Science.gov

Sample records for arsenide gallium nitride

  1. Ellipsometric study of silicon nitride on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Bu-Abbud, G. H.; Woollam, J. A.; Liu, D.; Chung, Y.; Langer, D.

    1982-01-01

    A method for optimizing the sensitivity of ellipsometric measurements for thin dielectric films on semiconductors is described in simple physical terms. The technique is demonstrated for the case of sputtered silicon nitride films on gallium arsenide.

  2. Gallium and gallium arsenide

    SciTech Connect

    Kramer, D.

    1988-01-01

    As part of the Nation's growing concern with the competitiveness of U.S. firms in the world economy, especially with respect to advanced materials, the Bureau of Mines assessed the actual and potential recovery and manufacturing capabilities for gallium and gallium arsenide (GaAs). GaAs has advanced from a laboratory curiosity to a material with important high-tech applications within only the last few years, and although protected North American gallium supplies are currently considered adequate, consumption could grow to the point that this assessment would need reevaluation.

  3. Effect of strain on gallium nitride and gallium indium arsenide nitride growth and doping

    NASA Astrophysics Data System (ADS)

    G. S., Sudhir

    GaN and the related (Al,In)N materials are currently used in manufacturing optoelectronic and electronic devices. However, the efficiency of these devices is limited due to lack of high structural quality and of low resistive p-type GaN. The GaN thin films are under strain during growth due to the large lattice mismatch, thermal expansion difference, and low growth temperature. Developing a better understanding of the effect of strain on the properties of thin films is important in furthering our knowledge of thin film growth affecting the performance of III-nitride based devices. Pulsed laser deposition was used to grow thin films of AlN and GaN on sapphire substrates. It is shown that the structure and surface morphology of layers are controlled by the nitrogen partial pressure during the growth. Through these nitrogen pressure related effects, thin films with microstructure ranging from crystalline to amorphous can be produced. A minimal surface root mean square roughness of 0.7 nm for amorphous AlN is obtained which compares well with the substrate roughness of 0.5 nm. Incorporation of impurities changes the lattice constants of thin films of GaN deposited on basal plane sapphire by molecular beam epitaxy. Both Mg (1017 cm-3) and Zn (3 x 10 20 cm-3) doping were found to expand the c lattice parameter by +0.38 x 10-2 and +0.62 x 10 -2, respectively. Oxygen up to concentrations 9 x 10 21 cm-3 is shown to replace nitrogen in GaN thin films reducing the c parameter only by a small amount. Incorporation of Si leads to a large decrease of the c parameter, which can not be attributed to the different size of Ga and Si. It is suggested that doping alters the film stoichiometry by a predicted Fermi level dependence of defect formation energies and thereby, lattice parameters and stress. A proper buffer layer design is shown to increase the incorporation of Mg by two orders of magnitude Finally, the balance of lattice parameter change caused by dopant and native point

  4. Gallium Arsenide Photocathode Development

    DTIC Science & Technology

    1975-10-01

    r ~\\ 1 1 AD-A018 619 ■ i I 1 GALLIUM ARSENIDE PHOTOCATHODE DEVELOPMENT I Terry Roach, et al 1 1 ■f EPSCO ...aiwiiwnHWlffl’Wip m, «swwerf^MW^S’ GALLIUM ARSENIDE PHOTOCATHODE DEVELOPMENT T. J. Roach Bianca Contractor: EPSCO Laboratories Contract Number: F08606...PHOTOCATHODE DEVELOPMENT 7. AUTHORfaJ T. Roach J. Bianca t. PERFORMING ORGANIZATION NAME AND AOORESS EPSCO Laboratories 227 High Ridge Road Stauford CT

  5. Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide.

    PubMed

    Tanaka, Akiyo

    2004-08-01

    Gallium arsenide (GaAs), indium arsenide (InAs), and aluminium gallium arsenide (AlGaAs) are semiconductor applications. Although the increased use of these materials has raised concerns about occupational exposure to them, there is little information regarding the adverse health effects to workers arising from exposure to these particles. However, available data indicate these semiconductor materials can be toxic in animals. Although acute and chronic toxicity of the lung, reproductive organs, and kidney are associated with exposure to these semiconductor materials, in particular, chronic toxicity should pay much attention owing to low solubility of these materials. Between InAs, GaAs, and AlGaAs, InAs was the most toxic material to the lung followed by GaAs and AlGaAs when given intratracheally. This was probably due to difference in the toxicity of the counter-element of arsenic in semiconductor materials, such as indium, gallium, or aluminium, and not arsenic itself. It appeared that indium, gallium, or aluminium was toxic when released from the particles, though the physical character of the particles also contributes to toxic effect. Although there is no evidence of the carcinogenicity of InAs or AlGaAs, GaAs and InP, which are semiconductor materials, showed the clear evidence of carcinogenic potential. It is necessary to pay much greater attention to the human exposure of semiconductor materials.

  6. Gallium Arsenide Domino Circuit

    NASA Technical Reports Server (NTRS)

    Yang, Long; Long, Stephen I.

    1990-01-01

    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  7. GALLIUM ARSENIDE DENDRITE SINGLE CRYSTAL PROGRAM

    DTIC Science & Technology

    ARSENIDES, *GALLIUM COMPOUNDS, *LABORATORY FURNACES, * SOLAR CELLS , CRUCIBLES, DESIGN, DIFFUSION, EXPLOSIONS, INTERMETALLIC COMPOUNDS, MATERIALS, PHOSPHORUS, SINGLE CRYSTALS, TEMPERATURE CONTROL, ZINC

  8. Progress in gallium arsenide semiconductors

    SciTech Connect

    Brodsky, M.H. )

    1990-02-01

    After almost 30 years as the technology of the future, gallium arsenide has begun to make a place for itself, not by supplanting silicon but by complementing it in new applications. The inherent advantages of the material lie in the speed with which electrons move through it, in weak-signal operations and in the generation and detection of light. These advantages suit it for roles in computing, television reception and the optoelectronic transmission of data through optical-fiber networks. Gallium arsenide light-emitting diodes and lasers used in visual-display technologies and audio-disk players already account for more than $1 billion in sales annually. Hundreds of thousands of satellite-receiving dishes that use gallium arsenide detectors are sold every year, and high-speed circuits using gallium arsenide transistors are projected to reach a similar turnover in a few years. In an economy and society that depend on the rapid exchange of information as well as on the processing of it, many silicon-dominated processors will require a considerable admixture of gallium arsenide components in order to do their jobs.

  9. Electroluminescence Studies on Longwavelength Indium Arsenide Quantum Dot Microcavities Grown on Gallium Arsenide

    DTIC Science & Technology

    2011-12-01

    ELECTROLUMINESCENCE STUDIES ON LONG WAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE THESIS John C...11-46 ELECTROLUMINESCENCE STUDIES ON LONGWAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE THESIS...58 1 ELECTROLUMINESCENCE STUDIES ON LONGWAVELENGTH INDIUM ARSENIDE QUANTUM DOT MICROCAVITIES GROWN ON GALLIUM ARSENIDE I

  10. Gallium nitride optoelectronic devices

    NASA Technical Reports Server (NTRS)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  11. Wet chemical functionalization of III-V semiconductor surfaces: alkylation of gallium arsenide and gallium nitride by a Grignard reaction sequence.

    PubMed

    Peczonczyk, Sabrina L; Mukherjee, Jhindan; Carim, Azhar I; Maldonado, Stephen

    2012-03-13

    Crystalline gallium arsenide (GaAs) (111)A and gallium nitride (GaN) (0001) surfaces have been functionalized with alkyl groups via a sequential wet chemical chlorine activation, Grignard reaction process. For GaAs(111)A, etching in HCl in diethyl ether effected both oxide removal and surface-bound Cl. X-ray photoelectron (XP) spectra demonstrated selective surface chlorination after exposure to 2 M HCl in diethyl ether for freshly etched GaAs(111)A but not GaAs(111)B surfaces. GaN(0001) surfaces exposed to PCl(5) in chlorobenzene showed reproducible XP spectroscopic evidence for Cl-termination. The Cl-activated GaAs(111)A and GaN(0001) surfaces were both reactive toward alkyl Grignard reagents, with pronounced decreases in detectable Cl signal as measured by XP spectroscopy. Sessile contact angle measurements between water and GaAs(111)A interfaces after various levels of treatment showed that GaAs(111)A surfaces became significantly more hydrophobic following reaction with C(n)H(2n-1)MgCl (n = 1, 2, 4, 8, 14, 18). High-resolution As 3d XP spectra taken at various times during prolonged direct exposure to ambient lab air indicated that the resistance of GaAs(111)A to surface oxidation was greatly enhanced after reaction with Grignard reagents. GaAs(111)A surfaces terminated with C(18)H(37) groups were also used in Schottky heterojunctions with Hg. These heterojunctions exhibited better stability over repeated cycling than heterojunctions based on GaAs(111)A modified with C(18)H(37)S groups. Raman spectra were separately collected that suggested electronic passivation by surficial Ga-C bonds at GaAs(111)A. Specifically, GaAs(111)A surfaces reacted with alkyl Grignard reagents exhibited Raman signatures comparable to those of samples treated with 10% Na(2)S in tert-butanol. For GaN(0001), high-resolution C 1s spectra exhibited the characteristic low binding energy shoulder demonstrative of surface Ga-C bonds following reaction with CH(3)MgCl. In addition, 4

  12. Development of gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The potential of ion implantation as a means of developing gallium arsenide solar cells with high efficiency performance was investigated. Computer calculations on gallium arsenide cell characteristics are presented to show the effects of surface recombination, junction space-charge recombination, and built-in fields produced by nonuniform doping of the surface region. The fabrication technology is summarized. Electrical and optical measurements on samples of solar cells are included.

  13. Gallium Arsenide wafer scale integration

    NASA Astrophysics Data System (ADS)

    McDonald, J. F.; Taylor, G.; Steinvorth, R.; Donlan, B.; Bergendahl, A. S.

    1985-08-01

    Gallium Arsenide (GaAs) digital MESFET technology has recently begun to appear in the semiconductor marketplace. The initial commercial offerings are at the small to medium scale integration levels. The high speed of these parts would seem to be very attractive for designers of high performance signal processing equipment. Persistent yield problems, however, have prevented the appearance of large scale integrated circuits. As a result, intrapackage and interpackage signal propagation problems such as coupling, parasitics and delay are likely to negate much of the benefits of the fast MESFET logic devices for large systems constructed with such small scale building blocks. An early packaging concept, Wafer Scale Integration (WSI), which could possibly be used to address some of these limitations is reexamined.

  14. Window structure for passivating solar cells based on gallium arsenide

    NASA Technical Reports Server (NTRS)

    Barnett, Allen M. (Inventor)

    1985-01-01

    Passivated gallium arsenide solar photovoltaic cells with high resistance to moisture and oxygen are provided by means of a gallium arsenide phosphide window graded through its thickness from arsenic rich to phosphorus rich.

  15. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Joslin, D.; Garlick, J.; Lillington, D.; Gillanders, M.; Cavicchi, B.; Scott-Monck, J.; Kachare, R.; Anspaugh, B.

    1987-01-01

    High efficiency liquid phase epitaxy (LPE) gallium arsenide cells were irradiated with 1 Mev electrons up to fluences of 1 times 10 to the 16th power cm-2. Measurements of spectral response and dark and illuminated I-V data were made at each fluence and then, using computer codes, the experimental data was fitted to gallium arsenide cell models. In this way it was possible to determine the extent of the damage, and hence damage coefficients in both the emitter and base of the cell.

  16. Oxidative dissolution of gallium arsenide and separation of gallium from arsenic

    SciTech Connect

    Coleman, J.P.; Monzyk, B.F.

    1988-07-26

    The method of dissociating gallium arsenide into a gallium-containing component and an arsenic-containing component, is described which comprises contacting the gallium arsenide with an oxidizing agent and a liquid comprising hydroxamic acid to convert the gallium to a gallium-hydroxamic acid complex and to oxidize the arsenic to a positive valence state.

  17. Surface photovoltage spectroscopy applied to gallium arsenide surfaces

    NASA Technical Reports Server (NTRS)

    Bynik, C. E.

    1975-01-01

    The experimental and theoretical basis for surface photovoltage spectroscopy is outlined. Results of this technique applied to gallium arsenide surfaces, are reviewed and discussed. The results suggest that in gallium arsenide the surface voltage may be due to deep bulk impurity acceptor states that are pinned at the Fermi level at the surface. Establishment of the validity of this model will indicate the direction to proceed to increase the efficiency of gallium arsenide solar cells.

  18. Positron study of annealing of gallium arsenide

    SciTech Connect

    Rice-Evans, P.C.; Smith, D.L.; Evans, H.E.; Gledhill, G.A. )

    1991-02-01

    A positron beam has been used to investigate the sub-surface changes in semi-insulating gallium arsenide which had been annealed to a range of temperatures. The variations of the Doppler S parameter as a function of positron implantation energy, when subjected to a diffusion analysis, indicate variations in positron trapping at different depths. The results indicate the changes in the type of point defect that accompany the annealing.

  19. Bulk Cubic Gallium Nitride

    DTIC Science & Technology

    1999-02-09

    microcrysta. form at bottom of «he reaction vessel. The objective of the second step is the solvothermal transport of the gallium nitride residing in the...system using pressure pumps can be used to gain precise control of the pressure. High pressure is typically used for the solvothermal transport. The...takes place in the reaction vessel during heating is a solvothermal reaction that is conducted at or above the critical point of the solvent The

  20. Compensation and Characterization of Gallium Arsenide

    NASA Astrophysics Data System (ADS)

    Roush, Randy Allen

    1995-01-01

    The properties of transition metals in gallium arsenide have been previously investigated extensively with respect to activation energies, but little effort has been made to correlate processing parameters with electronic characteristics. Diffusion of copper in gallium arsenide is of technological importance due to the development of GaAs:Cu bistable photoconductive devices. Several techniques are demonstrated in this work to develop and characterize compensated gallium arsenide wafers. The material is created by the thermal diffusion of copper into silicon-doped GaAs. Transition metals generally form deep and shallow acceptors in GaAs, and therefore compensation is possible by material processing such that the shallow silicon donors are compensated by deep acceptors. Copper is an example of a transition metal that forms deep acceptors in GaAs, and therefore this work will focus on the compensation and characterization of GaAs:Si:Cu. The compensation of the material has shown that the lower diffusion temperatures (500-600^ circC) form primarily the well-known Cu _{rm B} centers whereas the higher temperature anneals (>750 ^circC) result in the formation of CU_{rm A}. Using compensation curves, the copper density is found by comparing the compensation temperature with copper solubility curves given by others. These curves also show that the formation of CU_{rm B}, EL2, and CU_{rm A} can be manipulated by varying processing parameters such as annealing temperature and arsenic pressure. The compensation results are confirmed using Temperature-Dependent Hall (TDH) measurements to detect the copper levels. Also, the photoconductive properties of the material under illumination from 1.06 and 2.1 μm wavelength laser pulses have been used to demonstrate the effects of the different processing procedures. The persistent photoconductivity inherent to these devices under illumination from the 1.06 μm laser pulse is used to predict the concentration of the Cu_ {rm B

  1. Running droplets of gallium from evaporation of gallium arsenide.

    PubMed

    Tersoff, J; Jesson, D E; Tang, W X

    2009-04-10

    High-temperature annealing of gallium arsenide in vacuum causes excess evaporation of arsenic, with accumulation of gallium as liquid droplets on the surface. Using real-time in situ surface electron microscopy, we found that these droplets spontaneously run across the crystal surface. Running droplets have been seen in many systems, but they typically require special surface preparation or gradient forces. In contrast, we show that noncongruent evaporation automatically provides a driving force for running droplets. The motion is predicted and observed to slow and stop near a characteristic temperature, with the speed increasing both below and above this temperature. The same behavior is expected to occur during the evaporation of similar III-V semiconductors such as indium arsenide.

  2. Gallium nitride nanotube lasers

    DOE PAGES

    Li, Changyi; Liu, Sheng; Hurtado, Antonio; ...

    2015-01-01

    Lasing is demonstrated from gallium nitride nanotubes fabricated using a two-step top-down technique. By optically pumping, we observed characteristics of lasing: a clear threshold, a narrow spectral, and guided emission from the nanotubes. In addition, annular lasing emission from the GaN nanotube is also observed, indicating that cross-sectional shape control can be employed to manipulate the properties of nanolasers. The nanotube lasers could be of interest for optical nanofluidic applications or application benefitting from a hollow beam shape.

  3. Development of gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The potential of ion implantation as a means to the development of high efficiency gallium arsenide solar cells is investigated. Summaries are included of the results of computer calculations of GaAs cell characteristics, based on a model which includes the effects of surface recombination, junction space-charge region recombination, and built-in fields produced by nonuniform doping in the region; of the fabrication technology developed under the program; and of the results of electrical and optical measurements on the samples produced during the program. It was determined that measured AMO efficiencies were more than a factor of two lower than the calculated values.

  4. Computer simulation of radiation damage in gallium arsenide

    NASA Technical Reports Server (NTRS)

    Stith, John J.; Davenport, James C.; Copeland, Randolph L.

    1989-01-01

    A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.

  5. Gallium arsenide solar array subsystem study

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.

    1982-01-01

    The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.

  6. Radiation damage of gallium arsenide production cells

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garlick, G. F. J.

    1987-01-01

    High-efficiency gallium arsenide cells, made by the liquid epitaxy method (LPE), have been irradiated with 1-MeV electrons up to fluences of 10 to the 16th e/sq cm. Measurements have been made of cell spectral response and dark and light-excited current-voltage characteristics and analyzed using computer-based models to determine underlying parameters such as damage coefficients. It is possible to use spectral response to sort out damage effects in the different cell component layers. Damage coefficients are similar to other reported in the literature for the emitter and buffer (base). However, there is also a damage effect in the window layer and possibly at the window emitter interface similar to that found for proton-irradiated liquid-phase epitaxy-grown cells. Depletion layer recombination is found to be less than theoretically expected at high fluence.

  7. Contact formation in gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.

  8. The interaction of gold with gallium arsenide

    NASA Technical Reports Server (NTRS)

    Weizer, Victor G.; Fatemi, Navid S.

    1988-01-01

    Gold and gold-based alloys, commonly used as solar-cell contact materials, are known to react readily with gallium arsenide. Experiments designed to identify the mechanisms involved in these GaAs-metal interactions have yielded several interesting results. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are also explained by invoking this mechanism.

  9. Gallium Arsenide solar cell radiation damage experiment

    NASA Technical Reports Server (NTRS)

    Maurer, R. H.; Kinnison, J. D.; Herbert, G. A.; Meulenberg, A.

    1991-01-01

    Gallium arsenide (GaAs) solar cells for space applications from three different manufactures were irradiated with 10 MeV protons or 1 MeV electrons. The electrical performance of the cells was measured at several fluence levels and compared. Silicon cells were included for reference and comparison. All the GaAs cell types performed similarly throughout the testing and showed a 36 to 56 percent power areal density advantage over the silicon cells. Thinner (8-mil versus 12-mil) GaAs cells provide a significant weight reduction. The use of germanium (Ge) substrates to improve mechanical integrity can be implemented with little impact on end of life performance in a radiation environment.

  10. Producing gallium arsenide crystals in space

    NASA Technical Reports Server (NTRS)

    Randolph, R. L.

    1984-01-01

    The production of high quality crystals in space is a promising near-term application of microgravity processing. Gallium arsenide is the selected material for initial commercial production because of its inherent superior electronic properties, wide range of market applications, and broad base of on-going device development effort. Plausible product prices can absorb the high cost of space transportation for the initial flights provided by the Space Transportation System. The next step for bulk crystal growth, beyond the STS, is planned to come later with the use of free flyers or a space station, where real benefits are foreseen. The use of these vehicles, together with refinement and increasing automation of space-based crystal growth factories, will bring down costs and will support growing demands for high quality GaAs and other specialty electronic and electro-optical crystals grown in space.

  11. Gallium arsenide - Solar panel assembly technology

    NASA Astrophysics Data System (ADS)

    Zemmrich, D.; Mardesich, N.; Macfarlane, B.; Loo, R.

    Gallium arsenide (GaAs) solar cell devices are maturing at 18 percent AM0 efficiencies for liquid phase epitaxy (LPE) technology, and efforts must be intensified placing necessary focus on the development of panel assembly techniques, and ultimately panel manufacturing methods capable of maintaining these high efficiencies for on-panel operation. Key problems and solutions are described which were experienced during the assembly of flight qualified solar panels using Spectrolab's mature (silicon) panel manufacturing processes for assembly of LPE GaAs solar cells. These cells were produced by Hughes Malibu (supplied by the U.S. Air Force WPAFB) ranging in efficiency from 15 to 17 percent, air mass zero (AM0) 28 C. Cell assembly methods for coverglass installation, submodule, and circuit soldering, as well as panel bonding are discussed. The LIPS II satellite, using a GaAs solar cell panel was successfully launched in 1983.

  12. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  13. Gallium nitride electronics

    NASA Astrophysics Data System (ADS)

    Rajan, Siddharth; Jena, Debdeep

    2013-07-01

    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  14. Samarium- and ytterbium-promoted oxidation of silicon and gallium arsenide surfaces

    SciTech Connect

    Franciosi, A.

    1989-02-21

    A method is described for promoting oxidation of a silicon or gallium arsenide surface comprising: depositing a ytterbium overlayer on the silicon or gallium arsenide surface prior to the oxidation of the surface.

  15. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    SciTech Connect

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.

    1990-12-01

    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  16. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  17. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  18. IBIC analysis of gallium arsenide Schottky diodes

    NASA Astrophysics Data System (ADS)

    Vittone, E.; Fizzotti, F.; Mirri, K.; Gargioni, E.; Polesello, P.; LoGiudice, A.; Manfredotti, C.; Galassini, S.; Rossi, P.; Vanni, P.; Nava, F.

    1999-10-01

    Semi-insulating (SI) gallium arsenide (GaAs) devices operating as a reverse biased Schottky diode offer an attractive choice as radiation detector at room temperature both in high energy physics experiments and as X-ray image sensors. However, SI GaAs devices contain a high concentration of traps, which decreases the charge collection efficiency (cce), and affects the energy resolution of such detectors working as nuclear spectrometers. In this paper we present a detailed investigation of the spatial uniformity of the cce carried out by analysing ion beam induced charge (IBIC) space maps obtained by scanning a focused 2 MeV proton microbeam on a SI n-GaAs Schottky diode. The microbeam irradiated both the front (Schottky) and back (ohmic) contacts in order to evaluate the transport properties of both electrons and holes generated by ionisation. The IBIC space maps show a clear non-uniformity of the cce. The poor energy resolution previously observed in such detectors working as alpha particle spectrometers is ascribed to the presence of two different "phases" in the material, which produce two distinct collection efficiency spectra. Such "phases" show different behaviour as a function of the applied bias voltage which is most likely due to the different electric field dependence of the relevant capture cross sections of the trapping centres for both charge carriers.

  19. Funneling electron beams from gallium arsenide photocathodes

    NASA Astrophysics Data System (ADS)

    Rahman, Omer Habib

    Gallium Arsenide (GaAs) is the most widely used source of polarized electrons around the world. Electrons are extracted from a GaAs surface, terminated by a cesium-oxygen layer. The electrons are accelerated to form a beam by a DC electric field. This beam can ionize residual gas in the chamber, and the DC field accelerates the resulting ions into the cathode surface, damaging the Cesium- Oxygen layer. This process, called Ion Back Bombardment, is the dominant mechanism for limiting photocathode lifetime. As a result, high average current operation yields charge lifetimes too low to be used in a collider design. One idea to extend the charge lifetime is to funnel the beams from multiple cathodes using a rotating magnetic field-if operation of one cathode does not affect the operation of another cathode in the same chamber, then the source's lifetime can be extended by simply adding more cathodes. This dissertation presents the design, construction and commissioning of a unique electron gun capable of operating twenty cathodes. Results of funneling two electron beams with a rotating magnetic field are also presented. For average currents at 175 nA and 350 nA, the charge lifetimes for individual cathodes and two-cathode operation were measured, showing that the charge lifetime for two beam funneling is the sum of the individual ion back bombardment charge lifetimes. The addition of charge lifetime implies that beam funneling can be used to increase charge lifetime by an order of magnitude.

  20. Evaluation of the carcinogenicity of gallium arsenide.

    PubMed

    Bomhard, Ernst M; Gelbke, Heinz-Peter; Schenk, Hermann; Williams, Gary M; Cohen, Samuel M

    2013-05-01

    Gallium arsenide (GaAs) is an important semiconductor material. In 2-year inhalation studies, GaAs increased the incidence of lung tumors in female rats, but not in male rats or male and female mice. Alveolar proteinosis followed by chronic active inflammation was the predominant non-neoplastic pulmonary findings. IARC classified GaAs as carcinogenic to humans (group 1) based on the assumption that As and Ga ions are bioavailable. The European Chemical Agency Risk Assessment Committee concluded that GaAs should be classified into Carcinogenicity Category 1B (presumed to have carcinogenic potential for humans; ECHA). We evaluate whether these classifications are justified. Physico-chemical properties of GaAs particles and the degree of mechanical treatment are critical in this evaluation. The available data on mode of action (MOA), genotoxicity and bioavailability do not support the contribution of As or Ga ions to the lung tumors in female rats. Most toxicological studies utilized small particles produced by strong mechanical treatment, destroying the crystalline structure. The resulting amorphous GaAs is not relevant to crystalline GaAs at production and processing sites. The likely tumorigenic MOA is lung toxicity related to particulate-induced inflammation and increased proliferation. It is concluded that there is no evidence for a primary carcinogenic effect of GaAs.

  1. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  2. P-type gallium nitride

    SciTech Connect

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  3. Method for improving the growth of cadmium telluride on a gallium arsenide substrate

    SciTech Connect

    Reno, J.L.

    1990-12-31

    A method for preparing a gallium arsenide substrate, prior to growing a layer of cadmium telluride on a support surface thereof. The preparation includes the steps of cleaning the gallium arsenide substrate and thereafter forming prepatterned shapes on the support surface of the gallium arsenide substrate. The layer of cadmium telluride then grown on the prepared substrate results in dislocation densities of approximately 1{times}10{sup 6}/cm{sup 2} or less. The prepatterned shapes on the support surface of the gallium arsenide substrate are formed by reactive ion etching an original outer surface of the gallium arsenide substrate and into the body of the gallium arsenide substrate to a depth of at least two microns. The prepatterned shapes have the appearance of cylindrical mesas each having a diameter of at lease twelve microns. After the mesas are formed on the support surface of the gallium arsenide substrate, the substrate is again cleaned.

  4. Gallium arsenide processing for gate array logic

    NASA Astrophysics Data System (ADS)

    Cole, Eric D.

    1989-09-01

    The development of a reliable and reproducible GaAs process was initiated for applications in gate array logic. Gallium Arsenide is an extremely important material for high speed electronic applications in both digital and analog circuits since its electron mobility is 3 to 5 times that of silicon, this allows for faster switching times for devices fabricated with it. Unfortunately GaAs is an extremely difficult material to process with respect to silicon and since it includes the arsenic component GaAs can be quite dangerous (toxic) especially during some heating steps. The first stage of the research was directed at developing a simple process to produce GaAs MESFETs. The MESFET (MEtal Semiconductor Field Effect Transistor) is the most useful, practical and simple active device which can be fabricated in GaAs. It utilizes an ohmic source and drain contact separated by a Schottky gate. The gate width is typically a few microns. Several process steps were required to produce a good working device including ion implantation, photolithography, thermal annealing, and metal deposition. A process was designed to reduce the total number of steps to a minimum so as to reduce possible errors. The first run produced no good devices. The problem occurred during an aluminum etch step while defining the gate contacts. It was found that the chemical etchant attacked the GaAs causing trenching and subsequent severing of the active gate region from the rest of the device. Thus all devices appeared as open circuits. This problem is being corrected and since it was the last step in the process correction should be successful. The second planned stage involves the circuit assembly of the discrete MESFETs into logic gates for test and analysis. Finally the third stage is to incorporate the designed process with the tested circuit in a layout that would produce the gate array as a GaAs integrated circuit.

  5. Gallium arsenide processing for gate array logic

    NASA Technical Reports Server (NTRS)

    Cole, Eric D.

    1989-01-01

    The development of a reliable and reproducible GaAs process was initiated for applications in gate array logic. Gallium Arsenide is an extremely important material for high speed electronic applications in both digital and analog circuits since its electron mobility is 3 to 5 times that of silicon, this allows for faster switching times for devices fabricated with it. Unfortunately GaAs is an extremely difficult material to process with respect to silicon and since it includes the arsenic component GaAs can be quite dangerous (toxic) especially during some heating steps. The first stage of the research was directed at developing a simple process to produce GaAs MESFETs. The MESFET (MEtal Semiconductor Field Effect Transistor) is the most useful, practical and simple active device which can be fabricated in GaAs. It utilizes an ohmic source and drain contact separated by a Schottky gate. The gate width is typically a few microns. Several process steps were required to produce a good working device including ion implantation, photolithography, thermal annealing, and metal deposition. A process was designed to reduce the total number of steps to a minimum so as to reduce possible errors. The first run produced no good devices. The problem occurred during an aluminum etch step while defining the gate contacts. It was found that the chemical etchant attacked the GaAs causing trenching and subsequent severing of the active gate region from the rest of the device. Thus all devices appeared as open circuits. This problem is being corrected and since it was the last step in the process correction should be successful. The second planned stage involves the circuit assembly of the discrete MESFETs into logic gates for test and analysis. Finally the third stage is to incorporate the designed process with the tested circuit in a layout that would produce the gate array as a GaAs integrated circuit.

  6. Gallium arsenide pixel detectors for medical imaging

    NASA Astrophysics Data System (ADS)

    Da Via, C.; Bates, R.; Bertolucci, E.; Bottigli, U.; Campbell, M.; Chesi, E.; Conti, M.; D'Auria, S.; DelPapa, C.; Fantacci, M. E.; Grossi, G.; Heijne, E.; Mancini, E.; Middelkamp, P.; Raine, C.; Russo, P.; O'Shea, V.; Scharfetter, L.; Smith, K.; Snoeys, W.; Stefanini, A.

    1997-08-01

    Gallium arsenide pixel detectors processed on a 200 μm Semi-Insulating (SI) Hitachi substrate were bump-bonded to the Omega3 electronics developed at CERN for high energy physics [1]. The pixel dimensions are 50 μm × 500 μm for a total of 2048 cells and an active area of ˜0.5 cm 2. Our aim is to use this system for medical imaging. We report the results obtained after irradiation of the detector with different X-ray sources on phantoms with different contrasts. The system showed good sensitivity to X-rays from 241Am (60 keV) and 109Cd (22.1 keV). It is also sensitive to β- particles from 90Sr as well as from 32P which is used as a tracer for autoradiography applications. The inherent high absorption efficiency of GaAs associated with the self-triggering capabilities of the pixel readout system reduced considerably the acquisition time compared with traditional systems based on silicon or emulsions. The present configuration is not optimised for X-ray imaging. The reduction of the pixel dimensions to 200 μm × 200 μm together with the integration of a counter in the pixel electronics would make the detector competitive for applications like mammography or dental radiology. For certain applications in biochemistry, such as DNA sequencing, where good spatial resolution is required only in one direction, the present setup should allow the best spatial resolution available up to now with respect to other digital autoradiographic systems. DNA sequencing tests are now under way.

  7. Gallium arsenide processing for gate array logic

    NASA Technical Reports Server (NTRS)

    Cole, Eric D.

    1989-01-01

    The development of a reliable and reproducible GaAs process was initiated for applications in gate array logic. Gallium Arsenide is an extremely important material for high speed electronic applications in both digital and analog circuits since its electron mobility is 3 to 5 times that of silicon, this allows for faster switching times for devices fabricated with it. Unfortunately GaAs is an extremely difficult material to process with respect to silicon and since it includes the arsenic component GaAs can be quite dangerous (toxic) especially during some heating steps. The first stage of the research was directed at developing a simple process to produce GaAs MESFETs. The MESFET (MEtal Semiconductor Field Effect Transistor) is the most useful, practical and simple active device which can be fabricated in GaAs. It utilizes an ohmic source and drain contact separated by a Schottky gate. The gate width is typically a few microns. Several process steps were required to produce a good working device including ion implantation, photolithography, thermal annealing, and metal deposition. A process was designed to reduce the total number of steps to a minimum so as to reduce possible errors. The first run produced no good devices. The problem occurred during an aluminum etch step while defining the gate contacts. It was found that the chemical etchant attacked the GaAs causing trenching and subsequent severing of the active gate region from the rest of the device. Thus all devices appeared as open circuits. This problem is being corrected and since it was the last step in the process correction should be successful. The second planned stage involves the circuit assembly of the discrete MESFETs into logic gates for test and analysis. Finally the third stage is to incorporate the designed process with the tested circuit in a layout that would produce the gate array as a GaAs integrated circuit.

  8. Characterization of Heavily Doped ALUMINUM(X)GALLIUM(1 -X)ARSENIDE:TELLURIUM Grown on Semi-Insulating Gallium-Arsenide

    NASA Astrophysics Data System (ADS)

    Malloy, Kevin John

    The ability to dope a semiconductor into near metallic conduction widens its usefulness as a material and thereby permits the construction of new devices. Aluminum Gallium Arsenide is no exception. Heavily doped n-type Aluminum Gallium Arsenide has important device applications in tandem junction solar cells and in high electron mobility transistors. Aluminum Gallium Arsenide heavily doped with Tellurium was grown on semi-insulating Gallium Arsenide using liquid phase epitaxy. It was found that the addition of 0.4 atomic percent Tellurium to the melt reduced the Aluminum content of solid Aluminum Gallium Arsenide by up to 20 percent. A model was offered for this behavior involving a differential in the degree of association between Aluminum-Tellurium and Gallium-Tellurium in the liquid phase epitaxial melt. The electrical properties of n-type Aluminum Gallium Arsenide grown on semi-insulating Gallium Arsenide were modeled as a two sheet conductor. The two conductors consisted of the epitaxial n-type Aluminum Gallium Arsenide layer and the induced two dimensional electron gas present at the n-type Aluminum Gallium Arsenide-Gallium Arsenide heterojunction. This model showed the two dimensional electron gas as responsible for the constant low temperature carrier concentration observed experimentally. It also successfully explained the observation of a slope equal to the donor ionization potential instead of the donor ionization potential divided by two in the plot of the log of the carrier concentration versus reciprocal temperature. Because of the chemically independent nature of the deep donor ionization potential in Aluminum Gallium Arsenide, a minima interaction model was introduced to describe the donor level. The major matrix elements were determined to be V(,LX) = 4mV (+OR-) 1mV and V(,LL) = 40mV (+OR-) 10mV. These minima interaction matrix elements were an order of magnitude larger than suggested by theory, thus indicating the possible non-coulombic nature of

  9. Far-Infrared and Optical Studies of Gallium Arsenide and Aluminum Gallium Arsenide Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Stanaway, Mark Brian

    Available from UMI in association with The British Library. Requires signed TDF. This thesis reports far-infrared (FIR) and photoluminescence studies, performed at low temperatures (4.2K) and at magnetic fields up to 25T, of selectively and inadvertently doped bulk and low dimensional gallium arsenide (GaAs) and aluminium gallium arsenide (AlGaAs) semiconductor structures grown by molecular beam epitaxy. High-resolution FIR magnetospectroscopy of ultra -high mobility n-GaAs reveals a variety of shallow donor intra-impurity transitions plus spin-split higher Landau level transitions in the photoconductive response. The first observation of polarons bound to D^ - ions in bulk n-GaAs is reported. The excited state spectrum of the confined silicon donor in GaAs/AlGaAs multi-quantum wells (MQWs) has been examined. Narrower linewidths and more higher excited state donor transitions are noted in the present photoconductive investigation compared with previous reports. The electron recombination dynamics has been examined in silicon-doped GaAs/AlGaAs MQWs and homogeneous and sheet -doped bulk n-GaAs samples using time-resolved FIR photoconductivity. The extrinsic response of doped MQW structures suggests a potential use as a fast, sensitive detectors of FIR. FIR transmission measurements are reported for GaAs/AlGaAs quantum wells (QWs) of various widths in magnetic fields of up to 20T, tilted away from the normal to the QW plane by angles up to theta = 50^circ. Deviation of the cyclotron resonance field from a costheta law are interpreted using theoretical models describing Landau level/electric subband coupling. The in-plane magnetic field and excitation power dependence of the photoluminescence intensity of a GaAs/AlGaAs QW spectral feature is interpreted in terms of charge transfer in the QW, using a coupled oscillator model, and the efficiency of nonradiative electronic traps. In-plane magnetic field studies of the photoluminescence from a superlattice structure

  10. III-V arsenide-nitride semiconductor

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    III-V arsenide-nitride semiconductor are disclosed. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V materials varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V material can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  11. Gallium arsenide pilot line for high performance components

    NASA Astrophysics Data System (ADS)

    Vehse, Robert C.; Lapham, E. F.

    1991-08-01

    The Gallium Arsenide Pilot Line for High Performance Components (Pilot Line III) is to develop a facility for the fabrication of GaAs logic and memory chips. Physical and electrical analysis conclusively demonstrated that the EFET problem was caused by residual AlGaAs remaining in the EFET tubs. For our Self Aligned Refractory Gate Integrated Circuit (SARGIC) process to perform as designed, the FET gates must be placed directly on Gallium Arsenide. Residual AlGaAs increases the FET thresholds and thereby substantially changes device characteristics. We solved the problem by developing a new etch process using a PP etchant (H3PO4 and H2O2). AlGaAs is now completely removed from EFET tubs and EFET threshold control has been restored. With wafer starts suspended and other program work minimized to conserve resources, there was little primary circuit testing. A new result is that the 32-Bit Multiplier is functional at 60 MHz.

  12. Two-photon photovoltaic effect in gallium arsenide.

    PubMed

    Ma, Jichi; Chiles, Jeff; Sharma, Yagya D; Krishna, Sanjay; Fathpour, Sasan

    2014-09-15

    The two-photon photovoltaic effect is demonstrated in gallium arsenide at 976 and 1550 nm wavelengths. A waveguide-photodiode biased in its fourth quadrant harvests electrical power from the optical energy lost to two-photon absorption. The experimental results are in good agreement with simulations based on nonlinear wave propagation in waveguides and the drift-diffusion model of carrier transport in semiconductors. Power efficiency of up to 8% is theoretically predicted in optimized devices.

  13. Trap influence on the performance of gallium arsenide radiation detectors

    SciTech Connect

    Castaldini, A.; Cavallini, A.; Polenta, L.; Canali, C.; Nava, F.; Papa, C. del

    1996-12-31

    Ohmic contacts play an important role in the performance of LEC gallium arsenide particle detectors since they possibly control the injection of charge carriers. Contact characteristics have been compared and related to electrically active defects induced during contact preparation and to the detector efficiency. The electric field distribution has also been analyzed. Spectroscopic investigations have put into evidence that the contact fabrication process significantly influences the trap density whilst it does not change their signatures.

  14. Optical Parametric Oscillation in Orientation-Patterned Gallium Arsenide

    DTIC Science & Technology

    2007-03-01

    output in the near - infrared can be converted to more desirable MIR by using nonlinear effects. Orientation patterned gallium arsenide (OPGaAs) is a...mid- infrared (MIR) spectral range are required for several Air Force applications. Existing lasers with output in the near - infrared can be converted...Abstract Tunable laser sources in the mid- infrared (MIR) spectral range are required for several Air Force applications. Existing lasers with

  15. Electrospun Gallium Nitride Nanofibers (abstract)

    NASA Astrophysics Data System (ADS)

    Meléndez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-04-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  16. Low temperature recombination and trapping analysis in high purity gallium arsenide by microwave photodielectric techniques

    NASA Technical Reports Server (NTRS)

    Khambaty, M. B.; Hartwig, W. H.

    1972-01-01

    Some physical theories pertinent to the measurement properties of gallium arsenide are presented and experimental data are analyzed. A model for explaining recombination and trapping high purity gallium arsenide, valid below 77 K is assembled from points made at various places and an appraisal is given of photodielectric techniques for material property studies.

  17. Materials synthesis: Two-dimensional gallium nitride

    NASA Astrophysics Data System (ADS)

    Koratkar, Nikhil A.

    2016-11-01

    Graphene is used as a capping sheet to synthesize 2D gallium nitride by means of migration-enhanced encapsulation growth. This technique may allow the stabilization of 2D materials that are not amenable to synthesis by traditional methods.

  18. Gallium arsenide differentially affects processing of phagolysosomal targeted antigen by macrophages.

    PubMed

    Lewis, T A; Hartmann, C B; McCoy, K L

    1998-03-01

    Gallium arsenide, a semiconductor utilized in the electronics industry, causes immunosuppression in animals. The chemical's effect on macrophages to process antigen for activating pigeon cytochrome-specific helper T cell hybridoma was investigated. Mice were administered 200 mg/kg gallium arsenide or vehicle intraperitoneally. Five-day exposure suppressed processing by splenic macrophages but augmented processing by thioglycollate-elicited and resident peritoneal macrophages. Cytochrome coupled to latex beads was targeted to phagolysosomes to examine processing in lysosomes. Cytochrome beads required phagocytosis for processing and were located in phagolysosomes. Gallium arsenide did not alter the phagocytic ability of macrophages. Peritoneal macrophages normally processed the targeted antigen, indicating that gallium arsenide influenced compartment(s) preceding lysosomes. However, the processing efficiency of exposed splenic macrophages depended on the size of particulate cytochrome, suggesting that processing varied in phagolysosomes of different sizes. Gallium arsenide impacted different intracellular compartments in these macrophages, perhaps contributing to systemic immunotoxicity and local inflammation caused by exposure.

  19. Arsenic interstitial diffusion in gallium arsenide: A computational physicist's perspective

    NASA Astrophysics Data System (ADS)

    Papoulias, Panagiotis

    This thesis elucidates the importance of interstitial diffusion in semiconductors. Although more investigations have been made for silicon, the most widely used semiconductor, much less is known about arsenic interstitial diffusion in gallium arsenide -- another important technological material. Because a quantitative and qualitative description of diffusion of the arsenic split interstitial in gallium arsenide is expected to be dependent on the electrical conditions of the material, this thesis begins by examining the convergence of density-functional supercell calculations for defect formation energies, charge transition levels, localized defect state properties, defect atomic structure, relaxation. Supercells containing up to 217 atoms and a variety of k-space sampling schemes are considered. It is shown that a good description of the localized defect state and charge state transition levels requires at least a 217-atom supercell, although the defect structure and atomic relaxations can be well converged in a 65-atom cell. Formation energies are calculated for the arsenic split interstitial, gallium vacancy, and arsenic antisite defects in gallium arsenide, taking into account the dependence upon chemical potential and Fermi energy. It is found that equilibrium concentrations of arsenic interstitials will be much lower than equilibrium concentrations of arsenic antisites in arsenic-rich, n-type or semi-insulating gallium arsenide. The migration barriers for diffusion of arsenic split interstitials that are evaluated indicate that arsenic interstitials are mobile. A qualitative description of the minimum energy path shows that depending on the charge state arsenic interstitials can interact with defects and dopants on either sublattice. These results can be used as inputs into computational simulations of experiments. Also, this thesis shows that under near equilibrium conditions it is expected positively charged interstitials will dominate the diffusion for a

  20. Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum Gallium Arsenide (AlGaAs) Double Heterostructures

    DTIC Science & Technology

    2015-09-01

    ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide...return it to the originator. ARL-TR-7473 ● SEP 2015 US Army Research Laboratory Bragg Reflector-Induced Increased Nonradiative ...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Bragg Reflector-Induced Increased Nonradiative Lifetime in Gallium Arsenide (GaAs)/Aluminum

  1. Evaluation of the male reproductive toxicity of gallium arsenide.

    PubMed

    Bomhard, Ernst M; Cohen, Samuel M; Gelbke, Heinz-Peter; Williams, Gary M

    2012-10-01

    Gallium arsenide is an important semiconductor material marketed in the shape of wafers and thus is not hazardous to the end user. Exposure to GaAs particles may, however, occur during manufacture and processing. Potential hazards require evaluation. In 14-week inhalation studies with small GaAs particles, testicular effects have been reported in rats and mice. These effects occurred only in animals whose lungs showed marked inflammation and also had hematologic changes indicating anemia and hemolysis. The time- and concentration-dependent progressive nature of the lung and blood effects together with bioavailability data on gallium and arsenic lead us to conclude that the testicular/sperm effects are secondary to hypoxemia resulting from lung damage rather than due to a direct chemical effect of gallium or arsenide. Conditions leading to such primary effects are not expected to occur in humans at production and processing sites. This has to be taken into consideration for any classification decision for reproductive toxicity; especially a category 1 according to the EU CLP system is not warranted. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Quantum Properties of Electron Transport in Silicon Mosfets and GALLIUM-ARSENIDE:ALUMINUM-GALLIUM - Arsenide.

    NASA Astrophysics Data System (ADS)

    Mensz, Piotr Maciej

    Several important issues of the quantum transport have been discussed in a context of analysis of the experimental results obtained from the transport measurements on three different two dimensional electron systems; silicon inversion layers, bismuth doped accumulation layers and GaAs inversion layers. Magnetotransport of (100) inversion layers formed in Silicon MOSFETs and GaAs: Al_{rm x}Ga_{rm 1-x} As heterojunctions has been explored in different configurations of magnetic fields, and in a temperature range 1K-4.2K. A new anomalous positive magnetoconductance had been observed in parallel magnetic fields at Silicon and Gallium Arsenide inversion layers and has been interpreted as an effect of suppression of the Weak Localization correction to the conductivity. The experiment deduces the presence of the electron random walk in the direction perpendicular to the Si-SiO_2 interface with the RMS value delta z <=q 2.1 +/- 0.15 A and delta z <=q 1.45 +/- 0.07 A in Silicon and GaAs inversion layers, respectively. These experiments have established a method to direct measure the mean fluctuations of the average position of the electron wave function with resolution of the order of 0.1 A as it undergoes transport parallel to the interface in electron inversion or accumulation layer systems. At low electron densities in the Silicon inversion layer the magnetoconductance changes sign and has magnitude much larger than predicted by the electron-electron interaction theory for the spin independent coupling. The enhancement can be explained by including the spin fluctuations induced by disorder. In the experiments on two dimensional bismuth doped accumulation layers the influence of the impurity species on the quantum corrections to the conductivity was explored. It was found that introducing bismuth impurities to the two dimensional electron system, causes an enhancement in logarithmic temperature dependence of conductivity. Finally, Quantum Hall Effect has been explored in

  3. Testing of gallium arsenide solar cells on the CRRES vehicle

    NASA Technical Reports Server (NTRS)

    Trumble, T. M.

    1985-01-01

    A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.

  4. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    SciTech Connect

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.; Shchegol', A.A.

    1988-02-01

    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  5. Improved performance design of gallium arsenide solar cells for space

    NASA Technical Reports Server (NTRS)

    Parekh, R. H.; Barnett, A. M.

    1984-01-01

    An improved design, shallow junction heteroface, n-p, gallium arsenide solar cell for space applications is reported, with a predicted AM0 efficiency in the 21.9 to 23.0 percent range. The optimized n-p structure, while slightly more efficient, has the added advantage of being less susceptible to radiation-induced degradation by virtue of this thin top junction layer. Detailed spectral response curves and an analysis of the loss mechanisms are reported. The details of the design are readily measurable. The optimized designs were reached by quantifying the dominant loss mechanisms and then minimizing them by using computer simulations.

  6. Microwave dielectric constants of silicon, gallium arsenide, and quartz

    SciTech Connect

    Seeger, K.

    1988-06-01

    For a determination of the dielectric constants epsilon of semiconductors, a microwave transmission interference method has been applied. For the first time, a calculation is presented which yields the full interference spectrum, not only the position of the extremal points. A comparison of the theoretical and experimental spectra results in a higher precision than previously obtained. A metal evaporation of the sample faces which are in contact with the waveguide walls turns out to be very important. Relative dielectric constants of 11.6 for silicon, 12.8 for gallium arsenide, and 4.6 for crystalline quartz, all +- 0.05, have been obtained.

  7. Single gallium nitride nanowire lasers.

    PubMed

    Johnson, Justin C; Choi, Heon-Jin; Knutsen, Kelly P; Schaller, Richard D; Yang, Peidong; Saykally, Richard J

    2002-10-01

    There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources.

  8. Four Terminal Gallium Nitride MOSFETs

    NASA Astrophysics Data System (ADS)

    Veety, Matthew Thomas

    All reported gallium nitride (GaN) transistors to date have been three-terminal devices with source, drain, and gate electrodes. In the case of GaN MOSFETs, this leaves the bulk of the device at a floating potential which can impact device threshold voltage. In more traditional silicon-based MOSFET fabrication a bulk contact can be made on the back side of the silicon wafer. For GaN grown on sapphire substrates, however, this is not possible and an alternate, front-side bulk contact must be investigated. GaN is a III-V, wide band gap semiconductor that as promising material parameters for use in high frequency and high power applications. Possible applications are in the 1 to 10 GHz frequency band and power inverters for next generation grid solid state transformers and inverters. GaN has seen significant academic and commercial research for use in Heterojunction Field Effect Transistors (HFETs). These devices however are depletion-mode, meaning the device is considered "on" at zero gate bias. A MOSFET structure allows for enhancement mode operation, which is normally off. This mode is preferrable in high power applications as the device has lower off-state power consumption and is easier to implement in circuits. Proper surface passivation of seminconductor surface interface states is an important processing step for any device. Preliminary research on surface treatments using GaN wet etches and depletion-mode GaN devices utilizing this process are discussed. Devices pretreated with potassium pursulfate prior to gate dielectric deposition show significant device improvements. This process can be applied to any current GaN FET. Enhancement-mode GaN MOSFETs were fabricated on magnesium doped p-type Wurtzite gallium nitride grown by Metal Organic Chemical Vapor Deposition (MOCVD) on c-plane sapphire substrates. Devices utilized ion implant source and drain which was activated under NH3 overpressure in MOCVD. Also, devices were fabricated with a SiO2 gate dielectric

  9. Bit-systolic arithmetic arrays using dynamic differential gallium arsenide circuits

    NASA Technical Reports Server (NTRS)

    Beagles, Grant; Winters, Kel; Eldin, A. G.

    1992-01-01

    A new family of gallium arsenide circuits for fine grained bit-systolic arithmetic arrays is introduced. This scheme combines features of two recent techniques of dynamic gallium arsenide FET logic and differential dynamic single-clock CMOS logic. The resulting circuits are fast and compact, with tightly constrained series FET propagation paths, low fanout, no dc power dissipation, and depletion FET implementation without level shifting diodes.

