT ratio. Soil microbial activity was significantly increased (P < 0.01) under all biochar treatments after 60 days of treatment compared to the control. 16S amplicon sequencing revealed that biochar-amended soil contained more members of the Chryseobacterium, Flavobacterium, Dyadobacter and Pseudomonadaceae which are known bioremediators of hydrocarbons. We hypothesise that a recorded short-term reduction in the soluble As concentration due to biochar amendment allowed native soil microbial communities to overcome As-related stress. We propose that increased microbiological activity (dehydrogenase activity) due to biochar amendment was responsible for enhanced degradation of organochlorines in the soil. Biochar therefore partially overcame the co-contaminant effect of As, allowing for enhanced natural attenuation of organochlorines in soil. PMID:25923541

  13. Increased centrosome amplification in aged stem cells of the Drosophila midgut

    SciTech Connect

    Park, Joung-Sun; Pyo, Jung-Hoon; Na, Hyun-Jin; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2014-07-25

    Highlights: • Increased centrosome amplification in ISCs of aged Drosophila midguts. • Increased centrosome amplification in ISCs of oxidative stressed Drosophila midguts. • Increased centrosome amplification in ISCs by overexpression of PVR, EGFR, and AKT. • Supernumerary centrosomes can be responsible for abnormal ISC polyploid cells. • Supernumerary centrosomes can be a useful marker for aging stem cells. - Abstract: Age-related changes in long-lived tissue-resident stem cells may be tightly linked to aging and age-related diseases such as cancer. Centrosomes play key roles in cell proliferation, differentiation and migration. Supernumerary centrosomes are known to be an early event in tumorigenesis and senescence. However, the age-related changes of centrosome duplication in tissue-resident stem cells in vivo remain unknown. Here, using anti-γ-tubulin and anti-PH3, we analyzed mitotic intestinal stem cells with supernumerary centrosomes in the adult Drosophila midgut, which may be a versatile model system for stem cell biology. The results showed increased centrosome amplification in intestinal stem cells of aged and oxidatively stressed Drosophila midguts. Increased centrosome amplification was detected by overexpression of PVR, EGFR, and AKT in intestinal stem cells/enteroblasts, known to mimic age-related changes including hyperproliferation of intestinal stem cells and hyperplasia in the midgut. Our data show the first direct evidence for the age-related increase of centrosome amplification in intestinal stem cells and suggest that the Drosophila midgut is an excellent model for studying molecular mechanisms underlying centrosome amplification in aging adult stem cells in vivo.

  14. Centrosome amplification and overexpression of aurora A are early events in rat mammary carcinogenesis.

    PubMed

    Goepfert, Thea M; Adigun, Yetunde E; Zhong, Ling; Gay, Jason; Medina, Daniel; Brinkley, William R

    2002-07-15

    The cells of many solid tumors have been found to contain supernumerary centrosomes, a condition known as centrosome amplification. Centrosome amplification, accompanied by the overexpression of an associated kinase, Aurora A (AurA), has been implicated in mechanisms leading to mitotic spindle aberrations, aneuploidy, and genomic instability. Using a well-established rat mammary model favorable for experimental carcinogenesis, we analyzed centrosome amplification as a cellular marker for early stages of transformation and its regulation by the kinase ratAurA. Parity or treatment with estrogen and progesterone conferred resistance to tumorigenesis, as well as to overexpression of ratAurA and to centrosome amplification. ratAurA, cloned from a rat mammary gland cDNA library, is a bona fide Ser/Thr kinase, and sequence comparison demonstrated high homology to members of the entire AurA kinase family. Using immunocytochemical localization with confocal microscopy, we found ratAurA to be localized at the centrosome in normal and neoplastic tissues of the rat mammary gland. Normal ductal epithelium and stromal cells displayed an expected complement of one to two centrosomes/cell, whereas comparable cells in methylnitrosourea-treated animals displayed significantly elevated centrosome numbers. In tumors, 46% of cells showed more than two centrosomes/cell, and ratAurA expression levels coincided with higher centrosome numbers. Both centrosome numbers and ratAurA expression were permanently elevated. Centrosome amplification was found to occur at a very early, premalignant stage prior to detectable lesions after treatment with methylnitrosourea, a condition that was not detected in mammary glands of rats made refractory to the carcinogen via pregnancy or estrogen and progesterone treatment. Our results indicate that hormones influence kinase expression, and progesterone had the major effect on ratAurA expression levels. Cumulatively, these results suggest that rat

  15. The good, the bad and the ugly: the practical consequences of centrosome amplification.

    PubMed

    Sluder, Greenfield; Nordberg, Joshua J

    2004-02-01

    Centrosome amplification (the presence of more than two centrosomes at mitosis) is characteristic of many human cancers. Extra centrosomes can cause the assembly of multipolar spindles, which unequally distribute chromosomes to daughter cells; the resulting genetic imbalances may contribute to cellular transformation. However, this raises the question of how a population of cells with centrosome amplification can survive such chaotic mitoses without soon becoming non-viable as a result of chromosome loss. Recent observations indicate that a variety of mechanisms partially mute the practical consequences of centrosome amplification. Consequently, populations of cells propagate with good efficiency, despite centrosome amplification, yet have an elevated mitotic error rate that can fuel the evolution of the transformed state.

  16. Direct Microtubule-Binding by Myosin-10 Orients Centrosomes toward Retraction Fibers and Subcortical Actin Clouds.

    PubMed

    Kwon, Mijung; Bagonis, Maria; Danuser, Gaudenz; Pellman, David

    2015-08-10

    Positioning of centrosomes is vital for cell division and development. In metazoan cells, spindle positioning is controlled by a dynamic pool of subcortical actin that organizes in response to the position of retraction fibers. These actin "clouds" are proposed to generate pulling forces on centrosomes and mediate spindle orientation. However, the motors that pull astral microtubules toward these actin structures are not known. Here, we report that the unconventional myosin, Myo10, couples actin-dependent forces from retraction fibers and subcortical actin clouds to centrosomes. Myo10-mediated centrosome positioning requires its direct microtubule binding. Computational image analysis of large microtubule populations reveals a direct effect of Myo10 on microtubule dynamics and microtubule-cortex interactions. Myo10's role in centrosome positioning is distinct from, but overlaps with, that of dynein. Thus, Myo10 plays a key role in integrating the actin and microtubule cytoskeletons to position centrosomes and mitotic spindles.

  17. Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells

    PubMed Central

    Uetake, Yumi; Lončarek, Jadranka; Nordberg, Joshua J.; English, Christopher N.; La Terra, Sabrina; Khodjakov, Alexey; Sluder, Greenfield

    2007-01-01

    How centrosome removal or perturbations of centrosomal proteins leads to G1 arrest in untransformed mammalian cells has been a mystery. We use microsurgery and laser ablation to remove the centrosome from two types of normal human cells. First, we find that the cells assemble centrioles de novo after centrosome removal; thus, this phenomenon is not restricted to transformed cells. Second, normal cells can progress through G1 in its entirety without centrioles. Therefore, the centrosome is not a necessary, integral part of the mechanisms that drive the cell cycle through G1 into S phase. Third, we provide evidence that centrosome loss is, functionally, a stress that can act additively with other stresses to arrest cells in G1 in a p38-dependent fashion. PMID:17227892

  18. Cdc14 phosphatase directs centrosome re-duplication at the meiosis I to meiosis II transition in budding yeast

    PubMed Central

    2017-01-01

    Background Gametes are generated through a specialized cell division called meiosis, in which ploidy is reduced by half because two consecutive rounds of chromosome segregation, meiosis I and meiosis II, occur without intervening DNA replication. This contrasts with the mitotic cell cycle where DNA replication and chromosome segregation alternate to maintain the same ploidy. At the end of mitosis, CDKs are inactivated. This low CDK state in late mitosis/G1 allows for critical preparatory events for DNA replication and centrosome/spindle pole body (SPB) duplication. However, their execution is inhibited until S phase, where further preparatory events are also prevented. This “licensing” ensures that both the chromosomes and the centrosomes/SPBs replicate exactly once per cell cycle, thereby maintaining constant ploidy. Crucially, between meiosis I and meiosis II, centrosomes/SPBs must be re-licensed, but DNA re-replication must be avoided. In budding yeast, the Cdc14 protein phosphatase triggers CDK down regulation to promote exit from mitosis. Cdc14 also regulates the meiosis I to meiosis II transition, though its mode of action has remained unclear. Methods Fluorescence and electron microscopy was combined with proteomics to probe SPB duplication in cells with inactive or hyperactive Cdc14. Results We demonstrate that Cdc14 ensures two successive nuclear divisions by re-licensing SPBs at the meiosis I to meiosis II transition. We show that Cdc14 is asymmetrically enriched on a single SPB during anaphase I and provide evidence that this enrichment promotes SPB re-duplication. Cells with impaired Cdc14 activity fail to promote extension of the SPB half-bridge, the initial step in morphogenesis of a new SPB. Conversely, cells with hyper-active Cdc14 duplicate SPBs, but fail to induce their separation. Conclusion Our findings implicate reversal of key CDK-dependent phosphorylations in the differential licensing of cyclical events at the meiosis I to meiosis I

  19. Centrosome Hypertrophy Induced by p53 Mutations Leads to Tumor Aneuploidy

    DTIC Science & Technology

    1999-06-01

    microtubule organizing center in mammalian cells and establish the spindle poles during mitosis. Centrosome defects have been implicated in disease ...nearly one hundred years ago. More recently, centrosome defects have been implicated in disease and tumor progression. 3-13 Defects in centrosome...near the apical membrane and desmosomes (arrows) between their lateral membranes. A single centriole (arrowhead) is located at the apex next to a

  20. Detection and quantification of microtubule detachment from centrosomes and spindle poles.

    PubMed

    Ganguly, Anutosh; Yang, Hailing; Cabral, Fernando

    2013-01-01

    Microtubule detachment from microtubule organizing centers is an important cellular process required for normal cell proliferation. When cells enter mitosis, microtubule turnover increases along with a concurrent increase in microtubule detachment. MCAK, a kinesin-related protein whose abundance is highest during the early stages of mitosis, has been shown to regulate microtubule detachment. Abnormal increases or decreases in the frequency of detachment interfere with spindle function and inhibit cell division. It has been shown that drugs able to promote microtubule assembly (e.g., paclitaxel, epothilones) prevent cell division by suppressing microtubule detachment from centrosomes. Conversely, cytotoxic concentrations of microtubule destabilizing drugs (e.g., vinblastine, nocodazole), tubulin mutations that cause paclitaxel resistance, and specific β-tubulin isotypes increase the frequency of microtubule detachment. In this chapter, we describe a method to calculate the frequency of microtubule detachment by transfecting cells with EGFP-MAP4 and directly observing detachment by live cell imaging.

  1. Arsenic transformation and plant growth promotion characteristics of As-resistant endophytic bacteria from As-hyperaccumulator Pteris vittata.

    PubMed

    Xu, Jia-Yi; Han, Yong-He; Chen, Yanshan; Zhu, Ling-Jia; Ma, Lena Q

    2016-02-01

    The ability of As-resistant endophytic bacteria in As transformation and plant growth promotion was determined. The endophytes were isolated from As-hyperaccumulator Pteris vittata (PV) after growing for 60 d in a soil containing 200 mg kg(-1) arsenate (AsV). They were isolated in presence of 10 mM AsV from PV roots, stems, and leaflets, representing 4 phyla and 17 genera. All endophytes showed at least one plant growth promoting characteristics including IAA synthesis, siderophore production and P solubilization. The root endophytes had higher P solubilization ability than the leaflet (60.0 vs. 18.3 mg L(-1)). In presence of 10 mM AsV, 6 endophytes had greater growth than the control, suggesting As-stimulated growth. Furthermore, root endophytes were more resistant to AsV while the leaflet endophytes were more tolerant to arsenite (AsIII), which corresponded to the dominant As species in PV tissues. Bacterial As resistance was positively correlated to their ability in AsV reduction but not AsIII oxidation. The roles of those endophytes in promoting plant growth and As resistance in P. vittata warrant further investigation.

  2. Chronic Exposure to Particulate Chromate Induces Premature Centrosome Separation and Centriole Disengagement in Human Lung Cells

    PubMed Central

    Martino, Julieta; Holmes, Amie L.; Xie, Hong; Wise, Sandra S.; Wise, John Pierce

    2015-01-01

    Particulate hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen. Lung tumors are characterized by structural and numerical chromosome instability. Centrosome amplification is a phenotype commonly found in solid tumors, including lung tumors, which strongly correlates with chromosome instability. Human lung cells exposed to Cr(VI) exhibit centrosome amplification but the underlying phenotypes and mechanisms remain unknown. In this study, we further characterize the phenotypes of Cr(VI)-induced centrosome abnormalities. We show that Cr(VI)-induced centrosome amplification correlates with numerical chromosome instability. We also show chronic exposure to particulate Cr(VI) induces centrosomes with supernumerary centrioles and acentriolar centrosomes in human lung cells. Moreover, chronic exposure to particulate Cr(VI) affects the timing of important centriolar events. Specifically, chronic exposure to particulate Cr(VI) causes premature centriole disengagement in S and G2 phase cells. It also induces premature centrosome separation in interphase. Altogether, our data suggest that chronic exposure to particulate Cr(VI) targets the protein linkers that hold centrioles together. These centriolar linkers are important for key events of the centrosome cycle and their premature disruption might underlie Cr(VI)-induced centrosome amplification. PMID:26293554

  3. Abnormalities in centrosome number in human embryos and embryonic stem cells.

    PubMed

    Gu, Yi-Fan; OuYang, Qi; Dai, Can; Lu, Chang-Fu; Lin, Ge; Gong, Fei; Lu, Guang-Xiu

    2016-05-01

    Chromosomal abnormalities are common in human embryos. Previous studies have suggested links between centrosome number and chromosome abnormalities, but information regarding abnormalities in centrosome number in human embryos is limited. We analyzed abnormalities in centrosome number in human embryos and embryonic stem cells (hESCs). Following normal fertilization, supernumerary centrosomes were present at rates of 7.3% in two-pronucleus (2PN)-stage zygotes and 6.5% in first-cleavage zygotes. Supernumerary centrosomes were also detected in 24.4% of blastomeres from 60% of embryos derived from 2PN zygotes. Conversely, in mono- (1PN) and tri-pronucleus (3PN) zygotes, the frequency of abnormal centrosome number increased substantially at first cleavage. Rates in blastomeres of Day-3 embryos, however, were about the same between embryos derived from 1PN and 2PN zygotes, whereas abnormalities in centrosome number were higher in those from 3PN zygotes. By comparison, the rate of abnormal centrosome numbers in hESCs was 1.5-11.2%. Thus, abnormalities in centrosome number existed in human zygotes and cleaved embryos-especially those resulting from aberrant fertilization-but the frequency of such abnormalities was lower in hESCs derived from these embryos. These findings identify a source of the chromosomal instability in human embryos and hESCs, and highlight new safety issues for human assisted reproductive technology. Mol. Reprod. Dev. 83: 392-404, 2016. © 2016 Wiley Periodicals, Inc.

  4. Centlein mediates an interaction between C-Nap1 and Cep68 to maintain centrosome cohesion.

    PubMed

    Fang, Guoliang; Zhang, Dachuan; Yin, Huilong; Zheng, Lu; Bi, Xiaolin; Yuan, Li

    2014-04-15

    Centrosome cohesion, mostly regarded as a proteinaceous linker between parental centrioles, ensures that the interphase centrosome(s) function as a single microtubule-organizing center. Impairment of centrosome cohesion leads to the splitting of centrosomes. Although the list of cohesion proteins is growing, the precise composition and regulation of centrosome cohesion are still largely unknown. In this study, we show that the centriolar protein centlein (also known as CNTLN) localizes to the proximal ends of the centrioles and directly interacts with both C-Nap1 (also known as Cep250) and Cep68. Moreover, centlein complexes with C-Nap1 and Cep68 at the proximal ends of centrioles during interphase and functions as a molecular link between C-Nap1 and Cep68. Depletion of centlein impairs recruitment of Cep68 to the centrosomes and, in turn, results in centrosome splitting. Both centlein and Cep68 are novel Nek2A substrates. Collectively, our data demonstrate that centrosome cohesion is maintained by the newly identified complex of C-Nap1-centlein-Cep68.

  5. Centrosome Defects, Genetic Instability and Breast Cancer Progression

    DTIC Science & Technology

    2006-08-01

    family required for centrosome duplication in C . elegans and in human cells. Nature Cell Biology 7, 115-25 (2005). 42 . Habedanck, R., Stierhof, Y. D...Jurgens, 2005; Papoulas et al., 2004; Strickland and Burgess, 2004). In C . elegans embryos, inhibition of Golgi secretion by brefeldin A (BFA) resulted in...stage cytokinesis de- fects observed in this study resulted from changes in membrane trafficking to the midbody. As a first test ofsis in C . elegans

  6. The centrosome-associated Aurora/Ipl-like kinase family.

    PubMed

    Goepfert, T M; Brinkley, B R

    2000-01-01

    Because of the well-known role of the centrosome and mitotic apparatus in genome partitioning in normal cells, defects in pathways essential for mitotic regulation are likely implicated in the cascade of events leading to aneuploidy and neoplasia. Exogenous overexpression of AIM-1, for example, produces multinuclearity in human cells and increased ploidy as well as aneuploidy (Tatsuka et al., 1998). Overexpression in colorectal tumor cell lines is thought to have a causal relationship with multinuclearity and increased ploidy. Cytokinesis error caused by AIM-1 overexpression is a major factor in the predisposition to cancer. As previously mentioned, the involvement of BTAK/aur2/AIK in centrosome amplification and its oncogenic activity are compelling. Aur2 has also been implicated in oncogenesis, and defects in kinetochore function leading to chromosome instability in human tumors should not be minimized (Farruggio et al., 1999). Further studies are needed to provide a clearer definition of how these kinetic proteins are linked and regulated in normal mitosis and cancer. Thus, Boveri appears to have been correct in formulating his early hypothesis that a defective mitotic apparatus and centrosome number were central and causative in chromosome missegregation and cancer. One hundred years later, at the onset of a new millennium and with light-years of advanced technology in our favor, we are just now beginning to piece together the enzymes, substrates, and signaling pathways that support and explain his long-ignored but prophetic claim.

  7. LEGOs® and legacies of centrioles and centrosomes

    PubMed Central

    Schatten, Gerald; Simerly, Calvin

    2015-01-01

    Centriole construction, now revealed by crystallography, proteomics, and imaging to be a sophisticated assembly of interlocking bricks, resembles LEGOs—albeit centrioles have remarkable dynamic capabilities, including self-assembly and dis-assembly, kinases and post-translational modifications, self-replication, and still mysterious mechanisms for transmission through each cell cycle and via the gametes during development. Centrioles are created by core proteins that aggregate to form unique ninefold-symmetrical paracrystalline cylinders. The centrosome then coalesces as a cloud of pericentriolar material (PCM) around the centriole. Together they comprise the cell’s microtubule organizing center (MTOC), which governs the shape, functions, and dynamics of the cell’s microtubule (MT) arrays. This includes the meiotic and mitotic spindle apparatus for chromosome segregation, the accuracy of which is crucial for avoiding aneuploidies and resulting cancer, birth defects, or infertility. Centrioles’ replication and transmission mechanisms—and reduplication blocks—across cell cycles and generations, are only now becoming tractable to molecular analysis, which allows research to address questions about spindle assembly with neither centrioles nor centrosomes or de novo centriole formation. Here we discuss the latest insights into centriole and centrosome assembly and function and their transgenerational inheritance. PMID:26249334

  8. Arsenic-Redox Transformation and Plant Growth Promotion by Purple Nonsulfur Bacteria Rhodopseudomonas palustris CS2 and Rhodopseudomonas faecalis SS5

    PubMed Central

    Batool, Kanza; tuz Zahra, Fatima

    2017-01-01

    Arsenic (As) is a well-known toxic metalloid found naturally and released by different industries, especially in developing countries. Purple nonsulfur bacteria (PNSB) are known for wastewater treatment and plant growth promoting abilities. As-resistant PNSB were isolated from a fish pond. Based on As-resistance and plant growth promoting attributes, 2 isolates CS2 and SS5 were selected and identified as Rhodopseudomonas palustris and Rhodopseudomonas faecalis, respectively, through 16S rRNA gene sequencing. Maximum As(V) resistance shown by R. faecalis SS5 and R. palustris CS2 was up to 150 and 100 mM, respectively. R. palustris CS2 showed highest As(V) reduction up to 62.9% (6.29 ± 0.24 mM), while R. faecalis SS5 showed maximum As(III) oxidation up to 96% (4.8 ± 0.32 mM), respectively. Highest auxin production was observed by R. palustris CS2 and R. faecalis SS, up to 77.18 ± 3.7 and 76.67 ± 2.8 μg mL−1, respectively. Effects of these PNSB were tested on the growth of Vigna mungo plants. A statistically significant increase in growth was observed in plants inoculated with isolates compared to uninoculated plants, both in presence and in absence of As. R. palustris CS2 treated plants showed 17% (28.1 ± 0.87 cm) increase in shoot length and 21.7% (7.07 ± 0.42 cm) increase in root length, whereas R. faecalis SS5 treated plants showed 12.8% (27.09 ± 0.81 cm) increase in shoot length and 18.8% (6.9 ± 0.34 cm) increase in root length as compared to the control plants. In presence of As, R. palustris CS2 increased shoot length up to 26.3% (21.0 ± 1.1 cm), while root length increased up to 31.3% (5.3 ± 0.4 cm), whereas R. faecalis SS5 inoculated plants showed 25% (20.7 ± 1.4 cm) increase in shoot length and 33.3% (5.4 ± 0.65 cm) increase in root length as compared to the control plants. Bacteria with such diverse abilities could be ideal for plant growth promotion in As-contaminated sites. PMID:28386559

  9. Centrosome detection in sea urchin eggs with a monoclonal antibody against Drosophila intermediate filament proteins: characterization of stages of the division cycle of centrosomes.

    PubMed

    Schatten, H; Walter, M; Mazia, D; Biessmann, H; Paweletz, N; Coffe, G; Schatten, G

    1987-12-01

    A mouse monoclonal antibody generated against Drosophila intermediate filament proteins (designated Ah6/5/9 and referred to herein as Ah6) is found to cross-react specifically with centrosomes in sea urchin eggs and with a 68-kDa antigen in eggs and isolated mitotic apparatus. When preparations stained with Ah6 are counterstained with a human autoimmune serum whose anti-centrosome activity has been established, the immunofluorescence images superimpose exactly. A more severe test of the specificity of the antibody demands that it display all of the stages of the centrosome cycle in the cell cycle: the flattening and spreading of the compact centrosomes followed by their division and the establishment of two compact poles. The test was made by an experimental design that uses a period of exposure of the eggs to 2-mercaptoethanol. This treatment allows observation of the stages of the centrosome cycle--separation, division, and bipolarization--while the chromosomes are arrested in metaphase. Mitosis is arrested in the presence of 0.1 M 2-mercaptoethanol. Chromosomes remain in a metaphase configuration while the centrosomes divide, producing four poles perpendicular to the original spindle axis. Microtubules are still present in the mitotic apparatus, as indicated by immunofluorescence and transmission electron microscopy. When 2-mercaptoethanol is removed, the chromosomes reorient to the poles of a tetrapolar (sometimes tripolar) mitotic apparatus. During the following cycle, the blastomeres form a monopolar mitotic apparatus. The observations of the centrosome cycle with the Ah6 antibody display very clearly all the stages that have been seen or deduced from work with other probes. The 68-kDa antigen that reacts with the Ah6 monoclonal antibody to Drosophila intermediate filament proteins must be a constant component of sea urchin centrosomes because it is present at all stages of the centrosome cycle.

  10. Metabolic interrelationships between arsenic and selenium

    PubMed Central

    Levander, Orville A.

    1977-01-01

    In 1938, Moxon discovered that arsenic protected against selenium toxicity. Since that time it has been shown that this protective effect of arsenic against selenium poisoning can be demonstrated in many different animal species under a wide variety of conditions. Antagonistic effects between arsenic and selenium have also been noted in teratologic experiments. Early metabolic studies showed that arsenic inhibited the expiration of volatile selenium compounds by rats injected with acutely toxic doses of both elements. This was puzzling since pulmonary excretion had long been regarded as a means by which animals could rid themselves of excess selenium. However, later work demonstrated that arsenic increased the biliary excretion of selenium. Not only did arsenic stimulate the excretion of selenium in the bile, but selenium also stimulated the excretion of arsenic in the bile. This increased biliary excretion of selenium caused by arsenic provides a reasonable rationale for the ability of arsenic to counteract the toxicity of selenium, although the chemical mechanism by which arsenic does this is not certain. The most satisfactory explanation is that these two elements react in the liver to form a detoxication conjugate which is then excreted into the bile. This is consistent with the fact that both arsenic and selenium each increase the biliary excretion of the other. Several other metabolic interactions between arsenic and selenium have been demonstrated in vitro, but their physiological significance is not clear. Although arsenic decreased selenium toxicity under most conditions, there is a pronounced synergistic toxicity between arsenic and two methylated selenium metabolites, trimethylselenonium ion or dimethyl selenide. The ecological consequences of these synergisms are largely unexplored, although it is likely that selenium methylation occurs in the environment. All attempts to promote or prevent selenium deficiency diseases in animals by feeding arsenic have

  11. Actin and Arp2/3 localize at the centrosome of interphase cells

    SciTech Connect

    Hubert, Thomas; Vandekerckhove, Joel; Gettemans, Jan

    2011-01-07

    Research highlights: {yields} Actin was detected at the centrosome with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. {yields} Centrosomal actin was found in interphase but not mitotic MDA-MB-231 cells. {yields} Neither the anti-actin antibody C4 that binds to globular, monomer actin, nor the anti-actin antibody 2G2 that recognizes the nuclear conformation of actin detect actin at the centrosome. {yields} The Arp2/3 complex transiently localizes at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. -- Abstract: Although many actin binding proteins such as cortactin and the Arp2/3 activator WASH localize at the centrosome, the presence and conformation of actin at the centrosome has remained elusive. Here, we report the localization of actin at the centrosome in interphase but not in mitotic MDA-MB-231 cells. Centrosomal actin was detected with the anti-actin antibody 1C7 that recognizes antiparallel ('lower dimer') actin dimers. In addition, we report the transient presence of the Arp2/3 complex at the pericentriolar matrix but not at the centrioles of interphase HEK 293T cells. Overexpression of an Arp2/3 component resulted in expansion of the pericentriolar matrix and selective accumulation of the Arp2/3 component in the pericentriolar matrix. Altogether, we hypothesize that the centrosome transiently recruits Arp2/3 to perform processes such as centrosome separation prior to mitotic entry, whereas the observed constitutive centrosomal actin staining in interphase cells reinforces the current model of actin-based centrosome reorientation toward the leading edge in migrating cells.

  12. Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo

    PubMed Central

    Kimura, Akatsuki

    2010-01-01

    The centrosome is generally maintained at the center of the cell. In animal cells, centrosome centration is powered by the pulling force of microtubules, which is dependent on cytoplasmic dynein. However, it is unclear how dynein brings the centrosome to the cell center, i.e., which structure inside the cell functions as a substrate to anchor dynein. Here, we provide evidence that a population of dynein, which is located on intracellular organelles and is responsible for organelle transport toward the centrosome, generates the force required for centrosome centration in Caenorhabditis elegans embryos. By using the database of full-genome RNAi in C. elegans, we identified dyrb-1, a dynein light chain subunit, as a potential subunit involved in dynein anchoring for centrosome centration. DYRB-1 is required for organelle movement toward the minus end of the microtubules. The temporal correlation between centrosome centration and the net movement of organelle transport was found to be significant. Centrosome centration was impaired when Rab7 and RILP, which mediate the association between organelles and dynein in mammalian cells, were knocked down. These results indicate that minus end-directed transport of intracellular organelles along the microtubules is required for centrosome centration in C. elegans embryos. On the basis of this finding, we propose a model in which the reaction forces of organelle transport generated along microtubules act as a driving force that pulls the centrosomes toward the cell center. This is the first model, to our knowledge, providing a mechanical basis for cytoplasmic pulling force for centrosome centration. PMID:21173218

  13. Arsenic, inorganic

    Integrated Risk Information System (IRIS)

    Arsenic , inorganic ; CASRN 7440 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  14. Cdc6 localizes to S- and G2-phase centrosomes in a cell cycle-dependent manner

    SciTech Connect

    Kim, Gwang Su; Kang, Jeeheon; Bang, Sung Woong; Hwang, Deog Su

    2015-01-16

    Highlights: • Cdc6 protein is a component of the pre-replicative complex required for chromosomal replication initiation. • Cdc6 localized to centrosomes of S and G2 phases in a cell cycle-dependent manner. • The centrosomal localization was governed by centrosomal localization signal sequences of Cdc6. • Deletions or substitution mutations on the centrosomal localization signal interfered with centrosomal localization of the Cdc6 proteins. - Abstract: The Cdc6 protein has been primarily investigated as a component of the pre-replicative complex for the initiation of chromosome replication, which contributes to maintenance of chromosomal integrity. Here, we show that Cdc6 localized to the centrosomes during S and G2 phases of the cell cycle. The centrosomal localization was mediated by Cdc6 amino acid residues 311–366, which are conserved within other Cdc6 homologues and contains a putative nuclear export signal. Deletions or substitutions of the amino acid residues did not allow the proteins to localize to centrosomes. In contrast, DsRed tag fused to the amino acid residues localized to centrosomes. These results indicated that a centrosome localization signal is contained within amino acid residues 311–366. The cell cycle-dependent centrosomal localization of Cdc6 in S and G2 phases suggest a novel function of Cdc6 in centrosomes.

  15. Meier-Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication.

    PubMed

    Hossain, Manzar; Stillman, Bruce

    2012-08-15

    Like DNA replication, centrosomes are licensed to duplicate once per cell division cycle to ensure genetic stability. In addition to regulating DNA replication, the Orc1 subunit of the human origin recognition complex controls centriole and centrosome copy number. Here we report that Orc1 harbors a PACT centrosome-targeting domain and a separate domain that differentially inhibits the protein kinase activities of Cyclin E-CDK2 and Cyclin A-CDK2. A cyclin-binding motif (Cy motif) is required for Orc1 to bind Cyclin A and inhibit Cyclin A-CDK2 kinase activity but has no effect on Cyclin E-CDK2 kinase activity. In contrast, Orc1 inhibition of Cyclin E-CDK2 kinase activity occurs by a different mechanism that is affected by Orc1 mutations identified in Meier-Gorlin syndrome patients. The cyclin/CDK2 kinase inhibitory domain of Orc1, when tethered to the PACT domain, localizes to centrosomes and blocks centrosome reduplication. Meier-Gorlin syndrome mutations that disrupt Cyclin E-CDK2 kinase inhibition also allow centrosome reduplication. Thus, Orc1 contains distinct domains that control centrosome copy number and DNA replication. We suggest that the Orc1 mutations present in some Meier-Gorlin syndrome patients contribute to the pronounced microcephaly and dwarfism observed in these individuals by altering centrosome duplication in addition to DNA replication defects.

  16. Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome.

    PubMed

    Gopalakrishnan, Jayachandran; Mennella, Vito; Blachon, Stephanie; Zhai, Bo; Smith, Andrew H; Megraw, Timothy L; Nicastro, Daniela; Gygi, Steven P; Agard, David A; Avidor-Reiss, Tomer

    2011-06-21

    Centrosomes are conserved organelles that are essential for accurate cell division and cilium formation. A centrosome consists of a pair of centrioles surrounded by a protein network of pericentriolar material (PCM) that is essential for the centrosome's function. In this study, we show that Sas-4 provides a scaffold for cytoplasmic complexes (named S-CAP), which include CNN, Asl and D-PLP, proteins that are all found in the centrosomes at the vicinity of the centriole. When Sas-4 is absent, nascent procentrioles are unstable and lack PCM, and functional centrosomes are not generated. When Sas-4 is mutated, so that it cannot form S-CAP complexes, centrosomes are present but with dramatically reduced levels of PCM. Finally, purified S-CAP complexes or recombinant Sas-4 can bind centrosomes stripped of PCM, whereas recombinant CNN or Asl cannot. In summary, PCM assembly begins in the cytosol where Sas-4 provides a scaffold for pre-assembled cytoplasmic complexes before tethering of the complexes in a centrosome.

  17. One to only two: a short history of the centrosome and its duplication

    PubMed Central

    Sluder, Greenfield

    2014-01-01

    This review discusses some of the history of the fundamental, but not fully solved problem of how the centrosome duplicates from one to only two as the cell prepares for mitosis. We start with some of the early descriptions of the centrosome and the remarkably prescient but then controversial inferences drawn concerning its function in the cell. For more than 100 years, one of the most difficult issues for the concept of the centrosome has been to integrate observations that centrosomes appear to be important for spindle assembly in animal cells yet are not evident in higher plant cells and some animal cells. This stirred debate over the existence of centrosomes and their importance. A parallel debate concerned the role of the centrioles in organizing centrosomes. The relatively recent elucidation of bipolar spindle assembly around chromatin allows a re-examination of the role of centrioles in controlling centrosome duplication in animal cells. The problem of how centrosomes precisely double in preparation for mitosis in animal cells has now moved to the mystery of how only one procentriole is assembled at each mother centriole. PMID:25047609

  18. The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila.

    PubMed

    Wojcik, E J; Glover, D M; Hays, T S

    2000-09-21

    The duplication of the centrosome is a key event in the cell-division cycle. Although defects in centrosome duplication are thought to contribute to genomic instability [1-3] and are a hallmark of certain transformed cells and human cancer [4-6], the mechanism responsible for centrosome duplication is not understood. Recent experiments have established that centrosome duplication requires the activity of cyclin-dependent kinase 2 (Cdk2) and cyclins E and A [7-9]. The stability of cyclin E is regulated by the ubiquitin ligase SCF, which is a protein complex composed of Skp1, Cdc53 (Cullin) and F-box proteins [10-12]. The Skp1 and Cullin components have been detected on mammalian centrosomes, and shown to be essential for centrosome duplication and separation in Xenopus [13]. Here, we report that Slimb, an F-box protein that targets proteins to the SCFcomplex [14,15], plays a role in limiting centrosome replication. We found that, in the fruit fly Drosophila, the hypomorphic mutation slimb(crd) causes the appearance of additional centrosomes and mitotic defects in mutant larval neuroblasts.

  19. Sustained centrosome-cortical contact ensures robust polarization of the one-cell C. elegans embryo.

    PubMed

    Saturno, Dominique M; Castanzo, Dominic T; Williams, Margaret; Parikh, Devayu A; Jaeger, Eva C; Lyczak, Rebecca

    2017-02-15

    In C. elegans, the anterior-posterior axis is established at the one-cell stage when the embryo polarizes along its long axis. One model suggests that a cue from the centrosome triggers symmetry breaking and is then dispensable for further steps in the process. In the absence of the initial centrosome cue, a redundant mechanism, reliant on the centrosome's microtubules, can polarize the cell. Despite this model, data from multiple sources suggest that direct centrosome-contact with the cortex may play a role in ensuring robust polarization. Some of this past work includes analysis of pam-1 mutants, which lack a functional puromycin-sensitive aminopeptidase and have aberrant centrosome positioning and variable polarization defects. To better understand the role of centrosome dynamics in polarization, we looked in detail at centrosome behavior in relation to key polarity landmarks in pam-1 mutants as well as those lacking cortical flows. We provide evidence for a model in which sustained direct contact between the centrosome and the cortex acts to reinforce both the actomyosin and the microtubule-dependent pathways. This contact is necessary for polarization when flows are inhibited.

  20. Sliding of centrosome-unattached microtubules defines key features of neuronal phenotype

    PubMed Central

    Rao, Anand N.; Falnikar, Aditi; O’Toole, Eileen T.; Morphew, Mary K.; Hoenger, Andreas; Davidson, Michael W.; Yuan, Xiaobing

    2016-01-01

    Contemporary models for neuronal migration are grounded in the view that virtually all functionally relevant microtubules (MTs) in migrating neurons are attached to the centrosome, which occupies a position between the nucleus and a short leading process. It is assumed that MTs do not undergo independent movements but rather transduce forces that enable movements of the centrosome and nucleus. The present results demonstrate that although this is mostly true, a small fraction of the MTs are centrosome-unattached, and this permits limited sliding of MTs. When this sliding is pharmacologically inhibited, the leading process becomes shorter, migration of the neuron deviates from its normal path, and the MTs within the leading process become buckled. Partial depletion of ninein, a protein that attaches MTs to the centrosome, leads to greater numbers of centrosome-unattached MTs as well as greater sliding of MTs. Concomitantly, the soma becomes less mobile and the leading process acquires an elongated morphology akin to an axon. PMID:27138250

  1. Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis.

    PubMed

    Kim, Seongjae; Rhee, Kunsoo

    2014-01-01

    At the onset of mitosis, the centrosome undergoes maturation, which is characterized by a drastic expansion of the pericentriolar material (PCM) and a robust increase in microtubule-organizing activity. CEP215 is one of the major PCM components which accumulates at the centrosome during mitosis. The depletion phenotypes indicate that CEP215 is essential for centrosome maturation and bipolar spindle formation. Here, we performed a series of knockdown-rescue experiments to link the protein-protein interaction properties of CEP215 to its biological functions. The results showed that CEP215 and pericentrin, another major PCM component, is interdependent for their accumulation at the spindle poles during mitosis. As a result, The CEP215-pericentrin interaction is required for centrosome maturation and subsequent bipolar spindle formation during mitosis. On the other hand, CEP215 interaction with γ-tubulin is dispensable for centrosome maturation. Our results provide an insight how PCM components are assembled to form a spindle pole during mitosis.

  2. Worldwide occurrences of arsenic in ground water

    USGS Publications Warehouse

    Nordstrom, D Kirk

    2002-01-01

    Numerous aquifers worldwide carry soluble arsenic at concentrations greater than the World Health Organization--and U.S. Environmental Protection Agency--recommended drinking water standard of 10 mg per liter. Sources include both natural (black shales, young sediments with low flushing rates, gold mineralization, and geothermal environments) and anthropogenic (mining activities, livestock feed additives, pesticides, and arsenic trioxide wastes and stockpiles). Increased solubility and mobility of arsenic is promoted by high pH (>8.5), competing oxyanions, and reducing conditions. In this Policy Forum, Nordstrom argues that human health risks from arsenic in ground water can be minimized by incorporating hydrogeochemical knowledge into water management decisions and by more careful monitoring for arsenic in geologically high-risk areas.

  3. Arsenic surveillance program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Background information about arsenic is presented including forms, common sources, and clinical symptoms of arsenic exposure. The purpose of the Arsenic Surveillance Program and LeRC is outlined, and the specifics of the Medical Surveillance Program for Arsenic Exposure at LeRC are discussed.

  4. Klp10A, a stem cell centrosome-enriched kinesin, balances asymmetries in Drosophila male germline stem cell division.

    PubMed

    Chen, Cuie; Inaba, Mayu; Venkei, Zsolt G; Yamashita, Yukiko M

    2016-11-25

    Asymmetric stem cell division is often accompanied by stereotypical inheritance of the mother and daughter centrosomes. However, it remains unknown whether and how stem cell centrosomes are uniquely regulated and how this regulation may contribute to stem cell fate. Here we identify Klp10A, a microtubule-depolymerizing kinesin of the kinesin-13 family, as the first protein enriched in the stem cell centrosome in Drosophila male germline stem cells (GSCs). Depletion of klp10A results in abnormal elongation of the mother centrosomes in GSCs, suggesting the existence of a stem cell-specific centrosome regulation program. Concomitant with mother centrosome elongation, GSCs form asymmetric spindle, wherein the elongated mother centrosome organizes considerably larger half spindle than the other. This leads to asymmetric cell size, yielding a smaller differentiating daughter cell. We propose that klp10A functions to counteract undesirable asymmetries that may result as a by-product of achieving asymmetries essential for successful stem cell divisions.

  5. Interference with BRCA2, which localizes to the centrosome during S and early M phase, leads to abnormal nuclear division

    SciTech Connect

    Nakanishi, Akira; Han, Xiangzi; Saito, Hiroko; Taguchi, Keiko; Ohta, Yoshiyasu; Imajoh-Ohmi, Shinobu; Miki, Yoshio; E-mail: miki.mgen@mri.tmd.ac.jp

    2007-03-30

    BRCA2 is responsible for familial breast and ovarian cancer, and its gene product is linked to DNA repair and transcriptional regulation. The BRCA2 protein exists mainly in the nucleus. Here, we show that BRCA2 has a centrosomal localization signal (CLS), localizes also to centrosomes during S and early M phases, and may regulate duplication and separation of the centrosomes. Green fluorescent protein (GFP) fused to the CLS peptides from BRCA2 (GFP-CLS) localizes to centrosomes and prevents endogenous BRCA2 from localizing to centrosomes. In addition, expression of GFP-CLS in cells leads to the abnormal duplication and positioning of centrosomes, resulting in the generation of multinuclear cells. These results thus implicate BRCA2 in the regulation of the centrosome cycle, and provide new insight into the aneuploid nature of many breast cancers.

  6. Earth Abides Arsenic Biotransformations

    PubMed Central

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2015-01-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice. PMID:26778863

  7. Earth Abides Arsenic Biotransformations.

    PubMed

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  8. Earth Abides Arsenic Biotransformations

    NASA Astrophysics Data System (ADS)

    Zhu, Yong-Guan; Yoshinaga, Masafumi; Zhao, Fang-Jie; Rosen, Barry P.

    2014-05-01

    Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.

  9. Chloroquine alleviates etoposide-induced centrosome amplification by inhibiting CDK2 in adrenocortical tumor cells

    PubMed Central

    Chen, T-Y; Syu, J-S; Lin, T-C; Cheng, H-l; Lu, F-l; Wang, C-Y

    2015-01-01

    The antitumor drug etoposide (ETO) is widely used in treating several cancers, including adrenocortical tumor (ACT). However, when used at sublethal doses, tumor cells still survive and are more susceptible to the recurring tumor due to centrosome amplification. Here, we checked the effect of sublethal dose of ETO in ACT cells. Sublethal dose of ETO treatment did not induce cell death but arrested the ACT cells in G2/M phase. This resulted in centrosome amplification and aberrant mitotic spindle formation leading to genomic instability and cellular senescence. Under such conditions, Chk2, cyclin A/CDK2 and ERK1/2 were aberrantly activated. Pharmacological inactivation of Chk2, CDK2 or ERK1/2 or depletion of CDK2 or Chk2 inhibited the centrosome amplification in ETO-treated ACT cells. In addition, autophagy was activated by ETO and was required for ACT cell survival. Chloroquine, the autophagy inhibitor, reduced ACT cell growth and inhibited ETO-induced centrosome amplification. Chloroquine alleviated CDK2 and ERK, but not Chk2, activation and thus inhibited centrosome amplification in either ETO- or hydroxyurea-treated ACT cells. In addition, chloroquine also inhibited centrosome amplification in osteosarcoma U2OS cell lines when treated with ETO or hydroxyurea. In summary, we have demonstrated that chloroquine inhibited ACT cell growth and alleviated DNA damage-induced centrosome amplification by inhibiting CDK2 and ERK activity, thus preventing genomic instability and recurrence of ACT. PMID:26690546

  10. Force-balance model of suppression of multipolar division in cancer cells with extra centrosomes

    NASA Astrophysics Data System (ADS)

    Zhu, Jie

    2013-03-01

    Cancer cells often possess extra centrosomes which have the potential to cause cell death due to catastrophic multipolar division. Many cancer cells, however, are able to escape multipolar mitosis by clustering the extra centrosomes to form bipolar spindles. The mechanism of centrosome clustering is therefore of great interest to the development of anti-cancer drugs because the de-clustering of extra centrosomes provides an appealing way to eliminate cancer cells while keeping healthy cells intact. We present a physical model assuming 1) dynamic centrosomal microtubules interact with chromosomes by both pushing on chromosome arms and pulling along kinetochores; 2) these microtubules interact with force generators associated with actin/adhesion structures at the cell boundary; and 3) motors act on anti-parallel microtubules from different centrosomes. We find via computer simulations that chromosomes tend to aggregate near the cell center while centrosomes can be either clustered to form bipolar spindles or scattered to form multipolar spindles, depending on the strengths of relative forces, cell shape and adhesion geometry. The model predictions agree with data from cells plated on adhesive micropatterns and from biochemically or genetically perturbed cells. Furthermore, our model is able to explain various microtubule distributions in interphase cells on patterned substrates. This work was supported by NSF

  11. Cell cycle-dependent localization of CHK2 at centrosomes during mitosis

    PubMed Central

    2013-01-01

    Background Centrosomes function primarily as microtubule-organizing centres and play a crucial role during mitosis by organizing the bipolar spindle. In addition to this function, centrosomes act as reaction centers where numerous key regulators meet to control cell cycle progression. One of these factors involved in genome stability, the checkpoint kinase CHK2, was shown to localize at centrosomes throughout the cell cycle. Results Here, we show that CHK2 only localizes to centrosomes during mitosis. Using wild-type and CHK2−/− HCT116 human colon cancer cells and human osteosarcoma U2OS cells depleted for CHK2 with small hairpin RNAs we show that several CHK2 antibodies are non-specific and cross-react with an unknown centrosomal protein(s) by immunofluorescence. To characterize the localization of CHK2, we generated cells expressing inducible GFP-CHK2 and Flag-CHK2 fusion proteins. We show that CHK2 localizes to the nucleus in interphase cells but that a fraction of CHK2 associates with the centrosomes in a Polo-like kinase 1-dependent manner during mitosis, from early mitotic stages until cytokinesis. Conclusion Our findings demonstrate that a subpopulation of CHK2 localizes at the centrosomes in mitotic cells but not in interphase. These results are consistent with previous reports supporting a role for CHK2 in the bipolar spindle formation and the timely progression of mitosis. PMID:23680298

  12. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes

    PubMed Central

    Gryaznova, Yuliya; Caydasi, Ayse Koca; Malengo, Gabriele; Sourjik, Victor; Pereira, Gislene

    2016-01-01

    The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control. DOI: http://dx.doi.org/10.7554/eLife.14029.001 PMID:27159239

  13. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes.

    PubMed

    Gryaznova, Yuliya; Koca Caydasi, Ayse; Malengo, Gabriele; Sourjik, Victor; Pereira, Gislene

    2016-05-09

    The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control.

  14. Transplacental arsenic carcinogenesis in mice

    SciTech Connect

    Waalkes, Michael P. Liu, Jie; Diwan, Bhalchandra A.

    2007-08-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  15. THE CELLUAR METABOLISM OF ARSENIC

    EPA Science Inventory

    Because the methylation of arsenic produces intermediates and terminal products that exceed inorganic arsenic in potency as enzyme inhibitors, cytotoxins, and genotoxins, the methylation of arsenic is properly regarded as an activation process. The methylation of arsenic is an e...

  16. Centrosomal protein CP110 controls maturation of the mother centriole during cilia biogenesis

    PubMed Central

    Yadav, Sharda Prasad; Sharma, Neel Kamal; Liu, Chunqiao; Dong, Lijin; Li, Tiansen; Swaroop, Anand

    2016-01-01

    ABSTRACT Defects in cilia centrosomal genes cause pleiotropic clinical phenotypes, collectively called ciliopathies. Cilia biogenesis is initiated by the interaction of positive and negative regulators. Centriolar coiled coil protein 110 (CP110) caps the distal end of the mother centriole and is known to act as a suppressor to control the timing of ciliogenesis. Here, we demonstrate that CP110 promotes cilia formation in vivo, in contrast to findings in cultured cells. Cp110−/− mice die shortly after birth owing to organogenesis defects as in ciliopathies. Shh signaling is impaired in null embryos and primary cilia are reduced in multiple tissues. We show that CP110 is required for anchoring of basal bodies to the membrane during cilia formation. CP110 loss resulted in an abnormal distribution of core components of subdistal appendages (SDAs) and of recycling endosomes, which may be associated with premature extension of axonemal microtubules. Our data implicate CP110 in SDA assembly and ciliary vesicle docking, two requisite early steps in cilia formation. We suggest that CP110 has unique context-dependent functions, acting as both a suppressor and a promoter of ciliogenesis. PMID:26965371

  17. Chem I Supplement: Arsenic and Old Myths.

    ERIC Educational Resources Information Center

    Sarquis, Mickey

    1979-01-01

    Describes the history of arsenic, the properties of arsenic, production and uses of arsenicals, arsenic in the environment; toxic levels of arsenic, arsenic in the human body, and the Marsh Test. (BT)

  18. Activity of the AtMRP3 promoter in transgenic Arabidopsis thaliana and Nicotiana tabacum plants is increased by cadmium, nickel, arsenic, cobalt and lead but not by zinc and iron.

    PubMed

    Zientara, Katarzyna; Wawrzyńska, Anna; Lukomska, Jolanta; López-Moya, José Rafael; Liszewska, Frantz; Assunção, Ana G L; Aarts, Mark G M; Sirko, Agnieszka

    2009-02-05

    Characterization of the function, regulation and metal-specificity of metal transporters is one of the basic steps needed for the understanding of transport and accumulation of toxic metals and metalloids by plants. In this work GUS was used as a reporter for monitoring the activity of the promoter of the AtMRP3 gene from Arabidopsis thaliana, a gene encoding an ABC-transporter, expression of which is induced by heavy metals. The AtMRP3 promoter-GUS fusion expression cassette was introduced into the genome of two model plants, A. thaliana and Nicotiana tabacum. The promoter induces GUS activity in the roots as well as in the shoots upon metal exposure. Similar responses of the AtMRP3 promoter to the presence of the selected metals was observed in both plant species. Cadmium, nickel, arsenic, cobalt and lead strongly activated the transcription of the reporter gene, while zinc and iron had no impact. The AtMRP3 promoter thus seems to be a useful new tool in designing plants that can be used for biomonitoring of environmental contaminations.

  19. Centriole splitting caused by loss of the centrosomal linker protein C-NAP1 reduces centriolar satellite density and impedes centrosome amplification.

    PubMed

    Flanagan, Anne-Marie; Stavenschi, Elena; Basavaraju, Shivakumar; Gaboriau, David; Hoey, David A; Morrison, Ciaran G

    2017-03-15

    Duplication of the centrosomes is a tightly regulated process. Abnormal centrosome numbers can impair cell division and cause changes in how cells migrate. Duplicated centrosomes are held together by a proteinaceous linker made up of rootletin filaments anchored to the centrioles by C-NAP1. This linker is removed in a NEK2A kinase-dependent manner as mitosis begins. To explore C-NAP1 activities in regulating centrosome activities, we used genome editing to ablate it. C-NAP1-null cells were viable and had an increased frequency of premature centriole separation, accompanied by reduced density of the centriolar satellites, with reexpression of C-NAP1 rescuing both phenotypes. We found that the primary cilium, a signaling structure that arises from the mother centriole docked to the cell membrane, was intact in the absence of C-NAP1, although components of the ciliary rootlet were aberrantly localized away from the base of the cilium. C-NAP1-deficient cells were capable of signaling through the cilium, as determined by gene expression analysis after fluid flow-induced shear stress and the relocalization of components of the Hedgehog pathway. Centrosome amplification induced by DNA damage or by PLK4 or CDK2 overexpression was markedly reduced in the absence of C-NAP1. We conclude that centriole splitting reduces the local density of key centriolar precursors to impede overduplication.

  20. A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface.

    PubMed

    Gupta, Gagan D; Coyaud, Étienne; Gonçalves, João; Mojarad, Bahareh A; Liu, Yi; Wu, Qianzhu; Gheiratmand, Ladan; Comartin, David; Tkach, Johnny M; Cheung, Sally W T; Bashkurov, Mikhail; Hasegan, Monica; Knight, James D; Lin, Zhen-Yuan; Schueler, Markus; Hildebrandt, Friedhelm; Moffat, Jason; Gingras, Anne-Claude; Raught, Brian; Pelletier, Laurence

    2015-12-03

    The centrosome is the primary microtubule organizing center of the cells and templates the formation of cilia, thereby operating at a nexus of critical cellular functions. Here, we use proximity-dependent biotinylation (BioID) to map the centrosome-cilium interface; with 58 bait proteins we generate a protein topology network comprising >7,000 interactions. Analysis of interaction profiles coupled with high resolution phenotypic profiling implicates a number of protein modules in centriole duplication, ciliogenesis, and centriolar satellite biogenesis and highlights extensive interplay between these processes. By monitoring dynamic changes in the centrosome-cilium protein interaction landscape during ciliogenesis, we also identify satellite proteins that support cilia formation. Systematic profiling of proximity interactions combined with functional analysis thus provides a rich resource for better understanding human centrosome and cilia biology. Similar strategies may be applied to other complex biological structures or pathways.

  1. Drosophila parthenogenesis: A tool to decipher centrosomal vs acentrosomal spindle assembly pathways

    SciTech Connect

    Riparbelli, Maria Giovanna; Callaini, Giuliano

    2008-04-15

    Development of unfertilized eggs in the parthenogenetic strain K23-O-im of Drosophila mercatorum requires the stochastic interactions of self-assembled centrosomes with the female chromatin. In a portion of the unfertilized eggs that do not assemble centrosomes, microtubules organize a bipolar anastral mitotic spindle around the chromatin like the one formed during the first female meiosis, suggesting that similar pathways may be operative. In the cytoplasm of eggs in which centrosomes do form, monastral and biastral spindles are found. Analysis by laser scanning confocal microscopy suggests that these spindles are derived from the stochastic interaction of astral microtubules directly with kinetochore regions or indirectly with kinetochore microtubules. Our findings are consistent with the idea that mitotic spindle assembly requires both acentrosomal and centrosomal pathways, strengthening the hypothesis that astral microtubules can dictate the organization of the spindle by capturing kinetochore microtubules.

  2. The ecology of arsenic

    USGS Publications Warehouse

    Oremland, Ronald S.; Stolz, John F.

    2003-01-01

    Arsenic is a metalloid whose name conjures up images of murder. Nonetheless, certain prokaryotes use arsenic oxyanions for energy generation, either by oxidizing arsenite or by respiring arsenate. These microbes are phylogenetically diverse and occur in a wide range of habitats. Arsenic cycling may take place in the absence of oxygen and can contribute to organic matter oxidation. In aquifers, these microbial reactions may mobilize arsenic from the solid to the aqueous phase, resulting in contaminated drinking water. Here we review what is known about arsenic-metabolizing bacteria and their potential impact on speciation and mobilization of arsenic in nature.

  3. Cep76, a centrosomal protein that specifically restrains centriole reduplication.

    PubMed

    Tsang, William Y; Spektor, Alexander; Vijayakumar, Sangeetha; Bista, Bigyan R; Li, Ji; Sanchez, Irma; Duensing, Stefan; Dynlacht, Brian D

    2009-05-01

    Centrosomes duplicate only once per cell cycle, but the controls that govern this process are largely unknown. We have identified Cep76, a centriolar protein that interacts with CP110. Cep76 is expressed at low levels in G1 and is induced in S and G2 phase, during which point centrioles have already commenced duplication. Interestingly, depletion of Cep76 drives the accumulation of centriolar intermediates in certain types of cancer cells. Enforced Cep76 expression specifically inhibits centriole amplification in cells undergoing multiple rounds of duplication without preventing the formation of extra procentrioles from a parental template. Furthermore, elevated levels of Cep76 do not affect normal centriole duplication. Thus, Cep76 helps limit duplication to once per cell cycle. Our findings also point to mechanistic differences between normal duplication and aberrant centriole amplification, as well as distinctions between diverse modes of amplification.

  4. Centrosome and microtubule instability in aging Drosophila cells

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Chakrabarti, A.; Hedrick, J.

    1999-01-01

    Several cytoskeletal changes are associated with aging which includes alterations in muscle structure leading to muscular atrophy, and weakening of the microtubule network which affects cellular secretion and maintenance of cell shape. Weakening of the microtubule network during meiosis in aging oocytes can result in aneuploidy or trisomic zygotes with increasing maternal age. Imbalances of cytoskeletal organization can lead to disease such as Alzheimer's, muscular disorders, and cancer. Because many cytoskeletal diseases are related to age we investigated the effects of aging on microtubule organization in cell cultures of the Drosophila cell model system (Schneider S-1 and Kc23 cell lines). This cell model is increasingly being used as an alternative system to mammalian cell cultures. Drosophila cells are amenable to genetic manipulations and can be used to identify and manipulate genes which are involved in the aging processes. Immunofluorescence, scanning, and transmission electron microscopy were employed for the analysis of microtubule organizing centers (centrosomes) and microtubules at various times after subculturing cells in fresh medium. Our results reveal that centrosomes and the microtubule network becomes significantly affected in aging cells after 5 days of subculture. At 5-14 days of subculture, 1% abnormal out of 3% mitoses were noted which were clearly distinguishable from freshly subcultured control cells in which 3% of cells undergo normal mitosis with bipolar configurations. Microtubules are also affected in the midbody during cell division. The midbody in aging cells becomes up to 10 times longer when compared with midbodies in freshly subcultured cells. During interphase, microtubules are often disrupted and disorganized, which may indicate improper function related to transport of cell organelles along microtubules. These results are likely to help explain some cytoskeletal disorders and diseases related to aging.

  5. Cyclin E in centrosome duplication and reduplication in sea urchin zygotes.

    PubMed

    Schnackenberg, Bradley J; Marzluff, William F; Sluder, Greenfield

    2008-12-01

    When protein synthesis is completely blocked from before fertilization, the sea urchin zygote arrests in first S phase and the paternal centrosome reduplicates multiple times. However, when protein synthesis is blocked starting in prophase of first mitosis, the zygote divides and the blastomeres arrest in a G1-like state. The centrosome inherited from this mitosis duplicates only once in each blastomere for reasons that are not understood. The late G1 rise in cyclin E/cdk2 kinase activity initiates centrosome duplication in mammalian cells and its activity is needed for centrosome duplication in Xenopus egg extracts. Since the half-time for cyclin E turnover is normally approximately 1 h in sea urchin zygotes, the different behaviors of centrosomes during G1 and S phase arrests could be due to differential losses of cyclin E and its associated kinase activities at these two arrest points. To better understand the mechanisms that limit centrosome duplication, we characterize the levels of cyclin E and its associated kinase activity at the S phase and G1 arrest points. We first demonstrate that cyclin E/cdk2 kinase activity is required for centrosome duplication and reduplication in sea urchin zygotes. Next we find that cyclin E levels and cyclin E/cdk2 kinase activities are both constitutively and equivalently elevated during both the S phase and G1 arrests. This indicates that centrosome duplication during the G1 arrest is limited by a block to reduplication under conditions permissive for duplication. The cytoplasmic conditions of S phase, however, abrogate this block to reduplication.

  6. The Role of Oncogene/Tumor Suppressor Interaction with the Centrosome Protein Pericentrin in Prostate Tumorigenesis

    DTIC Science & Technology

    2007-12-01

    demonstrated that MBd were found in a number of different cancer cell lines but rarely found in normal dividing, differentiating , or telomerase...immortalized cells (Fig. 1). MBds were also found in stem cells in many human and mouse tissues (e.g. the bulge of hair follicles, the spermatogonia layer of...that the two daughter cells can be differentiated based one the age of the centrosome ages (Fig. 4). Like DNA, the centrosome is replicated in a semi

  7. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts.

    PubMed

    Ohshima, Susumu; Seyama, Atsushi

    2012-09-01

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4 days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2 weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3 days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells.

  8. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity.

    PubMed

    Oshimori, Naoki; Ohsugi, Miho; Yamamoto, Tadashi

    2006-10-01

    Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.

  9. p53 Dependent Centrosome Clustering Prevents Multipolar Mitosis in Tetraploid Cells

    PubMed Central

    Yi, Qiyi; Zhao, Xiaoyu; Huang, Yun; Ma, Tieliang; Zhang, Yingyin; Hou, Heli; Cooke, Howard J.; Yang, Da-Qing; Wu, Mian; Shi, Qinghua

    2011-01-01

    Background p53 abnormality and aneuploidy often coexist in human tumors, and tetraploidy is considered as an intermediate between normal diploidy and aneuploidy. The purpose of this study was to investigate whether and how p53 influences the transformation from tetraploidy to aneuploidy. Principal Findings Live cell imaging was performed to determine the fates and mitotic behaviors of several human and mouse tetraploid cells with different p53 status, and centrosome and spindle immunostaining was used to investigate centrosome behaviors. We found that p53 dominant-negative mutation, point mutation, or knockout led to a 2∼ 33-fold increase of multipolar mitosis in N/TERT1, 3T3 and mouse embryonic fibroblasts (MEFs), while mitotic entry and cell death were not significantly affected. In p53-/- tetraploid MEFs, the ability of centrosome clustering was compromised, while centrosome inactivation was not affected. Suppression of RhoA/ROCK activity by specific inhibitors in p53-/- tetraploid MEFs enhanced centrosome clustering, decreased multipolar mitosis from 38% to 20% and 16% for RhoA and ROCK, respectively, while expression of constitutively active RhoA in p53+/+ tetraploid 3T3 cells increased the frequency of multipolar mitosis from 15% to 35%. Conclusions p53 could not prevent tetraploid cells entering mitosis or induce tetraploid cell death. However, p53 abnormality impaired centrosome clustering and lead to multipolar mitosis in tetraploid cells by modulating the RhoA/ROCK signaling pathway. PMID:22076149

  10. Promotion

    PubMed Central

    Alam, Hasan B.

    2013-01-01

    This article gives an overview of the promotion process in an academic medical center. A description of different promotional tracks, tenure and endowed chairs, and the process of submitting an application is provided. Finally, some practical advice about developing skills and attributes that can help with academic growth and promotion is dispensed. PMID:24436683

  11. A centrosome interactome provides insight into organelle assembly and reveals a non-duplication role for Plk4

    PubMed Central

    Galletta, Brian J.; Fagerstrom, Carey J.; Schoborg, Todd A.; McLamarrah, Tiffany A.; Ryniawec, John M.; Buster, Daniel W.; Slep, Kevin C.; Rogers, Gregory C.; Rusan, Nasser M.

    2016-01-01

    The centrosome is the major microtubule-organizing centre of many cells, best known for its role in mitotic spindle organization. How the proteins of the centrosome are accurately assembled to carry out its many functions remains poorly understood. The non-membrane-bound nature of the centrosome dictates that protein–protein interactions drive its assembly and functions. To investigate this massive macromolecular organelle, we generated a ‘domain-level' centrosome interactome using direct protein–protein interaction data from a focused yeast two-hybrid screen. We then used biochemistry, cell biology and the model organism Drosophila to provide insight into the protein organization and kinase regulatory machinery required for centrosome assembly. Finally, we identified a novel role for Plk4, the master regulator of centriole duplication. We show that Plk4 phosphorylates Cep135 to properly position the essential centriole component Asterless. This interaction landscape affords a critical framework for research of normal and aberrant centrosomes. PMID:27558293

  12. Arsenic in Food

    MedlinePlus

    ... been measuring total arsenic concentrations in foods, including rice and juices, through its Total Diet Study program ... found in certain food and beverage products, including rice, fruit juices and juice concentrates. How does arsenic ...

  13. Arsenic Treatment Technology Demonstrations

    EPA Pesticide Factsheets

    EPA’s research for the new Arsenic Rule focused on the development and evaluation of innovative methods and cost-effective technologies for improving the assessment and control of arsenic contamination.

  14. Arsenic Trioxide Injection

    MedlinePlus

    Arsenic trioxide is used to treat acute promyelocytic leukemia (APL; a type of cancer in which there ... worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications called ...

  15. Fact Sheet on Arsenic

    EPA Pesticide Factsheets

    Arsenic is a naturally occurring element that is found in combination with either inorganic or organic substances to form many different compounds. Inorganic arsenic compounds are found in soils, sediments, and groundwater.

  16. Control of ciliogenesis by FOR20, a novel centrosome and pericentriolar satellite protein.

    PubMed

    Sedjaï, Fatima; Acquaviva, Claire; Chevrier, Véronique; Chauvin, Jean-Paul; Coppin, Emilie; Aouane, Aicha; Coulier, François; Tolun, Aslihan; Pierres, Michel; Birnbaum, Daniel; Rosnet, Olivier

    2010-07-15

    Cilia and flagella are evolutionary conserved organelles that generate fluid movement and locomotion, and play roles in chemosensation, mechanosensation and intracellular signalling. In complex organisms, cilia are highly diversified, which allows them to perform various functions; however, they retain a 9+0 or 9+2 microtubules structure connected to a basal body. Here, we describe FOR20 (FOP-related protein of 20 kDa), a previously uncharacterized and highly conserved protein that is required for normal formation of a primary cilium. FOR20 is found in PCM1-enriched pericentriolar satellites and centrosomes. FOR20 contains a Lis1-homology domain that promotes self-interaction and is required for its satellite localization. Inhibition of FOR20 expression in RPE1 cells decreases the percentage of ciliated cells and the length of the cilium on ciliated cells. It also modifies satellite distribution, as judged by PCM1 staining, and displaces PCM1 from a detergent-insoluble to a detergent-soluble fraction. The subcellular distribution of satellites is dependent on both microtubule integrity and molecular motor activities. Our results suggest that FOR20 could be involved in regulating the interaction of PCM1 satellites with microtubules and motors. The role of FOR20 in primary cilium formation could therefore be linked to its function in regulating pericentriolar satellites. A role for FOR20 at the basal body itself is also discussed.

  17. HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells.

    PubMed

    Breuer, Manuel; Kolano, Agnieszka; Kwon, Mijung; Li, Chao-Chin; Tsai, Ting-Fen; Pellman, David; Brunet, Stéphane; Verlhac, Marie-Hélène

    2010-12-27

    In contrast to somatic cells, formation of acentriolar meiotic spindles relies on the organization of microtubules (MTs) and MT-organizing centers (MTOCs) into a stable bipolar structure. The underlying mechanisms are still unknown. We show that this process is impaired in hepatoma up-regulated protein (Hurp) knockout mice, which are viable but female sterile, showing defective oocyte divisions. HURP accumulates on interpolar MTs in the vicinity of chromosomes via Kinesin-5 activity. By promoting MT stability in the spindle central domain, HURP allows efficient MTOC sorting into distinct poles, providing bipolarity establishment and maintenance. Our results support a new model for meiotic spindle assembly in which HURP ensures assembly of a central MT array, which serves as a scaffold for the genesis of a robust bipolar structure supporting efficient chromosome congression. Furthermore, HURP is also required for the clustering of extra centrosomes before division, arguing for a shared molecular requirement of MTOC sorting in mammalian meiosis and cancer cell division.

  18. ARSENIC TREATMENT TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the state-of-the-art technology for removal of arsenic from drinking water. Presentation also includes results of several EPA field studies on removal of arsenic from existing arsenic removal plants and key results from several EPA sponsored research st...

  19. ARSENIC REMOVAL TECHNOLOGY

    EPA Science Inventory

    Presentation will discuss the state-of-art technology for removal of arsenic from drinking water. Presentation includes results of several EPA field studies on removal of arsenic from existing arsenic removal plants and key results from several EPA sponsored research studies. T...

  20. ARSENIC SOURCES AND ASSESSMENT

    EPA Science Inventory

    Recent research has identified a number of potential and current links between environmental arsenic releases and the management of operational and abandoned landfills. Many landfills will receive an increasing arsenic load due to the disposal of arsenic-bearing solid residuals ...

  1. Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells.

    PubMed

    Roth, Therese M; Chiang, C-Y Ason; Inaba, Mayu; Yuan, Hebao; Salzmann, Viktoria; Roth, Caitlin E; Yamashita, Yukiko M

    2012-04-01

    Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions.

  2. Metformin inhibits age-related centrosome amplification in Drosophila midgut stem cells through AKT/TOR pathway.

    PubMed

    Na, Hyun-Jin; Park, Joung-Sun; Pyo, Jung-Hoon; Jeon, Ho-Jun; Kim, Young-Shin; Arking, Robert; Yoo, Mi-Ae

    2015-07-01

    We delineated the mechanism regulating the inhibition of centrosome amplification by metformin in Drosophila intestinal stem cells (ISCs). Age-related changes in tissue-resident stem cells may be closely associated with tissue aging and age-related diseases, such as cancer. Centrosome amplification is a hallmark of cancers. Our recent work showed that Drosophila ISCs are an excellent model for stem cell studies evaluating age-related increase in centrosome amplification. Here, we showed that metformin, a recognized anti-cancer drug, inhibits age- and oxidative stress-induced centrosome amplification in ISCs. Furthermore, we revealed that this effect is mediated via down-regulation of AKT/target of rapamycin (TOR) activity, suggesting that metformin prevents centrosome amplification by inhibiting the TOR signaling pathway. Additionally, AKT/TOR signaling hyperactivation and metformin treatment indicated a strong correlation between DNA damage accumulation and centrosome amplification in ISCs, suggesting that DNA damage might mediate centrosome amplification. Our study reveals the beneficial and protective effects of metformin on centrosome amplification via AKT/TOR signaling modulation. We identified a new target for the inhibition of age- and oxidative stress-induced centrosome amplification. We propose that the Drosophila ISCs may be an excellent model system for in vivo studies evaluating the effects of anti-cancer drugs on tissue-resident stem cell aging.

  3. The arsenic-based cure of acute promyelocytic leukemia promotes cytoplasmic sequestration of PML and PML/RARA through inhibition of PML body recycling.

    PubMed

    Lång, Emma; Grudic, Amra; Pankiv, Serhiy; Bruserud, Oystein; Simonsen, Anne; Bjerkvig, Rolf; Bjørås, Magnar; Bøe, Stig Ove

    2012-07-26

    Arsenic in the form of arsenic trioxide (ATO) is used as a therapeutic drug for treatment of acute promyelocytic leukemia (APL). The mechanism by which this agent cures this disease was previously shown to involve direct interactions between ATO and the promyelocytic leukemia protein (PML), as well as accelerated degradation of the APL-associated fusion oncoprotein PML/retinoic acid receptor α (RARA). Here we investigated the fate of PML-generated nuclear structures called PML bodies in ATO-treated cells. We found that ATO inhibits formation of progeny PML bodies while it stabilizes cytoplasmic precursor compartments, referred to as cytoplasmic assemblies of PML and nucleoporins (CyPNs), after cell division. This block in PML body recycling is readily detected at pharmacologic relevant ATO concentrations (0.02-0.5μM) that do not cause detectable cell-cycle defects, and it does not require modification of PML by SUMOylation. In addition, PML and PML/RARA carrying mutations previously identified in ATO-resistant APL patients are impeded in their ability to become sequestered within CyPNs. Thus, ATO may inhibit nuclear activities of PML and PML/RARA in postmitotic cells through CyPN-dependent cytoplasmic sequestration.

  4. Case studies--arsenic.

    PubMed

    Chou, C H Selene J; De Rosa, Christopher T

    2003-08-01

    Arsenic is found naturally in the environment. People may be exposed to arsenic by eating food, drinking water, breathing air, or by skin contact with soil or water that contains arsenic. In the U.S., the diet is a predominant source of exposure for the general population with smaller amounts coming from drinking water and air. Children may also be exposed to arsenic because of hand to mouth contact or eating dirt. In addition to the normal levels of arsenic in air, water, soil, and food, people could by exposed to higher levels in several ways such as in areas containing unusually high natural levels of arsenic in rocks which can lead to unusually high levels of arsenic in soil or water. People living in an area like this could take in elevated amounts of arsenic in drinking water. Workers in an occupation that involves arsenic production or use (for example, copper or lead smelting, wood treatment, pesticide application) could be exposed to elevated levels of arsenic at work. People who saw or sand arsenic-treated wood could inhale/ingest some of the sawdust which contains high levels of arsenic. Similarly, when pressure-treated wood is burned, high levels of arsenic could be released in the smoke. In agricultural areas where arsenic pesticides were used on crops the soil could contain high levels of arsenic. Some hazardous waste sites contain large quantities of arsenic. Arsenic ranks #1 on the ATSDR/EPA priority list of hazardous substances. Arsenic has been found in at least 1,014 current or former NPL sites. At the hazardous waster sites evaluated by ATSDR, exposure to arsenic in soil predominated over exposure to water, and no exposure to air had been recorded. However, there is no information on morbidity or mortality from exposure to arsenic in soil at hazardous waste sites. Exposure assessment, community and tribal involvement, and evaluation and surveillance of health effects are among the ATSDR future Superfund research program priority focus areas

  5. Arsenic pollution sources.

    PubMed

    Garelick, Hemda; Jones, Huw; Dybowska, Agnieszka; Valsami-Jones, Eugenia

    2008-01-01

    Arsenic is a widely dispersed element in the Earth's crust and exists at an average concentration of approximately 5 mg/kg. There are many possible routes of human exposure to arsenic from both natural and anthropogenic sources. Arsenic occurs as a constituent in more than 200 minerals, although it primarily exists as arsenopyrite and as a constituent in several other sulfide minerals. The introduction of arsenic into drinking water can occur as a result of its natural geological presence in local bedrock. Arsenic-containing bedrock formations of this sort are known in Bangladesh, West Bengal (India), and regions of China, and many cases of endemic contamination by arsenic with serious consequences to human health are known from these areas. Significant natural contamination of surface waters and soil can arise when arsenic-rich geothermal fluids come into contact with surface waters. When humans are implicated in causing or exacerbating arsenic pollution, the cause can almost always be traced to mining or mining-related activities. Arsenic exists in many oxidation states, with arsenic (III) and (V) being the most common forms. Similar to many metalloids, the prevalence of particular species of arsenic depends greatly on the pH and redox conditions of the matrix in which it exists. Speciation is also important in determining the toxicity of arsenic. Arsenic minerals exist in the environment principally as sulfides, oxides, and phosphates. In igneous rocks, only those of volcanic origin are implicated in high aqueous arsenic concentrations. Sedimentary rocks tend not to bear high arsenic loads, and common matrices such as sands and sandstones contain lower concentrations owing to the dominance of quartz and feldspars. Groundwater contamination by arsenic arises from sources of arsenopyrite, base metal sulfides, realgar and orpiment, arsenic-rich pyrite, and iron oxyhydroxide. Mechanisms by which arsenic is released from minerals are varied and are accounted for by

  6. Mustard gas surrogate, 2-chloroethyl ethylsulfide (2-CEES), induces centrosome amplification and aneuploidy in human and mouse cells : 2-CEES induces centrosome amplification and chromosome instability.

    PubMed

    Bennett, Richard A; Behrens, Elizabeth; Zinn, Ashtyn; Duncheon, Christian; Lamkin, Thomas J

    2014-08-01

    Mustard gas is a simple molecule with a deadly past. First used as a chemical weapon in World War I, its simple formulation has raised concerns over its use by terrorist organizations and unstable governments. Mustard gas is a powerful vesicant and alkylating agent that causes painful blisters on epithelial surfaces and increases the incidence of cancer in those exposed. The mechanism of mustard gas toxicity and tumorigenesis is not well understood but is thought to be mediated by its ability to induce oxidative stress and DNA damage. Interestingly, several proteins that have been shown to either be targets of mustard gas or mediate mustard gas toxicity have also been shown to regulate centrosome duplication. Centrosomes are small nonmembrane-bound organelles that direct the segregation of chromosomes during mitosis through the formation of the bipolar mitotic spindle. Cells with more or less than two centrosomes during mitosis can segregate their chromosomes unequally, resulting in chromosome instability, a common phenotype of cancer cells. In our studies, we show that subtoxic levels of 2-chloroethyl ethylsulfide (2-CEES), a mustard gas analog, induce centrosome amplification and chromosome instability in cells, which may hasten the mutation rate necessary for tumorigenesis. These data may explain why those exposed to mustard gas exhibit higher incidences of cancer than unexposed individuals of the same cohort.

  7. Arsenic: homicidal intoxication

    SciTech Connect

    Massey, E.W.; Wold, D.; Heyman, A.

    1984-07-01

    Arsenic-induced deaths have been known to occur from accidental poisoning, as a result of medical therapy, and from intentional poisonings in homicide and suicide. Twenty-eight arsenic deaths in North Carolina from 1972 to 1982 included 14 homicides and seven suicides. In addition, 56 hospitalized victims of arsenic poisoning were identified at Duke Medical Center from 1970 to 1980. Four case histories of arsenic poisoning in North Carolina are presented and clinical manifestations are discussed. In view of the continued widespread use of arsenic in industry and agriculture, and its ubiquity in the environment, arsenic poisoning will continue to occur. A need for knowledge of its toxicity and of the clinical manifestations of acute and chronic arsenic poisoning will also continue.

  8. Arsenic geochemistry and health.

    PubMed

    Duker, Alfred A; Carranza, E J M; Hale, Martin

    2005-07-01

    Arsenic occurs naturally in the earth's crust and is widely distributed in the environment. Natural mineralization and activities of microorganisms enhance arsenic mobilization in the environment but human intervention has exacerbated arsenic contamination. Although arsenic is useful for industrial, agricultural, medicinal and other purposes, it exerts a toxic effect in a variety of organisms, including humans. Arsenic exposure may not only affect and disable organs of the body, especially the skin, but may also interfere with the proper functioning of the immune system. This paper, therefore, generally highlights the toxic effects of arsenic as well as its mobilization in the natural environment and possible controls. It also briefly attempts to outline the impact of arsenic on the immune system, whose alteration could lead to viral/bacterial infections.

  9. Arsenic removal from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2007-07-24

    Methods for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical methods for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A method for continuous removal of arsenic from water is provided. Also provided is a method for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  10. The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster

    PubMed Central

    1993-01-01

    A popular hypothesis for centrosome separation during spindle formation and anaphase is that pushing forces are generated between interacting microtubules (MTs) of opposite polarity, derived from opposing centrosomes. However, this mechanism is not consistent with the observation that centrosomes in vertebrate cells continue to separate during prometaphase when their MT arrays no longer overlap (i.e., during anaphase-like prometaphase). To evaluate whether centrosome separation during prophase/prometaphase, anaphase-like prometaphase and anaphase is mediated by a common mechanism we compared their behavior in vivo at a high spatial and temporal resolution. We found that the two centrosomes possess a considerable degree of independence throughout all stages of separation, i.e., the direction and migration rate of one centrosome does not impart a predictable behavior to the other, and both exhibit frequent and rapid (4-6 microns/min) displacements toward random points within the cell including the other centrosome. The kinetic behavior of individual centrosomes as they separate to form the spindle is the same whether or not their MT arrays overlap. The characteristics examined include, e.g., total displacement per minute, the vectorial rate of motion toward and away from the other centrosome, the frequency of toward and away motion as well as motion not contributing to separation, and the rate contributed by each centrosome to the separation process. By contrast, when compared with prometaphase, anaphase centrosomes separated at significantly faster rates even though the average vectorial rate of motion away from the other centrosome was the same as in prophase/prometaphase. The difference in separation rates arises because anaphase centrosomes spend less time moving toward one another than in prophase/prometaphase, and at a significantly slower rate. From our data we conclude that the force for centrosome separation during vertebrate spindle formation is not

  11. Tetra-arsenic tetra-sulfide (As4S 4) promotes apoptosis in retinoid acid -resistant human acute promyelocytic leukemic NB4-R1 cells through downregulation of SET protein.

    PubMed

    Liu, Yanfeng; He, Pengcheng; Liu, Feng; Zhou, Naicen; Cheng, Xiaoyan; Shi, Lili; Zhu, Huachao; Zhao, Jing; Wang, Yuan; Zhang, Mei

    2014-04-01

    Tetra-arsenic tetra-sulfide (As4S4) is an arsenic compound with antitumor activity, especially in acute promyelocytic leukemia (APL) that are resistant to retinoic acid (RA). Although recent studies have revealed that the therapeutic action of As4S4 is closely associated with the induction of cellular apoptosis, the exact molecular mechanism underlying this action in RA-resistant APL remains to be clarified. In this study, we found that As4S4-induced apoptosis was accompanied by reduced mRNA and protein expression of SET gene in RA-resistant NB4-R1 cells. Moreover, RNAi knockdown of SET gene further promoted As4S4-induced apoptosis, while SET overexpression recovered the cell viability, suggesting that As4S4 induces apoptosis through the reduction of SET protein in NB4-R1 cells. We also observed that the knockdown of SET gene resulted in the upregulation of protein phosphatase 2 (PP2A) expression and the downregulation of promyelocytic leukemia and retinoic acid receptor α fusion gene (PML-RARα) expression, which were enhanced by As4S4 treatments. By contrast, overexpression of SET gene resulted in PP2A downregulation and PML-RARα upregulation, which were abolished by As4S4 pretreatment. Since PP2A is a proapoptotic factor and PML-RARα is an antiapoptotic factor, our results suggest that As4S4-induced apoptosis in RA-resistant NB4-R1 cells is through the downregulation of SET protein expression, which, in turn, increases PP2A and reduces PML-RARα expressions to lead to cell apoptosis.

  12. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE METHYLATION OF ARSENICALS

    EPA Science Inventory

    Metabolic conversion of inorganic arsenic into methylated products is a multistep process that yields mono, di, and trimethylated arsenicals. In recent years, it has become apparent that formation of methylated metabolites of inorganic arsenic is not necessarily a detoxification...

  13. High LET Radiation Amplifies Centrosome Overduplication Through a Pathway of γ-Tubulin Monoubiquitination

    SciTech Connect

    Shimada, Mikio; Hirayama, Ryoichi; Komatsu, Kenshi

    2013-06-01

    Purpose: Radiation induces centrosome overduplication, leading to mitotic catastrophe and tumorigenesis. Because mitotic catastrophe is one of the major tumor cell killing factors in high linear energy transfer (LET) radiation therapy and long-term survivors from such treatment have a potential risk of secondary tumors, we investigated LET dependence of radiation-induced centrosome overduplication and the underlying mechanism. Methods and Materials: Carbon and iron ion beams (13-200 keV/μm) and γ-rays (0.5 keV/μm) were used as radiation sources. To count centrosomes after IR exposure, human U2OS and mouse NIH3T3 cells were immunostained with antibodies of γ-tubulin and centrin 2. Similarly, Nbs1-, Brca1-, Ku70-, and DNA-PKcs-deficient mouse cells and their counterpart wild-type cells were used for measurement of centrosome overduplication. Results: The number of excess centrosome-containing cells at interphase and the resulting multipolar spindle at mitosis were amplified with increased LET, reaching a maximum level of 100 keV/μm, followed by sharp decrease in frequency. Interestingly, Ku70 and DNA-PKcs deficiencies marginally affected the induction of centrosome overduplication, whereas the cell killings were significantly enhanced. This was in contrast to observation that high LET radiation significantly enhanced frequencies of centrosome overduplication in Nbs1- and Brca1-deficient cells. Because NBS1/BRCA1 is implicated in monoubiquitination of γ-tubulin, we subsequently tested whether it is affected by high LET radiation. As a result, monoubiquitination of γ-tubulin was abolished in 48 to 72 hours after exposure to high LET radiation, although γ-ray exposure slightly decreased it 48 hours postirradiation and was restored to a normal level at 72 hours. Conclusions: High LET radiation significantly reduces NBS1/BRCA1-mediated monoubiquitination of γ-tubulin and amplifies centrosome overduplication with a peak at 100 keV/μm. In contrast, Ku70 and DNA

  14. Motility and centrosomal organization during sea urchin and mouse fertilization

    NASA Technical Reports Server (NTRS)

    Schatten, Heide; Schatten, Gerald

    1986-01-01

    It is noted that microfilaments are essential for incorporation of sperm in sea urchins and for pronuclear apposition in mice. The ability of sea urchin sperm to fertilize eggs is lowered by latrunculin, giving evidence that acrosomal microfilaments are of importance to the process of fertilization. Due to the uncertainty regarding the presence of microfilaments in various mammalian sperm, it is interesting that latrunculin does not noticeably affect the ability of mouse sperm to fertilize oocytes. The movements of the sperm and egg nuclei at the time of sea urchin fertilization are dependent on microtubules arranged into a radial monastral array (the sperm aster). In the mouse egg, microtubule activity is also required during pronuclear apposition, but they are arranged by a number of egg cytoplasmic sites. Results of the investigations show that both microtubules and microfilaments are necessary for the successful completion of fertilization in both mice and sea urchins, but at different stages. Also, it is demonstrated that centrosomes are contributed by the sperm in the process of sea urchin fertilization, but in mammals they may be inherited maternally.

  15. Using sea urchin gametes and zygotes to investigate centrosome duplication.

    PubMed

    Sluder, Greenfield

    2016-01-01

    Centriole structure and function in the sea urchin zygote parallel those in mammalian somatic cells. Here, I briefly introduce the properties and attributes of the sea urchin system that make it an attractive platform for the study of centrosome and centriole duplication. These attributes apply to all echinoderms readily available from commercial suppliers: sea urchins, sand dollars, and starfish. I list some of the practical aspects of the system that make it a cost- and time-effective system for experimental work and then list properties that are a "tool kit" that can be used to conduct studies that would not be practical, or in some cases not possible, with mammalian somatic cells. Since centrioles organize and localize the pericentriolar material that nucleates the astral arrays of microtubules (Bobinnec et al. in J Cell Biol 143(6):1575-1589, 1998), the pattern of aster duplication over several cell cycles can be used as a reliable measure for centriole duplication (Sluder and Rieder in J Cell Biol 100(3):887-896, 1985). Descriptions of the methods my laboratory has used to handle and image echinoderm zygotes are reviewed in Sluder et al. (Methods Cell Biol 61:439-472, 1999). Also included is a bibliography of papers that describe additional methods.

  16. Laser irradiation of centrosomes in newt eosinophils: evidence of centriole role in motility

    SciTech Connect

    Koonce, M.P.; Cloney, R.A.; Berns, M.W.

    1984-06-01

    Newt eosinophils are motile granulated leukocytes that uniquely display a highly visible centrosomal area. Electron microscope and tubulin antibody fluorescence confirms the presence of centrioles, pericentriolar material, and radiating microtubules within this visible area. Actin antibodies intensely stain the advancing cell edges and tail but only weakly stain pseudopods being withdrawn into the cell. Randomly activated eosinophils follow a roughly consistent direction with an average rate of 22.5 ..mu..m/min. The position of the centrosome is always located between the trailing cell nucleus and advancing cell edge. If the cell extends more than one pseudopod, the one closest to or containing the centrosome is always the one in which motility continues. Laser irradiation of the visible centrosomal area resulted in rapid cell rounding. After several minutes following irradiation, most cells flattened and movement continued. However, postirradiation motility was uncoordinated and directionless, and the rate decreased to an average of 14.5 ..mu..m/min. Electron microscopy and tubulin immunofluorescence indicated that an initial disorganization of microtubules resulted from the laser microirradiations. After several minutes, organized microtubules reappeared, but the centrioles appeared increasingly damaged. The irregularities in motility due to irradiation are probably related to the damaged centrioles. The results presented in this paper suggest that the centrosome is an important structure in controlling the rate and direction of newt eosinophil motility.

  17. The polarity protein Pard3 is required for centrosome positioning during neurulation

    PubMed Central

    Hong, Elim; Jayachandran, Pradeepa; Brewster, Rachel

    2010-01-01

    SUMMARY Microtubules are essential regulators of cell polarity, architecture and motility. The organization of the microtubule network is context-specific. In non-polarized cells, microtubules are anchored to the centrosome and form radial arrays. In most epithelial cells, microtubules are noncentrosomal, align along the apico-basal axis and the centrosome templates a cilium. It follows that cells undergoing mesenchyme-to-epithelium transitions must reorganize their microtubule network extensively, yet little is understood about how this process is orchestrated. In particular, the pathways regulating the apical positioning of the centrosome are unknown, a central question given the role of cilia in fluid propulsion, sensation and signaling. In zebrafish, neural progenitors undergo progressive epithelialization during neurulation, and thus provide a convenient in vivo cellular context in which to address this question. We demonstrate here that the microtubule cytoskeleton gradually transitions from a radial to linear organization during neurulation and that microtubules function in conjunction with the polarity protein Pard3 to mediate centrosome positioning. Pard3 depletion results in hydrocephalus, a defect often associated with abnormal cerebrospinal fluid flow that has been linked to cilia defects. These findings thus bring to focus cellular events occurring during neurulation and reveal novel molecular mechanisms implicated in centrosome positioning. PMID:20138861

  18. Expression of the novel maternal centrosome assembly factor Wdr8 is required for vertebrate embryonic mitoses

    PubMed Central

    Inoue, Daigo; Stemmer, Manuel; Thumberger, Thomas; Ruppert, Thomas; Bärenz, Felix; Wittbrodt, Joachim; Gruss, Oliver J.

    2017-01-01

    The assembly of the first centrosome occurs upon fertilisation when male centrioles recruit pericentriolar material (PCM) from the egg cytoplasm. The mechanisms underlying the proper assembly of centrosomes during early embryogenesis remain obscure. We identify Wdr8 as a novel maternally essential protein that is required for centrosome assembly during embryonic mitoses of medaka (Oryzias latipes). By CRISPR–Cas9-mediated knockout, maternal/zygotic Wdr8-null (m/zWdr8−/−) blastomeres exhibit severe defects in centrosome structure that lead to asymmetric division, multipolar mitotic spindles and chromosome alignment errors. Via its WD40 domains, Wdr8 interacts with the centriolar satellite protein SSX2IP. Combining targeted gene knockout and in vivo reconstitution of the maternally essential Wdr8–SSX2IP complex reveals an essential link between maternal centrosome proteins and the stability of the zygotic genome for accurate vertebrate embryogenesis. Our approach provides a way of distinguishing maternal from paternal effects in early embryos and should contribute to understanding molecular defects in human infertility. PMID:28098238

  19. Intensity-based signal separation algorithm for accuratequantification of clustered centrosomes in tissue sections

    SciTech Connect

    Fleisch, Markus C.; Maxell, Christopher A.; Kuper, Claudia K.; Brown, Erika T.; Parvin, Bahram; Barcellos-Hoff, Mary-Helen; Costes,Sylvain V.

    2006-03-08

    Centrosomes are small organelles that organize the mitoticspindle during cell division and are also involved in cell shape andpolarity. Within epithelial tumors, such as breast cancer, and somehematological tumors, centrosome abnormalities (CA) are common, occurearly in disease etiology, and correlate with chromosomal instability anddisease stage. In situ quantification of CA by optical microscopy ishampered by overlap and clustering of these organelles, which appear asfocal structures. CA has been frequently associated with Tp53 status inpremalignant lesions and tumors. Here we describe an approach toaccurately quantify centrosomes in tissue sections and tumors.Considering proliferation and baseline amplification rate the resultingpopulation based ratio of centrosomes per nucleus allow the approximationof the proportion of cells with CA. Using this technique we show that20-30 percent of cells have amplified centrosomes in Tp53 null mammarytumors. Combining fluorescence detection, deconvolution microscopy and amathematical algorithm applied to a maximum intensity projection we showthat this approach is superior to traditional investigator based visualanalysis or threshold-based techniques.

  20. Reduction and Coordination of Arsenic in Indian Mustard1

    PubMed Central

    Pickering, Ingrid J.; Prince, Roger C.; George, Martin J.; Smith, Robert D.; George, Graham N.; Salt, David E.

    2000-01-01

    The bioaccumulation of arsenic by plants may provide a means of removing this element from contaminated soils and waters. However, to optimize this process it is important to understand the biological mechanisms involved. Using a combination of techniques, including x-ray absorption spectroscopy, we have established the biochemical fate of arsenic taken up by Indian mustard (Brassica juncea). After arsenate uptake by the roots, possibly via the phosphate transport mechanism, a small fraction is exported to the shoot via the xylem as the oxyanions arsenate and arsenite. Once in the shoot, the arsenic is stored as an AsIII-tris-thiolate complex. The majority of the arsenic remains in the roots as an AsIII-tris-thiolate complex, which is indistinguishable from that found in the shoots and from AsIII-tris-glutathione. The thiolate donors are thus probably either glutathione or phytochelatins. The addition of the dithiol arsenic chelator dimercaptosuccinate to the hydroponic culture medium caused a 5-fold-increased arsenic level in the leaves, although the total arsenic accumulation was only marginally increased. This suggests that the addition of dimercaptosuccinate to arsenic-contaminated soils may provide a way to promote arsenic bioaccumulation in plant shoots, a process that will be essential for the development of an efficient phytoremediation strategy for this element. PMID:10759512

  1. Electron Microscopy Structural Insights into CPAP Oligomeric Behavior: A Plausible Assembly Process of a Supramolecular Scaffold of the Centrosome

    PubMed Central

    Alvarez-Cabrera, Ana L.; Delgado, Sandra; Gil-Carton, David; Mortuza, Gulnahar B.; Montoya, Guillermo; Sorzano, Carlos O. S.; Tang, Tang K.; Carazo, Jose M.

    2017-01-01

    Centrosomal P4.1-associated protein (CPAP) is a cell cycle regulated protein fundamental for centrosome assembly and centriole elongation. In humans, the region between residues 897–1338 of CPAP mediates interactions with other proteins and includes a homodimerization domain. CPAP mutations cause primary autosomal recessive microcephaly and Seckel syndrome. Despite of the biological/clinical relevance of CPAP, its mechanistic behavior remains unclear and its C-terminus (the G-box/TCP domain) is the only part whose structure has been solved. This situation is perhaps due in part to the challenges that represent obtaining the protein in a soluble, homogeneous state for structural studies. Our work constitutes a systematic structural analysis on multiple oligomers of HsCPAP897−1338, using single-particle electron microscopy (EM) of negatively stained (NS) samples. Based on image classification into clearly different regular 3D maps (putatively corresponding to dimers and tetramers) and direct observation of individual images representing other complexes of HsCPAP897−1338 (i.e., putative flexible monomers and higher-order multimers), we report a dynamic oligomeric behavior of this protein, where different homo-oligomers coexist in variable proportions. We propose that dimerization of the putative homodimer forms a putative tetramer which could be the structural unit for the scaffold that either tethers the pericentriolar material to centrioles or promotes procentriole elongation. A coarse fitting of atomic models into the NS 3D maps at resolutions around 20 Å is performed only to complement our experimental data, allowing us to hypothesize on the oligomeric composition of the different complexes. In this way, the current EM work represents an initial step toward the structural characterization of different oligomers of CPAP, suggesting further insights to understand how this protein works, contributing to the elucidation of control mechanisms for centriole

  2. Identification of an arsenic resistance and arsenic-sensing system in Campylobacter jejuni.

    PubMed

    Wang, Liping; Jeon, Byeonghwa; Sahin, Orhan; Zhang, Qijing

    2009-08-01

    Arsenic is commonly present in the natural environment and is also used as a feed additive for animal production. Poultry is a major reservoir for Campylobacter jejuni, a major food-borne human pathogen causing gastroenteritis. It has been shown that Campylobacter isolates from poultry are highly resistant to arsenic compounds, but the molecular mechanisms responsible for the resistance have not been determined, and it is unclear if the acquired arsenic resistance affects the susceptibility of Campylobacter spp. to other antimicrobials. In this study, we identified a four-gene operon that contributes to arsenic resistance in Campylobacter. This operon encodes a putative membrane permease (ArsP), a transcriptional repressor (ArsR), an arsenate reductase (ArsC), and an efflux protein (Acr3). PCR analysis of various clinical C. jejuni isolates indicated a significant association of this operon with elevated resistance to arsenite and arsenate. Gene-specific mutagenesis confirmed the role of the ars operon in conferring arsenic resistance. It was further shown that this operon is subject to regulation by ArsR, which directly binds to the ars promoter and inhibits the transcription of the operon. Arsenite inhibits the binding of ArsR to the ars promoter DNA and induces the expression of the ars genes. Mutation of the ars genes did not affect the susceptibility of C. jejuni to commonly used antibiotics. These results identify the ars operon as an important mechanism for arsenic resistance and sensing in Campylobacter.

  3. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells.

    PubMed

    Yajima, Ichiro; Uemura, Noriyuki; Nizam, Saika; Khalequzzaman, Md; Thang, Nguyen D; Kumasaka, Mayuko Y; Akhand, Anwarul A; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2012-06-01

    Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.

  4. Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division.

    PubMed

    Salzmann, Viktoria; Chen, Cuie; Chiang, C-Y Ason; Tiyaboonchai, Amita; Mayer, Michael; Yamashita, Yukiko M

    2014-01-01

    Many stem cells, including Drosophila germline stem cells (GSCs), divide asymmetrically, producing one stem cell and one differentiating daughter. Cytokinesis is often asymmetric, in that only one daughter cell inherits the midbody ring (MR) upon completion of abscission even in apparently symmetrically dividing cells. However, whether the asymmetry in cytokinesis correlates with cell fate or has functional relevance has been poorly explored. Here we show that the MR is asymmetrically segregated during GSC divisions in a centrosome age-dependent manner: male GSCs, which inherit the mother centrosome, exclude the MR, whereas female GSCs, which we here show inherit the daughter centrosome, inherit the MR. We further show that stem cell identity correlates with the mode of MR inheritance. Together our data suggest that the MR does not inherently dictate stem cell identity, although its stereotypical inheritance is under the control of stemness and potentially provides a platform for asymmetric segregation of certain factors.