  10. Indium Gallium Nitride/Gallium Nitride (InGaN/GaN) Nanorods Superlattice (SL)

    DTIC Science & Technology

    2006-03-10

    barrier escape from localized states and/or to the capture at non-radiative centers inside the InGaN wells. Therefore, extraction efficiency and internal...1 Final Report Principal investigator : Prof. Tae Won Kang Title of proposal : Indium Gallium Nitride/Gallium Nitride ( InGaN /GaN) Nanorods...radiation. One-dimensional nanostructures, such as InGaN /GaN nanorod supperlattice (NRs SL), have attracted much attention because of its potential

  11. Coated gallium arsenide neutron detectors : results of characterizationmeasurements.

    SciTech Connect

    Klann, R. T.; Perret, G.; Sanders, J.

    2006-09-29

    Effective detection of special nuclear materials (SNM) is essential for reducing the threat associated with stolen or improvised nuclear devices. Passive radiation detection technologies are primarily based on gamma-ray detection and subsequent isotope identification or neutron detection (specific to neutron sources and SNM). One major effort supported by the Department of Homeland Security in the area of advanced passive detection is handheld or portable neutron detectors for search and localization tasks in emergency response and interdiction settings. A successful SNM search detector will not only be able to confirm the presence of fissionable materials but also establish the location of the source in as short of time as possible while trying to minimize false alarms due to varying background or naturally occurring radioactive materials (NORM). For instruments based on neutron detectors, this translates to detecting neutrons from spontaneous fission or alpha-n reactions and being able to determine the direction of the source (or localizing the source through subsequent measurements). Polyethylene-coated gallium arsenide detectors were studied because the detection scheme is based on measuring the signal in the gallium arsenide wafers from the electrical charge of the recoil protons produced from the scattering of neutrons from the hydrogen nucleus. The inherent reaction has a directional dependence because the neutron and hydrogen nucleus have equivalent masses. The assessment and measurement of polyethylene-coated gallium arsenide detector properties and characteristics was the first phase of a project being performed for the Department of Homeland Security and the results of these tests are reported in this report. The ultimate goal of the project was to develop a man-portable neutron detection system that has the ability to determine the direction of the source from the detector. The efficiency of GaAs detectors for different sizes of polyethylene layers and

  12. Temperature dependence of carrier capture by defects in gallium arsenide

    SciTech Connect

    Wampler, William R.; Modine, Normand A.

    2015-08-01

    This report examines the temperature dependence of the capture rate of carriers by defects in gallium arsenide and compares two previously published theoretical treatments of this based on multi phonon emission (MPE). The objective is to reduce uncertainty in atomistic simulations of gain degradation in III-V HBTs from neutron irradiation. A major source of uncertainty in those simulations is poor knowledge of carrier capture rates, whose values can differ by several orders of magnitude between various defect types. Most of this variation is due to different dependence on temperature, which is closely related to the relaxation of the defect structure that occurs as a result of the change in charge state of the defect. The uncertainty in capture rate can therefore be greatly reduced by better knowledge of the defect relaxation.

  13. Gallium arsenide/gold nanostructures deposited using plasma method

    SciTech Connect

    Mangla, O.; Roy, S.; Annapoorni, S.

    2016-05-23

    The fabrication of gallium arsenide (GaAs) nanostructures on gold coated glass, quartz and silicon substrates using the high fluence and highly energetic ions has been reported. The high fluence and highly energetic ions are produced by the hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. The nanostructures having mean size about 14 nm, 13 nm and 18 nm are deposited on gold coated glass, quartz and silicon substrates, respectively. The optical properties of nanostructures studied using absorption spectra show surface plasmon resonance peak of gold nanoparticles. In addition, the band-gap of GaAs nanoparticles is more than that of bulk GaAs suggesting potential applications in the field of optoelectronic and sensor systems.

  14. Solar cell with a gallium nitride electrode

    DOEpatents

    Pankove, Jacques I.

    1979-01-01

    A solar cell which comprises a body of silicon having a P-N junction therein with a transparent conducting N-type gallium nitride layer as an ohmic contact on the N-type side of the semiconductor exposed to solar radiation.

  15. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  16. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  17. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    PubMed

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage.

  18. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    PubMed

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  19. Gallium Nitride (GaN) High Power Electronics (FY11)

    DTIC Science & Technology

    2012-01-01

    Gallium Nitride (GaN) High Power Electronics (FY11) by Kenneth A. Jones, Randy P. Tompkins, Michael A. Derenge, Kevin W. Kirchner, Iskander...Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-5903 January 2012 Gallium Nitride (GaN) High Power Electronics (FY11) Kenneth A...DSI 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Gallium Nitride (GaN) High Power Electronics (FY11) 5a. CONTRACT NUMBER 5b. GRANT

  20. Gallium arsenide pilot line for high performance components

    NASA Astrophysics Data System (ADS)

    1990-01-01

    The Gallium Arsenide Pilot Line for High Performance Components (Pilot Line III) is to develop a facility for the fabrication of GaAs logic and memory chips. The first thirty months of this contract are now complete, and this report covers the period from March 27 through September 24, 1989. Similar to the PT-2M SRAM function for memories, the six logic circuits of PT-2L and PT-2M have served their functions as stepping stones toward the custom, standard cell, and cell array logic circuits. All but one of these circuits was right first time; the remaining circuit had a layout error due to a bug in the design rule checker that has since been fixed. The working devices all function over the full temperature range from -55 to 125 C. They all comfortably meet the 200 MHz requirement. They do not solidly conform to the required input and output voltage levels, particularly Vih. It is known that these circuits were designed with the older design models and that they came from an era where the DFET thresholds were often not on target.

  1. Wide band gap gallium arsenide nanoparticles fabricated using plasma method

    SciTech Connect

    Jain, D.; Mangla, O.; Roy, S.

    2016-05-23

    In this paper, we have reported the fabrication of gallium arsenide (GaAs) nanoparticles on quartz placed at distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively from top of anode. The fabrication has been carried out by highly energetic and high fluence ions of GaAs produced by hot, dense and extremely non-equilibrium plasma in a modified dense plasma focus device. GaAs nanoparticles have mean size of about 23 nm, 16 nm and 14 nm for deposition at a distance of 4.0 cm, 5.0 cm and 6.0 cm, respectively. The nanoparticles are crystalline in nature as evident from X-ray diffraction patterns. The band gap of nanoparticles is found to increase from 1.425 eV to 5.37 eV at 4.0 cm distance, which further increases as distance increases. The wide band gap observed for fabricated GaAs nanoparticles suggest the possible applications of nanoparticles in laser systems.

  2. Enhanced photothermal conversion in vertically oriented gallium arsenide nanowire arrays.

    PubMed

    Walia, Jaspreet; Dhindsa, Navneet; Flannery, Jeremy; Khodabad, Iman; Forrest, James; LaPierre, Ray; Saini, Simarjeet S

    2014-10-08

    The photothermal properties of vertically etched gallium arsenide nanowire arrays are examined using Raman spectroscopy. The nanowires are arranged in square lattices with a constant pitch of 400 nm and diameters ranging from 50 to 155 nm. The arrays were illuminated using a 532 nm laser with an incident energy density of 10 W/mm(2). Nanowire temperatures were highly dependent on the nanowire diameter and were determined by measuring the spectral red-shift for both TO and LO phonons. The highest temperatures were observed for 95 nm diameter nanowires, whose top facets and sidewalls heated up to 600 and 440 K, respectively, and decreased significantly for the smaller or larger diameters studied. The diameter-dependent heating is explained by resonant coupling of the incident laser light into optical modes of the nanowires, resulting in increased absorption. Photothermal activity in a given nanowire diameter can be optimized by proper wavelength selection, as confirmed using computer simulations. This demonstrates that the photothermal properties of GaAs nanowires can be enhanced and tuned by using a photonic lattice structure and that smaller nanowire diameters are not necessarily better to achieve efficient photothermal conversion. The diameter and wavelength dependence of the optical coupling could allow for localized temperature gradients by creating arrays which consist of different diameters.

  3. Gallium arsenide deep-level optical emitter for fibre optics.

    PubMed

    Pan, Janet L; McManis, Joseph E; Osadchy, Thomas; Grober, Louise; Woodall, Jerry M; Kindlmann, Peter J

    2003-06-01

    Fibre-optic components fabricated on the same substrate as integrated circuits are important for future high-speed communications. One industry response has been the costly push to develop indium phosphide (InP) electronics. However, for fabrication simplicity, reliability and cost, gallium arsenide (GaAs) remains the established technology for integrated optoelectronics. Unfortunately, the GaAs bandgap wavelength (0.85 microm) is far too short for fibre optics at 1.3-1.5 microm. This has led to work on materials that have a large lattice mismatch on GaAs. Here we demonstrate the first light-emitting diode (LED) that emits at 1.5 microm fibre-optic wavelengths in GaAs using optical transitions from arsenic antisite (As(Ga)) deep levels. This is an enabling technology for fibre-optic components that are lattice-matched to GaAs integrated circuits. We present experimental results showing significant internal optical power (24 mW) and speed (in terahertz) from GaAs optical emitters using deep-level transitions. Finally, we present theory showing the ultimate limit to the efficiency-bandwidth product of semiconductor deep-level optical emitters.

  4. Impact of in vitro gallium arsenide exposure on macrophages.

    PubMed

    Harrison, M Travis; Hartmann, Constance B; McCoy, Kathleen L

    2003-01-01

    The semiconductor gallium arsenide (GaAs) is classified as an immunotoxicant and a carcinogen. We previously showed that GaAs in vivo induces several phenotypic changes in macrophages located at the exposure site, indicative of an activated state. These physiological alterations may be a primary or secondary consequence of chemical exposure. To discern primary influences, our current study examined the in vitro effects of the chemical on macrophage cell lines and murine peritoneal macrophages. GaAs augmented cathepsins L and B proteolytic activities in all three sources of macrophages. Expression of the two mature isoforms of invariant chain and its cleavage fragment was also significantly increased, indicating that the chemical directly affects macrophages. However, GaAs did not alter the overall cell surface expression of major histocompatibility complex class II molecules on macrophages nor influence their ability to stimulate antigen-specific helper T cell hybridomas to respond to intact antigens that require processing. These findings raise the possibility that the chemical's complete in vivo impact may involve cytokines. Further, GaAs in vitro enhanced steady-state cathepsin L protein, and cathepsins L and B mRNA expression in macrophages, indicating that GaAs may alter gene expression, which may contribute to the chemical's adverse biological effects.

  5. Gallium arsenide exposure impairs splenic B cell accessory function.

    PubMed

    Gondre-Lewis, Timothy A; Hartmann, Constance B; Caffrey, Rebecca E; McCoy, Kathleen L

    2003-03-01

    Gallium arsenide (GaAs) is utilized in industries for its semiconductor and optical properties. Chemical exposure of animals systemically suppresses several immune functions. The ability of splenic B cells to activate antigen-specific helper CD4(+) T cell hybridomas was assessed, and various aspects of antigen-presenting cell function were examined. GaAs-exposed murine B cells were impaired in processing intact soluble protein antigens, and the defect was antigen dependent. In contrast, B cells after exposure competently presented peptides to the T cells, which do not require processing. Cell surface expression of major histocompatibility complex (MHC) class II molecules and several costimulatory molecules on splenic B cells, which are critical for helper T cell activation, was not affected by chemical exposure. GaAs exposure also did not influence the stability of MHC class II heterodimers, suggesting that the defect may precede peptide exchange. GaAs-exposed B cells contained a normal level of aspartyl cathepsin activity; however, proteolytic activities of thiol cathepsins B and L were approximately half the control levels. Furthermore, two cleavage fragments of invariant chain, a molecular chaperone of MHC class II molecules, were increased in GaAs-exposed B cells, indicative of defective degradation. Thus, diminished thiol proteolytic activity in B cells may be responsible for their impaired antigen processing and invariant chain degradation, which may contribute to systemic immunosuppression caused by GaAs exposure.

  6. Deprotecting Thioacetyl-Terminated Terphenyldithiol for Assembly on Gallium Arsenide

    SciTech Connect

    Krapchetov,D.; Ma, H.; Jen, A.; Fischer, D.; Loo, Y.

    2008-01-01

    We characterize the assembly of terphenyldithiol (TPDT) on gallium arsenide (GaAs) from ethanol (EtOH) and tetrahydrofuran (THF) as a function of ammonium hydroxide (NH4OH) concentration. NH4OH facilitates the conversion of thioacetyl end groups of the TPDT precursor to thiolates in the assembly solution. The final structure of TPDT assembled on GaAs is sensitive not only to the assembly solvent but also to NH4OH concentration. In the presence of low concentrations of NH4OH (1 mM), TPDT assemblies from EtOH are oriented upright. The same assemblies are less upright when adsorption is carried out at higher NH4OH concentrations. In THF, TPDT does not adsorb significantly on GaAs at low NH4OH concentrations. The surface coverage and structural organization of these assemblies improve with increasing NH4OH concentrations, although these assemblies are never as organized as those from EtOH. The difference in the final structure of TPDT assemblies is attributed to differences in the thiolate fraction in the assembly solution at the point of substrate immersion.

  7. Deprotecting thioacetyl-terminated terphenyldithiol for assembly on gallium arsenide.

    PubMed

    Krapchetov, Dmitry A; Ma, Hong; Jen, Alex K Y; Fischer, Daniel A; Loo, Yueh-Lin

    2008-02-05

    We characterize the assembly of terphenyldithiol (TPDT) on gallium arsenide (GaAs) from ethanol (EtOH) and tetrahydrofuran (THF) as a function of ammonium hydroxide (NH4OH) concentration. NH4OH facilitates the conversion of thioacetyl end groups of the TPDT precursor to thiolates in the assembly solution. The final structure of TPDT assembled on GaAs is sensitive not only to the assembly solvent but also to NH4OH concentration. In the presence of low concentrations of NH4OH (1 mM), TPDT assemblies from EtOH are oriented upright. The same assemblies are less upright when adsorption is carried out at higher NH4OH concentrations. In THF, TPDT does not adsorb significantly on GaAs at low NH4OH concentrations. The surface coverage and structural organization of these assemblies improve with increasing NH4OH concentrations, although these assemblies are never as organized as those from EtOH. The difference in the final structure of TPDT assemblies is attributed to differences in the thiolate fraction in the assembly solution at the point of substrate immersion.

  8. Request for assistance in reducing the potential risk of developing cancer from exposure to gallium arsenide in the microelectronics industry

    SciTech Connect

    Not Available

    1987-10-01

    Various methods through which exposure to gallium-arsenide might be reduced in the microelectronics industry were discussed. While there were no reported studies showing ill effects in workers from exposure to gallium arsenide or gallium particulates, three studies in animals indicated that gallium arsenide dissociates into gallium and arsenic in biological tissue, the latter being a carcinogen. NIOSH Recommended Exposure Limit (REL) for arsenic was 2 micrograms/cubic meter air (microg/cu m). NIOSH recommends control of worker exposure to gallium arsenide by observing NIOSH REL for inorganic arsenic, and that concentration of gallium arsenide in air be estimated by determining arsenic. Workers should be educated in possible hazards connected with gallium arsenide exposure. Proper engineering controls should be installed during production of microelectronic devices where exposure to gallium-arsenide is likely. Personal protective clothing and equipment should be available to workers, and proper procedures for washing, removal of wastes, transport, and disposal of contaminated materials should be explained and carried out. Specific safety recommendations are offered for use during crystal growth, crystal puller cleaning, crystal surface grinding and sawing, and wafer polishing, backlapping, and dicing.

  9. A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials

    NASA Technical Reports Server (NTRS)

    Hurley, John S.

    1990-01-01

    Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.

  10. Solvent-dependent assembly of terphenyl- and quaterphenyldithiol on gold and gallium arsenide.

    PubMed

    Krapchetov, Dmitry A; Ma, Hong; Jen, Alex K Y; Fischer, Daniel A; Loo, Yueh-Lin

    2005-06-21

    The assembly of terphenyldithiol (TPDT) and quaterphenyldithiol (QPDT) on gold and gallium arsenide from ethanol (EtOH), tetrahydrofuran (THF), and solutions consisting of both solvents has been characterized by near-edge X-ray absorption fine structure spectroscopy. The surface coverage and the average orientation of both TPDT and QPDT on gold are solvent-independent. These molecules readily form monolayers on gold with an ensemble-average backbone tilt of 30 degrees +/- 3 degrees from the substrate normal. In sharp contrast, the assembly of TPDT and QPDT on gallium arsenide is extremely solvent-sensitive. At high ethanol fractions, both molecules form monolayers with an ensemble-average orientation that is indistinguishable from those on gold substrates. At low ethanol fractions and in pure THF, however, these molecules are disordered on gallium arsenide and the surface coverage is poor.

  11. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    SciTech Connect

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  12. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    NASA Astrophysics Data System (ADS)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-01

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, Pmax was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  13. The diffusion of zinc and the theory of interdiffusion in gallium arsenide and aluminum gallium arsenide

    NASA Astrophysics Data System (ADS)

    Chase, Michael Paul

    GaAs and AlxGa1-xAs are useful semiconductors. Understanding the physics and kinetics involved in processing these materials is important. Dopant and matrix atom diffusion are two of the most important physical process. In this thesis, a physically-based model for Zn diffusion from a source implanted into GaAs and AlxGa1-xAs substrates is developed. Zn is implanted into the substrates which are capped with nitride and annealed for various times at temperatures ranging from 625 to 850°C. The kick-out mechanism, a form of the substitutional diffusion, is used to explain how Zn diffusion is regulated by deviations, from equilibrium, in the local Ga/Al self-interstitial concentration. Using the SUPREM-IV.GS process simulator we can simulate box shaped profiles which result from high temperature anneals, where the defects maintain equilibrium, and kink-and-tail profiles resulting from lower temperature anneals, where the defects deviate from equilibrium. For GaAs, the simulations have allowed us to extract Arrhenius relations for the intrinsic Zn diffusion coefficient, the equilibrium Ga self-interstitial concentration, and the Ga self-interstitial diffusion coefficient. The effective Zn diffusivity increases with Al content. It is shown that the majority of the increase in diffusivity results from a decreased intrinsic carrier concentration which occurs with increasing Al content. Zn segregates preferentially in GaAs as Zn diffuses across a GaAs/AlxGa1-xAs heterojunction. Most of this segregation can be explained as resulting from an electric field set up across the junction due to changes in bandgap energy and intrinsic carrier concentration. The remaining segregation is believed to be due to changes in the Zn interstitial to substitutional ratio. A new model for the diffusion of semiconductor matrix atoms called the vacancy exchange mechanism is developed. This model is useful for describing the inter-diffusion of Ga and Al atoms at a GaAs/AlxGa1-x As heterojunction

  14. Magnetoelectric effect in layered structures of amorphous ferromagnetic alloy and gallium arsenide

    NASA Astrophysics Data System (ADS)

    Bichurin, M. I.; Petrov, V. M.; Leontiev, V. S.; Ivanov, S. N.; Sokolov, O. V.

    2017-02-01

    A paper devotes to theoretical and experimental studying the magnetoelectric interaction in layered structures of amorphous ferromagnetic alloy and single- crystal gallium arsenide. The authors investigated the magnetoelectric effect in the (100) plane of gallium arsenide in the electromechanical resonance range of 200-240 kHz and obtained maximal ME voltage coefficient of 120 V/A at bias field equaled 3.6 kA/m for the direction parallel to the [011] axis. Also the magnetoelectric effect in the (110) and (111) planes is discussed. The results can be used for design of new electronic devices based on the magnetostrictive-semiconductor materials.

  15. Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS.

    PubMed

    Torrance, Keith W; Keenan, Helen E; Hursthouse, Andrew S; Stirling, David

    2010-01-01

    The chemistry of semiconductor wafer processing liquid waste, contaminated by heavy metals, was investigated to determine arsenic content. Arsenic and gallium concentrations were determined for waste slurries collected from gallium arsenide (GaAs) wafer processing at three industrial sources and compared to slurries prepared under laboratory conditions. The arsenic and gallium content of waste slurries was analyzed using inductively coupled plasma mass-spectrometry (ICP-MS) and it is reported that the arsenic content of the waste streams was related to the wafer thinning process, with slurries from wafer polishing having the highest dissolved arsenic content at over 1,900 mgL(-1). Lapping slurries had much lower dissolved arsenic (< 90 mgL(-1)) content, but higher particulate contents. It is demonstrated that significant percentage of GaAs becomes soluble during wafer lapping. Grinding slurries had the lowest dissolved arsenic content at 15 mgL(-1). All three waste streams are classified as hazardous waste, based on their solids content and dissolved arsenic levels and treatment is required before discharge or disposal. It is calculated that as much as 93% of material is discarded through the entire GaAs device manufacturing process, with limited recycling. Although gallium can be economically recovered from waste slurries, there is little incentive to recover arsenic, which is mostly landfilled. Options for treating GaAs processing waste streams are reviewed and some recommendations made for handling the waste. Therefore, although the quantities of hazardous waste generated are miniscule in comparison to other industries, sustainable manufacturing practices are needed to minimize the environmental impact of GaAs semiconductor device fabrication.

  16. Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas

    DTIC Science & Technology

    2007-06-01

    in production from the mid-1960s until the early 1990s. Their efficiency was close to 15%. The next step consisted of single junction gallium ...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited INDIUM GALLIUM ...TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Indium Gallium Nitride Multijunction Solar Cell Simulation Using Silvaco Atlas 6

  17. Indium Phosphide Window Layers for Indium Gallium Arsenide Solar Cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.

    2005-01-01

    Window layers help in reducing the surface recombination at the emitter surface of the solar cells resulting in significant improvement in energy conversion efficiency. Indium gallium arsenide (In(x)Ga(1-x)As) and related materials based solar cells are quite promising for photovoltaic and thermophotovoltaic applications. The flexibility of the change in the bandgap energy and the growth of InGaAs on different substrates make this material very attractive for multi-bandgap energy, multi-junction solar cell approaches. The high efficiency and better radiation performance of the solar cell structures based on InGaAs make them suitable for space power applications. This work investigates the suitability of indium phosphide (InP) window layers for lattice-matched In(0.53)Ga(0.47)As (bandgap energy 0.74 eV) solar cells. We present the first data on the effects of the p-type InP window layer on p-on-n lattice-matched InGaAs solar cells. The modeled quantum efficiency results show a significant improvement in the blue region with the InP window. The bare InGaAs solar cell performance suffers due to high surface recombination velocity (10(exp 7) cm/s). The large band discontinuity at the InP/InGaAs heterojunction offers a great potential barrier to minority carriers. The calculated results demonstrate that the InP window layer effectively passivates the solar cell front surface, hence resulting in reduced surface recombination and therefore, significantly improving the performance of the InGaAs solar cell.

  18. Combined Silicon and Gallium Arsenide Solar Cell UV Testing

    NASA Technical Reports Server (NTRS)

    Willowby, Douglas

    2005-01-01

    The near and long-term effect of UV on silicon solar cells is relatively understood. In an effort to learn more about the effects of UV radiation on the performance of GaAs/Ge solar cells, silicon and gallium arsenide on germanium (GaAs/Ge) solar cells were placed in a vacuum chamber and irradiated with ultraviolet light by a Spectrolab XT 10 solar simulator. Seventeen GaAs/Ge and 8 silicon solar cells were mounted on an 8 inch copper block. By having all the cells on the same test plate we were able to do direct comparison of silicon and GaAs/Ge solar cell degradation. The test article was attached to a cold plate in the vacuum chamber to maintain the cells at 25 degrees Celsius. A silicon solar cell standard was used to measure beam uniformity and any degradation of the ST-10 beam. The solar cell coverings tested included cells with AR-0213 coverglass, fused silica coverglass, BRR-0213 coverglass and cells without coverglass. Of interest in the test is the BRR-0213 coverglass material manufactured by OCLI. It has an added Infrared rejection coating to help reduce the solar cell operating temperature. This coverglass is relatively new and of interest to several current and future programs at Marshall. Due to moves of the laboratory equipment and location only 350 hours of UV degradation have been completed. During this testing a significant leveling off in the rate of degradation was reached. Data from the test and comparisons of the UV effect of the bare cells and cells with coverglass material will be presented.

  19. Progress to a Gallium-Arsenide Deep-Center Laser

    PubMed Central

    Pan, Janet L.

    2009-01-01

    Although photoluminescence from gallium-arsenide (GaAs) deep-centers was first observed in the 1960s, semiconductor lasers have always utilized conduction-to-valence-band transitions. Here we review recent materials studies leading to the first GaAs deep-center laser. First, we summarize well-known properties: nature of deep-center complexes, Franck-Condon effect, photoluminescence. Second, we describe our recent work: insensitivity of photoluminescence with heating, striking differences between electroluminescence and photoluminescence, correlation between transitions to deep-states and absence of bandgap-emission. Room-temperature stimulated-emission from GaAs deep-centers was observed at low electrical injection, and could be tuned from the bandgap to half-the-bandgap (900–1,600 nm) by changing the electrical injection. The first GaAs deep-center laser was demonstrated with electrical injection, and exhibited a threshold of less than 27 mA/cm2 in continuous-wave mode at room temperature at the important 1.54 μm fiber-optic wavelength. This small injection for laser action was explained by fast depopulation of the lower state of the optical transition (fast capture of free holes onto deep-centers), which maintains the population inversion. The evidence for laser action included: superlinear L-I curve, quasi-Fermi level separations satisfying Bernard-Duraffourg’s criterion, optical gains larger than known significant losses, clamping of the optical-emission from lossy modes unable to reach laser action, pinning of the population distribution during laser action.

  20. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    PubMed

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi

    2010-07-01

    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea.

  1. Ultralow wear of gallium nitride

    NASA Astrophysics Data System (ADS)

    Zeng, Guosong; Tan, Chee-Keong; Tansu, Nelson; Krick, Brandon A.

    2016-08-01

    Here, we reveal a remarkable (and surprising) physical property of GaN: it is extremely wear resistant. In fact, we measured the wear rate of GaN is approaching wear rates reported for diamond. Not only does GaN have an ultralow wear rate but also there are quite a few experimental factors that control the magnitude of its wear rate, further contributing to the rich and complex physics of wear of GaN. Here, we discovered several primary controlling factors that will affect the wear rate of III-Nitride materials: crystallographic orientation, sliding environment, and coating composition (GaN, InN and InGaN). Sliding in the ⟨ 1 2 ¯ 10 ⟩ is significantly lower wear than ⟨ 1 1 ¯ 00 ⟩ . Wear increases by 2 orders of magnitude with increasing humidity (from ˜0% to 50% RH). III-Nitride coatings are promising as multifunctional material systems for device design and sliding wear applications.

  2. Electro-optic modulator for infrared laser using gallium arsenide crystal

    NASA Technical Reports Server (NTRS)

    Walsh, T. E.

    1968-01-01

    Gallium arsenide electro-optic modulator used for infrared lasers has a mica quarter-wave plate and two calcite polarizers to amplitude or phase modulate an infrared laser light source in the wavelength range from 1 to 3 microns. The large single crystal has uniformly high resistivities, is strain free, and comparable in quality to good optical glass.

  3. Barrier-height measurement for a gallium arsenide metal-semi-insulator interface

    SciTech Connect

    Ayzenshtat, G. I. Lelekov, M. A.; Tolbanov, O. P.

    2007-11-15

    The I-V characteristics of structures from semi-insulating gallium arsenide with different contacts are analyzed. The Schottky barrier height was measured using two procedures; its values obtained for vanadium-based contacts amount to 0.81 {+-} 0.02 V.

  4. Long wavelength luminescence from gallium-indium-nitrogen-arsenic-antimony on gallium arsenide

    NASA Astrophysics Data System (ADS)

    Gambin, Vincent F.

    GaInNAs grown on GaAs has recently been found to optically emit at wavelengths longer than previously thought possible with material grown epitaxially on GaAs substrates. Dilute-nitride GaInNAs alloys have quickly become an excellent candidate for low cost 1.3--1.55 mum vertical cavity surface emitting lasers (VCSELs) and high power edge emitting lasers in the past few years. Nitride-arsenide alloys were grown by solid source molecular beam epitaxy (MBE) using a N radio frequency (RF) plasma cell. The nitride-arsenide based crystal is grown under metastable conditions with low substrate temperatures and a highly reactive N radical plasma source. However, defects generated during this non-equilibrium growth are a source for non-radiative recombination and diminished photoluminescence (PL). By rapid thermal annealing (RTA) the material after growth, defects are removed from the crystal and the material quality of the GaInNAs films improves significantly. By measuring structural changes that occur during anneal, new insight has been made into the mechanisms which cause the optoelectronic properties to improve. In an effort to further enhance crystal quality, Sb present during GaInNAs growth is thought to act as a surfactant to maintain surface planarity, and phase coherence, resulting in increased PL efficiency. With the addition of Sb, we have observed both a sharp intensity increase in samples with a high In concentration and a bandgap past 1.3 mum. Increasing the In or N content in materials with PL over 1.3 mum normally drops optical intensity; however, using Sb, we can maintain high PL efficiency out to 1.6 mum. Since both In and Sb in GaAs add compressive stress and the solubility of N in GaAs is limited, there is a need for GaNAs tensile strain compensating barriers for applications in multiple quantum well, high-intensity devices. With the development of GaInNAsSb alloys and strain compensated barriers, even longer wavelengths are possible on GaAs, greatly

  5. Methods for forming group III-arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2002-01-01

    Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  6. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    NASA Astrophysics Data System (ADS)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  7. Gallium Nitride Based Logpile Photonic Crystal

    SciTech Connect

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J.; Wang, George T.; Fischer, Arthur J.

    2011-11-09

    A nine-layer logpile three-dimensional photonic crystal (3DPC) is demonstrated composed of single crystalline gallium nitride (GaN) nanorods, ~ 100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a ''line-defect'' cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25–30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride-based optoelectronic devices.

  8. Gallium nitride based logpile photonic crystals.

    PubMed

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  9. The 13.9 GHz short pulse radar noise figure measurements utilizing silicon and gallium-arsenide mixer diodes

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.

    1977-01-01

    An analysis was made on two commercially available silicon and gallium arsenide Schottky barrier diodes. These diodes were selected because of their particularly low noise figure in the frequency range of interest. The specified noise figure for the silicon and gallium arsenide diodes were 6.3 db and 5.3 db respectively when functioning as mixers in the 13.6 GHz region with optimum local oscillator drive.

  10. Exploiting the Negative Polarization Properties of Indium Gallium Nitride (InGaN)/Gallium Nitride (GaN) Heterostructures to Achieve Frequency Doubled Blue-green Lasers with Deep UV (250 nm) Emission (Year 2)

    DTIC Science & Technology

    2011-05-01

    Exploiting the Negative Polarization Properties of Indium Gallium Nitride ( InGaN )/Gallium Nitride (GaN) Heterostructures to Achieve Frequency...Polarization Properties of Indium Gallium Nitride ( InGaN )/Gallium Nitride (GaN) Heterostructures to Achieve Frequency Doubled Blue-green Lasers...Exploiting the Negative Polarization Properties of Indium Gallium Nitride ( InGaN )/Gallium Nitride (GaN) Heterostructures to Achieve Frequency Doubled

  11. Exploiting the Negative Polarization Properties of Indium Gallium Nitride (InGaN)/Gallium Nitride (GaN) Heterostructures to Achieve Frequency Doubled Blue-green Lasers with Deep Ultraviolet (UV) (

    DTIC Science & Technology

    2010-06-01

    Exploiting the Negative Polarization Properties of Indium Gallium Nitride ( InGaN )/Gallium Nitride (GaN) Heterostructures to Achieve Frequency...Exploiting the Negative Polarization Properties of Indium Gallium Nitride ( InGaN )/Gallium Nitride (GaN) Heterostructures to Achieve...TITLE AND SUBTITLE Exploiting the Negative Polarization Properties of Indium Gallium Nitride ( InGaN )/Gallium Nitride (GaN) Heterostructures to Achieve

  12. Cathodoluminescence spectra of gallium nitride nanorods

    PubMed Central

    2011-01-01

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio. PMID:22168896

  13. Cathodoluminescence spectra of gallium nitride nanorods.

    PubMed

    Tsai, Chia-Chang; Li, Guan-Hua; Lin, Yuan-Ting; Chang, Ching-Wen; Wadekar, Paritosh; Chen, Quark Yung-Sung; Rigutti, Lorenzo; Tchernycheva, Maria; Julien, François Henri; Tu, Li-Wei

    2011-12-14

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio.

  14. Thickness dependent thermal conductivity of gallium nitride

    NASA Astrophysics Data System (ADS)

    Ziade, Elbara; Yang, Jia; Brummer, Gordie; Nothern, Denis; Moustakas, Theodore; Schmidt, Aaron J.

    2017-01-01

    As the size of gallium nitride (GaN) transistors is reduced in order to reach higher operating frequencies, heat dissipation becomes the critical bottleneck in device performance and longevity. Despite the importance of characterizing the physics governing the thermal transport in thin GaN films, the literature is far from conclusive. In this letter, we report measurements of thermal conductivity in a GaN film with thickness ranging from 15-1000 nm grown on 4H-SiC without a transition layer. Additionally, we measure the thermal conductivity in the GaN film when it is 1 μm-thick in the temperature range of 300 < T < 600 K and use a phonon transport model to explain the thermal conductivity in this film.

  15. Gallium arsenide-gallium nitride wafer fusion and the n-aluminum gallium arsenide/p-gallium arsenide/n-gallium nitride double heterojunction bipolar transistor

    NASA Astrophysics Data System (ADS)

    Estrada, Sarah M.

    This dissertation describes the n-AlGaAs/p-GaAs/n-GaN heterojunction bipolar transistor (HBT), the first transistor formed via wafer fusion. The fusion process was developed as a way to combine lattice-mismatched materials for high-performance electronic devices, not obtainable via conventional all-epitaxial formation methods. Despite the many challenges of wafer fusion, successful transistors were demonstrated and improved, via the optimization of material structure and fusion process conditions. Thus, this project demonstrated the integration of disparate device materials, chosen for their optimal electronic properties, unrestricted by the conventional (and very limiting) requirement of lattice-matching. By combining an AlGaAs-GaAs emitter-base with a GaN collector, the HBT benefited from the high breakdown voltage of GaN, and from the high emitter injection efficiency and low base transit time of AlGaAs-GaAs. Because the GaAs-GaN lattice mismatch precluded an all-epitaxial formation of the HBT, the GaAs-GaN heterostructure was formed via fusion. This project began with the development of a fusion process that formed mechanically robust and electrically active GaAs-GaN heterojunctions. During the correlation of device electrical performance with a systematic variation of fusion conditions over a wide range (500--750°C, 0.5--2hours), a mid-range fusion temperature was found to induce optimal HBT electrical performance. Transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) were used to assess possible reasons for the variations observed in device electrical performance. Fusion process conditions were correlated with electrical (I-V), structural (TEM), and chemical (SIMS) analyses of the resulting heterojunctions, in order to investigate the trade-off between increased interfacial disorder (TEM) with low fusion temperature and increased diffusion (SIMS) with high fusion temperature. The best do device results (IC ˜ 2.9 kA/cm2 and beta ˜ 3.5, at VCE = 20V and IB = 10mA) were obtained with an HBT formed via fusion at 600°C for 1 hour, with an optimized base-collector design. This was quite an improvement, as compared to an HBT with a simpler base-collector structure, also fused at 600°C for 1 hour (IC ˜ 0.83 kA/cm2 and beta ˜ 0.89, at VCE = 20V and IB = 10mA). Fused AlGaAs-GaAs-GaAs HBTs were compared to fused AlGaAs-GaAs-GaN HBTs, demonstrating that the use of a wider bandgap collector (Eg,GaN > Eg,GaAs) did indeed improve HBT performance at high applied voltages, as desired for high-power applications.

  16. Selenium effects on gallium arsenide induced biochemical and immunotoxicological changes in rats.

    PubMed

    Flora, S J; Kannan, G M; Kumar, P

    1999-08-30

    The influence of selenium (6.3 and 12.6 micromol/kg, intraperitoneally) on the disposition of gallium and arsenic and a few gallium arsenide (GaAs) sensitive biochemical variables was studied in male rats. Concomitant administration of Se and GaAs (70 micromol/kg, orally, 5 days a week for 4 weeks) significantly prevented the accumulation of arsenic while, the gallium concentration reduced moderately in the soft organs. The biochemical (haematopoietic and liver) and immunological variables however, responded less favorably to selenium administration. Most of the protection was however observed with the dose of 12.6 micromol rather than at 6.3 micromol. The results thus suggest a few beneficial effects of selenium in preventing the appearance of signs of GaAs toxicity like preventing inhibition of blood delta-aminolevulinic acid dehydratase (ALAD), hepatic malondialdehyde (MDA) formation and the accumulation of gallium and arsenic concentration.

  17. Surface orientation as a control parameter for the growth of non-stoichiometric gallium arsenide

    NASA Astrophysics Data System (ADS)

    Marek, T.; Schür, C.; Kunsági-Máté, S.

    2005-12-01

    In order to study the effect of the substrate orientation on the incorporation of excess arsenic into low temperature grown gallium arsenide, we examine molecular beam epitaxial layers grown at constant low substrate temperatures and constant III/V flux ratio on exactly (001) oriented substrates and on vicinal substrates tilted up to 10° towards the 111A and 111B directions. Our experiments show that the substrate orientation has a significant influence on the excess arsenic content and thus needs to be considered as an additional parameter to control low temperature growth of gallium arsenide. Respective ab-initio calculations offer first models for the incorporation of excess arsenic into As antisite and As interstitial positions on misoriented as well as exactly oriented substrates.

  18. Determination of the Peltier coefficient for gallium arsenide in a vertical Bridgman furnace

    NASA Astrophysics Data System (ADS)

    Wiegel, Michaela E. K.; Matthiesen, David H.

    2011-10-01

    The Peltier coefficient for gallium arsenide solid in contact with its melt was experimentally determined. Selenium doped gallium arsenide samples were hermetically sealed in a fused quartz ampoule and processed in a vertical Bridgman furnace. During the translation period seven sequences of current-on and current-off periods were processed into the solidifying crystal. An axial slice was mechanochemically polished and then etched. Photomicrographs of the slice were taken with differential interference contrast microscopy and were used to measure the thickness of the current-on and current-off layers. These results were used to calculate growth rates from which the Peltier coefficient was calculated. An average value of 0.107±0.015 V was determined. The values calculated from the different sequences were in excellent agreement with each other even though the sequences had different current densities, current-on durations, and current-on to current-off ratios.

  19. Sodium Flux Growth of Bulk Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of

  20. An advanced space photovoltaic concentrator array using Fresnel lenses, gallium arsenide cells, and prismatic cell covers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1988-01-01

    The current status of a space concentrator array which uses refractive optics, gallium arsenide cells, and prismatic cell covers to achieve excellent performance at a very low array mass is documented. The prismatically covered cells have established records for space cell performance (24.2 percent efficient at 100 AM0 suns and 25 C) and terrestrial single-junction cell performance (29.3 percent efficient at 200 AM1.5 suns and 25 C).

  1. An advanced space photovoltaic concentrator array using Fresnel lenses, gallium arsenide cells, and prismatic cell covers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1988-01-01

    The current status of a space concentrator array which uses refractive optics, gallium arsenide cells, and prismatic cell covers to achieve excellent performance at a very low array mass is documented. The prismatically covered cells have established records for space cell performance (24.2 percent efficient at 100 AM0 suns and 25 C) and terrestrial single-junction cell performance (29.3 percent efficient at 200 AM1.5 suns and 25 C).

  2. Performance of a Medipix3RX spectroscopic pixel detector with a high resistivity gallium arsenide sensor.

    PubMed

    Hamann, Elias; Koenig, Thomas; Zuber, Marcus; Cecilia, Angelica; Tyazhev, Anton; Tolbanov, Oleg; Procz, Simon; Fauler, Alex; Baumbach, Tilo; Fiederle, Michael

    2015-03-01

    High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred μm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of μm, an effect called charge sharing reduces a detector's spectroscopic performance. The recently developed Medipix3RX readout chip overcomes this limitation by implementing a charge summing circuit, which allows the reconstruction of the full energy information of a photon interaction in a single pixel. In this work, we present the characterization of the first Medipix3RX detector assembly with a 500 μm thick high resistivity, chromium compensated gallium arsenide sensor. We analyze its properties and demonstrate the functionality of the charge summing mode by means of energy response functions recorded at a synchrotron. Furthermore, the imaging properties of the detector, in terms of its modulation transfer functions and signal-to-noise ratios, are investigated. After more than one decade of attempts to establish gallium arsenide as a sensor material for photon counting detectors, our results represent a breakthrough in obtaining detector-grade material. The sensor we introduce is therefore suitable for high resolution X-ray imaging applications.

  3. Preliminary survey report: control technology for gallium arsenide processing at Microwave Semiconductor Corporation, Somerset, New Jersey

    SciTech Connect

    Lenihan, K.L.; Sheehy, J.W.

    1987-01-01

    The technology available to control hazardous substances in gallium arsenide applications is reviewed and evaluated in light of findings from a visit to the Microwave Semiconductor Corporation in Somerset, New Jersey. The facility has 500 employees, 64 in the gallium arsenide technical staff. Direct ion implantation or epitaxial growth, photolithography, plasma etching, and backside wafer processing are used at the facility to fabricate a gallium-arsenide wafer. Hazards exist primarily in the numerous solvents, acids, and gases employed in wafer production. These include chlorobenzene, methanol, methyl-ethyl-ketone, methyl-isobutyl-ketone, ammonia, and silane. The use of arsine gas will soon begin at the facility, which will also be hazardous to employees due to its extremely toxic properties. An environmental engineer tests for 70 hazardous chemicals in the work area, including hydrogen-fluoride, cyanide, phosgene, ammonia, formaldehyde, arsine, and phenol. The authors recommend the establishment of a program for air sampling to monitor arsenic levels and wipe sampling for arsenic surface contamination.

  4. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics.

    PubMed

    Cheng, Cheng-Wei; Shiu, Kuen-Ting; Li, Ning; Han, Shu-Jen; Shi, Leathen; Sadana, Devendra K

    2013-01-01

    Epitaxial lift-off process enables the separation of III-V device layers from gallium arsenide substrates and has been extensively explored to avoid the high cost of III-V devices by reusing the substrates. Conventional epitaxial lift-off processes require several post-processing steps to restore the substrate to an epi-ready condition. Here we present an epitaxial lift-off scheme that minimizes the amount of post-etching residues and keeps the surface smooth, leading to direct reuse of the gallium arsenide substrate. The successful direct substrate reuse is confirmed by the performance comparison of solar cells grown on the original and the reused substrates. Following the features of our epitaxial lift-off process, a high-throughput technique called surface tension-assisted epitaxial lift-off was developed. In addition to showing full wafer gallium arsenide thin film transfer onto both rigid and flexible substrates, we also demonstrate devices, including light-emitting diode and metal-oxide-semiconductor capacitor, first built on thin active layers and then transferred to secondary substrates.

  5. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    NASA Technical Reports Server (NTRS)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  6. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-11

    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  7. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    NASA Astrophysics Data System (ADS)

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-12-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  8. High resolution measurement of the carbon localized vibrational mode in gallium arsenide

    SciTech Connect

    Nagai, Naoto

    2001-06-15

    The localized vibrational mode of carbon substituted at arsenic sites in gallium arsenide (GaAs) was measured with infrared absorption spectroscopy at 0.005 cm{sup {minus}1} resolution. Well-resolved fine structures were observed, yielding quantitative information on the line half widths and intensities. The relative intensities of the isotope lines are well fitted to a probability factor calculation using a natural abundance of 55.3% {sup 69}Ga. One explanation considered is that the dipole moment due to the relative displacement of carbon with respect to the gallium atoms has a tendency to be larger when the neighboring gallium atoms are heavier ({sup 71}Ga). {copyright} 2001 American Institute of Physics.

  9. Correction: Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    PubMed

    Sarkar, Sujoy; Sampath, S

    2016-05-28

    Correction for 'Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control' by Sujoy Sarkar et al., Chem. Commun., 2016, 52, 6407-6410.

  10. Photoluminescence Study of Silicon and Oxygen Implanted Gallium Arsenides.

    DTIC Science & Technology

    1985-12-01

    26). Alongside, Fig. 24b shows the PL characteristics, in 66 p. ’II *- 1.6 1.4. 1.3 1.2. ’- " 5 ’.l 1.3 1.1 1500 3000 4500 6000 7500". Depth() Fig. 23 ...ARSENIDE THESIS Kevin Keefer Captain, USAF ~DTIC C ELECTE •MAYt12 igW B Approved for public release; distribution unlimited " " -* * .** - * * .:-; 5 ... 23 1. Capacitance-Voltage (C-V) Profiling .... 24 2. Hall Measurements ............... 25 3. Ion Implantation............ .......... . 28 III

  11. Electrical characterization of magnesium implanted gallium nitride

    NASA Astrophysics Data System (ADS)

    Krtschil, A.; Kielburg, A.; Witte, H.; Christen, J.; Krost, A.; Wenzel, A.; Rauschenbach, B.

    2002-01-01

    Gallium nitride layers grown by molecular beam epitaxy on c axis oriented sapphire substrates were implanted with 180 keV magnesium ions with ion doses between 1×1014 and 1×1016cm-2. The implantation induced defect states were investigated by temperature dependent conductivity (TDC) as well as by thermal and optical admittance spectroscopy (TAS, OAS) measurements. Dominant carrier emissions having thermal activation energies between 360 and 800 meV were found in TAS and TDC. These states are assigned to implantation induced electron traps since they do not appear in the nonimplanted reference sample. Defect states with similar transition energies were also observed in OAS resulting in an enhancement of defect-to-band transitions in the near band-gap region around 3.45 eV, in the blue band around 3.0 eV, as well as in the midgap range for photon energies between 2.5 and 1.80 eV, respectively. In addition, new transitions were found at 2.1 and 1.95 eV. Furthermore, transitions from implantation induced shallow states were observed, i.e., the magnesium acceptor as well as a new donor level at about 70 meV, tentatively discussed as nitrogen vacancy. The critical ion dose for amorphization was determined to be between 5×1015 and 1×1016Mg+ cm-2 using x-ray diffraction.

  12. Gallium nitride photocathode development for imaging detectors

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H. W.; Tremsin, Anton S.; Vallerga, John V.; McPhate, Jason B.; Hull, Jeffrey S.; Malloy, James; Dabiran, Amir M.

    2008-07-01

    Recent progress in Gallium Nitride (GaN, AlGaN, InGaN) photocathodes show great promise for future detector applications in Astrophysical instruments. Efforts with opaque GaN photocathodes have yielded quantum efficiencies up to 70% at 120 nm and cutoffs at ~380 nm, with low out of band response, and high stability. Previous work with semitransparent GaN photocathodes produced relatively low quantum efficiencies in transmission mode (4%). We now have preliminary data showing that quantum efficiency improvements of a factor of 5 can be achieved. We have also performed two dimensional photon counting imaging with 25mm diameter semitransparent GaN photocathodes in close proximity to a microchannel plate stack and a cross delay line readout. The imaging performance achieves spatial resolution of ~50μm with low intrinsic background (below 1 event sec-1 cm-2) and reasonable image uniformity. GaN photocathodes with significant quantum efficiency have been fabricated on ceramic MCP substrates. In addition GaN has been deposited at low temperature onto quartz substrates, also achieving substantial quantum efficiency.

  13. Gallium nitride T-ray transmission characteristics

    NASA Astrophysics Data System (ADS)

    Ferguson, Bradley; Mickan, Samuel P.; Hubbard, Seth; Pavlidis, Dimitris; Abbott, Derek

    2001-11-01

    T-ray imaging and spectroscopy both exploit the terahertz (THz) region of the spectrum. This gives rise to very promising industrial and biomedical applications, where non-invasive and sensitive identification of a substance is achievable, through a material's distinct absorption features in the THz band. Present T-ray systems are limited by low output power, and the race is now on to find more efficient THz emitters. We discuss the feasibility of a novel high-power gallium nitride emitter for terahertz generation. This paper details the advantages of such an emitter, primarily by virtue of its high-voltage capability, and evaluates the benefits of sapphire and silicon carbide substrates. The far-infrared transmission spectra for thin samples of GaN, sapphire and SiC are reported. A high-power THz emitter, that operates at room temperature and is potentially low-cost will open up a host of new possibilities and applications. The central result in this paper demonstrates that sapphire is the better choice over SiC, for the GaN supporting substrate, as we show that it has superior THz transmission characteristics.

  14. Gallium nitride photocathodes for imaging photon counters

    NASA Astrophysics Data System (ADS)

    Siegmund, Oswald H. W.; Hull, Jeffrey S.; Tremsin, Anton S.; McPhate, Jason B.; Dabiran, Amir M.

    2010-07-01

    Gallium nitride opaque and semitransparent photocathodes provide high ultraviolet quantum efficiencies from 100 nm to a long wavelength cutoff at ~380 nm. P (Mg) doped GaN photocathode layers ~100 nm thick with a barrier layer of AlN (22 nm) on sapphire substrates also have low out of band response, and are highly robust. Opaque GaN photocathodes are relatively easy to optimize, and consistently provide high quantum efficiency (70% at 120 nm) provided the surface cleaning and activation (Cs) processes are well established. We have used two dimensional photon counting imaging microchannel plate detectors, with an active area of 25 mm diameter, to investigate the imaging characteristics of semitransparent GaN photocathodes. These can be produced with high (20%) efficiency, but the thickness and conductivity of the GaN must be carefully optimized. High spatial resolution of ~50 μm with low intrinsic background (~7 events sec-1 cm-2) and good image uniformity have been achieved. Selectively patterned deposited GaN photocathodes have also been used to allow quick diagnostics of optimization parameters. GaN photocathodes of both types show great promise for future detector applications in ultraviolet Astrophysical instruments.

  15. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    NASA Technical Reports Server (NTRS)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  16. Effect of gallium-arsenide laser, gallium-aluminum-arsenide laser and healing ointment on cutaneous wound healing in Wistar rats.

    PubMed

    Gonçalves, R V; Mezêncio, J M S; Benevides, G P; Matta, S L P; Neves, C A; Sarandy, M M; Vilela, E F

    2010-04-01

    This study determined the effects of gallium-aluminum-arsenide laser (GaAlAs), gallium-arsenide laser (GaAs) and Dersani healing ointment on skin wounds in Wistar rats. The parameters analyzed were: type I and III collagen fiber concentrations as well as the rate of wound closure. Five wounds, 12 mm in diameter, were made on the animals' backs. The depth of the surgical incision was controlled by removing the epithelial tissue until the dorsal muscular fascia was exposed. The animals were anesthetized with ketamine and xylazine via intraperitoneal injection. The rats were randomly divided into five groups of 6 animals each, according to the treatment received. Group 1 (L4): GaAs laser (4 J/cm(2)); group 2 (L30): GaAlAs laser (30 J/cm(2)); group 3 (L60): GaAlAs laser (60 J/cm(2)); group 4 (D): Dersani ointment; group 5 (control): 0.9% saline. The applications were made daily over a period of 20 days. Tissue fragments were stained with picrosirius to distinguish type I collagen from type III collagen. The collagen fibers were photo-documented and analyzed using the Quantum software based on the primary color spectrum (red, yellow and blue). Significant results for wound closing rate were obtained for group 1 (L4), 7.37 mm/day. The highest concentration of type III collagen fibers was observed in group 2 (L30; 37.80 + or - 7.10%), which differed from control (29.86 + or - 5.15%) on the 20th day of treatment. The type I collagen fibers of group 1 (L4; 2.67 + or - 2.23%) and group 2 (L30; 2.87 + or - 2.40%) differed significantly from control (1.77 + or - 2.97%) on the 20th day of the experiment.