  5. Cep126 is required for pericentriolar satellite localisation to the centrosome and for primary cilium formation

    PubMed Central

    Bonavita, Raffaella; Walas, Dawid; Brown, Anna K; Luini, Alberto; Stephens, David J; Colanzi, Antonino

    2014-01-01

    Background Information The centrosome is the primary microtubule-organising centre of animal cells and it has crucial roles in several fundamental cellular functions, including cell division, cell polarity, and intracellular transport. The mechanisms responsible for this are not completely understood. Results The poorly characterised protein CEP126 localises to the centrosome, pericentriolar satellites and the base of the primary cilium. Suppression of CEP126 expression results in dispersion of the pericentriolar satellites and disruption of the radial organisation of the microtubules, and induces disorganisation of the mitotic spindle. Moreover, CEP126 depletion or the transfection of a CEP126 truncation mutant in hTERT-RPE-1 and IMCD3 cells impairs the formation of the primary cilium. Conclusions We propose that CEP126 is a regulator of microtubule organisation at the centrosome that acts through modulation of the transport of pericentriolar satellites, and consequently, of the organisation of cell structure. PMID:24867236

  6. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis.

    PubMed

    Pillai, Smitha; Nguyen, Jonathan; Johnson, Joseph; Haura, Eric; Coppola, Domenico; Chellappan, Srikumar

    2015-12-10

    TANK Binding Kinase 1 (TBK1) is a non-canonical IκB kinase that contributes to KRAS-driven lung cancer. Here we report that TBK1 plays essential roles in mammalian cell division. Specifically, levels of active phospho-TBK1 increase during mitosis and localize to centrosomes, mitotic spindles and midbody, and selective inhibition or silencing of TBK1 triggers defects in spindle assembly and prevents mitotic progression. TBK1 binds to the centrosomal protein CEP170 and to the mitotic apparatus protein NuMA, and both CEP170 and NuMA are TBK1 substrates. Further, TBK1 is necessary for CEP170 centrosomal localization and binding to the microtubule depolymerase Kif2b, and for NuMA binding to dynein. Finally, selective disruption of the TBK1-CEP170 complex augments microtubule stability and triggers defects in mitosis, suggesting that TBK1 functions as a mitotic kinase necessary for microtubule dynamics and mitosis.

  7. Automated 3-D tracking of centrosomes in sequences of confocal image stacks.

    PubMed

    Kerekes, Ryan A; Gleason, Shaun S; Trivedi, Niraj; Solecki, David J

    2009-01-01

    In order to facilitate the study of neuron migration, we propose a method for 3-D detection and tracking of centrosomes in time-lapse confocal image stacks of live neuron cells. We combine Laplacian-based blob detection, adaptive thresholding, and the extraction of scale and roundness features to find centrosome-like objects in each frame. We link these detections using the joint probabilistic data association filter (JPDAF) tracking algorithm with a Newtonian state-space model tailored to the motion characteristics of centrosomes in live neurons. We apply our algorithm to image sequences containing multiple cells, some of which had been treated with motion-inhibiting drugs. We provide qualitative results and quantitative comparisons to manual segmentation and tracking results showing that our average motion estimates agree to within 13% of those computed manually by neurobiologists.

  8. Conserved TCP domain of Sas-4/CPAP is essential for pericentriolar material tethering during centrosome biogenesis.

    PubMed

    Zheng, Xiangdong; Gooi, Li Ming; Wason, Arpit; Gabriel, Elke; Mehrjardi, Narges Zare; Yang, Qian; Zhang, Xingrun; Debec, Alain; Basiri, Marcus L; Avidor-Reiss, Tomer; Pozniakovsky, Andrei; Poser, Ina; Saric, Tomo; Hyman, Anthony A; Li, Haitao; Gopalakrishnan, Jay

    2014-01-21

    Pericentriolar material (PCM) recruitment to centrioles forms a key step in centrosome biogenesis. Deregulation of this process leads to centrosome aberrations causing disorders, one of which is autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder where brain size is reduced. During PCM recruitment, the conserved centrosomal protein Sas-4/CPAP/MCPH6, known to play a role in centriole formation, acts as a scaffold for cytoplasmic PCM complexes to bind and then tethers them to centrioles to form functional centrosomes. To understand Sas-4's tethering role, we determined the crystal structure of its T complex protein 10 (TCP) domain displaying a solvent-exposed single-layer of β-sheets fold. This unique feature of the TCP domain suggests that it could provide an "extended surface-like" platform to tether the Sas-4-PCM scaffold to a centriole. Functional studies in Drosophila, human cells, and human induced pluripotent stem cell-derived neural progenitor cells were used to test this hypothesis, where point mutations within the 9-10th β-strands (β9-10 mutants including a MCPH-associated mutation) perturbed PCM tethering while allowing Sas-4/CPAP to scaffold cytoplasmic PCM complexes. Specifically, the Sas-4 β9-10 mutants displayed perturbed interactions with Ana2, a centrosome duplication factor, and Bld-10, a centriole microtubule-binding protein, suggesting a role for the β9-10 surface in mediating protein-protein interactions for efficient Sas-4-PCM scaffold centriole tethering. Hence, we provide possible insights into how centrosomal protein defects result in human MCPH and how Sas-4 proteins act as a vehicle to tether PCM complexes to centrioles independent of its well-known role in centriole duplication.

  9. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    SciTech Connect

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na; Choe, Tae-Boo; Hong, Seok-Il; Yi, Jae-Youn; Hwang, Sang-Gu; Lee, Hyun-Gyu; Lee, Yun-Han; Park, In-Chul

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  10. Arsenic-Induced Pancreatitis

    PubMed Central

    Connelly, Sean; Zancosky, Krysia; Farah, Katie

    2011-01-01

    The introduction of all-trans retinoic acid (ATRA) and arsenic trioxide has brought about tremendous advancement in the treatment of acute promyelocytic myelogenous leukemia (APML). In most instances, the benefits of these treatments outweigh the risks associated with their respective safety profiles. Although acute pancreatitis is not commonly associated with arsenic toxicity, it should be considered as a possible side effect. We report a case of arsenic-induced pancreatitis in a patient with APML. PMID:22606427

  11. Function of donor cell centrosome in intraspecies and interspecies nuclear transfer embryos

    SciTech Connect

    Zhong Zhisheng; Zhang Gang; Meng Xiaoqian; Zhang Yanling; Chen Dayuan; Schatten, Heide; Sun Qingyuan . E-mail: sunqy1@yahoo.com

    2005-05-15

    Centrosomes, the main microtubule-organizing centers (MTOCs) in most animal cells, are important for many cellular activities such as assembly of the mitotic spindle, establishment of cell polarity, and cell movement. In nuclear transfer (NT), MTOCs that are located at the poles of the meiotic spindle are removed from the recipient oocyte, while the centrosome of the donor cell is introduced. We used mouse MII oocytes as recipients, mouse fibroblasts, rat fibroblasts, or pig granulosa cells as donor cells to construct intraspecies and interspecies nuclear transfer embryos in order to observe centrosome dynamics and functions. Three antibodies against centrin, {gamma}-tubulin, and NuMA, respectively, were used to stain the centrosome. Centrin was not detected either at the poles of transient spindles or at the poles of first mitotic spindles. {gamma}-tubulin translocated into the two poles of the transient spindles, while no accumulated {gamma}-tubulin aggregates were detected in the area adjacent to the two pseudo-pronuclei. At first mitotic metaphase, {gamma}-tubulin was translocated to the spindle poles. The distribution of {gamma}-tubulin was similar in mouse intraspecies and rat-mouse interspecies embryos. The NuMA antibody that we used can recognize porcine but not murine NuMA protein, so it was used to trace the NuMA protein of donor cell in reconstructed embryos. In the pig-mouse interspecies reconstructed embryos, NuMA concentrated between the disarrayed chromosomes soon after activation and translocated to the transient spindle poles. NuMA then immigrated into pseudo-pronuclei. After pseudo-pronuclear envelope breakdown, NuMA was located between the chromosomes and then translocated to the spindle poles of first mitotic metaphase. {gamma}-tubulin antibody microinjection resulted in spindle disorganization and retardation of the first cell division. NuMA antibody microinjection also resulted in spindle disorganization. Our findings indicate that (1) the

  12. Time-lapse recording of centrosomes and other organelles in Drosophila neuroblasts.

    PubMed

    Pampalona, Judit; Januschke, Jens; Sampaio, Paula; Gonzalez, Cayetano

    2015-01-01

    Drosophila larval neuroblasts (NBs) are an excellent model for asymmetric division and cell cycle studies in general. For decades, visualizing relevant structures like centrosomes, chromosomes, or the mitotic spindle relied exclusively on immunofluorescence on fix samples. More recently, improvements on sensitivity and acquisition speed of different confocal systems have made it possible to acquire time-resolved images of combined fluorescent reporters from single larval NBs. Here, we provide protocols to visualize centrosomes and other organelles from both primary cultures of isolated single NBs and ex vivo, whole-mounted larval brains.

  13. Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway

    SciTech Connect

    Wang, Xin; Mandal, Ardhendu K.; Saito, Hiroshi; Pulliam, Joseph F.; Lee, Eun Y.; Ke, Zun-Ji; Lu, Jian; Ding, Songze; Li, Li; Shelton, Brent J.; Tucker, Thomas; Evers, B. Mark; Zhang, Zhuo; Shi, Xianglin

    2012-07-01

    Exposure to carcinogenic metals, such as trivalent arsenic [As(III)] and hexavalent chromium [Cr(VI)], through drinking water is a major global public health problem and is associated with various cancers. However, the mechanism of their carcinogenicity remains unclear. In this study, we used azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse colitis-associated colorectal cancer model to investigate their tumorigenesis. Our results demonstrate that exposure to As(III) or Cr(VI), alone or in combination, together with AOM/DSS pretreatment has a promotion effect, increasing the colorectal tumor incidence, multiplicity, size, and grade, as well as cell inflammatory response. Two-dimensional differential gel electrophoresis coupled with mass spectrometry revealed that As(III) or Cr(VI) treatment alone significantly changed the density of proteins. The expression of β-catenin and phospho-GSK was increased by treatment of carcinogenic metals alone. Concomitantly, the expression of NADPH oxidase1 (NOX1) and the level of 8-OHdG were also increased by treatment of carcinogenic metals alone. Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, were decreased. Similarly, in an in vitro system, exposure of CRL-1807 to carcinogenic metals increased reactive oxygen species (ROS) generation, the expression of β-catenin, phospho-GSK, and NOX1. Inhibition of ROS generation by addition of SOD or catalase inhibited β-catenin expression and activity. Our study provides a new animal model to study the carcinogenicity of As(III) and Cr(VI) and suggests that As(III) and Cr(VI) promote colorectal cancer tumorigenesis, at least partly, through ROS-mediated Wnt/β-catenin signaling pathway. -- Highlights: ► Carcinogenic metals in drinking water promote colorectal tumor formation in vivo. ► Carcinogenic metals induce β-catenin activation in vivo and in vitro. ► ROS generation induced by carcinogenic metals mediated β-catenin activation.

  14. Inhibitory mechanism of dimercaptopropanesulfonic acid (DMPS) in the cellular biomethylation of arsenic.

    PubMed

    Wang, Shuping; Shi, Nan; Geng, Zhirong; Li, Xiangli; Hu, Xin; Wang, Zhilin

    2014-11-01

    Dimercaptopropanesulfonic acid (DMPS) has been approved for the treatment of arsenic poisoning through promoting arsenic excretion and modulating arsenic species. To clarify how DMPS regulates the excretion of arsenic species, we investigated the effects of DMPS on the biomethylation of arsenite (As(3+)) in HepG2 cells. In the experiments, we found that DMPS at low concentrations dramatically decreased the content of arsenic in HepG2 cells and inhibited the cellular methylation of As(3+). Three aspects, the expression of human arsenic (III) methyltransferase (hAS3MT), the accumulation of cellular reactive oxygen species (ROS) and the in vitro enzymatic methylation of arsenic, were considered to explain the reasons for the inhibition of DMPS in arsenic metabolism. The results suggested that DMPS competitively coordinated with As(3+) and monomethylarsonous acid (MMA(3+)) to inhibit the up-regulation of arsenic on the expression of hAS3MT and block arsenic involving in the enzymatic methylation. Moreover, DMPS eliminated arsenic-induced accumulation of ROS, which might contribute to the antidotal effects of DMPS on arsenic posing.

  15. Chronic arsenic toxicity: studies in West Bengal, India.

    PubMed

    Guha Mazumder, Debendranath; Dasgupta, U B

    2011-09-01

    Chronic arsenic toxicity (arsenicosis) as a result of drinking arsenic-contaminated groundwater is a major environmental health hazard throughout the world, including India. A lot of research on health effects, including genotoxic effect of chronic arsenic toxicity in humans, have been carried out in West Bengal during the last 2 decades. A review of literature including information available from West Bengal has been made to characterize the problem. Scientific journals, monographs, and proceedings of conferences with regard to human health effects, including genotoxicity, of chronic arsenic toxicity have been reviewed. Pigmentation and keratosis are the specific skin diseases characteristic of chronic arsenic toxicity. However, in West Bengal, it was found to produce various systemic manifestations, such as chronic lung disease, characterized by chronic bronchitis, chronic obstructive and/or restrictive pulmonary disease, and bronchiectasis; liver diseases, such as non cirrhotic portal fibrosis; polyneuropathy; peripheral vascular disease; hypertension; nonpitting edema of feet/hands; conjunctival congestion; weakness; and anemia. High concentrations of arsenic, greater than or equal to 200 μg/L, during pregnancy were found to be associated with a sixfold increased risk for stillbirth. Cancers of skin, lung, and urinary bladder are the important cancers associated with this toxicity. Of the various genotoxic effects of arsenic in humans, chromosomal aberration and increased frequency of micronuclei in different cell types have been found to be significant. Various probable mechanisms have been incriminated to cause DNA damage because of chronic arsenic toxicity. The results of the study in West Bengal suggest that deficiency in DNA repair capacity, perturbation of methylation of promoter region of p53 and p16 genes, and genomic methylation alteration may be involved in arsenic-induced disease manifestation in humans. P53 polymorphism has been found to be

  16. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    PubMed Central

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes. PMID:24724102

  17. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.

    PubMed

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  18. Centrosome structure and function is altered by chloral hydrate and diazepam during the first reproductive cell cycles in sea urchin eggs

    NASA Technical Reports Server (NTRS)

    Schatten, H.; Chakrabarti, A.

    1998-01-01

    This paper explores the mode of action of the tranquillizers chloral hydrate and diazepam during fertilization and mitosis of the first reproductive cell cycles in sea urchin eggs. Most striking effects of these drugs are the alteration of centrosomal material and the abnormal microtubule configurations during exposure and after recovery from the drugs. This finding is utilized to study the mechanisms of centrosome compaction and decompaction and the dynamic configurational changes of centrosomal material and its interactions with microtubules. When 0.1% chloral hydrate or 350-750 microM diazepam is applied at specific phases during the first cell cycle of sea urchin eggs, expanded centrosomal material compacts at distinct regions and super-compacts into dense spheres while microtubules disassemble. When eggs are treated before pronuclear fusion, centrosomal material aggregates around each of the two pronuclei while microtubules disappear. Upon recovery, atypical asters oftentimes with multiple foci are formed from centrosomal material surrounding the pronuclei which indicates that the drugs have affected centrosomal material and prevent it from functioning normally. Electron microscopy and immunofluorescence studies with antibodies that routinely stain centrosomes in sea urchin eggs (4D2; and Ah-6) depict centrosomal material that is altered when compared to control cells. This centrosomal material is not able to reform normal microtubule patterns upon recovery but will form multiple asters around the two pronuclei. When cells are treated with 0.1% chloral hydrate or 350-750 microM diazepam during mitosis, the bipolar centrosomal material becomes compacted and aggregates into multiple dense spheres while spindle and polar microtubules disassemble. With increased incubation time, the smaller dense centrosome particles aggregate into bigger and fewer spheres. Upon recovery, unusual irregular microtubule configurations are formed from centrosomes that have lost their

  19. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    The biotransformation of inorganic arsenic (iAs) involves methylation by an arsenic (+3 oxidation state) methyltransferase (AS3MT), yielding methyl arsenic (MA), dimethyl arsenic (DMA), and trimethylarsenic (TMA). To identify molecular mechanisms that coordinate arsenic biotra...

  20. Klp10A, a stem cell centrosome-enriched kinesin, balances asymmetries in Drosophila male germline stem cell division

    PubMed Central

    Chen, Cuie; Inaba, Mayu; Venkei, Zsolt G; Yamashita, Yukiko M

    2016-01-01

    Asymmetric stem cell division is often accompanied by stereotypical inheritance of the mother and daughter centrosomes. However, it remains unknown whether and how stem cell centrosomes are uniquely regulated and how this regulation may contribute to stem cell fate. Here we identify Klp10A, a microtubule-depolymerizing kinesin of the kinesin-13 family, as the first protein enriched in the stem cell centrosome in Drosophila male germline stem cells (GSCs). Depletion of klp10A results in abnormal elongation of the mother centrosomes in GSCs, suggesting the existence of a stem cell-specific centrosome regulation program. Concomitant with mother centrosome elongation, GSCs form asymmetric spindle, wherein the elongated mother centrosome organizes considerably larger half spindle than the other. This leads to asymmetric cell size, yielding a smaller differentiating daughter cell. We propose that klp10A functions to counteract undesirable asymmetries that may result as a by-product of achieving asymmetries essential for successful stem cell divisions. DOI: http://dx.doi.org/10.7554/eLife.20977.001 PMID:27885983

  1. Arsenic Concentrations and Speciation in Shellfishes from Korea

    NASA Astrophysics Data System (ADS)

    Yoon, C.; Yoon, H.

    2005-12-01

    Speciation of arsenic has received significant attention over the past 20 years in both mechanistic and exposure assessment research. Because the toxicity of arsenic is related to its oxidation state and its chemical forms, the determination of the total arsenic contents in a sample is not adequate to allow its impact on living organisms to be estimated. The inorganic arsenic species, arsenite (As3+) and arsenate (As5+), have been classified as carcinogenic and the methylated forms, monomethyl arsonic acid (MMA) and dimethyl arsinic acid (DMA) have recently been identified as cancer promoters. The highly methylated compounds like as arsenobetaine (AsB) and arsenocholine (AsC) are considered to be nontoxic. Although organisms in marine environment contain high amounts of total arsenic (ppm level), it is not usually present as inorganic arsenic or simple methylated forms well known as one of the toxic species. Arsenobetaine is the dominant species in marine animals and arsenosugars are most abundant in marine algae. This study aims to clarify those arsenic species present in the whole body of eleven different shellfishes from Korea. And those arsenic species were separated and measured by characterization using high performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) coupled system. The separation of arsenic species was achieved on anion exchange column and cation exchange column using phosphate and pyridine eluent, respectively. The ultrasonic extraction was employed for extraction of arsenic from whole body of shellfishes. The method was validated by analyzing three certified reference materials (DORM-2, TORT-2, 1566b). Total arsenic concentrations ranged from 0.1 mg/kg dry mass to 21.7 mg/kg dry mass. Most marine shellfishes contained higher arsenobetaine and arsenocholine with the exception of two shellfishes living in river. The lower amounts of inorganic arsenic species were also found in the some sample extracts

  2. Arsenic activation neutron detector

    DOEpatents

    Jacobs, Eddy L.

    1981-01-01

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5 Mev neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  3. Arsenic activation neutron detector

    DOEpatents

    Jacobs, E.L.

    1980-01-28

    A detector of bursts of neutrons from a deuterium-deuteron reaction includes a quantity of arsenic adjacent a gamma detector such as a scintillator and photomultiplier tube. The arsenic is activated by the 2.5-MeV neutrons to release gamma radiation which is detected to give a quantitative representation of detected neutrons.

  4. NDRG1 links p53 with proliferation-mediated centrosome homeostasis and genome stability.

    PubMed

    Croessmann, Sarah; Wong, Hong Yuen; Zabransky, Daniel J; Chu, David; Mendonca, Janet; Sharma, Anup; Mohseni, Morassa; Rosen, D Marc; Scharpf, Robert B; Cidado, Justin; Cochran, Rory L; Parsons, Heather A; Dalton, W Brian; Erlanger, Bracha; Button, Berry; Cravero, Karen; Kyker-Snowman, Kelly; Beaver, Julia A; Kachhap, Sushant; Hurley, Paula J; Lauring, Josh; Park, Ben Ho

    2015-09-15

    The tumor protein 53 (TP53) tumor suppressor gene is the most frequently somatically altered gene in human cancers. Here we show expression of N-Myc down-regulated gene 1 (NDRG1) is induced by p53 during physiologic low proliferative states, and mediates centrosome homeostasis, thus maintaining genome stability. When placed in physiologic low-proliferating conditions, human TP53 null cells fail to increase expression of NDRG1 compared with isogenic wild-type controls and TP53 R248W knockin cells. Overexpression and RNA interference studies demonstrate that NDRG1 regulates centrosome number and amplification. Mechanistically, NDRG1 physically associates with γ-tubulin, a key component of the centrosome, with reduced association in p53 null cells. Strikingly, TP53 homozygous loss was mutually exclusive of NDRG1 overexpression in over 96% of human cancers, supporting the broad applicability of these results. Our study elucidates a mechanism of how TP53 loss leads to abnormal centrosome numbers and genomic instability mediated by NDRG1.

  5. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    SciTech Connect

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.; Barth,A.I.M.; Krauss, Sharon Wald

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing, and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.

  6. E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells.

    PubMed

    Inaba, Mayu; Yuan, Hebao; Salzmann, Viktoria; Fuller, Margaret T; Yamashita, Yukiko M

    2010-08-31

    Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs) are attached to niche component cells (i.e., the hub) via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.

  7. Heparan sulfate regulates the number and centrosome positioning of Drosophila male germline stem cells.

    PubMed

    Levings, Daniel C; Arashiro, Takeshi; Nakato, Hiroshi

    2016-03-15

    Stem cell division is tightly controlled via secreted signaling factors and cell adhesion molecules provided from local niche structures. Molecular mechanisms by which each niche component regulates stem cell behaviors remain to be elucidated. Here we show that heparan sulfate (HS), a class of glycosaminoglycan chains, regulates the number and asymmetric division of germline stem cells (GSCs) in the Drosophila testis. We found that GSC number is sensitive to the levels of 6-O sulfate groups on HS. Loss of 6-O sulfation also disrupted normal positioning of centrosomes, a process required for asymmetric division of GSCs. Blocking HS sulfation specifically in the niche, termed the hub, led to increased GSC numbers and mispositioning of centrosomes. The same treatment also perturbed the enrichment of Apc2, a component of the centrosome-anchoring machinery, at the hub-GSC interface. This perturbation of the centrosome-anchoring process ultimately led to an increase in the rate of spindle misorientation and symmetric GSC division. This study shows that specific HS modifications provide a novel regulatory mechanism for stem cell asymmetric division. The results also suggest that HS-mediated niche signaling acts upstream of GSC division orientation control.

  8. Historical roots of centrosome research: discovery of Boveri's microscope slides in Würzburg

    PubMed Central

    Scheer, Ulrich

    2014-01-01

    Boveri's visionary monograph ‘Ueber die Natur der Centrosomen’ (On the nature of centrosomes) in 1900 was founded primarily on microscopic observations of cleaving eggs of sea urchins and the roundworm parasite Ascaris. As Boveri wrote in the introductory paragraph, his interests were less about morphological aspects of centrosomes, but rather aimed at an understanding of their physiological role during cell division. The remarkable transition from observations of tiny dot-like structures in fixed and sectioned material to a unified theory of centrosome function (which in essence still holds true today) cannot be fully appreciated without examining Boveri's starting material, the histological specimens. It was generally assumed that the microscope slides were lost during the bombing of the Zoological Institute in Würzburg at the end of WWII. Here, I describe the discovery of a number of Boveri's original microscope slides with serial sections of early sea urchin and Ascaris embryos, stained by Heidenhain's iron haematoxylin method. Some slides bear handwritten notes and sketches by Boveri. Evidence is presented that the newly discovered slides are part of the original material used by Boveri for his seminal centrosome monograph. PMID:25047623

  9. Investigation of Gene Expression Correlating With Centrosome Amplification in Development and Progression of Breast Cancer

    DTIC Science & Technology

    2004-09-01

    exit from cy- Cep135 (19), AKAP -450 (20,21), and ninein (22). tokinesis (31,32). While centriole duplication occurs Several of these coiled-coil...protein kinase A anchoring protein AKAP -450 (21,24). Centro- Coordination of the Centrosome, somes increase in size through the recruitment of DNA, and

  10. Trichoplein controls microtubule anchoring at the centrosome by binding to Odf2 and ninein.

    PubMed

    Ibi, Miho; Zou, Peng; Inoko, Akihito; Shiromizu, Takashi; Matsuyama, Makoto; Hayashi, Yuko; Enomoto, Masato; Mori, Daisuke; Hirotsune, Shinji; Kiyono, Tohru; Tsukita, Sachiko; Goto, Hidemasa; Inagaki, Masaki

    2011-03-15

    The keratin cytoskeleton performs several functions in epithelial cells and provides regulated interaction sites for scaffold proteins, including trichoplein. Previously, we found that trichoplein was localized on keratin intermediate filaments and desmosomes in well-differentiated, non-dividing epithelia. Here, we report that trichoplein is widely expressed and has a major function in the correct localization of the centrosomal protein ninein in epithelial and non-epithelial cells. Immunocytochemical analysis also revealed that this protein is concentrated at the subdistal to medial zone of both mother and daughter centrioles. Trichoplein binds the centrosomal proteins Odf2 and ninein, which are localized at the distal to subdistal ends of the mother centriole. Trichoplein depletion abolished the recruitment of ninein, but not Odf2, specifically at the subdistal end. However, Odf2 depletion inhibited the recruitment of trichoplein to a mother centriole, whereas ninein depletion did not. In addition, the depletion of each molecule impaired MT anchoring at the centrosome. These results suggest that trichoplein has a crucial role in MT-anchoring activity at the centrosome in proliferating cells, probably through its complex formation with Odf2 and ninein.

  11. Induction of Excess Centrosomes in Neural Progenitor Cells during the Development of Radiation-Induced Microcephaly

    PubMed Central

    Shimada, Mikio; Matsuzaki, Fumio; Kato, Akihiro; Kobayashi, Junya; Matsumoto, Tomohiro; Komatsu, Kenshi

    2016-01-01

    The embryonic brain is one of the tissues most vulnerable to ionizing radiation. In this study, we showed that ionizing radiation induces apoptosis in the neural progenitors of the mouse cerebral cortex, and that the surviving progenitor cells subsequently develop a considerable amount of supernumerary centrosomes. When mouse embryos at Day 13.5 were exposed to γ-rays, brains sizes were reduced markedly in a dose-dependent manner, and these size reductions persisted until birth. Immunostaining with caspase-3 antibodies showed that apoptosis occurred in 35% and 40% of neural progenitor cells at 4 h after exposure to 1 and 2 Gy, respectively, and this was accompanied by a disruption of the apical layer in which mitotic spindles were positioned in unirradiated mice. At 24 h after 1 Gy irradiation, the apoptotic cells were completely eliminated and proliferation was restored to a level similar to that of unirradiated cells, but numerous spindles were localized outside the apical layer. Similarly, abnormal cytokinesis, which included multipolar division and centrosome clustering, was observed in 19% and 24% of the surviving neural progenitor cells at 48 h after irradiation with 1 and 2 Gy, respectively. Because these cytokinesis aberrations derived from excess centrosomes result in growth delay and mitotic catastrophe-mediated cell elimination, our findings suggest that, in addition to apoptosis at an early stage of radiation exposure, radiation-induced centrosome overduplication could contribute to the depletion of neural progenitors and thereby lead to microcephaly. PMID:27367050

  12. Heparan sulfate regulates the number and centrosome positioning of Drosophila male germline stem cells

    PubMed Central

    Levings, Daniel C.; Arashiro, Takeshi; Nakato, Hiroshi

    2016-01-01

    Stem cell division is tightly controlled via secreted signaling factors and cell adhesion molecules provided from local niche structures. Molecular mechanisms by which each niche component regulates stem cell behaviors remain to be elucidated. Here we show that heparan sulfate (HS), a class of glycosaminoglycan chains, regulates the number and asymmetric division of germline stem cells (GSCs) in the Drosophila testis. We found that GSC number is sensitive to the levels of 6-O sulfate groups on HS. Loss of 6-O sulfation also disrupted normal positioning of centrosomes, a process required for asymmetric division of GSCs. Blocking HS sulfation specifically in the niche, termed the hub, led to increased GSC numbers and mispositioning of centrosomes. The same treatment also perturbed the enrichment of Apc2, a component of the centrosome-anchoring machinery, at the hub–GSC interface. This perturbation of the centrosome-anchoring process ultimately led to an increase in the rate of spindle misorientation and symmetric GSC division. This study shows that specific HS modifications provide a novel regulatory mechanism for stem cell asymmetric division. The results also suggest that HS-mediated niche signaling acts upstream of GSC division orientation control. PMID:26792837

  13. 53BP1 and USP28 mediate p53-dependent cell cycle arrest in response to centrosome loss and prolonged mitosis

    PubMed Central

    Fong, Chii Shyang; Mazo, Gregory; Das, Tuhin; Goodman, Joshua; Kim, Minhee; O'Rourke, Brian P; Izquierdo, Denisse; Tsou, Meng-Fu Bryan

    2016-01-01

    Mitosis occurs efficiently, but when it is disturbed or delayed, p53-dependent cell death or senescence is often triggered after mitotic exit. To characterize this process, we conducted CRISPR-mediated loss-of-function screens using a cell-based assay in which mitosis is consistently disturbed by centrosome loss. We identified 53BP1 and USP28 as essential components acting upstream of p53, evoking p21-dependent cell cycle arrest in response not only to centrosome loss, but also to other distinct defects causing prolonged mitosis. Intriguingly, 53BP1 mediates p53 activation independently of its DNA repair activity, but requiring its interacting protein USP28 that can directly deubiquitinate p53 in vitro and ectopically stabilize p53 in vivo. Moreover, 53BP1 can transduce prolonged mitosis to cell cycle arrest independently of the spindle assembly checkpoint (SAC), suggesting that while SAC protects mitotic accuracy by slowing down mitosis, 53BP1 and USP28 function in parallel to select against disturbed or delayed mitosis, promoting mitotic efficiency. DOI: http://dx.doi.org/10.7554/eLife.16270.001 PMID:27371829

  14. Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis-associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway.

    PubMed

    Wang, Xin; Mandal, Ardhendu K; Saito, Hiroshi; Pulliam, Joseph F; Lee, Eun Y; Ke, Zun-Ji; Lu, Jian; Ding, Songze; Li, Li; Shelton, Brent J; Tucker, Thomas; Evers, B Mark; Zhang, Zhuo; Shi, Xianglin

    2012-07-01

    Exposure to carcinogenic metals, such as trivalent arsenic [As(III)] and hexavalent chromium [Cr(VI)], through drinking water is a major global public health problem and is associated with various cancers. However, the mechanism of their carcinogenicity remains unclear. In this study, we used azoxymethane/dextran sodium sulfate (AOM/DSS)-induced mouse colitis-associated colorectal cancer model to investigate their tumorigenesis. Our results demonstrate that exposure to As(III) or Cr(VI), alone or in combination, together with AOM/DSS pretreatment has a promotion effect, increasing the colorectal tumor incidence, multiplicity, size, and grade, as well as cell inflammatory response. Two-dimensional differential gel electrophoresis coupled with mass spectrometry revealed that As(III) or Cr(VI) treatment alone significantly changed the density of proteins. The expression of β-catenin and phospho-GSK was increased by treatment of carcinogenic metals alone. Concomitantly, the expression of NADPH oxidase1 (NOX1) and the level of 8-OHdG were also increased by treatment of carcinogenic metals alone. Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase, were decreased. Similarly, in an in vitro system, exposure of CRL-1807 to carcinogenic metals increased reactive oxygen species (ROS) generation, the expression of β-catenin, phospho-GSK, and NOX1. Inhibition of ROS generation by addition of SOD or catalase inhibited β-catenin expression and activity. Our study provides a new animal model to study the carcinogenicity of As(III) and Cr(VI) and suggests that As(III) and Cr(VI) promote colorectal cancer tumorigenesis, at least partly, through ROS-mediated Wnt/β-catenin signaling pathway.

  15. Mitotic catastrophe and cell death induced by depletion of centrosomal proteins

    PubMed Central

    Kimura, M; Yoshioka, T; Saio, M; Banno, Y; Nagaoka, H; Okano, Y

    2013-01-01

    Mitotic catastrophe, which refers to cell death or its prologue triggered by aberrant mitosis, can be induced by a heterogeneous group of stimuli, including chromosome damage or perturbation of the mitotic apparatus. We investigated the mechanism of mitotic catastrophe and cell death induced by depletion of centrosomal proteins that perturbs microtubule organization. We transfected cells harboring wild-type or mutated p53 with siRNAs targeting Aurora A, ninein, TOG, TACC3, γ-tubulin, or pericentriolar material-1, and monitored the effects on cell death. Knockdown of Aurora A, ninein, TOG, and TACC3 led to cell death, regardless of p53 status. Knockdown of Aurora A, ninein, and TOG, led to aberrant spindle formation and subsequent cell death, which was accompanied by several features of apoptosis, including nuclear condensation and Annexin V binding in HeLa cells. During this process, cleavage of poly(ADP-ribose) polymerase-1, caspase-3, and caspase-9 was detected, but cleavage of caspase-8 was not. Cell death, monitored by time-lapse imaging, occurred during both interphase and M phase. In cells depleted of a centrosomal protein (Aurora A, ninein, or TOG), the rate of cell death was higher if the cells were cotransfected with siRNA against BubR1 or Mad2 than if they were transfected with siRNA against Bub1 or a control siRNA. These results suggest that metaphase arrest is necessary for the mitotic catastrophe and cell death caused by depletion of centrosomal proteins. Knockdown of centrosomal proteins led to increased phosphorylation of Chk2. Enhanced p-Chk2 localization was also observed at the centrosome in cells arrested in M phase, as well as in the nuclei of dying cells. Cotransfection of siRNAs against Chk2, in combination with depletion of a centrosomal protein, decreased the amount of cell death. Thus, Chk2 activity is indispensable for apoptosis after mitotic catastrophe induced by depletion of centrosomal proteins that perturbs microtubule organization

  16. Binational arsenic exposure survey: methodology and estimated arsenic intake from drinking water and urinary arsenic concentrations.

    PubMed

    Roberge, Jason; O'Rourke, Mary Kay; Meza-Montenegro, Maria Mercedes; Gutiérrez-Millán, Luis Enrique; Burgess, Jefferey L; Harris, Robin B

    2012-04-01

    The Binational Arsenic Exposure Survey (BAsES) was designed to evaluate probable arsenic exposures in selected areas of southern Arizona and northern Mexico, two regions with known elevated levels of arsenic in groundwater reserves. This paper describes the methodology of BAsES and the relationship between estimated arsenic intake from beverages and arsenic output in urine. Households from eight communities were selected for their varying groundwater arsenic concentrations in Arizona, USA and Sonora, Mexico. Adults responded to questionnaires and provided dietary information. A first morning urine void and water from all household drinking sources were collected. Associations between urinary arsenic concentration (total, organic, inorganic) and estimated level of arsenic consumed from water and other beverages were evaluated through crude associations and by random effects models. Median estimated total arsenic intake from beverages among participants from Arizona communities ranged from 1.7 to 14.1 µg/day compared to 0.6 to 3.4 µg/day among those from Mexico communities. In contrast, median urinary inorganic arsenic concentrations were greatest among participants from Hermosillo, Mexico (6.2 µg/L) whereas a high of 2.0 µg/L was found among participants from Ajo, Arizona. Estimated arsenic intake from drinking water was associated with urinary total arsenic concentration (p < 0.001), urinary inorganic arsenic concentration (p < 0.001), and urinary sum of species (p < 0.001). Urinary arsenic concentrations increased between 7% and 12% for each one percent increase in arsenic consumed from drinking water. Variability in arsenic intake from beverages and urinary arsenic output yielded counter intuitive results. Estimated intake of arsenic from all beverages was greatest among Arizonans yet participants in Mexico had higher urinary total and inorganic arsenic concentrations. Other contributors to urinary arsenic concentrations should be evaluated.

  17. Cdk1 Phosphorylates Drosophila Sas-4 to Recruit Polo to Daughter Centrioles and Convert Them to Centrosomes.

    PubMed

    Novak, Zsofia A; Wainman, Alan; Gartenmann, Lisa; Raff, Jordan W

    2016-06-20

    Centrosomes and cilia are organized by a centriole pair comprising an older mother and a younger daughter. Centriole numbers are tightly regulated, and daughter centrioles (which assemble in S phase) cannot themselves duplicate or organize centrosomes until they have passed through mitosis. It is unclear how this mitotic "centriole conversion" is regulated, but it requires Plk1/Polo kinase. Here we show that in flies, Cdk1 phosphorylates the conserved centriole protein Sas-4 during mitosis. This creates a Polo-docking site that helps recruit Polo to daughter centrioles and is required for the subsequent recruitment of Asterless (Asl), a protein essential for centriole duplication and mitotic centrosome assembly. Point mutations in Sas-4 that prevent Cdk1 phosphorylation or Polo docking do not block centriole disengagement during mitosis, but block efficient centriole conversion and lead to embryonic lethality. These observations can explain why daughter centrioles have to pass through mitosis before they can duplicate and organize a centrosome.

  18. CEP90 is required for the assembly and centrosomal accumulation of centriolar satellites, which is essential for primary cilia formation.

    PubMed

    Kim, Kyeongmi; Lee, Kwanwoo; Rhee, Kunsoo

    2012-01-01

    Centriolar satellites are PCM-1-positive granules surrounding centrosomes. Proposed functions of the centriolar satellites include protein targeting to the centrosome, as well as communication between the centrosome and surrounding cytoplasm. CEP90 is a centriolar satellite protein that is critical for spindle pole integrity in mitotic cells. In this study, we examined the biological functions of CEP90 in interphase cells. CEP90 physically interacts with PCM-1 at centriolar satellites, and this interaction is essential for centrosomal accumulation of the centriolar satellites and eventually for primary cilia formation. CEP90 is also required for BBS4 loading on centriolar satellites and its localization in primary cilia. Our results imply that the assembly and transport of centriolar satellites are critical steps for primary cilia formation and ciliary protein recruitment.

  19. Water hyacinth removes arsenic from arsenic-contaminated drinking water.

    PubMed

    Misbahuddin, Mir; Fariduddin, Atm

    2002-01-01

    Water hyacinth (Eichhornia crassipes) removes arsenic from arsenic-contaminated drinking water. This effect depends on several factors, such as the amount of water hyacinth, amount of arsenic present in the water, duration of exposure, and presence of sunlight and air. On the basis of the present study, the authors suggest that water hyacinth is useful for making arsenic-contaminated drinking water totally arsenic free. Water hyacinth provides a natural means of removing arsenic from drinking water at the household level without monetary cost.

  20. Dictyostelium discoideum CenB Is a Bona Fide Centrin Essential for Nuclear Architecture and Centrosome Stability ▿

    PubMed Central

    Mana-Capelli, Sebastian; Gräf, Ralph; Larochelle, Denis A.

    2009-01-01

    Centrins are a family of proteins within the calcium-binding EF-hand superfamily. In addition to their archetypical role at the microtubule organizing center (MTOC), centrins have acquired multiple functionalities throughout the course of evolution. For example, centrins have been linked to different nuclear activities, including mRNA export and DNA repair. Dictyostelium discoideum centrin B is a divergent member of the centrin family. At the amino acid level, DdCenB shows 51% identity with its closest relative and only paralog, DdCenA. Phylogenetic analysis revealed that DdCenB and DdCenA form a well-supported monophyletic and divergent group within the centrin family of proteins. Interestingly, fluorescently tagged versions of DdCenB were not found at the centrosome (in whole cells or in isolated centrosomes). Instead, DdCenB localized to the nuclei of interphase cells. This localization disappeared as the cells entered mitosis, although Dictyostelium cells undergo a closed mitosis in which the nuclear envelope (NE) does not break down. DdCenB knockout cells exhibited aberrant nuclear architecture, characterized by enlarged and deformed nuclei and loss of proper centrosome-nucleus anchoring (observed as NE protrusions). At the centrosome, loss of DdCenB resulted in defects in the organization and morphology of the MTOC and supernumerary centrosomes and centrosome-related bodies. The multiple defects that the loss of DdCenB generated at the centrosome can be explained by its atypical division cycle, transitioning into the NE as it divides at mitosis. On the basis of these findings, we propose that DdCenB is required at interphase to maintain proper nuclear architecture, and before delocalizing from the nucleus, DdCenB is part of the centrosome duplication machinery. PMID:19465563

  1. Identification of a novel centrosomal protein Crp{sup F46} involved in cell cycle progression and mitosis

    SciTech Connect

    Wei Yi; Shen Enzhi; Zhao Na; Liu Qian; Fan Jinling; Marc, Jan; Wang Yongchao; Sun Le; Liang Qianjin

    2008-05-01

    A novel centrosome-related protein Crp{sup F46} was detected using a serum F46 from a patient suffering from progressive systemic sclerosis. We identified the protein by immunoprecipitation and Western blotting followed by tandem mass spectrometry sequencing. The protein Crp{sup F46} has an apparent molecular mass of {approx} 60 kDa, is highly homologous to a 527 amino acid sequence of the C-terminal portion of the protein Golgin-245, and appears to be a splice variant of Golgin-245. Immunofluorescence microscopy of synchronized HeLa cells labeled with an anti-Crp{sup F46} monoclonal antibody revealed that Crp{sup F46} localized exclusively to the centrosome during interphase, although it dispersed throughout the cytoplasm at the onset of mitosis. Domain analysis using Crp{sup F46} fragments in GFP-expression vectors transformed into HeLa cells revealed that centrosomal targeting is conferred by a C-terminal coiled-coil domain. Antisense Crp{sup F46} knockdown inhibited cell growth and proliferation and the cell cycle typically stalled at S phase. The knockdown also resulted in the formation of poly-centrosomal and multinucleate cells, which finally became apoptotic. These results suggest that Crp{sup F46} is a novel centrosome-related protein that associates with the centrosome in a cell cycle-dependent manner and is involved in the progression of the cell cycle and M phase mechanism.

  2. Chromated Arsenicals (CCA)

    EPA Pesticide Factsheets

    Chromated copper arsenate (CCA) is a wood preservative pesticide containing chromium, copper, and arsenic that protects wood against termites, fungi, mites and other pests that can degrade or threaten the integrity of wood products.

  3. ENZYMOLOGY OF ARSENIC METHYLATION

    EPA Science Inventory

    Enzymology of Arsenic Methylation

    David J. Thomas, Pharmacokinetics Branch, Experimental Toxicology Division, National
    Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park...

  4. Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes.

    PubMed

    Platani, Melpomeni; Trinkle-Mulcahy, Laura; Porter, Michael; Jeyaprakash, A Arockia; Earnshaw, William C

    2015-07-06

    Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression.

  5. Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes

    PubMed Central

    Trinkle-Mulcahy, Laura; Porter, Michael; Jeyaprakash, A. Arockia

    2015-01-01

    Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression. PMID:26124292

  6. OXIDATIVE STRESS AS A POSSIBLE MODE OF ACTION FOR ARSENIC CARCINOGENESIS

    EPA Science Inventory

    Abstract

    Many modes of action for arsenic carcinogenesis have been proposed, but few theories have a substantial mass of supporting data. Three stronger theories of arsenic carcinogenesis are production of chromosomal abnormalities, promotion of carcinogenesis and oxidati...

  7. Epstein–Barr virus particles induce centrosome amplification and chromosomal instability

    PubMed Central

    Shumilov, Anatoliy; Tsai, Ming-Han; Schlosser, Yvonne T.; Kratz, Anne-Sophie; Bernhardt, Katharina; Fink, Susanne; Mizani, Tuba; Lin, Xiaochen; Jauch, Anna; Mautner, Josef; Kopp-Schneider, Annette; Feederle, Regina; Hoffmann, Ingrid; Delecluse, Henri-Jacques

    2017-01-01

    Infections with Epstein–Barr virus (EBV) are associated with cancer development, and EBV lytic replication (the process that generates virus progeny) is a strong risk factor for some cancer types. Here we report that EBV infection of B-lymphocytes (in vitro and in a mouse model) leads to an increased rate of centrosome amplification, associated with chromosomal instability. This effect can be reproduced with virus-like particles devoid of EBV DNA, but not with defective virus-like particles that cannot infect host cells. Viral protein BNRF1 induces centrosome amplification, and BNRF1-deficient viruses largely lose this property. These findings identify a new mechanism by which EBV particles can induce chromosomal instability without establishing a chronic infection, thereby conferring a risk for development of tumours that do not necessarily carry the viral genome. PMID:28186092

  8. Msh2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect

    SciTech Connect

    Wang, Yisong; Liu, Yie

    2006-01-01

    Msh2 is a key mammalian DNA mismatch repair (MMR) gene and mutations or deficiencies in mammalian Msh2 gene result in microsatellite instability (MSI+) and the development of cancer. Here, we report that primary mouse embryonic fibroblasts (MEFs) deficient in the murine MMR gene Msh2 (Msh2-/-) showed a significant increase in chromosome aneuploidy, centrosome amplification, and defective mitotic spindle organization and unequal chromosome segregation. Although Msh2-/- mouse tissues or primary MEFs had no apparent change in telomerase activity, telomere length, or recombination at telomeres, Msh2-/- MEFs showed an increase in chromosome end-to-end fusions or chromosome ends without detectable telomeric DNA. These data suggest that MSH2 helps to maintain genomic stability through the regulation of the centrosome and normal telomere capping in vivo and that defects in MMR can contribute to oncogenesis through multiple pathways.

  9. 53BP1 and USP28 mediate p53 activation and G1 arrest after centrosome loss or extended mitotic duration

    PubMed Central

    Benner, Christopher; Dowdy, Steven F.; Desai, Arshad; Shiau, Andrew K.

    2016-01-01

    In normal human cells, centrosome loss induced by centrinone—a specific centrosome duplication inhibitor—leads to irreversible, p53-dependent G1 arrest by an unknown mechanism. A genome-wide CRISPR/Cas9 screen for centrinone resistance identified genes encoding the p53-binding protein 53BP1, the deubiquitinase USP28, and the ubiquitin ligase TRIM37. Deletion of TP53BP1, USP28, or TRIM37 prevented p53 elevation in response to centrosome loss but did not affect cytokinesis failure–induced arrest or p53 elevation after doxorubicin-induced DNA damage. Deletion of TP53BP1 and USP28, but not TRIM37, prevented growth arrest in response to prolonged mitotic duration. TRIM37 knockout cells formed ectopic centrosomal-component foci that suppressed mitotic defects associated with centrosome loss. TP53BP1 and USP28 knockouts exhibited compromised proliferation after centrosome removal, suggesting that centrosome-independent proliferation is not conferred solely by the inability to sense centrosome loss. Thus, analysis of centrinone resistance identified a 53BP1-USP28 module as critical for communicating mitotic challenges to the p53 circuit and TRIM37 as an enforcer of the singularity of centrosome assembly. PMID:27432897

  10. Centrosome Hypertrophy Induced by p53 Mutations Leads to Tumor Aneuploidy

    DTIC Science & Technology

    2002-06-01

    Hypertrophy Induced by p53 Mutations Leads to Tumor Aneuploidy PRINCIPAL INVESTIGATOR: Wilma L. Lingle, Ph.D. CONTRACTING ORGANIZATION: Mayo Foundation...p 5 3 Mutations DAMD17-98-1-8122 Leads to Tumor Aneuploidy 6. AUTHOR(S) Wilma L. Lingle, Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8... tumors is caused by centrosome abnormalities which are induced by alteration in p53 function. Specific mutations in p53 that are associated with breast

  11. Regulation of dynein localization and centrosome positioning by Lis-1 and asunder during Drosophila spermatogenesis

    PubMed Central

    Sitaram, Poojitha; Anderson, Michael A.; Jodoin, Jeanne N.; Lee, Ethan; Lee, Laura A.