  17. Electrical, Luminescence and SIMS (Secondary Ion Mass Spectroscopy) Characterization of Carbon Implanted Vapor Phase Epitaxial Gallium Arsenide.

    DTIC Science & Technology

    1983-12-01

    Antell, G.R. Appl. Phys. Lett. 30, 432 (1977). 85. Tuck, B., G.A. Adeboyega, P.R. Jay , M.J. Cardwell. Gallium Arsenide and Related Compounds, 1978...R. Gallium Arsenide and Related Compounds (St. Louis), 1976, .., Inst. Phys. Conf. Ser. No. 33b: Chap. 4. 91. Hallals, J., A. Mircea -Roussel, J.P...Nordqulst, P.G. Slebenmann. J. Appl. Phys. 51, 4861 (1980). 93. Clegg, J.B., G.B. Scott, J. Hallals, M. Mircea -Roussel. J. Appl. Phys. 52, 2 (1981). BIB-5

  18. Gallium Arsenide Pilot Line for High Performance Components

    DTIC Science & Technology

    1988-06-02

    nitride layer under the metallization and by growing a superlattice structure in the GaAs. The reduction in substrate current made it possible to...using a superlattice structure in the GaAs. This has allowed the characterization of a photovoltaic effect in which current flows into the gate and out... laser programming structures . LASERGI is principally concerned with laser interactions with TOPMET (the upper level of circuit interconnect), while

  19. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    PubMed Central

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562

  20. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate.

    PubMed

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  1. Terahertz emission from collapsing field domains during switching of a gallium arsenide bipolar transistor.

    PubMed

    Vainshtein, Sergey; Kostamovaara, Juha; Yuferev, Valentin; Knap, Wojciech; Fatimy, Abdel; Diakonova, Nina

    2007-10-26

    Broadband pulsed THz emission with peak power in the sub-mW range has been observed experimentally during avalanche switching in a gallium arsenide bipolar junction transistor at room temperature, while significantly higher total generated power is predicted in simulations. The emission is attributed to very fast oscillations in the conductivity current across the switching channels, which appear as a result of temporal evolution of the field domains generated in highly dense electron-hole plasma. This plasma is formed in turn by powerful impact ionization in multiple field domains of ultrahigh amplitude.

  2. DNA detection using plasmonic enhanced near-infrared photoluminescence of gallium arsenide.

    PubMed

    Tang, Longhua; Chun, Ik Su; Wang, Zidong; Li, Jinghong; Li, Xiuling; Lu, Yi

    2013-10-15

    Efficient near-infrared detection of specific DNA with single nucleotide polymorphism selectivity is important for diagnostics and biomedical research. Herein, we report the use of gallium arsenide (GaAs) as a sensing platform for probing DNA immobilization and targeting DNA hybridization, resulting in ∼8-fold enhanced GaAs photoluminescence (PL) at ∼875 nm. The new signal amplification strategy, further coupled with the plasmonic effect of Au nanoparticles, is capable of detecting DNA molecules with a detection limit of 0.8 pM and selectivity against single base mismatches. Such an ultrasensitive near-infrared sensor can find a wide range of biochemical and biomedical applications.

  3. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.

    PubMed

    Shambat, Gary; Ellis, Bryan; Mayer, Marie A; Majumdar, Arka; Haller, Eugene E; Vučković, Jelena

    2011-04-11

    We demonstrate a gallium arsenide photonic crystal cavity injection-based electro-optic modulator coupled to a fiber taper waveguide. The fiber taper serves as a convenient and tunable waveguide for cavity coupling with minimal loss. Localized electrical injection of carriers into the cavity region via a laterally doped p-i-n diode combined with the small mode volume of the cavity enable ultra-low energy modulation at sub-fJ/bit levels. Speeds of up to 1 GHz are demonstrated with photoluminescence lifetime measurements revealing that the ultimate limit goes well into the tens of GHz.

  4. Analytical and experimental procedures for determining propagation characteristics of millimeter-wave gallium arsenide microstrip lines

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.

    1989-01-01

    In this report, a thorough analytical procedure is developed for evaluating the frequency-dependent loss characteristics and effective permittivity of microstrip lines. The technique is based on the measured reflection coefficient of microstrip resonator pairs. Experimental data, including quality factor Q, effective relative permittivity, and fringing for 50-omega lines on gallium arsenide (GaAs) from 26.5 to 40.0 GHz are presented. The effects of an imperfect open circuit, coupling losses, and loading of the resonant frequency are considered. A cosine-tapered ridge-guide text fixture is described. It was found to be well suited to the device characterization.

  5. Development of gallium arsenide high-speed, low-power serial parallel interface modules: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Final report to NASA LeRC on the development of gallium arsenide (GaAS) high-speed, low power serial/parallel interface modules. The report discusses the development and test of a family of 16, 32 and 64 bit parallel to serial and serial to parallel integrated circuits using a self aligned gate MESFET technology developed at the Honeywell Sensors and Signal Processing Laboratory. Lab testing demonstrated 1.3 GHz clock rates at a power of 300 mW. This work was accomplished under contract number NAS3-24676.

  6. On-orbit performance of LIPS gallium arsenide solar cell experiment

    NASA Technical Reports Server (NTRS)

    Bavaro, T.; Francis, R.; Pennell, M.

    1984-01-01

    Telemetry from the Living Plume Shield's gallium arsenide solar panel experiment was evaluated to determine degradation. The data were culled to preclude spurious results from possible shadowing or inaccurate measurements on a cold array. Two independent methods were then used to obtain the maximum power points and the various characteristics of the solar array. Fill factor, open circuit voltage, short circuit current, and series and shunt resistances were examined. The data analysis concluded that, to date, nearly all of the solar array degradation is due to the reduction in the short circuit current.

  7. Formation of gallium arsenide nanostructures in Pyrex glass.

    PubMed

    Howlader, Matiar M R; Zhang, Fangfang; Deen, M Jamal

    2013-08-09

    In this paper, we report on a simple, low-cost process to grow GaAs nanostructures of a few nm diameter and ∼50 nm height in Pyrex glass wafers. These nanostructures were grown by sequential plasma activation of GaAs and Pyrex glass surfaces using a low-temperature hybrid plasma bonding technology in air. Raman analyses of the activated surfaces show gallium oxide and arsenic oxide, as well as suppressed non-bridging oxygen with aluminate and boroxol chains in glass. The flow of alkaline ions toward the cathode and the replacement of alkaline ions by Ga and As ions in glass result in the growth of GaAs nanostructures in nanopores/nanoscratches in glass. These nanopores/nanoscratches are believed to be the origin of the growth of the nanostructures. It was found that the length of the GaAs nanostructures may be controlled by an electrostatic force. Cross-sectional observation of the bonded interface using high-resolution transmission electron microscopy confirms the existence of the nanostructures. A possible application of the nanostructures in glass is a filtration system for biomolecules.

  8. Interfacing epitaxial oxides to gallium nitride

    NASA Astrophysics Data System (ADS)

    Losego, Mark Daniel

    Molecular beam epitaxy (MBE) is lauded for its ability to control thin film material structures at the atomic level. This precision of control can improve performance of microelectronic devices and cultivate the development of novel device structures. This thesis explores the utility of MBE for designing interfaces between oxide epilayers and the wide band gap semiconductor gallium nitride (GaN). The allure of wide gap semiconductor microelectronics (like GaN, 3.4 eV) is their ability to operate at higher frequencies, higher powers, and higher temperatures than current semiconductor platforms. Heterostructures between ferroelectric oxides and GaN are also of interest for studying the interaction between GaN's fixed polarization and the ferroelectric's switchable polarization. Two major obstacles to successful integration of oxides with GaN are: (1) interfacial trap states; and (2) small electronic band offsets across the oxide/nitride interface due to the semiconductor's large band gap. For this thesis, epitaxial rocksalt oxide interfacial layers (˜8 eV band gap) are investigated as possible solutions to overcoming the challenges facing oxide integration with GaN. The cubic close-packed structure of rocksalt oxides forms a suitable epitaxial interface with the hexagonal close-packed wurtzite lattice of GaN. Three rocksalt oxide compounds are investigated in this thesis: MgO, CaO, and YbO. All are found to have a (111) MO || (0001) GaN; <1 10> MO || <11 20> GaN epitaxial relationship. Development of the epilayer microstructure is dominated by the high-energy polar growth surface (drives 3D nucleation) and the interfacial symmetry, which permits the formation of twin boundaries. Using STEM, strain relief for these ionicly bonded epilayers is observed to occur through disorder within the initial monolayer of growth. All rocksalt oxides demonstrate chemical stability with GaN to >1000°C. Concurrent MBE deposition of MgO and CaO is known to form complete solid

  9. Dynamics of formation of photoresponse in a detector structure made of gallium arsenide

    SciTech Connect

    Ayzenshtat, G. I. Lelekov, M. A.; Tolbanov, O. P.

    2008-04-15

    The influence of capture effects on the characteristics of detectors of the ionizing radiation based on semi-insulating gallium arsenide is considered. Generation of nonequilibrium electrons and holes along the entire thickness of the active region was performed under illumination with an infrared light-emitting diode with a wavelength of 0.9 {mu}m. In this case, the situation emerging in the device structure under the effect of X-ray radiation or a high-energy electron beam was simulated. It is shown that the variation in the shape of the output signal with time in this case is caused by variation in the electric field profile due to the capture of holes at deep centers in gallium arsenide. An absolutely different distribution of the electric field emerges in the structure under irradiation of a semitransparent cathode of the structure with a red light-emitting diode, emission of which penetrates into the active region for mere 1 {mu}m. In this case, the transformation of the electric field is caused by the capture of electrons. Under the prolonged effect of such radiation, a space-charge-limited current mode emerges in the device.

  10. Range-gated imaging with an indium-gallium-arsenide-based focal plane array

    NASA Astrophysics Data System (ADS)

    Brubaker, Robert M.; Ettenberg, Martin H.; O'Grady, Matthew T.; Blessinger, Michael A.; Dries, J. C.

    2004-08-01

    Range-gated imaging using indium gallium arsenide based focal plane arrays enables both depth and intensity imaging with eye-safe lasers while remaining covert to night vision goggles. We report on a focal plane array consisting of an indium gallium arsenide photodiode array hybrid-integrated with a CMOS readout circuit, resulting in an all solid state device. A 5 V supply avoids the complication of high voltage supplies and improves reliability, while also allowing the device to be small and lightweight. The spectral sensitivity of InGaAs extends from 0.9 microns to 1.7 microns, allowing the use of commercially available pulsed lasers with 1.5 micron wavelength, several millijoule pulse energies, and nanosecond scale pulse durations. SUI is developing a 320 x 256 pixel imager with the ability to conduct range gated imaging with sub-100 ns gates, while also allowing a 16 ms integration time for imaging in a staring mode. The pixels are fabricated on a 25 micron pitch for a compact device, and all pixels are gated simultaneously for "snapshot" exposure. High in-pixel gain with nearly noiseless amplification and low dark current enable high sensitivity imaging from ultra-short gates to video rate imaging.

  11. Growth of epitaxial iron nitride ultrathin film on zinc-blende gallium nitride

    SciTech Connect

    Pak, J.; Lin, W.; Wang, K.; Chinchore, A.; Shi, M.; Ingram, D. C.; Smith, A. R.; Sun, K.; Lucy, J. M.; Hauser, A. J.; Yang, F. Y.

    2010-07-15

    The authors report the growth of iron nitride on zinc-blende gallium nitride using molecular beam epitaxy. First, zinc-blende GaN is grown on a magnesium oxide substrate having (001) orientation; second, an ultrathin layer of FeN is grown on top of the GaN layer. In situ reflection high-energy electron diffraction is used to monitor the surface during growth, and a well-defined epitaxial relationship is observed. Cross-sectional transmission electron microscopy is used to reveal the epitaxial continuity at the gallium nitride-iron nitride interface. Surface morphology of the iron nitride, similar to yet different from that of the GaN substrate, can be described as plateau valley. The FeN chemical stoichiometry is probed using both bulk and surface sensitive methods, and the magnetic properties of the sample are revealed.

  12. Spark-source mass spectrometric assessment of silicon concentrations in silicon-doped gallium arsenide single crystals.

    PubMed

    Wiedemann, B; Meyer, J D; Jockel, D; Freyhardt, H C; Birkmann, B; Müller, G

    2001-07-01

    The spark-source mass spectrometric assessment of silicon concentrations in silicon-doped vertical-gradient-freeze gallium arsenide is presented. The silicon concentrations determined are compared with the charge-carrier densities measured by means of the Hall effect with van der Pauw symmetry along the axis of a single crystal.

  13. The metabolism of inorganic arsenic oxides, gallium arsenide, and arsine: a toxicochemical review.

    PubMed

    Carter, Dean E; Aposhian, H Vasken; Gandolfi, A Jay

    2003-12-15

    The aim of this review is to compare the metabolism, chemistry, and biological effects to determine if either of the industrial arsenicals (arsine and gallium arsenide) act like the environmental arsenic oxides (arsenite and arsenate). The metabolism of the arsenic oxides has been extensively investigated in the past 4 years and the differences between the arsenic metabolites in the oxidation states +III versus +V and with one or two methyl groups added have shown increased importance. The arsenic oxide metabolism has been compared with arsine (oxidation state -III) and arsenide (oxidation state between 0 to -III). The different metabolites appear to have different strengths of reaction for binding arsenic (III) to thiol groups, their oxidation-reduction reactions and their forming an arsenic-carbon bond. It is unclear if the differences in parameters such as the presence or absence of methyl metabolites, the rates of AsV reduction compared to the rates of AsIII oxidation, or the competition of phosphate and arsenate for cellular uptake are large enough to change biological effects. The arsine rate of decomposition, products of metabolism, target organ of toxic action, and protein binding appeared to support an oxidized arsenic metabolite. This arsine metabolite was very different from anything made by the arsenic oxides. The gallium arsenide had a lower solubility than any other arsenic compound and it had a disproportionate intensity of lung damage to suggest that the GaAs had a site of contact interaction and that oxidation reactions were important in its toxicity. The urinary metabolites after GaAs exposure were the same as excreted by arsenic oxides but the chemical compounds responsible for the toxic effects of GaAs are different from the arsenic oxides. The review concludes that there is insufficient evidence to equate the different arsenic compounds. There are several differences in the toxicity of the arsenic compounds that will require substantial

  14. Initial oxidation of gallium arsenide (001)-β2(2 x 4) surface using density functional theory.

    PubMed

    Kim, Dae-Hee; Kim, Dae-Hyun; Kim, Yeong-Cheol

    2014-10-01

    The initial oxidation of a gallium arsenide (001)-β2(2 x 4) surface with an oxygen molecule was investigated using density functional theory. The oxygen molecule was adsorbed on the surface without any energy barrier. The dissociation of the oxygen molecule on the first arsenic layer had two dissociation paths; the inter-dimer and intra-dimer. The inter-dimer dissociation was the dominant dissociation path based on the energy barriers. The two dissociated oxygen atoms preferred breaking the arsenic-gallium back-bond to form arsenic-oxygen-gallium bonds. Our results are in good agreement with literature of the scanning tunneling microscope study.

  15. Trap Characterization in High Field, High Temperature Stressed Gallium Nitride High Electron Mobility Transistors

    DTIC Science & Technology

    2013-03-01

    CHARACTERIZATION IN HIGH FIELD, HIGH TEMPERATURE STRESSED GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS by Kevin B. Pham March 2013 Thesis...TEMPERATURE STRESSED GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS 5. FUNDING NUMBERS 6. AUTHOR(S) Kevin B. Pham 7. PERFORMING ORGANIZATION...ABSTRACT (maximum 200 words) Gallium Nitride (GaN) high electron mobility transistors (HEMTs) offer higher power output over existing technology. However

  16. Straw man trade between multi-junction, gallium arsenide, and silicon solar cells

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.

    1995-01-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar cells and cost approximately five times as much per unit power at the cell level. A straw man trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A straw man trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552 thousand dollars per kilogram to launch and service science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. If the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and serviced at a price of approximately $58 thousand per kilogram. The trade shows that even if the multi-junction arrays are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $182 thousand per kilogram. This is still much less than original $552 thousand per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency

  17. Cost Trade Between Multi-Junction, Gallium Arsenide, and Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.

    1995-01-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar 2 cells and cost approximately five times as much per unit power at the cell level. A trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552,000 dollars per kilogram to launch and suppon3science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. ff the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and supported at a price of approximately $58,000 per kilogram. The trade shows that even if the multi-junction cells are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $180,000 per kilogram. This is still much less than the original $552,000 per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency solar cells for TRMM is far greater

  18. Straw man trade between multi-junction, gallium arsenide, and silicon solar cells

    SciTech Connect

    Gaddy, E.M.

    1995-10-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar cells and cost approximately five times as much per unit power at the cell level. A straw man trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A straw man trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552 thousand dollars per kilogram to launch and service science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. If the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and serviced at a price of approximately $58 thousand per kilogram. The trade shows that even if the multi-junction arrays are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $182 thousand per kilogram. This is still much less than original $552 thousand per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty.

  19. Straw man trade between multi-junction, gallium arsenide, and silicon solar cells

    NASA Technical Reports Server (NTRS)

    Gaddy, Edward M.

    1995-01-01

    Multi-junction (MJ), gallium arsenide (GaAs), and silicon (Si) solar cells have respective test efficiencies of approximately 24%, 18.5% and 14.8%. Multi-junction and gallium arsenide solar cells weigh more than silicon solar cells and cost approximately five times as much per unit power at the cell level. A straw man trade is performed for the TRMM spacecraft to determine which of these cell types would have offered an overall performance and price advantage to the spacecraft. A straw man trade is also performed for the multi-junction cells under the assumption that they will cost over ten times that of silicon cells at the cell level. The trade shows that the TRMM project, less the cost of the instrument, ground systems and mission operations, would spend approximately $552 thousand dollars per kilogram to launch and service science in the case of the spacecraft equipped with silicon solar cells. If these cells are changed out for gallium arsenide solar cells, an additional 31 kilograms of science can be launched and serviced at a price of approximately $90 thousand per kilogram. The weight reduction is shown to derive from the smaller area of the array and hence reductions in the weight of the array substrate and supporting structure. If the silicon solar cells are changed out for multi-junction solar cells, an additional 45 kilograms of science above the silicon base line can be launched and serviced at a price of approximately $58 thousand per kilogram. The trade shows that even if the multi-junction arrays are priced over ten times that of silicon cells, a price that is much higher than projected, that the additional 45 kilograms of science are launched and serviced at $182 thousand per kilogram. This is still much less than original $552 thousand per kilogram to launch and service the science. Data and qualitative factors are presented to show that these figures are subject to a great deal of uncertainty. Nonetheless, the benefit of the higher efficiency

  20. Characterization of solar cells for space applications. Volume 13: Electrical characteristics of Hughes LPE gallium arsenide solar cells as a function of intensity and temperature

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Beckert, D. M.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1980-01-01

    Electrical characteristics of Hughes Liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature.

  1. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    SciTech Connect

    Niu, Nan Woolf, Alexander; Wang, Danqing; Hu, Evelyn L.; Zhu, Tongtong; Oliver, Rachel A.; Quan, Qimin

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  2. Neutron detection using boron gallium nitride semiconductor material

    SciTech Connect

    Atsumi, Katsuhiro; Inoue, Yoku; Nakano, Takayuki; Mimura, Hidenori; Aoki, Toru

    2014-03-01

    In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  3. Gallium nitride nanowires by maskless hot phosphoric wet etching

    NASA Astrophysics Data System (ADS)

    Bharrat, D.; Hosalli, A. M.; Van Den Broeck, D. M.; Samberg, J. P.; Bedair, S. M.; El-Masry, N. A.

    2013-08-01

    We demonstrate gallium nitride (GaN) nanowires formation by controlling the selective and anisotropic etching of N-polar GaN in hot phosphoric acid. Nanowires of ˜109/cm,2 total height of ˜400 nm, and diameters of 170-200 nm were obtained. These nanowires have both non-polar {11¯00}/ {112¯0} and semi-polar {1011¯} facets. X-Ray Diffraction characterization shows that screw dislocations are primarily responsible for preferential etching to create nanowires. Indium gallium nitride multi-quantum wells (MQWs) grown on these GaN nanowires showed a blue shift in peak emission wavelength of photoluminescence spectra, and full width at half maximum decreased relative to MQWs grown on planar N-polar GaN, respectively.

  4. Amorphous carbon buffer layers for separating free gallium nitride films

    NASA Astrophysics Data System (ADS)

    Altakhov, A. S.; Gorbunov, R. I.; Kasharina, L. A.; Latyshev, F. E.; Tarala, V. A.; Shreter, Yu. G.

    2016-11-01

    The possibility of using amorphous diamond-like carbon (DLC) films for self-separation of gallium nitride (GaN) layers grown by hydride vapor-phase epitaxy has been analyzed. DLC films have been synthesized by plasma-enhanced chemical vapor deposition under low pressure on sapphire (Al2O3) substrates with a (0001) crystallographic orientation. The samples have been studied by the methods of Raman scattering and X-ray diffraction analysis. It is shown that thin DLC films affect only slightly the processes of nucleation and growth of gallium nitride films. Notably, the strength of the "GaN film-Al2O3" substrate interface decreases, which facilitates separation of the GaN layers.

  5. Aqueous stability of Ga- and N-polar gallium nitride.

    PubMed

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-01-08

    The stability of III-nitride semiconductors in various solutions becomes important as researchers begin to integrate them into sensing platforms. This study quantitatively compares the stability of GaN surfaces with different polarities. This type of quantification is important because it represents the first step toward designing semiconductor material interfaces compatible with solution conditions. A stability study of Ga- and N-polar GaN was conducted by immersion of the surfaces in deionized H(2)O, pH 5, pH 9, and H(2)O(2) solutions for 7 days. Inductively coupled plasma mass spectrometry of the solutions was conducted to determine the amount of gallium leached from the surface. X-ray photoelectron spectroscopy and atomic force microscopy were used to compare the treated surfaces to untreated surfaces. The results show that both gallium nitride surface types exhibit the greatest stability in acidic and neutral solutions. Gallium polar surfaces were found to exhibit superior stability to nitrogen polar surfaces in the solutions studied. Our findings highlight the need for further research on surface passivation and functionalization techniques for polar III-nitride semiconductors.

  6. A I-V analysis of irradiated Gallium Arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Heulenberg, A.; Maurer, R. H.; Kinnison, J. D.

    1991-01-01

    A computer program was used to analyze the illuminated I-V characteristics of four sets of gallium arsenide (GaAs) solar cells irradiated with 1-MeV electrons and 10-MeV protons. It was concluded that junction regions (J sub r) dominate nearly all GaAs cells tested, except for irradiated Mitsubishi cells, which appear to have a different doping profile. Irradiation maintains or increases the dominance by J sub r. Proton irradiation increases J sub r more than does electron irradiation. The U.S. cells were optimized for beginning of life (BOL) and the Japanese for end of life (EOL). I-V analysis indicates ways of improving both the BOL and EOL performance of GaAs solar cells.

  7. Bowtie nanoantenna integrated with indium gallium arsenide antimonide for uncooled infrared detector with enhanced sensitivity.

    PubMed

    Choi, Sangjo; Sarabandi, Kamal

    2013-12-10

    A novel high-impedance nanoantenna with an embedded matching network is implemented to realize a highly sensitive infrared detector. A bowtie antenna is operated at its antiparallel resonance and loaded with a small low-bandgap (E(g)=0.52  eV) indium gallium arsenide antimonide (InGaAsSb) p-n junction. The structure is optimized for maximum power transfer and significant field enhancement at its terminals for a desired frequency band where the maximum quantum efficiency of InGaAsSb is observed. The sensitivity improvement of the proposed detector is evaluated against the traditional bulk detector and it is shown that the detectivity is improved by the field enhancement factor, which is approximately 20 for the case considered here.

  8. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  9. Terahertz refractive anisotropy on femtosecond laser pulse ablated semi-insulating gallium arsenide surface

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenyu; Song, Zhiqiang; Bai, Feng; Shi, Wangzhou; Zhao, Quan-Zhong

    2017-04-01

    We present an artificial variation of THz refractive index ellipse from isotropy to anisotropy at the surface of <100>-oriented semi-insulating gallium arsenide (SI-GaAs) via femtosecond pulse laser ablation. The refractive index ellipse is determined by the frequency and the polarization of incident THz radiation. The THz wave is localized in the gap of columns of micro-ripples when the polarization of THz is parallel to the micro-ripples, while no electric energy localization occurs when the polarization of THz is perpendicular to the micro-ripples. We found that the laser ablation process can induce a periodic distribution of n-type GaAs at the surface of SI-GaAs. These n-type GaAs micro-ripples work as plasmonic resonators, which are proposed to be the origin of the induced refractive index anisotropy.

  10. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Astrophysics Data System (ADS)

    Bhasin, K. B.; Connolly, D. J.

    1986-10-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  11. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    PubMed Central

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  12. Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module

    SciTech Connect

    Silverman, T. J.; Deceglie, M. G.; Marion, B.; Cowley, S.; Kayes, B.; Kurtz, S.

    2013-06-01

    We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitable water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.

  13. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  14. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1987-01-01

    A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.

  15. Gallium arsenide quantum well-based far infrared array radiometric imager

    NASA Technical Reports Server (NTRS)

    Forrest, Kathrine A.; Jhabvala, Murzy D.

    1991-01-01

    We have built an array-based camera (FIRARI) for thermal imaging (lambda = 8 to 12 microns). FIRARI uses a square format 128 by 128 element array of aluminum gallium arsenide quantum well detectors that are indium bump bonded to a high capacity silicon multiplexer. The quantum well detectors offer good responsivity along with high response and noise uniformity, resulting in excellent thermal images without compensation for variation in pixel response. A noise equivalent temperature difference of 0.02 K at a scene temperature of 290 K was achieved with the array operating at 60 K. FIRARI demonstrated that AlGaAS quantum well detector technology can provide large format arrays with performance superior to mercury cadmium telluride at far less cost.

  16. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1987-01-01

    A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.

  17. Carrier depletion and electrical optimization of gallium arsenide plasmonic solar cell with a rear metallic grating

    NASA Astrophysics Data System (ADS)

    Shang, Aixue; Li, Xiaofeng

    2015-02-01

    Plasmonic nanostructures have been extensively considered for photovoltaics due to the outstanding light-trapping capability; however, the intrinsic processes of carrier transport, recombination and collection have seldom been concerned. We report a complete optoelectronic investigation for plasmonic gallium arsenide solar cells (SCs) with a rear silver grating, by especially quantifying the plasmonics-induced photocurrent loss. It is found that, although the plasmonic design shows indeed much improved output photocurrent, its potential in improving the performance of SCs has not been fully exploited since a lot of energy has been wasted in the form of carrier depletion. A further design which electrically separates the plasmonic nanostructure from the core PN junction is verified to be an effective solution in improving the electrical performance of the SCs. The complete optoelectronic consideration is expected to advance the design of plasmonic SCs for thin-film and high-efficiency.

  18. Charge transport in detectors on the basis of gallium arsenide compensated with chromium

    SciTech Connect

    Ayzenshtat, G. I. Lelekov, M. A.; Novikov, V. A.; Okaevich, L. S.; Tolbanov, O. P.

    2007-05-15

    It is shown that, in spite of the linearity of current-voltage characteristics of ionizing-radiation detectors based on semi-insulating GaAs compensated with Cr, the charge transport in these detectors is controlled by the barrier contacts at the anode and cathode. The anode contact is antiblocking for holes and behaves as an ohmic contact, whereas the cathode contact is blocking for electrons. This circumstance gives rise to the depletion of electrons in the active region under operating conditions. It is shown that this effect can bring about a decrease in the dark currents by a factor of 3 in comparison with the calculated value of the limiting current in a resistive structure based on semi-insulating gallium arsenide, which makes it possible to reduce the detector noise.

  19. Gallium arsenide solar cells-status and prospects for use in space

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W.; Flood, D.; Weinberg, I.

    1981-01-01

    Gallium Arsenide solar cells now equal or surpass the ubiquitous silicon solar cells in efficiency, radiation resistance, annealability, and in the capability for producing usable power output at elevated temperatures. NASA has developed a long-range research and development program to capitalize on these manifold advantages. In this paper we review the current state and future prospects for R&D in this promising solar cell material, and indicate the progress being made toward development of GaAs cells suitable for a variety of space missions. Results are presented from studies which demonstrate conclusively that GaAs cells can provide a net mission cost and weight savings for certain important mission classes.

  20. Morphology dependence of interfacial oxidation states of gallium arsenide under near ambient conditions

    SciTech Connect

    Zhang, Xueqiang; Lamere, Edward; Ptasinska, Sylwia; Liu, Xinyu; Furdyna, Jacek K.

    2014-05-05

    The manipulation of semiconductor surfaces by tuning their electronic properties and surface chemistry is an essential ingredient for key applications in areas such as electronics, sensors, and photovoltaic devices. Here, in-situ surface reactions on gallium arsenide (GaAs) are monitored for two morphologies: a simple planar crystalline surface with (100) orientation and an ensemble of GaAs nanowires, both exposed to oxygen environment. A variety of oxide surface species, with a significant enhancement in oxidation states in the case of nanowires, are detected via near ambient pressure X-ray photoelectron spectroscopy. This enhancement in oxidation of GaAs nanowires is due to their higher surface area and the existence of more active sites for O{sub 2} dissociation.

  1. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    PubMed

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-06-11

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  2. A I-V analysis of irradiated Gallium Arsenide solar cells

    NASA Astrophysics Data System (ADS)

    Heulenberg, A.; Maurer, R. H.; Kinnison, J. D.

    1991-08-01

    A computer program was used to analyze the illuminated I-V characteristics of four sets of gallium arsenide (GaAs) solar cells irradiated with 1-MeV electrons and 10-MeV protons. It was concluded that junction regions (J sub r) dominate nearly all GaAs cells tested, except for irradiated Mitsubishi cells, which appear to have a different doping profile. Irradiation maintains or increases the dominance by J sub r. Proton irradiation increases J sub r more than does electron irradiation. The U.S. cells were optimized for beginning of life (BOL) and the Japanese for end of life (EOL). I-V analysis indicates ways of improving both the BOL and EOL performance of GaAs solar cells.

  3. Structure and electrical characterization of gallium arsenide nanowires with different V/III ratio growth parameters

    SciTech Connect

    Muhammad, R.; Ahamad, R.; Ibrahim, Z.; Othaman, Z.

    2014-03-05

    Gallium arsenide (GaAs) nanowires were grown vertically on GaAs(111)B substrate by gold-assisted using metal-organic chemical vapour deposition. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and conductivity atomic force microscopy (CAFM) analysis were carried out to investigate the effects of V/III ratio on structural properties and current-voltage changes in the wires. Results show that GaAs NWs grow preferably in the wurtzite crystal structure than zinc blende crystal structure with increasing V/III ratio. Additionally, CAFM studies have revealed that zincblende nanowires indicate ohmic characteristic compared to oscillation current occurred for wurtzite structures. The GaAs NWs with high quality structures are needed in solar cells technology for trapping energy that directly converts of sunlight into electricity with maximum capacity.

  4. X-ray studies of defects in diamond and gallium arsenide

    NASA Astrophysics Data System (ADS)

    Clackson, Stephen Gregory

    Diamonds from mines in South Africa, and the Argyle Mine in Western Australia, have been compared using synchrotron transmission Laue photography (Laue topography), and the Argyle stones were found to be more variable in quality. By measuring the asterism of the Laue spots, quantitative estimates of lattice distortion have been made. The various types of crystal distortion, and their effects on Laue patterns, have been considered, and it has been determined that distortion in the Argyle diamonds primarily takes the form of mosaic structure. A modification of the technique of x-ray spike topography, where parts of the specimen were obscured by a tantalum screen, has been used to estimate platelet dimensions at different positions in type 1a diamonds. Direct measurements of the platelets in some of the samples have been made from transmission electron micrographs, and show that the method is reasonably reliable for platelets below about 400 A in diameter. In the range 1361.3 to 1371.3 wavenumbers, a correlation has been confirmed between 'platelet peak' position in the infrared spectrum and platelet size, in the sense of smaller wavenumbers being associated with larger platelets. Topographs of gallium arsenide wafers, used for device fabrication, have been taken. A dislocation lineage has been studied in a (100) wafer with field effect transistor arrays fabricated onto it. It has been found to cause a drop of approximately 40 mV in the pinch-off voltage of transistors it touches. The feature has been shown to have an associated Burgers vector of the 211-type, and to be accompanied by a lattice tilt in the wafer of nearly 30". Previous work in each area of investigation is reviewed, and brief introductions on diamond and gallium arsenide given, together with introductions to the techniques of topography, using both characteristic x-rays and synchrotron radiation.

  5. Electron microscopy of gallium nitride growth on polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Webster, R. F.; Cherns, D.; Kuball, M.; Jiang, Q.; Allsopp, D.

    2015-11-01

    Transmission and scanning electron microscopy were used to examine the growth of gallium nitride (GaN) on polycrystalline diamond substrates grown by metalorganic vapour phase epitaxy with a low-temperature aluminium nitride (AlN) nucleation layer. Growth on unmasked substrates was in the (0001) orientation with threading dislocation densities ≈7 × 109 cm-2. An epitaxial layer overgrowth technique was used to reduce the dislocation densities further, by depositing silicon nitride stripes on the surface and etching the unmasked regions down to the diamond substrate. A re-growth was then performed on the exposed side walls of the original GaN growth, reducing the threading dislocation density in the overgrown regions by two orders of magnitude. The resulting microstructures and the mechanisms of dislocation reduction are discussed.

  6. In vitro toxicity of gallium arsenide in alveolar macrophages evaluated by magnetometry, cytochemistry and morphology.

    PubMed

    Okada, M; Karube, H; Niitsuya, M; Aizawa, Y; Okayasu, I; Kotani, M

    1999-12-01

    Gallium arsenide (GaAs), a chemical compound of gallium and arsenic, causes various toxic effects including pulmonary diseases in animals. Since the toxicity is not completely investigated, GaAs has been used in workplaces as the material of various semiconductor products. The present study was conducted to clarify the toxicity of GaAs particles in the alveolar macrophages of hamsters using magnetometry, enzyme release assays and morphological examinations. Alveolar macrophages obtained from hamsters by tracheobronchial lavage and adhered to the disks in the bottom of wells were exposed to ferrosoferric oxide and GaAs particles. Ferrosoferric oxide particles were magnetized externally and the remanent magnetic field was measured. Relaxation, a fast decline of the remanent magnetic fields radiated from the alveolar macrophages, was delayed and decay constants were decreased dose-dependently due to exposure to GaAs. Because the relaxation is thought to be associated with cytoskeleton, the exposure of GaAs may have impaired the motor function of them. Enzyme release assay and morphological findings indicated the damage to the macrophages. Thus the cytotoxicity causes cytostructural changes and cell death. According to DNA electrophoresis and the TUNEL method, necrotic changes occur more frequently than apoptotic changes.

  7. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    PubMed Central

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2016-01-01

    Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO3)3∙xH2O) was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3). Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  8. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine.

    PubMed

    Kim, Tae-Hee; Choi, Sooseok; Park, Dong-Wha

    2016-02-24

    Gallium nitride (GaN) nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC) non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO₃)₃∙xH₂O) was used as a raw material and NH₃ gas was used as a nitridation source. Additionally, melamine (C₃H₆N₆) powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga₂O₃). Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C₃H₆N₆. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  9. Highly ordered horizontal indium gallium arsenide/indium phosphide multi-quantum-well in wire structure on (001) silicon substrates

    NASA Astrophysics Data System (ADS)

    Han, Yu; Li, Qiang; Lau, Kei May

    2016-12-01

    We report the characteristics of indium gallium arsenide stacked quantum structures inside planar indium phosphide nanowires grown on exact (001) silicon substrates. The morphological evolution of the indium phosphide ridge buffers inside sub-micron trenches has been studied, and the role of inter-facet diffusion in this process is discussed. Inside a single indium phosphide nanowire, we are able to stack quantum structures including indium gallium arsenide flat quantum wells, quasi-quantum wires, quantum wires, and ridge quantum wells. Room temperature photoluminescence measurements reveal a broadband emission spectrum centered at 1550 nm. Power dependent photoluminescence analysis indicates the presence of quasi-continuum states. This work thus provides insights into the design and growth process control of multiple quantum wells in wire structures for high performance nanowire lasers on a silicon substrate with 1550 nm band emission.

  10. Size and environment dependence of surface phonon modes of gallium arsenide nanowires as measured by Raman spectroscopy.

    PubMed

    Spirkoska, D; Abstreiter, G; Fontcuberta I Morral, A

    2008-10-29

    Gallium arsenide nanowires were synthesized by gallium-assisted molecular beam epitaxy. By varying the growth time, nanowires with diameters ranging from 30 to 160 nm were obtained. Raman spectra of the nanowire ensembles were measured. The small linewidth of the optical phonon modes agree with an excellent crystalline quality. A surface phonon mode was also revealed, as a shoulder at lower frequencies of the longitudinal optical mode. In agreement with the theory, the surface mode shifts to lower wavenumbers when the diameter of the nanowires is decreased or the environment dielectric constant increased.

  11. Oral co-administration of α-lipoic acid, quercetin and captopril prevents gallium arsenide toxicity in rats.

    PubMed

    Bhatt, Kapil; Flora, S J S

    2009-07-01

    Gallium arsenide (GaAs), an inter-metallic semiconductor, known to exhibit superior optical and electronic properties compared to silicon, promotes its use in semiconductor industries. Extensive use of GaAs will inevitably lead to an increase in the exposure of workers manufacturing these products. Antioxidants are exogenous or endogenous compounds acting in several ways, including scavenging reactive oxygen species (ROS) or their precursors, inhibiting ROS formation, and binding metal ions needed for the catalysis of ROS generation. In the present study we investigated the protective efficacy of α-lipoic acid, quercetin and captopril individually against gallium arsenide exposure. Co-administration of α-lipoic acid with GaAs was most effective in reducing GaAs induced inhibition of blood δ-aminolevulinic acid dehydratase (ALAD) activity, liver, kidney and brain reduced glutathione (GSH) level and elevation of oxidized glutathione (GSSG). Captopril, on the other hand was effective in reducing thiobarbituric acid reactive substance (TBARS) levels, while quercetin reduced ROS in liver and kidney. The results suggest comparatively better preventive efficacy of concomitant α-lipoic acid administration during Gallium arsenide exposure compared to quercetin and captopril in preventing GaAs induced oxidative stress.

  12. Nucleation mechanism of gallium-assisted molecular beam epitaxy growth of gallium arsenide nanowires

    SciTech Connect

    Fontcuberta i Morral, A.; Colombo, C.; Abstreiter, G.; Arbiol, J.; Morante, J. R.

    2008-02-11

    Molecular beam epitaxy Ga-assisted synthesis of GaAs nanowires is demonstrated. The nucleation and growth are seen to be related to the presence of a SiO{sub 2} layer previously deposited on the GaAs wafer. The interaction of the reactive gallium with the SiO{sub 2} pinholes induces the formation of nanocraters, found to be the key for the nucleation of the nanowires. With SiO{sub 2} thicknesses up to 30 nm, nanocraters reach the underlying substrate, resulting into a preferential growth orientation of the nanowires. Possibly related to the formation of nanocraters, we observe an incubation period of 258 s before the nanowires growth is initiated.

  13. Two-dimensional gallium nitride realized via graphene encapsulation

    NASA Astrophysics Data System (ADS)

    Al Balushi, Zakaria Y.; Wang, Ke; Ghosh, Ram Krishna; Vilá, Rafael A.; Eichfeld, Sarah M.; Caldwell, Joshua D.; Qin, Xiaoye; Lin, Yu-Chuan; Desario, Paul A.; Stone, Greg; Subramanian, Shruti; Paul, Dennis F.; Wallace, Robert M.; Datta, Suman; Redwing, Joan M.; Robinson, Joshua A.

    2016-11-01

    The spectrum of two-dimensional (2D) and layered materials `beyond graphene’ offers a remarkable platform to study new phenomena in condensed matter physics. Among these materials, layered hexagonal boron nitride (hBN), with its wide bandgap energy (~5.0-6.0 eV), has clearly established that 2D nitrides are key to advancing 2D devices. A gap, however, remains between the theoretical prediction of 2D nitrides `beyond hBN’ and experimental realization of such structures. Here we demonstrate the synthesis of 2D gallium nitride (GaN) via a migration-enhanced encapsulated growth (MEEG) technique utilizing epitaxial graphene. We theoretically predict and experimentally validate that the atomic structure of 2D GaN grown via MEEG is notably different from reported theory. Moreover, we establish that graphene plays a critical role in stabilizing the direct-bandgap (nearly 5.0 eV), 2D buckled structure. Our results provide a foundation for discovery and stabilization of 2D nitrides that are difficult to prepare via traditional synthesis.

  14. Improved Gallium Nitride and Aluminum Nitride Electronic Materials

    DTIC Science & Technology

    1992-04-20

    3 hydrogen atoms. Calibration pected from dissociative adsorption of methyl io- of the H2 desorption peak area from methyl dide, i.e., the methyl...m m r0= ’I IT immie a avege I la Par tomem ma g so am O wtorwog miuua aau son" daSup ssamol m o doe m" a" ialem 0me 01 ifte e@ mof dvaim. Sead emommns...such as trimethl and triethyl gallium. The kinetics of adsorption /desorption and reaction of monolayers on growth surfaces are measured by ultrahigh

  15. Alternative substrates for gallium nitride epitaxy and devices: Laterally overgrown gallium nitride and silicon(111)

    NASA Astrophysics Data System (ADS)

    Marchand, Hugues

    Gallium nitride films grown on sapphire or silicon carbide using the conventional 'two-step' technique typically exhibit threading dislocations on the order of ˜109 cm-2, which are detrimental to device performance. In addition, sapphire and silicon carbide substrates are expensive and available only in limited size (2-3 inch diameter). This work addresses both issues by evaluating the properties of GaN films synthesized by lateral epitaxial overgrowth (LEO) and conventional growth on sapphire and Si(111) substrates. LEO consists of partially masking a previously-grown seed layer and performing a subsequent regrowth such that the regrown features extend over the masked areas. Under favorable conditions the threading dislocations originating from the seed material are blocked by the mask material or redirected by the growing facets. In this work dislocation densities as low as ˜106 cm-2 were observed in the laterally-overgrown areas. The overgrown features exhibited well-defined facets ((0001), {11¯01}, {112¯0}, {112¯1}, {112¯2}), the persistence of which depended on the orientation of the mask as well as on the growth conditions. The relationship between the morphology of the LEO stripes and the growth conditions (temperature, pressure, ammonia and trimethylgallium partial pressures) was characterized for LEO on GaN/sapphire substrates. A qualitative model of the growth mechanisms was presented based on the microscopic structure of the growing surfaces. Microstructural characterization revealed a crystallographic tilt between the seed and the LEO region, which resulted in the formation of dislocations above the mask edge and at the junction plane of adjacent stripes. GaN stripes laterally overgrown on AlN/Si(111) exhibited similar properties. However, chemical interactions between the substrate and the precursors caused morphological degradation, which could be avoided by using a thick (≥180 nm) AlN buffer layer. In addition, thermal expansion mismatch

  16. Deep ultraviolet enhanced wet chemical etching of gallium nitride

    NASA Astrophysics Data System (ADS)

    Peng, L.-H.; Chuang, C.-W.; Ho, J.-K.; Huang, C.-N.; Chen, C.-Y.

    1998-02-01

    We report a study of the ultraviolet (UV) irradiation effects on the wet chemical etching of unintentionally doped n-type gallium nitride (GaN) layers grown on sapphire substrates. When illuminated with a 253.7 nm mercury line source, etching of GaN is found to take place in aqueous phosphorus acid (H3PO4) and potassium hydroxide (KOH) solutions of pH values ranging from -1 to 2 and 11 to 15, respectively. Formation of gallium oxide is observed on GaN when illuminated in dilute H3PO4 and KOH solutions. These results are attributed to a two-step reaction process upon which the UV irradiation is shown to enhance the oxidative dissolution of GaN.

  17. Proton Irradiation-Induced Metal Voids in Gallium Nitride High Electron Mobility Transistors

    DTIC Science & Technology

    2015-09-01

    IRRADIATION-INDUCED METAL VOIDS IN GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS by Michael G. Wade September 2015 Thesis Advisor: Todd...REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE PROTON IRRADIATION-INDUCED METAL VOIDS IN GALLIUM NITRIDE HIGH ELECTRON...were present. The gate-finger’s silicon nitride passivation layer and Au metallization layer were removed via focused ion beam stripping in order to

  18. Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates.

    PubMed

    Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat

    2013-03-07

    We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.

  19. Gallium nitride electro-acoustic devices and acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Rais-Zadeh, Mina

    2016-05-01

    Gallium nitride (GaN) being one of a few piezoelectric semiconductors with low acoustic loss is a perfect material for electro-acoustic applications. Interactions of electrons and phonons are facilitated by the piezoelectric effect in addition to the deformation coupling in GaN, a property that can be used to implement a variety of very interesting devices and metamaterials, such as resonant transistors, acoustic amplifiers, circulators, and couplers. This talk covers theoretical basis of such devices and overviews recent advances in this technology.

  20. Visible light metasurfaces based on gallium nitride high contrast gratings

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  1. Interdiffusion of magnesium and iron dopants in gallium nitride

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Tomonobu; Kitatani, Takeshi; Terano, Akihisa; Mochizuki, Kazuhiro

    2015-03-01

    The interdiffusion of magnesium and iron in gallium nitride (GaN), i.e., magnesium-iron interdiffusion, was investigated using magnesium-doped GaN layers on iron-doped GaN substrates. The investigation confirms that the magnesium-iron interdiffusion strongly depends on the concentrations of magnesium and iron, that is, it occurs when the iron and magnesium concentrations are high (magnesium: 2 × 1020 cm-3 iron: 2 × 1019 cm-3). It also confirms that diffused iron in the magnesium-doped GaN layer acts as a nonradiative recombination center in GaN.

  2. Gallium nitride electrodes for membrane-based electrochemical biosensors

    NASA Astrophysics Data System (ADS)

    Schubert, T.; Steinhoff, G.; von Ribbeck, H.-G.; Stutzmannn, M.; Eickhoff, M.; Tanaka, M.

    2009-10-01

    We report on the deposition of planar lipid bilayers (supported membranes) on gallium nitride (GaN) electrodes for potential applications as membrane-based biosensors. The kinetics of the lipid membrane formation upon vesicle fusion were monitored by simultaneous measurements of resistance and capacitance of the membrane using AC impedance spectroscopy in the frequency range between 50mHz and 50kHz. We could identify a two-step process of membrane spreading and self-healing. Despite its relatively low resistance, the membrane can be modeled by a parallel combination of an ideal resistor and capacitor, indicating that the membrane efficiently blocks the diffusion of ions.

  3. Gallium nitride electrodes for membrane-based electrochemical biosensors.

    PubMed

    Schubert, T; Steinhoff, G; von Ribbeck, H-G; Stutzmannn, M; Eickhoff, M; Tanaka, M

    2009-10-01

    We report on the deposition of planar lipid bilayers (supported membranes) on gallium nitride (GaN) electrodes for potential applications as membrane-based biosensors. The kinetics of the lipid membrane formation upon vesicle fusion were monitored by simultaneous measurements of resistance and capacitance of the membrane using AC impedance spectroscopy in the frequency range between 50 mHz and 50 kHz. We could identify a two-step process of membrane spreading and self-healing. Despite its relatively low resistance, the membrane can be modeled by a parallel combination of an ideal resistor and capacitor, indicating that the membrane efficiently blocks the diffusion of ions.

  4. Lasing action in gallium nitride quasicrystal nanorod arrays.

    PubMed

    Chang, Shih-Pang; Sou, Kuok-Pan; Chen, Chieh-Han; Cheng, Yuh-Jen; Huang, Ji-Kai; Lin, Chung-Hsiang; Kuo, Hao-Chung; Chang, Chun-Yen; Hsieh, Wen-Feng

    2012-05-21

    We report the observation of lasing action from an optically pumped gallium nitride quasicrystal nanorod arrays. The nanorods were fabricated from a GaN substrate by patterned etching, followed by epitaxial regrowth. The nanorods were arranged in a 12-fold symmetric quasicrystal pattern. The regrowth grew hexagonal crystalline facets and core-shell multiple quantum wells (MQWs) on nanorods. Under optical pumping, multiple lasing peaks resembling random lasing were observed. The lasing was identified to be from the emission of MQWs on the nanorod sidewalls. The resonant spectrum and mode field of the 12-fold symmetric photonic quasicrystal nanorod arrays is discussed.

  5. Smooth cubic commensurate oxides on gallium nitride

    SciTech Connect

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul; Biegalski, Michael D.; Christen, Hans M.

    2014-02-14

    Smooth, commensurate alloys of 〈111〉-oriented Mg{sub 0.52}Ca{sub 0.48}O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  6. Smooth cubic commensurate oxides on gallium nitride

    NASA Astrophysics Data System (ADS)

    Paisley, Elizabeth A.; Gaddy, Benjamin E.; LeBeau, James M.; Shelton, Christopher T.; Biegalski, Michael D.; Christen, Hans M.; Losego, Mark D.; Mita, Seiji; Collazo, Ramón; Sitar, Zlatko; Irving, Douglas L.; Maria, Jon-Paul

    2014-02-01

    Smooth, commensurate alloys of ⟨111⟩-oriented Mg0.52Ca0.48O (MCO) thin films are demonstrated on Ga-polar, c+ [0001]-oriented GaN by surfactant-assisted molecular beam epitaxy and pulsed laser deposition. These are unique examples of coherent cubic oxide|nitride interfaces with structural and morphological perfection. Metal-insulator-semiconductor capacitor structures were fabricated on n-type GaN. A comparison of leakage current density for conventional and surfactant-assisted growth reveals a nearly 100× reduction in leakage current density for the surfactant-assisted samples. HAADF-STEM images of the MCO|GaN interface show commensurate alignment of atomic planes with minimal defects due to lattice mismatch. STEM and DFT calculations show that GaN c/2 steps create incoherent boundaries in MCO over layers which manifest as two in-plane rotations and determine consequently the density of structural defects in otherwise coherent MCO. This new understanding of interfacial steps between HCP and FCC crystals identifies the steps needed to create globally defect-free heterostructures.

  7. Low-threshold indium gallium nitride quantum dot microcavity lasers

    NASA Astrophysics Data System (ADS)

    Woolf, Alexander J.

    Gallium nitride (GaN) microcavities with embedded optical emitters have long been sought after as visible light sources as well as platforms for cavity quantum electrodynamics (cavity QED) experiments. Specifically, materials containing indium gallium nitride (InGaN) quantum dots (QDs) offer an outstanding platform to study light matter interactions and realize practical devices, such as on-chip light emitting diodes and nanolasers. Inherent advantages of nitride-based microcavities include low surface recombination velocities, enhanced room-temperature performance (due to their high exciton binding energy, as high as 67 meV for InGaN QDs), and emission wavelengths in the blue region of the visible spectrum. In spite of these advantages, several challenges must be overcome in order to capitalize on the potential of this material system. Such diffculties include the processing of GaN into high-quality devices due to the chemical inertness of the material, low material quality as a result of strain-induced defects, reduced carrier recombination effciencies due to internal fields, and a lack of characterization of the InGaN QDs themselves due to the diffculty of their growth and therefore lack of development relative to other semiconductor QDs. In this thesis we seek to understand and address such issues by investigating the interaction of light coupled to InGaN QDs via a GaN microcavity resonator. Such coupling led us to the demonstration of the first InGaN QD microcavity laser, whose performance offers insights into the properties and current limitations of the nitride materials and their emitters. This work is organized into three main sections. Part I outlines the key advantages and challenges regarding indium gallium nitride (InGaN) emitters embedded within gallium nitride (GaN) optical microcavities. Previous work is also discussed which establishes context for the work presented here. Part II includes the fundamentals related to laser operation, including the

  8. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    PubMed

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  9. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  10. Model for transport and reaction of defects and carriers within displacement cascades in gallium arsenide

    SciTech Connect

    Wampler, William R. Myers, Samuel M.

    2015-01-28

    A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers, and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.

  11. Structural anomalies in undoped Gallium Arsenide observed in high resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.; Brown, M.

    1988-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  12. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats.

    PubMed

    Flora, Swaran J S; Bhatt, Kapil; Mehta, Ashish

    2009-10-15

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  13. Resonant photo-thermal modification of vertical gallium arsenide nanowires studied using Raman spectroscopy.

    PubMed

    Walia, Jaspreet; Boulanger, Jonathan; Dhindsa, Navneet; LaPierre, Ray; Tang, Xiaowu Shirley; Saini, Simarjeet S

    2016-06-17

    Gallium arsenide nanowires have shown considerable promise for use in applications in which the absorption of light is required. When the nanowires are oriented vertically, a considerable amount of light can be absorbed, leading to significant heating effects. Thus, it is important to understand the threshold power densities that vertical GaAs nanowires can support, and how the nanowire morphology is altered under these conditions. Here, resonant photo-thermal modification of vertical GaAs nanowires was studied using both Raman spectroscopy and electron microscopy techniques. Resonant waveguiding, and subsequent absorption of the excited optical mode reduces the irradiance vertical GaAs nanowires can support relative to horizontal ones, by three orders of magnitude before the onset of structural changes occur. A power density of only 20 W mm(-2) was sufficient to induce local heating in the nanowires, resulting in the formation of arsenic species. Upon further increasing the power, a hollow nanowire morphology was realized. These findings are pertinent to all optical applications and spectroscopic measurements involving vertically oriented GaAs nanowires. Understanding the optical absorption limitations, and the effects of exceeding these limitations will help improve the development of all III-V nanowire devices.

  14. Transport-reaction model for defect and carrier behavior within displacement cascades in gallium arsenide

    SciTech Connect

    Wampler, William R.; Myers, Samuel M.

    2014-02-01

    A model is presented for recombination of charge carriers at displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers and defects within a representative spherically symmetric cluster. The initial radial defect profiles within the cluster were chosen through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Charging of the defects can produce high electric fields within the cluster which may influence transport and reaction of carriers and defects, and which may enhance carrier recombination through band-to-trap tunneling. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to pulsed neutron irradiation.

  15. The formation of amplitude spectra in X-ray pixel detectors made of gallium arsenide.

    PubMed

    Ayzenshtat, Gennadiy; Prokopiev, Dmitriy; Baidali, Sergey; Tolbanov, Oleg; Dorzheeva, Larisa

    2017-02-21

    This study aims to analyse energy spectra formation in semiconductor X-ray pixel detectors using a simple experimental method. The calculations were performed for the pixel detectors made of high-resistivity gallium arsenide compensated by chromium GaAs (Cr). A peculiar feature of these detectors is an extremely short lifetime of the holes. When using ordinary detectors with planar electrodes the spectra with high energy resolution could not be observed. In this study, the shape of amplitude spectra of gamma rays were calculated with energy W0 = 60 and 17 keV. The calculations were performed for the pixel detector of GaAs (Cr) with the thickness of d = 500μm and pixel pitch of 50μm. The mobility of electrons and holes were assumed to be μn = 3000 cm2/Vs, μp = 300 cm2/Vs, and the lifetimes were τn = 20 ns and τp = 1 ns, respectively. It was demonstrated that in the pixel detector, where there was practically no collection of holes and the amplitude spectra occurred with the energy resolution of 3.5 keV. The calculations show that energy spectra of the pixel detectors has a high energy resolution at an appropriate polarity applied bias voltage. The calculation results were conformed by the experimental data.

  16. Development of a gate metal etch process for gallium arsenide wafers

    NASA Astrophysics Data System (ADS)

    Bammi, Rahul; Cale, Timothy S.; Grivna, Gordon

    1994-12-01

    The reactive ion etching of TiWN, which is used as a gate metal on gallium-arsenide device wafers, was studied in a parallel-plate, single-wafer plasma reactor operating at a frequency of 13.56 MHz. We discuss our experimental program designed to develop a highly uniform TiWN etch process with low linewidth loss for 100 mm GaAs wafers, using a sulfur hexafluoride, trifluoromethane, helium chemistry. The effects of different gas compositions, plasma power, inter-electrode gap, chamber pressure, and electrode temperature on the TiWN etch rate, linewidth loss, and etch uniformity were determined. The effects of adding oxygen and/or nitrogen to the above mixture were also studied. In preliminary experiments on Si wafers, standard design of experiments methods were used to narrow the ranges of parameters for further experiments to develop an optimum process for Si wafers. The results of these experiments guided us to the optimum process for GaAs wafers. The optimum conditions, for both Si and GaAs wafers, are presented.

  17. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats

    SciTech Connect

    Flora, Swaran J.S. Bhatt, Kapil; Mehta, Ashish

    2009-10-15

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  18. Forward-biased current annealing of radiation degraded indium phosphide and gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Michael, Sherif; Cypranowski, Corinne; Anspaugh, Bruce

    1990-01-01

    The preliminary results of a novel approach to low-temperature annealing of previously irradiated indium phosphide and gallium arsenide solar cells are reported. The technique is based on forward-biased current annealing. The two types of III-V solar cells were irradiated with 1-MeV electrons to a fluence level of (1-10) x 10 to the 14th electrons/sq cm. Several annealing attempts were made, varying all conditions. Optimum annealing was achieved when cells were injected with minority currents at a constant 90 C. The current density for each type of cell was also determined. Significant recovery of degraded parameters was achieved in both cases. However, the InP cell recovery notably exceeded the recovery in GaAs cells. The recovery is thought to be caused by current-stimulated reordering of the radiator-induced displacement damage. Both types of cell were then subjected to several cycles of irradiation and annealing. The results were also very promising. The significant recovery of degraded cell parameters at low temperature might play a major role in considerably extending the end of life of future spacecraft.

  19. Forward-biased current annealing of radiation degraded indium phosphide and gallium arsenide solar cells

    NASA Technical Reports Server (NTRS)

    Michael, Sherif; Cypranowski, Corinne; Anspaugh, Bruce

    1990-01-01

    The preliminary results of a novel approach to low-temperature annealing of previously irradiated indium phosphide and gallium arsenide solar cells are reported. The technique is based on forward-biased current annealing. The two types of III-V solar cells were irradiated with 1-MeV electrons to a fluence level of (1-10) x 10 to the 14th electrons/sq cm. Several annealing attempts were made, varying all conditions. Optimum annealing was achieved when cells were injected with minority currents at a constant 90 C. The current density for each type of cell was also determined. Significant recovery of degraded parameters was achieved in both cases. However, the InP cell recovery notably exceeded the recovery in GaAs cells. The recovery is thought to be caused by current-stimulated reordering of the radiator-induced displacement damage. Both types of cell were then subjected to several cycles of irradiation and annealing. The results were also very promising. The significant recovery of degraded cell parameters at low temperature might play a major role in considerably extending the end of life of future spacecraft.

  20. Analysis of costs of gallium arsenide and silicon solar arrays for space power applications

    NASA Technical Reports Server (NTRS)

    Jefferies, K. S.

    1981-01-01

    A parametric analysis was performed to compare the costs of silicon and gallium arsenide arrays for Earth orbital missions. The missions included electric power in low Earth orbit (LEO), electric power in geosynchronous Earth orbit (GEO), and power for electric propulsion of a LEO to GEO orbit transfer mission. Inputs to the analysis for all missions included launch and purchase costs of the array. For the orbit transfer mission, the launch and purchase costs of the electric propulsion system were added. Radiation flux as a function of altitude and rediation tolerance as a function of cell type were used to determine power degradation for each mission. Curves were generated that show the sensitivity of launch-array cost and total mission cost to a variety of input parameters for each mission. These parameters included mission duration, cover glass thickness, array specific cost, array specific mass, and solar cell efficiency. Solar concentration was considered and the sensitivities of cost to concentration ratio, concentrator costs, and concentrator mass were also evaluated. Results indicate that solar cell development should give a high priority to reducing array costs and that the development of low cost, lightweight, solar concentrators should be pursued.

  1. Silicon and gallium arsenide solar cells for low intensity, low temperature operation

    SciTech Connect

    Strobl, G.; Uebele, P.; Kern, R.; Roy, K.; Flores, C.; Campesato, R.; Signorini, C.; Bogus, K.

    1994-12-31

    This paper describes the possibility to utilize both silicon and gallium arsenide photovoltaic devices to electrically power either spacecraft for interplanetary missions far from the Sun such as the ESA`s ROSETTA deep space mission or surface stations for interplanetary exploration such as foreseen in the Mars landing. The investigation particularly deals with the effects induced on solar cell performance by typical deep space environmental conditions such as low temperature and low solar intensities. Efficiencies of 25% at {minus}100 C, 0.11 SC, of 27% at {minus}150 C, 0.11 SC and still 26% at {minus}150 C, 0.03 SC have been achieved for best HI-ETA/NR-LILT silicon solar cells with an area of 3.78 cm x 6.19 cm and efficiencies of 24.1% at 0.11 SC, {minus}130 C and 23.8% at 0.03 Sc, {minus}150 C for GaAs solar cells with an area of 2 cm x 4 cm.

  2. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    SciTech Connect

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; Hartman, Alan; Tupta, Mary Ann; Baczewski, Andrew David; Crimp, Martin A.; Halpern, Joshua B.; He, Maoqi; Shaw, Harry C.

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  3. Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

    DOE PAGES

    Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; ...

    2007-10-19

    Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

  4. Oligonuclear gallium nitrogen cage compounds: molecular intermediates on the way from gallium hydrazides to gallium nitride.

    PubMed

    Uhl, Werner; Abel, Thomas; Hagemeier, Elke; Hepp, Alexander; Layh, Marcus; Rezaeirad, Babak; Luftmann, Heinrich

    2011-01-03

    Gallium hydrazides are potentially applicable as facile starting compounds for the generation of GaN by thermolysis. The decomposition pathways are, however, complicated and depend strongly on the substituents attached to the gallium atoms and the hydrazido groups. This paper describes some systematic investigations into the thermolysis of the gallium hydrazine adduct Bu(t)(3)Ga←NH(2)-NHMe (1a) and the dimeric gallium hydrazides [R(2)Ga(N(2)H(2)R')](2) (2b, R = Bu(t), R' = Bu(t); 2c, R = Pr(i), R' = Ph; 2d, R = Me, R' = Bu(t)) which have four- or five-membered heterocycles in their molecular cores. Heating of the adduct 1a to 170 °C gave the heterocyclic compound Bu(t)(2)Ga(μ-NH(2))[μ-N(Me)-N(=CH(2))]GaBu(t)(2) (3) by cleavage of N-N bonds and rearrangement. 3 was further converted at 400 °C into the tetrameric gallium cyanide (Bu(t)(2)GaCN)(4) (4). The thermolysis of the hydrazide (Bu(t)(2)Ga)(2)(NH-NHBu(t))(2) (2b) at temperatures between 270 and 420 °C resulted in cleavage of all N-N bonds and the formation of an octanuclear gallium imide, (Bu(t)GaNH)(8) (6). The trimeric dialkylgallium amide (Bu(t)(2)GaNH(2))(3) (5) was isolated as an intermediate. Thermolysis of the hydrazides (Pr(i)(2)Ga)(2)(NH-NHPh)(NH(2)-NPh) (2c) and (Me(2)Ga)(2)(NH-NHBu(t))(2) (2d) proceeded in contrast with retention of the N-N bonds and afforded a variety of novel gallium hydrazido cage compounds with four gallium atoms and up to four hydrazido groups in a single molecule: (Pr(i)Ga)(4)(NH-NPh)(3)NH (7), (MeGa)(4)(NH-NBu(t))(4) (8), (MeGa)(4)(NH-NBu(t))(3)NBu(t) (9), and (MeGa)(4)(NHNBu(t))(3)NH (10). Partial hydrolysis gave reproducibly the unique octanuclear mixed hydrazido oxo compound (MeGa)(8)(NHNBu(t))(4)O(4) (11).

  5. Specific features of the formation of dislocation structure in gallium arsenide single crystals obtained by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Parfenteva, I. B.; Pugachev, B. V.; Pavlov, V. F.; Kozlova, Yu. P.; Knyazev, C. N.; Yugova, T. G.

    2017-03-01

    The influence of the deviation of seed orientation from the [100] direction on the formation of a dislocation structure of gallium arsenide single crystals grown by the Czochralski method has been revealed. The intensive multiplication of dislocations and formation of a block structure occur at deviation by an angle of more than 3° in the region that is radially shifted to one of crystal sides. The linear density of dislocations in the walls changes from 1 × 104 cm-1 in low-angle boundaries to 6 × 104 cm-1 in subboundaries.

  6. Analysis of space radiation effects in gallium arsenide and cadmium selenide semiconductor samples using luminescence spectroscopic techniques. Master's thesis

    SciTech Connect

    Shaffer, B.L.

    1990-12-01

    Analysis of space radiation effects in gallium arsenide and cadmium selenide semiconductor samples using luminescence spectroscopic techniques. The M0006 semiconductor samples were placed into a 28.5 degree inclination, 480 km altitude, near-circular orbit aboard the Long Duration Exposure Facility satellite and exposed to direct space environment for a period of 11 months, and were shielded by 0.313 inches of aluminum for another 58 months. The samples were examined for changes using cathodoluminescence and photoluminescence in various wavelength regions from 0.5 to 1.8 micrometers. Samples were cooled to approximately 10 degrees Kelvin in a vacuum of 10-8. (JS)

  7. Gallium arsenide (GaAs) island growth under SiO(2) nanodisks patterned on GaAs substrates.

    PubMed

    Tjahjana, Liliana; Wang, Benzhong; Tanoto, Hendrix; Chua, Soo-Jin; Yoon, Soon Fatt

    2010-05-14

    We report a growth phenomenon where uniform gallium arsenide (GaAs) islands were found to grow underneath an ordered array of SiO(2) nanodisks on a GaAs(100) substrate. Each island eventually grows into a pyramidal shape resulting in the toppling of the supported SiO(2) nanodisk. This phenomenon occurred consistently for each nanodisk across a large patterned area of approximately 50 x 50 microm(2) (with nanodisks of 210 nm diameter and 280 nm spacing). The growth mechanism is attributed to a combination of 'catalytic' growth and facet formation.

  8. Coherent detection of THz waves based on THz-induced time-resolved luminescence quenching in bulk gallium arsenide.

    PubMed

    Chu, Zheng; Liu, Jinsong; Wang, Kejia

    2012-05-01

    A kind of photoluminescence quenching, in which the time-resolved photoluminescence is modulated by a THz pulse, has been theoretically investigated by performing the ensemble Monte Carlo method in bulk gallium arsenide (GaAs) at room temperature. The quenching ratio could reach up to 50% under a strong THz field (100  kV/cm). The range in which luminescence quenching is linearly proportional to the THz field could be over 60  kV/cm. On the basis of these results, a principle for THz modulation and coherent detection is proposed.

  9. Gallium arsenide strip detectors for particle identification by the triple measurement of time of flight, position and specific ionization

    NASA Astrophysics Data System (ADS)

    Codino, Antonio

    1998-02-01

    A design of a gallium arsenide strip detector performing the triple, simultaneous measurements of position, dE/dx and time of flight is presented (LATIN project). The expected time. energy and position resolutions are given in various experimental conditions. A precursor of this instrument made of silicon strip detectors has been constructed and operated at a temperature of -55° C and tested with a pion beam of 4.0 GeV/c. The measured time resolution is 61±7 ps. Cosmic-ray experiments in space may benefit from this kind of instruments for nuclide and particle identification.

  10. Gallium arsenide strip detectors for particle identification by the triple measurement of time of flight, position and specific ionization

    NASA Astrophysics Data System (ADS)

    Codino, Antonio

    1997-02-01

    A design of a gallium arsenide strip detector performing the triple, simultaneous measurements of position, dE/dx and time of flight is presented (LATIN project). The expected time, energy and position resolutions are given in various experimental conditions. A precursor of this instrument made of silicon strip detectors has been constructed and operated at a temperature of -55 degC and tested with a pion beam of 4.0GeV/c. The measured time resolution is 61+/-7 ps. Cosmic-ray experiments in space may benefit from this kind of instruments for nuclide and particle identification.

  11. Broadband 0.25-um Gallium Nitride (GaN) Power Amplifier Designs

    DTIC Science & Technology

    2017-08-14

    power monolithic microwave integrated circuit amplifiers are extremely important in any communication system that must operate reliably and...broadband linear high- power amplifiers for future adaptive multimode radar systems . Qorvo has a high-performance 0.25-µm gallium nitride (GaN...ARL-TR-8091 ● AUG 2017 US Army Research Laboratory Broadband 0.25-µm Gallium Nitride (GaN) Power Amplifier Designs by John E

  12. Modeling and Simulation of a Gallium Nitride (GaN) Betavoltaic Energy Converter

    DTIC Science & Technology

    2016-06-01

    ARL-TR-7675 ● JUNE 2016 US Army Research Laboratory Modeling and Simulation of a Gallium Nitride (GaN) Betavoltaic Energy ...Laboratory Modeling and Simulation of a Gallium Nitride (GaN) Betavoltaic Energy Converter by Marc S Litz and Johnny A Russo Sensors and Electron...GaN) Betavoltaic Energy Converter 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) William B Ray II, Marc S

  13. Modeling and simulation of bulk gallium nitride power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Sabui, G.; Parbrook, P. J.; Arredondo-Arechavala, M.; Shen, Z. J.

    2016-05-01

    Bulk gallium nitride (GaN) power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD) simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.

  14. An investigation of refractory metal ohmic contacts to gallium nitride

    SciTech Connect

    Smith, M.A.; Kapoor, V.J.; Hickman, R. II; Van Hove, J.

    1996-12-31

    Use of gallium nitride in high temperature and power electronic devices requires a suitable choice of materials for making reliable ohmic contacts. Reported here are electrical and material data for ohmic contact thin-film structures of the form Ti/x/Au, where x is either platinum, tungsten, or molybdenum. The contacts have been evaluated as a function of intermediate refractory metal thickness and 30 s annealing over temperatures of 875--1,000 C. Baseline comparisons are made to Ti/Al contacts annealed at 630 C. A molybdenum intermetallic 500 {angstrom} thick slightly outperformed tungsten with 0.79 {Omega}-mm resistivity. Depth profiling using Auger electron spectroscopy provided elemental composition throughout the structures by identifying metal interdiffusion and oxygen contamination.

  15. Localized surface phonon polariton resonances in polar gallium nitride

    SciTech Connect

    Feng, Kaijun Islam, S. M.; Verma, Jai; Hoffman, Anthony J.; Streyer, William; Wasserman, Daniel; Jena, Debdeep

    2015-08-24

    We demonstrate the excitation of localized surface phonon polaritons in an array of sub-diffraction pucks fabricated in an epitaxial layer of gallium nitride (GaN) on a silicon carbide (SiC) substrate. The array is characterized via polarization- and angle-dependent reflection spectroscopy in the mid-infrared, and coupling to several localized modes is observed in the GaN Reststrahlen band (13.4–18.0 μm). The same structure is simulated using finite element methods and the charge density of the modes are studied; transverse dipole modes are identified for the transverse electric and magnetic polarizations and a quadrupole mode is identified for the transverse magnetic polarization. The measured mid-infrared spectrum agrees well with numerically simulated spectra. This work could enable optoelectronic structures and devices that support surface modes at mid- and far-infrared wavelengths.

  16. Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch

    SciTech Connect

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Yuan, Xuelin

    2014-03-07

    Properties of ultrafast switching in a bulk gallium arsenide (GaAs) avalanche semiconductor switch based on semi-insulating wafer, triggered by an optical pulse, were analyzed using physics-based numerical simulations. It has been demonstrated that when a voltage with amplitude of 5.2 kV is applied, after an exciting optical pulse with energy of 1 μJ arrival, the structure with thickness of 650 μm reaches a high conductivity state within 110 ps. Carriers are created due to photons absorption, and electrons and holes drift to anode and cathode terminals, respectively. Static ionizing domains appear both at anode and cathode terminals, and create impact-generated carriers which contribute to the formation of electron-hole plasma along entire channel. When the electric field in plasma region increases above the critical value (∼4 kV/cm) at which the electrons drift velocity peaks, a domain comes into being. An increase in carrier concentration due to avalanche multiplication in the domains reduces the domain width and results in the formation of an additional domain as soon as the field outside the domains increases above ∼4 kV/cm. The formation and evolution of multiple powerfully avalanching domains observed in the simulations are the physical reasons of ultrafast switching. The switch exhibits delayed breakdown with the characteristics affected by biased electric field, current density, and optical pulse energy. The dependence of threshold energy of the exciting optical pulse on the biased electric field is discussed.

  17. Gallium arsenide selectively up-regulates inflammatory cytokine expression at exposure site.

    PubMed

    Becker, Stephen M; McCoy, Kathleen L

    2003-12-01

    Gallium arsenide (GaAs), a technologically and economically important semiconductor, is widely utilized in both military and commercial applications. This chemical is a potential health hazard as a carcinogen and immunotoxicant. We previously reported that macrophages at the exposure site exhibit characteristics of activation. In vitro culture of macrophages with GaAs fails to recapitulate the in vivo phenotype, suggesting that complete GaAs-mediated activation in vivo may require other cells or components found in the body's microenvironment. Our present study examined the role of cytokines upon GaAs-mediated macrophage activation. Intraperitoneal administration of GaAs elicited rapid specific recruitment of blood monocytes to the exposure site. This recruitment occurred concomitant with up-regulation of 17 chemokine and inflammatory cytokine mRNAs, while transcripts of three inhibitory cytokines diminished. Administration of latex beads caused less cytokine induction than GaAs, indicating that changes in mRNA levels could not be attributed to phagocytosis. Four representative chemokines and cytokines were selected for further analysis. Increased cytokine mRNA expression was paralleled by similar increases in cytokine protein levels, and secreted protein products were detected in peritoneal fluid. Cytokine protein expression was constrained to myeloid cells, and to a lesser extent to B cells. Alterations in patterns of cytokine gene expression elucidate mechanisms for increased cellular activation and antigen processing, and modulation of the inflammatory response. Our findings indicate that in vivo GaAs exposure alters cytokine gene expression, which may lead to an inflammatory reaction and contribute to pathological tissue damage.

  18. An Indium Gallium Arsenide Visible/SWIR Focal Plane Array for Low Light Level Imaging

    NASA Technical Reports Server (NTRS)

    Cohen, Marshall J.; Ettenberg, Martin H.; Lange, Michael J.; Olsen, Gregory H.

    1999-01-01

    PIN photodiodes fabricated from indium gallium arsenide lattice-matched to indium phosphide substrates (In(.53)Ga(.47)As/InP) exhibit low reverse saturation current densities (JD < 10(exp -8) A/sq cm), and high shunt resistance-area products (RoA > 10(exp 6) omega-sq cm) at T=290K. Backside-illuminated, hybrid-integrated InGaAs FPAs are sensitive from 0.9 micrometers to 1.7 micrometers. 290K detectivities, D(*), greater than 10(exp 14) cm-(square root of Hz/W) are demonstrated. This represents the highest room temperature detectivity of any infrared material. The long wavelength cutoff (1.7 micrometers) makes In(.53)Ga(.47)As an idea match to the available airglow that has major peaks at 1.3 micrometers and 1.6 micrometers. The short wavelength 'cut-on' at 0.9 micrometers is due to absorption in the InP substrate. We will report on new InGaAs FPA epitaxial structures and processing techniques. These have resulted in improved performance in the form of a 10 x increase in detectivity and visible response via removal of the InP substrate. The resulting device features visible and SWIR response with greater than 15% quantum efficiency at 0.5 micrometers while maintaining the long wavelength cutoff. Imaging has been demonstrated under overcast starlight/urban glow conditions with cooling provided by a single stage thermoelectric cooler. Details on the material structure and device fabrication, quantitative characterization of spectral response and detectivity, as well as examples of night vision imagery are presented.

  19. An Indium Gallium Arsenide Visible/SWIR Focal Plane Array for Low Light Level Imaging

    NASA Technical Reports Server (NTRS)

    Cohen, Marshall J.; Ettenberg, Martin H.; Lange, Michael J.; Olsen, Gregory H.

    1999-01-01

    PIN photodiodes fabricated from indium gallium arsenide lattice-matched to indium phosphide substrates (In(.53)Ga(.47)As/InP) exhibit low reverse saturation current densities (JD < 10(exp -8) A/sq cm), and high shunt resistance-area products (RoA > 10(exp 6) omega-sq cm) at T=290K. Backside-illuminated, hybrid-integrated InGaAs FPAs are sensitive from 0.9 micrometers to 1.7 micrometers. 290K detectivities, D(*), greater than 10(exp 14) cm-(square root of Hz/W) are demonstrated. This represents the highest room temperature detectivity of any infrared material. The long wavelength cutoff (1.7 micrometers) makes In(.53)Ga(.47)As an idea match to the available airglow that has major peaks at 1.3 micrometers and 1.6 micrometers. The short wavelength 'cut-on' at 0.9 micrometers is due to absorption in the InP substrate. We will report on new InGaAs FPA epitaxial structures and processing techniques. These have resulted in improved performance in the form of a 10 x increase in detectivity and visible response via removal of the InP substrate. The resulting device features visible and SWIR response with greater than 15% quantum efficiency at 0.5 micrometers while maintaining the long wavelength cutoff. Imaging has been demonstrated under overcast starlight/urban glow conditions with cooling provided by a single stage thermoelectric cooler. Details on the material structure and device fabrication, quantitative characterization of spectral response and detectivity, as well as examples of night vision imagery are presented.

  20. Low temperature solid-state synthesis of nanocrystalline gallium nitride

    SciTech Connect

    Wang, Liangbiao; Shi, Liang; Li, Qianwen; Si, Lulu; Zhu, Yongchun; Qian, Yitai

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► GaN nanocrystalline was prepared via a solid-state reacion at relatively low temperature. ► The sizes and crystallinities of the GaN samples obtained at the different temperatures are investigated. ► The GaN sample has oxidation resistance and good thermal stability below 1000 °C. -- Abstract: Nanocrystalline gallium nitride was synthesized by a solid-state reaction of metallic magnesium powder, gallium sesquioxide and sodium amide in a stainless steel autoclave at a relatively low temperature (400–550 °C). The structures and morphologies of the obtained products were derived from X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns indicated that the products were hexagonal GaN (JCPDS card no. 76-0703). The influence of reaction temperature on size of the products was studied by XRD and TEM. Furthermore, the thermal stability and oxidation resistance of the nanocrystalline GaN were also investigated. It had good thermal stability and oxidation resistance below 800 °C in air.

  1. Growth and characterization of thin and thick gallium nitride

    NASA Astrophysics Data System (ADS)

    Mastro, Michael Anthony

    2001-07-01

    The III-nitrides have received considerable attention in recent years for applications that require a wide band gap semiconductor. Specifically, short wavelength light emitters are required for full color displays, laser printers, high-density information storage, and underwater communication. High-temperature and high-power devices are needed for a number of applications including avionics, automobile engines and future advanced power distribution systems. Unfortunately, III-nitride substrates are not available. This dissertation explores three alternative substrates (LiGaO2, LiAlO2, and Si) for the growth of thick and potentially freestanding GaN substrates. The requirement to grow a protective layer of GAN by metal organic chemical vapor deposition (MOCVD) and the need for high rate deposition by hydride vapor phase epitaxy (HVPE) motivated the development of a single deposition system capable of growing in both modes. The successful growth of high quality GaN on LiGaO2 by MOCVD was first demonstrated. Nitridation of the LiGaO2 substrate using NH3 prior to growth leads to the reconstruction of the substrate surface and to the formation of a thin layer of nitrided material having the same orientation as the substrate. It was found that the thick GaN layer grown by HVPE spontaneously separated from the underlying LiGaO2 substrate upon cooling if proper nitridation was performed. This then eliminates the need for substrate removal by HCl etching and gives a reusable template substrate. The related substrate LiAlO2 is also closely lattice matched to GaN. LiAlO2, however, is more stable, particularly in an HCl ambient making it suitable for thick HVPE growth of GaN. Finally, it was shown that epitaxial GaN could be fabricated by a low-temperature deposition sequence on silicon substrates. Measurements revealed that a thin compliant SiOx layer was an effective intermediate layer for the GaN film grown epitaxially on Si. The deposition temperature of 560°C is one of

  2. Meso 2,3-dimercaptosuccinic acid (DMSA) and monoisoamyl DMSA effect on gallium arsenide induced pathological liver injury in rats.

    PubMed

    Flora, S J S; Dubey, Rupa; Kannan, G M; Chauhan, R S; Pant, B P; Jaiswal, D K

    2002-06-07

    The effect of meso 2,3-dimercaptosuccinic acid (DMSA) and monoisoamyl DMSA (MiADMSA) on gallium arsenide (GaAs) induced liver damage was studied. The oral feeding rat model was used in this study. The animals were exposed to 10 mg/kg GaAs, orally, once daily, 5 days a week for 24 weeks and treated thereafter with single oral daily dose of either 0.3 mmol/kg DMSA or MiADMSA for two course of 5 days treatment. The animals were sacrificed thereafter. Lipid peroxidation was assessed by measuring liver thiobarbituric acid reactive substance (TBARS). Liver damage was assessed by number of biochemical variables and by light microscopy. The activity of superoxide dismutase (SOD) and delta-aminolevulinic acid dehydratase (ALAD) beside reduced glutathione (GSH) concentration was measured in blood. Exposure to GaAs produced a significant reduction in GSH while, increased the oxidized glutathione (GSSG) concentration. Hepatic glutathione peroxidase (GPx) and catalase activity increased significantly while level of serum transaminase increased moderately. Gallium arsenide exposure also produced marked hepatic histopathological lesions. Overall, treatment with MiADMSA proved to be better than DMSA in the mobilization of arsenic and in the turnover of some of the above mentioned GaAs sensitive biochemical alterations. Histopathological lesions also, responded more favorably to chelation treatment with MiADMSA than DMSA.

  3. Characterization of solar cells for space applications. Volume 14: Electrical characteristics of Hughes liquid phase epitaxy gallium arsenide solar cells as a function of intensity, temperature and irradiation

    NASA Technical Reports Server (NTRS)

    Anspaugh, B. E.; Downing, R. G.; Miyahira, T. F.; Weiss, R. S.

    1981-01-01

    Electrical characteristics of liquid phase epitaxy, P/N gallium aluminum arsenide solar cells are presented in graphical and tabular format as a function of solar illumination intensity and temperature. The solar cells were exposed to 1 MeV electron fluences of, respectively, 0, one hundred trillion, one quadrillion, and ten quadrillion e/sq cm.

  4. Optical parametric generation by a simultaneously Q-switched mode-locked single-oscillator thulium-doped fiber laser in orientation-patterned gallium arsenide.

    PubMed

    Donelan, Brenda; Kneis, Christian; Scurria, Giuseppe; Cadier, Benoît; Robin, Thierry; Lallier, Eric; Grisard, Arnaud; Gérard, Bruno; Eichhorn, Marc; Kieleck, Christelle

    2016-11-01

    Optical parametric generation is demonstrated in orientation-patterned gallium arsenide, pumped by a novel single-oscillator simultaneously Q-switched and mode-locked thulium-doped fiber laser, downconverting the pump radiation into the mid-infrared wavelength regime. The maximum output energy reached is greater than 2.0 μJ per pump pulse.

  5. Methods for forming group III-V arsenide-nitride semiconductor materials

    NASA Technical Reports Server (NTRS)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  6. Simulation studies on the evolution of gallium nitride on a liquid gallium surface under plasma bombardment.

    PubMed

    Vasquez, M R; Flauta, R E; Wada, M

    2008-02-01

    Monte Carlo simulations were conducted to study the formation of gallium-nitride (GaN) layer on liquid gallium (Ga) sputtering target immersed in nitrogen (N(2)) plasma. In the simulation model, N ions were assumed to possess energy equal to the bias voltage applied to the sputtering target with respect to the plasma. The results showed the surface morphology of GaN changed from a relatively smooth GaN on Ga surface at 50 eV N ion energy to a rough surface with GaN dendrites on liquid Ga at 500 eV ion energy. Further increase in N ion energy up to 1 keV resulted in smaller density of GaN dendrites on surface. Increasing surface coverage of Ga by GaN substantially reduced the sputtering yield of Ga from the target. These simulation results were correlated with previously reported experimental observations on liquid Ga surface immersed in the nitrogen plasma of a plasma-sputter-type ion source.

  7. Nanoscale optical properties of indium gallium nitride/gallium nitride nanodisk-in-rod heterostructures.

    PubMed

    Zhou, Xiang; Lu, Ming-Yen; Lu, Yu-Jung; Jones, Eric J; Gwo, Shangjr; Gradečak, Silvija

    2015-03-24

    III-nitride based nanorods and nanowires offer great potential for optoelectronic applications such as light emitting diodes or nanolasers. We report nanoscale optical studies of InGaN/GaN nanodisk-in-rod heterostructures to quantify uniformity of light emission on the ensemble level, as well as the emission characteristics from individual InGaN nanodisks. Despite the high overall luminescence efficiency, spectral and intensity inhomogeneities were observed and directly correlated to the compositional variations among nanodisks and to the presence of structural defect, respectively. Observed light quenching is correlated to type I1 stacking faults in InGaN nanodisks, and the mechanisms for stacking fault induced nonradiative recombinations are discussed in the context of band structure around stacking faults and Fermi level pinning at nanorod surfaces. Our results highlight the importance of controlling III-nitride nanostructure growths to further reduce defect formation and ensure compositional homogeneity for optoelectronic devices with high efficiencies and desirable spectrum response.

  8. Studies on the reliability of ni-gate aluminum gallium nitride / gallium nitride high electron mobility transistors using chemical deprocessing

    NASA Astrophysics Data System (ADS)

    Whiting, Patrick Guzek

    Aluminum Gallium Nitride / Gallium Nitride High Electron Mobility Transistors are becoming the technology of choice for applications where hundreds of volts need to be applied in a circuit at frequencies in the hundreds of gigahertz, such as microwave communications. However, because these devices are very new, their reliability in the field is not well understood, partly because of the stochastic nature of the defects which form as a result of their operation. Many analytical techniques are not well suited to the analysis of these defects because they sample regions of the device which are either too small or too large for accurate observation. The use of chemical deprocessing in addition to surface-sensitive analysis techniques such as Scanning Electron Microscopy and Scanning Probe Microscopy can be utilized in the analysis of defect formation in devices formed with nickel gates. Hydrofluoric acid is used to etch the passivation nitride which covers the semiconducting layer of the transistor. A metal etch utilizing FeCN/KI is used to etch the ohmic and gate contacts of the device and a long exposure in various solvent solutions is used to remove organic contaminants, exposing the surface of the semiconducting layer for analysis. Deprocessing was used in conjunction with a variety of metrology techniques to analyze three different defects. One of these defects is a nanoscale crack which emanates from metal inclusions formed during alloying of the ohmic contacts of the device prior to use in the field, could impact the yield of production-level manufacturing of these devices. This defect also appears to grow, in some cases, during electrostatic stressing. Another defect, a native oxide at the surface of the semiconducting layer which appears to react in the presence of an electric field, has not been observed before during post-mortem analysis of degraded devices. It could play a major part in the degredation of the gate contact during high-field, off

  9. A gallium nitride single-photon source operating at 200 K.

    PubMed

    Kako, Satoshi; Santori, Charles; Hoshino, Katsuyuki; Götzinger, Stephan; Yamamoto, Yoshihisa; Arakawa, Yasuhiko

    2006-11-01

    Fundamentally secure quantum cryptography has still not seen widespread application owing to the difficulty of generating single photons on demand. Semiconductor quantum-dot structures have recently shown great promise as practical single-photon sources, and devices with integrated optical cavities and electrical-carrier injection have already been demonstrated. However, a significant obstacle for the application of commonly used III-V quantum dots to quantum-information-processing schemes is the requirement of liquid-helium cryogenic temperatures. Epitaxially grown gallium nitride quantum dots embedded in aluminium nitride have the potential for operation at much higher temperatures. Here, we report triggered single-photon emission from gallium nitride quantum dots at temperatures up to 200 K, a temperature easily reachable with thermo-electric cooling. Gallium nitride quantum dots also open a new wavelength region in the blue and near-ultraviolet portions of the spectrum for single-photon sources.

  10. In vitro bio-functionality of gallium nitride sensors for radiation biophysics.

    PubMed

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adigüzel, Denis; Stutzmann, Martin; Sharp, Ian D; Thalhammer, Stefan

    2012-07-27

    There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on

  11. Ultrafast Dynamics of Coulomb Correlated Excitons in Gallium Arsenide Quantum Wells

    NASA Astrophysics Data System (ADS)

    Mycek, Mary-Ann

    We measure the transient nonlinear optical response of room temperature excitons in gallium arsenide quantum wells via multi-wave mixing experiments. The dynamics of the resonantly excited excitons is directly reflected by the ultrafast decay of the induced nonlinear polarization, which radiates the detected multi-wave mixing signal. We characterize this ultrafast coherent emission in both amplitude and phase, using time and frequency-domain measurement techniques, to better understand the role of Coulomb correlation in these systems. To interpret the experimental results, the nonlinear optical response of a dense medium is calculated using a model including Coulomb interaction. We contribute three new elements to previous theoretical and experimental studies of these systems. First, surpassing traditional time-integrated measurements, we temporally resolve the amplitude of the ultrafast coherent emission. Second, in addition to measuring the third-order four-wave mixing signal, we also investigate the fifth-order six-wave mixing response. Third, we characterize the ultrafast phase dynamics of the nonlinear emission using interferometric techniques with an unprecedented resolution of approximately 140 attoseconds. We find that effects arising from Coulomb correlation dominate the nonlinear optical response when the density of excitons falls below rm3times10 ^{11}cm^{-2}, the saturation density. Under these conditions, Coulomb interactions are unscreened and there exist two contributions to the multi-wave mixing emission. A prompt response from field scattering occurs via the phase-space filling effects of the Pauli exclusion principle, while a delayed response from polarization wave scattering occurs via the Coulomb interactions between excitons. In four-wave mixing, polarization wave scattering produces a non-exponential decay to the time-resolved signal and a corresponding non-linear phase evolution in the emitted pulse. In six-wave mixing, polarization wave

  12. Segregation behavior and interface characterization in terrestrial and microgravity grown selenium-doped gallium arsenide

    NASA Astrophysics Data System (ADS)

    Bly, Jennifer Ann Majewski

    Selenium-doped gallium arsenide (Se/GaAs) bulk crystals were grown in a modified Bridgman-Stockbarger furnace for the analysis of interface shape and position, crystal growth rate. and segregation behavior. The project scope encompassed terrestrial and space grown crystals from the First and Second United States Microgravity Laboratories (USML-1 and USML-2), which were launched aboard the Space Shuttle Columbia in June 1992 as STS-50 and in October 1995 as STS-73, respectively. The modified Bridgman-Stockbarger furnace was built by the National Aeronautics and Space Administration (NASA) and is called the Crystal Growth Furnace (CGF). A Current Pulse Interface Demarcation (CPID) system was incorporated into the CGF. The CPID system imparts a short (50 millisecond) current pulse into the growing crystal. Peltier cooling occurs at the melt/solid interface, which triggers an instantaneous increase in growth rate. This increase was observed to successfully produce solute bands in the solidified crystal, resulting in demarcation of the melt/solid interface at specific times during growth. Infrared transmission microscopy was used to measure the interface-shapes and positions in the crystals. All experimental interface shapes were concave into the solid. Predictions of interface shapes from a NASA-Lewis Research Center developed, steady state numerical model were quantitatively compared to the measured interface shapes. Experimental seeding interface shape and deflection agreed well with the model predictions. Melt/solid interface deflections during growth deviated from predictions due to the steady state assumption of the model. The results from each of the crystals indicated that at furnace translation rates of less than 1 mum/sec, the crystal growth rate was equal to the translation rate. At rates greater than 1 mum/sec, the crystal growth rate lagged behind the furnace translation rate. Optical (Fourier Transform Infrared Spectroscopy), chemical (Secondary Ion Mass

  13. The Effect of Chemical Reactivity and Charge Transfer on Gallium-Arsenide (110) Schottky Barrier Formation.

    NASA Astrophysics Data System (ADS)

    Williams, Michael Duryea

    Transition and near noble metals have been deposited in sequential steps on atomically clean cleaved Gallium Arsenide (GaAs) surfaces under ultra-high vacuum conditions. Soft X-ray and ultra-violet photoemission spectroscopies were used to elucidate the room temperature (RT) chemistry and Fermi level pinning behaviors of these systems. The results show that the nature or degree of the chemical reaction has little effect on the Schottky barrier (SB) height of the metal-semiconductor contact. Silver (Ag), Gold (Au), Copper (Cu) and Palladium (Pd) for example, exhibit a range of chemical reactivities with the substrate going from non-reactive in the case of Ag to very reactive for Pd. These all have a SB height of 0.9 electron volts (eV) for n-type GaAs. Nickel (Ni), Chromium (Cr) and Titanium (Ti), on the other hand, also react strongly but have a SB height of 0.7 eV. The pinning position of the Fermi level at the interface for the established barrier (with the exception of the Ag contact) is also found to be independent of whether the substrate is doped n or p-type. An examination of trends in charge transfer parameters between the metal overlayer and the substrate has led to a strong correlation between the electronegativity (Pauling's scale) of the metal and the observed SB height. It is suggested that the formation of a dipole at the interface effects a charge transfer between the adatom induced defect levels and the metal overlayer consistent with charge neutrality. As a test, two additional sets of experiments were performed. The first is a study of Ytterbium (Yb) on the GaAs suabstrate. The unique chemistry of the rare earth metal provides further proof that the SB height is independent of chemistry. The second set of experiments is a kinetic study of the development of the Aluminum (Al)/GaAs SB. The RT and low temperature ((LESSTHEQ)-50(DEGREES)C) substrates show a significant variation in the pinning behavior of the interfacial Fermi level with coverage. The

  14. Comparative study of the toxic effects of gallium arsenide, indium arsenide and arsenic trioxide following intratracheal instillations to the lung of Syrian golden hamsters.

    PubMed

    Tanaka, A; Hirata, M; Omura, M; Zhao, M; Makita, Y; Yamazaki, K; Inoue, N; Gotoh, K

    2000-01-01

    Toxic effects of gallium arsenide (GaAs), indium arsenide (InAs) and arsenic trioxide (As2O3) were studied in male Syrian golden hamsters. GaAs (7.7 mg/kg) and As2O3 (1.3 mg/kg) particles were instilled intratracheally twice a week a total of 16 times, while InAs (7.7 mg/kg) was instilled a total of 14 times. As a control, hamsters were treated with the vehicle, phosphate buffer solution. During the instillation period, the cumulative body weight gain of the InAs-, but not the GaAs- or As2O3-treated hamsters was suppressed significantly, when compared with the control group. Slight to severe inflammatory responses were observed in the lung for all treatment groups. The most severe inflammatory change, characterized by an accumulation of neutrophils and macrophages, exudation, thickness of the pleura and fibrotic proliferation was found in the InAs-treated hamsters. Extensive alveolar or bronchiolar cell hyperplasia with or without keratinizing squamous cell metaplasia was observed in almost all the InAs-treated hamsters. Furthermore, squamous cell metaplasia or squamous cell hyperplasia developed in some of the InAs-treated hamsters, but not in the GaAs- or As2O3-treated hamsters. Slight to mild lesions were found in the convoluted tubules of the kidney in both the GaAs and InAs groups. From the present study, the toxic potency of these particles was provisionally estimated to be in the following order: InAs > GaAs > As2O3, at the dosage level used in this study. Furthermore, there was evidence that InAs particles could induce pulmonary, renal or systemic toxicity, and as such, InAs particles may produce pulmonary precancerous change when instilled intratracheally into hamsters.

  15. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.

    PubMed

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena

    2013-07-02

    Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.

  16. Probing the Surface Defect States of Gallium Nitride Nanowires

    NASA Astrophysics Data System (ADS)

    Simonsen, Lauren; Yang, Yuchen; Borys, Nicholas; Ghimire, Anil; Schuck, James; Aloni, Shaul; Gerton, Jordan

    2016-03-01

    In this work, we investigate gallium nitride nanowires (NWs) as a potential system for solar-driven water splitting. Although bulk GaN has a UV bandgap, the synthesized NWs exhibit strong absorption and fluorescence emission across the visible spectrum. Density functional theory calculations suggest that this visible fluorescence originates from mid-gap surface-defect states along the triangular facets of the NWs. The orientation of the NWs can be controlled during MOCVD growth, leading to different exposed crystallographic surface terminations with various electronic structures. High resolution microscopy techniques using AFM and confocal hyper-spectral imaging show spectral inhomogeneity across the widths of the NWs, providing evidence that various crystallographic terminations produce different surface states. These NWs also exhibit wave guiding properties, leading to Fabry-Perot fringes and high intensity spectra at the ends of the wires. Photoluminescence excitation spectroscopy reveals a non-linear dependence of the emission spectral features on excitation wavelength, indicating a complex distribution of mid-gap defect states. Time-resolved spectroscopy reveals non-exponential decay dynamics through a complicated manifold of mid-gap states.

  17. Photoelectrochemical etching of gallium nitride surface by complexation dissolution mechanism

    NASA Astrophysics Data System (ADS)

    Zhang, Miao-Rong; Hou, Fei; Wang, Zu-Gang; Zhang, Shao-Hui; Pan, Ge-Bo

    2017-07-01

    Gallium nitride (GaN) surface was etched by 0.3 M ethylenediamine tetraacetic acid disodium (EDTA-2Na) via photoelectrochemical etching technique. SEM images reveal the etched GaN surface becomes rough and irregular. The pore density is up to 1.9 × 109 per square centimeter after simple acid post-treatment. The difference of XPS spectra of Ga 3d, N 1s and O 1s between the non-etched and freshly etched GaN surfaces can be attributed to the formation of Ga-EDTA complex at the etching interface between GaN and EDTA-2Na. The proposed complexation dissolution mechanism can be broadly applicable to almost all neutral etchants under the prerequisite of strong light and electric field. From the point of view of environment, safety and energy, EDTA-2Na has obvious advantages over conventionally corrosive etchants. Moreover, as the further and deeper study of such nearly neutral etchants, GaN etching technology has better application prospect in photoelectric micro-device fabrication.

  18. Damage development of gallium nitride under plasma exposure

    NASA Astrophysics Data System (ADS)

    Ogawa, Daisuke; Banno, Yoshitsugu; Nakano, Yoshitaka; Nakamura, Keiji

    2016-09-01

    Plasma damage has been focused on since 1990s. In this era, this issue was manly targeted onto silicon-based semiconductors. However, since the gallium nitride (GaN) was paid attentions to after blue LEDs, they start to consider the damages given to GaN as well. We have so far utilized photoluminescence (PL) emission from the surface of GaN film to monitor the evolution of damage given by plasma exposure. This measurement gives us clues how plasma exposure changed intermediate electronical states in the film without taking the film out of the chamber. First of all, we analyzed the development of damage given by argon plasma, which is one of the most fundamental plasma to analyze. Argon plasma is responsible to give only physical damages over a GaN film. Our PL measurements showed a significant decrease within approximately 10 seconds after the plasma exposure started. This means that ions and radiations created from the plasma gives significant damages to the GaN film even short period of time. Chlorine-related gas is normally utilized for chemical etching. Chlorine species realize continuous damage layer removals, but some reports already mentioned that the processed device has difference electrical properties after the plasma exposure. In this presentation, we will show what happens to GaN film after the plasma exposure in terms of crystal structure and impurities of GaN, by connecting PL emission and ex-situ measurements.

  19. Low-frequency noise in gallium nitride nanowire mechanical resonators

    NASA Astrophysics Data System (ADS)

    Gray, Jason M.; Bertness, Kris A.; Sanford, Norman A.; Rogers, Charles T.

    2012-12-01

    We report on the low-frequency 1/f (flicker) parameter noise displayed by the resonance frequency of doubly clamped c-axis gallium nitride nanowire (NW) mechanical resonators. The resonators are electrostatically driven and their mechanical response is electronically detected via NW piezoresistance. With an applied dc voltage bias, a NW driven near its mechanical resonance generates a dc and Lorentzian rf current that both display 1/f noise. The rf current noise is proportional to the square of the derivative of the Lorentzian lineshape with a magnitude highly dependent on NW dc bias voltage conditions, consistent with a model wherein noise in the NW's electrical impedance leads to temperature noise from local Joule heating, which in turn generates resonance frequency noise via thermal expansion and the temperature-dependent Young's modulus. An example device with a 27.8 MHz resonance frequency experiences an approximate resonance frequency shift of -1.4 Hz/nW. The resonance frequency noise increases as the square of the bias voltage, indicating specific operating conditions that optimize the signal-to-noise ratio in proposed NW sensors.