    2012-01-01

    Dynein, a microtubule motor complex, plays crucial roles in cell-cycle progression in many systems. The LIS1 accessory protein directly binds dynein, although its precise role in regulating dynein remains unclear. Mutation of human LIS1 causes lissencephaly, a developmental brain disorder. To gain insight into the in vivo functions of LIS1, we characterized a male-sterile allele of the Drosophila homolog of human LIS1. We found that centrosomes do not properly detach from the cell cortex at the onset of meiosis in most Lis-1 spermatocytes; centrosomes that do break cortical associations fail to attach to the nucleus. In Lis-1 spermatids, we observed loss of attachments between the nucleus, basal body and mitochondria. The localization pattern of LIS-1 protein throughout Drosophila spermatogenesis mirrors that of dynein. We show that dynein recruitment to the nuclear surface and spindle poles is severely reduced in Lis-1 male germ cells. We propose that Lis-1 spermatogenesis phenotypes are due to loss of dynein regulation, as we observed similar phenotypes in flies null for Tctex-1, a dynein light chain. We have previously identified asunder (asun) as another regulator of dynein localization and centrosome positioning during Drosophila spermatogenesis. We now report that Lis-1 is a strong dominant enhancer of asun and that localization of LIS-1 in male germ cells is ASUN dependent. We found that Drosophila LIS-1 and ASUN colocalize and coimmunoprecipitate from transfected cells, suggesting that they function within a common complex. We present a model in which Lis-1 and asun cooperate to regulate dynein localization and centrosome positioning during Drosophila spermatogenesis. PMID:22764052

  12. Fluctuation Analysis of Centrosomes Reveals a Cortical Function of Kinesin-1

    PubMed Central

    Winkler, Franziska; Gummalla, Maheshwar; Künneke, Lutz; Lv, Zhiyi; Zippelius, Annette; Aspelmeier, Timo; Grosshans, Jörg

    2015-01-01

    The actin and microtubule networks form the dynamic cytoskeleton. Network dynamics is driven by molecular motors applying force onto the networks and the interactions between the networks. Here we assay the dynamics of centrosomes in the scale of seconds as a proxy for the movement of microtubule asters. With this assay we want to detect the role of specific motors and of network interaction. During interphase of syncytial embryos of Drosophila, cortical actin and the microtubule network depend on each other. Centrosomes induce cortical actin to form caps, whereas F-actin anchors microtubules to the cortex. In addition, lateral interactions between microtubule asters are assumed to be important for regular spatial organization of the syncytial embryo. The functional interaction between the microtubule asters and cortical actin has been largely analyzed in a static manner, so far. We recorded the movement of centrosomes at 1 Hz and analyzed their fluctuations for two processes—pair separation and individual movement. We found that F-actin is required for directional movements during initial centrosome pair separation, because separation proceeds in a diffusive manner in latrunculin-injected embryos. For assaying individual movement, we established a fluctuation parameter as the deviation from temporally and spatially slowly varying drift movements. By analysis of mutant and drug-injected embryos, we found that the fluctuations were suppressed by both cortical actin and microtubules. Surprisingly, the microtubule motor Kinesin-1 also suppressed fluctuations to a similar degree as F-actin. Kinesin-1 may mediate linkage of the microtubule (+)-ends to the actin cortex. Consistent with this model is our finding that Kinesin-1-GFP accumulates at the cortical actin caps. PMID:26331244

  13. Evidence of asymmetric cell division and centrosome inheritance in human neuroblastoma cells.

    PubMed

    Izumi, Hideki; Kaneko, Yasuhiko

    2012-10-30

    Asymmetric cell division (ACD) is believed to be a physiological event that occurs during development and tissue homeostasis in a large variety of organisms. ACD produces two unequal daughter cells, one of which resembles a multipotent stem and/or progenitor cell, whereas the other has potential for differentiation. Although recent studies have shown that the balance between self-renewal and differentiation potentials is precisely controlled and that alterations in the balance may lead to tumorigenesis in Drosophila neuroblasts, it is largely unknown whether human cancer cells directly show ACD in an evolutionarily conserved manner. Here, we show that the conserved polarity/spindle protein NuMA is preferentially localized to one side of the cell cortex during cell division, generating unequal inheritance of fate-altering molecules in human neuroblastoma cell lines. We also show that the cells with a single copy of MYCN showed significantly higher percentages of ACD than those with MYCN amplification. Moreover, suppression of MYCN in MYCN-amplified cells caused ACD, whereas expression of MYCN in MYCN-nonamplified cells enhanced symmetric cell division. Furthermore, we demonstrate that centrosome inheritance follows a definite rule in ACD: The daughter centrosome with younger mother centriole is inherited to the daughter cell with NuMA preferentially localized to the cell cortex, whereas the mother centrosome with the older mother centriole migrates to the other daughter cell. Thus, the mechanisms of cell division of ACD or symmetric cell division and centrosome inheritance are recapitulated in human cancer cells, and these findings may facilitate studies on cancer stem cells.

  14. Arsenic (Environmental Health Student Portal)

    MedlinePlus

    ... Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Videos Games Experiments For Teachers Home ... Pollutants Natural Disasters Drinking Water Waterborne Diseases & Illnesses Water Cycle Water Treatment Arsenic The Basics Arsenic is an ...

  15. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils.

    PubMed

    Lee, Jae-Cheol; Kim, Eun Jung; Baek, Kitae

    2017-02-01

    Arsenic is often associated with iron oxides in soils due to its high affinity with iron oxides and the abundance of iron oxides in the environment. Dissolution of iron oxides can subsequently release arsenic associated with them into the environment, which results in the increase of arsenic mobility in the soil environment. In this study, arsenic extraction from soils via the dissolution of iron oxides was investigated using oxalate, ascorbate, and their combination in order to effectively remediate arsenic-contaminated soils. Oxalate mainly extracted iron from soils via a ligand-promoted reaction, while ascorbate extracted iron mainly via a reductive reaction. Arsenic extractions from soils by oxalate and ascorbate were shown to behave similarly to iron extractions, indicating the concurrent release of arsenic adsorbed on iron oxides upon the dissolution of iron oxides. The combination of oxalate and ascorbate greatly increased arsenic extraction, indicating the synergistic effects of the combination of oxalate and ascorbate on iron and arsenic extraction from soils. Oxalate and ascorbate are naturally-occurring organic reagents that have chelating and reducing capacity. Therefore, the use of oxalate and ascorbate is environmentally friendly and effective for the remediation of arsenic-contaminated soils.

  16. An Emerging Role for Epigenetic Dysregulation in Arsenic Toxicity and Carcinogenesis

    PubMed Central

    Ren, Xuefeng; McHale, Cliona M.; Skibola, Christine F.; Smith, Allan H.; Smith, Martyn T.; Zhang, Luoping

    2011-01-01

    Background Exposure to arsenic, an established human carcinogen, through consumption of highly contaminated drinking water is a worldwide public health concern. Several mechanisms by which arsenical compounds induce tumorigenesis have been proposed, including oxidative stress, genotoxic damage, and chromosomal abnormalities. Recent studies have suggested that epigenetic mechanisms may also mediate toxicity and carcinogenicity resulting from arsenic exposure. Objective We examined the evidence supporting the roles of the three major epigenetic mechanisms—DNA methylation, histone modification, and microRNA (miRNA) expression—in arsenic toxicity and, in particular, carcinogenicity. We also investigated future research directions necessary to clarify epigenetic and other mechanisms in humans. Data sources and synthesis We conducted a PubMed search of arsenic exposure and epigenetic modification through April 2010 and summarized the in vitro and in vivo research findings, from both our group and others, on arsenic-associated epigenetic alteration and its potential role in toxicity and carcinogenicity. Conclusions Arsenic exposure has been shown to alter methylation levels of both global DNA and gene promoters; histone acetylation, methylation, and phosphorylation; and miRNA expression, in studies analyzing mainly a limited number of epigenetic end points. Systematic epigenomic studies in human populations exposed to arsenic or in patients with arsenic-associated cancer have not yet been performed. Such studies would help to elucidate the relationship between arsenic exposure, epigenetic dysregulation, and carcinogenesis and are becoming feasible because of recent technological advancements. PMID:20682481

  17. Tank binding kinase 1 is a centrosome-associated kinase necessary for microtubule dynamics and mitosis

    PubMed Central

    Pillai, Smitha; Nguyen, Jonathan; Johnson, Joseph; Haura, Eric; Coppola, Domenico; Chellappan, Srikumar

    2015-01-01

    TANK Binding Kinase 1 (TBK1) is a non-canonical IκB kinase that contributes to KRAS-driven lung cancer. Here we report that TBK1 plays essential roles in mammalian cell division. Specifically, levels of active phospho-TBK1 increase during mitosis and localize to centrosomes, mitotic spindles and midbody, and selective inhibition or silencing of TBK1 triggers defects in spindle assembly and prevents mitotic progression. TBK1 binds to the centrosomal protein CEP170 and to the mitotic apparatus protein NuMA, and both CEP170 and NuMA are TBK1 substrates. Further, TBK1 is necessary for CEP170 centrosomal localization and binding to the microtubule depolymerase Kif2b, and for NuMA binding to dynein. Finally, selective disruption of the TBK1–CEP170 complex augments microtubule stability and triggers defects in mitosis, suggesting that TBK1 functions as a mitotic kinase necessary for microtubule dynamics and mitosis. PMID:26656453

  18. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex

    PubMed Central

    1992-01-01

    The localization of the Golgi complex depends upon the integrity of the microtubule apparatus. At interphase, the Golgi has a restricted pericentriolar localization. During mitosis, it fragments into small vesicles that are dispersed throughout the cytoplasm until telophase, when they again coalesce near the centrosome. These observations have suggested that the Golgi complex utilizes a dynein-like motor to mediate its transport from the cell periphery towards the minus ends of microtubules, located at the centrosome. We utilized semi-intact cells to study the interaction of the Golgi complex with the microtubule apparatus. We show here that Golgi complexes can enter semi-intact cells and associate stably with cytoplasmic constituents. Stable association, termed here "Golgi capture," requires ATP hydrolysis and intact microtubules, and occurs maximally at physiological temperature in the presence of added cytosolic proteins. Once translocated into the semi-intact cell cytoplasm, exogenous Golgi complexes display a distribution similar to endogenous Golgi complexes, near the microtubule-organizing center. The process of Golgi capture requires cytoplasmic tubulin, and is abolished if cytoplasmic dynein is immunodepleted from the cytosol. Cytoplasmic dynein, prepared from CHO cell cytosol, restores Golgi capture activity to reactions carried out with dynein immuno-depleted cytosol. These results indicate that cytoplasmic dynein can interact with isolated Golgi complexes, and participate in their accumulation near the centrosomes of semi-intact, recipient cells. Thus, cytoplasmic dynein appears to play a role in determining the subcellular localization of the Golgi complex. PMID:1387874

  19. Organization of early frog embryos by chemical waves emanating from centrosomes

    PubMed Central

    Ishihara, Keisuke; Nguyen, Phuong A.; Wühr, Martin; Groen, Aaron C.; Field, Christine M.; Mitchison, Timothy J.

    2014-01-01

    The large cells in early vertebrate development face an extreme physical challenge in organizing their cytoplasm. For example, amphibian embryos have to divide cytoplasm that spans hundreds of micrometres every 30 min according to a precise geometry, a remarkable accomplishment given the extreme difference between molecular and cellular scales in this system. How do the biochemical reactions occurring at the molecular scale lead to this emergent behaviour of the cell as a whole? Based on recent findings, we propose that the centrosome plays a crucial role by initiating two autocatalytic reactions that travel across the large cytoplasm as chemical waves. Waves of mitotic entry and exit propagate out from centrosomes using the Cdk1 oscillator to coordinate the timing of cell division. Waves of microtubule-stimulated microtubule nucleation propagate out to assemble large asters that position spindles for the following mitosis and establish cleavage plane geometry. By initiating these chemical waves, the centrosome rapidly organizes the large cytoplasm during the short embryonic cell cycle, which would be impossible using more conventional mechanisms such as diffusion or nucleation by structural templating. Large embryo cells provide valuable insights to how cells control chemical waves, which may be a general principle for cytoplasmic organization. PMID:25047608

  20. p53 centrosomal localization diagnoses ataxia-telangiectasia homozygotes and heterozygotes

    PubMed Central

    Prodosmo, Andrea; De Amicis, Andrea; Nisticò, Cecilia; Gabriele, Mario; Di Rocco, Giuliana; Monteonofrio, Laura; Piane, Maria; Cundari, Enrico; Chessa, Luciana; Soddu, Silvia

    2013-01-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive neurodegenerative disorder characterized by radiosensitivity, genomic instability, and predisposition to cancer. A-T is caused by biallelic mutations in the ataxia-telangiectasia mutated (ATM) gene, but heterozygous carriers, though apparently healthy, are believed to be at increased risk for cancer and more sensitive to ionizing radiation than the general population. Despite progress in functional and sequencing-based assays, no straightforward, rapid, and inexpensive test is available for the identification of A-T homozygotes and heterozygotes, which is essential for diagnosis, genetic counseling, and carrier prediction. The oncosuppressor p53 prevents genomic instability and centrosomal amplification. During mitosis, p53 localizes at the centrosome in an ATM-dependent manner. We capitalized on the latter finding and established a simple, fast, minimally invasive, reliable, and inexpensive test to determine mutant ATM zygosity. The percentage of mitotic lymphoblasts or PBMCs bearing p53 centrosomal localization clearly discriminated among healthy donors (>75%), A-T heterozygotes (40%–56%), and A-T homozygotes (<30%). The test is specific for A-T, independent of the type of ATM mutations, and recognized tumor-associated ATM polymorphisms. In a preliminary study, our test confirmed that ATM is a breast cancer susceptibility gene. These data open the possibility of cost-effective, early diagnosis of A-T homozygotes and large-scale screenings for heterozygotes. PMID:23454770

  1. Chromatids segregate without centrosomes during Caenorhabditis elegans mitosis in a Ran- and CLASP-dependent manner

    PubMed Central

    Nahaboo, Wallis; Zouak, Melissa; Askjaer, Peter; Delattre, Marie

    2015-01-01

    During mitosis, chromosomes are connected to a microtubule-based spindle. Current models propose that displacement of the spindle poles and/or the activity of kinetochore microtubules generate mechanical forces that segregate sister chromatids. Using laser destruction of the centrosomes during Caenorhabditis elegans mitosis, we show that neither of these mechanisms is necessary to achieve proper chromatid segregation. Our results strongly suggest that an outward force generated by the spindle midzone, independently of centrosomes, is sufficient to segregate chromosomes in mitotic cells. Using mutant and RNAi analysis, we show that the microtubule-bundling protein SPD-1/MAP-65 and BMK-1/kinesin-5 act as a brake opposing the force generated by the spindle midzone. Conversely, we identify a novel role for two microtubule-growth and nucleation agents, Ran and CLASP, in the establishment of the centrosome-independent force during anaphase. Their involvement raises the interesting possibility that microtubule polymerization of midzone microtubules is continuously required to sustain chromosome segregation during mitosis. PMID:25833711

  2. Cyclin B2 and p53 control proper timing of centrosome separation

    PubMed Central

    Nam, Hyun-Ja; van Deursen, Jan M.

    2015-01-01

    Cyclins Bl and B2 are frequently elevated in human cancers and are associated with tumour aggressiveness and poor clinical outcome; however, whether and how B-type cyclins drive tumorigenesis is unknown. Here we show that cyclin Bl and B2 transgenic mice are highly prone to tumours, including tumour types where B-type cyclins serve as prognosticators. Cyclins Bl and B2 both induce aneuploidy when overexpressed but through distinct mechanisms, with cyclin Bl inhibiting separase activation, leading to anaphase bridges, and cyclin B2 triggering aurora-A-mediated Plkl hyperactivation, resulting in accelerated centrosome separation and lagging chromosomes. Complementary experiments revealed that cyclin B2 and p53 act antagonistically to control aurora-A-mediated centrosome splitting and accurate chromosome segregation in normal cells. These data demonstrate a causative link between B-type cyclin overexpression and tumour pathophysiology, and uncover previously unknown functions of cyclin B2 and p53 in centrosome separation that may be perturbed in many human cancers. PMID:24776885

  3. Centriole Disassembly In Vivo and Its Effect on Centrosome Structure and Function in Vertebrate Cells

    PubMed Central

    Bobinnec, Y.; Khodjakov, A.; Mir, L.M.; Rieder, C.L.; Eddé, B.; Bornens, M.

    1998-01-01

    Glutamylation is the major posttranslational modification of neuronal and axonemal tubulin and is restricted predominantly to centrioles in nonneuronal cells (Bobinnec, Y., M. Moudjou, J.P. Fouquet, E. Desbruyères, B. Eddé, and M. Bornens. 1998. Cell Motil. Cytoskel. 39:223–232). To investigate a possible relationship between the exceptional stability of centriole microtubules and the compartmentalization of glutamylated isoforms, we loaded HeLa cells with the monoclonal antibody GT335, which specifically reacts with polyglutamylated tubulin. The total disappearance of the centriole pair was observed after 12 h, as judged both by immunofluorescence labeling with specific antibodies and electron microscopic observation of cells after complete thick serial sectioning. Strikingly, we also observed a scattering of the pericentriolar material (PCM) within the cytoplasm and a parallel disappearance of the centrosome as a defined organelle. However, centriole disappearance was transient, as centrioles and discrete centrosomes ultimately reappeared in the cell population. During the acentriolar period, a large proportion of monopolar half-spindles or of bipolar spindles with abnormal distribution of PCM and NuMA were observed. However, as judged by a quasinormal increase in cell number, these cells likely were not blocked in mitosis. Our results suggest that a posttranslational modification of tubulin is critical for long-term stability of centriolar microtubules. They further demonstrate that in animal cells, centrioles are instrumental in organizing centrosomal components into a structurally stable organelle. PMID:9852152

  4. ARSENIC REMOVAL COST ESTIMATING PROGRAM

    EPA Science Inventory

    The Arsenic Removal Cost Estimating program (Excel) calculates the costs for using adsorptive media and anion exchange treatment systems to remove arsenic from drinking water. The program is an easy-to-use tool to estimate capital and operating costs for three types of arsenic re...

  5. PATHWAY OF INORGANIC ARSENIC METABOLISM

    EPA Science Inventory

    A remarkable aspect of the metabolism of inorganic arsenic in humans is its conversion to methylated metabolites. These metabolites account for most of the arsenic found in urine after exposure to inorganic arsenic. At least some of the adverse health effects attributed to inor...

  6. PROPOSED CARCINOGENIC MECHANISMS FOR ARSENIC

    EPA Science Inventory

    PROPOSED CARCINOGENIC MECHANISMS FOR ARSENIC.

    Arsenic is a human carcinogen in skin, lung, liver, urinary bladder and kidney. In contrast,
    there is no accepted experimental animal model of inorganic arsenic carcinogenesis.
    Proposed mechanisms/modes of action for a...

  7. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism

    SciTech Connect

    Cheng, Tain-Junn; Chuu, Jiunn-Jye; Chang, Chia-Yu; Tsai, Wan-Chen; Chen, Kuan-Jung; Guo, How-Ran

    2011-10-15

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor {beta} (LXR{beta}) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXR{beta} activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXR{beta} and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: > Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. > Arsenic may promote atherosclerosis with transient increase in HSP

  8. The Toxoplasma gondii centrosome is the platform for internal daughter budding as revealed by a Nek1 kinase mutant.

    PubMed

    Chen, Chun-Ti; Gubbels, Marc-Jan

    2013-08-01

    The pathology and severity of toxoplasmosis results from the rapid replication cycle of the apicomplexan parasite Toxoplasma gondii. The tachyzoites divide asexually through endodyogeny, wherein two daughter cells bud inside the mother cell. Before mitosis is completed, the daughter buds form around the duplicated centrosomes and subsequently elongate to serve as the scaffold for organellogenesis and organelle partitioning. The molecular control mechanism of this process is poorly understood. Here, we characterized a T. gondii NIMA-related kinase (Nek) ortholog that was identified in a chemical mutagenesis screen. A temperature-sensitive mutant, V-A15, possesses a Cys316Arg mutation in TgNek1 (a novel mutant allele in Neks), which is responsible for growth defects at the restrictive temperature. Phenotypic analysis of V-A15 indicated that TgNek1 is essential for centrosome splitting, proper formation of daughter cells and faithful segregation of genetic material. In vitro kinase assays showed that the mutation abolishes the kinase activity of TgNek1. TgNek1 is recruited to the centrosome prior to its duplication and localizes on the duplicated centrosomes facing the spindle poles in a cell-cycle-dependent manner. Mutational analysis of the activation loop suggests that localization and activity are spatio-temporally regulated by differential phosphorylation. Collectively, our results identified a novel temperature-sensitive allele for a Nek kinase and highlight its essential function in centrosome splitting in Toxoplasma. Moreover, these results conclusively show for the first time that Toxoplasma bud assembly is facilitated by the centrosome because defective centrosome splitting results in single daughter cell budding.

  9. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  10. Arsenic, Anaerobes, and Astrobiology

    NASA Astrophysics Data System (ADS)

    Stolz, J. F.; Oremland, R. S.; Switzer Blum, J.; Hoeft, S. E.; Baesman, S. M.; Bennett, S.; Miller, L. G.; Kulp, T. R.; Saltikov, C.

    2013-12-01

    Arsenic is an element best known for its highly poisonous nature, so it is not something one would associate with being a well-spring for life. Yet discoveries made over the past two decades have delineated that not only are some microbes resistant to arsenic, but that this element's primary redox states can be exploited to conserve energy and support prokaryotic growth ('arsenotrophy') in the absence of oxygen. Hence, arsenite [As(III)] can serve as an electron donor for chemo- or photo-autotrophy while arsenate [As(V)] will serve as an electron acceptor for chemo-heterotrophs and chemo-autotrophs. The phylogenetic diversity of these microbes is broad, encompassing many individual species from diverse taxonomic groups in the Domain Bacteria, with fewer representatives in the Domain Archaea. Speculation with regard to the evolutionary origins of the key functional genes in anaerobic arsenic transformations (arrA and arxA) and aerobic oxidation (aioB) has led to a disputation as to which gene and function is the most ancient and whether arsenic metabolism extended back into the Archaean. Regardless of its origin, robust arsenic metabolism has been documented in extreme environments that are rich in their arsenic content, such as hot springs and especially hypersaline soda lakes associated with volcanic regions. Searles Lake, CA is an extreme, salt-saturated end member where vigorous arsenic metabolism occurs, but there is no detectable sulfate-reduction or methanogenesis. The latter processes are too weak bio-energetically to survive as compared with arsenotrophy, and are also highly sensitive to the abundance of borate ions present in these locales. These observations have implications with respect to the search for microbial life elsewhere in the Solar System where volcanic-like processes have been operative. Hence, because of the likelihood of encountering dense brines in the regolith of Mars (formed by evapo-concentration) or beneath the ice layers of Europa

  11. [Arsenic - Poison or medicine?].

    PubMed

    Kulik-Kupka, Karolina; Koszowska, Aneta; Brończyk-Puzoń, Anna; Nowak, Justyna; Gwizdek, Katarzyna; Zubelewicz-Szkodzińska, Barbara

    2016-01-01

    Arsenic (As) is commonly known as a poison. Only a few people know that As has also been widely used in medicine. In the past years As and its compounds were used as a medicine for the treatment of such diseases as diabetes, psoriasis, syphilis, skin ulcers and joint diseases. Nowadays As is also used especially in the treatment of patients with acute promyelocytic leukemia. The International Agency for Research on Cancer (IARC) has recognized arsenic as an element with carcinogenic effect evidenced by epidemiological studies, but as previously mentioned it is also used in the treatment of neoplastic diseases. This underlines the specificity of the arsenic effects. Arsenic occurs widely in the natural environment, for example, it is present in soil and water, which contributes to its migration to food products. Long exposure to this element may lead to liver damages and also to changes in myocardium. Bearing in mind that such serious health problems can occur, monitoring of the As presence in the environmental media plays a very important role. In addition, the occupational risk of As exposure in the workplace should be identified and checked. Also the standards for As presence in food should be established. This paper presents a review of the 2015 publications based on the Medical database like PubMed and Polish Medical Bibliography. It includes the most important information about arsenic in both forms, poison and medicine.

  12. Arsenic: The Silent Killer

    SciTech Connect

    Foster, Andrea

    2006-02-28

    Andrea Foster uses x-rays to determine the forms of potentially toxic elements in environmentally-important matrices such as water, sediments, plants, and microorganisms. In this free public lecture, Foster will discuss her research on arsenic, which is called the silent killer because dissolved in water, it is colorless, odorless, and tasteless, yet consumption of relatively small doses of this element in its most toxic forms can cause rapid and violent death. Arsenic is a well-known poison, and has been used as such since ancient times. Less well known is the fact that much lower doses of the element, consumed over years, can lead to a variety of skin and internal cancers that can also be fatal. Currently, what has been called the largest mass poisoning in history is occurring in Bangladesh, where most people are by necessity drinking ground water that is contaminated with arsenic far in excess of the maximum amounts determined to be safe by the World Health Organization. This presentation will review the long and complicated history with arsenic, describe how x-rays have helped explain the high yet spatially variable arsenic concentrations in Bangladesh, discuss the ways in which land use in Bangladesh may be exacerbating the problem, and summarize the impact of this silent killer on drinking water systems worldwide.

  13. Metabolism and toxicity of arsenicals in mammals.

    PubMed

    Sattar, Adeel; Xie, Shuyu; Hafeez, Mian Abdul; Wang, Xu; Hussain, Hafiz Iftikhar; Iqbal, Zahid; Pan, Yuanhu; Iqbal, Mujahid; Shabbir, Muhammad Abubakr; Yuan, Zonghui

    2016-12-01

    Arsenic (As) is a metalloid usually found in organic and inorganic forms with different oxidation states, while inorganic form (arsenite As-III and arsenate As-v) is considered to be more hazardous as compared to organic form (methylarsonate and dimethylarsinate), with mild or no toxicity in mammals. Due to an increasing trend to using arsenicals as growth promoters or for treatment purposes, the understanding of metabolism and toxicity of As gets vital importance. Its toxicity is mainly depends on oxi-reduction states (As-III or As-v) and the level of methylation during the metabolism process. Currently, the exact metabolic pathways of As have yet to be confirmed in humans and food producing animals. Oxidative methylation and glutathione conjugation is believed to be major pathways of As metabolism. Oxidative methylation is based on conversion of Arsenite in to mono-methylarsonic acid and di-methylarsenic acid in mammals. It has been confirmed that As is only methylated in the presence of glutathione or thiol compounds, suggesting that As is being methylated in trivalent states. Subsequently, non-conjugated trivalent arsenicals are highly reactive with thiol which converts the trivalent arsenicals in to less toxic pentavalent forms. The glutathione conjugate stability of As is the most important factor for determining the toxicity. It can lead to DNA damage by alerting enzyme profile and production of reactive oxygen and nitrogen species which causes the oxidative stress. Moreover, As causes immune-dysfunction by hindering cellular and humeral immune response. The present review discussed different metabolic pathways and toxic outcomes of arsenicals in mammals which will be helpful in health risk assessment and its impact on biological world.

  14. Arsenic Speciation of Terrestrial Invertebrates

    SciTech Connect

    Moriarty, M.M.; Koch, I.; Gordon, R.A.; Reimer, K.J. ); )

    2009-07-01

    The distribution and chemical form (speciation) of arsenic in terrestrial food chains determines both the amount of arsenic available to higher organisms, and the toxicity of this metalloid in affected ecosystems. Invertebrates are part of complex terrestrial food webs. This paper provides arsenic concentrations and arsenic speciation profiles for eight orders of terrestrial invertebrates collected at three historical gold mine sites and one background site in Nova Scotia, Canada. Total arsenic concentrations, determined by inductively coupled plasma mass spectrometry (ICP-MS), were dependent upon the classification of invertebrate. Arsenic species were determined by high-performance liquid chromatography (HPLC) ICP-MS and X-ray absorption spectroscopy (XAS). Invertebrates were found by HPLC ICP-MS to contain predominantly arsenite and arsenate in methanol/water extracts, while XAS revealed that most arsenic is bound to sulfur in vivo. Examination of the spatial distribution of arsenic within an ant tissue highlighted the differences between exogenous and endogenous arsenic, as well as the extent to which arsenic is transformed upon ingestion. Similar arsenic speciation patterns for invertebrate groups were observed across sites. Trace amounts of arsenobetaine and arsenocholine were identified in slugs, ants, and spiders.

  15. Environmental source of arsenic exposure.

    PubMed

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-09-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made.

  16. Environmental Source of Arsenic Exposure

    PubMed Central

    Chung, Jin-Yong; Yu, Seung-Do; Hong, Young-Seoub

    2014-01-01

    Arsenic is a ubiquitous, naturally occurring metalloid that may be a significant risk factor for cancer after exposure to contaminated drinking water, cigarettes, foods, industry, occupational environment, and air. Among the various routes of arsenic exposure, drinking water is the largest source of arsenic poisoning worldwide. Arsenic exposure from ingested foods usually comes from food crops grown in arsenic-contaminated soil and/or irrigated with arsenic-contaminated water. According to a recent World Health Organization report, arsenic from contaminated water can be quickly and easily absorbed and depending on its metabolic form, may adversely affect human health. Recently, the US Food and Drug Administration regulations for metals found in cosmetics to protect consumers against contaminations deemed deleterious to health; some cosmetics were found to contain a variety of chemicals including heavy metals, which are sometimes used as preservatives. Moreover, developing countries tend to have a growing number of industrial factories that unfortunately, harm the environment, especially in cities where industrial and vehicle emissions, as well as household activities, cause serious air pollution. Air is also an important source of arsenic exposure in areas with industrial activity. The presence of arsenic in airborne particulate matter is considered a risk for certain diseases. Taken together, various potential pathways of arsenic exposure seem to affect humans adversely, and future efforts to reduce arsenic exposure caused by environmental factors should be made. PMID:25284196

  17. ELUCIDATING THE PATHWAY FOR ARSENIC METHYLATION

    EPA Science Inventory

    Enzymatically-catalyzed methylation of arsenic is part of a metabolic pathway that converts inorganic arsenic into methylated products. Hence, in humans chronically exposed to inorganic arsenic, methyl and dimethyl arsenic account for most of the arsenic that is excreted in the ...

  18. ARSENIC SPECIATION ANALYSIS IN HUMAN SALIVA

    EPA Science Inventory

    Background: Determination of arsenic species in human saliva is potentially useful for biomonitoring of human exposure to arsenic and for studying arsenic metabolism. However, there is no report on the speciation analysis of arsenic in saliva. Methods: Arsenic species in saliva ...

  19. Arsenic doped zinc oxide

    SciTech Connect

    Volbers, N.; Lautenschlaeger, S.; Leichtweiss, T.; Laufer, A.; Graubner, S.; Meyer, B. K.; Potzger, K.; Zhou Shengqiang

    2008-06-15

    As-doping of zinc oxide has been approached by ion implantation and chemical vapor deposition. The effect of thermal annealing on the implanted samples has been investigated by using secondary ion mass spectrometry and Rutherford backscattering/channeling geometry. The crystal damage, the distribution of the arsenic, the diffusion of impurities, and the formation of secondary phases is discussed. For the thin films grown by vapor deposition, the composition has been determined with regard to the growth parameters. The bonding state of arsenic was investigated for both series of samples using x-ray photoelectron spectroscopy.

  20. ARSENIC REMOVAL TREATMENT OPTIONS FOR SINGLE FAMILY HOMES

    EPA Science Inventory

    The presentation provides information on POU and POE arsenic removal drinking water treatment systems. The presentation provides information on the arsenic rule, arsenic chemistry and arsenic treatment. The arsenic treatment options proposed for POU and POE treatment consist prim...

  1. The presence of centrioles and centrosomes in ovarian mature cystic teratoma cells suggests human parthenotes developed in vitro can differentiate into mature cells without a sperm centriole

    SciTech Connect

    Lee, Bo Yon; Shim, Sang Woo; Kim, Young Sun; Kim, Seung Bo

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer The sperm centriole is the progenitor of centrosomes in all somatic cells. Black-Right-Pointing-Pointer Centrioles and centrosomes exist in parthenogenetic ovarian teratoma cells. Black-Right-Pointing-Pointer Without a sperm centriole, parthenogenetic oocytes produce centrioles and centrosomes. Black-Right-Pointing-Pointer Parthenogenetic human oocytes can develop and differentiate into mature cells. -- Abstract: In most animals, somatic cell centrosomes are inherited from the centriole of the fertilizing spermatozoa. The oocyte centriole degenerates during oogenesis, and completely disappears in metaphase II. Therefore, the embryos generated by in vitro parthenogenesis are supposed to develop without any centrioles. Exceptional acentriolar and/or acentrosomal developments are possible in mice and in some experimental cells; however, in most animals, the full developmental potential of parthenogenetic cells in vitro and the fate of their centrioles/centrosomes are not clearly understood. To predict the future of in vitro human parthenogenesis, we explored the centrioles/centrosomes in ovarian mature cystic teratoma cells by immunofluorescent staining and transmission electron microscopy. We confirmed the presence of centrioles and centrosomes in these well-known parthenogenetic ovarian tumor cells. Our findings clearly demonstrate that, even without a sperm centriole, parthenotes that develop from activated oocytes can produce their own centrioles/centrosomes, and can even develop into the well-differentiated mature tissue.

  2. Casein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos

    PubMed Central

    Medley, Jeffrey C.; Kabara, Megan M.; Stubenvoll, Michael D.; DeMeyer, Lauren E.

    2017-01-01

    ABSTRACT Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated actions among core factors and modulators. Protein phosphorylation is shown to regulate the stability, localization and activity of centrosome proteins. Here, we report the function of Casein kinase II (CK2) in early Caenorhabditis elegans embryos. The catalytic subunit (KIN-3/CK2α) of CK2 localizes to nuclei, centrosomes and midbodies. Inactivating CK2 leads to cell division defects, including chromosome missegregation, cytokinesis failure and aberrant centrosome behavior. Furthermore, depletion or inhibiting kinase activity of CK2 results in elevated ZYG-1 levels at centrosomes, restoring centrosome duplication and embryonic viability to zyg-1 mutants. Our data suggest that CK2 functions in cell division and negatively regulates centrosome duplication in a kinase-dependent manner. PMID:27881437

  3. Efficacy of arsenic filtration by Kanchan arsenic filter in Nepal.

    PubMed

    Singh, Anjana; Smith, Linda S; Shrestha, Shreekrishna; Maden, Narendra

    2014-09-01

    Groundwater arsenic contamination has caused a significant public health burden in lowland regions of Nepal. For arsenic mitigation purposes, the Kanchan Arsenic Filter (KAF) was developed and validated for use in 2003 after pilot studies showed its effectiveness in removing arsenic. However, its efficacy in field conditions operating for a long period has been scarcely observed. In this study, we observe the efficacy of KAFs running over 6 months in highly arsenic-affected households in Nawalparasi district. We assessed pair-wise arsenic concentrations of 62 randomly selected household tubewells before filtration and after filtration via KAFs. Of 62 tubewells, 41 had influent arsenic concentration exceeding the Nepal drinking water quality standard value (50 μg/L). Of the 41 tubewells having unsafe arsenic levels, KAFs reduced arsenic concentration to the safe level for only 22 tubewells, an efficacy of 54%. In conclusion, we did not find significantly high efficacy of KAFs in reducing unsafe influent arsenic level to the safe level under the in situ field conditions.

  4. [Effect of the interaction of microorganisms and iron oxides on arsenic releasing into groundwater in Chinese Loess].

    PubMed

    Xie, Yun-Yun; Chen, Tian-Hu; Zhou, Yue-Fei; Xie, Qiao-Qin

    2013-10-01

    A large part of groundwater in the Chinese Loess Plateau area is characterized by high arsenic concentration. Anaerobic bacteria have been considered to play key roles in promoting arsenic releasing from loess to groundwater. However, this hypothesis remains unconfirmed. Based on modeling experiments, this study investigated the speciation of arsenic in loess, and then determined the release rates and quantities of arsenic with the mediation of anaerobic bacteria. The results showed that arsenic contents in loess were between 23 mg.kg-1 and 30 mg.kg-1. No obvious arsenic content difference among loess samples was observed. The ratios for specific adsorbed, iron oxides co-precipitated and silicate co-precipitated arsenic were 37.76% , 36. 15% and 25. 69% , respectively. Indigenous microorganisms, dissimilatory iron reducing bacteria (DIRB) and sulfate reducing bacteria (SRB) could all promote the release of arsenic from loess. Organic matters highly affected the release rates. More than 100 mg.L-1 sodium lactate was required for all bacterial experiments to facilitate obvious arsenic release. Considering the redox condition in loess, the contribution of SRB to arsenic release in loess area was less feasible than that of DIRB and indigenous microorganisms.

  5. Role of Aspergillus niger acrA in Arsenic Resistance and Its Use as the Basis for an Arsenic Biosensor

    PubMed Central

    Choe, Se-In; Gravelat, Fabrice N.; Al Abdallah, Qusai; Lee, Mark J.; Gibbs, Bernard F.

    2012-01-01

    Arsenic contamination of groundwater sources is a major issue worldwide, since exposure to high levels of arsenic has been linked to a variety of health problems. Effective methods of detection are thus greatly needed as preventive measures. In an effort to develop a fungal biosensor for arsenic, we first identified seven putative arsenic metabolism and transport genes in Aspergillus niger, a widely used industrial organism that is generally regarded as safe (GRAS). Among the genes tested for RNA expression in response to arsenate, acrA, encoding a putative plasma membrane arsenite efflux pump, displayed an over 200-fold increase in gene expression in response to arsenate. We characterized the function of this A. niger protein in arsenic efflux by gene knockout and confirmed that AcrA was located at the cell membrane using an enhanced green fluorescent protein (eGFP) fusion construct. Based on our observations, we developed a putative biosensor strain containing a construct of the native promoter of acrA fused with egfp. We analyzed the fluorescence of this biosensor strain in the presence of arsenic using confocal microscopy and spectrofluorimetry. The biosensor strain reliably detected both arsenite and arsenate in the range of 1.8 to 180 μg/liter, which encompasses the threshold concentrations for drinking water set by the World Health Organization (10 and 50 μg/liter). PMID:22467499

  6. Role of Aspergillus niger acrA in arsenic resistance and its use as the basis for an arsenic biosensor.

    PubMed

    Choe, Se-In; Gravelat, Fabrice N; Al Abdallah, Qusai; Lee, Mark J; Gibbs, Bernard F; Sheppard, Donald C

    2012-06-01

    Arsenic contamination of groundwater sources is a major issue worldwide, since exposure to high levels of arsenic has been linked to a variety of health problems. Effective methods of detection are thus greatly needed as preventive measures. In an effort to develop a fungal biosensor for arsenic, we first identified seven putative arsenic metabolism and transport genes in Aspergillus niger, a widely used industrial organism that is generally regarded as safe (GRAS). Among the genes tested for RNA expression in response to arsenate, acrA, encoding a putative plasma membrane arsenite efflux pump, displayed an over 200-fold increase in gene expression in response to arsenate. We characterized the function of this A. niger protein in arsenic efflux by gene knockout and confirmed that AcrA was located at the cell membrane using an enhanced green fluorescent protein (eGFP) fusion construct. Based on our observations, we developed a putative biosensor strain containing a construct of the native promoter of acrA fused with egfp. We analyzed the fluorescence of this biosensor strain in the presence of arsenic using confocal microscopy and spectrofluorimetry. The biosensor strain reliably detected both arsenite and arsenate in the range of 1.8 to 180 μg/liter, which encompasses the threshold concentrations for drinking water set by the World Health Organization (10 and 50 μg/liter).

  7. Arsenic in ground-water under oxidizing conditions, south-west United States.

    PubMed

    Robertson, F N

    1989-12-01

    Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 μg L(-1) and reach values as large as 1,300 μg L(-1). Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4(∼2), under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin

  8. Arsenic in ground-water under oxidizing conditions, south-west United States

    USGS Publications Warehouse

    Robertson, F.N.

    1989-01-01

    Concentrations of dissolved arsenic in ground-water in alluvial basins of Arizona commonly exceed 50 ??g L-1 and reach values as large as 1,300 ??g L-1. Arsenic speciation analyses show that arsenic occurs in the fully oxidized state of plus 5 (As+5), most likely in the form of HAsO4???2, under existing oxidizing and pH conditions. Arsenic in source areas presumably is oxidized to soluble As before transport into the basin or, if after transport, before burial. Probable sources of arsenic are the sulphide and arsenide deposits in the mineralized areas of the mountains surrounding the basins. Arsenic content of alluvial material ranged from 2 to 88 ppm. Occurrence and removal of arsenic in ground-water are related to the pH and the redox condition of the ground-water, the oxidation state of arsenic, and sorption or exchange. Within basins, dissolved arsenic correlates (P<0.01) with dissolved molybdenum, selenium, vanadium, and fluoride and with pH, suggesting sorption of negative ions. The sorption hypothesis is further supported by enrichment of teachable arsenic in the basin-fill sediments by about tenfold relative to the crustal abundance and by as much as a thousandfold relative to concentrations found in ground-water. Silicate hydrolysis reactions, as defined within the alluvial basins, under closed conditions cause increases in pH basinward and would promote desorption. Within the region, large concentrations of arsenic are commonly associated with the central parts of basins whose chemistries evolve under closed conditions. Arsenic does not correlate with dissolved iron (r = 0.09) but may be partly controlled by iron in the solid phase. High solid-phase arsenic contents were found in red clay beds. Large concentrations of arsenic also were found in water associated with red clay beds. Basins that contain the larger concentrations are bounded primarily by basalt and andesite, suggesting that the iron content as well as the arsenic content of the basin fill may

  9. Biosensor for organoarsenical herbicides and growth promoters.

    PubMed

    Chen, Jian; Sun, Samio; Li, Chen-Zhong; Zhu, Yong-Guan; Rosen, Barry P

    2014-01-21

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10(-7) M and linearity to 10(-6) M for phenylarsenite and 5 × 10(-6) M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters.

  10. Arsenic release by indigenous bacteria Bacillus cereus from aquifer sediments at Datong Basin, northern China

    NASA Astrophysics Data System (ADS)

    Xie, Zuoming; Wang, Yanxin; Duan, Mengyu; Xie, Xianjun; Su, Chunli

    2011-03-01

    Endemic arsenic poisoning due to long-term drinking of high arsenic groundwater has been reported in Datong Basin, northern China. To investigate the effects of microbial activities on arsenic mobilization in contaminated aquifers, Bacillus cereus ( B. cereus) isolated from high arsenic aquifer sediments of the basin was used in our microcosm experiments. The arsenic concentration in the treatment with both bacteria and sodium citrate or glucose had a rapid increase in the first 18 d, and then, it declined. Supplemented with bacteria only, the concentration could increase on the second day. By contrast, the arsenic concentration in the treatment supplemented with sodium citrate or glucose was kept very low. These results indicate that bacterial activities promoted the release of arsenic in the sediments. Bacterial activities also influenced other geochemical parameters of the aqueous phase, such as pH, Eh, and the concentrations of dissolved Fe, Mn, and Al that are important controls on arsenic release. The removal of Fe, Mn, and Al from sediment samples was observed with the presence of B. cereus. The effects of microbial activities on Fe, Mn, and Al release were nearly the same as those on As mobilization. The pH values of the treatments inoculated with bacteria were lower than those without bacteria, still at alkaline levels. With the decrease of Eh values in treatments inoculated with bacteria, the microcosms became more reducing and are thus favorable for arsenic release.

  11. The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline.

    PubMed

    Inaba, Mayu; Venkei, Zsolt G; Yamashita, Yukiko M

    2015-03-20

    Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood. In Drosophila male germline stem cells, ACD is prepared by stereotypical centrosome positioning. The centrosome orientation checkpoint (COC) further serves to ensure ACD by preventing mitosis upon centrosome misorientation. In this study, we show that Bazooka (Baz) provides a platform for the correct centrosome orientation and that Baz-centrosome association is the key event that is monitored by the COC. Our work provides a foundation for understanding how the correct cell polarity may be recognized by the cell to ensure productive ACD.

  12. Arsenic and diabetes: current perspectives.

    PubMed

    Huang, Chun Fa; Chen, Ya Wen; Yang, Ching Yao; Tsai, Keh Sung; Yang, Rong Sen; Liu, Shing Hwa

    2011-09-01

    Arsenic is a naturally occurring toxic metalloid of global concern. Many studies have indicated a dose-response relationship between accumulative arsenic exposure and the prevalence of diabetes mellitus (DM) in arseniasis-endemic areas in Taiwan and Bangladesh, where arsenic exposure occurs through drinking water. Epidemiological researches have suggested that the characteristics of arsenic-induced DM observed in arseniasis-endemic areas in Taiwan and Mexico are similar to those of non-insulin-dependent DM (Type 2 DM). These studies analyzed the association between high and chronic exposure to inorganic arsenic in drinking water and the development of DM, but the effect of exposure to low to moderate levels of inorganic arsenic on the risk of DM is unclear. Navas-Acien et al. recently proposed that a positive association existed between total urine arsenic and the prevalence of Type 2 DM in people exposed to low to moderate levels of arsenic. However, the diabetogenic role played by arsenic is still debated upon. An increase in the prevalence of DM has been observed among residents of highly arsenic-contaminated areas, whereas the findings from community-based and occupational studies in low-arsenic-exposure areas have been inconsistent. Recently, a population-based cross-sectional study showed that the current findings did not support an association between arsenic exposure from drinking water at levels less than 300 μg/L and a significantly increased risk of DM. Moreover, although the precise mechanisms for the arsenic-induced diabetogenic effect are still largely undefined, recent in vitro experimental studies indicated that inorganic arsenic or its metabolites impair insulin-dependent glucose uptake or glucose-stimulated insulin secretion. Nevertheless, the dose, the form of arsenic used, and the experimental duration in the in vivo studies varied greatly, leading to conflicting results and ambiguous interpretation of these data with respect to human exposure

  13. Electric fields generated by synchronized oscillations of microtubules, centrosomes and chromosomes regulate the dynamics of mitosis and meiosis.

    PubMed

    Zhao, Yue; Zhan, Qimin

    2012-07-02

    Super-macromolecular complexes play many important roles in eukaryotic cells. Classical structural biological studies focus on their complicated molecular structures, physical interactions and biochemical modifications. Recent advances concerning intracellular electric fields generated by cell organelles and super-macromolecular complexes shed new light on the mechanisms that govern the dynamics of mitosis and meiosis. In this review we synthesize this knowledge to provide an integrated theoretical model of these cellular events. We suggest that the electric fields generated by synchronized oscillation of microtubules, centrosomes, and chromatin fibers facilitate several events during mitosis and meiosis, including centrosome trafficking, chromosome congression in mitosis and synapsis between homologous chromosomes in meiosis. These intracellular electric fields are generated under energy excitation through the synchronized electric oscillations of the dipolar structures of microtubules, centrosomes and chromosomes, three of the super-macromolecular complexes within an animal cell.

  14. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity

    PubMed Central

    Sánchez-Huertas, Carlos; Freixo, Francisco; Viais, Ricardo; Lacasa, Cristina; Soriano, Eduardo; Lüders, Jens

    2016-01-01

    Neurons display a highly polarized microtubule network that mediates trafficking throughout the extensive cytoplasm and is crucial for neuronal differentiation and function. In newborn migrating neurons, the microtubule network is organized by the centrosome. During neuron maturation, however, the centrosome gradually loses this activity, and how microtubules are organized in more mature neurons remains poorly understood. Here, we demonstrate that microtubule organization in post-mitotic neurons strongly depends on non-centrosomal nucleation mediated by augmin and by the nucleator γTuRC. Disruption of either complex not only reduces microtubule density but also microtubule bundling. These microtubule defects impair neurite formation, interfere with axon specification and growth, and disrupt axonal trafficking. In axons augmin does not merely mediate nucleation of microtubules but ensures their uniform plus end-out orientation. Thus, the augmin-γTuRC module, initially identified in mitotic cells, may be commonly used to generate and maintain microtubule configurations with specific polarity. PMID:27405868

  15. Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma DLD1 cells

    SciTech Connect

    Zhang Zhuo; Wang Xin; Cheng Senping; Sun Lijuan; Son, Young-Ok; Yao Hua; Li Wenqi; Budhraja, Amit; Li Li; Shelton, Brent J.; Tucker, Thomas; Arnold, Susanne M.; Shi Xianglin

    2011-10-15

    Long term exposure to arsenic can increase incidence of human cancers, such as skin, lung, and colon rectum. The mechanism of arsenic induced carcinogenesis is still unclear. It is generally believed that reactive oxygen species (ROS) may play an important role in this process. In the present study, we investigate the possible linkage between ROS, {beta}-catenin and arsenic induced transformation and tumorigenesis in human colorectal adenocarcinoma cell line, DLD1 cells. Our results show that arsenic was able to activate p47{sup phox} and p67{sup phox}, two key proteins for activation of NADPH oxidase. Arsenic was also able to generate ROS in DLD1 cells. Arsenic increased {beta}-catenin expression level and its promoter activity. ROS played a major role in arsenic-induced {beta}-catenin activation. Treatment of DLD1 cells by arsenic enhanced both transformation and tumorigenesis of these cells. The tumor volumes of arsenic treated group were much larger than those without arsenic treatment. Addition of either superoxide dismutase (SOD) or catalase reduced arsenic induced cell transformation and tumor formation. The results indicate that ROS are involved in arsenic induced cell transformation and tumor formation possible through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma cell line DLD1 cells. - Highlights: > Arsenic activates NADPH oxidase and increases reactive oxygen species generation in DLD1 cells. > Arsenic increases {beta}-catenin expression. > Inhibition of ROS induced by arsenic reduce {beta}-catenin expression. > Arsenic increases cell transformation in DLD1 cells and tumorigenesis in nude mice. > Blockage of ROS decrease cell transformation and tumorigenesis induced by arsenic.