  20. Low-frequency noise in gallium nitride nanowire mechanical resonators

    NASA Astrophysics Data System (ADS)

    Gray, Jason; Bertness, Kris; Sanford, Norman; Rogers, Charles

    2012-02-01

    We report on the low-frequency 1/f (flicker) parameter noise displayed by the resonance frequency and resistance of doubly clamped c-axis gallium nitride nanowire (NW) mechanical resonators. The resonators are electrostatically driven and their mechanical response is electronically detected via NW piezoresistance. With an applied dc voltage bias, an NW driven near its mechanical resonance generates a dc and Lorentzian rf current that both display 1/f noise. The rf current noise is proportional to the square of the derivative of the Lorentzian lineshape with a magnitude highly dependent on NW dc bias voltage conditions, consistent with noise in the NW's resistance leading to temperature noise from local Joule heating, which in turn generates resonance frequency noise. An example device with a 27.8 MHz resonance frequency and 220 kφ resistance experiences an approximate resonance frequency shift of -5.8 Hz/nW. In terms of NW resistance change, this corresponds with shifts of 0.1 Hz/φ and 2.6 Hz/φ at 1 V bias and 4 V bias, respectively, with an average resistance fluctuation of 1 kφ in a 1-second bandwidth.

  1. Layer transfer of bulk gallium nitride by controlled spalling

    NASA Astrophysics Data System (ADS)

    Bedell, S. W.; Lauro, P.; Ott, J. A.; Fogel, K.; Sadana, D. K.

    2017-07-01

    Successful wafer-scale layer transfer from high-quality 2-in. diameter bulk gallium nitride substrates was demonstrated using the Controlled Spalling technique. The crystal quality of both the as-fractured bulk substrate and the spalled GaN film was assessed using transmission electron microscopy analysis, and the defect density was below the detection limit (mid 107 cm-2) for both samples. By using the experimentally determined critical conditions for tensile stress and thickness of the Ni stressor layer, an effective fracture toughness KIC of 1.7 MPa √{m } could be calculated for [0001] fracture using the Suo and Hutchinson mechanical model. The resulting in-plane contraction of the GaN film after spalling permitted a novel method for measuring film strain without knowledge of the elastic properties of the material. This was used to measure the Raman E2(high) peak shift coefficient of Δω(cm-1) = 1411ɛ which, when converted to a stress coefficient (2.95 cm-1/GPa), was in agreement with only one other literature value.

  2. Gallium Nitride, Indium Nitride, and Heterostructure Development Using The MEAglow Growth System

    NASA Astrophysics Data System (ADS)

    Binsted, Peter W.

    This thesis presents an in depth study of semiconductor development using a new process termed Migration Enhanced Afterglow (MEAglow). The MEAglow growth reactor is housed in the Lakehead University Semiconductor Research Lab. Thin films of gallium nitride and indium nitride are produced as well as heterostructures comprised of these two films and their ternary alloy InGaN. MEAglow is a form of plasma enhanced chemical vapour deposition (PECVD) employing migration enhanced epitaxy (MEE). The heterostructure is being developed for a novel field effect transistor (FET) based on the tunnelling of charge carriers which alter the channel conductivity. The configuration of this unique III-Nitride device should allow the FET to function as normally off in either n-type or p-type operation. Due to the difficulties in growing low temperature GaN, test devices of this abstract design were not previously possible. Further details on the device operation and growth parameters are included. Samples produced by the research reactor were characterised through x-ray diffraction (XRD), ultraviolet-near infrared-visible spectroscopy (UV-Vis-NIR), Auger spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Film growth is accomplished by an improved form of pulsed delivery Plasma Enhanced Chemical Vapour Deposition (PECVD). The reactor features a scalable hollow cathode type plasma source. Data obtained through characterisation is subjected to theoretical treatment which explains much not previously understood behaviour of the GaN films. Many challenges in III-Nitride film growth have been overcome during this research project. A method of developing structures consisting of InN and GaN within the same system has been proven.

  3. Indium gallium nitride/gallium nitride vacuum microelectronic cold cathodes: Piezoelectric surface barrier lowering

    NASA Astrophysics Data System (ADS)

    Underwood, Robert Douglas

    Vacuum microelectronic devices are electronic devices fabricated using microelectronic processing and using vacuum as a transport medium. The electron velocity in vacuum can be larger than in solid state, which allows higher frequency operation of vacuum devices compared to solid-state devices. The effectiveness of vacuum microelectronic devices relies on the realization of an efficient source of electrons supplied to the vacuum. Cold cathodes do not rely on thermal energy for the emission of electrons into vacuum. Cold cathodes based on field emission are the most common types of vacuum microelectronic cold cathode because they have a very high efficiency and high current density electron emission. Materials used to fabricate field emitters must have the properties of high electron concentration, low surface reactivity, resistance to sputtering by ions, high thermal conductivity, and a method of fabrication of uniform arrays of field emitters. The III--V nitride semiconductors possess these material properties and uniform arrays of GaN field emitter pyramids have been produced by selective area, self-limited metalorganic chemical vapor deposition. The first GaN field emitter arrays were fabricated and measured. Emission currents as large as 82 muA at 1100 V from 245,000 pyramids have been realized using an external anode, separated by 0.25 mm, to apply voltage bias. The operation voltage was reduced by the development of an integrated anode structure. The anode-cathode separation achievable with the integrated anode was in the range of 0.5--2.4 m. The turn-on voltages of these devices were reduced to the range of 175--435 V. The operation voltage of field emitter cathodes is related to the surface energy barrier, which for n-type semiconductors is the electron affinity. A new method to reduce the effective electron affinity using a piezoelectric dipole in an InGaN/GaN heterostructure has been proposed and tested. The piezoelectric field produced in the strained In

  4. Dielectric response of wurtzite gallium nitride in the terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Hibberd, M. T.; Frey, V.; Spencer, B. F.; Mitchell, P. W.; Dawson, P.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J.; Graham, D. M.

    2016-12-01

    We report on the characterization of the intrinsic, anisotropic, dielectric properties of wurtzite gallium nitride in the spectral range of 0.5-11 THz, using terahertz time-domain spectroscopy. The ordinary (ε˜⊥) and extraordinary (ε˜∥) components of the complex dielectric function were determined experimentally for a semi-insulating, m-plane gallium nitride single crystal, providing measurements of the refractive indices (n⊥,∥) and absorption coefficients (α⊥,∥) . These material parameters were successfully modeled by considering the contribution of the optical phonon modes, measured using Raman spectroscopy, to the dielectric function, giving values for the relative static dielectric constants of ε0⊥ = 9.22 ± 0.02 and ε0∥ = 10.32 ± 0.03 for wurtzite gallium nitride.

  5. Laser modulation of human immune system: inhibition of lymphocyte proliferation by a gallium-arsenide laser at low energy

    SciTech Connect

    Ohta, A.; Abergel, R.P.; Uitto, J.

    1987-01-01

    Cultured human lymphocytes were subjected to irradiation with a gallium-arsenide laser at energy fluence varying from 2.17 to 651 mJ/cm2, and the cell proliferation was assessed by (/sup 3/H)thymidine incorporation. Both mitogenic proliferation in response to phytohemagglutinin and spontaneous cell proliferation were markedly inhibited by the laser irradiation at energy fluence as low as 10.85 mJ/cm2. Similarly, the functional response of cells to antigen stimulation in a one-way mixed-lymphocyte reaction was also diminished as a result of laser irradiation. The results indicate that laser irradiation at low energy can interfere with immune system in vitro, and similar modulation could potentially occur in human subjects exposed to laser irradiation in vivo.

  6. An experiment to test the viability of a gallium-arsenide cathode in a SRF electron gun

    SciTech Connect

    Kewisch,J.; Ben-Zvi, I.; Rao, T.; Burrill, A.; Pate, D.; Wu, Q.; Todd, R.; Wang, E.; Bluem, H.; Holmes, D.; Schultheiss, T.

    2009-05-04

    Strained gallium arsenide cathodes are used in electron guns for the production of polarized electrons. In order to have a sufficient quantum efficiency lifetime of the cathode the vacuum in the gun must be 10{sup -11} Torr or better, so that the cathode is not destroyed by ion back bombardment or through contamination with residual gases. All successful polarized guns are DC guns, because such vacuum levels can not be obtained in normal conducting RF guns. A superconductive RF gun may provide a sufficient vacuum level due to cryo-pumping of the cavity walls. We report on the progress of our experiment to test such a gun with normal GaAs-Cs crystals.

  7. Optical absorption and photocurrent enhancement in semi-insulating gallium arsenide by femtosecond laser pulse surface microstructuring.

    PubMed

    Zhao, Zhen-Yu; Song, Zhi-Qiang; Shi, Wang-Zhou; Zhao, Quan-Zhong

    2014-05-19

    We observe an enhancement of optical absorption and photocurrent from semi-insulating gallium arsenide (SI-GaAs) irradiated by femtosecond laser pulses. The SI-GaAs wafer is treated by a regeneratively amplified Ti: Sapphire laser of 120 fs laser pulse at 800 nm wavelength. The laser ablation induced 0.74 μm periodic ripples, and its optical absorption-edge is shifted to a longer wavelength. Meanwhile, the steady photocurrent of irradiated SI-GaAs is found to enhance 50%. The electrical properties of samples are calibrated by van der Pauw method. It is found that femtosecond laser ablation causes a microscale anti-reflection coating surface which enhances the absorption and photoconductivity.

  8. Terahertz emission enhancement in semi-insulating gallium arsenide integrated with subwavelength one-dimensional metal line array.

    PubMed

    Faustino, Maria Angela B; Lopez, Lorenzo P; Pauline Afalla, Jessica; Muldera, Joselito; Hermosa, Nathaniel; Salvador, Arnel A; Somintac, Armando S; Estacio, Elmer S

    2016-10-01

    A one-order-of-magnitude terahertz (THz) emission enhancement in the transmission geometry, over a 0.7-THz broadband range, was observed in semi-insulating gallium arsenide (SI-GaAs) integrated with a subwavelength one-dimensional metal line array (1DMLA). THz emission of the 1DMLA samples showed an intensity increase and exhibited a full-width-at-half-maximum broadening relative to the emission of the bare substrate. Improved index matching could not account for the observed phenomenon. A nonlinear dependence of the integrated THz emission intensity on the number of illuminated lines and on the pump power was observed. The actual origin of the increased THz emission is still under investigation. At present, it is attributed to extraordinary optical transmission.

  9. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  10. Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide.

    PubMed

    Melisi, Domenico; Nitti, Maria Angela; Valentini, Marco; Valentini, Antonio; Ligonzo, Teresa; De Pascali, Giuseppe; Ambrico, Marianna

    2014-01-01

    In this paper, a spray technique is used to perform low temperature deposition of multi-wall carbon nanotubes on semi-insulating gallium arsenide in order to obtain photodectors. A dispersion of nanotube powder in non-polar 1,2-dichloroethane is used as starting material. The morphological properties of the deposited films has been analysed by means of electron microscopy, in scanning and transmission mode. Detectors with different layouts have been prepared and current-voltage characteristics have been recorded in the dark and under irradiation with light in the range from ultraviolet to near infrared. The device spectral efficiency obtained from the electrical characterization is finally reported and an improvement of the photodetector behavior due to the nanotubes is presented and discussed.

  11. A gallium-arsenide digital phase shifter for clock and control signal distribution in high-speed digital systems

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.

    1992-01-01

    The design, implementation, testing, and applications of a gallium-arsenide digital phase shifter and fan-out buffer are described. The integrated circuit provides a method for adjusting the phase of high-speed clock and control signals in digital systems, without the need for pruning cables, multiplexing between cables of different lengths, delay lines, or similar techniques. The phase of signals distributed with the described chip can be dynamically adjusted in eight different steps of approximately 60 ps per step. The IC also serves as a fan-out buffer and provides 12 in-phase outputs. The chip is useful for distributing high-speed clock and control signals in synchronous digital systems, especially if components are distributed over a large physical area or if there is a large number of components.

  12. The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Anikara, R.

    1972-01-01

    The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.

  13. Therapeutic potential of monoisoamyl and monomethyl esters of meso 2,3-dimercaptosuccinic acid in gallium arsenide intoxicated rats.

    PubMed

    Flora, Swaran J S; Mehta, Ashish; Rao, P V Lakshmana; Kannan, Gurusamy M; Bhaskar, A S B; Dube, Shashi N; Pant, Bhagwat P

    2004-02-15

    The dose dependent effects of monoisoamyl and monomethyl esters of meso 2,3-dimercaptosuccinic acid (DMSA) (0.1, 0.3 and 0.5 mmol kg(-1), intraperitoneally (i.p.) once daily for 5 days) to offset the characteristic biochemical, immunological, oxidative stress consequences and DNA damage (based on DNA fragmentation and comet assay) following sub-chronic administration of gallium arsenide and the mobilization of gallium and arsenic were examined. The effects of these chelators alone in normal animals too were examined on above-mentioned variables. Male Wistar rats were exposed to 10 mg kg(-1), GaAs, orally once daily for 12 weeks and were administered DMSA or two of its monoesters (monoisoamyl or monomethyl) for 5 consecutive days. DMSA was used as a positive control. DMSA and its derivatives, when given alone, generally have no adverse effects on various parameters. After 5 days of chelation therapy in GaAs pre-exposed rats, MiADMSA was most effective in the reduction of inhibited blood delta-aminolevulinic acid dehydratase (ALAD) activity and zinc protoporphyrin level while, all three chelators effectively reduced urinary ALA excretion, compared to GaAs alone exposed rats. MiADMSA was also effective, particularly at a dose of 0.3 mmol kg(-1), in enhancing the inhibited hepatic transaminase activities. Parameters indicative of oxidative stress responded less favorably to the chelation therapy, however, three chelators significantly restored the altered immunological variables. MiADMSA was relatively more effective than the other two chelators. GaAs produced significant DNA damage in the liver and kidneys and the chelation treatment had moderate but significant influence in reducing DNA damage. All three chelators significantly reduced arsenic concentration and, however, MiADMSA was more effective than the other two chelators in depleting arsenic concentration from blood and other soft tissues. A dose of 0.3 mmol kg(-1) was found to be relatively better than the

  14. Direct observation of frozen gallium gas on wurtzite gallium nitride (0001) using low-temperature scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Alam, Khan; Foley, Andrew; Lin, Wenzhi; Corbett, Joseph; Ma, Yingqiao; Pak, Jeongihm; Smith, Arthur

    2014-03-01

    Gallium nitride layers are ordinarily grown under gallium-rich growth conditions by molecular beam epitaxy (MBE) to obtain the highest material quality. In 1997, Smith et al. reported the family of reconstructions existing on the growth surface at room temperature, the highest-order being the c(6x12). Additional gallium deposition does not lead to new reconstructions. Instead, excess gallium atoms are presumed to exist in a 2-dimensional gas state. Using a custom-built MBE/low-temperature (4.2 K) STM system, we have imaged this gallium gas for the first time by freezing out the motion. The frozen-out gallium atoms are visualized as asymmetric `L-shaped' features, with left-handed and right-handed L's scattered randomly across the surface. Interestingly, on any given atomic terrace we observe a 4x greater probability of left-handed versus right-handed L's (or vice versa), which inverts across bilayer-height steps. The cause of this asymmetry is explored by zooming in with atomic resolution, revealing two inequivalent adsorption sites.

  15. Cascaded Orientation-Patterned Gallium Arsenide Optical Parametric Oscillator for Improved Longwave Infrared Conversion Efficiency

    NASA Astrophysics Data System (ADS)

    Feaver, Ryan K.

    Optical parametric oscillators (OPOs) utilizing quasi-phase matched materials offer an appealing alternative to direct laser sources. Quasi-phase matched materials provide a useful alternative to traditional birefringent nonlinear optical materials and through material engineering, higher nonlinear coefficients can now be accessed. Orientation patterned gallium arsenide (OPGaAs) is an ideal material because of its broad IR transmission and large nonlinear coefficient. In contrast to ferroelectric materials, such as lithium niobate, where the pattern is fabricated through electric poling, zincblende materials, like OPGaAs, are grown epitaxially with the designed pattern. Generating longwave output from a much shorter pump wavelength, however, is relatively inefficiency due to the large quantum defect when compared to similar devices operating in the 3 - 5 mum regime. One method to increase pump to idler conversion efficiency is to recycle the undesired and higher energy signal photons into additional idler photons via a second nonlinear stage. An external amplifier stage can be utilized, where the signal and idler from the OPO are sent to a second nonlinear crystal in which the idler is amplified at the expense of the signal. Alternatively, the second crystal can be placed within the original OPO cavity where the signal from the first-stage acts as the pump for the second crystal and the resonant intensity of the signal is higher. Pumping the second crystal within the OPO should lead to higher conversion efficiency into the longwave idler. The grating period needed for the second crystal to use the signal from the first crystal to produce additional idler has the fortuitous advantage that it will not phase match to the original pump wavelength, avoiding unwanted nonlinear interactions. Therefore, a simple linear cavity can be utilized where the pump from the first-stage will simply propagate through the second crystal without undesired results. Without this feature

  16. Pulsed-laser deposition and characterization of hetero-paired thin-film gallium arsenide

    NASA Astrophysics Data System (ADS)

    Erlacher, Artur

    2005-07-01

    The III-V compound semiconductor gallium arsenide (GaAs) possesses a direct bandgap and a six-fold higher electron mobility than the indirect semiconductor silicon (Si). For that reason GaAs based devices are of particular significance for high-speed digital (mobile phones, radar systems, all-optical switches, etc.) and high-performance optoelectronic applications (high-efficiency solar cells, high-power IR laser diodes, etc.). The state-of-the-art GaAs device production is mainly covered by rather sophisticated and expensive techniques such as molecular beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD). This project investigated pulsed-laser deposition (PLD) as a cost effective alternative method to grow thin-film GaAs. In addition, detailed data of electronic and optoelectronic properties of GaAs/Si hetero-structures were obtained. During this dissertation about 110 GaAs thin films have been formed on glass and Si substrates by PLD with different process parameters. The crystal structure and surface properties of the thin films have been analyzed by x-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. Electronic and optoelectronic features of GaAs/Si hetero-structures have been investigated by current-voltage (I-V) characterization and photocurrent (PC) experiments. In addition, theoretical models describing the ablation temperature and the deposited film profile are presented. The experimental results reveal that the sample textures consist of a predominate amorphous portion and (111) oriented crystallites. Furthermore, these features are widely independent of the laser ablation wavelength and do not depend on the substrate surface texture. However, the ablation wavelength influences and varies the formation of clusters on the film surfaces as demonstrated with AFM. Doped GaAs thin films deposited on counter-doped Si substrates exhibit rectifying I-V characteristics. The spectral response data shows that the Ga

  17. Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications

    SciTech Connect

    ISLAM,N.E.; SCHAMILOGLU,E.; MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; JOSHI,R.P.

    2000-05-30

    The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of {approximately} 10{sup 4} shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10{sup 8} shots for electro-optic drivers. Much effort is currently

  18. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  19. In vitro bio-functionality of gallium nitride sensors for radiation biophysics

    SciTech Connect

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adiguezel, Denis; Stutzmann, Martin; Sharp, Ian D.; Thalhammer, Stefan

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer Gallium nitride based sensors show promising characteristics to monitor cellular parameters. Black-Right-Pointing-Pointer Cell growth experiments reveal excellent biocompatibiltiy of the host GaN material. Black-Right-Pointing-Pointer We present a biofunctionality assay using ionizing radiation. Black-Right-Pointing-Pointer DNA repair is utilized to evaluate material induced alterations in the cellular behavior. Black-Right-Pointing-Pointer GaN shows no bio-functional influence on the cellular environment. -- Abstract: There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth

  20. Micro and nano-structured green gallium indium nitride/gallium nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Stark, Christoph J. M.

    Light-emitting diodes (LEDs) are commonly designed and studied based on bulk material properties. In this thesis different approaches based on patterns in the nano and micrometer length scale range are used to tackle low efficiency in the green spectral region, which is known as “green gap”. Since light generation and extraction are governed by microscopic processes, it is instructive to study LEDs with lateral mesa sizes scaled to the nanometer range. Besides the well-known case of the quantum size effect along the growth direction, a continuous lateral scaling could reveal the mechanisms behind the purported absence of a green gap in nanowire LEDs and the role of their extraction enhancement. Furthermore the possibility to modulate strain and piezoelectric polarization by post growth patterning is of practical interest, because the internal electric fields in conventional wurtzite GaN LEDs cause performance problems. A possible alternative is cubic phase GaN, which is free of built-in polarization fields. LEDs on cubic GaN could show the link between strong polarization fields and efficiency roll-off at high current densities, also known as droop. An additional problem for all nitride-based LEDs is efficient light extraction. For a planar GaN LED only roughly 8% of the generated light can be extracted. Novel lightextraction structures with extraction-favoring geometry can yield significant increase in light output power. To investigate the effect of scaling the mesa dimension, micro and nano-sized LED arrays of variable structure size were fabricated. The nano-LEDs were patterned by electron beam lithography and dry etching. They contained up to 100 parallel nano-stripe LEDs connected to one common contact area. The mesa width was varied over 1 μm, 200 nm, and 50 nm. These LEDs were characterized electrically and optically, and the peak emission wavelength was found to depend on the lateral structure size. An electroluminescence (EL) wavelength shift of 3 nm

  1. Molecular-beam-epitaxial growth, properties, and device applications of thulium (phosphide, arsenide) alloys on gallium arsenide

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Hsi

    The crystal and electrical properties of the Tm(As, P)/GaAs and GaAs, P)/Tm(As, P)/GaAs heterostructures grown by molecular-beam-epitaxy have been investigated. Single-crystal thulium arsenide-phosphide (Tm(As, P)) films have been grown heteroepitaxially on (001) GaAs substrates by molecular beam epitaxy (MBE) with the orientation relationship [100] Tm(As, P) // [100] GaAs and {001} Tm(As, P) // {001} GaAs. Good epilayer quality was demonstrated through x-ray diffraction (XRD), atomic force microscopy (AFM), and transmission electron microscopy (TEM) analyses. Tm(As, P)/GaAs structures show good Schottky behavior. Microtwin-like planar defects were observed in {111} and {224} planes by transmission electron microscopy. The microtwin found here is strongly affected by the growth conditions. The occurrence of the observed microtwins in TmP/GaAs can be accounted for by the growth-accident mechanism, where the formation of microtwins is via growth accident in the stacking sequence on {111} and {112} planes. In this study, it was found that the addition of Tm yields a tremendous improvement in surface morphology of Ga(As, P) overlayer on Tm(As, P)/GaAs. The use of Tm doping shows promise for improving the Ga(As, P) wetting of Tm(As, P) surfaces. Even under high growth rates (>0.6mum/hr) and high growth temperatures (>600°C), a mirror-like smooth surface can still be obtained. The improvement in the surface morphology with Tm doping is primarily due to the increasing density of Ga(As, P) nuclei in the early stage of growth. This offers an attractive way of fabricating the monolithic metal-base-transistor (MBT) with a metal-insulator-metal-semiconductor (MIMS) structure. Indeed, the current-voltage characteristics of these devices exhibit transistor behaviors. A likely model for the emission mechanism is proposed. Besides monolithic MIMS transistors, MBTs with a semiconductor-metal-semiconductor (SMS) structure have been fabricated through wafer-bonding technique. From

  2. Gallium nitride light sources for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Goldberg, Graham R.; Ivanov, Pavlo; Ozaki, Nobuhiko; Childs, David T. D.; Groom, Kristian M.; Kennedy, Kenneth L.; Hogg, Richard A.

    2017-02-01

    The advent of optical coherence tomography (OCT) has permitted high-resolution, non-invasive, in vivo imaging of the eye, skin and other biological tissue. The axial resolution is limited by source bandwidth and central wavelength. With the growing demand for short wavelength imaging, super-continuum sources and non-linear fibre-based light sources have been demonstrated in tissue imaging applications exploiting the near-UV and visible spectrum. Whilst the potential has been identified of using gallium nitride devices due to relative maturity of laser technology, there have been limited reports on using such low cost, robust devices in imaging systems. A GaN super-luminescent light emitting diode (SLED) was first reported in 2009, using tilted facets to suppress lasing, with the focus since on high power, low speckle and relatively low bandwidth applications. In this paper we discuss a method of producing a GaN based broadband source, including a passive absorber to suppress lasing. The merits of this passive absorber are then discussed with regards to broad-bandwidth applications, rather than power applications. For the first time in GaN devices, the performance of the light sources developed are assessed though the point spread function (PSF) (which describes an imaging systems response to a point source), calculated from the emission spectra. We show a sub-7μm resolution is possible without the use of special epitaxial techniques, ultimately outlining the suitability of these short wavelength, broadband, GaN devices for use in OCT applications.

  3. Study of the structure of a thin aluminum layer on the vicinal surface of a gallium arsenide substrate by high-resolution electron microscopy

    SciTech Connect

    Lovygin, M. V. Borgardt, N. I.; Seibt, M.; Kazakov, I. P.; Tsikunov, A. V.

    2015-12-15

    The results of electron-microscopy studies of a thin epitaxial aluminum layer deposited onto a misoriented gallium-arsenide substrate are reported. It is established that the layer consists of differently oriented grains, whose crystal lattices are coherently conjugated with the substrate with the formation of misfit dislocations, as in the case of a layer on a singular substrate. Atomic steps on the substrate surface are visualized, and their influence on the growth of aluminum crystal grains is discussed.

  4. Generation of difference-frequency radiation in the far- and mid-IR ranges in a two-chip laser based on gallium arsenide on a germanium substrate

    SciTech Connect

    Aleshkin, V Ya; Dubinov, A A

    2008-09-30

    The possibility of efficient generation of difference-frequency radiation in the far- and mid-IR ranges in a two-chip laser based on gallium arsenide grown on a germanium substrate is considered. It is shown that a laser with a waveguide of width 100 {mu}m emitting 1 W in the near-IR range can generate {approx}40 {mu}W at the difference frequency in the region 5-50 THz at room temperature. (nonlinear optical phenomena)

  5. An alternative approach to the growth of single crystal gallium nitride

    NASA Astrophysics Data System (ADS)

    Jonathan, Neville

    1993-06-01

    This project has been primarily concerned with investigating a new approach to the synthesis of epitaxial layers of high purity gallium nitride. The new approach involves the use of hydrazoic acid, HN3, a previously untried precursor as the source of active nitrogen. A new, all-stainless steel apparatus which is UHV compatible, has been constructed. It has been designed to allow growth studies to be made by the chemical beam epitaxy (CBE) technique or by low pressure metal organic vapour phase deposition (LPMOCVD) at pressures up to ca. 1 mbar. During the grant period, the apparatus has been constructed, tested, and modified. Experiments have been carried out which show that gallium nitride and aluminium nitride can be made from the reaction of hydrazoic acid with trimethyl gallium and trimethyl aluminium respectively, at a hot substrate surface. In-situ RHEED patterns and ex-situ Auger spectra and x-ray diffraction data have been obtained. Systematic studies aimed at producing high quality single crystal films have been made. The results are promising and uniform, golden yellow films of gallium nitride can now be produced. RHEED data show that the films are composed of highly orientated crystals. The x-ray results support this, with crystal sizes being at least 1000 A with the crystals strongly orientated along the c-axis.

  6. Bright Room-Temperature Single-Photon Emission from Defects in Gallium Nitride.

    PubMed

    Berhane, Amanuel M; Jeong, Kwang-Yong; Bodrog, Zoltán; Fiedler, Saskia; Schröder, Tim; Triviño, Noelia Vico; Palacios, Tomás; Gali, Adam; Toth, Milos; Englund, Dirk; Aharonovich, Igor

    2017-02-09

    Room-temperature quantum emitters in gallium nitride (GaN) are reported. The emitters originate from cubic inclusions in hexagonal lattice and exhibit narrowband luminescence in the red spectral range. The sources are found in different GaN substrates, and therefore are promising for scalable quantum technologies.

  7. Gallium Nitride Light Emitter on a Patterned Sapphire Substrate for Improved Defectivity and Light Extraction Efficiency

    DTIC Science & Technology

    2010-01-01

    Gallium nitride light emitter on a patterned sapphire substrate for improved defectivity and light extraction efficiency Michael A. Mastro a,*, Byung ...Phys. 47 (2008) 7827. [6] B.J. Kim, H. Jung, J. Shin , M.A. Mastro, C.R. Eddy Jr., J.K. Hite, S.H. Kim, J. Bang, J. Kim, Thin Solid Films 517 (2009

  8. Fabrication and characterization of gallium nitride electronic devices

    NASA Astrophysics Data System (ADS)

    Johnson, Jerry Wayne

    Gallium nitride (GaN)-based high electron mobility transistors (HEMTs), metal oxide semiconductor field effect transistors (MOSFETs), and Schottky rectifiers were fabricated and characterized. Novel dielectric materials Gd 2O3 and ScO were evaluated as potential gate dielectrics for GaN MOS applications. The devices presented herein show tremendous potential for elevated temperature, high frequency, and/or high voltage operation. AlGaN/GaN HEMTs were grown by MOCVD on sapphire and SiC substrates and by RF-MBE on sapphire substrates. Devices were fabricated with gate lengths from 100 nm to 1.2 mum. Drain current density approached 1 A/mm and extrinsic transconductance exceeded 200 mS/mm for small gate periphery devices. For the shortest gate length, a unity-gain cutoff frequency (fT) of 59 GHz and a maximum frequency of oscillation (fmax) of 90 GHz were extracted from measured scattering parameters. The experimental s-parameters were in excellent agreement with simulated results from small-signal linear modeling. Large signal characterization of 0.25 x 150 mum2 devices produced 2.75 W/mm at 3 GHz and 1.7 W/mm at 10 GHz. Devices fabricated on high thermal conductivity SiC substrates exhibited superior high temperature performance and a reduced density of threading dislocations. Novel gate dielectrics Gd2O3 and ScO were grown by gas source molecular beam epitaxy (GSMBE). Current-voltage (I-V) and capacitance-voltage (C-V) data were collected from MOS capacitors to evaluate the bulk and interfacial electrical properties of the insulators. Single crystal Gd2O 3 was demonstrated on GaN, but the resultant MOSFET exhibited a large gate leakage attributed to defects and dislocations in the oxide. MOSFETs with a stacked gate dielectric of Gd2O3/SiO2 were operational at a drain source bias of 80 V and a gate bias of +7 V. Bulk GaN templates grown by hydride vapor phase epitaxy (HYPE) were used to fabricate vertical geometry Schottky rectifiers. Size- and temperature

  9. The Disordering of Gallium Arsenide/aluminum Gallium Arsenide Multiple Quantum Wells and its Application in the Fabrication of Integrated Optical Devices.

    NASA Astrophysics Data System (ADS)

    Shi, Xinyue

    1995-01-01

    Post-growth intermixing of GaAs/AlGaAs multiple quantum well (MQW) system has been under investigation for many years because of its potential applications in optoelectronic devices and integrated circuits. In this dissertation, zinc diffusion as an intermixing technique has been extensively studied. Successful disordering of MQWs has been achieved for various combinations of diffusion time, temperature and zinc source amount. A new technique has been developed, which allows the controlled, partial disordering of MQWs, using thermal diffusion of aluminum and/or gallium vacancies created by etching surface oxides. Spectral measurements by photoluminescence and optical absorption indicate that the disordering can result in a blue shift of the effective band edge by up to 75nm without broadening of the excitonic resonance. This method is impurity-free, area-selective, low cost, easy to perform and highly reproducible. The process should also be able to lend itself to rapid thermal annealing techniques. Theoretically, the technique should be able to disorder other III-V MQW systems. A nonlinear switch formed by monolithic integration of an overmoded MQW section with disordered input and output branching waveguides has been successfully achieved using the above group III vacancy diffusion technique. The disordered branching ridge waveguides had a loss figure of 8dB/cm. Time resolved optical pump-probe measurements were performed on an integrated switch that had better than 5:1 power split between the two output ports. The measured signal recovering of the switch had a time constant of 110ps. The technique was also applied to the fabrication of a nonlinear Mach-Zehnder interferometer. The device characterization showed that the output power was modulated by the input intensity as expected.

  10. LSI/VLSI (Large Scale Integration/Very Large Scale Integration) ion implanted GaAs (Gallium Arsenide) IC processing. Appendix A: Feasibility analysis of Gallium-Arsenide mask programmable functions and logic arrays for high performance communications systems

    NASA Astrophysics Data System (ADS)

    Zucca, R. R.; Kirkpatrick, C. G.; Asbeck, P. M.; Eisen, F. H.; Lee, C. P.

    1984-01-01

    Circuits critical to the performance of advanced radio, radar and spread spectrum communications systems require advances in the state-of-the-art in semiconductor technology to meet the demands of advanced systems. As these systems increase in complexity, extensive digital circuitry is required in addition to the typical linear signal processing circuits. The power, size and weight of advanced systems also becomes unacceptable without continuous advances in semiconductor technology. Moreover an increasing trend is seen in the use of metal mask selectable functions, programmable logic arrays and gate arrays to implement system specific circuitry in an attempt to lower non-recurring costs, minimize risk and shorten development times. GaAs and other technologies with very high speed power-performance figures-of-merit are critical ingredients in systems implementations which satisfy these needs. To meet these advanced system requirements this project was initiated as a multi-phase/year program to develop a group of mask programmable gallium arsenide (GaAs) circuit elements applicable to high speed/performance communications systems.

  11. Detection of vacancy defects in gallium arsenide by positron lifetime spectroscopy

    SciTech Connect

    Saarinen, K.; Kuisma, S.; Hautojaervi, P.

    1996-12-01

    Vacancy-related native defects were studied in semi-insulating GaAs by positron life-time measurements. Both gallium and arsenic vacancies are observed at concentrations of 10{sup 15} - 10{sup 16} cm{sup -3}. The experiments in the dark after illumination manifest the vacancy nature of the metastable state of the EL2 center.

  12. Planar Homojunction Gallium Nitride (GaN) P-i-N Device Evaluated for Betavoltaic Energy Conversion: Measurement and Analysis

    DTIC Science & Technology

    2016-09-01

    Betavoltaic Energy Conversion: Measurement and Analysis by M Litz, W Ray, J Russo, S Kelley, and J Smith Approved for public...SEP 2015 US Army Research Laboratory Planar Homojunction Gallium Nitride (GaN) P-i-N Device Evaluated for Betavoltaic Energy Conversion...Gallium Nitride (GaN) P-i-N Device Evaluated for Betavoltaic Energy Conversion: Measurement and Analysis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  13. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells

    SciTech Connect

    Eyderman, Sergey; John, Sajeev

    2016-06-23

    Here, we demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 103 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.

  14. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells

    DOE PAGES

    Eyderman, Sergey; John, Sajeev

    2016-06-23

    Here, we demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2.more » Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 103 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.« less

  15. Structural anomalies in undoped gallium arsenide observed in high-resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.

    1989-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  16. Development of a unique laboratory standard: Indium gallium arsenide detector for the 500-1700 nm spectral region

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A planar (5 mm diameter) indium gallium arsenide detector having a high (greater than 50 pct) quantum efficiency from the visible into the infrared spectrum (500 to 1700 nm) was fabricated. Quantum efficiencies as high as 37 pct at 510 nm, 58 pct at 820 nm and 62 pct at 1300 nm and 1550 nm were measured. A planar InP/InGaAs detector structure was also fabricated using vapor phase epitaxy to grow device structures with 0, 0.2, 0.4 and 0.6 micrometer thick InP caps. Quantum efficiency was studied as a function of cap thickness. Conventional detector structures were also used by completely etching off the InP cap after zinc diffusion. Calibrated quantum efficiencies were measured. Best results were obtained with devices whose caps were completely removed by etching. Certain problems still remain with these detectors including non-uniform shunt resistance, reproducibility, contact resistance and narrow band anti-reflection coatings.

  17. A novel three-jet microreactor for localized metal-organic chemical vapour deposition of gallium arsenide: design and simulation

    NASA Astrophysics Data System (ADS)

    Konakov, S. A.; Krzhizhanovskaya, V. V.

    2016-08-01

    We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and etching technology, since it preserves the nanostructure of the deposited material, it is less time-consuming and less expensive. We designed two versions of reactor geometry with a 10-micron central microchannel for precursor supply and with two side jets of a dilutant to control the deposition area. To aid future experiments, we performed computational modeling of a simplified-geometry (twodimensional axisymmetric) microreactor, based on Navier-Stokes equations for a laminar flow of chemically reacting gas mixture of Ga(CH3)3-AsH3-H2. Simulation results show that we can achieve a high-rate deposition (over 0.3 μm/min) on a small area (less than 30 μm diameter). This technology can be used in material production for microelectronics, optoelectronics, photovoltaics, solar cells, etc.

  18. Gallium arsenide exposure impairs processing of particulate antigen by macrophages: modification of the antigen reverses the functional defect.

    PubMed

    Hartmann, Constance B; McCoy, Kathleen L

    2004-06-11

    Gallium arsenide (GaAs), a semiconductor used in the electronics industry, causes systemic immunosuppression in animals. The chemical's impact on macrophages to process the particulate antigen, sheep red blood cells (SRBC), for a T cell response in culture was examined after in vivo exposure of mice. GaAs-exposed splenic macrophages were defective in activating SRBC-primed lymph node T cells that could not be attributed to impaired phagocytosis. Modified forms of SRBC were generated to examine the compromised function of GaAs-exposed macrophages. SRBC were fixed to maintain their particulate nature and subsequently delipidated with detergent. Delipidation of intact SRBC was insufficient to restore normal antigen processing in GaAs-exposed macrophages. However, chemically exposed cells efficiently processed soluble sheep proteins. These findings suggest that the problem may lie in the release of sequestered sheep protein antigens, which then could be effectively cleaved to peptides. Furthermore, opsonization of SRBC with IgG compensated for the macrophage processing defect. The influence of signal transduction and phagocytosis via Fcgamma receptors on improved antigen processing could be dissociated. Immobilized anti-Fcgamma receptor antibody activated macrophages to secrete a chemokine, but did not enhance processing of unmodified SRBC by GaAs-exposed macrophages. Restoration of normal processing of particulate SRBC by chemically exposed macrophages involved phagocytosis through Fcgamma receptors. Hence, initial immune responses may be very sensitive to GaAs exposure, and the chemical's immunosuppression may be averted by opsonized particulate antigens.

  19. Acute electrophysiological effect of pulsed gallium-arsenide low-energy laser irradiation on isolated frog sciatic nerve.

    PubMed

    Cömelekoğlu, U; Bagiş, S; Büyükakilli, B; Sahin, G; Erdoğan, C; Kanik, A

    2002-01-01

    We evaluated the acute electrophysiological effects of low-energy pulsed laser irradiation on isolated frog sciatic nerve measured by extracellular recording technique. A pulsed gallium-arsenide (GaAs) laser (wavelength: 904 nm, pulse duration 220 ns, peak power per pulse: 27W, spot size: 0.28 cm(2), total applied energy density: 0.005-2.5J/cm(2)) was used for the experiment. Sixty isolated nerves were divided into six groups (n=10), each of which received a different laser dose. In each group, action potentials were recorded before laser irradiation which served as the control data. The extracellular action potentials were recorded for each combination of 1, 3, 5, 7, 10, 13 and 15 minutes of irradiation time and 4, 8, 16, 32, 64 and 128 repetition frequency by using a BIOPAC MP 100 Acquisition System Version 3.5.7 (Santa Barbara, USA). Action potential amplitude, area, duration and conduction velocity were measured. Statistical evaluation was performed using repeated measures variance analysis by SPSS 9.0. There were no statistically significant differences for action potential amplitude, area and conduction velocity among the laser groups and control data (p>0.05). The study showed that low-energy GaAs irradiation at 4-128 Hz repetition frequencies administered for irradiation times of 1-15 min generates no effect on action potential amplitude, area, duration and conduction velocity in isolated frog sciatic nerve.

  20. CO{sub 2} laser-based dispersion interferometer utilizing orientation-patterned gallium arsenide for plasma density measurements

    SciTech Connect

    Bamford, D. J.; Cummings, E. A.; Panasenko, D.; Fenner, D. B.; Hensley, J. M.; Boivin, R. L.; Carlstrom, T. N.; Van Zeeland, M. A.

    2013-09-15

    A dispersion interferometer based on the second-harmonic generation of a carbon dioxide laser in orientation-patterned gallium arsenide has been developed for measuring electron density in plasmas. The interferometer includes two nonlinear optical crystals placed on opposite sides of the plasma. This instrument has been used to measure electron line densities in a pulsed radio-frequency generated argon plasma. A simple phase-extraction technique based on combining measurements from two successive pulses of the plasma has been used. The noise-equivalent line density was measured to be 1.7 × 10{sup 17} m{sup −2} in a detection bandwidth of 950 kHz. One of the orientation-patterned crystals produced 13 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 13 W of peak power. Two crystals arranged sequentially produced 58 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 37 W of peak power.

  1. Ab initio finite field (hyper)polarizability computations on stoichiometric gallium arsenide clusters GanAsn (n=2-9).

    PubMed

    Karamanis, Panaghiotis; Bégué, Didier; Pouchan, Claude

    2007-09-07

    We report reliable ab initio finite field (hyper)polarizability values at Hartree-Fock and second order Moller-Plesset perturbation theory (MP2) levels of theory for different geometrical configurations of small gallium arsenide clusters Ga(n)As(n) with n=2-5. We relied on all-electron basis sets and pseudopotentials suitable for (hyper)polarizability calculations. In each case, we used structures that have been established in the literature after we optimized their geometries at B3LYP/cc-pVTZ-PP level of theory. Our results suggest that the first order hyperpolarizability (beta) is much more sensitive to the special geometric features than the second order hyperpolarizability (gamma). For the most stable configurations up to ten atoms the second order hyperpolarizability at MP2 level of theory varies between 15 x 10(4) and 32 x 10(4) e(4)a0 (4)Eh(-3). In addition, we examined the polarizability per atom evolution versus the cluster size for Ga(n)As(n) with n=2-9. Our work extends earlier theoretical studies which were limited to eight atoms and exposes that the polarizability/atom of the most stable stoichiometric configurations up to Ga(9)As(9) continues the monotonic downward trend with increasing size. Lastly, from the methodological point of view, our analysis shows that apart from polarizabilities, augmented pseudopotentials yield reliable first and second hyperpolarizability values as well.

  2. CO2 laser-based dispersion interferometer utilizing orientation-patterned gallium arsenide for plasma density measurements.

    PubMed

    Bamford, D J; Cummings, E A; Panasenko, D; Fenner, D B; Hensley, J M; Boivin, R L; Carlstrom, T N; Van Zeeland, M A

    2013-09-01

    A dispersion interferometer based on the second-harmonic generation of a carbon dioxide laser in orientation-patterned gallium arsenide has been developed for measuring electron density in plasmas. The interferometer includes two nonlinear optical crystals placed on opposite sides of the plasma. This instrument has been used to measure electron line densities in a pulsed radio-frequency generated argon plasma. A simple phase-extraction technique based on combining measurements from two successive pulses of the plasma has been used. The noise-equivalent line density was measured to be 1.7 × 10(17) m(-2) in a detection bandwidth of 950 kHz. One of the orientation-patterned crystals produced 13 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 13 W of peak power. Two crystals arranged sequentially produced 58 mW of peak power at the second-harmonic wavelength from a carbon dioxide laser with 37 W of peak power.

  3. Emergence of spin-orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide.

    PubMed

    Hupfauer, T; Matos-Abiague, A; Gmitra, M; Schiller, F; Loher, J; Bougeard, D; Back, C H; Fabian, J; Weiss, D

    2015-06-08

    The desire for higher information capacities drives the components of electronic devices to ever smaller dimensions so that device properties are determined increasingly more by interfaces than by the bulk structure of the constituent materials. Spintronic devices, especially, benefit from the presence of interfaces--the reduced structural symmetry creates emergent spin-orbit fields that offer novel possibilities to control device functionalities. But where does the bulk end, and the interface begin? Here we trace the interface-to-bulk transition, and follow the emergence of the interfacial spin-orbit fields, in the conducting states of a few monolayers of iron on top of gallium arsenide. We observe the transition from the interface- to bulk-induced lateral crystalline magnetoanisotropy, each having a characteristic symmetry pattern, as the epitaxially grown iron channel increases from four to eight monolayers. Setting the upper limit on the width of the interface-imprinted conducting channel is an important step towards an active control of interfacial spin-orbit fields.

  4. Emergence of spin–orbit fields in magnetotransport of quasi-two-dimensional iron on gallium arsenide

    PubMed Central

    Hupfauer, T.; Matos-Abiague, A.; Gmitra, M.; Schiller, F.; Loher, J.; Bougeard, D.; Back, C. H.; Fabian, J.; Weiss, D.

    2015-01-01

    The desire for higher information capacities drives the components of electronic devices to ever smaller dimensions so that device properties are determined increasingly more by interfaces than by the bulk structure of the constituent materials. Spintronic devices, especially, benefit from the presence of interfaces—the reduced structural symmetry creates emergent spin–orbit fields that offer novel possibilities to control device functionalities. But where does the bulk end, and the interface begin? Here we trace the interface-to-bulk transition, and follow the emergence of the interfacial spin–orbit fields, in the conducting states of a few monolayers of iron on top of gallium arsenide. We observe the transition from the interface- to bulk-induced lateral crystalline magnetoanisotropy, each having a characteristic symmetry pattern, as the epitaxially grown iron channel increases from four to eight monolayers. Setting the upper limit on the width of the interface-imprinted conducting channel is an important step towards an active control of interfacial spin–orbit fields. PMID:26051594

  5. Design, fabrication, and characterization of gallium nitride high power rectifiers

    NASA Astrophysics Data System (ADS)

    Baik, Kwang Hyeon

    The edge termination design, device modeling, fabrication and characterization of gallium nitride (GaN) high power diode rectifiers are reported in this dissertation. The important parameter sets of GaN materials and physical models are first reviewed and applied to the standard drift-diffusion device simulator MEDICI(TM). Theoretical calculations of GaN high power rectifiers have been made based on the breakdown voltage, the on-state resistance, the forward voltage drop, and reverse leakage currents. The breakdown analysis of the various edge terminations has been performed with impact ionization model. The field termination study shows that the use of an optimized SiO2 field plate edge termination can increase the reverse breakdown voltage of bulk GaN rectifiers by up to a factor of two compared to unterminated devices. The dielectric materials, thickness and ramp angle all influence the resulting breakdown voltage of the rectifier by determining where the maximum field strength occurs in the device structure. The key aspect in designing the field plate edge termination is to shift the region of the high field region away from the periphery of the rectifying contact. The junction termination study shows that the JTE produces the highest blocking voltages for vertical bulk GaN rectifiers, although the VB values are highly sensitive to the charge in the JTE layer. Guard-rings, field plates and planar junction were also examined in increasing VB over the value in unterminated rectifiers. Various bulk GaN p-i-n junction and Schottky rectifiers have been simulated as a function of temperature and analyzed in terms of their forward turn-on voltages and on-state resistances. GaN Schottky diodes with vertical and lateral geometries were fabricated on both conventional sapphire and free-standing GaN wafers. The typical on-state resistance of GaN Schottky diodes with lateral geometries was ˜2--3 mO · cm2, with reverse breakdown voltages at 25°C of 140--240V. Bulk Ga

  6. P-doping mechanisms in catalyst-free gallium arsenide nanowires.

    PubMed

    Dufouleur, Joseph; Colombo, Carlo; Garma, Tonko; Ketterer, Bernt; Uccelli, Emanuele; Nicotra, Marco; Fontcuberta i Morral, Anna

    2010-05-12

    Doped catalyst-free GaAs nanowires have been grown by molecular beam epitaxy with the gallium-assisted method. The spatial dependence of the dopant concentration and resistivity have been measured by Raman spectroscopy and four point electrical measurements. Along with theoretical considerations, the doping mechanisms have been revealed. Two competing mechanisms have been revealed: dopant incorporation from the side facets and from the gallium droplet. In the latter incorporation path, doping compensation seems to play an important role in the effective dopant concentration. Hole concentrations of at least 2.4 x 10(18) cm(-3) have been achieved, which to our knowledge is the largest p doping range obtained up to date. This work opens the avenue for the use of doped GaAs nanowires in advanced applications and in mesoscopic physics experiments.

  7. A Gallium Arsenide MESFET Operational Amplifier for Use in Composite Operational Amplifiers

    DTIC Science & Technology

    1993-12-01

    bandwidth in digital and analog circuits respectively. This compound semiconductor is formed from gallium and arsenic. It is duly noted for its high drift...channel is formed and (2) how tat gate-control electrode is coupled to the channel. First, the channel of the device is formed by GaAs or Si semiconductor ...layer. Conversely, a MESFET uses a thin doped channel the thickness of which is controlled by the depletion of the metal semiconductor junction

  8. Ohmic contact formation process on low n-type gallium arsenide (GaAs) using indium gallium zinc oxide (IGZO)

    SciTech Connect

    Yang, Seong-Uk; Jung, Woo-Shik; Lee, In-Yeal; Jung, Hyun-Wook; Kim, Gil-Ho; Park, Jin-Hong

    2014-02-01

    Highlights: • We propose a method to fabricate non-gold Ohmic contact on low n-type GaAs with IGZO. • 0.15 A/cm{sup 2} on-current and 1.5 on/off-current ratio are achieved in the junction. • InAs and InGaAs formed by this process decrease an electron barrier height. • Traps generated by diffused O atoms also induce a trap-assisted tunneling phenomenon. - Abstract: Here, an excellent non-gold Ohmic contact on low n-type GaAs is demonstrated by using indium gallium zinc oxide and investigating through time of flight-secondary ion mass spectrometry, X-ray photoelectron spectroscopy, transmission electron microscopy, J–V measurement, and H [enthalpy], S [entropy], Cp [heat capacity] chemistry simulation. In is diffused through GaAs during annealing and reacts with As, forming InAs and InGaAs phases with lower energy bandgap. As a result, it decreases the electron barrier height, eventually increasing the reverse current. In addition, traps generated by diffused O atoms induce a trap-assisted tunneling phenomenon, increasing generation current and subsequently the reverse current. Therefore, an excellent Ohmic contact with 0.15 A/cm{sup 2} on-current density and 1.5 on/off-current ratio is achieved on n-type GaAs.

  9. Nitridation and CVD reactions with hydrazine

    SciTech Connect

    Vogt, K.W.; Kohl, P.A.; Abys, J.A.

    1995-10-01

    The low-temperature nitridation of gallium arsenide, silicon and transition metals was investigated using hydrazine. Gallium nitride films were grown on gallium arsenide (GaAs) by direct reaction of the semiconductor surface layers with hydrazine at 200--400 C. Auger electron spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses show that the films are primarily gallium nitride with a small oxide impurity. Thin nitride films ({approximately}15{angstrom}) were grown on silicon by reaction with hydrazine at 300--500 C. Ellipsometry results suggest that the film growth goes through different phases following linear, parabolic and logarithmic functions with time. XPS analysis shows that the nitride films could be formed at much lower temperatures than possible with ammonia (300 vs. 600 C). The formation of numerous transition metal nitrides (Co, Cr, Fe, Mo, Si, Ta, Ti, V, and W) by reaction with hydrazine at 400 C is demonstrated, as well as the chemical vapor deposition of boron nitride films from diborane and hydrazine reactants. The temperature at the mixing point was critical in determining the final composition of the film. A 1-D transport model suggests that the reaction rate at 400 C was kinetically limited. The results also agree qualitatively with thermodynamic equilibrium calculations.