  16. Acute and chronic arsenic toxicity

    PubMed Central

    Ratnaike, R

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption occurs from skin contact and inhalation. Arsenic exerts its toxicity by inactivating up to 200 enzymes, especially those involved in cellular energy pathways and DNA synthesis and repair. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhoea. Encephalopathy and peripheral neuropathy are reported. Chronic arsenic toxicity results in multisystem disease. Arsenic is a well documented human carcinogen affecting numerous organs. There are no evidence based treatment regimens to treat chronic arsenic poisoning but antioxidants have been advocated, though benefit is not proven. The focus of management is to reduce arsenic ingestion from drinking water and there is increasing emphasis on using alternative supplies of water. PMID:12897217

  17. Arsenic in shrimp from Kuwait

    SciTech Connect

    Bou-Olayan, A.H.; Al-Yakoob, S.; Al-Hossaini, M.

    1995-04-01

    Arsenic is ubiquitous in the environment and can accumulate in food via contaminated soil, water or air. It enters the food chain through dry and wet atmospheric deposition. Combustion of oil and coal, use of arsenical fertilizers and pesticides and smelting of ores contributes significantly to the natural background of arsenic in soils and sediments. The metal can be transferred from soil to man through plants. In spite of variation in acute, subacute, and chronic toxic effects to plants and animals, evidence of nutritional essentiality of arsenic for rats, goats, and guinea pigs has been suggested, but has not been confirmed for humans. Adverse toxic effects of arsenic as well as its widespread distribution in the environment raises concern about levels of arsenic in man`s diet. Higher levels of arsenic in the diet can result in a higher accumulation rate. Arsenic levels in marine organisms are influenced by species differences, size of organism, and human activities. Bottom dwellers such as shrimp, crab, and lobster accumulate more arsenic than fish due to their frequent contact with bottom sediments. Shrimp constitute approximately 30% of mean total seafood consumption in Kuwait. This study was designed to determine the accumulation of arsenic in the commercially important jinga shrimp (Metapenaeus affinis) and grooved tiger prawn (Penaeus semisulcatus). 13 refs., 3 figs., 1 tab.

  18. Differential expression of centrosome regulators in Her2+ breast cancer cells versus non-tumorigenic MCF10A cells

    PubMed Central

    2014-01-01

    Centrosome amplification (CA) amongst particular breast cancer subtypes (Her2+ subtype) is associated with genomic instability and aggressive tumor phenotypes. However, changes in signaling pathways associated with centrosome biology have not been fully explored in subtype specific models. Novel centrosome regulatory genes that are selectively altered in Her2+ breast cancer cells are of interest in discerning why CA is more prevalent in this subtype. To determine centrosome/cell cycle genes that are altered in Her2+ cells that display CA (HCC1954) versus non-tumorigenic cells (MCF10A), we carried out a gene microarray. Expression differences were validated by real-time PCR and Western blotting. After the microarray validation, we pursued a panel of upregulated and downregulated genes based on novelty/relevance to centrosome duplication. Functional experiments measuring CA and BrdU incorporation were completed after genetic manipulation of targets (TTK, SGOL1, MDM2 and SFRP1). Amongst genes that were downregulated in HCC1954 cells, knockdown of MDM2 and SFRP1 in MCF10A cells did not consistently induce CA or impaired BrdU incorporation. Conversely, amongst upregulated genes in HCC1954 cells, knockdown of SGOL1 and TTK decreased CA in breast cancer cells, while BrdU incorporation was only altered by SGOL1 knockdown. We also explored the Kaplan Meier Plot resource and noted that MDM2 and SFRP1 are positively associated with relapse free survival in all breast cancer subtypes, while TTK is negatively correlated with overall survival of Luminal A patients. Based on this functional screen, we conclude that SGOL1 and TTK are important modulators of centrosome function in a breast cancer specific model. PMID:25278993

  19. Angelman syndrome protein UBE3A interacts with primary microcephaly protein ASPM, localizes to centrosomes and regulates chromosome segregation.

    PubMed

    Singhmar, Pooja; Kumar, Arun

    2011-01-01

    Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.

  20. Angelman Syndrome Protein UBE3A Interacts with Primary Microcephaly Protein ASPM, Localizes to Centrosomes and Regulates Chromosome Segregation

    PubMed Central

    Singhmar, Pooja; Kumar, Arun

    2011-01-01

    Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome. PMID:21633703

  1. Non-centrosomal TPX2-Dependent Regulation of the Aurora A Kinase: Functional Implications for Healthy and Pathological Cell Division.

    PubMed

    Garrido, Georgina; Vernos, Isabelle

    2016-01-01

    Aurora A has been extensively characterized as a centrosomal kinase with essential functions during cell division including centrosome maturation and separation and spindle assembly. However, Aurora A localization is not restricted to the centrosomes and compelling evidence support the existence of specific mechanisms of activation and functions for non-centrosomal Aurora A in the dividing cell. It has been now well established that spindle assembly involves an acentrosomal RanGTP-dependent pathway that triggers microtubule assembly and organization in the proximity of the chromosomes whether centrosomes are present or not. The mechanism involves the regulation of a number of NLS-containing proteins, generically called SAFS (Spindle Assembly Factors) that exert their functions upon release from karyopherins by RanGTP. One of them, the nuclear protein TPX2 interacts with and activates Aurora A upon release from importins by RanGTP. This basic mechanism triggers the activation of Aurora A in the proximity of the chromosomes potentially translating the RanGTP signaling gradient centered on the chromosome into an Aurora A phosphorylation network. Here, we will review our current knowledge on the RanGTP-dependent TPX2 activation of Aurora A away from centrosomes: from the mechanism of activation and its functional consequences on the kinase stability and regulation to its roles in spindle assembly and cell division. We will then focus on the substrates of the TPX2-activated Aurora A having a role in microtubule nucleation, stabilization, and organization. Finally, we will briefly discuss the implications of the use of Aurora A inhibitors in anti-tumor therapies in the light of its functional interaction with TPX2.

  2. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells

    PubMed Central

    1995-01-01

    Relatively little is known about the mechanisms used by somatic cells to regulate the replication of the centrosome complex. Centrosome doubling was studied in CHO cells by electron microscopy and immunofluorescence microscopy using human autoimmune anticentrosome antiserum, and by Northern blotting using the cDNA encoding portion of the centrosome autoantigen pericentriolar material (PCM)-1. Centrosome doubling could be dissociated from cycles of DNA synthesis and mitotic division by arresting cells at the G1/S boundary of the cell cycle using either hydroxyurea or aphidicolin. Immunofluorescence micros-copy using SPJ human autoimmune anticentrosome antiserum demonstrated that arrested cells were able to undergo numerous rounds of centrosome replication in the absence of cycles of DNA synthesis and mitosis. Northern blot analysis demonstrated that the synthesis and degradation of the mRNA encoding PCM-1 occurred in a cell cycle-dependent fashion in CHO cells with peak levels of PCM-1 mRNA being present in G1 and S phase cells before mRNA amounts dropped to undetectable levels in G2 and M phases. Conversely, cells arrested at the G1/S boundary of the cell cycle maintained PCM-1 mRNA at artificially elevated levels, providing a possible molecular mechanism for explaining the multiple rounds of centrosome replication that occurred in CHO cells during prolonged hydroxyurea-induced arrest. The capacity to replicate centrosomes could be abolished in hydroxyurea-arrested CHO cells by culturing the cells in dialyzed serum. However, the ability to replicate centrosomes and to synthesize PCM-1 mRNA could be re- initiated by adding EGF to the dialyzed serum. This experimental system should be useful for investigating the positive and negative molecular mechanisms used by somatic cells to regulate the replication of centrosomes and for studying and the methods used by somatic cells for coordinating centrosome duplication with other cell cycle progression events. PMID:7790366

  3. Mutations in Centrosomal Protein CEP152 in Primary Microcephaly Families Linked to MCPH4

    PubMed Central

    Guernsey, Duane L.; Jiang, Haiyan; Hussin, Julie; Arnold, Marc; Bouyakdan, Khalil; Perry, Scott; Babineau-Sturk, Tina; Beis, Jill; Dumas, Nadine; Evans, Susan C.; Ferguson, Meghan; Matsuoka, Makoto; Macgillivray, Christine; Nightingale, Mathew; Patry, Lysanne; Rideout, Andrea L.; Thomas, Aidan; Orr, Andrew; Hoffmann, Ingrid; Michaud, Jacques L.; Awadalla, Philip; Meek, David C.; Ludman, Mark; Samuels, Mark E.

    2010-01-01

    Primary microcephaly is a rare condition in which brain size is substantially diminished without other syndromic abnormalities. Seven autosomal loci have been genetically mapped, and the underlying causal genes have been identified for MCPH1, MCPH3, MCPH5, MCPH6, and MCPH7 but not for MCPH2 or MCPH4. The known genes play roles in mitosis and cell division. We ascertained three families from an Eastern Canadian subpopulation, each with one microcephalic child. Homozygosity analysis in two families using genome-wide dense SNP genotyping supported linkage to the published MCPH4 locus on chromosome 15q21.1. Sequencing of coding exons of candidate genes in the interval identified a nonconservative amino acid change in a highly conserved residue of the centrosomal protein CEP152. The affected children in these two families were both homozygous for this missense variant. The third affected child was compound heterozygous for the missense mutation plus a second, premature-termination mutation truncating a third of the protein and preventing its localization to centrosomes in transfected cells. CEP152 is the putative mammalian ortholog of Drosphila asterless, mutations in which affect mitosis in the fly. Published data from zebrafish are also consistent with a role of CEP152 in centrosome function. By RT-PCR, CEP152 is expressed in the embryonic mouse brain, similar to other MCPH genes. Like some other MCPH genes, CEP152 shows signatures of positive selection in the human lineage. CEP152 is a strong candidate for the causal gene underlying MCPH4 and may be an important gene in the evolution of human brain size. PMID:20598275

  4. How to be good at being bad: centrosome amplification and mitotic propensity drive intratumoral heterogeneity

    PubMed Central

    Rida, Padmashree C. G.; Cantuaria, Guilherme; Reid, Michelle D.; Kucuk, Omer

    2016-01-01

    Cancer is truly an iconic disease—a tour de force whose multiple formidable strengths can be attributed to the bewildering heterogeneity that a tumor can manifest both spatially and temporally. A Darwinian evolutionary process is believed to undergird, at least in part, the generation of this heterogeneity that contributes to poor clinical outcomes. Risk assessment in clinical oncology is currently based on a small number of clinicopathologic factors (like stage, histological grade, receptor status, and serum tumor markers) and offers limited accuracy in predicting disease course as evidenced by the prognostic heterogeneity that persists in risk segments produced by present-day models. We posit that this insufficiency stems from the exclusion of key risk contributors from such models, especially the omission of certain factors implicated in generating intratumoral heterogeneity. The extent of centrosome amplification and the mitotic propensity inherent in a tumor are two such vital factors whose contributions to poor prognosis are presently overlooked in risk prognostication. Supernumerary centrosomes occur widely in tumors and are potent drivers of chromosomal instability that fosters intratumoral heterogeneity. The mitotic propensity of a proliferating population of tumor cells reflects the cell cycling kinetics of that population. Since frequent passage through improperly regulated mitotic divisions accelerates production of diverse genotypes, the mitotic propensity inherent in a tumor serves as a powerful beacon of risk. In this review, we highlight how centrosome amplification and error-prone mitoses contribute to poor clinical outcomes and urge the need to develop these cancer-specific traits as much-needed clinically-facile prognostic biomarkers with immense potential value for individualized cancer treatment in the clinic. PMID:26358854

  5. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly.

    PubMed

    Kumar, Arun; Girimaji, Satish C; Duvvari, Mahesh R; Blanton, Susan H

    2009-02-01

    Primary microcephaly (MCPH) is an autosomal-recessive congenital disorder characterized by smaller-than-normal brain size and mental retardation. MCPH is genetically heterogeneous with six known loci: MCPH1-MCPH6. We report mapping of a novel locus, MCPH7, to chromosome 1p32.3-p33 between markers D1S2797 and D1S417, corresponding to a physical distance of 8.39 Mb. Heterogeneity analysis of 24 families previously excluded from linkage to the six known MCPH loci suggested linkage of five families (20.83%) to the MCPH7 locus. In addition, four families were excluded from linkage to the MCPH7 locus as well as all of the six previously known loci, whereas the remaining 15 families could not be conclusively excluded or included. The combined maximum two-point LOD score for the linked families was 5.96 at marker D1S386 at theta = 0.0. The combined multipoint LOD score was 6.97 between markers D1S2797 and D1S417. Previously, mutations in four genes, MCPH1, CDK5RAP2, ASPM, and CENPJ, that code for centrosomal proteins have been shown to cause this disorder. Three different homozygous mutations in STIL, which codes for a pericentriolar and centrosomal protein, were identified in patients from three of the five families linked to the MCPH7 locus; all are predicted to truncate the STIL protein. Further, another recently ascertained family was homozygous for the same mutation as one of the original families. There was no evidence for a common haplotype. These results suggest that the centrosome and its associated structures are important in the control of neurogenesis in the developing human brain.

  6. Arsenic poisoning in dairy cattle from naturally occurring arsenic pyrites.

    PubMed

    Hopkirk, R G

    1987-10-01

    An outbreak of arsenic poisoning occurred in which most of a 200 cow dairy herd were affected and six died. The source of the arsenic was naturally occurring arsenic pyrites from the Waiotapu Stream, near Rotorua. Arsenic levels in the nearby soil were as high as 6618 ppm. There was little evidence to suggest that treatment affected the course of the disease. Haematology was of little use in diagnosis, post-mortem signs were not always consistent and persistence of the element in the liver appeared short. Control of further outbreaks have been based on practical measures to minimise the intake of contaminated soil and free laying water by the stock.

  7. Arsenic Exposure and Toxicology: A Historical Perspective

    PubMed Central

    Hughes, Michael F.; Beck, Barbara D.; Chen, Yu; Lewis, Ari S.; Thomas, David J.

    2011-01-01

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air, and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, has been used as a pesticide, a chemotherapeutic agent and a constituent of consumer products. In some areas of the world, high levels of arsenic are naturally present in drinking water and are a toxicological concern. There are several structural forms and oxidation states of arsenic because it forms alloys with metals and covalent bonds with hydrogen, oxygen, carbon, and other elements. Environmentally relevant forms of arsenic are inorganic and organic existing in the trivalent or pentavalent state. Metabolism of arsenic, catalyzed by arsenic (+3 oxidation state) methyltransferase, is a sequential process of reduction from pentavalency to trivalency followed by oxidative methylation back to pentavalency. Trivalent arsenic is generally more toxicologically potent than pentavalent arsenic. Acute effects of arsenic range from gastrointestinal distress to death. Depending on the dose, chronic arsenic exposure may affect several major organ systems. A major concern of ingested arsenic is cancer, primarily of skin, bladder, and lung. The mode of action of arsenic for its disease endpoints is currently under study. Two key areas are the interaction of trivalent arsenicals with sulfur in proteins and the ability of arsenic to generate oxidative stress. With advances in technology and the recent development of animal models for arsenic carcinogenicity, understanding of the toxicology of arsenic will continue to improve. PMID:21750349

  8. Arsenic, microbes and contaminated aquifers

    USGS Publications Warehouse

    Oremland, Ronald S.; Stolz, John F.

    2005-01-01

    The health of tens of millions of people world-wide is at risk from drinking arsenic-contaminated well water. In most cases this arsenic occurs naturally within the sub-surface aquifers, rather than being derived from identifiable point sources of pollution. The mobilization of arsenic into the aqueous phase is the first crucial step in a process that eventually leads to human arsenicosis. Increasing evidence suggests that this is a microbiological phenomenon.

  9. Monitoring and evaluation of plant and hydrological controls on arsenic transport across the water sediment interface

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; MacDonald, L. H.; Paull, J.

    2009-12-01

    Plants and hydrology influence the transport of arsenic in wetlands by changing the dominant redox chemistry in the subsurface, and different plant and hydrological regimes can serve as effective barriers or promoters of metal transport. Inorganic arsenic, especially arsenate, binds to iron oxides in wetlands. In flooded wetland sediments, organic carbon from plants consumes oxygen and promotes reductive iron dissolution, which leads to arsenic release, while plants simultaneously create microoxic regimes around root hairs that oxidize and precipitate iron, promoting arsenic capture. Hydrology influences arsenic mobility by promoting wetting and drying cycles. Such cycles can lead to rapid shifts from anaerobic to aerobic conditions, and vice versa, with lasting impact on the oxidation state of iron and, by extension, the mobility of arsenic. Remediation strategies should take these competing conditions into account, and to help inform these strategies this study examines the chemistry of an industrially contaminated wetland when the above mechanisms aggregate. The study tests whether, in bulk, plants promote iron reduction or oxidation in intermittently flooded or consistently flooded sediments, and how this impacts arsenic mobility. This research uses a novel dialysis-based monitoring technique to examine the macro-properties of arsenic transport at the sediment water interface and at depth. Dialysis-based monitoring allows long-term seasonal trends in anaerobic porewater and allows active hypothesis testing on the influence of plants on redox chemistry. This study finds that plants promote iron reduction and that iron-reducing zones tend to correlate with zones with mobile arsenic. However, one newly reported and important finding of this study is that a brief summer drought that dried and oxidized sediments with a long history of iron-reduction zone served to effectively halt iron reduction for many months, and this corresponded to a lasting decline in

  10. Decontamination of spent iron-oxide coated sand from filters used in arsenic removal.

    PubMed

    Rahman, Ismail M M; Begum, Zinnat A; Sawai, Hikaru; Maki, Teruya; Hasegawa, Hiroshi

    2013-06-01

    Sand filters devised with iron-rich adsorbents are extensively promoted and deployed in the arsenic-prone south and south-east Asian countries (e.g., Bangladesh). The approach offers superior performance in removing arsenic while the spent sludge from the sand filters is an issue of concern due to the possibility of toxic releases after being discarded. In this work, a new technique is proposed for the treatment of spent iron-oxide coated sand (IOCS) from filters used in arsenic removal. Chelant-washing of the arsenic-loaded IOCS is combined with the solid phase extraction treatment to accomplish the objective. The unique point of the proposed process is the cost-effective scheme, which includes the option of recycling of the washing solvent beside the decontamination of the spent arsenic-rich sludge.

  11. Arsenic-induced plant growth of arsenic-hyperaccumulator Pteris vittata: Impact of arsenic and phosphate rock.

    PubMed

    Han, Yong-He; Yang, Guang-Mei; Fu, Jing-Wei; Guan, Dong-Xing; Chen, Yanshan; Ma, Lena Q

    2016-04-01

    Phosphate rock (PR) has been shown to promote plant growth and arsenic (As) uptake by As-hyperaccumulator Pteris vittata (PV). However, little is known about its behaviors in agricultural soils. In this study, impact of 50 mg kg(-1) As and/or 1.5% PR amendment on plant As accumulation and growth was investigated by growing PV for 90 d in three agricultural soils. While As amendment significantly increased plant As uptake and substantially promoted PV growth, the opposite was observed with PR amendment. Arsenic amendment increased plant frond As from 16.9-265 to 961-6017 mg kg(-1),whereas PR amendment lowered frond As to 10.2-216 mg kg(-1). The As-induced plant growth stimulation was 69-71%. While PR amendment increased plant Ca and P uptake, As amendment showed opposite results. The PV biomass was highly correlated with plant As at r = 0.82, but with weak correlations with plant Ca or P at r < 0.30. This study confirmed that 1) As significantly promoted PV growth, probably independent of Ca or P uptake, 2) PR amendment didn't enhance plant growth or As uptake by PV in agricultural soils with adequate available P, and 3) PV effluxed arsenite (AsIII) growing in agricultural soils.

  12. Arsenic release during managed aquifer recharge (MAR)

    NASA Astrophysics Data System (ADS)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  13. Microtubule dynamics of the centrosome-like polar organizers from the basal land plant Marchantia polymorpha.

    PubMed

    Buschmann, Henrik; Holtmannspötter, Michael; Borchers, Agnes; O'Donoghue, Martin-Timothy; Zachgo, Sabine

    2016-02-01

    The liverwort Marchantia employs both modern and ancestral devices during cell division: it forms preprophase bands and in addition it shows centrosome-like polar organizers. We investigated whether polar organizers and preprophase bands cooperate to set up the division plane. To this end, two novel green fluorescent protein-based microtubule markers for dividing cells of Marchantia were developed. Cells of the apical notch formed polar organizers first and subsequently assembled preprophase bands. Polar organizers were formed de novo from multiple mobile microtubule foci localizing to the nuclear envelope. The foci then became concentrated by bipolar aggregation. We determined the comet production rate of polar organizers and show that microtubule plus ends of astral microtubules polymerize faster than those found on cortical microtubules. Importantly, it was observed that conditions increasing polar organizer numbers interfere with preprophase band formation. The data show that polar organizers have much in common with centrosomes, but that they also have specialized features. The results suggest that polar organizers contribute to preprophase band formation and in this way are involved in controlling the division plane. Our analyses of the basal land plant Marchantia shed new light on the evolution of plant cell division.

  14. Microtubule nucleation remote from centrosomes may explain how asters span large cells.

    PubMed

    Ishihara, Keisuke; Nguyen, Phuong A; Groen, Aaron C; Field, Christine M; Mitchison, Timothy J

    2014-12-16

    A major challenge in cell biology is to understand how nanometer-sized molecules can organize micrometer-sized cells in space and time. One solution in many animal cells is a radial array of microtubules called an aster, which is nucleated by a central organizing center and spans the entire cytoplasm. Frog (here Xenopus laevis) embryos are more than 1 mm in diameter and divide with a defined geometry every 30 min. Like smaller cells, they are organized by asters, which grow, interact, and move to precisely position the cleavage planes. It has been unclear whether asters grow to fill the enormous egg by the same mechanism used in smaller somatic cells, or whether special mechanisms are required. We addressed this question by imaging growing asters in a cell-free system derived from eggs, where asters grew to hundreds of microns in diameter. By tracking marks on the lattice, we found that microtubules could slide outward, but this was not essential for rapid aster growth. Polymer treadmilling did not occur. By measuring the number and positions of microtubule ends over time, we found that most microtubules were nucleated away from the centrosome and that interphase egg cytoplasm supported spontaneous nucleation after a time lag. We propose that aster growth is initiated by centrosomes but that asters grow by propagating a wave of microtubule nucleation stimulated by the presence of preexisting microtubules.

  15. Amplified centrosomes and mitotic index display poor concordance between patient tumors and cultured cancer cells

    PubMed Central

    Mittal, Karuna; Choi, Da Hoon; Ogden, Angela; Donthamsetty, Shashi; Melton, Brian D.; Gupta, Meenakshi. V.; Pannu, Vaishali; Cantuaria, Guilherme; Varambally, Sooryanarayana; Reid, Michelle D.; Jonsdottir, Kristin; Janssen, Emiel A. M.; Aleskandarany, Mohammad A.; Ellis, Ian O.; Rakha, Emad A.; Rida, Padmashree C. G.; Aneja, Ritu

    2017-01-01

    Centrosome aberrations (CA) and abnormal mitoses are considered beacons of malignancy. Cancer cell doubling times in patient tumors are longer than in cultures, but differences in CA between tumors and cultured cells are uncharacterized. We compare mitoses and CA in patient tumors, xenografts, and tumor cell lines. We find that mitoses are rare in patient tumors compared with xenografts and cell lines. Contrastingly, CA is more extensive in patient tumors and xenografts (~35–50% cells) than cell lines (~5–15%), although CA declines in patient-derived tumor cells over time. Intratumoral hypoxia may explain elevated CA in vivo because exposure of cultured cells to hypoxia or mimicking hypoxia pharmacologically or genetically increases CA, and HIF-1α and hypoxic gene signature expression correlate with CA and centrosomal gene signature expression in breast tumors. These results highlight the importance of utilizing low-passage-number patient-derived cell lines in studying CA to more faithfully recapitulate in vivo cellular phenotypes. PMID:28272508

  16. The molecular motor Myosin Va interacts with the cilia-centrosomal protein RPGRIP1L

    PubMed Central

    Assis, L. H. P.; Silva-Junior, R. M. P.; Dolce, L. G.; Alborghetti, M. R.; Honorato, R. V.; Nascimento, A. F. Z.; Melo-Hanchuk, T. D.; Trindade, D. M.; Tonoli, C. C. C.; Santos, C. T.; Oliveira, P. S. L.; Larson, R. E.; Kobarg, J.; Espreafico, E. M.; Giuseppe, P. O.; Murakami, M. T.

    2017-01-01

    Myosin Va (MyoVa) is an actin-based molecular motor abundantly found at the centrosome. However, the role of MyoVa at this organelle has been elusive due to the lack of evidence on interacting partners or functional data. Herein, we combined yeast two-hybrid screen, biochemical studies and cellular assays to demonstrate that MyoVa interacts with RPGRIP1L, a cilia-centrosomal protein that controls ciliary signaling and positioning. MyoVa binds to the C2 domains of RPGRIP1L via residues located near or in the Rab11a-binding site, a conserved site in the globular tail domain (GTD) from class V myosins. According to proximity ligation assays, MyoVa and RPGRIP1L can interact near the cilium base in ciliated RPE cells. Furthermore, we showed that RPE cells expressing dominant-negative constructs of MyoVa are mostly unciliated, providing the first experimental evidence about a possible link between this molecular motor and cilia-related processes. PMID:28266547

  17. The more the messier: centrosome amplification as a novel biomarker for personalized treatment of colorectal cancers

    PubMed Central

    Mahathre, Monica M.; Rida, Padmashree C. G.; Aneja, Ritu

    2016-01-01

    Abstract Colon cancer is currently the third most common cancer and second most fatal cancer in the United States, resulting in approximately 600,000 deaths annually. Though colorectal cancer death rates are decreasing by about 3% every year, disease outcomes could be substantially improved with more research into the drivers of colon carcinogenesis, the determinants of aggressiveness in colorectal cancer and the identification of biomarkers that could enable choice of more optimal treatments. Colon carcinogenesis is notably a slow process that can take decades. Known factors that contribute to the development of colon cancer are mutational, epigenetic and environmental, and risk factors include age, history of polyps and family history of colon cancer. Colorectal cancers exhibit heterogeneity in their features and are often characterized by the presence of chromosomal instability, microscopic satellite instability, or CpG island methylator phenotype. In this review, we propose that centrosome amplification may be a widespread occurrence in colorectal cancers and could potently influence tumor biology. Moreover, the quantitation of this cancer-specific anomaly could offer valuable prognostic information and pave the way for further customization of treatment based on the organellar profile of patients. Patient stratification models that take into account centrosomal status could thus potentially reduce adverse side effects and result in improved outcomes for colorectal cancer patients. PMID:27924065

  18. Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis.

    PubMed

    Bona, Elisa; Marsano, Francesco; Massa, Nadia; Cattaneo, Chiara; Cesaro, Patrizia; Argese, Emanuele; Sanità di Toppi, Luigi; Cavaletto, Maria; Berta, Graziella

    2011-08-12

    Pteris vittata can tolerate very high soil arsenic concentration and rapidly accumulates the metalloid in its fronds. However, its tolerance to arsenic has not been completely explored. Arbuscular mycorrhizal (AM) fungi colonize the root of most terrestrial plants, including ferns. Mycorrhizae are known to affect plant responses in many ways: improving plant nutrition, promoting plant tolerance or resistance to pathogens, drought, salinity and heavy metal stresses. It has been observed that plants growing on arsenic polluted soils are usually mycorrhizal and that AM fungi enhance arsenic tolerance in a number of plant species. The aim of the present work was to study the effects of the AM fungus Glomus mosseae on P. vittata plants treated with arsenic using a proteomic approach. Image analysis showed that 37 spots were differently affected (21 identified). Arsenic treatment affected the expression of 14 spots (12 up-regulated and 2 down-regulated), while in presence of G. mosseae modulated 3 spots (1 up-regulated and 2 down-regulated). G. mosseae, in absence of arsenic, modulated 17 spots (13 up-regulated and 4 down-regulated). Arsenic stress was observed even in an arsenic tolerant plant as P. vittata and a protective effect of AM symbiosis toward arsenic stress was observed.

  19. Thiolated arsenicals in arsenic metabolism: Occurrence, formation, and biological implications.

    PubMed

    Sun, Yuzhen; Liu, Guangliang; Cai, Yong

    2016-11-01

    Arsenic (As) is a notoriously toxic pollutant of health concern worldwide with potential risk of cancer induction, but meanwhile it is used as medicines for the treatment of different conditions including hematological cancers. Arsenic can undergo extensive metabolism in biological systems, and both toxicological and therapeutic effects of arsenic compounds are closely related to their metabolism. Recent studies have identified methylated thioarsenicals as a new class of arsenic metabolites in biological systems after exposure of inorganic and organic arsenicals, including arsenite, dimethylarsinic acid (DMA(V)), dimethylarsinous glutathione (DMA(III)GS), and arsenosugars. The increasing detection of thiolated arsenicals, including monomethylmonothioarsonic acid (MMMTA(V)), dimethylmonothioarsinic acid (DMMTA(V)) and its glutathione conjugate (DMMTA(V)GS), and dimethyldithioarsinic acid (DMDTA(V)) suggests that thioarsenicals may be important metabolites and play important roles in arsenic toxicity and therapeutic effects. Here we summarized the reported occurrence of thioarsenicals in biological systems, the possible formation pathways of thioarsenicals, and their toxicity, and discussed the biological implications of thioarsenicals on arsenic metabolism, toxicity, and therapeutic effects.

  20. INFLUENCE OF DIETARY ARSENIC ON URINARY ARSENIC METABOLITE EXCRETION

    EPA Science Inventory

    Influence of Dietary Arsenic on Urinary Arsenic Metabolite Excretion

    Cara L. Carty, M.S., Edward E. Hudgens, B.Sc., Rebecca L. Calderon, Ph.D., M.S.P.H., Richard Kwok, M.S.P.H., Epidemiology and Biomarkers Branch/HSD, NHEERL/US EPA; David J. Thomas, Ph.D., Pharmacokinetics...

  1. Photooxidation of arsenic(III) to arsenic(V) on the surface of kaolinite clay.

    PubMed

    Ding, Wei; Wang, Yajie; Yu, Yingtan; Zhang, Xiangzhi; Li, Jinjun; Wu, Feng

    2015-10-01

    As one of the most toxic heavy metals, the oxidation of inorganic arsenic has drawn great attention among environmental scientists. However, little has been reported on the solar photochemical behavior of arsenic species on top-soil. In the present work, the influencing factors (pH, relative humidity (RH), humic acid (HA), trisodium citrate, and additional iron ions) and the contributions of reactive oxygen species (ROS, mainly HO and HO2/O2(-)) to photooxidation of As(III) to As(V) on kaolinite surfaces under UV irradiation (λ=365nm) were investigated. Results showed that lower pH facilitated photooxidation, and the photooxidation efficiency increased with the increase of RH and trisodium citrate. Promotion or inhibition of As(III) photooxidation by HA was observed at low or high dosages, respectively. Additional iron ions greatly promoted the photooxidation, but excessive amounts of Fe(2+) competed with As(III) for oxidation by ROS. Experiments on scavengers indicated that the HO radical was the predominant oxidant in this system. Experiments on actual soil surfaces proved the occurrence of As(III) photooxidation in real topsoil. This work demonstrates that the photooxidation process of As(III) on the soil surface should be taken into account when studying the fate of arsenic in natural soil newly polluted with acidic wastewater containing As(III).

  2. Arsenic speciation in edible mushrooms.

    PubMed

    Nearing, Michelle M; Koch, Iris; Reimer, Kenneth J

    2014-12-16

    The fruiting bodies, or mushrooms, of terrestrial fungi have been found to contain a high proportion of the nontoxic arsenic compound arsenobetaine (AB), but data gaps include a limited phylogenetic diversity of the fungi for which arsenic speciation is available, a focus on mushrooms with higher total arsenic concentrations, and the unknown formation and role of AB in mushrooms. To address these, the mushrooms of 46 different fungus species (73 samples) over a diverse range of phylogenetic groups were collected from Canadian grocery stores and background and arsenic-contaminated areas. Total arsenic was determined using ICP-MS, and arsenic speciation was determined using HPLC-ICP-MS and complementary X-ray absorption spectroscopy (XAS). The major arsenic compounds in mushrooms were found to be similar among phylogenetic groups, and AB was found to be the major compound in the Lycoperdaceae and Agaricaceae families but generally absent in log-growing mushrooms, suggesting the microbial community may influence arsenic speciation in mushrooms. The high proportion of AB in mushrooms with puffball or gilled morphologies may suggest that AB acts as an osmolyte in certain mushrooms to help maintain fruiting body structure. The presence of an As(III)-sulfur compound, for the first time in mushrooms, was identified in the XAS analysis. Except for Agaricus sp. (with predominantly AB), inorganic arsenic predominated in most of the store-bought mushrooms (albeit with low total arsenic concentrations). Should inorganic arsenic predominate in these mushrooms from contaminated areas, the risk to consumers under these circumstances should be considered.

  3. A role for Gle1, a regulator of DEAD-box RNA helicases, at centrosomes and basal bodies

    PubMed Central

    Jao, Li-En; Akef, Abdalla; Wente, Susan R.

    2017-01-01

    Control of organellar assembly and function is critical to eukaryotic homeostasis and survival. Gle1 is a highly conserved regulator of RNA-dependent DEAD-box ATPase proteins, with critical roles in both mRNA export and translation. In addition to its well-defined interaction with nuclear pore complexes, here we find that Gle1 is enriched at the centrosome and basal body. Gle1 assembles into the toroid-shaped pericentriolar material around the mother centriole. Reduced Gle1 levels are correlated with decreased pericentrin localization at the centrosome and microtubule organization defects. Of importance, these alterations in centrosome integrity do not result from loss of mRNA export. Examination of the Kupffer’s vesicle in Gle1-depleted zebrafish revealed compromised ciliary beating and developmental defects. We propose that Gle1 assembly into the pericentriolar material positions the DEAD-box protein regulator to function in localized mRNA metabolism required for proper centrosome function. PMID:28035044

  4. Association of human SCF(SKP2) subunit p19(SKP1) with interphase centrosomes and mitotic spindle poles.

    PubMed

    Gstaiger, M; Marti, A; Krek, W

    1999-03-15

    In Saccharomyces cerevisiae, the initiation of DNA replication and mitotic progression requires SKP1p function. SKP1p is an essential subunit of a newly identified class of E3 ubiquitin protein ligases, the SCF complexes, that catalyze ubiquitin-mediated proteolysis of key cell-cycle-regulatory proteins at distinct times in the cell cycle. SKP1p is also required for proper kinetochore assembly. Little is known about the corresponding human homolog, p19(SKP1), except that it is expressed throughout the cell cycle and that it too is a component of an S-phase-regulating SCF-E3 ligase complex. Here we show by immunofluorescence microscopy that p19(SKP1) localizes to the centrosomes. Centrosome association occurs throughout the mammalian cell cycle, including all stages of mitosis. These findings suggest that p19(SKP1) is a novel component of the centrosome and the mitotic spindle, which, in turn, implies a physiological role of this protein in the regulation of one or more aspects of the centrosome cycle.

  5. An Asp–CaM complex is required for centrosome–pole cohesion and centrosome inheritance in neural stem cells

    PubMed Central

    Schoborg, Todd; Zajac, Allison L.; Fagerstrom, Carey J.; Guillen, Rodrigo X.

    2015-01-01

    The interaction between centrosomes and mitotic spindle poles is important for efficient spindle formation, orientation, and cell polarity. However, our understanding of the dynamics of this relationship and implications for tissue homeostasis remains poorly understood. Here we report that Drosophila melanogaster calmodulin (CaM) regulates the ability of the microcephaly-associated protein, abnormal spindle (Asp), to cross-link spindle microtubules. Both proteins colocalize on spindles and move toward spindle poles, suggesting that they form a complex. Our binding and structure–function analysis support this hypothesis. Disruption of the Asp–CaM interaction alone leads to unfocused spindle poles and centrosome detachment. This behavior leads to randomly inherited centrosomes after neuroblast division. We further show that spindle polarity is maintained in neuroblasts despite centrosome detachment, with the poles remaining stably associated with the cell cortex. Finally, we provide evidence that CaM is required for Asp’s spindle function; however, it is completely dispensable for Asp’s role in microcephaly suppression. PMID:26620907

  6. ARSENIC - SUSCEPTIBILITY & IN UTERO EFFECTS

    EPA Science Inventory

    Exposure to inorganic arsenic remains a serious public health problem at many locations worldwide. If has often been noted that prevalences of signs and symptoms of chronic arsenic poisoning differ among various populations. For example, skin lesions or peripheral vascular dis...

  7. Drinking Water Arsenic Rule History

    EPA Pesticide Factsheets

    The EPA published the final arsenic rule on January 22, 2001. In response to the national debate surrounding the arsenic rule related to science and costs, the EPA announced on March 20, 2001 that the agency would reassess the science and cost issues.

  8. Arsenic Is A Genotoxic Carcinogen

    EPA Science Inventory

    Arsenic is a recognized human carcinogen; however, there is controversy over whether or not it should be considered a genotoxic carcinogen. Many possible modes of action have been proposed on how arsenic induces cancer, including inhibiting DNA repair, altering methylation patter...

  9. TREATMENT TECHNOLOGIES FOR ARSENIC REMOVAL

    EPA Science Inventory

    The United States Environmental Protection Agency (US EPA) recently reduced the arsenic maximum contaminant level (MCL) from 0.050 mg/L to 0.010 mg/L. In order to increase arsenic outreach efforts, a summary of the new rule, related health risks, treatment technologies, and desig...

  10. Arsenic Removal from Drinking Water

    EPA Science Inventory

    Web cast presentation covered six topics: 1), Arsenic Chemistry, 2), Technology Selection/Arsenic Demonstration Program, 3), Case Study 1, 4), Case Study 2,5), Case Study 3, and 6), Media Regeneration Project. The presentation consists of material presented at other training sess...

  11. The Talpid3 gene (KIAA0586) encodes a centrosomal protein that is essential for primary cilia formation.

    PubMed

    Yin, Yili; Bangs, Fiona; Paton, I Robert; Prescott, Alan; James, John; Davey, Megan G; Whitley, Paul; Genikhovich, Grigory; Technau, Ulrich; Burt, David W; Tickle, Cheryll

    2009-02-01

    The chicken talpid(3) mutant, with polydactyly and defects in other embryonic regions that depend on hedgehog (Hh) signalling (e.g. the neural tube), has a mutation in KIAA0568. Similar phenotypes are seen in mice and in human syndromes with mutations in genes that encode centrosomal or intraflagella transport proteins. Such mutations lead to defects in primary cilia, sites where Hh signalling occurs. Here, we show that cells of talpid(3) mutant embryos lack primary cilia and that primary cilia can be rescued with constructs encoding Talpid3. talpid(3) mutant embryos also develop polycystic kidneys, consistent with widespread failure of ciliogenesis. Ultrastructural studies of talpid(3) mutant neural tube show that basal bodies mature but fail to dock with the apical cell membrane, are misorientated and almost completely lack ciliary axonemes. We also detected marked changes in actin organisation in talpid(3) mutant cells, which may explain misorientation of basal bodies. KIAA0586 was identified in the human centrosomal proteome and, using an antibody against chicken Talpid3, we detected Talpid3 in the centrosome of wild-type chicken cells but not in mutant cells. Cloning and bioinformatic analysis of the Talpid3 homolog from the sea anemone Nematostella vectensis identified a highly conserved region in the Talpid3 protein, including a predicted coiled-coil domain. We show that this region is required to rescue primary cilia formation and neural tube patterning in talpid(3) mutant embryos, and is sufficient for centrosomal localisation. Thus, Talpid3 is one of a growing number of centrosomal proteins that affect both ciliogenesis and Hh signalling.

  12. Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L.

    PubMed

    Cavalca, Lucia; Corsini, Anna; Bachate, Sachin Prabhakar; Andreoni, Vincenza

    2013-10-01

    In the present study, six arsenic-resistant strains previously isolated were tested for their plant growth promoting characteristics and heavy metal resistance, in order to choose one model strain as an inoculum for sunflower plants in pot experiments. The aim was to investigate the effect of arsenic-resistant strain on sunflower growth and on arsenic uptake from arsenic contaminated soil. Based on plant growth promoting characteristics and heavy metal resistance, Alcaligenes sp. strain Dhal-L was chosen as an inoculum. Beside the ability to reduce arsenate to arsenite via an Ars operon, the strain exhibited 1-amino-cyclopropane-1-carboxylic acid deaminase activity and it was also able to produce siderophore and indole acetic acid. Pot experiments were conducted with an agricultural soil contaminated with arsenic (214 mg kg⁻¹). A real time PCR method was set up based on the quantification of ACR3(2) type of arsenite efflux pump carried by Alcaligenes sp. strain Dhal-L, in order to monitor presence and colonisation of the strain in the bulk and rhizospheric soil. As a result of strain inoculation, arsenic uptake by plants was increased by 53 %, whereas ACR3(2) gene copy number in rhizospheric soil was 100 times higher in inoculated than in control pots, indicating the colonisation of strain. The results indicated that the presence of arsenate reducing strains in the rhizosphere of sunflower influences arsenic mobilization and promotes arsenic uptake by plant.

  13. p38α MAPK is required for arsenic-induced cell transformation.

    PubMed

    Kim, Hong-Gyum; Shi, Chengcheng; Bode, Ann M; Dong, Zigang

    2016-05-01

    Arsenic exposure has been reported to cause neoplastic transformation through the activation of PcG proteins. In the present study, we show that activation of p38α mitogen-activated protein kinase (MAPK) is required for arsenic-induced neoplastic transformation. Exposure of cells to 0.5 μM arsenic increased CRE and c-Fos promoter activities that were accompanied by increases in p38α MAPK and CREB phosphorylation and expression levels concurrently with AP-1 activation. Introduction of short hairpin (sh) RNA-p38α into BALB/c 3T3 cells markedly suppressed arsenic-induced colony formation compared with wildtype cells. CREB phosphorylation and AP-1 activation were decreased in p38α knockdown cells after arsenic treatment. Arsenic-induced AP-1 activation, measured as c-Fos and CRE promoter activities, and CREB phosphorylation were attenuated by p38 inhibition in BALB/c 3T3 cells. Thus, p38α MAPK activation is required for arsenic-induced neoplastic transformation mediated through CREB phosphorylation and AP-1 activation.

  14. Arsenic concentrations in Chinese coals.

    PubMed

    Wang, Mingshi; Zheng, Baoshan; Wang, Binbin; Li, Shehong; Wu, Daishe; Hu, Jun

    2006-03-15

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4+/-0.5 mg/kg and the geometric mean is 4.0+/-8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary>Early Jurassic>Late Triassic>Late Jurassic>Middle Jurassic>Late Permian>Early Carboniferous>Middle Carboniferous>Late Carboniferous>Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous>Anthracite>Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal.

  15. THE ROLE OF PROTEIN BINDING OF TRIVALENT ARSENICALS IN ARSENIC CARCINOGENESIS AND TOXICITY

    EPA Science Inventory

    Three of the most plausible biological theories of arsenic carcinogenesis are protein binding, oxidative stress and altered DNA methylation. This review presents the role of trivalent arsenicals binding to proteins in arsenic carcinogenesis. Using vacuum filtration based receptor...

  16. *Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate ciona intestinalis

    EPA Science Inventory

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt) , yielding mono-, di-, and trimethylated arsenicals. A comparative genomic approach focused on Ciona intestinaJis, an invertebrate chordate, was u...

  17. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, D.R.

    1994-12-06

    Methods and apparatus are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short. 2 figures.

  18. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1994-01-01

    Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

  19. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1995-01-01

    Methods and apparatus for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72. The invention provides apparatus which can be located at a site where arsenic-72 is used, for purposes such as PET imaging, to produce arsenic-72 as needed, since the half-life of arsenic-72 is very short.

  20. Elevated Human telomerase reverse transcriptase gene expression in blood cells associated with chronic and arsenic exposure in Inner Mongolia, China

    EPA Science Inventory

    BACKGROUND: Arsenic exposure is associated with human cancer. Telomerase containing the catalytic subunit, human telomerase reverse transcriptase (hTERT), can extend telomeres of chromosomes, delay senescence and promoting cell proliferation leading to tumorigenesis. OBJECTIVE:...

  1. Identification of a new protein in the centrosome-like "atractophore" of Trichomonas vaginalis.

    PubMed

    Bricheux, Geneviève; Coffe, Gérard; Brugerolle, Guy

    2007-06-01

    The human parasite Trichomonas vaginalis has specific structural bodies, atractophores, associated at one end to the kinetosomes and at the other to the spindle during division. A monoclonal antibody specific for a component of this structure was obtained. It recognizes a protein with a predicted molecular mass of 477 kDa. Sequence analysis of this protein shows that P477 belongs to the family of large coiled-coil proteins, sharing a highly versatile protein folding motif adaptable to many biological functions. P477-might act as an anchor to localize cellular activities and components to the golgi centrosomal region. It may represent a new class of structural proteins, since similar proteins were found in many protozoans.

  2. Disruptions in asymmetric centrosome inheritance and WDR62-Aurora kinase B interactions in primary microcephaly

    PubMed Central

    Sgourdou, Paraskevi; Mishra-Gorur, Ketu; Saotome, Ichiko; Henagariu, Octavian; Tuysuz, Beyhan; Campos, Cynthia; Ishigame, Keiko; Giannikou, Krinio; Quon, Jennifer L.; Sestan, Nenad; Caglayan, Ahmet O.; Gunel, Murat; Louvi, Angeliki

    2017-01-01

    Recessive mutations in WD repeat domain 62 (WDR62) cause microcephaly and a wide spectrum of severe brain malformations. Disruption of the mouse ortholog results in microcephaly underlain by reduced proliferation of neocortical progenitors during late neurogenesis, abnormalities in asymmetric centrosome inheritance leading to neuronal migration delays, and altered neuronal differentiation. Spindle pole localization of WDR62 and mitotic progression are defective in patient-derived fibroblasts, which, similar to mouse neocortical progenitors, transiently arrest at prometaphase. Expression of WDR62 is closely correlated with components of the chromosome passenger complex (CPC), a key regulator of mitosis. Wild type WDR62, but not disease-associated mutant forms, interacts with the CPC core enzyme Aurora kinase B and staining of CPC components at centromeres is altered in patient-derived fibroblasts. Our findings demonstrate critical and diverse functions of WDR62 in neocortical development and provide insight into the mechanisms by which its disruption leads to a plethora of structural abnormalities. PMID:28272472

  3. Arsenic retention and transport behavior in the presence of typical anionic and nonionic surfactants.

    PubMed

    Liang, Chuan; Wang, Xianliang; Peng, Xianjia

    2016-01-01

    The massive production and wide use of surfactants have resulted in a large amount of surfactant residuals being discharged into the environment, which could have an impact on arsenic behavior. In the present study, the influence of the anionic surfactant sodium dodecyl benzene sulfonate (SDBS) and nonionic surfactant polyethylene glycol octylphenyl ether (Triton X-100) on arsenic behavior was investigated in batch and column tests. The presence of SDBS and Triton X-100 reduced arsenic retention onto ferrihydrite (FH), enhanced arsenic transport through FH coated sand (FH-sand) columns and promoted arsenic release from the FH surface. With coexisting surfactants in solution, the equilibrium adsorbed amount of arsenic on FH decreased by up to 29.7% and the adsorption rate decreased by up to 52.3%. Pre-coating with surfactants caused a decrease in the adsorbed amount and adsorption rate of arsenic by up to 15.1% and 58.3%, respectively. Because of the adsorption attenuation caused by surfactants, breakthrough of As(V) and As(III) with SDBS in columns packed with FH-sand was 23.8% and 14.3% faster than that in those without SDBS, respectively. In columns packed with SDBS-coated FH-sand, transport of arsenic was enhanced to a greater extent. Breakthrough of As(V) and As(III) was 52.4% and 43.8% faster and the cumulative retention amount was 44.5% and 57.3% less than that in pure FH-sand column systems, respectively. Mobilization of arsenic by surfactants increased with the increase of the initial adsorbed amount of arsenic. The cumulative release amount of As(V) and As(III) from the packed column reached 10.8% and 36.0%, respectively.