  10. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    NASA Astrophysics Data System (ADS)

    Roland, I.; Zeng, Y.; Han, Z.; Checoury, X.; Blin, C.; El Kurdi, M.; Ghrib, A.; Sauvage, S.; Gayral, B.; Brimont, C.; Guillet, T.; Semond, F.; Boucaud, P.

    2014-07-01

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ˜7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  11. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    SciTech Connect

    Roland, I.; Zeng, Y.; Han, Z.; Checoury, X.; Blin, C.; El Kurdi, M.; Ghrib, A.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Semond, F.

    2014-07-07

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ∼7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  12. Large spin accumulation and crystallographic dependence of spin transport in single crystal gallium nitride nanowires

    NASA Astrophysics Data System (ADS)

    Park, Tae-Eon; Park, Youn Ho; Lee, Jong-Min; Kim, Sung Wook; Park, Hee Gyum; Min, Byoung-Chul; Kim, Hyung-Jun; Koo, Hyun Cheol; Choi, Heon-Jin; Han, Suk Hee; Johnson, Mark; Chang, Joonyeon

    2017-06-01

    Semiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitride nanowires and report robust spin accumulation at room temperature with enhanced spin injection polarization of 9%. A large Overhauser coupling between the electron spin accumulation and the lattice nuclei is observed. Finally, our single-crystal gallium nitride samples have a trigonal cross-section defined by the (001), () and () planes. Using the Hanle effect, we show that the spin accumulation is significantly different for injection across the (001) and () (or ()) planes. This provides a technique for increasing room temperature spin injection in mesoscopic systems.

  13. Large spin accumulation and crystallographic dependence of spin transport in single crystal gallium nitride nanowires

    PubMed Central

    Park, Tae-Eon; Park, Youn Ho; Lee, Jong-Min; Kim, Sung Wook; Park, Hee Gyum; Min, Byoung-Chul; Kim, Hyung-jun; Koo, Hyun Cheol; Choi, Heon-Jin; Han, Suk Hee; Johnson, Mark; Chang, Joonyeon

    2017-01-01

    Semiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitride nanowires and report robust spin accumulation at room temperature with enhanced spin injection polarization of 9%. A large Overhauser coupling between the electron spin accumulation and the lattice nuclei is observed. Finally, our single-crystal gallium nitride samples have a trigonal cross-section defined by the (001), () and () planes. Using the Hanle effect, we show that the spin accumulation is significantly different for injection across the (001) and () (or ()) planes. This provides a technique for increasing room temperature spin injection in mesoscopic systems. PMID:28569767

  14. Novel approach for n-type doping of HVPE gallium nitride with germanium

    NASA Astrophysics Data System (ADS)

    Hofmann, Patrick; Krupinski, Martin; Habel, Frank; Leibiger, Gunnar; Weinert, Berndt; Eichler, Stefan; Mikolajick, Thomas

    2016-09-01

    We present a novel method for germanium doping of gallium nitride by in-situ chlorination of solid germanium during the hydride vapour phase epitaxy (HVPE) process. Solid germanium pieces were placed in the doping line with a hydrogen chloride flow directed over them. We deduce a chlorination reaction taking place at 800 ° C , which leads to germanium chloroform (GeHCl3) or germanium tetrachloride (GeCl4). The reactor shows a germanium rich residue after in-situ chlorination experiments, which can be removed by hydrogen chloride etching. All gallium nitride crystals exhibit n-type conductivity, which shows the validity of the in-situ chlorination of germanium for doping. A complex doping profile is found for each crystal, which was assigned to a combination of localised supply of the dopant and sample rotation during growth and switch-off effects of the HVPE reactor.

  15. Large spin accumulation and crystallographic dependence of spin transport in single crystal gallium nitride nanowires.

    PubMed

    Park, Tae-Eon; Park, Youn Ho; Lee, Jong-Min; Kim, Sung Wook; Park, Hee Gyum; Min, Byoung-Chul; Kim, Hyung-Jun; Koo, Hyun Cheol; Choi, Heon-Jin; Han, Suk Hee; Johnson, Mark; Chang, Joonyeon

    2017-06-01

    Semiconductor spintronics is an alternative to conventional electronics that offers devices with high performance, low power and multiple functionality. Although a large number of devices with mesoscopic dimensions have been successfully demonstrated at low temperatures for decades, room-temperature operation still needs to go further. Here we study spin injection in single-crystal gallium nitride nanowires and report robust spin accumulation at room temperature with enhanced spin injection polarization of 9%. A large Overhauser coupling between the electron spin accumulation and the lattice nuclei is observed. Finally, our single-crystal gallium nitride samples have a trigonal cross-section defined by the (001), () and () planes. Using the Hanle effect, we show that the spin accumulation is significantly different for injection across the (001) and () (or ()) planes. This provides a technique for increasing room temperature spin injection in mesoscopic systems.

  16. Homoepitaxial n-core: p-shell gallium nitride nanowires: HVPE overgrowth on MBE nanowires.

    PubMed

    Sanders, Aric; Blanchard, Paul; Bertness, Kris; Brubaker, Matthew; Dodson, Christopher; Harvey, Todd; Herrero, Andrew; Rourke, Devin; Schlager, John; Sanford, Norman; Chiaramonti, Ann N; Davydov, Albert; Motayed, Abhishek; Tsvetkov, Denis

    2011-11-18

    We present the homoepitaxial growth of p-type, magnesium doped gallium nitride shells by use of halide vapor phase epitaxy (HVPE) on n-type gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy (MBE). Scanning electron microscopy shows clear dopant contrast between the core and shell of the nanowire. The growth of magnesium doped nanowire shells shows little or no effect on the lattice parameters of the underlying nanowires, as measured by x-ray diffraction (XRD). Photoluminescence measurements of the nanowires show the appearance of sub-bandgap features in the blue and the ultraviolet, indicating the presence of acceptors. Finally, electrical measurements confirm the presence of electrically active holes in the nanowires.

  17. The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program

  18. Gas source molecular beam epitaxy of scandium nitride on silicon carbide and gallium nitride surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Nemanich, Robert J.

    2014-11-01

    Scandium nitride (ScN) is a group IIIB transition metal nitride semiconductor with numerous potential applications in electronic and optoelectronic devices due to close lattice matching with gallium nitride (GaN). However, prior investigations of ScN have focused primarily on heteroepitaxial growth on substrates with a high lattice mismatch of 7%–20%. In this study, the authors have investigated ammonia (NH{sub 3}) gas source molecular beam epitaxy (NH{sub 3}-GSMBE) of ScN on more closely lattice matched silicon carbide (SiC) and GaN surfaces (<3% mismatch). Based on a thermodynamic analysis of the ScN phase stability window, NH{sub 3}-GSMBE conditions of 10{sup −5}–10{sup −4} Torr NH{sub 3} and 800–1050 °C where selected for initial investigation. In-situ x-ray photoelectron spectroscopy (XPS) and ex-situ Rutherford backscattering measurements showed all ScN films grown using these conditions were stoichiometric. For ScN growth on 3C-SiC (111)-(√3 × √3)R30° carbon rich surfaces, the observed attenuation of the XPS Si 2p and C 1s substrate core levels with increasing ScN thickness indicated growth initiated in a layer-by-layer fashion. This was consistent with scanning electron microscopy (SEM) images of 100–200 nm thick films that revealed featureless surfaces. In contrast, ScN films grown on 3C-SiC (111)-(3 × 3) and 3C-SiC (100)-(3 × 2) silicon rich surfaces were found to exhibit extremely rough surfaces in SEM. ScN films grown on both 3C-SiC (111)-(√3 × √3)R30° and 2H-GaN (0001)-(1 × 1) epilayer surfaces exhibited hexagonal (1 × 1) low energy electron diffraction patterns indicative of (111) oriented ScN. X-ray diffraction ω-2θ rocking curve scans for these same films showed a large full width half maximum of 0.29° (1047 arc sec) consistent with transmission electron microscopy images that revealed the films to be poly-crystalline with columnar grains oriented at ≈15° to the [0001] direction of the

  19. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells

    PubMed Central

    Eyderman, Sergey; John, Sajeev

    2016-01-01

    We demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300–865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 103 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%. PMID:27334045

  20. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells.

    PubMed

    Eyderman, Sergey; John, Sajeev

    2016-06-23

    We demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300-865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm(2) is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 10(3) cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.

  1. Development and Testing of Gallium Arsenide Photoconductive Detectors for Ultra Fast, High Dose Rate Pulsed Electron and Bremsstrahlung Radiation Measurements

    SciTech Connect

    Kharashvili, George; Makarashvili, Vakhtang; Mitchell, Marc; Beezhold, Wendland; Spaulding, Randy; Wells, Douglas; Gesell, Thomas; Wingert, Wayne

    2009-03-10

    Real time radiation dose measurements are challenging in high dose rate environments such as those used for testing electronic devices or biological agents. Dosimetry needs in pulsed reactor fields and particle accelerator facilities require development of dosimeters with fast (10 s of picoseconds) response to pulsed radiation, linear response over a wide range of dose rates (up to 10{sup 11} Gy/s), high resistance to radiation damage, and successful operation in mixed gamma and neutron environments. Gallium arsenide photoconductive detectors (GaAs PCD) have been shown to exhibit many of these desirable characteristics, especially fast time response. Less than 50 ps time resolution has been demonstrated when previously irradiated by fission neutrons. We have conducted a study of the response-time dependence on neutron fluence, starting with fluences at {approx}10{sup 14} n/cm{sup 2}. A 23-MeV electron beam was used to produce photoneutrons in a tungsten target for irradiation of a GaAs wafer from which PCDs were made. The process was modeled using MCNPX computer code and the simulation results were compared to the experimental measurements. GaAs PCDs were fabricated from both neutron-irradiated and non-irradiated GaAs samples. The results of the preliminary tests of these devices in accelerator-produced pulses of electron and bremsstrahlung radiation of various energies (13 to 35 MeV) and pulse lengths (100 ps to 4 {mu}s) are presented together with an overview of the future plans of continuing GaAs PCD research at Idaho State University.

  2. Light-trapping and recycling for extraordinary power conversion in ultra-thin gallium-arsenide solar cells

    NASA Astrophysics Data System (ADS)

    Eyderman, Sergey; John, Sajeev

    2016-06-01

    We demonstrate nearly 30% power conversion efficiency in ultra-thin (~200 nm) gallium arsenide photonic crystal solar cells by numerical solution of the coupled electromagnetic Maxwell and semiconductor drift-diffusion equations. Our architecture enables wave-interference-induced solar light trapping in the wavelength range from 300–865 nm, leading to absorption of almost 90% of incoming sunlight. Our optimized design for 200 nm equivalent bulk thickness of GaAs, is a square-lattice, slanted conical-pore photonic crystal (lattice constant 550 nm, pore diameter 600 nm, and pore depth 290 nm), passivated with AlGaAs, deposited on a silver back-reflector, with ITO upper contact and encapsulated with SiO2. Our model includes both radiative and non-radiative recombination of photo-generated charge carriers. When all light from radiative recombination is assumed to escape the structure, a maximum achievable photocurrent density (MAPD) of 27.6 mA/cm2 is obtained from normally incident AM 1.5 sunlight. For a surface non-radiative recombination velocity of 103 cm/s, this corresponds to a solar power conversion efficiency of 28.3%. When all light from radiative recombination is trapped and reabsorbed (complete photon recycling) the power conversion efficiency increases to 29%. If the surface recombination velocity is reduced to 10 cm/sec, photon recycling is much more effective and the power conversion efficiency reaches 30.6%.

  3. Determination of boron in silicon-doped gallium arsenide by electrothermal atomic absorption spectrometry and ultraviolet-visible spectrophotometry.

    PubMed

    Taddia, Marco; Cerroni, Maria Grazia; Morelli, Elio; Musiani, Andrea

    2002-01-01

    Two methods have been developed for the determination of boron impurities in silicon-doped gallium arsenide (GaAs) for electronics. The first method employs the electrothermal atomic absorption spectrometry (ETAAS), the second, the UV-Vis molecular absorption spectrophotomety. In both cases the GaAs sample is decomposed with aqua regia (1+1). To prevent Ga(III) interference on the ETAAS determination of boron, a double extraction of the chlorogallic acid (HGaCl4) in diethyl ether is performed. To improve the overall ETAAS performance, the graphite tubes were pre-treated with iridium(III) and tungsten(IV). A mixed chemical modifier containing Ni(II), Sr(II) and citric acid was also used. The characteristic mass (m0) is 301 +/- 47 pg and the detection limit (3sB) is 2.4 microg g(-1). The classic UV-Vis spectrophotometric procedure using curcumin was also extended to the determination of boron in GaAs. By masking Ga(III) with EDTA and a preliminary extraction of boron with 2-ethyl-hexane 1,3-diol, performed on a semi-micro scale, a detection limit of 0.6 microg g(-1) was achieved. Both methods were applied to the analysis of two Si-doped GaAs samples which were suspected of being boron-contaminated. Results are compared with those obtained by direct analysis of the decomposed sample solution using the inductively coupled plasma atomic emission spectrometry (ICP-AES).

  4. Effects of a low-level semiconductor gallium arsenide laser on local pathological alterations induced by Bothrops moojeni snake venom.

    PubMed

    Aranha de Sousa, Elziliam; Bittencourt, José Adolfo Homobono Machado; Seabra de Oliveira, Nayana Keyla; Correia Henriques, Shayanne Vanessa; dos Santos Picanço, Leide Caroline; Lobato, Camila Pena; Ribeiro, José Renato; Pereira, Washington Luiz Assunção; Carvalho, José Carlos Tavares; da Silva, Jocivânia Oliveira

    2013-10-01

    Antivenom therapy has been ineffective in neutralizing the tissue damage caused by snakebites. Among therapeutic strategies to minimize effects after envenoming, it was hypothesized that a low level laser would reduce complications and reduce the severity of local snake venom effects. In the current study, the effect of a low-level semiconductor gallium arsenide (GaAs) laser on the local pathological alterations induced by B. moojeni snake venom was investigated. The experimental groups consisted of five male mice, each administered either B. moojeni venom (VB), B. moojeni venom + antivenom (VAV), B. moojeni venom + laser (VL), B. moojeni venom + antivenom + laser (VAVL), or sterile saline solution (SSS) alone. Paw oedema was induced by intradermal administration of 0.05 mg kg(-1) of B. moojeni venom and was expressed in mm of directly induced oedema. Mice received by subcutaneous route 0.20 mg kg(-1) of venom for evaluating nociceptive activity and the time (in seconds) spent in licking and biting the injected paw was taken as an indicator of pain response. Inflammatory infiltration was determined by counting the number of leukocytes present in the gastrocnemius muscle after venom injection (0.10 mg kg(-1)). For histological examination of myonecrosis, venom (0.10 mg kg(-1)) was administered intramuscularly. The site of venom injection was irradiated by the GaAs laser and some animals received antivenom intraperitoneally. The results indicated that GaAs laser irradiation can help in reducing some local effects produced by the B. moojeni venom in mice, stimulating phagocytosis, proliferation of myoblasts and the regeneration of muscle fibers.

  5. Improvement of radiation stability of semi-insulating gallium arsenide crystals by deposition of diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Klyui, N. I.; Lozinskii, V. B.; Liptuga, A. I.; Izotov, V. Yu.; Han, Wei; Liu, Bingbing

    2016-12-01

    We studied the properties of optical elements for the IR spectral range based on semi-insulating gallium arsenide (SI-GaAs) and antireflecting diamond-like carbon films (DLCF). Particular attention has been paid to the effect of penetrating γ-radiation on transmission of the developed optical elements. A Co60 source and step-by-step gaining of γ-irradiation dose were used for treatment of both an initial SI-GaAs crystal and DLCF/SI-GaAs structures. It was shown that DLCF deposition essentially increases degradation resistance of the SI-GaAs-based optical elements to γ-radiation. Particularly, the transmittance of the DLCF/SI-GaAs structure after γ-irradiation with a dose 9ṡ104 Gy even exceeds that of initial structures. The possible mechanism that explains the effect of γ-radiation on the SI-GaAs crystals and the DLCF/SI-GaAs structures at different irradiation doses was proposed. The effect of small doses is responsible for non-monotonic transmission changes in both SI-GaAs crystals and DLCF/SI-GaAs structures. At further increasing the γ-irradiation dose, the variation of properties of both DLCF and SI-GaAs crystal influences on the transmission of DLCF/SI-GaAs system. At high γ-irradiation dose 1.4ṡ105 Gy, passivation of radiation defects in the SI-GaAs bulk by hydrogen diffused from DLCF leads to increasing the degradation resistance of the SI-GaAs crystals coated with DLCF as compared with the crystals without DLCF.

  6. Analysis of gallium arsenide deposition in a horizontal chemical vapor deposition reactor using massively parallel computations

    SciTech Connect

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.

    1998-01-01

    A numerical analysis of the deposition of gallium from trimethylgallium (TMG) and arsine in a horizontal CVD reactor with tilted susceptor and a three inch diameter rotating substrate is performed. The three-dimensional model includes complete coupling between fluid mechanics, heat transfer, and species transport, and is solved using an unstructured finite element discretization on a massively parallel computer. The effects of three operating parameters (the disk rotation rate, inlet TMG fraction, and inlet velocity) and two design parameters (the tilt angle of the reactor base and the reactor width) on the growth rate and uniformity are presented. The nonlinear dependence of the growth rate uniformity on the key operating parameters is discussed in detail. Efficient and robust algorithms for massively parallel reacting flow simulations, as incorporated into our analysis code MPSalsa, make detailed analysis of this complicated system feasible.

  7. Growth and characterization aluminum gallium nitride/gallium nitride heterostructures on silicon(111) wafers using various buffer layers

    NASA Astrophysics Data System (ADS)

    Venugopal, Rajesh

    Devices based on nitride wide bandgap semiconductors are suitable for several promising applications such as blue lasers, LEDs, HEMTs etc. Due to the absence of bulk nitride crystals, nitride films are grown on lattice mismatched substrates like Al2O3 and 6H-SiC. However from a cost and integration standpoint silicon would be the substrate of choice for the growth of these materials. Nitride heterostructure growth on large area Si(111) is hence attempted by Metal Organic Chemical Vapor Deposition (MOCVD) in an modified AIX 200/4 system. The large lattice and thermal mismatch prevents the direct deposition of GaN on Si and also causes GaN layers grown on Si to crack severely. It is hence necessary to use buffer layers to alleviate this lattice and thermal mismatch. Several buffer layer schemes are used for this purpose. The crystal quality of the AlGaN/GaN heterostructures grown under various conditions on these buffers are studied using several methods like Photoluminescence, X-ray diffraction, Electron Microscopy etc. The quality of heterostructures grown on these buffers is compared in order to identify the strengths and weaknesses of each buffer and to also map the effects of process parameters on nitride layers deposited on each buffer.

  8. Sapphire surface preparation and gallium nitride nucleation by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Dwikusuma, Fransiska

    The nucleation and initial growth of gallium nitride (GaN) films on sapphire substrates using hydride vapor phase epitaxy (HVPE) technique depends on many factors including the chemical treatment of sapphire surface, nitridation, and the specific growth conditions. Liquid and gas phase treatments of the sapphire surface were systematically studied as a function of temperature and time. Phosphoric acid (H3PO4) etches sapphire preferentially at defect sites and resulted in pits formation on the surface, while etching in sulfuric acid (H2SO4) can produce a smooth, pit-free surface. Air-annealing the sapphire at 1400°C produces an atomically smooth surface consisting of a terrace-and-step structure. The mechanism of sapphire nitridation within the HVPE environment was elucidated. During nitridation, nitrogen is incorporated into the sapphire surface. The sapphire nitridation mechanism can be modeled as a diffusion couple of aluminum nitride (AlN) and aluminum oxide (Al2O 3), where N3- and O2- inter-diffuse in the 'rigid' Al3+ framework. Nitrogen diffuses into sapphire and substitutes for oxygen to bond with aluminum. The replaced oxygen diffuses out to the surface. The overall nitridation rate is controlled by the diffusion of oxygen. Sapphire surface treatments of air-annealing and liquid-based etchings have different effects on nitridation and HVPE GaN nucleation. Upon nitridation, the air-annealed sapphire has ˜1.5 times higher nitrogen content compared to liquid-based etchings. Nevertheless, the air-annealed sapphire yields the lowest density of GaN islands. Sapphire nitridation, which yields a thin AlN layer, results in the growth of higher GaN island densities with a smaller mosaic spread. Sapphire surface, which is etched in H2SO4 and then nitridated, produces a high density GaN islands resulting in improved-quality of thick GaN films. The nucleation and initial growth kinetics of GaN on sapphire grown by HVPE were investigated. As the growth temperature

  9. Two-dimensional gallium nitride realized via graphene encapsulation.

    PubMed

    Al Balushi, Zakaria Y; Wang, Ke; Ghosh, Ram Krishna; Vilá, Rafael A; Eichfeld, Sarah M; Caldwell, Joshua D; Qin, Xiaoye; Lin, Yu-Chuan; DeSario, Paul A; Stone, Greg; Subramanian, Shruti; Paul, Dennis F; Wallace, Robert M; Datta, Suman; Redwing, Joan M; Robinson, Joshua A

    2016-11-01

    The spectrum of two-dimensional (2D) and layered materials 'beyond graphene' offers a remarkable platform to study new phenomena in condensed matter physics. Among these materials, layered hexagonal boron nitride (hBN), with its wide bandgap energy (∼5.0-6.0 eV), has clearly established that 2D nitrides are key to advancing 2D devices. A gap, however, remains between the theoretical prediction of 2D nitrides 'beyond hBN' and experimental realization of such structures. Here we demonstrate the synthesis of 2D gallium nitride (GaN) via a migration-enhanced encapsulated growth (MEEG) technique utilizing epitaxial graphene. We theoretically predict and experimentally validate that the atomic structure of 2D GaN grown via MEEG is notably different from reported theory. Moreover, we establish that graphene plays a critical role in stabilizing the direct-bandgap (nearly 5.0 eV), 2D buckled structure. Our results provide a foundation for discovery and stabilization of 2D nitrides that are difficult to prepare via traditional synthesis.

  10. Synthesis and characterization of electrospun gallium nitride nanofibers

    NASA Astrophysics Data System (ADS)

    Meléndez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago-Avilés, Jorge J.

    2009-08-01

    The simple and inexpensive technique of electrospinning was used for the production of long GaN nanofibers. The fibers were made using a precursor solution composed of pure Gallium Nitrate dissolved in dimethylacetamide (DMA) and a viscous solution of Cellulose acetate dissolved in a mixture of DMA and acetone. Using a tube furnace, they were sintered under a Nitrogen atmosphere to decompose the polymer and to reduce Oxygen contamination. This process was followed by sintering under a NH3 flow to complete the synthesis of wurtzite GaN. XRD, ESEM, and FTIR analysis were used to verify the chemical and structural composition of the samples. The I-V characteristics of a device constructed using a single GaN nanofiber showed the formation of ohmic contacts.

  11. Process for growing epitaxial gallium nitride and composite wafers

    DOEpatents

    Weber, Eicke R.; Subramanya, Sudhir G.; Kim, Yihwan; Kruger, Joachim

    2003-05-13

    A novel growth procedure to grow epitaxial Group III metal nitride thin films on lattice-mismatched substrates is proposed. Demonstrated are the quality improvement of epitaxial GaN layers using a pure metallic Ga buffer layer on c-plane sapphire substrate. X-ray rocking curve results indicate that the layers had excellent structural properties. The electron Hall mobility increases to an outstandingly high value of .mu.>400 cm.sup.2 /Vs for an electron background concentration of 4.times.10.sup.17 cm.sup.-3.

  12. Close-spaced vapor transport and photoelectrochemistry of gallium arsenide for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Ritenour, Andrew J.

    The high balance-of-system costs of photovoltaic installations indicate that reductions in absorber cost alone are likely insufficient for photovoltaic electricity to reach grid parity unless energy conversion efficiency is also increased. Technologies which both yield high-efficiency cells (>25%) and maintain low costs are needed. GaAs and related III--V semiconductors are used in the highest-efficiency single- and multi-junction photovoltaics, but the technology is too expensive for non-concentrated terrestrial applications. This is due in part to the limited scalability of traditional syntheses, which rely on expensive reactors and employ toxic and pyrophoric gas-phase precursors such as arsine and trimethyl gallium. This work describes GaAs films made by close-spaced vapor transport, a potentially scalable technique which is carried out at atmospheric pressure and requires only bulk GaAs, water vapor, and a temperature gradient to deposit crystalline films with similar electronic properties to GaAs prepared using traditional syntheses. Although close-spaced vapor transport of GaAs was first developed in 1963, there were few examples of GaAs photovoltaic devices made using this method in the literature at the onset of this project. Furthermore, it was unclear whether close-spaced vapor transport could produce GaAs films appropriate for use in photovoltaics. The goal of this project was to create and study GaAs devices made using close-spaced vapor transport and determine whether the technique could be used for production of grid-connected GaAs photovoltaics. In Chapter I the design of the vapor transport reactor, the chemistry of crystal growth, and optoelectronic characterization techniques are discussed. Chapter II focuses on compositional measurements, doping, and improved electronic quality in CSVT GaAs. Chapter III describes several aspects of the interplay between structure and electronic properties of photoelectrochemical devices. Chapter IV addresses

  13. A final report for: Gallium arsenide P-I-N detectors for high-sensitivity imaging of thermal neutrons

    SciTech Connect

    Vernon, Stanley M.

    1999-04-01

    This SBIR Phase I developed neutron detectors made from gallium arsenide (GaAs) p-type/ intrinsic/n-type (P-I-N) diodes grown by metalorganic chemical vapor deposition (MOCVD) onto semi-insulating (S1) bulk GaAs wafers. A layer of isotonically enriched boron-10 evaporated onto the front surface serves to convert incoming neutrons into lithium ions and a 1.47 MeV alpha particle which creates electron-hole pairs that are detected by the GaAs diode. Various thicknesses of ''intrinsic'' (I) undoped GaAs were tested, as was use of a back-surface field (BSF) formed from a layer of Al{sub x}Ga{sub 1-x}As. Schottky-barrier diodes formed from the same structures without the p+ GaAs top layer were tested as a comparison. After mesa etching and application of contacts, devices were tested in visible light before application of the boron coating. Internal quantum efficiency (IQE) of the best diode near the GaAs bandedge is over 90%. The lowest dark current measured is 1 x 10{sup -12} amps at -1 V on a 3mm x 3mm diode, or a density of 1.1 x 10{sup -11} amps cm{sup -2}, with many of the diode structures tested having nearly similar results. The PIN diodes were significantly better than the Schottky barrier device, which had six orders of magnitude higher dark current. Diodes were characterized in terms of their current-mode response to 5.5 MeV alpha particles from 241-Americium. These radiation-induced currents were as high as 9.78 x 10{sup -7} A cm{sup -1} on a PIN device with an Al{sub x}Ga{sub 1-x}As BSF. Simple PIN diodes had currents as high as 2.44 x 10{sup -7} A cm{sup -2}, with thicker undoped layers showing better sensitivity. Boron coatings were applied, and response to neutrons tested at University of Michigan by Dr. Doug McGregor. Devices with PIN and Schottky barrier designs showed neutron detection efficiencies as high as 2% on 5 {micro}m thick devices, with no need for external bias voltages. PIN diodes showed higher breakdown voltages and lower noise

  14. Electron flow generated by gas phase exothermic catalytic reactions using a platinum-gallium nitride nanodiode.

    PubMed

    Ji, Xiaozhong; Zuppero, Anthony; Gidwani, Jawahar M; Somorjai, Gabor A

    2005-04-27

    We report steady-state conversion of chemical reaction energy into hot electrons by ballistic injection into a platinum-gallium nitride (Pt/GaN) nanodiode during the platinum-catalyzed oxidation of carbon monoxide. Surface catalytic reactions of molecules from the gas phase generated continuous steady-state hot electron currents with energies at least that of Schottky barrier energy ( approximately 1 eV). These hot electron currents were observed on two different nanodiodes (Pt/TiO2 and Pt/GaN) and represent a new method of chemical energy conversion.

  15. Effects of Radiation and Long-Term Thermal Cycling on EPC 1001 Gallium Nitride Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Data obtained on long-term thermal cycling of new un-irradiated and irradiated samples of EPC1001 gallium nitride enhancement-mode transistors are presented. This work was done by a collaborative effort including GRC, GSFC, and support the NASA www.nasa.gov 1 JPL in of Electronic Parts and Packaging (NEPP) Program

  16. Near-infrared waveguide in gallium nitride single crystal produced by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Xiang, Bingxi; Wang, Lei

    2017-05-01

    We report on the fabrication of planar waveguides in gallium nitride by 5 MeV carbon ion implantation with different fluences at room temperature. The waveguides are characterized by prism coupling, Rutherford backscattering/channeling, and high-resolution X-ray diffraction analysis. A positive change in ordinary refractive index is confirmed in the waveguide region at a near-infrared waveband. The thermal stability of the ion-implanted GaN waveguides is investigated by annealing the samples at different temperatures.

  17. Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.

    PubMed

    Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-10-26

    We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.

  18. Near-infrared characterization of gallium nitride photonic-crystal waveguides and cavities.

    PubMed

    Dharanipathy, U; Vico Triviño, N; Yan, C; Diao, Z; Carlin, J-F; Grandjean, N; Houdré, R

    2012-11-15

    We report the design and optical characterization of fully suspended wire waveguides and photonic crystal (PhC) membranes fabricated on a gallium nitride layer grown on silicon substrate operating at 1.5 μm. W1-type PhC waveguides are coupled with suspended wires and are investigated using a standard end-fire setup. The experimental and theoretical dispersion properties of the propagating modes in the wires and photonic-crystal waveguides are shown. Modified L3 cavities with quality factors of up to 2200 and heterostructure cavities with quality factors of up to 5400 are experimentally demonstrated.

  19. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    SciTech Connect

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.

    2015-02-23

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamental cavity mode.

  20. Free-standing gallium nitride membrane-based sensor for the impedimetric detection of alcohols

    NASA Astrophysics Data System (ADS)

    Alifragis, Y.; Roussos, G.; Pantazis, A. K.; Konstantinidis, G.; Chaniotakis, N.

    2016-02-01

    We report on the fabrication and characterization of single-crystal Gallium Nitride (GaN) membrane organic gas sensor. The sensing device is based on the highly stable free-standing III-nitride membrane, and it is probed using non-destructive impedance spectroscopy. Monitoring the effect of a series of polar organic molecules on the electrochemical impedance spectrum of the sensing membrane in the frequency range of 1 mHz to 0.1 MHz at room temperature, we concluded that the sensor is highly sensitive to alcohols, in the gas phase, with selectivity that depends on the molecular weight and vapor pressure of the molecules. The highly robust and stable GaN crystalline membrane and the ability to test these sensors using impedance spectroscopy and electrochemical probing techniques suggest that single crystal GaN-based sensors can find a wide range of applications in harsh and extreme environments.

  1. Response of Gallium Nitride Chemiresistors to Carbon Monoxide is Due to Oxygen Contamination.

    PubMed

    Prasad, Ravi Mohan; Lauterbach, Stefan; Kleebe, Hans-Joachim; Merdrignac-Conanec, Odile; Barsan, Nicolae; Weimar, Udo; Gurlo, Aleksander

    2017-06-23

    We report on the influence of oxygen impurities on the gas sensing properties of gallium nitride (GaN) chemiresistors. As shown by XRD, elemental analysis, and TEM characterization, surface oxidation of GaN-for example, upon contact to ambient air atmosphere-creates an oxidative amorphous layer which provides the sites for the sensing toward CO. Treating this powder under dry ammonia at 800 °C converts the oxide layer in nitride, and consequently the sensing performance toward CO is dramatically reduced for ammonia treated GaN gas sensors. Hence the response of GaN sensors to CO is caused by oxygen in the form of amorphous surface oxide or oxynitride.

  2. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    SciTech Connect

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry

  3. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern.

    PubMed

    Han, Nam; Cuong, Tran Viet; Han, Min; Ryu, Beo Deul; Chandramohan, S; Park, Jong Bae; Kang, Ji Hye; Park, Young-Jae; Ko, Kang Bok; Kim, Hee Yun; Kim, Hyun Kyu; Ryu, Jae Hyoung; Katharria, Y S; Choi, Chel-Jong; Hong, Chang-Hee

    2013-01-01

    The future of solid-state lighting relies on how the performance parameters will be improved further for developing high-brightness light-emitting diodes. Eventually, heat removal is becoming a crucial issue because the requirement of high brightness necessitates high-operating current densities that would trigger more joule heating. Here we demonstrate that the embedded graphene oxide in a gallium nitride light-emitting diode alleviates the self-heating issues by virtue of its heat-spreading ability and reducing the thermal boundary resistance. The fabrication process involves the generation of scalable graphene oxide microscale patterns on a sapphire substrate, followed by its thermal reduction and epitaxial lateral overgrowth of gallium nitride in a metal-organic chemical vapour deposition system under one-step process. The device with embedded graphene oxide outperforms its conventional counterpart by emitting bright light with relatively low-junction temperature and thermal resistance. This facile strategy may enable integration of large-scale graphene into practical devices for effective heat removal.

  4. Interlayer methods for reducing the dislocation density in gallium nitride

    NASA Astrophysics Data System (ADS)

    Kappers, M. J.; Moram, M. A.; Zhang, Y.; Vickers, M. E.; Barber, Z. H.; Humphreys, C. J.

    2007-12-01

    The ability of various interlayers to lower the density of threading dislocations (TDs) has been studied for the growth of c-plane (0 0 0 1) GaN epilayers on sapphire by metalorganic vapor-phase epitaxy (MOVPE). The TD density in the films may be reduced to 9×10 7 cm -2 using in-situ SiN x interlayers formed from silane and ammonia. This TD reduction method relies on the formation of facetted islands on the SiN x-treated GaN surface and the formation of dislocation half loops between bent-over TDs during the lateral overgrowth, and not by physically blocking the TDs. Thus, the TD density was reduced at the expense of greater film thickness by increasing the SiN x coverage and delaying intentionally the coalescence of the GaN islands. Scandium nitride interlayers have also proved effective for defect reduction; dislocation densities of 3×10 7 cm -2 have been reached by depositing thin (5-15 nm) Sc metal layers on 500 nm GaN-on-sapphire seed layers, then annealing in NH 3 to form ScN, followed by overgrowth of GaN. The low dislocation densities are attributed to a dislocation-blocking effect induced by the different (but compatible) crystal structures of GaN and ScN, whereby the dislocations threading from the seed layer cannot propagate through the ScN layer. The remaining dislocations appear to form on coalescence of the dislocation-free GaN islands which nucleate on the ScN interlayer.

  5. Chemical, structural and optical studies of thermal processed gallium nitride nanoparticles

    NASA Astrophysics Data System (ADS)

    Tong, Jing

    Gallium nitride (GaN) is one of the most promising semiconductors because of its wide direct bandgap of 3.4 eV and other unique properties, such as stability at high temperature, and ability to be alloyed with aluminum nitride and indium nitride to produce continuously tunable bandgaps from 1.9 eV to 6.2 eV. However, the photoluminescence (PL) spectrum of as-synthesized GaN usually shows a characteristic broad yellow band emission, which greatly reduces its optical output efficiency. This work focuses on identifying native defects that contribute most to the yellow band emission, and finding a processing technique to reduce these defects in GaN particles and improve the optical performance. GaN particles were heat-treated under ambient of different nitrogen sources. Chemical, structural, and optical properties of the products were characterized by various analytical techniques. Chemical analysis results show that heat-treatment of GaN under ammonia or ammonia-nitrogen mixture causes highly reactive nitrogen (N) species to react with N deficiency centers and effectively remove these states. However, X-ray diffraction (XRD), scanning electron microscopy (SEM), and PL data show that no significant structural and optical changes were observed. This proves that N deficiency is not the primary origin of the yellow band emission. When heat-treating GaN under nitrogen, oxide layers were found to be formed on the surfaces of GaN particles due to trace amounts of air leaking into the heat-treatment system. These oxide layers were examined at several stages of oxidation by microscopic, structural, and optical spectroscopic techniques. Particle morphology and nanophase characterization data show that at extensive heat-treatment times, the oxide layers formed close-packed outer shells surrounding GaN inner cores, which passivated GaN surface dangling bonds. PL spectra prove that these gallium nitride-gallium oxide core-shell structures significantly reduce the yellow band

  6. Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities

    PubMed Central

    Woolf, Alexander; Puchtler, Tim; Aharonovich, Igor; Zhu, Tongtong; Niu, Nan; Wang, Danqing; Oliver, Rachel; Hu, Evelyn L.

    2014-01-01

    Low-threshold lasers realized within compact, high-quality optical cavities enable a variety of nanophotonics applications. Gallium nitride materials containing indium gallium nitride (InGaN) quantum dots and quantum wells offer an outstanding platform to study light−matter interactions and realize practical devices such as efficient light-emitting diodes and nanolasers. Despite progress in the growth and characterization of InGaN quantum dots, their advantages as the gain medium in low-threshold lasers have not been clearly demonstrated. This work seeks to better understand the reasons for these limitations by focusing on the simpler, limited-mode microdisk cavities, and by carrying out comparisons of lasing dynamics in those cavities using varying gain media including InGaN quantum wells, fragmented quantum wells, and a combination of fragmented quantum wells with quantum dots. For each gain medium, we use the distinctive, high-quality (Q∼5,500) modes of the cavities, and the change in the highest-intensity mode as a function of pump power to better understand the dominant radiative processes. The variations of threshold power and lasing wavelength as a function of gain medium help us identify the possible limitations to lower-threshold lasing with quantum dot active medium. In addition, we have identified a distinctive lasing signature for quantum dot materials, which consistently lase at wavelengths shorter than the peak of the room temperature gain emission. These findings not only provide better understanding of lasing in nitride-based quantum dot cavity systems but also shed insight into the more fundamental issues of light−matter coupling in such systems. PMID:25197073

  7. Distinctive signature of indium gallium nitride quantum dot lasing in microdisk cavities.

    PubMed

    Woolf, Alexander; Puchtler, Tim; Aharonovich, Igor; Zhu, Tongtong; Niu, Nan; Wang, Danqing; Oliver, Rachel; Hu, Evelyn L

    2014-09-30

    Low-threshold lasers realized within compact, high-quality optical cavities enable a variety of nanophotonics applications. Gallium nitride materials containing indium gallium nitride (InGaN) quantum dots and quantum wells offer an outstanding platform to study light-matter interactions and realize practical devices such as efficient light-emitting diodes and nanolasers. Despite progress in the growth and characterization of InGaN quantum dots, their advantages as the gain medium in low-threshold lasers have not been clearly demonstrated. This work seeks to better understand the reasons for these limitations by focusing on the simpler, limited-mode microdisk cavities, and by carrying out comparisons of lasing dynamics in those cavities using varying gain media including InGaN quantum wells, fragmented quantum wells, and a combination of fragmented quantum wells with quantum dots. For each gain medium, we use the distinctive, high-quality (Q ∼ 5,500) modes of the cavities, and the change in the highest-intensity mode as a function of pump power to better understand the dominant radiative processes. The variations of threshold power and lasing wavelength as a function of gain medium help us identify the possible limitations to lower-threshold lasing with quantum dot active medium. In addition, we have identified a distinctive lasing signature for quantum dot materials, which consistently lase at wavelengths shorter than the peak of the room temperature gain emission. These findings not only provide better understanding of lasing in nitride-based quantum dot cavity systems but also shed insight into the more fundamental issues of light-matter coupling in such systems.

  8. Gallium arsenide pixel detectors

    NASA Astrophysics Data System (ADS)

    Bates, R.; Campbell, M.; Cantatore, E.; D'Auria, S.; da Vià, C.; del Papa, C.; Heijne, E. M.; Middelkamp, P.; O'Shea, V.; Raine, C.; Ropotar, I.; Scharfetter, L.; Smith, K.; Snoeys, W.

    1998-02-01

    GaAs detectors can be fabricated with bidimensional single-sided electrode segmentation. They have been successfully bonded using flip-chip technology to the Omega-3 silicon read-out chip. We present here the design features of the GaAs pixel detectors and results from a test performed at the CERN SpS with a 120 GeV π- beam. The detection efficiency was 99.2% with a nominal threshold of 5000 e -.

  9. Microstructure and micro-Raman studies of nitridation and structure transition of gallium oxide nanowires

    SciTech Connect

    Ning, J.Q.; Xu, S.J.; Wang, P.W.; Song, Y.P.; Yu, D.P.; Shan, Y.Y.; Lee, S.T.; Yang, H.

    2012-11-15

    Here we present a detailed study on nitridation and structure transition in monoclinic gallium oxide ({beta}-Ga{sub 2}O{sub 3}) nanowires grown on Si substrates with chemical vapor phase epitaxy. The nanowires were systematically nitridated at different temperatures. Their morphologies and microstructures were precisely characterized using field-emission scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and confocal micro-Raman spectroscopy. It is found that heat treatment of Ga{sub 2}O{sub 3} nanowires in the gas of ammonia results in rich substructures including the Ga{sub 2}O{sub 3} phase, the crystalline GaN phase, and other meta structures. The identification of these structures helps to understand some interesting phenomena observed in nanostructures, such as the microstructural origin of the unknown Raman lines in GaN nanowires. - Highlights: Black-Right-Pointing-Pointer Nitridation and structure transition of Ga{sub 2}O{sub 3} significantly depend on temperature. Black-Right-Pointing-Pointer G-N bonds form at lower temperatures but the Ga{sub 2}O{sub 3} lattice is still dominant. Black-Right-Pointing-Pointer Amorphous GaN coexists with crystalline Ga{sub 2}O{sub 3} at higher temperatures. Black-Right-Pointing-Pointer Crystalline GaN with distinct morphology is obtained at much higher temperatures.

  10. Metalorganic chemical vapor deposition of gallium nitride on sacrificial substrates

    NASA Astrophysics Data System (ADS)

    Fenwick, William Edward

    GaN-based light emitting diodes (LEDs) face several challenges if the technology is to continue to make a significant impact in general illumination, and on technology that has become known as solid state lighting (SSL). Two of the most pressing challenges for the continued penetration of SSL into traditional lighting applications are efficacy and total lumens from the device, and their related cost. The development of alternative substrate technologies is a promising avenue toward addressing both of these challenges, as both GaN-based device technology and the associated metalorganic chemical vapor deposition (MOCVD) technology are already relatively mature technologies with a well-understood cost base. Zinc oxide (ZnO) and silicon (Si) are among the most promising alternative substrates for GaN epitaxy. These substrates offer the ability to access both higher efficacy and lumen devices (ZnO) at a much reduced cost. This work focuses on the development of MOCVD growth processes to yield high quality GaN-based materials and devices on both ZnO and Si. ZnO is a promising substrate for growth of low defect-density GaN because of its similar lattice constant and thermal expansion coefficient. The major hurdles for GaN growth on ZnO are the instability of the substrate in a hydrogen atmosphere, which is typical of nitride growth conditions, and the inter-diffusion of zinc and oxygen from the substrate into the GaN-based epitaxial layer. A process was developed for the MOCVD growth of GaN and InxGa 1-xN on ZnO that attempted to address these issues. The structural and optical properties of these films were studied using various techniques. X-ray diffraction (XRD) showed the growth of wurtzite GaN on ZnO, and room-temperature photoluminescence (RT-PL) showed near band-edge luminescence from the GaN and InxGa1-xN layers. However, high zinc and oxygen concentrations due to interdiffusion near the ZnO substrate remained an issue; therefore, the diffusion of zinc and oxygen

  11. Gallium

    SciTech Connect

    1996-01-01

    Discovered in 1875 through a study of its spectral properties, gallium was the first element to be uncovered following the publication of Mendeleev`s Periodic Table. French chemist, P.E. Lecoq de Boisbaudran, named his element discovery in honor of his native country; gallium is derived from the Latin word for France-{open_quotes}Gallia.{close_quotes}. This paper describes the properties, sources, and market for gallium.

  12. Positive focal shift of gallium nitride high contrast grating focusing reflectors

    NASA Astrophysics Data System (ADS)

    He, Shumin; Wang, Zhenhai; Liu, Qifa

    2016-09-01

    We design a type of metasurfaces capable of serving as a visible-light focusing reflector based on gallium nitride (GaN) high contrast gratings (HCGs). The wavefront of the reflected light is precisely manipulated by spatial variation of the grating periods along the subwavelength ridge array to achieve light focusing. Different from conventional negative focal shift effect, a positive focal shift is observed in such focusing reflectors. Detailed investigations of the influence of device size on the focusing performance, especially the focal length, are preformed via a finite element method . The results show that all performance parameters are greatly affected by the reflector size. A more concentrated focal point, or a better focusing capability, can be achieved by larger size. With increasing reflector size, the achieved focal length decreases and gradually approaches to the design, thus the corresponding positive focal shift decreases. Our results are helpful for understanding the visible-light control of the planar HCG-based focusing reflectors.

  13. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

    SciTech Connect

    Imtiaz, Atif; Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel; Weber, Joel C.; Coakley, Kevin J.

    2014-06-30

    We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ′}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ′}  effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ′} images.

  14. Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet

    NASA Astrophysics Data System (ADS)

    Sharma, Venus; Kaur, Sumandeep; Srivastava, Sunita; Kumar, Tankeshwar

    2017-05-01

    The structural, electronic and magnetic properties of gallium nitride nanosheet (GaNs) doped with Mn atoms have been studied using spin polarized density functional theory. The binding energy per atom, Energy Band gap, Fermi energy, magnetic moment, electric dipole moment have been found. The doped nanosheet is found to be more stable than pure GaN monolayer nanosheet. Adsorption of Mn atom has been done at four different sites on GaNs which affects the fermi level position. It is found that depending on the doping site, Mn can behave both like p-type semiconductor and also as n-type semiconductor. Also, it is ascertained that Mn doped GaNs (GaNs-Mn) exhibits ferromagnetic behavior.

  15. Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.

  16. Gallium nitride nanoneedles grown in extremely non-equilibrium nitrogen plasma

    SciTech Connect

    Mangla, O.; Roy, S.

    2016-05-23

    In the present work, gallium nitride (GaN) nanoneedles are grown on quartz substrates using the high fluence ions of GaN produced by hot, dense and extremely non-equlibrium nitrogen plasma in a modified dense plasma focus device. The formation of nanoneedles is obtained from the scanning electron microscopy with mean size of the head of nanoneedles ~ 70 nm. The nanoneedles are found to be poly-crystalline when studied structurally through the X-ray diffraction. The optical properties of nanoneedles studied using absorption spectra which show more absorption for nanoneedles depsoited one shot of ions irradiation. In addition, the band gap of nanoneedles is found to be increased as compared to bulk GaN. The obtained nanoneedles with increased band gap have potential applications in detector systems.

  17. Maximizing cubic phase gallium nitride surface coverage on nano-patterned silicon (100)

    NASA Astrophysics Data System (ADS)

    Liu, R.; Bayram, C.

    2016-07-01

    Here we investigate the hexagonal-to-cubic phase transition in metalorganic-chemical-vapor-deposition-grown gallium nitride enabled via silicon (100) nano-patterning. Electron backscatter diffraction and depth-resolved cathodoluminescence experiments show complete cubic phase GaN surface coverage when GaN deposition thickness ( hc ), etch depth ( td ), and opening width ( p ) obey hc≈1.06 p -0.75 td ; in line with a geometrical model based on crystallography. Cubic GaN uniformity is studied via electron backscatter diffraction and cathodoluminescence measurements. Atomic force microscopy reveals a smooth cubic GaN surface. Phase-transition cubic GaN shows promising optical and structural quality for integrated photonic devices.

  18. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    NASA Astrophysics Data System (ADS)

    Rajbhandari, Sujan; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Chun, Hyunchae; Faulkner, Grahame; Haas, Harald; Watson, Ian M.; O'Brien, Dominic; Dawson, Martin D.

    2017-02-01

    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost polymer optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb s-1 are also outlined.

  19. Analytical electron microscopy study on gallium nitride systems doped with manganese and iron

    NASA Astrophysics Data System (ADS)

    Meingast, Arno; Navarro Quezada, Andrea; Devillers, Thibaut; Kovács, András; Albu, Mihela; Fladischer, Stefanie; Bonanni, Alberta; Kothleitner, Gerald

    2015-03-01

    Modulated structures of gallium nitride (GaN) doped with transition metal ions (here Fe, Mn) are investigated by analytical (scanning) transmission electron microscopy to gain insight into the structural arrangement and chemical composition of the material, known to be critically correlated to the magnetic response and hence the functionality of these technologically relevant systems. Three classes of samples are considered: (i) homogeneous (dilute) (Ga, Mn)N; (ii) δ-Mn-doped (Ga, δ-Mn)N and phase separated (Ga, Fe)N, containing Fe-rich nanocrystals. The combination of various microscopic techniques employed, allows for a quantitative determination of the distribution of the magnetic ions in the samples, providing essential information on the structural and chemical asset of these systems.

  20. Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate.

    PubMed

    D'Antonio, Palma; Inchingolo, Alessio Vincenzo; Perna, Giuseppe; Capozzi, Vito; Stomeo, Tiziana; De Vittorio, Massimo; Magno, Giovanni; Grande, Marco; Petruzzelli, Vincenzo; D'Orazio, Antonella

    2012-11-16

    In this paper we describe the design, fabrication and characterization of gold nano-patches, deposited on gallium nitride substrate, acting as optical nanoantennas able to efficiently localize the electric field at the metal-dielectric interface. We analyse the performance of the proposed device, evaluating the transmission and the electric field localization by means of a three-dimensional finite difference time domain (FDTD) method. We detail the fabrication protocol and show the morphological characterization. We also investigate the near-field optical transmission by means of scanning near-field optical microscope measurements, which reveal the excitation of a localized surface plasmon resonance at a wavelength of 633 nm, as expected by the FDTD calculations. Such results highlight how the final device can pave the way for the realization of a single optical platform where the active material and the metal nanostructures are integrated together on the same chip.

  1. Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides.

    PubMed

    Jewett, Scott A; Makowski, Matthew S; Andrews, Benjamin; Manfra, Michael J; Ivanisevic, Albena

    2012-02-01

    The toxicity of semiconductor materials can significantly hinder their use for in vitro and in vivo applications. Gallium nitride (GaN) is a material with remarkable properties, including excellent chemical stability. This work demonstrated that functionalized and etched GaN surfaces were stable in aqueous environments and leached a negligible amount of Ga in solution even in the presence of hydrogen peroxide. Also, GaN surfaces in cell culture did not interfere with nearby cell growth, and etched GaN promoted the adhesion of cells compared to etched silicon surfaces. A model peptide, "IKVAV", covalently attached to GaN and silicon surfaces increased the adhesion of PC12 cells. Peptide terminated GaN promoted greater cell spreading and extension of neurites. The results suggest that peptide modified GaN is a biocompatible and non-toxic material that can be used to probe chemical and electrical stimuli associated with neural interfaces.