  4. Role of nucleotide excision repair and p53 in zidovudine (AZT)-induced centrosomal deregulation.

    PubMed

    Momot, Dariya; Nostrand, Terri A; John, Kaarthik; Ward, Yvona; Steinberg, Seth M; Liewehr, David J; Poirier, Miriam C; Olivero, Ofelia A

    2014-12-01

    The nucleoside reverse transcriptase inhibitor zidovudine (AZT) induces genotoxic damage that includes centrosomal amplification (CA > 2 centrosomes/cell) and micronucleus (MN) formation. Here we explored these end points in mice deficient in DNA repair and tumor suppressor function to evaluate their effect on AZT-induced DNA damage. We used mesenchymal-derived fibroblasts cultured from C57BL/6J mice that were null and wild type (WT) for Xpa, and WT, haploinsufficient and null for p53 (6 different genotypes). Dose-responses for CA formation, in cells exposed to 0, 10, and 100 μM AZT for 24 hr, were observed in all genotypes except the Xpa((+/+)) p53((+/-)) cells, which had very low levels of CA, and the Xpa((-/-)) p53((-/-)) cells, which had very high levels of CA. For CA there was a significant three-way interaction between Xpa, p53, and AZT concentration, and Xpa((-/-)) cells had significantly higher levels of CA than Xpa((+/+)) cells, only for p53((+/-)) cells. In contrast, the MN and MN + chromosomes (MN + C) data showed a lack of AZT dose response. The Xpa((-/-)) cells, with p53((+/+)) or ((+/-)) genotypes, had levels of MN and MN + C higher than the corresponding Xpa((+/+)) cells. The data show that CA is a major event induced by exposure to AZT in these cells, and that there is a complicated relationship between AZT and CA formation with respect to gene dosage of Xpa and p53. The loss of both genes resulted in high levels of damage, and p53 haploinsufficicency strongly protected Xpa((+/+)) cells from AZT-induced CA damage.

  5. Centrosomal Localization of the Psoriasis Candidate Gene Product, CCHCR1, Supports a Role in Cytoskeletal Organization

    PubMed Central

    Tervaniemi, Mari H.; Siitonen, H. Annika; Söderhäll, Cilla; Minhas, Gurinder; Vuola, Jyrki; Tiala, Inkeri; Sormunen, Raija; Samuelsson, Lena; Suomela, Sari; Kere, Juha; Elomaa, Outi

    2012-01-01

    CCHCR1 (Coiled-Coil α-Helical Rod protein 1), within the major psoriasis susceptibility locus PSORS1, is a plausible candidate gene with the psoriasis associated risk allele CCHCR1*WWCC. Although its expression pattern in psoriatic skin differs from healthy skin and its overexpression influences cell proliferation in transgenic mice, its role as a psoriasis effector gene has remained unsettled. The 5′-region of the gene contains a SNP (rs3130453) that controls a 5′-extended open reading frame and thus the translation of alternative isoforms. We have now compared the function of two CCHCR1 isoforms: the novel longer isoform 1 and the previously studied isoform 3. In samples of Finnish and Swedish families, the allele generating only isoform 3 shows association with psoriasis (P<10−7). Both isoforms localize at the centrosome, a cell organelle playing a role in cell division. In stably transfected cells the isoform 3 affects cell proliferation and with the CCHCR1*WWCC allele, also apoptosis. Furthermore, cells overexpressing CCHCR1 show isoform- and haplotype-specific influences in the cell size and shape and alterations in the organization and expression of the cytoskeletal proteins actin, vimentin, and cytokeratins. The isoform 1 with the non-risk allele induces the expression of keratin 17, a hallmark for psoriasis; the silencing of CCHCR1 reduces its expression in HEK293 cells. CCHCR1 also regulates EGF-induced STAT3 activation in an isoform-specific manner: the tyrosine phosphorylation of STAT3 is disturbed in isoform 3-transfected cells. The centrosomal localization of CCHCR1 provides a connection to the abnormal cell proliferation and offers a link to possible cellular pathways altered in psoriasis. PMID:23189171

  6. CDK2 Inhibition Causes Anaphase Catastrophe in Lung Cancer through the Centrosomal Protein CP110

    PubMed Central

    Hu, Shanhu; Danilov, Alexey V.; Godek, Kristina; Orr, Bernardo; Tafe, Laura J.; Rodriguez-Canales, Jaime; Behrens, Carmen; Mino, Barbara; Moran, Cesar A.; Memoli, Vincent A.; Mustachio, Lisa Maria; Galimberti, Fabrizio; Ravi, Saranya; DeCastro, Andrew; Lu, Yun; Sekula, David; Andrew, Angeline S; Wistuba, Ignacio I.; Freemantle, Sarah; Compton, Duane A.; Dmitrovsky, Ethan

    2015-01-01

    Aneuploidy is frequently detected in human cancers and is implicated in carcinogenesis. Pharmacological targeting of aneuploidy is an attractive therapeutic strategy as this would preferentially eliminate malignant over normal cells. We previously discovered that CDK2 inhibition causes lung cancer cells with more than two centrosomes to undergo multipolar cell division leading to apoptosis, defined as anaphase catastrophe. Cells with activating KRAS mutations were especially sensitive to CDK2 inhibition. Mechanisms of CDK2-mediated anaphase catastrophe and how activated KRAS enhances this effect were investigated. Live-cell imaging provided direct evidence that following CDK2 inhibition, lung cancer cells develop multipolar anaphase and undergo multipolar cell division with the resulting progeny apoptotic. Small interfering RNA (siRNA)-mediated repression of the CDK2 target and centrosome protein CP110 induced anaphase catastrophe of lung cancer cells. In contrast, CP110 overexpression antagonized CDK2 inhibitor-mediated anaphase catastrophe. Furthermore, activated KRAS mutations sensitized lung cancer cells to CDK2 inhibition by deregulating CP110 expression. Thus, CP110 is a critical mediator of CDK2-inhibition-driven anaphase catastrophe. Independent examination of murine and human paired normal-malignant lung tissues revealed marked upregulation of CP110 in malignant versus normal lung. Human lung cancers with KRAS mutations had significantly lower CP110 expression as compared to KRAS wild-type cancers. Thus, a direct link was found between CP110 and CDK2 inhibitor antineoplastic response. CP110 plays a mechanistic role in response of lung cancer cells to CDK2 inhibition, especially in the presence of activated KRAS mutations. PMID:25808870

  7. Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water

    EPA Science Inventory

    Arsenic (+3 oxidation state) methyltransferase (As3mt) catalyzes methylation of inorganic arsenic producing a number of methylated arsenic metabolites. Although methylation has been commonly considered a pathway for detoxification of arsenic, some highly reactive methylated ars...

  8. Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore

    PubMed Central

    Marquardt, Joseph R.; Perkins, Jennifer L.; Beuoy, Kyle J.; Fisk, Harold A.

    2016-01-01

    Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus. PMID:27339139

  9. Downregulation of protein 4.1R, a mature centriole protein, disrupts centrosomes, alters cell cycle progression, and perturbs mitotic spindles and anaphase.

    PubMed

    Krauss, Sharon Wald; Spence, Jeffrey R; Bahmanyar, Shirin; Barth, Angela I M; Go, Minjoung M; Czerwinski, Debra; Meyer, Adam J

    2008-04-01

    Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G(1) accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events.

  10. Arsenic in water treatment.

    SciTech Connect

    Siegel, Malcolm Dean

    2004-12-01

    Sandia National Laboratories (SNL) is collaborating with the Awwa Research Foundation (AwwaRF) and WERC (A Consortium for Environmental Education and Technology Development) in a program for the development and testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. Sandia National Laboratories will administer contracts placed with AwwaRF and WERC to carry out bench scale studies and economic analyses/outreach activities, respectively. The elements of the AwwaRF program include (1) identification of new technologies, (2) proof-of-concept laboratory studies and, (3) a research program that will meet the other needs of small utilities by providing solutions to small utilities so that they may successfully meet the new arsenic MCL. WERC's activities will include development of an economic analysis tool for Pilot Scale Demonstrations and development of educational training and technical assistance tools. The objective of the Sandia Program is the field demonstration testing of innovative technologies. The primary deliverables of the Sandia program will be engineering analyses of candidate technologies; these will be contained in preliminary reports and final analysis reports. Projected scale-up costs will be generated using a cost model provided by WERC or another suitable model.

  11. Arsenic behavior in newly drilled wells

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2003-01-01

    In the present paper, inorganic arsenic species and chemical parameters in groundwater were determined to investigate the factors related to the distribution of arsenic species and their dissolution from rock into groundwater. For the study, groundwater and core samples were taken at different depths of two newly drilled wells in Huron and Lapeer Counties, Michigan. Results show that total arsenic concentrations in the core samples varied, ranging from 0.8 to 70.7 mg/kg. Iron concentration in rock was about 1800 times higher than that of arsenic, and there was no correlation between arsenic and iron occurrences in the rock samples. Arsenic concentrations in groundwater ranged from <1 to 171 ??g/l. The arsenic concentration in groundwater depended on the amount of arsenic in aquifer rocks, and as well decreased with increasing depth. Over 90% of arsenic existed in the form of As(III), implying that the groundwater systems were in the reduced condition. The results such as high ferrous ion, low redox potential and low dissolved oxygen supported the observed arsenic species distribution. There was no noticeable difference in the total arsenic concentration and arsenic species ratio between unfiltered and filtered (0.45 ??m) waters, indicating that the particulate form of arsenic was negligible in the groundwater samples. There were correlations between water sampling depth and chemical parameters, and between arsenic concentration and chemical parameters, however, the trends were not always consistent in both wells. ?? 2003 Elsevier Science Ltd. All rights reserved.

  12. Association of oxidative stress with arsenic methylation in chronic arsenic-exposed children and adults

    SciTech Connect

    Xu Yuanyuan; Wang Yi; Zheng Quanmei; Li Xin; Li Bing; Jin Yaping; Sun Xiance; Sun Guifan

    2008-10-01

    Though oxidative stress is recognized as an important pathogenic mechanism of arsenic, and arsenic methylation capacity is suggested to be highly involved in arsenic-related diseases, the association of arsenic methylation capacity with arsenic-induced oxidative stress remains unclear. To explore oxidative stress and its association with arsenic methylation, cross-sectional studies were conducted among 208 high and 59 low arsenic-exposed subjects. Levels of urinary arsenic species [inorganic arsenic (iAs), monomethylated arsenic (MMA) and dimethylated arsenic (DMA)] were determined by hydride generation atomic absorption spectrometry. Proportions of urinary arsenic species, the first methylation ratio (FMR) and the secondary methylation ratio (SMR) were used as indicators for arsenic methylation capacity. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations were analyzed by enzyme-linked immunosorbent assay kits. Reduced glutathione (GSH) levels and superoxide dismutase (SOD) activity in whole blood were determined to reflect anti-oxidative status. The high arsenic-exposed children and adults were significantly increased in urinary 8-OHdG concentrations but decreased in blood GSH levels compared with the low exposed children and adults. In multiple linear regression models, blood GSH levels and urinary 8-OHdG concentrations of arsenic-exposed children and adults showed strong associations with the levels of urinary arsenic species. Arsenic-exposed subjects in the lower and the upper quartiles of proportions of urinary arsenic species, FMR or SMR were significantly different in urinary 8-OHdG, blood GSH and SOD. The associations of arsenic methylation capacity with 8-OHdG, GSH and SOD were also observed in multivariate regression analyses. These results may provide linkage between arsenic methylation capacity and oxidative stress in humans and suggest that adverse health effects induced by arsenic are related to arsenic methylation through oxidative stress.

  13. Centrosomal Protein of 55 Regulates Glucose Metabolism, Proliferation and Apoptosis of Glioma Cells via the Akt/mTOR Signaling Pathway

    PubMed Central

    Wang, Guangzhi; Liu, Mingna; Wang, Hongjun; Yu, Shan; Jiang, Zhenfeng; Sun, Jiahang; Han, Ke; Shen, Jia; Zhu, Minwei; Lin, Zhiguo; Jiang, Chuanlu; Guo, Mian

    2016-01-01

    Introduction: Glioma is one of the most common and most aggressive brain tumors in humans. The molecular and cellular mechanisms responsible for the onset and the progression of glioma are elusive and controversial. Centrosomal protein of 55 (CEP55) was initially described as a highly coiled-coil protein that plays critical roles in cell division, but was recently identified as being overexpressed in many human cancers. The function of CEP55 has not previously been characterized in glioma. We aim to discover the effect and mechanism of CEP55 in glioma development. Method: qRT-PCR and immunohistochemistry were used to analyze CEP55 expression. Glucose uptake, western blot, MTS, CCK-8, Caspase-3 activity and TUNEL staining assays were performed to investigate the role and mechanism of CEP55 on glioma cell process. Results: We found that the levels of CEP55 expression were upregulated in glioma. In addition, CEP55 appeared to regulate glucose metabolism of glioma cells. Furthermore, knockdown of CEP55 inhibited cell proliferation and induced cell apoptosis in glioma. Finally, we provided preliminary evidence that knockdown of CEP55 inhibited glioma development via suppressing the activity of Akt/mTOR signaling. Conclusions: Our results demonstrated that CEP55 regulates glucose metabolism, proliferation and apoptosis of glioma cells via the Akt/mTOR signaling pathway, and its promotive effect on glioma tumorigenesis can be a potential target for glioma therapy in the future. PMID:27471559

  14. [Arsenic as an environmental problem].

    PubMed

    Jensen, K

    2000-12-04

    Chronic exposure to arsenic through drinking water is known in different continents. Arsenic compounds from disintegrating rock may be solubilized after reduction by organic material, and harmful concentrations of arsenic may be found in surface water as well as in water from drilled wells. Because of well drilling since the sixties in the Ganges delta numerous millions of people have been exposed to toxic amounts, and hundreds of thousands demonstrate signs of chronic poisoning. A changed water technology and chemical precipitation of arsenic in the drinking water can reduce the size of the problem, but the late sequelae i.e. malignant disease are incalculable. Indications for antidotal treatment of exposed individuals have not yet been outlined.

  15. New Arsenic Cross Section Calculations

    SciTech Connect

    Kawano, Toshihiko

    2015-03-04

    This report presents calculations for the new arsenic cross section. Cross sections for 73,74,75 As above the resonance range were calculated with a newly developed Hauser-Feshbach code, CoH3.

  16. THE PATHWAY OF ARSENIC METABLISM

    EPA Science Inventory

    The Pathway of Arsenic Methylation

    David J. Thomas, Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC

    Understanding ...

  17. Melanocytes and keratinocytes have distinct and shared responses to ultraviolet radiation and arsenic.

    PubMed

    Cooper, K L; Yager, J W; Hudson, L G

    2014-01-30

    The rise of melanoma incidence in the United States is a growing public health concern. A limited number of epidemiology studies suggest an association between arsenic levels and melanoma risk. Arsenic acts as a co-carcinogen with ultraviolet radiation (UVR) for the development of squamous cell carcinoma and proposed mechanisms include generation of oxidative stress by arsenic and UVR and inhibition of UVR-induced DNA repair by arsenic. In this study, we investigate similarities and differences in response to arsenic and UVR in keratinocytes and melanocytes. Normal melanocytes are markedly more resistant to UVR-induced cytotoxicity than normal keratinocytes, but both cell types are equally sensitive to arsenite. Melanocytes were more resistant to arsenite and UVR stimulation of superoxide production than keratinocytes, but the concentration of arsenite necessary to inhibit the activity of the DNA repair protein poly(ADP-ribose)polymerase and enhance retention of UVR-induced DNA damage was essentially equivalent in both cell types. These findings suggest that although melanocytes are less sensitive than keratinocytes to initial UVR-mediated DNA damage, both of these important target cells in the skin share a mechanism related to arsenic inhibition of DNA repair. These findings suggest that concurrent chronic arsenic exposure could promote retention of unrepaired DNA damage in melanocytes and act as a co-carcinogen in melanoma.

  18. A biosensor for organoarsenical herbicides and growth promoters

    PubMed Central

    Chen, Jian; Sun, Samio; Li, Chen-Zhong; Zhu, Yong-Guan; Rosen, Barry P.

    2014-01-01

    The toxic metalloid arsenic is widely distributed in food, water, and soil. While inorganic arsenic enters the environment primarily from geochemical sources, methylarsenicals either result from microbial biotransformation of inorganic arsenic or are introduced anthropogenically. Methylarsenicals such as monosodium methylarsonic acid (MSMA) have been extensively utilized as herbicides, and aromatic arsenicals such as roxarsone (Rox) are used as growth promoters for poultry and swine. Organoarsenicals are degraded to inorganic arsenic. The toxicological effects of arsenicals depend on their oxidation state, chemical composition, and bioavailability. Here we report that the active forms are the trivalent arsenic-containing species. We constructed a whole-cell biosensor utilizing a modified ArsR repressor that is highly selective toward trivalent methyl and aromatic arsenicals, with essentially no response to inorganic arsenic. The biosensor was adapted for in vitro detection of organoarsenicals using fluorescence anisotropy of ArsR-DNA interactions. It detects bacterial biomethylation of inorganic arsenite both in vivo and in vitro with detection limits of 10−7 M and linearity to 10−6 M for phenylarsenite and 5×10−6 M for methylarsenite. The biosensor detects reduced forms of MSMA and roxarsone and offers a practical, low cost method for detecting activate forms and breakdown products of organoarsenical herbicides and growth promoters. PMID:24359149

  19. Induction of robust de novo centrosome amplification, high-grade spindle multipolarity and metaphase catastrophe: a novel chemotherapeutic approach.

    PubMed

    Pannu, V; Rida, P C G; Ogden, A; Clewley, R; Cheng, A; Karna, P; Lopus, M; Mishra, R C; Zhou, J; Aneja, R

    2012-07-12

    Centrosome amplification (CA) and resultant chromosomal instability have long been associated with tumorigenesis. However, exacerbation of CA and relentless centrosome declustering engender robust spindle multipolarity (SM) during mitosis and may induce cell death. Recently, we demonstrated that a noscapinoid member, reduced bromonoscapine, (S)-3-(R)-9-bromo-5-(4,5-dimethoxy-1,3-dihydroisobenzofuran-1-yl)-4-methoxy-6-methyl-5,6,7,8-tetrahydro-[1,3]dioxolo-[4,5-g]isoquinoline (Red-Br-nos), induces reactive oxygen species (ROS)-mediated autophagy and caspase-independent death in prostate cancer PC-3 cells. Herein, we show that Red-Br-nos induces ROS-dependent DNA damage that resulted in high-grade CA and SM in PC-3 cells. Unlike doxorubicin, which causes double-stranded DNA breaks and chronic G2 arrest accompanied by 'templated' CA, Red-Br-nos-mediated DNA damage elicits de novo CA during a transient S/G2 stall, followed by checkpoint abrogation and mitotic entry to form aberrant mitotic figures with supernumerary spindle poles. Attenuation of multipolar phenotype in the presence of tiron, a ROS inhibitor, indicated that ROS-mediated DNA damage was partly responsible for driving CA and SM. Although a few cells (∼5%) yielded to aberrant cytokinesis following an 'anaphase catastrophe', most mitotically arrested cells (∼70%) succumbed to 'metaphase catastrophe,' which was caspase-independent. This report is the first documentation of rapid de novo centrosome formation in the presence of parent centrosome by a noscapinoid family member, which triggers death-inducing SM via a unique mechanism that distinguishes it from other ROS-inducers, conventional DNA-damaging agents, as well as other microtubule-binding drugs.

  20. Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse

    PubMed Central

    Coelho, Paula A.; Bury, Leah; Shahbazi, Marta N.; Liakath-Ali, Kifayathullah; Tate, Peri H.; Wormald, Sam; Hindley, Christopher J.; Huch, Meritxell; Archer, Joy; Skarnes, William C.; Zernicka-Goetz, Magdalena; Glover, David M.

    2015-01-01

    To address the long-known relationship between supernumerary centrosomes and cancer, we have generated a transgenic mouse that permits inducible expression of the master regulator of centriole duplication, Polo-like-kinase-4 (Plk4). Over-expression of Plk4 from this transgene advances the onset of tumour formation that occurs in the absence of the tumour suppressor p53. Plk4 over-expression also leads to hyperproliferation of cells in the pancreas and skin that is enhanced in a p53 null background. Pancreatic islets become enlarged following Plk4 over-expression as a result of equal expansion of α- and β-cells, which exhibit centrosome amplification. Mice overexpressing Plk4 develop grey hair due to a loss of differentiated melanocytes and bald patches of skin associated with a thickening of the epidermis. This reflects an increase in proliferating cells expressing keratin 5 in the basal epidermal layer and the expansion of these cells into suprabasal layers. Such cells also express keratin 6, a marker for hyperplasia. This is paralleled by a decreased expression of later differentiation markers, involucrin, filaggrin and loricrin. Proliferating cells showed an increase in centrosome number and a loss of primary cilia, events that were mirrored in primary cultures of keratinocytes established from these animals. We discuss how repeated duplication of centrioles appears to prevent the formation of basal bodies leading to loss of primary cilia, disruption of signalling and thereby aberrant differentiation of cells within the epidermis. The absence of p53 permits cells with increased centrosomes to continue dividing, thus setting up a neoplastic state of error prone mitoses, a prerequisite for cancer development. PMID:26701933

  1. Bidirectional functions of arsenic as a carcinogen and an anti-cancer agent in human squamous cell carcinoma.

    PubMed

    Thang, Nguyen Dinh; Yajima, Ichiro; Kumasaka, Mayuko Y; Kato, Masashi

    2014-01-01

    Bidirectional cancer-promoting and anti-cancer effects of arsenic for cancer cells have been revealed in previous studies. However, each of these effects (cancer-promoting or anti-cancer) was found in different cells at different treated-concentration of arsenic. In this study, we for the first time indicated that arsenic at concentration of 3 µM, equal to average concentration in drinking water in cancer-prone areas in Bangladesh, simultaneously expressed its bidirectional effects on human squamous cell carcinoma HSC5 cells with distinct pathways. Treatment with 3 µM of arsenic promoted cell invasion via upregulation of expression of MT1-MMP and downregulation of expression of p14ARF and simultaneously induced cell apoptosis through inhibition of expression of N-cadherin and increase of expression of p21(WAF1/CIP1) at both transcript and protein levels in HSC5 cells. We also showed that inhibition of MT1-MMP expression by NSC405020 resulted in decrease of arsenic-mediated invasion of HSC5 cells involving decrease in phosphorylated extracellular signal-regulated kinases (pERK). Taken together, our biological and biochemical findings suggested that arsenic expressed bidirectional effects as a carcinogen and an anti-cancer agent in human squamous cell carcinoma HSC5 cells with distinct pathways. Our results might play an important scientific evident for further studies to find out a better way in treatment of arsenic-induced cancers, especially in squamous cell carcinoma.

  2. Arsenic exposure disrupts epigenetic regulation of SIRT1 in human keratinocytes

    SciTech Connect

    Herbert, Katharine J.; Holloway, Adele; Cook, Anthony L.; Chin, Suyin P.; Snow, Elizabeth T.

    2014-11-15

    Arsenic is an environmental toxin which increases skin cancer risk for exposed populations worldwide; however the underlying biomolecular mechanism for arsenic-induced carcinogenesis is complex and poorly defined. Recent investigations show that histone deacetylase and DNA methyltransferase activity is impaired, and epigenetic patterns of gene regulation are consistently altered in cancers associated with arsenic exposure. Expression of the histone deacetylase SIRT1 is altered in solid tumours and haematological malignancies; however its role in arsenic-induced pathology is unknown. In this study we investigated the effect of arsenic on epigenetic regulation of SIRT1 and its targeting microRNA, miR-34a in primary human keratinocytes. Acetylation of histone H4 at lysine 16 (H4K16) increased in keratinocytes exposed to 0.5 μM arsenite [As(III)]; and this was associated with chromatin remodelling at the miR-34a promoter. Moreover, although SIRT1 protein initially increased in these As(III)-exposed cells, after 24 days expression was not significantly different from untreated controls. Extended exposure to low-dose As(III) (0.5 μM; > 5 weeks) compromised the pattern of CpG methylation at SIRT1 and miR-34a gene promoters, and this was associated with altered expression for both genes. We have found that arsenic alters epigenetic regulation of SIRT1 expression via structural reorganisation of chromatin at the miR-34a gene promoter in the initial 24 h of exposure; and over time, through shifts in miR-34a and SIRT1 gene methylation. Taken together, this investigation demonstrates that arsenic produces cumulative disruptions to epigenetic regulation of miR-34a expression, and this is associated with impaired coordination of SIRT1 functional activity. - Highlights: • Submicromolar arsenic concentrations disrupt SIRT1 activity and expression in human keratinocytes. • Arsenic-induced chromatin remodelling at the miR-34a gene promoter is associated with hyperacetylation

  3. Arsenic Toxicity to Juvenile Fish: Effects of Exposure Route, Arsenic Speciation, and Fish Species

    EPA Science Inventory

    Arsenic toxicity to juvenile rainbow trout and fathead minnows was evaluated in 28-day tests using both dietborne and waterborne exposures, both inorganic and organic arsenic species, and both a live diet and an arsenic-spiked pellet diet. Effects of inorganic arsenic on rainbow...

  4. Approaches to Increase Arsenic Awareness in Bangladesh: An Evaluation of an Arsenic Education Program

    ERIC Educational Resources Information Center

    George, Christine Marie; Factor-Litvak, Pam; Khan, Khalid; Islam, Tariqul; Singha, Ashit; Moon-Howard, Joyce; van Geen, Alexander; Graziano, Joseph H.

    2013-01-01

    The objective of this study was to design and evaluate a household-level arsenic education and well water arsenic testing intervention to increase arsenic awareness in Bangladesh. The authors randomly selected 1,000 study respondents located in 20 villages in Singair, Bangladesh. The main outcome was the change in knowledge of arsenic from…

  5. Plk1-mediated stabilization of 53BP1 through USP7 regulates centrosome positioning to maintain bipolarity.

    PubMed

    Yim, H; Shin, S-B; Woo, S U; Lee, P C-W; Erikson, R L

    2017-02-16

    Although 53BP1 has been established well as a mediator in DNA damage response, its function in mitosis is not clearly understood. We found that 53BP1 is a mitotic-binding partner of the kinases Plk1 and AuroraA, and that the binding with Plk1 increases the stability of 53BP1 by accelerating its interaction with the deubiquitinase USP7. Depletion of 53BP1 induces mitotic defects such as chromosomal missegregation, misorientation of spindle poles and the generation of extra centrosomes, which is similar phenotype to USP7-knockdown cells. In addition, 53BP1 depletion reduces the levels of p53 and centromere protein F (CENPF), interacting proteins of 53BP1. These phenotypes induced by 53BP1 depletion were rescued by expression of wild-type or phosphomimic mutant 53BP1 but not by expression of a dephosphomimic mutant. We propose that phosphorylation of 53BP1 at S380 accelerates complex formation with USP7 and CENPF to regulate their stability, thus having a crucial role in proper centrosome positioning, chromosomal alignment, and centrosome number.

  6. In migrating cells, the Golgi complex and the position of the centrosome depend on geometrical constraints of the substratum.

    PubMed

    Pouthas, François; Girard, Philippe; Lecaudey, Virginie; Ly, Thi Bach Nga; Gilmour, Darren; Boulin, Christian; Pepperkok, Rainer; Reynaud, Emmanuel G

    2008-07-15

    Although cells migrate in a constrained 3D environment in vivo, in-vitro studies have mainly focused on the analysis of cells moving on 2D substrates. Under such conditions, the Golgi complex is always located towards the leading edge of the cell, suggesting that it is involved in the directional movement. However, several lines of evidence indicate that this location can vary depending on the cell type, the environment or the developmental processes. We have used micro contact printing (microCP) to study the migration of cells that have a geometrically constrained shape within a polarized phenotype. Cells migrating on micropatterned lines of fibronectin are polarized and migrate in the same direction. Under such conditions, the Golgi complex and the centrosome are located behind the nucleus. In addition, the Golgi complex is often displaced several micrometres away from the nucleus. Finally, we used the zebrafish lateral line primordium as an in-vivo model of cells migrating in a constrained environment and observe a similar localization of both the Golgi and the centrosome in the leading cells. We propose that the positioning of the Golgi complex and the centrosome depends on the geometrical constraints applied to the cell rather than on a precise migratory function in the leading region.

  7. The need for congressional action to finance arsenic reductions in drinking water.

    PubMed

    Levine, Rebecca Leah

    2012-11-01

    Many public water systems in the U.S. are unsafe because the communities cannot afford to comply with the current 10 parts per billion (ppb) federal arsenic standard for drinking water. Communities unable to afford improvements remain vulnerable to adverse health effects associated with higher levels of arsenic exposure. Scientific and bipartisan political consensus exists that the arsenic standard should not be less stringent than 10 ppb, and new data suggest additional adverse health effects related to arsenic exposure through drinking water. Congress has failed to reauthorize the Drinking Water State Revolving Fund program to provide reliable funding to promote compliance and reduce the risk of adverse health effects. Congress's recent ad hoc appropriations do not allow long-term planning and ongoing monitoring and maintenance. Investing in water infrastructure will lower health care costs and create American jobs. Delaying necessary upgrades will only increase the costs of improvements over time.

  8. Regeneration of Commercial SCR Catalysts: Probing the Existing Forms of Arsenic Oxide.

    PubMed

    Li, Xiang; Li, Junhua; Peng, Yue; Si, Wenzhe; He, Xu; Hao, Jiming

    2015-08-18

    To investigate the poisoning and regeneration of SCR catalysts, fresh and arsenic-poisoned commercial V2O5-WO3/TiO2 catalysts are researched in the context of deactivation mechanisms and regeneration technology. The results indicate that the forms of arsenic oxide on the poisoned catalyst are related to the proportion of arsenic (As) on the catalyst. When the surface coverage of (V+W+As) is lower than 1, the trivalent arsenic species (As(III)) is the major component, and this species prefers to permeate into the bulk-phase channels. However, at high As concentrations, pentavalent arsenic species (As(IV)) cover the surface of the catalyst. Although both arsenic species lower the NOx conversion, they affect the formation of N2O differently. In particular, N2O production is limited when trivalent arsenic species predominate, which may be related to As2O3 clogging the pores of the catalyst. In contrast, the pentavalent arsenic oxide species (As2O5) possess several As-OH groups. These As-OH groups could not only enhance the ability of the catalyst to become reduced, but also provide several Brønsted acid sites with weak thermal stability that promote the formation of N2O. Finally, although our novel Ca(NO3)2-based regeneration method cannot completely remove As2O3 from the micropores of the catalyst, this approach can effectively wipe off surface arsenic oxides without a significant loss of the catalyst's active components.

  9. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, D.R.

    1993-04-20

    Methods are described for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72.

  10. Production of selenium-72 and arsenic-72

    DOEpatents

    Phillips, Dennis R.

    1993-01-01

    Methods for producing selenium-72, separating it from its daughter isotope arsenic-72, and generating multiple portions of a solution containing arsenic-72 from a reusable parent substance comprised of selenium-72.

  11. Arsenic Speciation in Groundwater: Role of Thioanions

    EPA Science Inventory

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  12. PCM1 is recruited to the centrosome by the cooperative action of DISC1 and BBS4 and is a candidate for psychiatric illness

    PubMed Central

    Kamiya, Atsushi; Tan, Perciliz L.; Kubo, Ken-ichiro; Engelhard, Caitlin; Ishizuka, Koko; Kubo, Akiharu; Tsukita, Sachiko; Pulver, Ann E.; Nakajima, Kazunori; Cascella, Nicola G.; Katsanis, Nicholas; Sawa, Akira

    2009-01-01

    Context A role for the centrosome has been suggested in the pathology of major mental illnesses, especially schizophrenia (SZ). Objectives To show that pericentriolar material-1 protein (PCM1) forms a complex at the centrosome with Disrupted-In-Schizophrenia-1 (DISC1) and Bardet-Biedl syndrome-4 protein (BBS4), which provides a crucial pathway for cortical development associated with the pathology of SZ. To identify mutations in the PCM1 gene in a SZ population. Design Interaction of DISC1, PCM1, and BBS proteins was assessed by immunofluorescent staining and co-immunoprecipitation. Effects of PCM1, DISC1, and BBS on centrosomal functions and corticogenesis in vivo were tested by RNAi. PCM1 gene was examined by sequencing 39 exons and flanking splice sites. Setting and Patients Thirty-two probands with SZ from families that had excess allele sharing among affected individuals at 8p22, and 219 Caucasian controls. Main Outcome Measures Protein interaction and recruitment at the centrosome in cells; neuronal migration in the cerebral cortex; variant discovery in PCM1 in SZ patients. Results PCM1 forms a complex with DISC1 and BBS4 through discrete binding domains in each protein. DISC1 and BBS4 are required for targeting PCM1 and other cargo proteins, such as ninein, to the centrosome in a synergistic manner. In the developing cerebral cortex, suppression of PCM1 leads to neuronal migration defects, which are phenocopied by the suppression of either DISC1 or BBS4, and are exacerbated by the concomitant suppression of both. Furtheremore, a nonsense mutation that segregates with schizophrenia-spectrum psychosis is found in one family. Conclusion Our data further support for the role of centrosomal proteins in cortical development and suggest that perturbation of centrosomal function contributes to the development of mental diseases including SZ. PMID:18762586

  13. CCNE1 amplification and centrosome number abnormality in serous tubal intraepithelial carcinoma: further evidence supporting its role as a precursor of ovarian high-grade serous carcinoma.

    PubMed

    Kuhn, Elisabetta; Wang, Tian-Li; Doberstein, Kai; Bahadirli-Talbott, Asli; Ayhan, Ayse; Sehdev, Ann Smith; Drapkin, Ronny; Kurman, Robert J; Shih, Ie-Ming

    2016-10-01

    Aberration in chromosomal structure characterizes almost all cancers and has profound biological significance in tumor development. It can be facilitated by various mechanisms including overexpression of cyclin E1 and centrosome amplification. As ovarian high-grade serous carcinoma has pronounced chromosomal instability, in this study we sought to determine whether increased copy number of CCNE1 which encodes cyclin E1 and centrosome amplification (>2 copies) occurs in its putative precursor, serous tubal intraepithelial carcinoma. We found CCNE1 copy number gain/amplification in 8 (22%) of 37 serous tubal intraepithelial carcinomas and 12 (28%) of 43 high-grade serous carcinomas. There was a correlation in CCNE1 copy number between serous tubal intraepithelial carcinoma and high-grade serous carcinoma in the same patients (P<0.001). There was no significant difference in the percentage of CCNE1 gain/amplification between serous tubal intraepithelial carcinoma and high-grade serous carcinoma (P=0.61). Centrosome amplification was recorded in only 5 (14%) of 37 serous tubal intraepithelial carcinomas, and in 10 (40%) of 25 high-grade serous carcinomas. The percentage of cells with centrosome amplification was higher in high-grade serous carcinoma than in serous tubal intraepithelial carcinoma (P<0.001). Induced expression of cyclin E1 increased the percentage of fallopian tube epithelial cells showing centrosome amplification. Our findings suggest that gain/amplification of CCNE1 copy number occurs early in tumor progression and precedes centrosome amplification. The more prevalent centrosome amplification in high-grade serous carcinoma than in serous tubal intraepithelial carcinoma supports the view that serous tubal intraepithelial carcinoma precedes the development of many high-grade serous carcinomas.

  14. Attenuation of arsenic in a karst subterranean stream and correlation with geochemical factors: a case study at Lihu, South China.

    PubMed

    Zhang, Liankai; Yang, Hui; Tang, Jiansheng; Qin, Xiaoqun; Yu, Au Yik

    2014-11-01

    Arsenic (As) pollutants generated by human activities in karst areas flow into subterranean streams and contaminate groundwater easily because of the unique hydrogeological characteristics of karst areas. To elucidate the reaction mechanisms of arsenic in karst subterranean streams, physical-chemical analysis was conducted by an inductively coupled plasma mass spectrometer and an X-ray fluorescence spectrometer. The results show that inorganic species account for most of the total arsenic, whereas organic arsenic is not detected or occurs in infinitesimal amounts. As(III) accounts for 51.0%±9.9% of the total inorganic arsenic. Arsenic attenuation occurs and the attenuation rates of total As, As(III) and As(V) in the Lihu subterranean stream are 51%, 36% and 59%, respectively. To fully explain the main geochemical factors influencing arsenic attenuation, SPSS 13.0 and CANOCO 4.5 bundled with CanoDraw for Windows were used for simple statistical analysis and redundancy analysis (RDA). Eight main factors, i.e., sediment iron (SFe), sediment aluminum (SAl), sediment calcium (SCa), sediment organic matter (SOM), sediment manganese (SMn), water calcium (WCa(2+)), water magnesium (WMg(2+)), and water bicarbonate ion (WHCO3(-)) were extracted from thirteen indicators. Their impacts on arsenic content rank as: SFe>SCa>WCa(2+)>SAl>WHCO3(-)>SMn>SOM>WMg(2+). Of these factors, SFe, SAl, SCa, SOM, SMn, WMg(2+) and WCa(2+) promote arsenic attenuation, whereas WHCO3(-) inhibits it. Further investigation revealed that the redox potential (Eh) and pH are adverse to arsenic removal. The dramatic distinction between karst and non-karst terrain is that calcium and bicarbonate are the primary factors influencing arsenic migration in karst areas due to the high calcium concentration and alkalinity of karst water.

  15. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    PubMed

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  16. Prenatal Arsenic Exposure and DNA Methylation in Maternal and Umbilical Cord Blood Leukocytes

    PubMed Central

    Baccarelli, Andrea; Hoffman, Elaine; Tarantini, Letizia; Quamruzzaman, Quazi; Rahman, Mahmuder; Mahiuddin, Golam; Mostofa, Golam; Hsueh, Yu-Mei; Wright, Robert O.; Christiani, David C.

    2012-01-01

    Background: Arsenic is an epigenetic toxicant and could influence fetal developmental programming. Objectives: We evaluated the association between arsenic exposure and DNA methylation in maternal and umbilical cord leukocytes. Methods: Drinking-water and urine samples were collected when women were at ≤ 28 weeks gestation; the samples were analyzed for arsenic using inductively coupled plasma mass spectrometry. DNA methylation at CpG sites in p16 (n = 7) and p53 (n = 4), and in LINE-1 and Alu repetitive elements (3 CpG sites in each), was quantified using pyrosequencing in 113 pairs of maternal and umbilical blood samples. We used general linear models to evaluate the relationship between DNA methylation and tertiles of arsenic exposure. Results: Mean (± SD) drinking-water arsenic concentration was 14.8 ± 36.2 μg/L (range: < 1–230 μg/L). Methylation in LINE-1 increased by 1.36% [95% confidence interval (CI): 0.52, 2.21%] and 1.08% (95% CI: 0.07, 2.10%) in umbilical cord and maternal leukocytes, respectively, in association with the highest versus lowest tertile of total urinary arsenic per gram creatinine. Arsenic exposure was also associated with higher methylation of some of the tested CpG sites in the promoter region of p16 in umbilical cord and maternal leukocytes. No associations were observed for Alu or p53 methylation. Conclusions: Exposure to higher levels of arsenic was positively associated with DNA methylation in LINE-1 repeated elements, and to a lesser degree at CpG sites within the promoter region of the tumor suppressor gene p16. Associations were observed in both maternal and fetal leukocytes. Future research is needed to confirm these results and determine if these small increases in methylation are associated with any health effects. PMID:22466225

  17. SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...

  18. ARSENIC SEPARATION FROM WATER USING ZEOLITES

    EPA Science Inventory

    Arsenic is known to be a hazardous contaminant in drinking water. The presence of arsenic in water supplies has been linked to arsenical dermatosis and skin cancer . Zeolites are well known for their ion exchange capacities. In the present work, the potential use of a variety of ...

  19. Arsenic Exposure and Toxicology: A Historical Perspective

    EPA Science Inventory

    The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, in various forms, has also been used as a pesticide and a ch...

  20. TYPES OF ARSENIC AND TREATMENT OPTIONS

    EPA Science Inventory

    Presentation will discuss the state-of-the-art technology for removal of arsenic from drinking water. Presentation includes results of several EPA field studies on removal of arsenic from existing arsenic removal plants and key results from several EPA sponsored research studies...

  1. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  2. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  3. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  4. Understanding Arsenic Dynamics in Agronomic Systems to ...

    EPA Pesticide Factsheets

    This review is on arsenic in agronomic systems, and covers processes that influence the entry of arsenic into the human food supply. The scope is from sources of arsenic (natural and anthropogenic) in soils, biogeochemical and rhizosphere processes that control arsenic speciation and availability, through to mechanisms of uptake by crop plants and potential mitigation strategies. This review makes a case for taking steps to prevent or limit crop uptake of arsenic, wherever possible, and to work toward a long-term solution to the presence of arsenic in agronomic systems. The past two decades have seen important advances in our understanding of how biogeochemical and physiological processes influence human exposure to soil arsenic, and thus must now prompt an informed reconsideration and unification of regulations to protect the quality of agricultural and residential soils. Consumption of staple foods such as rice, beverages such as apple juice, or vegetables grown in historically arsenic-contaminated soils is now recognized as a tangible route of arsenic exposure that, in many cases, is more significant than exposure from drinking water. Understanding the sources of arsenic to crop plants and the factors that influence them is key to reducing exposure now and preventing exposure in future. In addition to the abundant natural sources of arsenic, there are a large number of industrial and agricultural sources of arsenic to the soil; from mining wastes, coal fly

  5. Arsenic - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Arsenic URL of this page: https://medlineplus.gov/languages/arsenic.html Other topics A-Z A B C ... V W XYZ List of All Topics All Arsenic - Multiple Languages To use the sharing features on ...

  6. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD... New Animal Drugs § 556.60 Arsenic. (a) (b) Tolerances. The tolerances for total residue of combined arsenic (calculated as As) are: (1) Turkeys—(i) Muscle and eggs: 0.5 parts per million (ppm). (ii)...

  7. 21 CFR 556.60 - Arsenic.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Arsenic. 556.60 Section 556.60 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND... New Animal Drugs § 556.60 Arsenic. Tolerances for total residues of combined arsenic (calculated as...

  8. Arsenic Metabolism and Distribution in Developing Organisms

    EPA Science Inventory

    A growing body of evidence suggests that exposure to inorganic arsenic during early life has long term adverse effects. The extent of exposure to inorganic arsenic and its methylated metabolites in utero is determined not only by the rates of formation and transfer of arsenicals...

  9. Linking Arsenic Metabolism and Toxic Effects

    EPA Science Inventory

    Although arsenic has been long recognized as a toxicant and a carcinogen, the molecular basis for few of its adverse effects are well understood. Like other metalloids, arsenic undergoes extensive metabolism involving oxidation state changes and formation of methyl-arsenic bonds ...

  10. GROUND WATER TREATMENT PROCESSES FOR ARSENIC REMOVAL

    EPA Science Inventory

    In 1975 EPA established a maximum contaminant level (MCL) for arsenic at 0.05 mg/L. In 1996, Congress amended the SDWA and these amendments required that EPA develop an arsenic research strategy and publish a proposal to revise the arsenic MCL by January 2000. The Agency proposed...

  11. Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum).

    PubMed

    Tripathi, Pratibha; Singh, Poonam C; Mishra, Aradhana; Srivastava, Suchi; Chauhan, Reshu; Awasthi, Surabhi; Mishra, Seema; Dwivedi, Sanjay; Tripathi, Preeti; Kalra, Alok; Tripathi, Rudra D; Nautiyal, Chandra S

    2017-04-01

    Toxic metalloids including arsenic (As) can neither be eliminated nor destroyed from environment; however, they can be converted from toxic to less/non-toxic forms. The form of As species and their concentration determines its toxicity in plants. Therefore, the microbe mediated biotransformation of As is crucial for its plant uptake and toxicity. In the present study the role of As tolerant Trichoderma in modulating As toxicity in chickpea plants was explored. Chickpea plants grown in arsenate spiked soil under green house conditions were inoculated with two plant growth promoting Trichoderma strains, M-35 (As tolerant) and PPLF-28 (As sensitive). Total As concentration in chickpea tissue was comparable in both the Trichoderma treatments, however, differences in levels of organic and inorganic As (iAs) species were observed. The shift in iAs to organic As species ratio in tolerant Trichoderma treatment correlated with enhanced plant growth and nutrient content. Arsenic stress amelioration in tolerant Trichoderma treatment was also evident through rhizospheric microbial community and anatomical studies of the stem morphology. Down regulation of abiotic stress responsive genes (MIPS, PGIP, CGG) in tolerant Trichoderma + As treatment as compared to As alone and sensitive Trichoderma + As treatment also revealed that tolerant strain enhanced the plant's potential to cope with As stress as compared to sensitive one. Considering the bioremediation and plant growth promotion potential, the tolerant Trichoderma may appear promising for its utilization in As affected fields for enhancing agricultural productivity.

  12. Stathmin regulates centrosomal nucleation of microtubules and tubulin dimer/polymer partitioning.

    PubMed

    Ringhoff, Danielle N; Cassimeris, Lynne

    2009-08-01

    Stathmin is a microtubule-destabilizing protein ubiquitously expressed in vertebrates and highly expressed in many cancers. In several cell types, stathmin regulates the partitioning of tubulin between unassembled and polymer forms, but the mechanism responsible for partitioning has not been determined. We examined stathmin function in two cell systems: mouse embryonic fibroblasts (MEFs) isolated from embryos +/+, +/-, and -/- for the stathmin gene and porcine kidney epithelial (LLCPK) cells expressing stathmin-cyan fluorescent protein (CFP) or injected with stathmin protein. In MEFs, the relative amount of stathmin corresponded to genotype, where cells heterozygous for stathmin expressed half as much stathmin mRNA and protein as wild-type cells. Reduction or loss of stathmin resulted in increased microtubule polymer but little change to microtubule dynamics at the cell periphery. Increased stathmin level in LLCPK cells, sufficient to reduce microtubule density, but allowing microtubules to remain at the cell periphery, also did not have a major impact on microtubule dynamics. In contrast, stathmin level had a significant effect on microtubule nucleation rate from centrosomes, where lower stathmin levels increased nucleation and higher stathmin levels reduced nucleation. The stathmin-dependent regulation of nucleation is only active in interphase; overexpression of stathmin-CFP did not impact metaphase microtubule nucleation rate in LLCPK cells and the number of astral microtubules was similar in stathmin +/+ and -/- MEFs. These data support a model in which stathmin functions in interphase to control the partitioning of tubulins between dimer and polymer pools by setting the number of microtubules per cell.

  13. Cdk5rap2 regulates centrosome function and chromosome segregation in neuronal progenitors

    PubMed Central

    Lizarraga, Sofia B.; Margossian, Steven P.; Harris, Marian H.; Campagna, Dean R.; Han, An-Ping; Blevins, Sherika; Mudbhary, Raksha; Barker, Jane E.; Walsh, Christopher A.; Fleming, Mark D.