  2. Gallium Nitride Nanowires and Heterostructures: Toward Color-Tunable and White-Light Sources.

    PubMed

    Kuykendall, Tevye R; Schwartzberg, Adam M; Aloni, Shaul

    2015-10-14

    Gallium-nitride-based light-emitting diodes have enabled the commercialization of efficient solid-state lighting devices. Nonplanar nanomaterial architectures, such as nanowires and nanowire-based heterostructures, have the potential to significantly improve the performance of light-emitting devices through defect reduction, strain relaxation, and increased junction area. In addition, relaxation of internal strain caused by indium incorporation will facilitate pushing the emission wavelength into the red. This could eliminate inefficient phosphor conversion and enable color-tunable emission or white-light emission by combining blue, green, and red sources. Utilizing the waveguiding modes of the individual nanowires will further enhance light emission, and the properties of photonic structures formed by nanowire arrays can be implemented to improve light extraction. Recent advances in synthetic methods leading to better control over GaN and InGaN nanowire synthesis are described along with new concept devices leading to efficient white-light emission.

  3. Two-dimensional dopant profiling of gallium nitride p-n junctions by scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Lamhamdi, M.; Cayrel, F.; Frayssinet, E.; Bazin, A. E.; Yvon, A.; Collard, E.; Cordier, Y.; Alquier, D.

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p-n and unipolar junctions. For both p-n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p-n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  4. Fundamental studies of the metallurgical, electrical, and optical properties of gallium phosphide and gallium phosphide alloys

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Abstracts, bibliographic data, oral presentations, and published papers on (1) Diffusion of Sulfur in Gallium Phosphide and Gallium Arsenide, and (2) Properties of Gallium Phosphide Schottky Barrier Rectifiers for Use at High Temperature are presented.

  5. Gallium nitride surface protection during RTA annealing with a GaOxNy cap-layer

    NASA Astrophysics Data System (ADS)

    Khalfaoui, Wahid; Oheix, T.; Cayrel, F.; Benoit, R.; Yvon, A.; Collard, E.; Alquier, D.

    2016-04-01

    Gallium nitride (GaN) is generally considered a good candidate for power electronic devices such as Schottky barrier diodes (SBDs). Nevertheless, GaN has a strong sensitivity to high temperature treatments and a cap-layer is mandatory to protect the material surface during annealing at high temperature such as post-implantation treatments. In this work, an oxidized gallium nitride layer (GaOxNy) was generated with Oxford PECVD equipment using a N2O plasma treatment to protect the GaN surface during a rapid thermal annealing (RTA), in the range of 1000 °C-1150 °C for a few minutes. Before annealing, c-TLM patterns were processed on the GaOxNy/GaN sample to characterize its sheet resistance. After the N2O plasma treatment, the sample exhibited lower sheet resistance, indicating a better n-type conduction of the GaOxNy layer due to an excess of free carriers, compared to the as-grown GaN layer. The GaOxNy/GaN surface was then annealed at 1150 °C for 3 min and observed through AFM imaging. The surface exhibited a good quality with a low roughness, nevertheless, a low density of small hexagonal pits appeared after annealing. Finally, studies to determine an efficient etching process of the GaOxNy cap-layer were conducted using both chemical and physical approaches. We observed that efficient etching of the layer was achieved using a heated hydrofluoridric acid (HF 25%) solution. To conclude, GaOxNy has proved to be an efficient cap-layer for GaN protection at high temperature.

  6. ANALYSIS OF THE WATER-SPLITTING CAPABILITIES OF GALLIUM INDIUM PHOSPHIDE NITRIDE (GaInPN)

    SciTech Connect

    Head, J.; Turner, J.

    2007-01-01

    With increasing demand for oil, the fossil fuels used to power society’s vehicles and homes are becoming harder to obtain, creating pollution problems and posing hazard’s to people’s health. Hydrogen, a clean and effi cient energy carrier, is one alternative to fossil fuels. Certain semiconductors are able to harness the energy of solar photons and direct it into water electrolysis in a process known as photoelectrochemical water-splitting. P-type gallium indium phosphide (p-GaInP2) in tandem with GaAs is a semiconductor system that exhibits water-splitting capabilities with a solar-tohydrogen effi ciency of 12.4%. Although this material is effi cient at producing hydrogen through photoelectrolysis it has been shown to be unstable in solution. By introducing nitrogen into this material, there is great potential for enhanced stability. In this study, gallium indium phosphide nitride Ga1-yInyP1-xNx samples were grown using metal-organic chemical vapor deposition in an atmospheric-pressure vertical reactor. Photocurrent spectroscopy determined these materials to have a direct band gap around 2.0eV. Mott-Schottky analysis indicated p-type behavior with variation in fl atband potentials with varied frequencies and pH’s of solutions. Photocurrent onset and illuminated open circuit potential measurements correlated to fl atband potentials determined from previous studies. Durability analysis suggested improved stability over the GaInP2 system.

  7. Chemical exfoliation and optical characterization of threading-dislocation-free gallium-nitride ultrathin nanomembranes

    NASA Astrophysics Data System (ADS)

    ElAfandy, Rami T.; Majid, Mohammed A.; Ng, Tien Khee; Zhao, Lan; Cha, Dongkyu; Ooi, Boon S.

    2014-11-01

    Semiconductor nanostructures have generated tremendous scientific interests as well as practical applications stemming from the engineering of low dimensional physics phenomena. Unlike 0D and 1D nanostructures, such as quantum dots and nanowires, respectively, 2D structures, such as nanomembranes, are unrivalled in their scalability for high yield manufacture and are less challenging in handling with the current transfer techniques. Furthermore, due to their planar geometry, nanomembranes are compatible with the current complementary metal oxide semiconductor (CMOS) technology. Due to these superior characteristics, there are currently different techniques in exfoliating nanomembranes with different crystallinities, thicknesses and compositions. In this work we demonstrate a new facile technique of exfoliating gallium nitride (GaN) nanomembranes with novel features, namely with the non-radiative cores of their threading-dislocations (TDs) being etched away. The exfoliation process is based on engineering the gallium vacancy (VGa) density during the GaN epitaxial growth with subsequent preferential etching. Based on scanning and transmission electron microscopies, as well as micro-photoluminescence measurements, a model is proposed to uncover the physical processes underlying the formation of the nanomembranes. Raman measurements are also performed to reveal the internal strain within the nanomembranes. After transferring these freely suspended 25 nm thin GaN nanomembranes to other substrates, we demonstrate the temperature dependence of their bandgap by photoluminescence technique, in order to shed light on the internal carrier dynamics.

  8. A hybrid density functional view of native vacancies in gallium nitride.

    PubMed

    Gillen, Roland; Robertson, John

    2013-10-09

    We investigated the transition energy levels of the vacancy defects in gallium nitride by means of a hybrid density functional theory approach (DFT). We show that, in contrast to predictions from a recent study on the level of purely local DFT, the inclusion of screened exchange stabilizes the triply positive charge state of the nitrogen vacancy for Fermi energies close to the valence band. On the other hand, the defect levels associated with the negative charge states of the nitrogen vacancy hybridize with the conduction band and turn out to be energetically unfavorable, except for high n-doping. For the gallium vacancy, the increased magnetic splitting between up-spin and down-spin bands due to stronger exchange interactions in sX-LDA pushes the defect levels deeper into the band gap and significantly increases the associated charge transition levels. Based on these results, we propose the ϵ(0| - 1) transition level as an alternative candidate for the yellow luminescence in GaN.

  9. Magnetic properties of gadolinium and carbon co-doped gallium nitride

    NASA Astrophysics Data System (ADS)

    Syed Kaleemullah, N.; Ramsubramanian, S.; Mohankumar, R.; Munawar Basha, S.; Rajagopalan, M.; Kumar, J.

    2017-01-01

    Investigations have been carried out to study the ferromagnetic properties of Gadolinium (Gd) Carbon (C) co-doped wurtzite Gallium Nitride (GaN) using full-potential linear augmented plane wave (FP-LAPW) method within the density functional theory. The system shows half-metallic nature when single Gd is substituted in Ga36N36 supercell. The presence of carbon in GaN supercell is found to generate weak magnetic moment (Ms) in the neighbouring atoms. When Carbon is codoped in the Gd-GaN, it increased the total magnetic moment of the system (Mtot). The cause of ferromagnetism in the Gd and C co-doped GaN has been explained by Zener's p-d exchange mechanism. The role of defects in the magnetic property of this system is also investigated. The results indicate the gallium vacancy influences the magnetic moment of the Gd and C codoped GaN more than the nitrogen vacancy. The presence of holes is effective than electrons in achieving the ferromagnetism in the considered system.

  10. Studies on the effect of ammonia flow rate induced defects in gallium nitride grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Lourdudoss, S.; Landgren, G.; Baskar, K.

    2010-10-01

    Gallium nitride (GaN) epitaxial layers were grown with different V/III ratios by varying the ammonia (NH 3) flow rate, keeping the flow rate of the other precursor, trimethylgallium (TMG), constant, in an MOCVD system. X-ray rocking curve widths of a (1 0 2) reflection increase with an increase in V/III ratio while the (0 0 2) rocking curve widths decrease. The dislocation density was found to increase with an increase in ammonia flow rate, as determined by hot-wet chemical etching and atomic force microscopy. 77 K photoluminescence studies show near band emission at 3.49 eV and yellow luminescence peaking at 2.2 eV. The yellow luminescence (YL) intensity decreases with an increase in V/III ratio. Positron annihilation spectroscopy studies show that the concentration of Ga-like vacancies increases with an increase in ammonia flow rate. This study confirms that the yellow luminescence in the GaN arises due to deep levels formed by gallium vacancies decorated with oxygen atoms.

  11. Short period strain balanced gallium arsenide nitride/indium arsenide nitride superlattice lattice matched to indium phosphide for mid-infrared photovoltaics

    NASA Astrophysics Data System (ADS)

    Bhusal, Lekhnath

    Dilute nitrogen-containing III-V-N alloys have been intensively studied for their unusual electronic and optical behavior in the presence of a small amount of nitrogen. Those behaviors can further be manipulated, with a careful consideration of the strain and strain balancing, for example, in the context of a strain-balanced superlattice (SL) based on those alloys. In this work, the k.p approximation and the band anti-crossing model modified for the strain have been used to describe the electronic states of the strained bulk-like GaAs1-xNx and InAs 1-yNy ternaries in the vicinity of the center of the Brillouin zone (Gamma-point). Band-offsets between the conduction and valence bands of GaAs1-xNx and InAs1-yN y have also been evaluated, before implementing them into the SL structure. By minimizing the total mechanical energy of the stack of the alternating layers of GaAs1-xNx and InAs1-yNy in the SL, the ratio of the thicknesses of the epilayers is determined to make the structure lattice-matching on the InP(001), through the strain-balancing. Mini-band energies of the strain-balanced GaAs1-xNx/InAs 1-yNy short-period SL on InP(001) is then investigated using the transfer matrix formalism. This enabled identifying the evolution of the band edge transition energies of the superlattice structure for different nitrogen compositions. Results show the potential of the new proposed design to exceed the existing limits of bulk-like InGaAsN alloys and offer the applications for photon absorption/emission energies in the range of ~0.65-0.35eV at 300K for a typical nitrogen composition of ≤5%. The optical absorption coefficient of such a SL is then estimated under the anisotropic medium approximation, where the optical absorption of the bulk structure is modified according to the anisotropy imposed by the periodic potential in the growth direction. As an application, the developed SL structure is used to investigate the performance of double, triple and quadruple junction thermophotovoltaic devices. Integration of the SL structure, which is lattice matched to InP, in the i region of the p(InGaAs)- i(SL) n(InGaAs) diode allowed the possibility of more than two junction thermophotovoltiac device with the enhanced performance in comparison to the conventional p(InGaAs)n(InGaAs) diode.

  12. Surface studies of gallium nitride quantum dots grown using droplet epitaxy on bulk, native substrates

    NASA Astrophysics Data System (ADS)

    Jones, Christina; Jeon, Sunyeol; Goldman, Rachel; Yacoby, Yizhak; Clarke, Roy

    Gallium nitride (GaN) and its applications in light-emitting diodes play an integral part in efficient, solid-state lighting, as evidenced by its recognition in the 2014 Nobel prize in physics. In order to push this technology towards higher efficiency and reliability and lower cost, we must understand device growth on bulk GaN substrates, which have lower defect densities and strain than template GaN substrates grown on sapphire. In this work, we present our findings on the surface properties of GaN quantum dots (QDs) grown on commercial bulk GaN. QDs are grown using the droplet epitaxy method and analyzed using a surface X-ray diffraction technique called Coherent Bragg Rod Analysis (COBRA), which uses phase retrieval to reconstruct atomic positions near the substrate surface. While several QD growth conditions in our study produce dense QDs, COBRA reveals that only low nitridation temperatures result in GaN QDs that are coherent with the bulk GaN substrate. Results are supported with atomic force microscopy and high-resolution transmission electron microscopy.

  13. Thermo-piezo-electro-mechanical simulation of AlGaN (aluminum gallium nitride) / GaN (gallium nitride) High Electron Mobility Transistors

    NASA Astrophysics Data System (ADS)

    Stevens, Lorin E.

    Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern electronic devices can do. The purpose of the research outlined in this paper was to better understand the mechanical stresses and strains that are present in a hybrid AlGaN (Aluminum Gallium Nitride) / GaN (Gallium Nitride) HEMT, while under electrically-active conditions. One of the main issues currently being researched in these devices is their reliability, or their consistent ability to function properly, when subjected to high-power conditions. The researchers of this mechanical study have performed a static (i.e. frequency-independent) reliability analysis using powerful multiphysics computer modeling/simulation to get a better idea of what can cause failure in these devices. Because HEMT transistors are so small (micro/nano-sized), obtaining experimental measurements of stresses and strains during the active operation of these devices is extremely challenging. Physical mechanisms that cause stress/strain in these structures include thermo-structural phenomena due to mismatch in both coefficient of thermal expansion (CTE) and mechanical stiffness between different materials, as well as stress/strain caused by "piezoelectric" effects (i.e. mechanical deformation caused by an electric field, and conversely voltage induced by mechanical stress) in the AlGaN and GaN device portions (both

  14. Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon

    NASA Astrophysics Data System (ADS)

    Mohamed, Mohamed Sabry; Simbula, Angelica; Carlin, Jean-François; Minkov, Momchil; Gerace, Dario; Savona, Vincenzo; Grandjean, Nicolas; Galli, Matteo; Houdré, Romuald

    2017-03-01

    We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG) and third harmonic generation (THG) in suspended gallium nitride slab photonic crystal (PhC) cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4 × 104, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving a normalized conversion efficiency of 2.4 × 10-3 W-1, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  15. Fabrication and Characterization of Vertical Gallium Nitride Power Schottky Diodes on Bulk GaN Substrates FY2016

    DTIC Science & Technology

    2017-01-09

    no forward conduction was observed for all devices tested. Additionally, results show variation in the diode breakdown voltage with diode size, but...no clear trend between breakdown voltage and diode size was observed . 15. SUBJECT TERMS gallium nitride, Schottky diode, ammonothermal, I-V curve...8 Fig. 8 Reverse I-V curve with highest (VB) observed for each device size. 50 µm (VB = 30.5 V), 100 µm (VB = 28.5

  16. Co-administration of meso 2,3-dimercaptosuccinic acid monoesters reduces arsenic concentration and oxidative stress in gallium arsenide exposed rats.

    PubMed

    Flora, Swaran J S; Bhatt, Kapil; Dwivedi, Nidhi; Pachauri, Vidhu; Kushwah, Pramod K

    2011-07-01

    1. Gallium arsenide (GaAs), a semiconductor, exerts toxicity as a result of its constitutive moieties; that is, gallium and arsenic that becomes dissociated after exposure. The present study focuses on reducing arsenic concentration from the target organs using monoesters of meso 2,3-dimercaptosuccinic acid (DMSA) either individually or in combination. 2. Animals were exposed to GaAs (0.0014 mol/kg, orally for 8 weeks) and then treated with monoisoamyl DMSA (MiADMSA), monocyclohexyl DMSA (MchDMSA) or monomethyl DMSA (MmDMSA) either individually (0.3 mmol/kg, orally) or in combination (0.15 mmol/kg each, orally) for five consecutive days. 3. GaAs exposure significantly inhibited blood δ-aminolevulinic acid dehydrogenase (ALAD), suggesting alterations in the heme synthesis pathway. Whereas a significant increase in blood, liver and kidney reactive oxygen species accompanied by an increase in lipid peroxidation points to the involvement of oxidative stress in GaAs toxicity. 4. GaAs also significantly disturbed glutathione metabolism. Hepatic and renal catalase activity decreased significantly, whereas hepatic and renal superoxide dismutase activity, as well as serum transaminases activity, showed marginal increase. Treatment with MiADMSA in combination with MchDMSA showed better therapeutic efficacy compared with other treatments in the aforementioned variables. 5. Co-administration of MiADMSA with MchDMSA provided better therapeutic effects, including reduction of arsenic burden, compared with all other treatments. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.

  17. In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching.

    PubMed

    Wilkins, Stewart J; Greenough, Michelle; Arellano, Consuelo; Paskova, Tania; Ivanisevic, Albena

    2014-03-04

    In situ functionalization of polar (c plane) and nonpolar (a plane) gallium nitride (GaN) was performed by adding (3-bromopropyl) phosphonic acid or propyl phosphonic acid to a phosphoric acid etch. The target was to modulate the emission properties and oxide formation of GaN, which was explored through surface characterization with atomic force microscopy, X-ray photoelectron spectroscopy, photoluminescence (PL), inductively coupled plasma-mass spectrometry, and water contact angle. The use of (3-bromopropyl) phosphonic acid and propyl phosphonic acid in phosphoric acid demonstrated lower amounts of gallium oxide formation and greater hydrophobicity for both sample sets, while also improving PL emission of polar GaN samples. In addition to crystal orientation, growth-related factors such as defect density in bulk GaN versus thin GaN films residing on sapphire substrates were investigated as well as their responses to in situ functionalization. Thin nonpolar GaN layers were the most sensitive to etching treatments due in part to higher defect densities (stacking faults and threading dislocations), which accounts for large surface depressions. High-quality GaN (both free-standing bulk polar and bulk nonpolar) demonstrated increased sensitivity to oxide formation. Room-temperature PL stands out as an excellent technique to identify nonradiative recombination as observed in the spectra of heteroepitaxially grown GaN samples. The chemical methods applied to tune optical and physical properties of GaN provide a quantitative framework for future novel chemical and biochemical sensor development.

  18. Strategies to indium nitride and gallium nitride nanoparticles: Low-temperature, solution-phase and precursor routes

    NASA Astrophysics Data System (ADS)

    Dingman, Sean Douglas

    I present new strategies to low-temperature solution-phase synthesis of indium and gallium nitride (InN and GaN) ceramic materials. The strategies include: direct conversion of precursor molecules to InN by pyrolysis, solution-phase synthesis of nanostructured InN fibers via molecular precursors and co-reactants, and synthesis of powders through reactions derived from molten-salt chemistry. Indium nitride powders are prepared by pyrolysis of the precursors R 2InN3 (R = t-Bu (1), i-Amyl(2), Et(3), i-Pr( 4)). The precursors are synthesized via azide-alkoxide exchange of R2InOMe with Me3SiN3. The precursors are coordination polymers containing five-coordinate indium centers. Pyrolysis of 1 and 2 under N2 at 400°C yields powders consisting primarily of InN with average crystal sizes of 15--35 nm. 1 yields nanocrystalline InN with average particle sizes of 7 nm at 250°C. 3 and 4 yield primarily In metal from pyrolysis. Refluxing 1 in diisopropylbenzene (203°C) in the presence of primary amines yields InN nanofibers 10--100 nm in length. InN nanofibers of up to 1 mum can be synthesized by treating 1 with 1,1-dimethylhydrazine (DMHy) The DMHy appears to control the fiber length by acting as a secondary source of active nitrogen in order to sustain fiber growth. The resulting fibers are attached to droplets of indium metal implying a solution-liquid-solid growth mechanism. Precursor 4 yields crystalline InN whiskers when reacted with DMHy. Reactions of 4 with reducing agents such as HSnBu3, yield InN nanoparticles with an average crystallite size of 16 nm. Gallium precursors R2GaN3 (R = t-Bu( 5), Me3SiCH2(6) and i-Pr( 7)), synthesized by azide-alkoxide exchange, are found to be inert toward solution decomposition and do not yield GaN. These compounds are molecular dimers and trimers unlike the indium analogs. Compound 6 displays a monomer-dimer equilibrium in benzene solution, but exists as a solid-state trimer. InN powders are also synthesized by reactions of InCl3 and

  19. Note: All solid-state high repetitive sub-nanosecond risetime pulse generator based on bulk gallium arsenide avalanche semiconductor switches.

    PubMed

    Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang

    2016-08-01

    An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.

  20. Application of low-cost Gallium Arsenide light-emitting-diodes as kerma dosemeter and fluence monitor for high-energy neutrons.

    PubMed

    Mukherjee, B; Simrock, S; Khachan, J; Rybka, D; Romaniuk, R

    2007-01-01

    Displacement damage (DD) caused by fast neutrons in unbiased Gallium Arsenide (GaAs) light emitting diodes (LED) resulted in a reduction of the light output. On the other hand, a similar type of LED irradiated with gamma rays from a (60)Co source up to a dose level in excess of 1.0 kGy (1.0 x 10(5) rad) was found to show no significant drop of the light emission. This phenomenon was used to develop a low cost passive fluence monitor and kinetic energy released per unit mass dosemeter for accelerator-produced neutrons. These LED-dosemeters were used to assess the integrated fluence of photoneutrons, which were contaminated with a strong bremsstrahlung gamma-background generated by the 730 MeV superconducting electron linac driving the free electron laser in Hamburg (FLASH) at Deutsches Elektronen-Synchrotron. The applications of GaAs LED as a routine neutron fluence monitor and DD precursor for the electronic components located in high-energy accelerator environment are highlighted.

  1. Low-level (gallium-aluminum-arsenide) laser irradiation of Par-C10 cells and acinar cells of rat parotid gland.

    PubMed

    Onizawa, Katsuhiro; Muramatsu, Takashi; Matsuki, Miwako; Ohta, Kazumasa; Matsuzaka, Kenichi; Oda, Yutaka; Shimono, Masaki

    2009-03-01

    We investigated cell response, including cell proliferation and expression of heat stress protein and bcl-2, to clarify the influence of low-level [gallium-aluminum-arsenide (Ga-Al-As) diode] laser irradiation on Par-C10 cells derived from the acinar cells of rat parotid glands. Furthermore, we also investigated amylase release and cell death from irradiation in acinar cells from rat parotid glands. The number of Par-C10 cells in the laser-irradiated groups was higher than that in the non-irradiated group at days 5 and 7, and the difference was statistically significant (P < 0.01). Greater expression of heat shock protein (HSP)25 and bcl-2 was seen on days 1 and 3 in the irradiated group. Assay of the released amylase showed no significant difference statistically between the irradiated group and the non-irradiated group. Trypan blue exclusion assay revealed that there was no difference in the ratio of dead to live cells between the irradiated and the non-irradiated groups. These results suggest that low-level laser irradiation promotes cell proliferation and expression of anti-apoptosis proteins in Par-C10 cells, but it does not significantly affect amylase secretion and does not induce rapid cell death in isolated acinar cells from rat parotid glands.

  2. Biological monitoring of arsenic exposure of gallium arsenide- and inorganic arsenic-exposed workers by determination of inorganic arsenic and its metabolites in urine and hair

    SciTech Connect

    Yamauchi, H.; Takahashi, K.; Mashiko, M.; Yamamura, Y. )

    1989-11-01

    In an attempt to establish a method for biological monitoring of inorganic arsenic exposure, the chemical species of arsenic were measured in the urine and hair of gallium arsenide (GaAs) plant and copper smelter workers. Determination of urinary inorganic arsenic concentration proved sensitive enough to monitor the low-level inorganic arsenic exposure of the GaAs plant workers. The urinary inorganic arsenic concentration in the copper smelter workers was far higher than that of a control group and was associated with high urinary concentrations of the inorganic arsenic metabolites, methylarsonic acid (MAA) and dimethylarsinic acid (DMAA). The results established a method for exposure level-dependent biological monitoring of inorganic arsenic exposure. Low-level exposures could be monitored only by determining urinary inorganic arsenic concentration. High-level exposures clearly produced an increased urinary inorganic arsenic concentration, with an increased sum of urinary concentrations of inorganic arsenic and its metabolites (inorganic arsenic + MAA + DMAA). The determination of urinary arsenobetaine proved to determine specifically the seafood-derived arsenic, allowing this arsenic to be distinguished clearly from the arsenic from occupational exposure. Monitoring arsenic exposure by determining the arsenic in the hair appeared to be of value only when used for environmental monitoring of arsenic contamination rather than for biological monitoring.

  3. Polarity control in gallium nitride epilayers grown by Metalorganic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Mita, Seiji

    Polarity control of gallium nitride (GaN) on c-plane sapphire substrate was studied via low pressure Metalorganic Chemical Vapor Deposition (MOCVD). Under mass-transport-limited growth regime with a given process supersaturation, the polarities of GaN thin films (i.e. gallium (Ga) and nitrogen (N)-polarities) depended on specific treatments of the sapphire substrate prior to GaN deposition, in addition, identical growth rates for both polar films were obtained. This ability made the fabrication of lateral polar junction (LPJ) GaN structures possible. New designs of novel device structures utilizing the resulting polarity control scheme were developed. N-polar films were consistently obtained after exposing a H2-annealed sapphire substrate to an ammonia atmosphere at temperature above 950°C. Ga-polar films were obtained either by preventing any exposure of the substrate to ammonia prior to deposition or by depositing the film on a properly annealed low temperature aluminum nitride nucleation layer (LT-AlN NL) deposited on a previously ammonia annealed sapphire substrate. As-grown Ga-polar films were generally insulating and smooth surface morphology while N-polar films exhibited n-type conductivity with carrier concentration approaching 1x1019 cm-3 and a rougher surface morphology. Following the established polarity control scheme for GaN films, LPJ structures consisting Ga-polar and N-polar domains side-by-side on a single sapphire wafer were achieved by utilizing a prior patterned AlN/bare sapphire template. The two regions were separated by an inversion domain boundary (IDB), which did not hinder the current flow across it, i.e. no energy barrier for the charge carriers. This in principle showed the possibility for the fabrication of lateral junctions and lateral based devices within the GaN technology exploiting polar doping selectivity. Understanding the doping selectivity of the two different polar domains allowed us to fabricate a lateral p/n junction in Ga

  4. Combined administration of oxalic acid, succimer and its analogue for the reversal of gallium arsenide-induced oxidative stress in rats.

    PubMed

    Flora, Swaran J S; Kannan, Gurusamy M; Pant, Bhagwat P; Jaiswal, Devendra K

    2002-06-01

    Gallium arsenide (GaAs), a group III-VA intermetallic semiconductor, possesses superior electronic and optical properties and has a wide application in the electronics industry. Exposure to GaAs in the semiconductor industry is a potential occupational hazard because cleaning and slicing GaAs ingots to yield the desired wafer could generate GaAs particles. The ability of GaAs to induce oxidative stress has not yet been reported. The present study reports the role of oxidative stress in GaAs-induced haematological and liver disorders and its possible reversal overturn by administration of meso-2,3-dimercaptosuccinic acid (DMSA) and one of its analogue, monoisoamyl DMSA (MiADMSA), either individually or in combination with oxalic acid. While DMSA and MiADMSA are potential arsenic chelators, oxalic acid is reported to be an effective gallium chelator. Male rats were exposed to 10 mg/kg GaAs orally, 5 days a week for 8 weeks. GaAs exposure was then stopped and rats were given a 0.5 mmol/kg dose of succimers (DMSA or MiADMSA), oxalic acid or a combination of the two, intraperitoneally once daily for 5 consecutive days. We found a significant fall in blood delta-aminolevulinic acid dehydratase (ALAD) activity and blood glutathione (GSH) level, and an increased urinary excretion of delta-aminolevulinic acid (ALA) and an increased malondialdehyde (MDA) level in erythrocytes of rats exposed to GaAs. Hepatic GSH levels decreased, whereas there was an increase in GSSG and MDA levels. The results suggest a role of oxidative stress in GaAs-induced haematological and hepatic damage. Administration of DMSA and MiADMSA produced effective recovery in most of the above variables. However, a greater effectiveness of the chelation treatment (i.e. removal of both gallium and arsenic from body organs) could be achieved by combined administration of succimer (DMSA) with oxalic acid since, after MiADMSA administration, a marked loss of essential metals (copper and zinc) is of concern.

  5. Real-time in-situ chemical sensing in aluminum gallium nitride/gallium nitride metal-organic chemical vapor deposition processes for advanced process control

    NASA Astrophysics Data System (ADS)

    Cho, Soon

    Gallium nitride and its alloys promise to be key materials for future semiconductor devices aimed at high frequency, high power electronic applications. However, manufacturing for such high performance products is challenged by reproducibility and material quality constraints that are notably more stringent than those required for optoelectronic applications. To meet this challenge, in-situ mass spectrometry was implemented as a real-time process- and wafer-state metrology tool in AlGaN/GaN/AlN metal-organic chemical vapor deposition processes on semi-insulating SiC substrate wafers. Dynamic chemical sensing through the process cycle, carried out downstream from the wafer, revealed generation of methane and ethane reaction byproducts, as well as other residual gas species. Real-time metrics were derived based on the chemical signals to predict/control material quality and thickness of critical layers within the heterostructure in real time during growth, and corresponding metrologies were used for real-time advanced process control. Using the methane/ethane ratio, GaN epilayer crystal quality was predicted in real time to 2--5% precision, which was verified by post-process x-ray diffraction. Moreover, the same real-time metric predicted material quality as indicated by post-process photoluminescence band-edge intensities to ˜5% precision. The methane/ethane ratio has a fundamental significance in terms of the intrinsic chemistry in that the two byproducts are believed to reflect two parallel reaction pathways leading to GaN-based material growth, namely the gas phase adduct formation route and the surface route for direct precursor decomposition, respectively. The fact that lower methane/ethane ratios consistently yield better material quality suggests that the surface pathway is preferred for high quality GaN growth. In addition, a metric based on methane and ethane signals integrated through the AlGaN growth period (˜1 min or less) enabled prediction of the cap

  6. Metasurfaces based on Gallium Nitride High Contrast Gratings at Visible Range

    NASA Astrophysics Data System (ADS)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei; Wang, Yongjin; Zhu, Hongbo; Grünberg Research Centre Team

    2015-03-01

    Metasurfaces are currently attracting global attention due to their ability to achieve full control of light propagation. However, these metasurfaces have thus far been constructed mostly from metallic materials, which greatly limit the diffraction efficiencies because of the ohmic losses. Semiconducting metasurfaces offer one potential solution to the issue of losses. Besides, the use of semiconducting materials can broaden the applicability of metasurfaces, as they enable facile integration with electronics and mechanical systems and can benefit from mature semiconductor fabrication technologies. We have proposed visible-light metasurfaces (VLMs) capable of serving as lenses and beam deflecting elements based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wave-fronts of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 83.0% and numerical aperture of 0.77, and a VLM with beam deflection angle of 6.03° and transmissivity as high as 93.3%. The proposed metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  7. Enhanced efficiency of Schottky-barrier solar cell with periodically nonhomogeneous indium gallium nitride layer

    NASA Astrophysics Data System (ADS)

    Anderson, Tom H.; Mackay, Tom G.; Lakhtakia, Akhlesh

    2017-01-01

    A two-dimensional finite-element model was developed to simulate the optoelectronic performance of a Schottky-barrier solar cell. The heart of this solar cell is a junction between a metal and a layer of n-doped indium gallium nitride (InξGaN) alloy sandwiched between a reflection-reducing front window and a periodically corrugated metallic back reflector. The bandgap of the InξGaN layer was varied periodically in the thickness direction by varying the parameter ξ∈(0,1). First, the frequency-domain Maxwell postulates were solved to determine the spatial profile of photon absorption and, thus, the generation of electron-hole pairs. The AM1.5G solar spectrum was taken to represent the incident solar flux. Next, the drift-diffusion equations were solved for the steady-state electron and hole densities. Numerical results indicate that a corrugated back reflector of a period of 600 nm is optimal for photon absorption when the InξGaN layer is homogeneous. The efficiency of a solar cell with a periodically nonhomogeneous InξGaN layer may be higher by as much as 26.8% compared to the analogous solar cell with a homogeneous InξGaN layer.

  8. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    PubMed Central

    Long, Rathnait D.; McIntyre, Paul C.

    2012-01-01

    The literature on polar Gallium Nitride (GaN) surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS) devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  9. Optical dielectric response of gallium nitride studied by variable angle spectroscopy ellipsometry

    SciTech Connect

    Yao, H.; Yan, C.H.; Jenkinson, H.A.; Zavada, J.M.; Speck, J.S.; Denbaars, S.P.

    1997-12-31

    Variable angle spectroscopic ellipsometry (VASE) and transmission measurements have been employed to study the dielectric response of gallium nitride (GaN) thin films -- an important material for light emitting diodes (LEDs) and laser diodes applications. The GaN films were grown by atmosphere pressure metal organic chemical vapor deposition (MOCVD) on c-plane sapphire substrates ({alpha}-Al{sub 2}O{sub 3}). Room temperature VASE measurements were made, in the range of 0.75 to 5.5eV, at the angle of incidence of 73, 75, and 77 degree, respectively. Evidence of anisotropy is observed especially in the spectral range under the band gap ({approximately}3.4 eV), reflecting the nature of wurtzite crystal structure of GaN. The ordinary dielectric function {var_epsilon}{sub {perpendicular}}({omega}) of GaN were obtained through the analysis of transmission and VASE data in the range below and above the band gap. The thickness of these GaN films is also determined via the analysis.

  10. Electron mobility limited by scattering from threading dislocation lines within gallium nitride

    NASA Astrophysics Data System (ADS)

    Mohammad Alavi, Seyed; Bagani, Erfan

    2016-03-01

    Theoretical as well as experimental studies in the literature suggest that defect sites associated with the threading dislocation lines within n-type gallium nitride (GaN) act to trap free electrons from the bulk of this semiconductor material. As a result, the core of the threading dislocation lines become negatively charged. The charge accumulated along the core of a threading dislocation line should be screened by a charge of opposite polarity and equal in absolute value per unit length along the dislocation line. In the present work, we model this screened charge buildup along the threading dislocation lines by two concentric space-charge cylinders. Quantum mechanical theory of scattering in cylindrical coordinates is then employed in order to numerically compute the electron mobility limited by scattering from the charged threading dislocation lines. The dependence of the computed electron mobility on the dislocation line density and on the amount of charge accumulated per unit length along the core of the dislocation lines is also investigated in this work. Our computed electron mobility results are compared with results from existing calculations of the GaN dislocation scattering limited electron mobility in the literature.

  11. Near-infrared electroluminescence at room temperature from neodymium-doped gallium nitride thin films

    SciTech Connect

    Kim, Joo Han; Holloway, Paul H.

    2004-09-06

    Strong near-infrared (NIR) electroluminescence (EL) at room temperature from neodymium (Nd)-doped gallium nitride (GaN) thin films is reported. The Nd-doped GaN films were grown by radio-frequency planar magnetron cosputtering of separate GaN and metallic Nd targets in a pure nitrogen ambient. X-ray diffraction data did not identify the presence of any secondary phases and revealed that the Nd-doped GaN films had a highly textured wurtzite crystal structure with the c-axis normal to the surface of the film. The EL devices were fabricated with a thin-film multilayered structure of Al/Nd-doped GaN/Al{sub 2}O{sub 3}-TiO{sub 2}/indium-tin oxide and tested at room temperate. Three distinct NIR EL emission peaks were observed from the devices at 905, 1082, and 1364 nm, arising from the radiative relaxation of the {sup 4}F{sub 3sol2} excited-state energy level to the {sup 4}I{sub 9sol2}, {sup 4}I{sub 11sol2}, and {sup 4}I{sub 13sol2} levels of the Nd{sup 3+} ion, respectively. The threshold voltage for all the three emission peaks was {approx}150 V. The external power efficiency of the fabricated EL devices was {approx}1x10{sup -5} measured at 40 V above the threshold voltage.

  12. Basic Equations for the Modeling of Gallium Nitride (gan) High Electron Mobility Transistors (hemts)

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2003-01-01

    Gallium nitride (GaN) is a most promising wide band-gap semiconductor for use in high-power microwave devices. It has functioned at 320 C, and higher values are well within theoretical limits. By combining four devices, 20 W has been developed at X-band. GaN High Electron Mobility Transistors (HEMTs) are unique in that the two-dimensional electron gas (2DEG) is supported not by intentional doping, but instead by polarization charge developed at the interface between the bulk GaN region and the AlGaN epitaxial layer. The polarization charge is composed of two parts: spontaneous and piezoelectric. This behavior is unlike other semiconductors, and for that reason, no commercially available modeling software exists. The theme of this document is to develop a self-consistent approach to developing the pertinent equations to be solved. A Space Act Agreement, "Effects in AlGaN/GaN HEMT Semiconductors" with Silvaco Data Systems to implement this approach into their existing software for III-V semiconductors, is in place (summer of 2002).

  13. On the solubility of gallium nitride in supercritical ammonia-sodium solutions

    NASA Astrophysics Data System (ADS)

    Griffiths, Steven; Pimputkar, Siddha; Speck, James S.; Nakamura, Shuji

    2016-12-01

    Due to the disparity between observed gallium nitride (GaN) growth under conditions for which literature reports normal solubility, GaN solubility in supercritical NH3-Na containing solutions was re-evaluated. Isothermal gravimetric experiments on polycrystalline GaN were performed in the temperature range (T =415-650 °C) for which retrograde growth of GaN routinely occurs (P ≈ 200 MPa, molar NH3:Na fill ratio =20:1). Two previously-unreported error contributions to the gravimetric determination of GaN solubility were identified: Ga-alloying of exposed Ni-containing components, and the presence of a dense, Ga-absorbing Na-rich, second phase under these conditions. Due to the inability to measure Ga-alloying of the exposed autoclave wall for each experiment, considerable scatter was introduced in the refined GaN solubility curve. No clear dependence of GaN solubility on temperature was resolvable, while most solubility values were determined to be within a band of 0.03-0.10 mol% GaN, normalized by fill NH3.

  14. Characterization of gallium nitride microsystems within radiation and high-temperature environments

    NASA Astrophysics Data System (ADS)

    Chiamori, Heather C.; Hou, Minmin; Chapin, Caitlin A.; Shankar, Ashwin; Senesky, Debbie G.

    2014-03-01

    New milestones in space exploration can be realized through the development of radiation-hardened, temperature-tolerant materials, sensors and electronics. This enables lightweight systems (reduced packaging requirements) with increased operation lifetimes. Gallium nitride (GaN) is a ceramic, semiconductor material that is stable within high-radiation, high-temperature and chemically corrosive environments. Recently, this material platform has been utilized to realize sensors and electronics for operation under extreme harsh conditions. These devices exploit the two-dimensional electron gas (2DEG) formed at the interface between AlGaN/GaN heterostructures, which is used as the material platform in high electron mobility transistors (HEMTs). In this paper, a review of the advancements in GaN manufacturing technology such as the growth of epitaxially deposited thin films, micromachining techniques and high-temperature metallization is presented. In addition, the compelling results of fabricating and operating micro-scale GaNbased sensors within radiation environments and at elevated temperatures are shown. The paper will close with future directions GaN-based microsystems technology for down-hole, propulsion and space exploration applications.

  15. Solution-based functionalization of gallium nitride nanowires for protein sensor development

    NASA Astrophysics Data System (ADS)

    Williams, Elissa H.; Davydov, Albert V.; Oleshko, Vladimir P.; Steffens, Kristen L.; Levin, Igor; Lin, Nancy J.; Bertness, Kris A.; Manocchi, Amy K.; Schreifels, John A.; Rao, Mulpuri V.

    2014-09-01

    A solution-based functionalization method for the specific and selective attachment of the streptavidin (SA) protein to gallium nitride (GaN) nanowires (NWs) is presented. By exploiting streptavidin's strong affinity for its ligand biotin, SA immobilization on GaN NWs was achieved by exposing the GaN NW surface to a 3-aminopropyltriethoxysilane (APTES) solution followed by reaction with biotin. Functionalization of the NWs with APTES was facilitated by the presence of an ≈ 1 nm thick surface oxide layer, which formed on the NWs after exposure to air and oxygen plasma. Biotinylation was accomplished by reacting the APTES-functionalized NWs with sulfo-N-hydroxysuccinimide-biotin at slightly alkaline pH. It was determined that the biotinylated GaN NW surface was specific towards the binding of SA and demonstrated no affinity towards a control protein, bovine serum albumin (BSA). There was however, evidence of non-specific, electrostatic binding of both the SA protein and the BSA protein to the APTES-coated NWs, revealing the importance of the biotinylation step. Successful SA immobilization on the biotinylated GaN NW surface was verified using fluorescence microscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The functionalized GaN NWs demonstrate potential as biosensing platforms for the selective detection of proteins.

  16. Nanoporous Gallium Nitride Through Anisotropic Metal-Assisted Electroless Photochemical Wet Etching Technique

    NASA Astrophysics Data System (ADS)

    Perumal, R.; Hassan, Z.

    2016-12-01

    Nanoporous gallium nitride (GaN) has many potential applications in light-emitting diodes (LEDs), photovoltaics, templates and chemical sensors. This article reports the porosification of GaN through UV enhanced metal-assisted electroless photochemical wet etching technique using three different acid-based etchants and platinum served as catalyst for porosification. The etching process was conducted at room temperature for a duration of 90min. The morphological, structural, spectral and optical features of the developed porous GaN were studied with appropriate characterization techniques and the obtained results were presented. Field emission scanning electron micrographs exhibited the porosity nature along with excellent porous network of the etched samples. Structural studies confirmed the mono crystalline quality of the porous nanostructures. Raman spectral analyzes inferred the presenting phonon modes such as E2 (TO) and A1 (LO) in fabricated nanoporous structures. The resulted porous nanostructures hold the substantially enhanced photoluminescence intensity compared with the pristine GaN epitaxial film that is interesting and desirable for several advances in the applications of Nano-optoelectronic devices.

  17. Optical waveguiding properties into porous gallium nitride structures investigated by prism coupling technique

    SciTech Connect

    Alshehri, Bandar; Dogheche, Elhadj; Lee, Seung-Min; Kang, Jin-Ho; Ryu, Sang-Wan; Gong, Su-Hyun; Cho, Yong-Hoon

    2014-08-04

    In order to modulate the refractive index and the birefringence of Gallium Nitride (GaN), we have developed a chemical etching method to perform porous structures. The aim of this research is to demonstrate that optical properties of GaN can be tuned by controlling the pores density. GaN films are prepared on sapphire by metal organic chemical vapor deposition and the microstructure is characterized by transmission electron microscopy, and scanning electron microscope analysis. Optical waveguide experiment is demonstrated here to determine the key properties as the ordinary (n{sub 0}) and extraordinary (n{sub e}) refractive indices of etched structures. We report here the dispersion of refractive index for porous GaN and compare it to the bulk material. We observe that the refractive index decreases when the porous density p is increased: results obtained at 0.975 μm have shown that the ordinary index n{sub 0} is 2.293 for a bulk layer and n{sub 0} is 2.285 for a pores density of 20%. This value corresponds to GaN layer with a pore size of 30 nm and inter-distance of 100 nm. The control of the refractive index into GaN is therefore fundamental for the design of active and passive optical devices.

  18. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting

    PubMed Central

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G.; Rogers, John A.

    2011-01-01

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting “tapes” based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation. PMID:21666096

  19. Two single-layer porous gallium nitride nanosheets: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Meng, Fan-Sun; Wu, Yan-Bin

    2017-01-01

    The gallium nitride (GaN) is a novel wide-gap semiconductor for photoelectric devices. In this paper, two 2D single-layer GaN crystal structures, called H-GaN and T-GaN, are discovered by the density functional theory calculations. The phase stability is confirmed by phonon dispersions. The sole-atom-thick crystals of H-GaN and T-GaN, has possess enlarged specific surface area than the graphene-like allotrope (g-GaN) due to the porous structures. In addition, they have indirect band gaps of 1.85-1.89 eV and the electronic structures can be further modulated by applied strains. For example, T-GaN transforms from an indirect semiconductor to a direct one due to compressed strains. Both the combination of high specific surface area and moderate band gaps make these 2D crystals potential high-efficiency photocatalysts. Our results will also stimulate the investigations on 2D GaN nano crystals with rich electronic structures for wide applications.

  20. More Efficient Power Conversion for EVs: Gallium-Nitride Advanced Power Semiconductor and Packaging

    SciTech Connect

    2010-02-01

    Broad Funding Opportunity Announcement Project: Delphi is developing power converters that are smaller and more energy efficient, reliable, and cost-effective than current power converters. Power converters rely on power transistors which act like a very precisely controlled on-off switch, controlling the electrical energy flowing through an electrical circuit. Most power transistors today use silicon (Si) semiconductors. However, Delphi is using semiconductors made with a thin layer of gallium-nitride (GaN) applied on top of the more conventional Si material. The GaN layer increases the energy efficiency of the power transistor and also enables the transistor to operate at much higher temperatures, voltages, and power-density levels compared to its Si counterpart. Delphi is packaging these high-performance GaN semiconductors with advanced electrical connections and a cooling system that extracts waste heat from both sides of the device to further increase the device’s efficiency and allow more electrical current to flow through it. When combined with other electronic components on a circuit board, Delphi’s GaN power transistor package will help improve the overall performance and cost-effectiveness of HEVs and EVs.

  1. Optical waveguide loss minimized into gallium nitride based structures grown by metal organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Stolz, A.; Cho, E.; Dogheche, E.; Androussi, Y.; Troadec, D.; Pavlidis, D.; Decoster, D.

    2011-04-01

    The waveguide properties are reported for wide bandgap gallium nitride (GaN) structures grown by metal organic vapor phase epitaxy on sapphire using a AlN/GaN short period-superlattice (SPS) buffer layer system. A detailed optical characterization of GaN structures has been performed using the prism coupling technique in order to evaluate its properties and, in particular, the refractive index dispersion and the propagation loss. In order to identify the structural defects in the samples, we performed transmission electron microscopy analysis. The results suggest that AlN/GaN SPS plays a role in acting as a barrier to the propagation of threading dislocations in the active GaN epilayer; above this defective region, the dislocations density is remarkably reduced. The waveguide losses were reduced to a value around 0.65dB/cm at 1.55 μm, corresponding to the best value reported so far for a GaN-based waveguide.

  2. Electrical characterization of N-type gallium nitride grown by metalorganic vapor deposition (MOCVD) on sapphire

    NASA Astrophysics Data System (ADS)

    Chong, Gabel

    Gallium nitride and related alloys are wide bandgap materials attractive for high temperature, high power and high frequency electronic applications. Although great achievements have been made in optoelectronic devices, there is an incomplete understanding of the basic material properties. In a highly defective materials system such as this, proper assessment of the electrical parameters is needed. In this thesis, the room temperature electrical characteristics of the intentionally n-doped and unintentionally samples are examined. For the latter, capacitance voltage profiling reveals a higher doped region near the substrate, and a transition layer towards lighter doping towards the substrate. Two-layer and a modified two-layer analysis of thin films of successive thickness are employed to the inhomogeniety along the growth direction of the film. Temperature-dependent carrier concentration is analyzed using the charge-balance equation. The Matthiesen rule is used to fit the experimental mobility values. The additional effects of charged dislocation scattering and two-layer conduction are included in the analysis, showing a dominant effect due to the latter, but the scattering effect from dislocations seemed to be overestimated. At a wide range of temperature the samples exhibit the properties of the classic impurity band conduction for a series of silicon doping concentration. In the low temperature range, Mott hopping is observed and that silicon concentration strongly affects the hopping behavior. In comparison, the unintentionally doped samples show transport through the bottom layer.

  3. Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures.

    PubMed

    Sun, Minglei; Chou, Jyh-Pin; Yu, Jin; Tang, Wencheng

    2017-07-05

    Blue phosphorene (BlueP) is a graphene-like phosphorus nanosheet which was synthesized very recently for the first time [Nano Lett., 2016, 16, 4903-4908]. The combination of electronic properties of two different two-dimensional materials in an ultrathin van der Waals (vdW) vertical heterostructure has been proved to be an effective approach to the design of novel electronic and optoelectronic devices. Therefore, we used density functional theory to investigate the structural and electronic properties of two BlueP-based heterostructures - BlueP/graphene (BlueP/G) and BlueP/graphene-like gallium nitride (BlueP/g-GaN). Our results showed that the semiconducting nature of BlueP and the Dirac cone of G are well preserved in the BlueP/G vdW heterostructure. Moreover, by applying a perpendicular electric field, it is possible to tune the position of the Dirac cone of G with respect to the band edge of BlueP, resulting in the ability to control the Schottky barrier height. For the BlueP/g-GaN vdW heterostructure, BlueP forms an interface with g-GaN with a type-II band alignment, which is a promising feature for unipolar electronic device applications. Furthermore, we discovered that both G and g-GaN can be used as an active layer for BlueP to facilitate charge injection and enhance the device performance.

  4. Electrosynthesis of bismuth nanodendrites/gallium nitride electrode for non-enzymatic hydrogen peroxide detection.

    PubMed

    Jiang, Qing-Mei; Zhang, Miao-Rong; Luo, Li-Qiang; Pan, Ge-Bo

    2017-08-15

    Bismuth nanodendrites (BiNDs) were electrodeposited on planar gallium nitride (GaN) electrode via a differential pulse voltammetric technique to fabricate the non-enzymatic hydrogen peroxide (H2O2) sensor. SEM images revealed that the as-obtained BiNDs had numerous dendrite sub-branches, whose diameters ranged from 136 to 152nm. The BiNDs/GaN electrode showed linear amperometric responses for H2O2 in the concentration range from 10µM to 1mM with the sensitivity of 60.0μAmM(-1)cm(-2). Another linear range was from 1 to 10mM with the sensitivity of 23.3μAmM(-1)cm(-2). The limit of detection (LOD) was 5µM with the signal-to-noise ratio of 3. The applicability of the sensor was investigated to the H2O2 detection in real samples such as fetal bovine serum and milk, and the sensor exhibited excellent anti-interference capacity. The achieved results indicate that the as-prepared BiNDs/GaN sensor with good reproducibility and long-term stability was promising for detecting H2O2 in practical environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Surface cleaning procedures for thin films of indium gallium nitride grown on sapphire

    NASA Astrophysics Data System (ADS)

    Douglass, K.; Hunt, S.; Teplyakov, A.; Opila, R. L.