    2010-01-01

    Microcephaly affects ∼1% of the population and is associated with mental retardation, motor defects and, in some cases, seizures. We analyzed the mechanisms underlying brain size determination in a mouse model of human microcephaly. The Hertwig's anemia (an) mutant shows peripheral blood cytopenias, spontaneous aneuploidy and a predisposition to hematopoietic tumors. We found that the an mutation is a genomic inversion of exon 4 of Cdk5rap2, resulting in an in-frame deletion of exon 4 from the mRNA. The finding that CDK5RAP2 human mutations cause microcephaly prompted further analysis of Cdk5rap2an/an mice and we demonstrated that these mice exhibit microcephaly comparable to that of the human disease, resulting from striking neurogenic defects that include proliferative and survival defects in neuronal progenitors. Cdk5rap2an/an neuronal precursors exit the cell cycle prematurely and many undergo apoptosis. These defects are associated with impaired mitotic progression coupled with abnormal mitotic spindle pole number and mitotic orientation. Our findings suggest that the reduction in brain size observed in humans with mutations in CDK5RAP2 is associated with impaired centrosomal function and with changes in mitotic spindle orientation during progenitor proliferation. PMID:20460369

  14. Cdc2-mediated phosphorylation of CLIP-170 is essential for its inhibition of centrosome reduplication.

    PubMed

    Yang, Xiaoming; Li, Hongchang; Liu, X Shawn; Deng, Anping; Liu, Xiaoqi

    2009-10-16

    CLIP-170, the founding member of microtubule "plus ends tracking" proteins, is involved in many critical microtubule-related functions, including recruitment of dynactin to the microtubule plus ends and formation of kinetochore-microtubule attachments during metaphase. Although it has been reported that CLIP-170 is a phosphoprotein, neither have individual phosphorylation sites been identified nor have the associated kinases been extensively studied. Herein, we identify Cdc2 as a kinase that phosphorylates CLIP-170. We show that Cdc2 interacts with CLIP-170 mediating its phosphorylation on Thr(287) in vivo. Significantly, expression of CLIP-170 with a threonine 287 to alanine substitution (T287A) results in its mislocalization, accumulation of Plk1 and cyclin B, and block of the G2/M transition. Finally, we found that depletion of CLIP-170 leads to centrosome reduplication and that Cdc2 phosphorylation of CLIP-170 is required for the process. These results demonstrate that Cdc2-mediated phosphorylation of CLIP-170 is essential for the normal function of this protein during cell cycle progression.

  15. Emerin organizes actin flow for nuclear movement and centrosome orientation in migrating fibroblasts.

    PubMed

    Chang, Wakam; Folker, Eric S; Worman, Howard J; Gundersen, Gregg G

    2013-12-01

    In migrating fibroblasts, rearward movement of the nucleus orients the centrosome toward the leading edge. Nuclear movement results from coupling rearward-moving, dorsal actin cables to the nucleus by linear arrays of nesprin-2G and SUN2, termed transmembrane actin-associated nuclear (TAN) lines. A-type lamins anchor TAN lines, prompting us to test whether emerin, a nuclear membrane protein that interacts with lamins and TAN line proteins, contributes to nuclear movement. In fibroblasts depleted of emerin, nuclei moved nondirectionally or completely failed to move. Consistent with these nuclear movement defects, dorsal actin cable flow was nondirectional in cells lacking emerin. TAN lines formed normally in cells lacking emerin and were coordinated with the erratic nuclear movements, although in 20% of the cases, TAN lines slipped over immobile nuclei. Myosin II drives actin flow, and depletion of myosin IIB, but not myosin IIA, showed similar nondirectional nuclear movement and actin flow as in emerin-depleted cells. Myosin IIB specifically coimmunoprecipitated with emerin, and emerin depletion prevented myosin IIB localization near nuclei. These results show that emerin functions with myosin IIB to polarize actin flow and nuclear movement in fibroblasts, suggesting a novel function for the nuclear envelope in organizing directional actin flow and cytoplasmic polarity.

  16. Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication

    PubMed Central

    Burns, Shannon; Avena, Jennifer S; Unruh, Jay R; Yu, Zulin; Smith, Sarah E; Slaughter, Brian D; Winey, Mark; Jaspersen, Sue L

    2015-01-01

    Duplication of the yeast centrosome (called the spindle pole body, SPB) is thought to occur through a series of discrete steps that culminate in insertion of the new SPB into the nuclear envelope (NE). To better understand this process, we developed a novel two-color structured illumination microscopy with single-particle averaging (SPA-SIM) approach to study the localization of all 18 SPB components during duplication using endogenously expressed fluorescent protein derivatives. The increased resolution and quantitative intensity information obtained using this method allowed us to demonstrate that SPB duplication begins by formation of an asymmetric Sfi1 filament at mitotic exit followed by Mps1-dependent assembly of a Spc29- and Spc42-dependent complex at its tip. Our observation that proteins involved in membrane insertion, such as Mps2, Bbp1, and Ndc1, also accumulate at the new SPB early in duplication suggests that SPB assembly and NE insertion are coupled events during SPB formation in wild-type cells. DOI: http://dx.doi.org/10.7554/eLife.08586.001 PMID:26371506

  17. DISC1, PDE4B, and NDE1 at the centrosome and synapse

    SciTech Connect

    Bradshaw, Nicholas J.; Ogawa, Fumiaki; Antolin-Fontes, Beatriz; Chubb, Jennifer E.; Carlyle, Becky C.; Christie, Sheila; Claessens, Antoine; Porteous, David J.; Millar, J. Kirsty

    2008-12-26

    Disrupted-In-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and other major mental illnesses. Its protein binding partners include the Nuclear Distribution Factor E Homologs (NDE1 and NDEL1), LIS1, and phosphodiesterases 4B and 4D (PDE4B and PDE4D). We demonstrate that NDE1, NDEL1 and LIS1, together with their binding partner dynein, associate with DISC1, PDE4B and PDE4D within the cell, and provide evidence that this complex is present at the centrosome. LIS1 and NDEL1 have been previously suggested to be synaptic, and we now demonstrate localisation of DISC1, NDE1, and PDE4B at synapses in cultured neurons. NDE1 is phosphorylated by cAMP-dependant Protein Kinase A (PKA), whose activity is, in turn, regulated by the cAMP hydrolysis activity of phosphodiesterases, including PDE4. We propose that DISC1 acts as an assembly scaffold for all of these proteins and that the NDE1/NDEL1/LIS1/dynein complex is modulated by cAMP levels via PKA and PDE4.

  18. Magentite nanoparticle for arsenic remotion.

    NASA Astrophysics Data System (ADS)

    Viltres, H.; Odio, O. F.; Borja, R.; Aguilera, Y.; Reguera, E.

    2017-01-01

    Inorganic As (V) and As (III) species are commonly found in groundwater in many countries around the world. It is known that arsenic is highly toxic and carcinogenic, at present exist reports of diverse countries with arsenic concentrations in drinking water higher than those proposed by the World Health Organization (10 μg/L). It has been reported that adsorption strategies using magnetic nanoparticles as magnetite (<20 nm) proved to be very efficient for the removal of arsenic in drinking water. Magnetic nanoparticles (magnetite) were prepared using a co-precipitation method with FeCl3 and FeCl2 as metal source and NaOH aqueous solution as precipitating agent. Magnetite nanoparticles synthesized were put in contact with As2O3 and As2O5 solutions at room temperature to pH 4 and 7. The nanoparticles were characterized by FT-IR, DRX, UV-vis, and XRF. The results showed that synthesized magnetite had an average diameter of 11 nm and a narrow size distribution. The presence of arsenic on magnetite nanoparticles surface was confirmed, which is more remarkable when As (V) is employed. Besides, it is possible to observe that no significant changes in the band gap values after adsorption of arsenic in the nanoparticles.

  19. Groundwater arsenic in Chimaltenango, Guatemala.

    PubMed

    Lotter, Jason T; Lacey, Steven E; Lopez, Ramon; Socoy Set, Genaro; Khodadoust, Amid P; Erdal, Serap

    2014-09-01

    In the Municipality of Chimaltenango, Guatemala, we sampled groundwater for total inorganic arsenic. In total, 42 samples were collected from 27 (43.5%) of the 62 wells in the municipality, with sites chosen to achieve spatial representation throughout the municipality. Samples were collected from household faucets used for drinking water, and sent to the USA for analysis. The only site found to have a concentration above the 10 μg/L World Health Organization provisional guideline for arsenic in drinking water was Cerro Alto, where the average concentration was 47.5 μg/L. A health risk assessment based on the arsenic levels found in Cerro Alto showed an increase in noncarcinogenic and carcinogenic risks for residents as a result of consuming groundwater as their primary drinking water source. Using data from the US Geological Survey and our global positioning system data of the sample locations, we found Cerro Alto to be the only site sampled within the tertiary volcanic rock layer, a known source of naturally occurring arsenic. Recommendations were made to reduce the levels of arsenic found in the community's drinking water so that the health risks can be managed.

  20. Stress proteins induced by arsenic.

    PubMed

    Del Razo, L M; Quintanilla-Vega, B; Brambila-Colombres, E; Calderón-Aranda, E S; Manno, M; Albores, A

    2001-12-01

    The elevated expression of stress proteins is considered to be a universal response to adverse conditions, representing a potential mechanism of cellular defense against disease and a potential target for novel therapeutics. Exposure to arsenicals either in vitro or in vivo in a variety of model systems has been shown to cause the induction of a number of the major stress protein families such as heat shock proteins (Hsp). Among them are members with low molecular weight, such as metallotionein and ubiquitin, as well as ones with masses of 27, 32, 60, 70, 90, and 110 kDa. In most of the cases, the induction of stress proteins depends on the capacity of the arsenical to reach the target, its valence, and the type of exposure, arsenite being the biggest inducer of most Hsp in several organs and systems. Hsp induction is a rapid dose-dependent response (1-8 h) to the acute exposure to arsenite. Thus, the stress response appears to be useful to monitor the sublethal toxicity resulting from a single exposure to arsenite. The present paper offers a critical review of the capacity of arsenicals to modulate the expression and/or accumulation of stress proteins. The physiological consequences of the arsenic-induced stress and its usefulness in monitoring effects resulting from arsenic exposure in humans and other organisms are discussed.

  1. BREAST CANCER, DERMATOFIBROMAS AND ARSENIC

    PubMed Central

    Dantzig, Paul I

    2009-01-01

    Background: Dermatofibromas are common benign tumors in women, and breast cancer is the most common malignancy in women. The aim of this study is to determine if there is any relationship between the two conditions. Materials and Methods: Five patients with dermatofibromas and 10 control patients (two groups) had their skin biopsies measured for arsenic by inductively coupled mass spectrometry. Fifty randomly selected patients with breast cancer and 50 control patients were examined for the presence of dermatofibromas. Results: The dermatofibromas were found to have an arsenic concentration of 0.171 micrograms/gram, compared with 0.06 and 0.07 micrograms/gram of the two control groups. Forty-three out of 50 patients with breast cancer had dermatofibromas and 32/50 patients with breast cancer had multiple dermatofibromas, compared to 10/50 control patients with dermatofibromas and only 1/50 with multiple dermatofibromas. Conclusions: Arsenic is important in the development of dermatofibromas and dermatofibromas represent a reservoir and important sign of chronic arsenic exposure. Dermatofibromas represent an important sign for women at risk for breast cancer, and arsenic may represent the cause of the majority of cases of breast cancer. PMID:20049264

  2. Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes.

    PubMed

    Peters, Stephen C

    2008-07-29

    Naturally occurring arsenic in the bedrock of the Northern Appalachian Mountain belt was first recognized in the late 19th century. The knowledge of the behavior of arsenic in groundwater in this region has lagged behind nearly a century, with the popular press reporting on local studies in the early 1980s, and most peer-reviewed research articles on regional patterns conducted and written in the late 1990s and early 2000s. Research reports have shown that within this high arsenic region, between 6% and 22% of households using private drinking water wells contain arsenic in excess of 10 microg/L, the United States Environmental Protection Agency's maximum contaminant level. In nearly all reports, arsenic in drinking water was derived from naturally occurring geologic sources, typically arsenopyrite, substituted sulfides such as arsenian pyrite, and nanoscale minerals such as westerveldite. In most studies, arsenic concentrations in groundwater were controlled by pH dependent adsorption to mineral surfaces, most commonly iron oxide minerals. In some cases, reductive dissolution of iron minerals has been shown to increase arsenic concentrations in groundwater, more commonly associated with anthropogenic activities such as landfills. Evidence of nitrate reduction promoting the presence of arsenic(V) and iron(III) minerals in anoxic environments has been shown to occur in surface waters, and in this manuscript we show this process perhaps applies to groundwater. The geologic explanation for the high arsenic region in the Northern Appalachian Mountain belt is most likely the crustal recycling of arsenic as an incompatible element during tectonic activity. Accretion of multiple terranes, in particular Avalonia and the Central Maine Terrane of New England appear to be connected to the presence of high concentrations of arsenic. Continued tectonic activity and recycling of these older terranes may also be responsible for the high arsenic observed in the Triassic rift

  3. Loss of function of the Drosophila Ninein-related centrosomal protein Bsg25D causes mitotic defects and impairs embryonic development

    PubMed Central

    Kowanda, Michelle; Bergalet, Julie; Wieczorek, Michal; Brouhard, Gary; Lécuyer, Éric

    2016-01-01

    ABSTRACT The centrosome-associated proteins Ninein (Nin) and Ninein-like protein (Nlp) play significant roles in microtubule stability, nucleation and anchoring at the centrosome in mammalian cells. Here, we investigate Blastoderm specific gene 25D (Bsg25D), which encodes the only Drosophila protein that is closely related to Nin and Nlp. In early embryos, we find that Bsg25D mRNA and Bsg25D protein are closely associated with centrosomes and astral microtubules. We show that sequences within the coding region and 3′UTR of Bsg25D mRNAs are important for proper localization of this transcript in oogenesis and embryogenesis. Ectopic expression of eGFP-Bsg25D from an unlocalized mRNA disrupts microtubule polarity in mid-oogenesis and compromises the distribution of the axis polarity determinant Gurken. Using total internal reflection fluorescence microscopy, we show that an N-terminal fragment of Bsg25D can bind microtubules in vitro and can move along them, predominantly toward minus-ends. While flies homozygous for a Bsg25D null mutation are viable and fertile, 70% of embryos lacking maternal and zygotic Bsg25D do not hatch and exhibit chromosome segregation defects, as well as detachment of centrosomes from mitotic spindles. We conclude that Bsg25D is a centrosomal protein that, while dispensable for viability, nevertheless helps ensure the integrity of mitotic divisions in Drosophila. PMID:27422905

  4. Regulation of cyclin A localization downstream of Par-1 function is critical for the centrosome orientation checkpoint in Drosophila male germline stem cells.

    PubMed

    Yuan, Hebao; Chiang, C-Y Ason; Cheng, Jun; Salzmann, Viktoria; Yamashita, Yukiko M

    2012-01-01

    Male germline stem cells (GSCs) in Drosophila melanogaster divide asymmetrically by orienting the mitotic spindle with respect to the niche, a microenvironment that specifies stem cell identity. The spindle orientation is prepared during interphase through stereotypical positioning of the centrosomes. We recently demonstrated that GSCs possess a checkpoint ("the centrosome orientation checkpoint") that monitors correct centrosome orientation prior to mitosis to ensure an oriented spindle and thus asymmetric outcome of the division. Here, we show that Par-1, a serine/threonine kinase that regulates polarity in many systems, is involved in this checkpoint. Par-1 shows a cell cycle-dependent localization to the spectrosome, a germline-specific, endoplasmic reticulum-like organelle. Furthermore, the localization of cyclin A, which is normally localized to the spectrosome, is perturbed in par-1 mutant GSCs. Interestingly, overexpression of mutant cyclin A that does not localize to the spectrosome and mutation in hts, a core component of the spectrosome, both lead to defects in the centrosome orientation checkpoint. We propose that the regulation of cyclin A localization via Par-1 function plays a critical role in the centrosome orientation checkpoint.

  5. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres

    PubMed Central

    Goldspink, Deborah A.; Rookyard, Chris; Tyrrell, Benjamin J.; Perkins, James; Lund, Elizabeth K.; Galjart, Niels; Thomas, Paul; Wileman, Tom

    2017-01-01

    Differentiation of columnar epithelial cells involves a dramatic reorganization of the microtubules (MTs) and centrosomal components into an apico-basal array no longer anchored at the centrosome. Instead, the minus-ends of the MTs become anchored at apical non-centrosomal microtubule organizing centres (n-MTOCs). Formation of n-MTOCs is critical as they determine the spatial organization of MTs, which in turn influences cell shape and function. However, how they are formed is poorly understood. We have previously shown that the centrosomal anchoring protein ninein is released from the centrosome, moves in a microtubule-dependent manner and accumulates at n-MTOCs during epithelial differentiation. Here, we report using depletion and knockout (KO) approaches that ninein expression is essential for apico-basal array formation and epithelial elongation and that CLIP-170 is required for its redeployment to n-MTOCs. Functional inhibition also revealed that IQGAP1 and active Rac1 coordinate with CLIP-170 to facilitate microtubule plus-end cortical targeting and ninein redeployment. Intestinal tissue and in vitro organoids from the Clip1/Clip2 double KO mouse with deletions in the genes encoding CLIP-170 and CLIP-115, respectively, confirmed requirement of CLIP-170 for ninein recruitment to n-MTOCs, with possible compensation by other anchoring factors such as p150Glued and CAMSAP2 ensuring apico-basal microtubule formation despite loss of ninein at n-MTOCs. PMID:28179500

  6. The polarity protein Baz forms a platform for the centrosome orientation during asymmetric stem cell division in the Drosophila male germline

    PubMed Central

    Inaba, Mayu; Venkei, Zsolt G; Yamashita, Yukiko M

    2015-01-01

    Many stem cells divide asymmetrically in order to balance self-renewal with differentiation. The essence of asymmetric cell division (ACD) is the polarization of cells and subsequent division, leading to unequal compartmentalization of cellular/extracellular components that confer distinct cell fates to daughter cells. Because precocious cell division before establishing cell polarity would lead to failure in ACD, these two processes must be tightly coupled; however, the underlying mechanism is poorly understood. In Drosophila male germline stem cells, ACD is prepared by stereotypical centrosome positioning. The centrosome orientation checkpoint (COC) further serves to ensure ACD by preventing mitosis upon centrosome misorientation. In this study, we show that Bazooka (Baz) provides a platform for the correct centrosome orientation and that Baz-centrosome association is the key event that is monitored by the COC. Our work provides a foundation for understanding how the correct cell polarity may be recognized by the cell to ensure productive ACD. DOI: http://dx.doi.org/10.7554/eLife.04960.001 PMID:25793442

  7. Dysregulation of DNA methylation induced by past arsenic treatment causes persistent genomic instability in mammalian cells.

    PubMed

    Mauro, Maurizio; Caradonna, Fabio; Klein, Catherine B

    2016-03-01

    The mechanisms by which arsenic-induced genomic instability is initiated and maintained are poorly understood. To investigate potential epigenetic mechanisms, in this study we evaluated global DNA methylation levels in V79 cells and human HaCaT keratinocytes at several time points during expanded growth of cell cultures following removal of arsenite exposures. We have found altered genomic methylation patterns that persisted up to 40 cell generations in HaCaT cells after the treatments were withdrawn. Moreover, mRNA expression levels were evaluated by RT-PCR for DNMT1, DNMT3A, DNMT3B, HMLH1, and HMSH2 genes, demonstrating that the down regulation of DNMT3A and DNMT3B genes, but not DNMT1, occurred in an arsenic dose-dependent manner, and persisted for many cell generations following removal of the arsenite, offering a plausible mechanism of persistently genotoxic arsenic action. Analyses of promoter methylation status of the DNA mismatch repair genes HMLH1 and HMSH2 show that HMSH2, but not HMLH1, was epigenetically regulated by promoter hypermethylation changes following arsenic treatment. The results reported here demonstrate that arsenic exposure promptly induces genome-wide global DNA hypomethylation, and some specific gene promoter methylation changes, that persist for many cell generations following withdrawal of arsenite, supporting the hypothesis that the cells undergo epigenetic reprogramming at both the gene and genome level that is durable over many cell generations in the absence of further arsenic treatment. These DNA methylation changes, in concert with other known epigenome alterations, are likely contributing to long-lasting arsenic-induced genomic instability that manifests in several ways, including aberrant chromosomal effects.

  8. Dysregulation of DNA Methylation Induced by Past Arsenic Treatment Causes Persistent Genomic Instability in Mammalian Cells

    PubMed Central

    Mauro, Maurizio; Caradonna, Fabio; Klein, Catherine B.

    2016-01-01

    The mechanisms by which arsenic-induced genomic instability is initiated and maintained are poorly understood. To investigate potential epigenetic mechanisms, in this study we evaluated global DNA methylation levels in V79 cells and human HaCaT keratinocytes at several time points during expanded growth of cell cultures following removal of arsenite exposures. We have found altered genomic methylation patterns that persisted up to 40 cell generations in HaCaT cells after the treatments were withdrawn. Moreover, mRNA expression levels were evaluated by RT-PCR for DNMT1, DNMT3A, DNMT3B, HMLH1, and HMSH2 genes, demonstrating that the down regulation of DNMT3A and DNMT3B genes, but not DNMT1, occurred in an arsenic dose-dependent manner, and persisted for many cell generations following removal of the arsenite, offering a plausible mechanism of persistently genotoxic arsenic action. Analyses of promoter methylation status of the DNA mismatch repair genes HMLH1 and HMSH2 show that HMSH2, but not HMLH1, was epigenetically regulated by promoter hypermethylation changes following arsenic treatment. The results reported here demonstrate that arsenic exposure promptly induces genome-wide global DNA hypomethylation, and some specific gene promoter methylation changes, that persist for many cell generations following withdrawal of arsenite, supporting the hypothesis that the cells undergo epigenetic reprogramming at both the gene and genome level that is durable over many cell generations in the absence of further arsenic treatment. These DNA methylation changes, in concert with other known epigenome alterations, are likely contributing to long-lasting arsenic-induced genomic instability that manifests in several ways, including aberrant chromosomal effects. PMID:26581878

  9. Mineral resource of the month: arsenic

    USGS Publications Warehouse

    Brooks, William E.

    2008-01-01

    Arsenic has a long and varied history: Although it was not isolated as an element until the 13th century, it was known to the ancient Chinese, Egyptians and Greeks in compound form in the minerals arsenopyrite, realgar and orpiment. In the 1400s, “Scheele’s Green” was first used as an arsenic pigment in wallpaper, and leached arsenic from wallpaper may have contributed to Napoleon’s death in 1821. The 1940s play and later movie, Arsenic and Old Lace, dramatizes the metal’s more sinister role. Arsenic continues to be an important mineral commodity with many modern applications.

  10. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents

    SciTech Connect

    Mingshi Wang; Dangyu Song; Baoshan Zheng; R.B. Finkelman

    2008-10-15

    To study the effectiveness of washing in removal of arsenic and sulfur from coals with different ranges of arsenic concentration, coal was divided into three groups on the basis of arsenic content: 0-5.5 mg/kg, 5.5 mg/kg-8.00 mg/kg, and over 8.00 mg/kg. The result shows that the arsenic in coals with higher arsenic content occurs mainly in an inorganic state and can be relatively easily removed. Arsenic removal is very difficult and less complete when the arsenic content is lower than 5.5 mg/kg because most of this arsenic is in an organic state. There is no relationship between washing rate of total sulfur and arsenic content, but the relationship between the washing rate of total sulfur and percent of organic sulfur is very strong.

  11. The studying of washing of arsenic and sulfur from coals having different ranges of arsenic contents

    USGS Publications Warehouse

    Wang, M.; Song, D.; Zheng, B.; Finkelman, R.B.; ,

    2008-01-01

    To study the effectiveness of washing in removal of arsenic and sulfur from coals with different ranges of arsenic concentration, coal was divided into three groups on the basis of arsenic content: 0-5.5 mg/kg, 5.5 mg/kg-8.00 mg/kg, and over 8.00 mg/kg. The result shows that the arsenic in coals with higher arsenic content occurs mainly in an inorganic state and can be relatively easily removed. Arsenic removal is very difficult and less complete when the arsenic content is lower than 5.5 mg/kg because most of this arsenic is in an organic state. There is no relationship between washing rate of total sulfur and arsenic content, but the relationship between the washing rate of total sulfur and percent of organic sulfur is very strong. ?? 2008 New York Academy of Sciences.

  12. Tissue distribution of arsenic after subcutaneous implantation of arsenic trioxide pellet in rats.

    PubMed

    ASO, T; Abiko, Y

    1978-05-01

    In control rats, the arsenic level in the spleen and blood cells was 1.59 and 10.79 microgram/g wet tissue, respectively. In the kidney, lung, heart, brain, and hair, the arsenic level was lower than 1.1 microgram/g wet tissue. In rats in which a pellet containing 2 mg of arsenic tsioxide was implanted subcutaneously, the arsenic level in the spleen and blood cells was markedly high for at least 2 months after implantation; after 67 days of implantation, the arsenic level in the spleen and blood cells was 16.79 and 66.34 microgram/g wet tissue, respectively. In the kidney, liver, lung, heart, brain, and hair, the increase in arsenic after implantation was smaller than that in the spleen. In the plasma, arsenic was not detected before and after arsenic implantation. It is concluded that arsenic implanted subcutaneously concentrates in the blood cells, possibly in the red cells, in rats.

  13. Arsenic occurrence in New Hampshire drinking water

    SciTech Connect

    Peters, S.C.; Blum, J.D.; Klaue, B.; Karagas, M.R.

    1999-05-01

    Arsenic concentrations were measured in 992 drinking water samples collected from New Hampshire households using online hydride generation ICP-MS. These randomly selected household water samples contain much less arsenic than those voluntarily submitted for analysis to the New Hampshire Department of Environmental Services (NHDES). Extrapolation of the voluntarily submitted sample set to all New Hampshire residents significantly overestimates arsenic exposure. In randomly selected households, concentrations ranged from <0.0003 to 180 {micro}g/L, with water from domestic wells containing significantly more arsenic than water from municipal sources. Water samples from drilled bedrock wells had the highest arsenic concentrations, while samples from surficial wells had the lowest arsenic concentrations. The authors suggest that much of the groundwater arsenic in New Hampshire is derived from weathering of bedrock materials and not from anthropogenic contamination. The spatial distribution of elevated arsenic concentrations correlates with Late-Devonian Concord-type granitic bedrock. Field observations in the region exhibiting the highest groundwater arsenic concentrations revealed abundant pegmatite dikes associated with nearby granites. Analysis of rock digests indicates arsenic concentrations up to 60 mg/kg in pegmatites, with much lower values in surrounding schists and granites. Weak acid leaches show that approximately half of the total arsenic in the pegmatites is labile and therefore can be mobilized during rock-water interaction.

  14. Arsenic and bladder cancer: observations and suggestions.

    PubMed

    Radosavljević, Vladan; Jakovljević, Branko

    2008-10-01

    Arsenic from drinking water is a well-known risk factor for bladder cancer. The purpose of this paper is to systematize some important yet often overlooked facts considering the relationship between arsenic exposure and the occurrence of bladder cancer. Since the exposure to inorganic arsenic from food, inhaled air, and skin absorption as well as arsenic methylation ability are not fully investigated, our assumption is that the exposure of arsenic only from drinking water is underestimated and its role as a risk factor is highly overestimated. This paper proposes some qualitative and quantitative parameters of arsenic as a risk factor for bladder cancer. The recommended qualitative parameters of arsenic intake are first, pathways of exposure, and second, toxicity and metabolism. The suggested quantitative parameters of arsenic intake include amounts of arsenic absorbed in the body, duration of arsenic exposure, and duration of arsenic presence in the urinary bladder. This approach can be implemented in a systematic classification and explanation of various risk factors and their mutual interactions for other types of cancer or diseases in general.

  15. Removal processes for arsenic in constructed wetlands.

    PubMed

    Lizama A, Katherine; Fletcher, Tim D; Sun, Guangzhi

    2011-08-01

    Arsenic pollution in aquatic environments is a worldwide concern due to its toxicity and chronic effects on human health. This concern has generated increasing interest in the use of different treatment technologies to remove arsenic from contaminated water. Constructed wetlands are a cost-effective natural system successfully used for removing various pollutants, and they have shown capability for removing arsenic. This paper reviews current understanding of the removal processes for arsenic, discusses implications for treatment wetlands, and identifies critical knowledge gaps and areas worthy of future research. The reactivity of arsenic means that different arsenic species may be found in wetlands, influenced by vegetation, supporting medium and microorganisms. Despite the fact that sorption, precipitation and coprecipitation are the principal processes responsible for the removal of arsenic, bacteria can mediate these processes and can play a significant role under favourable environmental conditions. The most important factors affecting the speciation of arsenic are pH, alkalinity, temperature, dissolved oxygen, the presence of other chemical species--iron, sulphur, phosphate--,a source of carbon, and the wetland substrate. Studies of the microbial communities and the speciation of arsenic in the solid phase using advanced techniques could provide further insights on the removal of arsenic. Limited data and understanding of the interaction of the different processes involved in the removal of arsenic explain the rudimentary guidelines available for the design of wetlands systems.

  16. Diet and toenail arsenic concentrations in a New Hampshire population with arsenic-containing water

    PubMed Central

    2013-01-01

    Background Limited data exist on the contribution of dietary sources of arsenic to an individual’s total exposure, particularly in populations with exposure via drinking water. Here, the association between diet and toenail arsenic concentrations (a long-term biomarker of exposure) was evaluated for individuals with measured household tap water arsenic. Foods known to be high in arsenic, including rice and seafood, were of particular interest. Methods Associations between toenail arsenic and consumption of 120 individual diet items were quantified using general linear models that also accounted for household tap water arsenic and potentially confounding factors (e.g., age, caloric intake, sex, smoking) (n = 852). As part of the analysis, we assessed whether associations between log-transformed toenail arsenic and each diet item differed between subjects with household drinking water arsenic concentrations <1 μg/L versus ≥1 μg/L. Results As expected, toenail arsenic concentrations increased with household water arsenic concentrations. Among the foods known to be high in arsenic, no clear relationship between toenail arsenic and rice consumption was detected, but there was a positive association with consumption of dark meat fish, a category that includes tuna steaks, mackerel, salmon, sardines, bluefish, and swordfish. Positive associations between toenail arsenic and consumption of white wine, beer, and Brussels sprouts were also observed; these and most other associations were not modified by exposure via water. However, consumption of two foods cooked in water, beans/lentils and cooked oatmeal, was more strongly related to toenail arsenic among those with arsenic-containing drinking water (≥1 μg/L). Conclusions This study suggests that diet can be an important contributor to total arsenic exposure in U.S. populations regardless of arsenic concentrations in drinking water. Thus, dietary exposure to arsenic in the US warrants consideration as a potential

  17. Arsenic for the fool: an exponential connection.

    PubMed

    Dani, Sergio U

    2010-03-15

    Anthropogenic arsenic is insidiously building up together with natural arsenic to a level unprecedented in the history of mankind. Arsenopyrite (FeAsS) is the principal ore of arsenic and gold in hard rock mines; it is formed by a coupled substitution of sulphur by arsenic in the structure of pyrite (FeS(2)) - nicknamed "fool's gold". Other important sources of anthropogenic arsenic are fossil fuels such as coal and oil. Here I report on the first indication that the environmental concentration of total arsenic in topsoils - in the 7-18ppm range - is exponentially related to the prevalence and mortality of Alzheimer's disease and other dementias in European countries. This evidence defies the imputed absence of verified cases of human morbidity or mortality resulting from exposure to low-level arsenic in topsoils.

  18. Effects of arsenic deprivation in hamsters.

    PubMed

    Uthus, E O

    1990-01-01

    An experiment was conducted to ascertain the effects of arsenic deprivation in hamsters. Male weanling Golden Syrian hamsters were fed a casein-corn-based diet containing approximately 12 ng arsenic/g. Controls were fed 1 microgram arsenic/g of diet, as Na2HAsO4.7 H2O. After 6 weeks arsenic deprivation elevated heart weight/body weight ratio and the concentration of liver zinc and decreased the concentrations of the plasma amino acids alanine, glycine, phenylalanine and taurine. Although no biological role has been found for arsenic, the findings indicate that the hamster is a suitable animal for arsenic deprivation studies and support the hypothesis that arsenic may have a physiological role that influences methionine/methyl metabolism.

  19. System for removal of arsenic from water

    DOEpatents

    Moore, Robert C.; Anderson, D. Richard

    2004-11-23

    Systems for removing arsenic from water by addition of inexpensive and commonly available magnesium oxide, magnesium hydroxide, calcium oxide, or calcium hydroxide to the water. The hydroxide has a strong chemical affinity for arsenic and rapidly adsorbs arsenic, even in the presence of carbonate in the water. Simple and commercially available mechanical systems for removal of magnesium hydroxide particles with adsorbed arsenic from drinking water can be used, including filtration, dissolved air flotation, vortex separation, or centrifugal separation. A system for continuous removal of arsenic from water is provided. Also provided is a system for concentrating arsenic in a water sample to facilitate quantification of arsenic, by means of magnesium or calcium hydroxide adsorption.

  20. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    PubMed

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign.

  1. Abnormal centrosome amplification in cells through the targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein.

    PubMed

    Peloponese, Jean-Marie; Haller, Kerstin; Miyazato, Akiko; Jeang, Kuan-Teh

    2005-12-27

    Human T cell leukemia virus type-1 (HTLV-1) is an oncogenic retrovirus etiologically causal of adult T cell leukemia. The virus encodes a Tax oncoprotein that functions in transcriptional regulation, cell cycle control, and transformation. Because adult T cell leukemia like many other human cancers is a disease of genomic instability with frequent gains and losses of chromosomes, to understand this disease it is important to comprehend how HTLV-1 engenders aneuploidy in host cells. In this regard, loss of cell cycle checkpoints permits tolerance of aneuploidy but does not explain how aneuploidy is created. We show here that HTLV-1 Tax causes abnormal centrosome fragmentation in the mitotic phase of the cell cycle. We report that Tax directly binds Ran and Ran-binding protein-1, locates to centrosomes/spindle poles, and causes supernumerary centrosomes.

  2. Evaluation of Arsenic Removal Technology: Arsenic Demonstration Program

    EPA Science Inventory

    Specific objectives of this program are to evaluate the reliability of the arsenic technologies of small scale systems; to gauge the simplicity of system operations, maintenance and operator skill; to determine the cost-effectiveness of the treatment technologies; and to characte...

  3. Dietary arsenic exposure with low level of arsenic in drinking water and biomarker: a study in West Bengal.

    PubMed

    Mazumder, Debendra Nath Guha; Deb, Debasree; Biswas, Anirban; Saha, Chandan; Nandy, Ashoke; Das, Arabinda; Ghose, Aloke; Bhattacharya, Kallol; Mazumdar, Kunal Kanti

    2014-01-01

    The authors investigated association of arsenic intake through water and diet and arsenic level in urine in people living in arsenic endemic region in West Bengal supplied with arsenic-safe water (<50 μg L(-1)). Out of 94 (Group-1A) study participants using water with arsenic level <50 μg L(-1), 72 participants (Group-1B) were taking water with arsenic level <10 μg L(-1). Multiple regressions analysis conducted on the Group-1A participants showed that daily arsenic dose from water and diet were found to be significantly positively associated with urinary arsenic level. However, daily arsenic dose from diet was found to be significantly positively associated with urinary arsenic level in Group-1B participants only, but no significant association was found with arsenic dose from water in this group. In a separate analysis, out of 68 participants with arsenic exposure through diet only, urinary arsenic concentration was found to correlate positively (r = 0.573) with dietary arsenic in 45 participants with skin lesion while this correlation was insignificant (r = 0.007) in 23 participants without skin lesion. Our study suggested that dietary arsenic intake was a potential pathway of arsenic exposure even where arsenic intake through water was reduced significantly in arsenic endemic region in West Bengal. Observation of variation in urinary arsenic excretion in arsenic-exposed subjects with and without skin lesion needed further study.

  4. Mutation of a Drosophila gamma tubulin ring complex subunit encoded by discs degenerate-4 differentially disrupts centrosomal protein localization

    PubMed Central

    Barbosa, Vitor; Yamamoto, Rochele R.; Henderson, Daryl S.; Glover, David M.

    2000-01-01

    We have cloned the Drosophila gene discs degenerate-4 (dd4) and find that it encodes a component of the γ-tubulin ring complex (γTuRC) homologous to Spc98 of budding yeast. This provides the first opportunity to study decreased function of a member of the γ-tubulin ring complex, other than γ-tubulin itself, in a metazoan cell. γ-tubulin is no longer at the centrosomes but is dispersed throughout dd4 cells and yet bipolar metaphase spindles do form, although these have a dramatically decreased density of microtubules. Centrosomin (CNN) remains in broad discrete bodies but only at the focused poles of such spindles, whereas Asp (abnormal spindle protein) is always present at the presumptive minus ends of microtubules, whether or not they are focused. This is consistent with the proposed role of Asp in coordinating the nucleation of mitotic microtubule organizing centers. The centrosome associated protein CP190 is partially lost from the spindle poles in dd4 cells supporting a weak interaction with γ-tubulin, and the displaced protein accumulates in the vicinity of chromosomes. Electron microscopy indicates not only that the poles of dd4 cells have irregular amounts of pericentriolar material, but also that they can have abnormal centrioles. In six dd4 cells subjected to serial sectioning centrioles were missing from one of the two poles. This suggests that in addition to its role in nucleating cytoplasmic and spindle microtubules, the γTuRC is also essential to the structure of centrioles and the separation of centrosomes. PMID:11124805

  5. Possible mechanisms for arsenic-induced proliferative diseases

    SciTech Connect

    Wetterhahn, K.E.; Dudek, E.J.; Shumilla, J.A.

    1996-12-31

    Possible mechanisms for cardiovascular diseases and cancers which have been observed on chronic exposure to arsenic have been investigated. We tested the hypothesis that nonlethal levels of arsenic are mitogenic, cause oxidative stress, increase nuclear translocation of trans-acting factors, and increase expression of genes involved in proliferation. Cultured porcine vascular (from aorta) endothelial cells were used as a model cell system to study the effects of arsenic on the target cells for cardiovascular diseases. Treatment of postconfluent cell cultures with nonovertly toxic concentrations of arsenite increased DNA synthesis, similar to the mitogenic response observed with hydrogen peroxide. Within 1 hour of adding noncytotoxic concentrations of arsenite, cellular levels of oxidants increased relative to control levels, indicating that arsenite promotes cellular oxidations. Arsenite treatment increased nuclear translocation of NF-{kappa}B, an oxidative stress-responsive transcription factor, in a manner similar to that observed with hydrogen peroxide. Pretreatment of intact cells with the antioxidants N-acetylcysteine and dimethylfumarate prevented the arsenite-induced increases in cellular oxidant formation and NF-KB translocation. Arsenite had little or no effect on binding of NF-KB to its DNA recognition sequence in vitro, indicating that it is unlikely that arsenite directly affects NF-KB. The steady-state mRNA levels of intracellular adhesion molecule and urokinase-like plasminogen activator, genes associated with the active endothelial phenotype in arteriosclerosis and cancer metastasis, were increased by nontoxic concentrations of arsenite. These data suggest that arsenite promotes proliferative diseases like heart disease and cancer by activating oxidant-sensitive endothelial cell signaling and gene expression. It is possible that antioxidant therapy would be useful in preventing arsenic-induced cardiovascular disease and cancer.

  6. Enhanced carcinogenicity by coexposure to arsenic and iron and a novel remediation system for the elements in well drinking water.

    PubMed

    Kumasaka, Mayuko Y; Yamanoshita, Osamu; Shimizu, Shingo; Ohnuma, Shoko; Furuta, Akio; Yajima, Ichiro; Nizam, Saika; Khalequzzaman, Md; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2013-03-01

    Various carcinomas including skin cancer are explosively increasing in arsenicosis patients who drink arsenic-polluted well water, especially in Bangladesh. Although well drinking water in the cancer-prone areas contains various elements, very little is known about the effects of elements except arsenic on carcinogenicity. In order to clarify the carcinogenic effects of coexposure to arsenic and iron, anchorage-independent growth and invasion in human untransformed HaCaT and transformed A431 keratinocytes were examined. Since the mean ratio of arsenic and iron in well water was 1:10 in cancer-prone areas of Bangladesh, effects of 1 μM arsenic and 10 μM iron were investigated. Iron synergistically promoted arsenic-mediated anchorage-independent growth in untransformed and transformed keratinocytes. Iron additionally increased invasion in both types of keratinocytes. Activities of c-SRC and ERK that regulate anchorage-independent growth and invasion were synergistically enhanced in both types of keratinocytes. Our results suggest that iron promotes arsenic-mediated transformation of untransformed keratinocytes and progression of transformed keratinocytes. We then developed a low-cost and high-performance adsorbent composed of a hydrotalcite-like compound for arsenic and iron. The adsorbent rapidly reduced concentrations of both elements from well drinking water in cancer-prone areas of Bangladesh to levels less than those in WHO health-based guidelines for drinking water. Thus, we not only demonstrated for the first time increased carcinogenicity by coexposure to arsenic and iron but also proposed a novel remediation system for well drinking water.

  7. Urinary arsenic metabolites of subjects exposed to elevated arsenic present in coal in Shaanxi Province, China.

    PubMed

    Gao, Jianwei; Yu, Jiangping; Yang, Linsheng

    2011-06-01

    In contrast to arsenic (As) poisoning caused by naturally occurring inorganic arsenic-contaminated water consumption, coal arsenic poisoning (CAP) induced by elevated arsenic exposure from coal combustion has rarely been reported. In this study, the concentrations and distributions of urinary arsenic metabolites in 57 volunteers (36 subjects with skin lesions and 21 subjects without skin lesions), who had been exposed to elevated levels of arsenic present in coal in Changshapu village in the south of Shaanxi Province (China), were reported. The urinary arsenic species, including inorganic arsenic (iAs) [arsenite (iAsIII) and arsenate (iAsV)], monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV), were determined by high-performance liquid chromatography (HPLC) combined with inductively coupled plasma mass spectroscopy (ICP-MS). The relative distributions of arsenic species, the primary methylation index (PMI=MMAV/iAs) and the secondary methylation index (SMI=DMAV/MMAV) were calculated to assess the metabolism of arsenic. Subjects with skin lesions had a higher concentration of urinary arsenic and a lower arsenic methylation capability than subjects without skin lesions. Women had a significantly higher methylation capability of arsenic than men, as defined by a higher percent DMAV and SMI in urine among women, which was the one possible interpretation of women with a higher concentration of urinary arsenic but lower susceptibility to skin lesions. The findings suggested that not only the dose of arsenic exposure but also the arsenic methylation capability have an impact on the individual susceptibility to skin lesions induced by coal arsenic exposure.

  8. Factors Affecting Arsenic Methylation in Arsenic-Exposed Humans: A Systematic Review and Meta-Analysis.

    PubMed

    Shen, Hui; Niu, Qiang; Xu, Mengchuan; Rui, Dongsheng; Xu, Shangzhi; Feng, Gangling; Ding, Yusong; Li, Shugang; Jing, Mingxia

    2016-02-06

    Chronic arsenic exposure is a critical public health issue in many countries. The metabolism of arsenic in vivo is complicated because it can be influenced by many factors. In the present meta-analysis, two researchers independently searched electronic databases, including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze factors influencing arsenic methylation. The concentrations of the following arsenic metabolites increase (p< 0.000001) following arsenic exposure: inorganic arsenic (iAs), monomethyl arsenic (MMA), dimethyl arsenic (DMA), and total arsenic. Additionally, the percentages of iAs (standard mean difference (SMD): 1.00; 95% confidence interval (CI): 0.60-1.40; p< 0.00001) and MMA (SMD: 0.49; 95% CI: 0.21-0.77; p = 0.0006) also increase, while the percentage of DMA (SMD: -0.57; 95% CI: -0.80--0.31; p< 0.0001), primary methylation index (SMD: -0.57; 95% CI: -0.94--0.20; p = 0.002), and secondary methylation index (SMD: -0.27; 95% CI: -0.46--0.90; p = 0.004) decrease. Smoking, drinking, and older age can reduce arsenic methylation, and arsenic methylation is more efficient in women than in men. The results of this analysis may provide information regarding the role of arsenic oxidative methylation in the arsenic poisoning process.

  9. Mechanism of centrosome positioning during the wound response in BSC-1 cells

    PubMed Central

    1992-01-01

    Locomoting cells are characterized by a pronounced external and internal anterior-posterior polarity. One of the events associated with cell polarization at the onset of locomotion is a shift of the centrosome, or MTOC, ahead of the nucleus. This position is believed to be of strategic importance for directional cell movement and cell polarity. We have used BSC-1 cells at the edge of an in vitro wound to clarify the causal relationship between MTOC position and the initiation of cell polarization. We find that pronounced cell polarization (the extension of a lamellipod) can take place in the absence of MTOC repositioning or microtubules. Conversely, MTOCs will reposition even after lamellar extension and cell polarization have occurred. Repositioning requires microtubules that extend to the cell periphery and is independent of selective detyrosination of microtubules extending towards the cell front. Significantly, MTOCs maintain, or at least attempt to maintain, a position at the cell's centroid. This is most clearly demonstrated in wounded monolayers of enucleated cells where the MTOC closely follows the centroid position. We suggest that the primary response to the would is the biased extension of a lamellipod, which can occur in the absence of microtubules and MTOC repositioning. Lamellipod extension leads to a shift of the cell's centroid towards the wound. The MTOC, in an attempt to maintain a position near the cell center, will follow. This will automatically put the MTOC ahead of the nucleus in the vast majority of cells. The nucleus as a reference for MTOC position may not be as meaningful as previously thought. PMID:1740470

  10. Bimetallic nanoparticles for arsenic detection.

    PubMed

    Moghimi, Nafiseh; Mohapatra, Mamata; Leung, Kam Tong

    2015-06-02

    Effective and sensitive monitoring of heavy metal ions, particularly arsenic, in drinking water is very important to risk management of public health. Arsenic is one of the most serious natural pollutants in soil and water in more than 70 countries in the world. The need for very sensitive sensors to detect ultralow amounts of arsenic has attracted great research interest. Here, bimetallic FePt, FeAu, FePd, and AuPt nanoparticles (NPs) are electrochemically deposited on the Si(100) substrate, and their electrochemical properties are studied for As(III) detection. We show that trace amounts of As(III) in neutral pH could be determined by using anodic stripping voltammetry. The synergistic effect of alloying with Fe leads to better performance for Fe-noble metal NPs (Au, Pt, and Pd) than pristine noble metal NPs (without Fe alloying). Limit of detection and linear range are obtained for FePt, FeAu, and FePd NPs. The best performance is found for FePt NPs with a limit of detection of 0.8 ppb and a sensitivity of 0.42 μA ppb(-1). The selectivity of the sensor has also been tested in the presence of a large amount of Cu(II), as the most detrimental interferer ion for As detection. The bimetallic NPs therefore promise to be an effective, high-performance electrochemical sensor for the detection of ultratrace quantities of arsenic.

  11. Determination of arsenic compounds in earthworms

    SciTech Connect

    Geiszinger, A.; Goessler, W.; Kuehnelt, D.; Kosmus, W.; Francesconi, K.

    1998-08-01

    Earthworms and soil collected from six sites in Styria, Austria, were investigated for total arsenic concentrations by ICP-MS and for arsenic compounds by HPLC-ICP-MS. Total arsenic concentrations ranged from 3.2 to 17.9 mg/kg dry weight in the worms and from 5.0 to 79.7 mg/kg dry weight in the soil samples. There was no strict correlation between the total arsenic concentrations in the worms and soil. Arsenic compounds were extracted from soil and a freeze-dried earthworm sample with a methanol/water mixture (9:1, v/v). The extracts were evaporated to dryness, redissolved in water, and chromatographed on an anion- and a cation-exchange column. Arsenic compounds were identified by comparison of the retention times with known standards. Only traces of arsenic acid could be extracted from the soil with the methanol/water (9:1, v/v) mixture. The major arsenic compounds detected in the extracts of the earthworms were arsenous acid and arsenic acid. Arsenobetaine was present as a minor constituent, and traces of dimethylarsinic acid were also detected. Two dimethylarsinoyltribosides were also identified in the extracts by co-chromatography with standard compounds. This is the first report of the presence of dimethylarsinoylribosides in a terrestrial organism. Two other minor arsenic species were present in the extract, but their retention times did not match with the retention times of the available standards.

  12. Sequestration of arsenic in ombrotrophic peatlands

    NASA Astrophysics Data System (ADS)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  13. Cellular arsenic transport pathways in mammals.

    PubMed

    Roggenbeck, Barbara A; Banerjee, Mayukh; Leslie, Elaine M

    2016-11-01

    Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.

  14. Health Effects of Chronic Arsenic Exposure

    PubMed Central

    Hong, Young-Seoub; Song, Ki-Hoon; Chung, Jin-Yong

    2014-01-01

    Arsenic is a unique element with distinct physical characteristics and toxicity whose importance in public health is well recognized. The toxicity of arsenic varies across its different forms. While the carcinogenicity of arsenic has been confirmed, the mechanisms behind the diseases occurring after acute or chronic exposure to arsenic are not well understood. Inorganic arsenic has been confirmed as a human carcinogen that can induce skin, lung, and bladder cancer. There are also reports of its significant association to liver, prostate, and bladder cancer. Recent studies have also suggested a relationship with diabetes, neurological effects, cardiac disorders, and reproductive organs, but further studies are required to confirm these associations. The majority of research to date has examined cancer incidence after a high exposure to high concentrations of arsenic. However, numerous studies have reported various health effects caused by chronic exposure to low concentrations of arsenic. An assessment of the health effects to arsenic exposure has never been performed in the South Korean population; thus, objective estimates of exposure levels are needed. Data should be collected on the biological exposure level for the total arsenic concentration, and individual arsenic concentration by species. In South Korea, we believe that biological exposure assessment should be the first step, followed by regular health effect assessments. PMID:25284195

  15. Arsenic contamination in groundwater of Samta, Bangladesh.

    PubMed

    Yokota, H; Tanabe, K; Sezaki, M; Yano, Y; Hamabe, K; Yabuuchi, K; Tokunaga, H

    2002-01-01

    In March 1997, we analyzed the water of all tubewells used for drinking in Samta village in the Jessore district, Bangladesh. It has been confirmed from the survey that the arsenic contamination in Samta was one of the worst in the Ganges basin including West Bengal, India. 90% of the tubewells had arsenic concentrations above the Bangladesh standard of 0.05 mg/l. Tubewells with higher arsenic concentrations of over 0.50 mg/l were distributed in the southern area with a belt-like shape from east to west, and the distribution of arsenic concentration showed gradual decreasing toward northern area of the village. In order to examine the characteristics of the arsenic distribution in Samta, we have performed investigations such as: 1) the characteristics of groundwater flow, 2) the distribution of arsenic in the ground, 3) the concentration of arsenic and the other dissolved materials in groundwater, and 4) the distribution of arsenic concentration of trivalence and pentavalence. This paper examines the mechanism of arsenic release to groundwater and explains the above-mentioned characteristics of the arsenic contamination in Samta through the investigations of the survey results for these years.

  16. Arsenic in Drinking Water-A Global Environmental Problem

    ERIC Educational Resources Information Center

    Wang, Joanna Shaofen; Wai, Chien M.

    2004-01-01

    Information on the worldwide occurrence of groundwater pollution by arsenic, the ensuing health hazards, and the debatable government regulations of arsenic in drinking water, is presented. Diagnostic identification of arsenic, and methods to eliminate it from water are also discussed.

  17. Chapter4: Toxicology and Epidemiology of Arsenic and its Compounds

    EPA Science Inventory

    Arsenic poses numerous environmental challenges, especially in the groundwater of Bangladesh and other developing nations. As a metalloid, arsenic has the properties of both a metal and a nonmetal. In organisms, metabolism of arsenic consists ofcomplex and multiple reduction and ...

  18. Arsenic chemistry in soils and sediments

    SciTech Connect

    Fendorf, S.; Nico, P.; Kocar, B.D.; Masue, Y.; Tufano, K.J.

    2009-10-15

    Arsenic is a naturally occurring trace element that poses a threat to human and ecosystem health, particularly when incorporated into food or water supplies. The greatest risk imposed by arsenic to human health results from contamination of drinking water, for which the World Health Organization recommends a maximum limit of 10 {micro}g L{sup -1}. Continued ingestion of drinking water having hazardous levels of arsenic can lead to arsenicosis and cancers of the bladder, skin, lungs and kidneys. Unfortunately, arsenic tainted drinking waters are a global threat and presently having a devastating impact on human health within Asia. Nearly 100 million people, for example, are presently consuming drinking water having arsenic concentrations exceeding the World Health Organization's recommended limit (Ahmed et al., 2006). Arsenic contamination of the environment often results from human activities such as mining or pesticide application, but recently natural sources of arsenic have demonstrated a devastating impact on water quality. Arsenic becomes problematic from a health perspective principally when it partitions into the aqueous rather than the solid phase. Dissolved concentrations, and the resulting mobility, of arsenic within soils and sediments are the combined result of biogeochemical processes linked to hydrologic factors. Processes favoring the partitioning of As into the aqueous phase, potentially leading to hazardous concentrations, vary extensively but can broadly be grouped into four categories: (1) ion displacement, (2) desorption (or limited sorption) at pH values > 8.5, (3) reduction of arsenate to arsenite, and (4) mineral dissolution, particularly reductive dissolution of Fe and Mn (hydr)oxides. Although various processes may liberate arsenic from solids, a transition from aerobic to anaerobic conditions, and commensurate arsenic and iron/manganese reduction, appears to be a dominant, but not exclusive, means by which high concentrations of dissolved

  19. Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water.

    PubMed

    Rivera-Núñez, Zorimar; Meliker, Jaymie R; Meeker, John D; Slotnick, Melissa J; Nriagu, Jerome O

    2012-01-01

    The large disparity between arsenic concentrations in drinking water and urine remains unexplained. This study aims to evaluate predictors of urinary arsenic in a population exposed to low concentrations (≤50 μg/l) of arsenic in drinking water. Urine and drinking water samples were collected from a subsample (n=343) of a population enrolled in a bladder cancer case-control study in southeastern Michigan. Total arsenic in water and arsenic species in urine were determined using ICP-MS: arsenobetaine (AsB), arsenite (As[III]), arsenate (As[V]), methylarsenic acid (MMA[V]), and dimethylarsenic acid (DMA[V]). The sum of As[III], As[V], MMA[V], and DMA[V] was denoted as SumAs. Dietary information was obtained through a self-reported food intake questionnaire. Log(10)-transformed drinking water arsenic concentration at home was a significant (P<0.0001) predictor of SumAs (R(2)=0.18). Associations improved (R(2)=0.29, P<0.0001) when individuals with less than 1 μg/l of arsenic in drinking water were removed and further improved when analyses were applied to individuals who consumed amounts of home drinking water above the median volume (R(2)=0.40, P<0.0001). A separate analysis indicated that AsB and DMA[V] were significantly correlated with fish and shellfish consumption, which may suggest that seafood intake influences DMA[V] excretion. The Spearman correlation between arsenic concentration in toenails and SumAs was 0.36 and between arsenic concentration in toenails and arsenic concentration in water was 0.42. Results show that arsenic exposure from drinking water consumption is an important determinant of urinary arsenic concentrations, even in a population exposed to relatively low levels of arsenic in drinking water, and suggest that seafood intake may influence urinary DMA[V] concentrations.

  20. ARSENIC (+3 OXIDATION STATE) METHYLTRANSFERASE AND THE INORGANIC ARSENIC METHYLATION PHENOTYPE

    EPA Science Inventory

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidence suggest that some of the adverse health effects associated with chronic exposure to in...

  1. ARSENIC INTERACTION WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST: IMPLICATIONS FOR ARSENIC REMEDIATION

    EPA Science Inventory

    Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...

  2. Role of Metabolism in Arsenic-Induced Toxicity: Identification and Quantification of Arsenic Metabolites in Tissues and Excreta

    EPA Science Inventory

    Arsenic is a known toxicant and carcinogen. Methylation of inorganic arsenic was once thought to be a detoxification mechanism because of the rapid excretion and relatively lower toxicity of the pentavalent organic arsenical metabolites. Advances in analytical chemistry have al...

  3. An arsenic fluorescent compound as a novel probe to study arsenic-binding proteins.

    PubMed

    Femia, A Lis; Temprana, C Facundo; Santos, Javier; Carbajal, María Laura; Amor, María Silvia; Grasselli, Mariano; Alonso, Silvia Del V

    2012-12-01

    Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many proteins bearing a CXXC motif have been found to bind arsenic in vivo, new tools are necessary to identify new arsenic targets and allow research on protein/arsenic complexes. In this work, we analyzed the performance of the fluorescent compound APAO-FITC (synthesized from p-aminophenylarsenoxide, APAO, and fluorescein isothiocyanate, FITC) in arsenic/protein binding assays using thioredoxin 1 (Trx) as an arsenic-binding protein model. The Trx-APAO-FITC complex was studied through different spectroscopic techniques involving UV-Vis, fluorescence, atomic absorption, infrared and circular dichroism. Our results show that APAO-FITC binds efficiently and specifically to the Trx binding site, labeling the protein fluorescently, without altering its structure and activity. In summary, we were able to study a protein/arsenic complex model, using APAO-FITC as a labeling probe. The use of APAO-FITC in the identification of different protein and cell targets, as well as in in vivo biodistribution studies, conformational studies of arsenic-binding proteins, and studies for the design of drug delivery systems for arsenic anti-cancer therapies, is highly promising.

  4. Method of arsenic removal from water

    SciTech Connect

    Gadgil, Ashok

    2010-10-26

    A method for low-cost arsenic removal from drinking water using chemically prepared bottom ash pre-treated with ferrous sulfate and then sodium hydroxide. Deposits on the surface of particles of bottom ash form of activated iron adsorbent with a high affinity for arsenic. In laboratory tests, a miniscule 5 grams of pre-treated bottom ash was sufficient to remove the arsenic from 2 liters of 2400 ppb (parts per billion) arsenic-laden water to a level below 50 ppb (the present United States Environmental Protection Agency limit). By increasing the amount of pre-treated bottom ash, even lower levels of post-treatment arsenic are expected. It is further expected that this invention supplies a very low-cost solution to arsenic poisoning for large population segments.

  5. Natural Antioxidants Against Arsenic-Induced Genotoxicity.

    PubMed

    Kumar, Munesh; Lalit, Minakshi; Thakur, Rajesh

    2016-03-01

    Arsenic is present in water, soil, and air in organic as well as in inorganic forms. However, inorganic arsenic is more toxic than organic and can cause many diseases including cancers in humans. Its genotoxic effect is considered as one of its carcinogenic actions. Arsenic can cause DNA strand breaks, deletion mutations, micronuclei formation, DNA-protein cross-linking, sister chromatid exchange, and DNA repair inhibition. Evidences indicate that arsenic causes DNA damage by generation of reactive free radicals. Nutritional supplementation of antioxidants has been proven highly beneficial against arsenic genotoxicity in experimental animals. Recent studies suggest that antioxidants protect mainly by reducing excess free radicals via restoring the activities of cellular enzymatic as well as non-enzymatic antioxidants and decreasing the oxidation processes such as lipid peroxidation and protein oxidation. The purpose of this review is to summarize the recent literature on arsenic-induced genotoxicity and its mitigation by naturally derived antioxidants in various biological systems.

  6. Arsenic ingestion and internal cancers: a review

    SciTech Connect

    Bates, M.N.; Smith, A.H.; Hopenhayn-Rich, C. )

    1992-03-01

    Inorganic arsenic is known to cause skin cancer by ingestion and lung cancer by inhalation. However, whether arsenic ingestion causes internal cancers is still a matter of debate. This paper has reviewed the epidemiologic literature that bears on this question. Published studies of populations who have ingested arsenic in medicines, wine substitutes, or water supplies, as well as workers exposed to arsenic by inhalation, were considered in terms of whether the observed associations might be explained by the presence of biases, the consistency of the evidence, and the biologic plausibility of the associations. Many studies were found to be uninformative because of low statistical power or potential biases. The most informative studies, which were from Taiwan and Japan, involved exposure to arsenic in drinking water. These studies strongly suggest that ingested inorganic arsenic does cause cancers of the bladder, kidney, lung, and liver, and possibly other sites. However, confirmatory studies are needed.82 references.

  7. Arsenic in stream sediments of northern Alabama

    USGS Publications Warehouse

    Goldhaber, M.B.; Irwin, Elise; Atkins, Brian; Lee, Lopaka; Black, D.D.; Zappia, Humbert; Hatch, Joe; Pashin, Jack; Barwick, L.H.; Cartwright, W.E.; Sanzolone, Rick; Rupert, Leslie; Kolker, Allan; Finkelman, Robert

    2001-01-01

    OVERVIEW OF ARSENIC IN STREAM SEDIMENTS The overall range of arsenic in the NURE stream sediments was from 0.3 to 44 mg/kg sediment (ppm) As in the sample data set. The mean value was 4.3 ppm with a standard deviation of 4.1 ppm. For comparison, the crustal abundance of arsenic is 1.8 ppm (Taylor, 1964). Shale is higher, with average values of 15 ppm. Coal samples from the entire USGS National Coal Resource Data System coal database (Finkelman, 1994) average 24 ppm arsenic. A study of stream sediments from throughout the U.S. by the USGS NAWQA program reported that the 75th percentile for arsenic in 541 stream sediments was 9.5 ppm (Rice, 1999). Given the relatively low crustal abundance of arsenic, a number of stream-sediment samples in this study may be considered geochemically anomalous in this element.

  8. The centrosome orientation checkpoint is germline stem cell specific and operates prior to the spindle assembly checkpoint in Drosophila testis.

    PubMed

    Venkei, Zsolt G; Yamashita, Yukiko M

    2015-01-01

    Asymmetric cell division is utilized by a broad range of cell types to generate two daughter cells with distinct cell fates. In stem cell populations asymmetric cell division is believed to be crucial for maintaining tissue homeostasis, failure of which can lead to tissue degeneration or hyperplasia/tumorigenesis. Asymmetric cell divisions also underlie cell fate diversification during development. Accordingly, the mechanisms by which asymmetric cell division is achieved have been extensively studied, although the check points that are in place to protect against potential perturbation of the process are poorly understood. Drosophila melanogaster male germline stem cells (GSCs) possess a checkpoint, termed the centrosome orientation checkpoint (COC), that monitors correct centrosome orientation with respect to the component cells of the niche to ensure asymmetric stem cell division. To our knowledge, the COC is the only checkpoint mechanism identified to date that specializes in monitoring the orientation of cell division in multicellular organisms. Here, by establishing colcemid-induced microtubule depolymerization as a sensitive assay, we examined the characteristics of COC activity and find that it functions uniquely in GSCs but not in their differentiating progeny. We show that the COC operates in the G2 phase of the cell cycle, independently of the spindle assembly checkpoint. This study may provide a framework for identifying and understanding similar mechanisms that might be in place in other asymmetrically dividing cell types.

  9. Mustard Gas Surrogate, 2-Chloroethyl Ethylsulfide (2-CEES), Induces Centrosome Amplification and Aneuploidy in Human and Mouse Cells

    DTIC Science & Technology

    2014-03-01

    permeabilization    with 1%  Nonidet   P ‐ 40  (Fisher) in PBS for 10 minutes at room temperature.  Cells were blocked   in 15% NGS (Life Technologies) for 1 hour and...in each of at least 100 cells.  p  < 0.05  comparing  treated to untreated cells with more  than 2 centrosomes per cell, except for 50 μM,  which was...00537‐1 [pii]  10.1016/j.freeradbiomed.2009.09.011  Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry  P , Doxsey SJ. 1998. Centrosome

  10. MiCroKiTS 4.0: a database of midbody, centrosome, kinetochore, telomere and spindle

    PubMed Central

    Huang, Zhengnan; Ma, Lili; Wang, Yongbo; Pan, Zhicheng; Ren, Jian; Liu, Zexian; Xue, Yu

    2015-01-01

    We reported an updated database of MiCroKiTS 4.0 (http://microkit.biocuckoo.org) for proteins temporally and spatially localized in distinct subcellular positions including midbody, centrosome, kinetochore, telomere and mitotic spindle during cell division/mitosis. The database was updated from our previously developed database of MiCroKit 3.0, which contained 1489 proteins mostly forming super-complexes at midbody, centrosome and kinetochore from seven eukaryotes. Since the telomere and spindle apparatus are critical for cell division, the proteins localized at the two positions were also integrated. From the scientific literature, we curated 1872 experimentally identified proteins which at least locate in one of the five positions from eight species. Then the ortholog detection was performed to identify potential MiCroKiTS proteins from 144 eukaryotic organisms, which contains 66, 45 and 33 species of animals, fungi and plants, respectively. In total, 87 983 unique proteins with corresponding localization information were integrated into the database. The primary references of experimentally identified localizations were provided and the fluorescence microscope figures for the localizations of human proteins were shown. The orthologous relations between predicted and experimental localizations were also present. Taken together, we anticipate the database can serve as a useful resource for further analyzing the molecular mechanisms during cell division. PMID:25392421

  11. Arsenic geochemistry of groundwater in Southeast Asia.

    PubMed

    Kim, Kyoung-Woong; Chanpiwat, Penradee; Hanh, Hoang Thi; Phan, Kongkea; Sthiannopkao, Suthipong

    2011-12-01

    The occurrence of high concentrations of arsenic in the groundwater of the Southeast Asia region has received much attention in the past decade. This study presents an overview of the arsenic contamination problems in Vietnam, Cambodia, Lao People's Democratic Republic and Thailand. Most groundwater used as a source of drinking water in rural areas has been found to be contaminated with arsenic exceeding the WHO drinking water guideline of 10 μg·L(-1). With the exception of Thailand, groundwater was found to be contaminated with naturally occurring arsenic in the region. Interestingly, high arsenic concentrations (> 10 μg·L(-1)) were generally found in the floodplain areas located along the Mekong River. The source of elevated arsenic concentrations in groundwater is thought to be the release of arsenic from river sediments under highly reducing conditions. In Thailand, arsenic has never been found naturally in groundwater, but originates from tin mining activities. More than 10 million residents in Southeast Asia are estimated to be at risk from consuming arsenic-contaminated groundwater. In Southeast Asia, groundwater has been found to be a significant source of daily inorganic arsenic intake in humans. A positive correlation between groundwater arsenic concentration and arsenic concentration in human hair has been observed in Cambodia and Vietnam. A substantial knowledge gap exists between the epidemiology of arsenicosis and its impact on human health. More collaborative studies particularly on the scope of public health and its epidemiology are needed to conduct to fulfill the knowledge gaps of As as well as to enhance the operational responses to As issue in Southeast Asian countries.

  12. CD44v6 expression in human skin keratinocytes as a possible mechanism for carcinogenesis associated with chronic arsenic exposure.

    PubMed

    Huang, S; Guo, S; Guo, F; Yang, Q; Xiao, X; Murata, M; Ohnishi, S; Kawanishi, S; Ma, N

    2013-01-14

    Inorganic arsenic is a well-known human skin carcinogen. Chronic arsenic exposure results in various types of human skin lesions, including squamous cell carcinoma (SCC). To investigate whether mutant stem cells participate in arsenic-associated carcinogenesis, we repeatedly exposed the HaCaT cells line to an environmentally relevant level of arsenic (0.05 ppm) in vitro for 18 weeks. Following sodium arsenic arsenite administration, cell cycle, colony-forming efficiency (CFE), cell tumorigenicity, and expression of CD44v6, NF-κB and p53, were analyzed at different time points (0, 5, 10, 15, 20, 25 and 30 passages). We found that a chronic exposure of HaCaT cells to a low level of arsenic induced a cancer stem- like phenotype. Furthermore, arsenic-treated HaCaT cells also became tumorigenic in nude mice, their growth cycle was predominantly in G2/M and S phases. Relative to nontreated cells, they exhibited a higher growth rate and a significant increase in CFE. Western blot analysis found that arsenic was capable of increasing cell proliferation and sprouting of cancer stem-like phenotype. Additionally, immunohistochemical analysis demonstrated that CD44v6 expression was up-regulated in HaCaT cells exposed to a low level of arsenic during early stages of induction. The expression of CD44v6 in arsenic-treated cells was positively correlated with their cloning efficiency in soft agar (r=0.949, P=0.01). Likewise, the expressions of activating transcription factor NF-κB and p53 genes in the arsenic-treated HaCaT cells were significantly higher than that in non-treated cells. Higher expressions of CD44v6, NF-κB and p53 were also observed in tumor tissues isolated from Balb/c nude mice. The present results suggest that CD44v6 may be a biomarker of arsenic-induced neoplastic transformation in human skin cells, and that arsenic promotes malignant transformation in human skin lesions through a NF-κB signaling pathway-stimulated expression of CD44v6.

  13. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.

    PubMed

    Fakhreddine, Sarah; Dittmar, Jessica; Phipps, Don; Dadakis, Jason; Fendorf, Scott

    2015-07-07

    Mobilization of arsenic and other trace metal contaminants during managed aquifer recharge (MAR) poses a challenge to maintaining local groundwater quality and to ensuring the viability of aquifer storage and recovery techniques. Arsenic release from sediments into solution has occurred during purified recycled water recharge of shallow aquifers within Orange County, CA. Accordingly, we examine the geochemical processes controlling As desorption and mobilization from shallow, aerated sediments underlying MAR infiltration basins. Further, we conducted a series of batch and column experiments to evaluate recharge water chemistries that minimize the propensity of As desorption from the aquifer sediments. Within the shallow Orange County Groundwater Basin sediments, the divalent cations Ca(2+) and Mg(2+) are critical for limiting arsenic desorption; they promote As (as arsenate) adsorption to the phyllosilicate clay minerals of the aquifer. While native groundwater contains adequate concentrations of dissolved Ca(2+) and Mg(2+), these cations are not present at sufficient concentrations during recharge of highly purified recycled water. Subsequently, the absence of dissolved Ca(2+) and Mg(2+) displaces As from the sediments into solution. Increasing the dosages of common water treatment amendments including quicklime (Ca(OH)2) and dolomitic lime (CaO·MgO) provides recharge water with higher concentrations of Ca(2+) and Mg(2+) ions and subsequently decreases the release of As during infiltration.

  14. Industrial contributions of arsenic to the environment.

    PubMed Central

    Nelson, K W

    1977-01-01

    Arsenic is present in all copper, lead, and zinc sulfide ores and is carried along with those metals in the mining, milling and concentrating process. Separation, final concentration and refining of by-product arsenic as the trioxide is achieved at smelters. Arsenic is the essential consistent element of many compounds important and widely used in agriculture and wood preservation. Lesser amounts are used in metal alloys, glass-making, and feed additives. There is no significant recycling. Current levels of arsenic emissions to the atmosphere from smelters and power plants and ambient air concentrations are given as data of greatest environmental interest. PMID:908308

  15. Arsenic speciation and sorption in natural environments

    USGS Publications Warehouse

    Campbell, Kate M.; Nordstrom, D. Kirk

    2014-01-01

    Aqueous arsenic speciation, or the chemical forms in which arsenic exists in water, is a challenging, interesting, and complicated aspect of environmental arsenic geochemistry. Arsenic has the ability to form a wide range of chemical bonds with carbon, oxygen, hydrogen, and sulfur, resulting in a large variety of compounds that exhibit a host of chemical and biochemical properties. Besides the intriguing chemical diversity, arsenic also has the rare capacity to capture our imaginations in a way that few elements can duplicate: it invokes images of foul play that range from sinister to comedic (e.g., “inheritance powder” and arsenic-spiked elderberry wine). However, the emergence of serious large-scale human health problems from chronic arsenic exposure in drinking water has placed a high priority on understanding environmental arsenic mobility, toxicity, and bioavailability, and chemical speciation is key to these important questions. Ultimately, the purpose of arsenic speciation research is to predict future occurrences, mitigate contamination, and provide successful management of water resources.

  16. In-tank recirculating arsenic treatment system

    DOEpatents

    Brady, Patrick V.; Dwyer, Brian P.; Krumhansl, James L.; Chwirka, Joseph D.

    2009-04-07

    A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

  17. XAS Studies of Arsenic in the Environment

    SciTech Connect

    Charnock, J. M.; Polya, D. A.; Gault, A. G.; Morgan, A. J.

    2007-02-02

    Arsenic is present in low concentrations in much of the Earth's crust and changes in its speciation are vital to understanding its transport and toxicity in the environment. We have used X-ray absorption spectroscopy to investigate the coordination sites of arsenic in a wide variety of samples, including soil and earthworm tissues from arsenic-contaminated land, and human hair and nail samples from people exposed to arsenic in Cambodia. Our results confirm the effectiveness of using X-ray absorption near edge structure (XANES) and X-ray absorption fine structure (EXAFS) spectroscopy to determine speciation changes in environmental samples.

  18. An Amino-Terminal Polo Kinase Interaction Motif Acts in the Regulation of Centrosome Formation and Reveals a Novel Function for centrosomin (cnn) in Drosophila

    PubMed Central

    Eisman, Robert C.; Phelps, Melissa A. S.; Kaufman, Thomas

    2015-01-01

    The formation of the pericentriolar matrix (PCM) and a fully functional centrosome in syncytial Drosophila melanogaster embryos requires the rapid transport of Cnn during initiation of the centrosome replication cycle. We show a Cnn and Polo kinase interaction is apparently required during embryogenesis and involves the exon 1A-initiating coding exon, suggesting a subset of Cnn splice variants is regulated by Polo kinase. During PCM formation exon 1A Cnn-Long Form proteins likely bind Polo kinase before phosphorylation by Polo for Cnn transport to the centrosome. Loss of either of these interactions in a portion of the total Cnn protein pool is sufficient to remove native Cnn from the pool, thereby altering the normal localization dynamics of Cnn to the PCM. Additionally, Cnn-Short Form proteins are required for polar body formation, a process known to require Polo kinase after the completion of meiosis. Exon 1A Cnn-LF and Cnn-SF proteins, in conjunction with Polo kinase, are required at the completion of meiosis and for the formation of functional centrosomes during early embryogenesis. PMID:26447129

  19. The conserved Wdr8-hMsd1/SSX2IP complex localises to the centrosome and ensures proper spindle length and orientation

    PubMed Central

    Hori, Akiko; Morand, Agathe; Ikebe, Chiho; Frith, David; Snijders, Ambrosius P.; Toda, Takashi

    2015-01-01

    The centrosome plays a pivotal role in a wide range of cellular processes and its dysfunction is causally linked to many human diseases including cancer and developmental and neurological disorders. This organelle contains more than one hundred components, and yet many of them remain uncharacterised. Here we identified a novel centrosome protein Wdr8, based upon the structural conservation of the fission yeast counterpart. We showed that Wdr8 constitutively localises to the centrosome and super resolution microscopy uncovered that this protein is enriched at the proximal end of the mother centriole. Furthermore, we identified hMsd1/SSX2IP, a conserved spindle anchoring protein, as one of Wdr8 interactors by mass spectrometry. Wdr8 formed a complex and partially colocalised with hMsd1/SSX2IP. Intriguingly, knockdown of Wdr8 or hMsd1/SSX2IP displayed very similar mitotic defects, in which spindle microtubules became shortened and misoriented. Indeed, Wdr8 depletion resulted in the reduced recruitment of hMsd1/SSX2IP to the mitotic centrosome, though the converse is not true. Together, we propose that the conserved Wdr8-hMsd1/SSX2IP complex plays a critical role in controlling proper spindle length and orientation. PMID:26545777

  20. An Amino-Terminal Polo Kinase Interaction Motif Acts in the Regulation of Centrosome Formation and Reveals a Novel Function for centrosomin (cnn) in Drosophila.

    PubMed

    Eisman, Robert C; Phelps, Melissa A S; Kaufman, Thomas

    2015-10-01

    The formation of the pericentriolar matrix (PCM) and a fully functional centrosome in syncytial Drosophila melanogaster embryos requires the rapid transport of Cnn during initiation of the centrosome replication cycle. We show a Cnn and Polo kinase interaction is apparently required during embryogenesis and involves the exon 1A-initiating coding exon, suggesting a subset of Cnn splice variants is regulated by Polo kinase. During PCM formation exon 1A Cnn-Long Form proteins likely bind Polo kinase before phosphorylation by Polo for Cnn transport to the centrosome. Loss of either of these interactions in a portion of the total Cnn protein pool is sufficient to remove native Cnn from the pool, thereby altering the normal localization dynamics of Cnn to the PCM. Additionally, Cnn-Short Form proteins are required for polar body formation, a process known to require Polo kinase after the completion of meiosis. Exon 1A Cnn-LF and Cnn-SF proteins, in conjunction with Polo kinase, are required at the completion of meiosis and for the formation of functional centrosomes during early embryogenesis.

  1. Karyotypic instability and centrosome aberrations in the progeny of finite life-span human mammary epithelial cells exposed to sparsely or densely ionizing radiation.

    PubMed

    Sudo, Hiroko; Garbe, James; Stampfer, Martha R; Barcellos-Hoff, Mary Helen; Kronenberg, Amy

    2008-07-01

    The human breast is sensitive to radiation carcinogenesis, and genomic instability occurs early in breast cancer development. This study tests the hypothesis that ionizing radiation elicits genomic instability in finite life-span human mammary epithelial cells (HMEC) and asks whether densely ionizing radiation is a more potent inducer of instability. HMEC in a non-proliferative state were exposed to X rays or 1 GeV/nucleon iron ions followed by delayed plating. Karyotypic instability and centrosome aberrations were monitored in expanded clonal isolates. Severe karyotypic instability was common in the progeny of cells that survived X-ray or iron-ion exposure. There was a lower dose threshold for severe karyotypic instability after iron-ion exposure. More than 90% of X-irradiated colonies and >60% of iron-ion-irradiated colonies showed supernumerary centrosomes at levels above the 95% upper confidence limit of the mean for unirradiated clones. A dose response was observed for centrosome aberrations for each radiation type. There was a statistically significant association between the incidence of karyotypic instability and supernumerary centrosomes for iron-ion-exposed colonies and a weaker association for X-irradiated colonies. Thus genomic instability occurs frequently in finite life-span HMEC exposed to sparsely or densely ionizing radiation and may contribute to radiation-induced breast cancer.

  2. KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification

    PubMed Central

    Fournier, Marjorie; Orpinell, Meritxell; Grauffel, Cédric; Scheer, Elisabeth; Garnier, Jean-Marie; Ye, Tao; Chavant, Virginie; Joint, Mathilde; Esashi, Fumiko; Dejaegere, Annick; Gönczy, Pierre; Tora, László

    2016-01-01

    Lysine acetylation is a widespread post-translational modification regulating various biological processes. To characterize cellular functions of the human lysine acetyltransferases KAT2A (GCN5) and KAT2B (PCAF), we determined their acetylome by shotgun proteomics. One of the newly identified KAT2A/2B substrate is polo-like kinase 4 (PLK4), a key regulator of centrosome duplication. We demonstrate that KAT2A/2B acetylate the PLK4 kinase domain on residues K45 and K46. Molecular dynamics modelling suggests that K45/K46 acetylation impairs kinase activity by shifting the kinase to an inactive conformation. Accordingly, PLK4 activity is reduced upon in vitro acetylation of its kinase domain. Moreover, the overexpression of the PLK4 K45R/K46R mutant in cells does not lead to centrosome overamplification, as observed with wild-type PLK4. We also find that impairing KAT2A/2B-acetyltransferase activity results in diminished phosphorylation of PLK4 and in excess centrosome numbers in cells. Overall, our study identifies the global human KAT2A/2B acetylome and uncovers that KAT2A/2B acetylation of PLK4 prevents centrosome amplification. PMID:27796307

  3. Urinary Trivalent Methylated Arsenic Species in a Population Chronically Exposed to Inorganic Arsenic

    PubMed Central

    Valenzuela, Olga L.; Borja-Aburto, Victor H.; Garcia-Vargas, Gonzalo G.; Cruz-Gonzalez, Martha B.; Garcia-Montalvo, Eliud A.; Calderon-Aranda, Emma S.; Del Razo, Luz M.

    2005-01-01

    Chronic exposure to inorganic arsenic (iAs) has been associated with increased risk of various forms of cancer and of noncancerous diseases. Metabolic conversions of iAs that yield highly toxic and genotoxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII) may play a significant role in determining the extent and character of toxic and cancer-promoting effects of iAs exposure. In this study we examined the relationship between urinary profiles of MAsIII and DMAsIII and skin lesion markers of iAs toxicity in individuals exposed to iAs in drinking water. The study subjects were recruited among the residents of an endemic region of central Mexico. Drinking-water reservoirs in this region are heavily contaminated with iAs. Previous studies carried out in the local populations have found an increased incidence of pathologies, primarily skin lesions, that are characteristic of arseniasis. The goal of this study was to investigate the urinary profiles for the trivalent and pentavalent As metabolites in both high- and low-iAs–exposed subjects. Notably, methylated trivalent arsenicals were detected in 98% of analyzed urine samples. On average, the major metabolite, DMAsIII, represented 49% of total urinary As, followed by DMAsV (23.7%), iAsV (8.6%), iAsIII (8.5%), MAsIII (7.4%), and MAsV (2.8%). More important, the average MAsIII concentration was significantly higher in the urine of exposed individuals with skin lesions compared with those who drank iAs-contaminated water but had no skin lesions. These data suggest that urinary levels of MAsIII, the most toxic species among identified metabolites of iAs, may serve as an indicator to identify individuals with increased susceptibility to toxic and cancer-promoting effects of arseniasis. PMID:15743710

  4. Urinary trivalent methylated arsenic species in a population chronically exposed to inorganic arsenic.

    PubMed

    Valenzuela, Olga L; Borja-Aburto, Victor H; Garcia-Vargas, Gonzalo G; Cruz-Gonzalez, Martha B; Garcia-Montalvo, Eliud A; Calderon-Aranda, Emma S; Del Razo, Luz M

    2005-03-01

    Chronic exposure to inorganic arsenic (iAs) has been associated with increased risk of various forms of cancer and of noncancerous diseases. Metabolic conversions of iAs that yield highly toxic and genotoxic methylarsonite (MAsIII) and dimethylarsinite (DMAsIII) may play a significant role in determining the extent and character of toxic and cancer-promoting effects of iAs exposure. In this study we examined the relationship between urinary profiles of MAsIII and DMAsIII and skin lesion markers of iAs toxicity in individuals exposed to iAs in drinking water. The study subjects were recruited among the residents of an endemic region of central Mexico. Drinking-water reservoirs in this region are heavily contaminated with iAs. Previous studies carried out in the local populations have found an increased incidence of pathologies, primarily skin lesions, that are characteristic of arseniasis. The goal of this study was to investigate the urinary profiles for the trivalent and pentavalent As metabolites in both high- and low-iAs-exposed subjects. Notably, methylated trivalent arsenicals were detected in 98% of analyzed urine samples. On average, the major metabolite, DMAsIII, represented 49% of total urinary As, followed by DMAsV (23.7%), iAsV (8.6%), iAsIII (8.5%), MAsIII (7.4%), and MAsV (2.8%). More important, the average MAsIII concentration was significantly higher in the urine of exposed individuals with skin lesions compared with those who drank iAs-contaminated water but had no skin lesions. These data suggest that urinary levels of MAsIII, the most toxic species among identified metabolites of iAs, may serve as an indicator to identify individuals with increased susceptibility to toxic and cancer-promoting effects of arseniasis.

  5. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, Ravindra S.; Wang, Francis T.

    1996-01-01

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic.

  6. Clean process to destroy arsenic-containing organic compounds with recovery of arsenic

    DOEpatents

    Upadhye, R.S.; Wang, F.T.

    1996-08-13

    A reduction method is provided for the treatment of arsenic-containing organic compounds with simultaneous recovery of pure arsenic. Arsenic-containing organic compounds include pesticides, herbicides, and chemical warfare agents such as Lewisite. The arsenic-containing compound is decomposed using a reducing agent. Arsine gas may be formed directly by using a hydrogen-rich reducing agent, or a metal arsenide may be formed using a pure metal reducing agent. In the latter case, the arsenide is reacted with an acid to form arsine gas. In either case, the arsine gas is then reduced to elemental arsenic. 1 fig.

  7. Plk1 relieves centriole block to reduplication by promoting daughter centriole maturation.

    PubMed

    Shukla, Anil; Kong, Dong; Sharma, Meena; Magidson, Valentin; Loncarek, Jadranka

    2015-08-21

    Centrosome overduplication promotes mitotic abnormalities, invasion and tumorigenesis. Cells regulate the number of centrosomes by limiting centriole duplication to once per cell cycle. The orthogonal orientation between a mother and a daughter centriole, established at the time of centriole duplication, is thought to block further duplication of the mother centriole. Loss of orthogonal orientation (disengagement) between two centrioles during anaphase is considered a licensing event for the next round of centriole duplication. Disengagement requires the activity of Polo-like kinase 1 (Plk1), but how Plk1 drives this process is not clear. Here we employ correlative live/electron microscopy and demonstrate that Plk1 induces maturation and distancing of the daughter centriole, allowing reduplication of the mother centriole even if the original daughter centriole is still orthogonal to it. We find that mother centrioles can undergo reduplication when original daughter centrioles are only ∼80 nm apart, which is the distance centrioles normally reach during prophase.

  8. Lead isotopic compositions of common arsenical pesticides used in New England

    USGS Publications Warehouse

    Ayuso, Robert; Foley, Nora; Robinson, Gilpin; Wandless, Gregory; Dillingham, Jeremy

    2004-01-01

    The three most important arsenical pesticides and herbicides that were extensively used on apple, blueberry, and potato crops in New England from mid-1800s to recent times are lead arsenate, calcium arsenate, and sodium arsenate. Lead arsenate was probably the most heavily used of the arsenical pesticides until it was banned in 1988. Other metal-arsenic pesticides were also used but in lesser amounts. A recent report identified areas in New England where arsenical pesticides were used extensively (Robinson and Ayuso, 2004). On the basis of factor analysis of metal concentrations in stream sediment samples, a positive correlation with pesticide use was shown in regions having stream sediment sample populations that contained concentrations of high arsenic and lead. Lead isotope compositions of stream sediments from areas with heavy use of the pesticides could not be entirely explained by lead originating from rock sulfides and their weathering products. An industrial lead contribution (mostly from atmospheric deposition of lead) was suggested in general to explain the lead isotopic distributions of the stream sediments that could not be accounted for by the natural lead in the environment. We concluded that when agricultural land previously contaminated with arsenical pesticides is urbanized, pesticide residues in the soils and stream sediments could be released into the groundwater. No lead isotopic data characterizing the compositions of pesticides were available for comparison. We have determined the lead isotopic compositions of commonly used pesticides in New England, such as lead arsenate, sodium metaarsenite, and calcium arsenate, in order to assist in future isotopic comparisons and to better establish anthropogenic sources of Pb and As. New data are also presented for copper acetoarsenite (or Paris green), methyl arsonic acid and methane arsonic acid, as well as for arsanilic acid, all of which are used as feed additives to promote swine and poultry growth

  9. Subsurface iron and arsenic removal for shallow tube well drinking water supply in rural Bangladesh.

    PubMed

    van Halem, D; Olivero, S; de Vet, W W J M; Verberk, J Q J C; Amy, G L; van Dijk, J C

    2010-11-01

    Subsurface iron and arsenic removal has the potential to be a cost-effective technology to provide safe drinking water in rural decentralized applications, using existing shallow tube wells. A community-scale test facility in Bangladesh was constructed for injection of aerated water (∼1 m(3)) into an anoxic aquifer with elevated iron (0.27 mmolL(-1)) and arsenic (0.27μmolL(-1)) concentrations. The injection (oxidation) and abstraction (adsorption) cycles were monitored at the test facility and simultaneously simulated in the laboratory with anoxic column experiments. Dimensionless retardation factors (R) were determined to represent the delayed arrival of iron or arsenic in the well compared to the original groundwater. At the test facility the iron removal efficacies increased after every injection-abstraction cycle, with retardation factors (R(Fe)) up to 17. These high removal efficacies could not be explained by the theory of adsorptive-catalytic oxidation, and therefore other ((a)biotic or transport) processes have contributed to the system's efficacy. This finding was confirmed in the anoxic column experiments, since the mechanism of adsorptive-catalytic oxidation dominated in the columns and iron removal efficacies did not increase with every cycle (stable at R(Fe)=∼8). R(As) did not increase after multiple cycles, it remained stable around 2, illustrating that the process which is responsible for the effective iron removal did not promote the co-removal of arsenic. The columns showed that subsurface arsenic removal was an adsorptive process and only the freshly oxidized adsorbed iron was available for the co-adsorption of arsenic. This indicates that arsenic adsorption during subsurface treatment is controlled by the amount of adsorbed iron that is oxidized, and not by the amount of removed iron. For operational purposes this is an important finding, since apparently the oxygen concentration of the injection water does not control the subsurface arsenic

  10. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism.

    PubMed

    Cheng, Tain-Junn; Chuu, Jiunn-Jye; Chang, Chia-Yu; Tsai, Wan-Chen; Chen, Kuan-Jung; Guo, How-Ran

    2011-10-15

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor β (LXRβ) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXRβ activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXRβ and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element.

  11. Identification of a Novel Membrane Transporter Mediating Resistance to Organic Arsenic in Campylobacter jejuni

    PubMed Central

    Shen, Zhangqi; Luangtongkum, Taradon; Qiang, Zhiyi; Jeon, Byeonghwa; Wang, Liping

    2014-01-01

    Although bacterial mechanisms involved in the resistance to inorganic arsenic are well understood, the molecular basis for organic arsenic resistance has not been described. Campylobacter jejuni, a major food-borne pathogen causing gastroenteritis in humans, is highly prevalent in poultry and is reportedly resistant to the arsenic compound roxarsone (4-hydroxy-3-nitrobenzenearsonic acid), which has been used as a feed additive in the poultry industry for growth promotion. In this study, we report the identification of a novel membrane transporter (named ArsP) that contributes to organic arsenic resistance in Campylobacter. ArsP is predicted to be a membrane permease containing eight transmembrane helices, distinct from other known arsenic transporters. Analysis of multiple C. jejuni isolates from various animal species revealed that the presence of an intact arsP gene is associated with elevated resistance to roxarsone. In addition, inactivation of arsP in C. jejuni resulted in 4- and 8-fold reductions in the MICs of roxarsone and nitarsone, respectively, compared to that for the wild-type strain. Furthermore, cloning of arsP into a C. jejuni strain lacking a functional arsP gene led to 16- and 64-fold increases in the MICs of roxarsone and nitarsone, respectively. Neither mutation nor overexpression of arsP affected the MICs of inorganic arsenic, including arsenite and arsenate, in Campylobacter. Moreover, acquisition of arsP in NCTC 11168 led to accumulation of less roxarsone than the wild-type strain lacking arsP. Together, these results indicate that ArsP functions as an efflux transporter specific for extrusion of organic arsenic and contributes to the resistance to these compounds in C. jejuni. PMID:24419344

  12. Water-supply options in arsenic-affected regions in Cambodia: targeting the bottom income quintiles.

    PubMed

    Chamberlain, Jim F; Sabatini, David A

    2014-08-01

    In arsenic-affected regions of Cambodia, rural water committees and planners can choose to promote various arsenic-avoidance and/or arsenic-removal water supply systems. Each of these has different costs of providing water, subsequently born by the consumer in order to be sustainable. On a volumetric basis ($/m3-yr) and of the arsenic-avoidance options considered, small-scale public water supply - e.g., treated water provided to a central tap stand - is the most expensive option on a life-cycle cost basis. Rainwater harvesting, protected hand dug wells, and vendor-supplied water are the cheapest with a normalized present worth value, ranging from $2 to $10 per cubic meter per year of water delivered. Subsidization of capital costs is needed to make even these options affordable to the lowest (Q5) quintile. The range of arsenic-removal systems considered here, using adsorptive media, is competitive with large-scale public water supply and deep tube well systems. Both community level and household-scale systems are in a range that is affordable to the Q4 quintile, though more research and field trials are needed. At a target cost of $5.00/m3, arsenic removal systems will compete with the OpEx costs for most of the arsenic-safe water systems that are currently available. The life-cycle cost approach is a valuable method for comparing alternatives and for assessing current water supply practices as these relate to equity and the ability to pay.

  13. Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site.

    PubMed

    Pandey, Neha; Bhatt, Renu

    2015-11-01

    Forty-three indigenous arsenic resistant bacteria were isolated from arsenic rich soil of Rajnandgaon district in the state of Chhattisgarh, India by enrichment culture technique. Among the isolates, two of the bacteria (As-9 and As-14) exhibited high resistance to As(V) [MIC ≥ 700 mM] and As(III) [MIC ≥ 10 mM] and were selected for further studies. Both these bacteria grew well in the presence of arsenic [20 mM As(V) and 5 mM As(III)], but the isolate As-14 strictly required arsenic for its survival and growth and was characterized as a novel arsenic dependent bacterium. The isolates contributed to 99% removal of arsenic from the growth medium which was efficiently accumulated in the cell. Quantitative estimation of arsenic through Atomic Absorption Spectrophotometer revealed that there was >60% accumulation of both As(V) and As(III) by the two isolates. Scanning Electron Microscopic analysis showed a fourfold increase in bacterial cell volume when grown in the presence of arsenic and the results of Transmission Electron Microscopy and energy-dispersive X-ray spectroscopy proved that such an alteration was due to arsenic accumulation. Such arsenic resistant bacteria with efficient accumulating property could be effectively applied in the treatment of arsenic contaminated water.

  14. Transplacental arsenic plus postnatal 12-O-teradecanoyl phorbol-13-acetate exposures associated with hepatocarcinogenesis induce similar aberrant gene expression patterns in male and female mouse liver

    SciTech Connect

    Liu Jie . E-mail: Liu6@niehs.nih.gov; Xie Yaxiong; Merrick, B. Alex; Shen Jun; Ducharme, Danica M.K.; Collins, Jennifer; Diwan, Bhalchandra A.; Logsdon, Daniel; Waalkes, Michael P.

    2006-06-15

    Our prior work shows that in utero arsenic exposure alone is a complete transplacental carcinogen, producing hepatocellular carcinoma in adult male offspring but not in females. In a follow-up study to potentially promote arsenic-initiated tumors, mice were exposed to arsenic (85 ppm) from gestation day 8 to 18 and then exposed to 12-O-teradecanoyl phorbol-13-acetate (TPA), a well-known tumor promoter after weaning. The dermal application of TPA (2 {mu}g/0.1 ml acetone, twice/week for 21 weeks) after transplacental arsenic did not further increase arsenic-induced liver tumor formation in adult males but significantly increased liver tumor formation in adult females. Thus, for comparison, liver tumors and normal liver samples taken from adult male and female mice at necropsy were analyzed for aberrant gene/protein expression by microarray, real-time RT-PCR and Western blot analysis. Arsenic/TPA treatment resulted in increased expression of {alpha}-fetoprotein, k-ras, c-myc, estrogen receptor-{alpha}, cyclin D1, cdk2na, plasminogen activator inhibitor-1, cytokeratin-8, cytokeratin-18, glutathione S-transferases and insulin-like growth factor binding proteins in liver and liver tumors from both male and female mice. Arsenic/TPA also decreased the expression of BRCA1, betaine-homocysteine methyltransferase, CYP7B1, CYP2F2 and insulin-like growth factor-1 in normal and cancerous livers. Alterations in these gene products were associated with arsenic/TPA-induced liver tumors, regardless of sex. Thus, transplacental arsenic plus postnatal TPA exposure induced similar aberrant gene expression patterns in male and female mouse liver, which are persistent and potentially important to the mechanism of arsenic initiation of hepatocarcinogenesis.

  15. Impaired arsenic metabolism in children during weaning

    SciTech Connect

    Faengstroem, Britta; Hamadani, Jena; Nermell, Barbro; Grander, Margaretha; Palm, Brita; Vahter, Marie

    2009-09-01

    Background: Methylation of inorganic arsenic (iAs) via one-carbon metabolism is a susceptibility factor for a range of arsenic-related health effects, but there is no data on the importance of arsenic metabolism for effects on child development. Aim: To elucidate the development of arsenic metabolism in early childhood. Methods: We measured iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA), the metabolites of iAs, in spot urine samples of 2400 children at 18 months of age. The children were born to women participating in a population-based longitudinal study of arsenic effects on pregnancy outcomes and child development, carried out in Matlab, a rural area in Bangladesh with a wide range of arsenic concentrations in drinking water. Arsenic metabolism was evaluated in relation to age, sex, anthropometry, socio-economic status and arsenic exposure. Results: Arsenic concentrations in child urine (median 34 {mu}g/L, range 2.4-940 {mu}g/L), adjusted to average specific gravity of 1.009 g/mL, were considerably higher than that measured at 3 months of age, but lower than that in maternal urine. Child urine contained on average 12% iAs, 9.4% MA and 78% DMA, which implies a marked change in metabolite pattern since infancy. In particular, there was a marked increase in urinary %MA, which has been associated with increased risk of health effects. Conclusion: The arsenic metabolite pattern in urine of children at 18 months of age in rural Bangladesh indicates a marked decrease in arsenic methylation efficiency during weaning.

  16. Arsenic mobilization and immobilization in paddy soils

    NASA Astrophysics Data System (ADS)

    Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.

    2010-05-01

    Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II