    2010-12-01

    Surface preparation procedures for indium gallium nitride (InGaN) thin films were analyzed for their effectiveness for carbon and oxide removal as well as for the resulting surface roughness. Aqua regia (3:1 mixture of concentrated hydrochloric acid and concentrated nitric acid, AR), hydrofluoric acid (HF), hydrochloric acid (HCl), piranha solution (1:1 mixture of sulfuric acid and 30% H 2O 2) and 1:9 ammonium sulfide:tert-butanol were all used along with high temperature anneals to remove surface contamination. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were utilized to study the extent of surface contamination and surface roughness, respectively. The ammonium sulfide treatment provided the best overall removal of oxygen and carbon. Annealing over 700 °C after a treatment showed an even further improvement in surface contamination removal. The piranha treatment resulted in the lowest residual carbon, while the ammonium sulfide treatment leads to the lowest residual oxygen. AFM data showed that all the treatments decreased the surface roughness (with respect to as-grown specimens) with HCl, HF, (NH 4) 2S and RCA procedures giving the best RMS values (˜0.5-0.8 nm).

  6. Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity.

    PubMed

    Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin

    2012-08-01

    Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

  7. Observation of surface plasmon polariton pumping of optical eigenmodes of gold-decorated gallium nitride nanowires.

    PubMed

    Sundararajan, Jency Pricilla; Bakharev, Pavel; Niraula, Ishwar; Kengne, Blaise Alexis Fouetio; MacPherson, Quinn; Sargent, Meredith; Hare, Brian; McIlroy, David N

    2012-10-10

    The photocurrent of individual gallium nitride (GaN) nanowires decorated with Au nanoparticles as function of the wavelength of light (405 nm (blue), 532 nm (green), and 632.8 nm (red)) and nanowire diameter (80 to 400 nm) is reported. The photocurrent scales with photon energy but oscillates with nanowire diameter. The oscillations are described in terms of the scattering of surface plasmon polaritons into allowed transverse magnetic electromagnetic modes of the nanowire that have maximum intensities in the undepleted region of the nanowire. These oscillations do not occur below a nanowire diameter of ~200 nm due to the depletion layer formed at the Au-GaN interface, which completely depletes the nanowire, that is, there is an insufficient density of carriers that can be excited into the conduction band. On the basis of estimations of the depletion depth and solutions of the Helmholtz equation, the maxima in the photocurrent for d > 200 nm are assigned to the two lowest azimuthally symmetric transverse magnetic eigenmodes: (m = 0, n = 1) and (m = 0, n = 2), which have maximum electric field intensities within the undepleted region of the GaN nanowire. The outcome of this work could have far reaching implications on the development of nanophotonics.

  8. Design and analysis of vertical-channel gallium nitride (GaN) junctionless nanowire transistors (JNT).

    PubMed

    Seo, Jae Hwa; Yoon, Young Jun; Lee, Hwan Gi; Yoo, Gwan Min; Jo, Young-Woo; Son, Dong-Hyeok; Lee, Jung-Hee; Cho, Eou-Sik; Cho, Seongjae; Kang, In Man

    2014-11-01

    Vertical-channel gallium nitride (GaN) junctionless nanowire transistor (JNT) has been designed and characterized by technology computer-aided design (TCAD) simulations. Various characteristics such as wide bandgap, strong polariztion field, and high electron velocity make GaN one of the attractive materials in advanced electronics in recent times. Nanowire-structured GaN can be applicable to various transistors for enhanced electrical performances by its geometrical feature. In this paper, we analyze the direct-current (DC) characteristics depending on various channel doping concentrations (N(ch)) and nanowire radii (R(NW)). Furthermore, the radio-frequency (RF) characteristics under optimized conditions are extracted by small-signal equivalent circuit modeling. For the optimally designed vertical GaN JNT demonstrated on-state current (I(on)) of 345 μA/μm and off-state current (I(off)) of 3.7 x 10(-18) A/μm with a threshold voltage (V(t)) of 0.22 V, and subthreshold swing (S) of 68 mV/dec. Besides, f(T) and f(max) under different operating conditions (gate voltage, V(GS)) have been obtained.

  9. Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth.

    PubMed

    Utsumi, Wataru; Saitoh, Hiroyuki; Kaneko, Hiroshi; Watanuki, Tetsu; Aoki, Katsutoshi; Shimomura, Osamu

    2003-11-01

    The synthesis of large single crystals of GaN (gallium nitride) is a matter of great importance in optoelectronic devices for blue-light-emitting diodes and lasers. Although high-quality bulk single crystals of GaN suitable for substrates are desired, the standard method of cooling its stoichiometric melt has been unsuccessful for GaN because it decomposes into Ga and N(2) at high temperatures before its melting point. Here we report that applying high pressure completely prevents the decomposition and allows the stoichiometric melting of GaN. At pressures above 6.0 GPa, congruent melting of GaN occurred at about 2,220 degrees C, and decreasing the temperature allowed the GaN melt to crystallize to the original structure, which was confirmed by in situ X-ray diffraction. Single crystals of GaN were formed by cooling the melt slowly under high pressures and were recovered at ambient conditions.

  10. Photochemical functionalization of gallium nitride thin films with molecular and biomolecular layers.

    PubMed

    Kim, Heesuk; Colavita, Paula E; Metz, Kevin M; Nichols, Beth M; Sun, Bin; Uhlrich, John; Wang, Xiaoyu; Kuech, Thomas F; Hamers, Robert J

    2006-09-12

    We demonstrate that photochemical functionalization can be used to functionalize and photopattern the surface of gallium nitride crystalline thin films with well-defined molecular and biomolecular layers. GaN(0001) surfaces exposed to a hydrogen plasma will react with organic molecules bearing an alkene (C=C) group when illuminated with 254 nm light. Using a bifunctional molecule with an alkene group at one end and a protected amine group at the other, this process can be used to link the alkene group to the surface, leaving the protected amine exposed. Using a simple contact mask, we demonstrate the ability to directly pattern the spatial distribution of these protected amine groups on the surface with a lateral resolution of <12 mum. After deprotection of the amines, single-stranded DNA oligonucleotides were linked to the surface using a bifunctional cross-linker. Measurements using fluorescently labeled complementary and noncomplementary sequences show that the DNA-modified GaN surfaces exhibit excellent selectivity, while repeated cycles of hybridization and denaturation in urea show good stability. These results demonstrate that photochemical functionalization can be used as an attractive starting point for interfacing molecular and biomolecular systems with GaN and other compound semiconductors.

  11. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation.

    PubMed

    Agrawal, Ravi; Espinosa, Horacio D

    2011-02-09

    Nanowires made of materials with noncentrosymmetric crystal structure are under investigation for their piezoelectric properties and suitability as building blocks for next-generation self-powered nanodevices. In this work, we investigate the size dependence of piezoelectric coefficients in nanowires of two such materials - zinc oxide and gallium nitride. Nanowires, oriented along their polar axis, ranging from 0.6 to 2.4 nm in diameter were modeled quantum mechanically. A giant piezoelectric size effect is identified for both GaN and ZnO nanowires. However, GaN exhibits a larger and more extended size dependence than ZnO. The observed size effect is discussed in the context of charge redistribution near the free surfaces leading to changes in local polarization. The study reveals that local changes in polarization and reduction of unit cell volume with respect to bulk values lead to the observed size effect. These results have strong implication in the field of energy harvesting, as piezoelectric voltage output scales with the piezoelectric coefficient.

  12. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting.

    PubMed

    Kim, Hoon-sik; Brueckner, Eric; Song, Jizhou; Li, Yuhang; Kim, Seok; Lu, Chaofeng; Sulkin, Joshua; Choquette, Kent; Huang, Yonggang; Nuzzo, Ralph G; Rogers, John A

    2011-06-21

    Properties that can now be achieved with advanced, blue indium gallium nitride light emitting diodes (LEDs) lead to their potential as replacements for existing infrastructure in general illumination, with important implications for efficient use of energy. Further advances in this technology will benefit from reexamination of the modes for incorporating this materials technology into lighting modules that manage light conversion, extraction, and distribution, in ways that minimize adverse thermal effects associated with operation, with packages that exploit the unique aspects of these light sources. We present here ideas in anisotropic etching, microscale device assembly/integration, and module configuration that address these challenges in unconventional ways. Various device demonstrations provide examples of the capabilities, including thin, flexible lighting "tapes" based on patterned phosphors and large collections of small light emitters on plastic substrates. Quantitative modeling and experimental evaluation of heat flow in such structures illustrates one particular, important aspect of their operation: small, distributed LEDs can be passively cooled simply by direct thermal transport through thin-film metallization used for electrical interconnect, providing an enhanced and scalable means to integrate these devices in modules for white light generation.

  13. Heat resistive dielectric multi-layer micro-mirror array in epitaxial lateral overgrowth gallium nitride.

    PubMed

    Huang, Chen-Yang; Ku, Hao-Min; Liao, Wei-Tsai; Chao, Chu-Li; Tsay, Jenq-Dar; Chao, Shiuh

    2009-03-30

    Ta2O5 / SiO2 dielectric multi-layer micro-mirror array (MMA) with 3mm mirror size and 6mm array period was fabricated on c-plane sapphire substrate. The MMA was subjected to 1200 degrees C high temperature annealing and remained intact with high reflectance in contrast to the continuous multi-layer for which the layers have undergone severe damage by 1200 degrees C annealing. Epitaxial lateral overgrowth (ELO) of gallium nitride (GaN) was applied to the MMA that was deposited on both sapphire and sapphire with 2:56 mm GaN template. The MMA was fully embedded in the ELO GaN and remained intact. The result implies that our MMA is compatible to the high temperature growth environment of GaN and the MMA could be incorporated into the structure of the micro-LED array as a one to one micro backlight reflector, or as the patterned structure on the large area LED for controlling the output light.

  14. Improved performance of dye-sensitized solar cells using gallium nitride-titanium dioxide composite photoelectrodes.

    PubMed

    Huang, Yin-Rou; Huang, Tzu-Wei; Wang, Tzu-Hui; Tsai, Yu-Chen

    2014-08-15

    Dye-sensitized solar cells (DSSCs) are fabricated with gallium nitride-titanium dioxide (GaN-TiO2) composite photoelectrodes to enhance the power conversion efficiency. The value of power conversion efficiency increases with the incorporation of GaN in TiO2 matrix and reaches a maximum at 0.05 wt% GaN. Internal resistance in the DSSC is characterized by electrochemical impedance spectroscopy (EIS). From the EIS of electrolyte/dye/GaN-TiO2 interface resistances under illumination and in the dark, a decrease in the charge transfer resistance and an increase in the charge recombination resistance of the DSSCs are obtained after the inclusion of GaN (0.01-0.05 wt%) in the TiO2 matrix. The power conversion efficiency of the DSSC based on the GaN (0.05 wt%)-TiO2 composite photoelectrode is enhanced by ∼61% in comparison with a pristine TiO2 photoelectrode.

  15. Investigation of phonon modes in gallium nitride nanowires deposited by thermal CVD

    SciTech Connect

    Rizal, Umesh Swain, Bibhu P.; Swain, Bhabani S.

    2016-04-13

    Gallium nitride nanowires (GaN-NWs) of diameters ranging from 20 to 80 nm were grown on the p-type Si substrate by Thermal Chemical Vapor Deposition (TCVD) using Iron (Fe) catalyst via VLS mechanism. Raman and FTIR spectra reveal the presence of broad transverse optic (TO) and longitudinal optic (LO) phonon peak spreads over 500-600 cm{sup −1} and 720 cm{sup −1} respectively. The detail deconvolution of integrated transverse and longitudinal phonon analysis reveals phonon confinement brought out by incorporation of hydrogen atom. The red shifts of TO and LO phonon peak position indicates nanosized effect. I{sub A1(LO)}/I{sub A1(TO)} increases from 0.073 to 1.0 and their respective fwhm{sub A1(LO)}/fwhm{sub A1(TO)} also increases from 0.71 to 1.31 with increasing H{sub 2} flow rate. E{sub 1}(LO) - E{sub 1}(TO) and A{sub 1}(LO) - A{sub 1}(TO) increases from 173.83 to 190.73 and 184.89 to 193.22 respectively. Apart from this usual TO and LO phonon, we have found Surface Optic (SO) phonon at 671 cm{sup −1} in FTIR spectra. The intensity of PL peak increases with increasing H{sub 2} dilution reveals efficient passivation of defect centre at surface of GaN-NWs.

  16. Surface characterization of gallium nitride modified with peptides before and after exposure to ionizing radiation in solution.

    PubMed

    Berg, Nora G; Nolan, Michael W; Paskova, Tania; Ivanisevic, Albena

    2014-12-30

    An aqueous surface modification of gallium nitride was employed to attach biomolecules to the surface. The modification was a simple two-step process using a single linker molecule and mild temperatures. The presence of the peptide on the surface was confirmed with X-ray photoelectron spectroscopy. Subsequently, the samples were placed in water baths and exposed to ionizing radiation to examine the effects of the radiation on the material in an environment similar to the body. Surface analysis confirmed degradation of the surface of GaN after radiation exposure in water; however, the peptide molecules successfully remained on the surface following exposure to ionizing radiation. We hypothesize that during radiation exposure of the samples, the radiolysis of water produces peroxide and other reactive species on the sample surface. Peroxide exposure promotes the formation of a more stable layer of gallium oxyhydroxide which passivates the surface better than other oxide species.

  17. The effect of gallium arsenide aluminum laser therapy in the management of cervical myofascial pain syndrome: a double blind, placebo-controlled study.

    PubMed

    Dundar, U; Evcik, D; Samli, F; Pusak, H; Kavuncu, V

    2007-06-01

    The efficacy of low-level laser therapy (LLLT) in myofascial pain syndrome (MPS) seems controversial. A prospective, double-blind, randomized controlled trial was conducted in patients with chronic MPS in the neck to evaluate the effects of low-level 830-nm gallium arsenide aluminum (Ga-As-Al) laser therapy. The study group consisted of 64 MPS patients. The patients were randomly assigned into two groups. In group 1 (n = 32), Ga-As-Al laser treatment was applied over three trigger points bilaterally for 2 min over each point once a day for 15 days during a period of 3 weeks. In group 2 (n = 32), the same treatment protocol was given, but the laser instrument was switched off during applications. All patients in both groups performed daily isometric exercise and stretching exercises for cervical region. Parameters were measured at baseline and after 4 weeks. All patients were evaluated with respect to pain (at rest, movement, and night) and assessed by visual analog scale, measurement of active range of motion using an inclinometer and a goniometer, and the neck disability index. In both groups, statistically significant improvements were detected in all outcome measures compared with baseline (p < 0.05). However, no significant differences were obtained between the two groups (p > 0.05). In conclusion, although the laser therapy has no superiority over placebo groups in this study, we cannot exclude the possibility of effectivity with another treatment regimen including different laser wavelengths and dosages (different intensity and density and/or treatment interval).

  18. High Final Energy of Low-Level Gallium Arsenide Laser Therapy Enhances Skeletal Muscle Recovery without a Positive Effect on Collagen Remodeling.

    PubMed

    de Freitas, Carlos Eduardo Assumpção; Bertaglia, Raquel Santilone; Vechetti Júnior, Ivan José; Mareco, Edson Assunção; Salomão, Rondinelle Artur Simões; de Paula, Tassiana Gutierrez; Nai, Gisele Alborghetti; Carvalho, Robson Francisco; Pacagnelli, Francis Lopes; Dal-Pai-Silva, Maeli

    2015-01-01

    The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8 J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n = 10); Injured (I, n = 10) and Injured and laser treated (Injured/LLLT, n = 10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904 nm, 50 mW average power) were initiated 24 h after injury, at energy density of 69 J cm(-1) for 48 s, for 5 days, to two points of the lesion. Twenty-four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF-α, TGF-β, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P < 0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF-α and myogenin compared to the injured group (P < 0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix. © 2015 The American Society of Photobiology.

  19. Investigation of the current-voltage characteristics, the electric field distribution and the charge collection efficiency in x-ray sensors based on chromium compensated gallium arsenide

    NASA Astrophysics Data System (ADS)

    Tyazhev, A.; Novikov, V.; Tolbanov, O.; Zarubin, A.; Fiederle, M.; Hamann, E.

    2014-09-01

    In this work we present the results of experimental study of the current-voltage characteristics, the electric field distribution and the charge collection efficiency in X-ray sensors based on high resistivity, chromium compensated gallium arsenide (HR GaAs). The experimental samples were 0.1-0.25 cm2 pad sensors with the sensitive layer thickness in the range of 250-1000 μm. It has been shown that the current-voltage characteristics in the range 0.02 - 1 V are determined by the high-resistance sensor bulk. A physical model of the nonequilibrium charge carrier transport has been suggested to estimate the Schottky barrier height in the contact of "metal-semiconductor" and the sensor material resistivity. It has been established that the sensor resistivity reaches 1.5 GOhmṡcm at room temperature, with the Schottky barrier height constituting 0.80 - 0.82 eV. The electric field distribution was investigated using the Pockels effect at a wavelength of 920 nm. It has been found experimentally that in HR GaAs sensors the electric field distribution is much more homogeneous compared to the sensors based on SI GaAs: EL2. It has been shown that the temporal fluctuations of the electric field are absent in HR GaAs sensors. Analysis of the charge collection efficiency as a function of bias has demonstrated, that in the HR GaAs material the values of the mobility-lifetime product of the nonequilibrium charge carriers are in the order of 10-4 cm2/V and 3ṡ10-7 cm2/V for electrons and holes, respectively.

  20. Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser.

    PubMed

    Sawada, Ryota; Tanaka, Hiroki; Sugiyama, Naoto; Kannari, Fumihiko

    2017-02-20

    We experimentally reveal the pump-induced loss in a Ti:sapphire laser crystal with 451-nm indium gallium nitride (InGaN) laser diode pumping and show that 478-nm pumping can reduce such loss. The influence of the pump-induced loss at 451-nm pumping is significant even for a crystal that exhibits higher effective figure-of-merit and excellent laser performance at 520-nm pumping. We demonstrate the power scaling of a Ti:sapphire laser by combining 478- and 520-nm InGaN laser diodes and obtain CW output power of 593 mW.

  1. A Monolithically Integrated Gallium Nitride Nanowire/Silicon Solar Cell Photocathode for Selective Carbon Dioxide Reduction to Methane.

    PubMed

    Wang, Yichen; Fan, Shizhao; AlOtaibi, Bandar; Wang, Yongjie; Li, Lu; Mi, Zetian

    2016-06-20

    A gallium nitride nanowire/silicon solar cell photocathode for the photoreduction of carbon dioxide (CO2 ) is demonstrated. Such a monolithically integrated nanowire/solar cell photocathode offers several unique advantages, including the absorption of a large part of the solar spectrum and highly efficient carrier extraction. With the incorporation of copper as the co-catalyst, the devices exhibit a Faradaic efficiency of about 19 % for the 8e(-) photoreduction to CH4 at -1.4 V vs Ag/AgCl, a value that is more than thirty times higher than that for the 2e(-) reduced CO (ca. 0.6 %).

  2. Adsorption and adhesion of common serum proteins to nanotextured gallium nitride

    NASA Astrophysics Data System (ADS)

    Bain, Lauren E.; Hoffmann, Marc P.; Bryan, Isaac; Collazo, Ramón; Ivanisevic, Albena

    2015-01-01

    As the broader effort towards device and material miniaturization progresses in all fields, it becomes increasingly important to understand the implications of working with functional structures that approach the size scale of molecules, particularly when considering biological systems. It is well known that thin films and nanostructures feature different optical, electrical, and mechanical properties from their bulk composites; however, interactions taking place at the interface between nanomaterials and their surroundings are less understood. Here, we explore interactions between common serum proteins - serum albumin, fibrinogen, and immunoglobulin G - and a nanotextured gallium nitride surface. Atomic force microscopy with a carboxyl-terminated colloid tip is used to probe the `activity' of proteins adsorbed onto the surface, including both the accessibility of the terminal amine to the tip as well as the potential for protein extension. By evaluating the frequency of tip-protein interactions, we can establish differences in protein behaviour on the basis of both the surface roughness as well as morphology, providing an assessment of the role of surface texture in dictating protein-surface interactions. Unidirectional surface features - either the half-unit cell steppes of as-grown GaN or those produced by mechanical polishing - appear to promote protein accessibility, with a higher frequency of protein extension events taking place on these surfaces when compared with less ordered surface features. Development of a full understanding of the factors influencing surface-biomolecule interactions can pave the way for specific surface modification to tailor the bio-material interface, offering a new path for device optimization.As the broader effort towards device and material miniaturization progresses in all fields, it becomes increasingly important to understand the implications of working with functional structures that approach the size scale of molecules

  3. Electron-phonon relaxation and excited electron distribution in gallium nitride

    SciTech Connect

    Zhukov, V. P.; Tyuterev, V. G.; Chulkov, E. V.

    2016-08-28

    We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates of inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.

  4. Adsorption and adhesion of common serum proteins to nanotextured gallium nitride.

    PubMed

    Bain, Lauren E; Hoffmann, Marc P; Bryan, Isaac; Collazo, Ramón; Ivanisevic, Albena

    2015-02-14

    As the broader effort towards device and material miniaturization progresses in all fields, it becomes increasingly important to understand the implications of working with functional structures that approach the size scale of molecules, particularly when considering biological systems. It is well known that thin films and nanostructures feature different optical, electrical, and mechanical properties from their bulk composites; however, interactions taking place at the interface between nanomaterials and their surroundings are less understood. Here, we explore interactions between common serum proteins - serum albumin, fibrinogen, and immunoglobulin G - and a nanotextured gallium nitride surface. Atomic force microscopy with a carboxyl-terminated colloid tip is used to probe the 'activity' of proteins adsorbed onto the surface, including both the accessibility of the terminal amine to the tip as well as the potential for protein extension. By evaluating the frequency of tip-protein interactions, we can establish differences in protein behaviour on the basis of both the surface roughness as well as morphology, providing an assessment of the role of surface texture in dictating protein-surface interactions. Unidirectional surface features - either the half-unit cell steppes of as-grown GaN or those produced by mechanical polishing - appear to promote protein accessibility, with a higher frequency of protein extension events taking place on these surfaces when compared with less ordered surface features. Development of a full understanding of the factors influencing surface-biomolecule interactions can pave the way for specific surface modification to tailor the bio-material interface, offering a new path for device optimization.

  5. Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride.

    PubMed

    Ruzmetov, Dmitry; Zhang, Kehao; Stan, Gheorghe; Kalanyan, Berc; Bhimanapati, Ganesh R; Eichfeld, Sarah M; Burke, Robert A; Shah, Pankaj B; O'Regan, Terrance P; Crowne, Frank J; Birdwell, A Glen; Robinson, Joshua A; Davydov, Albert V; Ivanov, Tony G

    2016-03-22

    When designing semiconductor heterostructures, it is expected that epitaxial alignment will facilitate low-defect interfaces and efficient vertical transport. Here, we report lattice-matched epitaxial growth of molybdenum disulfide (MoS2) directly on gallium nitride (GaN), resulting in high-quality, unstrained, single-layer MoS2 with strict registry to the GaN lattice. These results present a promising path toward the implementation of high-performance electronic devices based on 2D/3D vertical heterostructures, where each of the 3D and 2D semiconductors is both a template for subsequent epitaxial growth and an active component of the device. The MoS2 monolayer triangles average 1 μm along each side, with monolayer blankets (merged triangles) exhibiting properties similar to that of single-crystal MoS2 sheets. Photoluminescence, Raman, atomic force microscopy, and X-ray photoelectron spectroscopy analyses identified monolayer MoS2 with a prominent 20-fold enhancement of photoluminescence in the center regions of larger triangles. The MoS2/GaN structures are shown to electrically conduct in the out-of-plane direction, confirming the potential of directly synthesized 2D/3D semiconductor heterostructures for vertical current flow. Finally, we estimate a MoS2/GaN contact resistivity to be less than 4 Ω·cm(2) and current spreading in the MoS2 monolayer of approximately 1 μm in diameter.

  6. Analysis of radiation damaged and annealed gallium arsenide and indium phosphide solar cells using deep level transient spectroscopy. Master's thesis

    SciTech Connect

    Bruening, J.A.

    1993-09-01

    Power loss in spacecraft solar cells due to radiation damage was investigated. The mechanisms behind the degradation and based on deep-level defects in the crystalline lattice structure of the solar cell. Through a process known as Deep Transient Spectroscopy (DLTS), a correlation can be made between damage/recovery and trap energy of the cell. Gallium (GaAs/Ge) and Indium Phosphide (InP) solar cells were subjected to 1 MeV electron irradiation, to fluences of 1[times]10[sup 16] electrons/sq cm. Attempts at recovery included thermal annealing, alone, and with an applied forward bias current, and injection annealing. Various cycles of irradiation, annealing and DLTS were performed, in an attempt to correlate damage to trap energy level and growth. The results show that DLTS cannot be performed on GaAs/Ge, and no recovery was apparent in these cells. DLTS analysis of InP indicated excellent photoinjection annealing recovery at a variety of temperatures. Lower energy level defects are associated with the recovery of the cells while the higher energy traps are indicative of permanent degradation in the InP solar cells. Applying this information to future research could increase satellite mission life, and significantly reduce space mission costs.

  7. Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting.

    PubMed

    Kibria, M G; Zhao, S; Chowdhury, F A; Wang, Q; Nguyen, H P T; Trudeau, M L; Guo, H; Mi, Z

    2014-04-30

    Solar water splitting is one of the key steps in artificial photosynthesis for future carbon-neutral, storable and sustainable source of energy. Here we show that one of the major obstacles for achieving efficient and stable overall water splitting over the emerging nanostructured photocatalyst is directly related to the uncontrolled surface charge properties. By tuning the Fermi level on the nonpolar surfaces of gallium nitride nanowire arrays, we demonstrate that the quantum efficiency can be enhanced by more than two orders of magnitude. The internal quantum efficiency and activity on p-type gallium nitride nanowires can reach ~51% and ~4.0 mol hydrogen h(-1) g(-1), respectively. The nanowires remain virtually unchanged after over 50,000 μmol gas (hydrogen and oxygen) is produced, which is more than 10,000 times the amount of photocatalyst itself (~4.6 μmol). The essential role of Fermi-level tuning in balancing redox reactions and in enhancing the efficiency and stability is also elucidated.

  8. NTP Toxicology and Carcinogenesis Studies of Gallium Arsenide (CAS No. 1303-00-0) in F344/N Rats and B6C3F1 Mice (Inhalation Studies).

    PubMed

    2000-09-01

    Gallium arsenide is used primarily to make light- emitting diodes, lasers, laser windows, and photodetectors and in the photoelectronic transmission of data through optical fibers. Gallium arsenide was nominated for study because of its widespread use in the microelectronics industry, the potential for worker exposure, and the absence of chronic toxicity data. Male and female F344/N rats and B6C3F1 mice were exposed to gallium arsenide particles (greater than 98% pure; mass median aerodynamic diameter = 0.8 to 1.0 &mgr;m) by inhalation for 16 days, 14 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium, and the frequency of micronuclei was determined in the peripheral blood of mice exposed to gallium arsenide for 14 weeks. 16-DAY STUDY IN RATS: Groups of five male and five female rats were exposed to particulate aerosols of gallium arsenide with a mass median aerodynamic diameter of approximately 1 &mgr;m at concentrations of 0, 1, 10, 37, 75, or 150 mg/m(3) by inhalation, 6 hours per day, 5 days per week, for 16 days. All rats survived to the end of the study. The final mean body weights of all exposed groups of males and females were similar to those of the chamber controls. Compared to chamber controls, the liver and lung weights of males exposed to 1 mg/m(3) or greater and females exposed to 10 mg/m(3) or greater were increased; the thymus weights of all exposed groups of males were decreased. Gallium arsenide particles were visible in the alveolar spaces and, to a lesser extent, within alveolar macrophages of exposed rats. Moderate proteinosis (surfactant mixed with small amounts of fibrin) and minimal histiocytic cellular infiltrate were observed in the alveoli of exposed males and females. Epithelial hyperplasia and squamous metaplasia of the larynx were observed primarily in males exposed to 150 mg/m(3). 16-DAY STUDY IN MICE: Groups of five male and four or five female mice were exposed to particulate aerosols of gallium

  9. Computational study on the growth of gallium nitride and a possible source of oxygen impurity.

    PubMed

    Mondal, Bhaskar; Mandal, Debasish; Ghosh, Deepanwita; Das, Abhijit K

    2010-04-15

    The reaction pathways for the gallium nitride GaN growth by gas phase reaction of trimethylgallium (TMG) with ammonia is studied theoretically. Water is the most important impurity in ammonia, therefore its reaction with TMG is investigated as a possible source of oxygen impurity in GaN. Gallium oxide (GaO) formed by the reaction between TMG and H(2)O is predicted to be one of the possible source of oxygen impurity in GaN. The mechanisms and energetics of these reactions in the gas phase have been investigated by density functional B3LYP/[LANL2DZ-ECP + 6-31G(d,p)] method and ab initio MP2/[LANL2DZ-ECP + 6-31G(d,p)], CCSD(T)/[LANL2DZ-ECP + 6-31G(d,p)]//B3LYP/[LANL2DZ-ECP + 6-31G(d,p)], CCSD(T)/[LANL2DZ-ECP + 6-31G(d,p)]//MP2/[LANL2DZ-ECP + 6-31G(d,p)], and CCSD(T)/[LANL2DZ-ECP + Ahlrichs-VTZP]//MP2/[LANL2DZ-ECP + Ahlrichs-VTZP] methods. Both the reactions of TMG with NH(3) and H(2)O are modeled using pre-equilibrium charge-transfer complexes (CH(3))(3)Ga:NH(3) (C1) and (CH(3))(3)Ga:OH(2) (C2) having binding energies of 18.8 and 12.4 kcal/mol, respectively. The first step of the methane elimination reaction from the complexes proceeds through the saddle points TS1 and TS1a having activation barriers 37.0 and 22.6 kcal/mol for C1 and C2, respectively. The first CH(4) elimination step is exothermic for both the cases, but the exothermicity is 15.0 kcal/mol greater for CH(4) elimination from C2. The next step of methane elimination from the stable reaction intermediates (CH(3))(2)GaNH(2) and (CH(3))(3)GaOH has a very high activation barrier of 76.0 and 67.8 kcal/mol via saddle points TS2 and TS2a, respectively. The calculated reaction rates at 298.15 K for both the reactions are low but are comparable to each other. The total rate constant k(tot) for GaN formation is 2.07 x 10(-60) cm(3) molecule(-1) s(-1), and that for GaO formation is 6.85 x 10(-62) cm(3) molecule(-1) s(-1).

  10. Design and Characterization of p-i-n Devices for Betavoltaic Microbatteries on Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Raziuddin A.

    Betavoltaic microbatteries convert nuclear energy released as beta particles directly into electrical energy. These batteries are well suited for electrical applications such as micro-electro-mechanical systems (MEMS), implantable medical devices and sensors. Such devices are often located in hard to access places where long life, micro-size and lightweight are required. The working principle of a betavoltaic device is similar to a photovoltaic device; they differ only in that the electron hole pairs (EHPs) are generated in the device by electrons instead of photons. In this study, the performance of a betavoltaic device fabricated from gallium nitride (GaN) is investigated for beta particle energies equivalent to Tritium (3H) and Nickel-63 (N63) beta sources. GaN is an attractive choice for fabricating betavoltaic devices due to its wide band gap and radiation resistance. Another advantage GaN has is that it can be alloyed with aluminum (Al) to further increase the bandgap, resulting in a higher output power and increased efficiency. Betavoltaic devices were fabricated on p-i-n GaN structures grown by metalorganic chemical vapor deposition (MOCVD). The devices were characterized using current - voltage (IV) measurements without illumination (light or beta), using a laser driven light source, and under an electron beam. Dark IV measurements showed a turn on-voltage of ~ 3.4 V, specific-on-resistance of 15.1 m O-cm2, and a leakage current of 0.5 mA at -- 10 V. A clear photo-response was observed when IV curves were measured for these devices under a light source at a wavelength of 310 nm (4.0 eV). These devices were tested under an electron beam in order to evaluate their behavior as betavoltaic microbatteries without using radioactive materials. Output power of 70 nW and 640 nW with overall efficiencies of 1.2% and 4.0% were determined at the average energy emission of 3H (5.6 keV) and 63N (17 keV) respectively.

  11. Physical mechanisms affecting hot carrier-induced degradation in gallium nitride HEMTs

    NASA Astrophysics Data System (ADS)

    Mukherjee, Shubhajit

    Gallium Nitride or GaN-based high electron mobility transistors (HEMTs) is currently the most promising device technology in several key military and civilian applications due to excellent high-power as well as high-frequency performance. Even though the performance figures are outstanding, GaN-based HEMTs are not as mature as some competing technologies, which means that establishing the reliability of the technology is important to enable use in critical applications. The objective of this research is to understand the physical mechanisms affecting the reliability of GaN HEMTs at moderate drain biases (typically VDS < 30 V in the devices considered here). The degradation in device performance is believed to be due to the formation or modification of charged defects near the interface by hydrogen depassivation processes (due to electron-activated hydrogen removal) from energetic carriers. A rate-equation describing the defect generation process is formulated based on this assumption. A combination of ensemble Monte-Carlo (EMC) simulation statistics, ab-initio density functional theory (DFT) calculations, and accelerated stress experiments is used to relate the candidate defects to the overall degradation behavior (VT and gm). The focus of this work is on the 'semi-ON' mode of transistor operation in which the degradation is usually observed to be at its highest. This semi-ON state is reasonably close to the biasing region of class-AB high power amplifiers, which are popular because of the combination of high efficiency and low distortion that is associated with this configuration. The carrier-energy distributions are obtained using an EMC simulator that was developed specifically for III-V HFETs. The rate equation is used to model the degradation at different operating conditions as well as longer stress times from the result of one short duration stress test, by utilizing the carrier-energy distribution obtained from EMC simulations for one baseline condition

  12. Magnesium-doped gallium nitride for electronic and optoelectronic device applications

    NASA Astrophysics Data System (ADS)

    Kozodoy, Peter

    1999-11-01

    Magnesium doping of gallium nitride (GaN) for p-type conductivity is a crucial technology for a host of optoelectronic and electronic device applications. The performance of many of these devices is presently limited by the various difficulties associated with Mg doping, both fundamental (such as the deep nature of the Mg acceptor) and technological (such as the problems in forming ohmic contacts). Both types of issues are addressed in this work. Heavy doping effects have been investigated in order to understand the consequences of the high dopant concentration typically employed; increased compensation and a reduction in the acceptor binding energy are among the effects observed. The compensation level is believed to limit the hole mobility in these films, and is found to depend on the choice of growth conditions; the results point to nitrogen vacancies as a likely candidate for one of the compensating donor species. The optimization of various processing procedures has also been addressed. These include the annealing procedure used to remove the hydrogen passivation as well as ohmic contact recipes. In addition, the electrical effects of plasma-induced damage to the p-type GaN surface are investigated; these effects are particularly important for bipolar transistor applications where a plasma etch is needed in order to reveal the base layer. The electrical characteristics of GaN p-n junctions formed both with and without dislocations are compared using the lateral epitaxial overgrowth technique; the dislocations are found to be the dominant leakage path in reverse-bias operation. The electrical consequences of the deep Mg acceptor are also addressed. These include the unusual nature of the low-frequency depletion region, and dispersion in the high-frequency depletion region due to the finite response time of the Mg acceptor. Finally, a novel scheme is presented that uses the strong polarization fields present in AlGaN/GaN superlattices to enhance the doping

  13. White light-emitting diodes based on nonpolar and semipolar gallium nitride orientations

    NASA Astrophysics Data System (ADS)

    Demille, Natalie Fellows

    Gallium nitride has become one of the key components when fabricating white light-emitting diodes. Its use as the blue source in conjunction with a wavelength converter such as the yellow emitting phosphor YAG:Ce 3+ is a technology that is commercially available and usable for solid state lighting applications. Currently available white phosphor-based LEDs (pcLEDs) use the basal plane of wurtzite GaN as their source. Although research over the past couple decades has developed this technology into devices with good photometric performance and high reliability, the introduction of nonbasal plane wurtzite GaN orientations have benefits over basal plane GaN that can be incorporated into the white LED. The focus of this research deals with exploring white illumination on nonpolar and semipolar planes of GaN. Light extraction techniques will be described that allowed for high output powers and efficiencies on the c-plane as well as the (1100), (10 11), and (1122) planes of GaN. With higher performing devices, white pcLEDs were fabricated on c-plane, m-plane, and the (1011) semipolar plane. The novelty in the present research is producing white LEDs with nonbasal plane diodes which exhibit optical polarization anisotropy. This feature, absent on the basal plane, allows for tuning photometric quantities both electrically and optically. This is demonstrated on pcLEDs as well as dichromatic LEDs comprised solely of InGaN diodes. As a consequence of these measurements, an apparent optical polarization was seen to be occurring in the luminescence of the YAG:Ce3+ when the system absorbed linearly polarized light. Polarized emission in YAG:Ce3+ was explored by obtaining single crystals of YAG:Ce3+ with different planar orientations. The experiments led to the conclusion that crystal orientation plays no part in the optical polarization. It is suggested that the cause is a result of electric dipole transitions given by various selection rules between the Ce 3+ ion's 4f and 5d

  14. Hot-Electron Gallium Nitride Two Dimensional Electron Gas Nano-bolometers For Advanced THz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rahul

    Two-dimensional electron gas (2DEG) in semiconductor heterostructures was identified as a promising medium for hot-electron bolometers (HEB) in the early 90s. Up until now all research based on 2DEG HEBs is done using high mobility AlGaAs/GaAs heterostructures. These systems have demonstrated very good performance, but only in the sub terahertz (THz) range. However, above ˜0.5 THz the performance of AlGaAs/GaAs detectors drastically deteriorates. It is currently understood, that detectors fabricated from standard AlGaAs/GaAs heterostructures do not allow for reasonable coupling to THz radiation while maintaining high conversion efficiency. In this work we have developed 2DEG HEBs based on disordered Gallium Nitride (GaN) semiconductor, that operate at frequencies beyond 1THz at room temperature. We observe strong free carrier absorption at THz frequencies in our disordered 2DEG film due to Drude absorption. We show the design and fabrication procedures of novel micro-bolometers having ultra-low heat capacities. In this work the mechanism of 2DEG response to THz radiation is clearly identified as bolometric effect through our direct detection measurements. With optimal doping and detector geometry, impedances of 10--100 O have been achieved, which allow integration of these devices with standard THz antennas. We also demonstrate performance of the antennas used in this work in effectively coupling THz radiation to the micro-bolometers through polarization dependence and far field measurements. Finally heterodyne mixing due to hot electrons in the 2DEG micro-bolometer has been performed at sub terahertz frequencies and a mixing bandwidth greater than 3GHz has been achieved. This indicates that the characteristic cooling time in our detectors is fast, less than 50ps. Due to the ultra-low heat capacity; these detectors can be used in a heterodyne system with a quantum cascade laser (QCL) as a local oscillator (LO) which typically provides output powers in the micro

  15. Predicted lattice-misfit stresses in a gallium-nitride (GaN) film

    NASA Astrophysics Data System (ADS)

    Suhir, E.; Yi, S.

    2017-02-01

    Effective, easy-to-use and physically meaningful analytical predictive models are developed for the evaluation the lattice-misfit stresses (LMS) in a semiconductor film grown on a circular substrate (wafer). The two-dimensional (plane-stress) theory-of-elasticity approximation (TEA) is employed. First of all, the interfacial shearing stresses are evaluated. These stresses might lead to the occurrence and growth of dislocations, as well as to possible delaminations (adhesive strength of the assembly) and the elevated stress and strain in the buffering material, if any (cohesive strength of the assembly). Second of all, the normal radial and circumferential (tangential) stresses acting in the film cross-sections are determined. These stresses determine the short- and long-term strength (fracture toughness) of the film material. It is shown that while the normal stresses in the semiconductor film are independent of its thickness, the interfacial shearing stresses increase with an increase in the induced force (not stress!) acting in the film cross-sections, and that this force increases with an increase in the film thickness. This leads, for a thick enough film, to the occurrence, growth and propagation of dislocations. These start at the assembly ends and propagate, when the film thickness increases, inwards the structure. The TEA data are compared with the results obtained using a simplified strength-of-materials approach (SMA). This approach considers, instead of an actual circular assembly, an elongated bi-material rectangular strip of unit width and of finite length equal to the wafer diameter. The analysis, although applicable to any semiconductor crystal growth (SCG) technology is geared in this analysis to the Gallium-Nitride (GaN) technology. The numerical example is carried out for a GaN film grown on a Silicon Carbide (SiC) substrate. It is concluded that the SMA model is acceptable for understanding the physics of the state of stress and for the prediction

  16. Design of gas inlets for the growth of gallium nitride by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Theodoropoulos, C.; Mountziaris, T. J.; Moffat, H. K.; Han, J.

    2000-07-01

    The problem of gas inlet design for metalorganic vapor phase epitaxy (MOVPE) of group III nitrides from metal alkyls and ammonia is addressed. The focus is on GaN growth from trimethyl-gallium and ammonia. In traditional reactors with well-mixed inlet streams, parasitic gas-phase reactions between the two precursors may lead to the formation of stable adducts that can condense on cool inlet walls, thus reducing the film growth efficiency. Such reactions may also lead to the formation of particulates through gas-phase condensation reactions (e.g. during AlN growth). A fundamentally-based model was developed to describe the MOVPE of GaN and was used to study the effect of inlet design and reactor operating conditions on film thickness uniformity in vertical stagnation-flow and rotating-disk reactors. The model includes a description of gas-phase kinetics and a simple gas-surface reaction mechanism. The kinetic model was coupled to a two-dimensional transport model describing flow, heat and mass transfer in a vertical MOVPE reactor. Predictions of growth rate compare well to experimental observations from a vertical rotating-disk reactor, without any adjustable parameters. The model was also used to study the distribution of gaseous species in the reactor and their role in film growth. Finite element simulations using a massively parallel computer code (MPSalsa) indicate that the species responsible for film growth are Ga-alkyls and not their adducts with ammonia. Sensitivity analysis was also performed to assess the relative importance of each reaction in determining the growth rate. The model was subsequently employed in the design of axisymmetric, multi-aperture gas inlets feeding precursors into the reactor in an alternating (not well-mixed) fashion. Simulations were performed to study the effect of key design parameters, such as inlet velocities, susceptor rotating speed, inlet to susceptor distance as well as the number and distribution of inlets, on GaN film

  17. Growth and characterization of gallium nitride nanowire LEDs for application as on-chip optical interconnects

    NASA Astrophysics Data System (ADS)

    Brubaker, Matt

    Gallium nitride (GaN) nanowires have potential as nanoscale optoelectronic building blocks that can be functionally integrated with silicon MEMS and IC devices. This dissertation presents an overview of the synthesis, characterization, and application of GaN nanowire light-emitting-diodes (LEDs) grown by plasma-assisted molecular beam epitaxy (MBE). Specifically, this research demonstrates discrete axial p-n junction nanowires that produce ultra-violet (UV) electroluminescence at ˜40 nW optical power. It further demonstrates that a two-nanowire optical interconnect device can be fabricated from axial p-n junction nanowires with light-emitting and photoconductive capabilities. The nanowire structures obtained from MBE growth were found to depend sensitively on the morphology and crystallographic polarity of the underlying Aluminum Nitride (AlN) nucleation layer. These observations were enabled by piezoresponse force microscopy, which was developed and validated against polarity sensitive etching using uniform and mixed polarity AlN layers. The polarity and overall morphology of the AlN layers could be controlled by the V/III flux ratio and substrate temperature during MBE growth. GaN nanowires were observed to propagate the structural characteristics and crystallographic polarity of the underlying AlN layer, and in some cases a differential growth rate with respect to polarity was observed. Band-edge electroluminescence was obtained in axial p-n junction nanowires that incorporated a thin AlGaN electron blocking layer in the p-region of the device. Electroluminescence was below detection limits for p-n junction nanowires with no blocking layer, despite diode-like I-V characteristics and optically measured internal quantum efficiencies (IQEs) of ˜1 %. I-V measurements of the p-regions in p-n junction nanowires, as well as nanowires doped with Mg only, indicate low p-type conductivity and asymmetric Schottky-like p-contacts. These observations, in conjunction with

  18. Effects of Hydrogen on Tantalum Nitride Resistors

    NASA Technical Reports Server (NTRS)

    Weiler, James

    2000-01-01

    In this paper we report on observations of degradation of thin film Tantalum Nitride chip resistors in a hermetically sealed hybrid. The observations have been attributed to the reaction of residual Palladium with desorbed Hydrogen on the surface of the resistor film. Hydrogen gas has been observed to desorb from various sources within the sealed hybrid as a result of temperature elevation. The hydrogen gas has been reported to undergo a reaction with elements such as Platinum and Palladium causing device degradation in Gallium Arsenide Field Effect Transistors. The experimental procedures and data relating to this observation along with a discussion of available risk mitigation techniques will be presented.

  19. Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester J.; Creange, Nicole C.; Sun, Kai; Giri, Ashutosh; Donovan, Brian F.; Constantin, Costel; Hopkins, Patrick E.

    2015-02-01

    Gallium nitride (GaN) is a widely used semiconductor for high frequency and high power devices due to of its unique electrical properties: a wide band gap, high breakdown field, and high electron mobility. However, thermal management has become a limiting factor regarding efficiency, lifetime, and advancement of GaN devices and GaN-based applications. In this work, we study the thermal conductivity of beta-phase gallium oxide (β-Ga2O3) thin films, a component of typical gate oxides used in such devices. We use time domain thermoreflectance to measure the thermal conductivity of a variety of polycrystalline β-Ga2O3 films of different thicknesses grown via open atmosphere annealing of the surfaces of GaN films on sapphire substrates. We show that the measured effective thermal conductivity of these β-Ga2O3 films can span 1.5 orders of magnitude, increasing with an increased film thickness, which is indicative of the relatively large intrinsic thermal conductivity of the β-Ga2O3 grown via this technique (8.8 ± 3.4 W m-1 K-1) and large mean free paths compared to typical gate dielectrics commonly used in GaN device contacts. By conducting time domain thermoreflectance (TDTR) measurements with different metal transducers (Al, Au, and Au with a Ti wetting layer), we attribute this variation in effective thermal conductivity to a combination of size effects in the β-Ga2O3 film resulting from phonon scattering at the β-Ga2O3/GaN interface and thermal transport across the β-Ga2O3/GaN interface. The measured thermal properties of open atmosphere-grown β-Ga2O3 and its interface with GaN set the stage for thermal engineering of gate contacts in high frequency GaN-based devices.

  20. Compact, Interactive Electric Vehicle Charger: Gallium-Nitride Switch Technology for Bi-directional Battery-to-Grid Charger Applications

    SciTech Connect

    2010-10-01

    ADEPT Project: HRL Laboratories is using gallium nitride (GaN) semiconductors to create battery chargers for electric vehicles (EVs) that are more compact and efficient than traditional EV chargers. Reducing the size and weight of the battery charger is important because it would help improve the overall performance of the EV. GaN semiconductors process electricity faster than the silicon semiconductors used in most conventional EV battery chargers. These high-speed semiconductors can be paired with lighter-weight electrical circuit components, which helps decrease the overall weight of the EV battery charger. HRL Laboratories is combining the performance advantages of GaN semiconductors with an innovative, interactive battery-to-grid energy distribution design. This design would support 2-way power flow, enabling EV battery chargers to not only draw energy from the power grid, but also store and feed energy back into it.

  1. Epitaxial Overgrowth of Gallium Nitride Nano-Rods on Silicon (111) Substrates by RF-Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Jui-Tai Ku,; Tsung-Hsi Yang,; Jet-Rung Chang,; Yuen-Yee Wong,; Wu-Ching Chou,; Chun-Yen Chang,; Chiang-Yao Chen,

    2010-04-01

    Strain-free gallium nitride (GaN) overgrowth on GaN nano-rods is realized by RF-plasma assisted molecular beam epitaxy (RF-MBE) on silicon (Si) substrate. The strain-free condition was identified by the strong free A exciton (FXA) photoluminescence (PL) peak at 3.478 eV and the E2 high phonon Raman shift of 567 cm-1. It is clearly demonstrated that the critical diameter of GaN nano-rods is around 80 nm for the overgrowth of strain-free GaN. The blue-shift of PL peak energy and phonon Raman energy with decreasing the diameter of nano-rod result from the strain relaxation of overgrowth GaN.

  2. Epitaxial Overgrowth of Gallium Nitride Nano-Rods on Silicon (111) Substrates by RF-Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Ku, Jui-Tai; Yang, Tsung-Hsi; Chang, Jet-Rung; Wong, Yuen-Yee; Chou, Wu-Ching; Chang, Chun-Yen; Chen, Chiang-Yao

    2010-04-01

    Strain-free gallium nitride (GaN) overgrowth on GaN nano-rods is realized by RF-plasma assisted molecular beam epitaxy (RF-MBE) on silicon (Si) substrate. The strain-free condition was identified by the strong free A exciton (FXA) photoluminescence (PL) peak at 3.478 eV and the E2 high phonon Raman shift of 567 cm-1. It is clearly demonstrated that the critical diameter of GaN nano-rods is around 80 nm for the overgrowth of strain-free GaN. The blue-shift of PL peak energy and phonon Raman energy with decreasing the diameter of nano-rod result from the strain relaxation of overgrowth GaN.

  3. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    PubMed Central

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-01-01

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)–gallium nitride (GaN) slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm) into four output ports with low insertion losses (0.07 dB). PMID:28773638

  4. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon-Gallium-Nitride Slot Waveguide Structures.

    PubMed

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-06-25

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).

  5. Single-Crystalline, Nanoporous Gallium Nitride Films With Fine Tuning of Pore Size for Stem Cell Engineering.

    PubMed

    Han, Lin; Zhou, Jing; Sun, Yubing; Zhang, Yu; Han, Jung; Fu, Jianping; Fan, Rong

    2014-11-01

    Single-crystalline nanoporous gallium nitride (GaN) thin films were fabricated with the pore size readily tunable in 20-100 nm. Uniform adhesion and spreading of human mesenchymal stem cells (hMSCs) seeded on these thin films peak on the surface with pore size of 30 nm. Substantial cell elongation emerges as pore size increases to ∼80 nm. The osteogenic differentiation of hMSCs occurs preferentially on the films with 30 nm sized nanopores, which is correlated with the optimum condition for cell spreading, which suggests that adhesion, spreading, and stem cell differentiation are interlinked and might be coregulated by nanotopography.

  6. Gallium nitride nanorod arrays as low-refractive-index transparent media in the entire visible spectral region.

    PubMed

    Chen, Hung-Ying; Lin, Hon-Way; Wu, Chen-Ying; Chen, Wei-Chun; Chen, Jyh-Shin; Gwo, Shangjr

    2008-05-26

    Vertically aligned gallium nitride (GaN) nanorod arrays grown by the catalyst-free, self-organized method based on plasma-assisted molecular-beam epitaxy are shown to behave as subwavelength optical media with low effective refractive indices. In the reflection spectra measured in the entire visible spectral region, strong reflectivity modulations are observed for all nanorod arrays, which are attributed to the effects of Fabry-Pérot microcavities formed within the nanorod arrays by the optically flat air/nanorods and nanorods/substrate interfaces. By analyzing the reflectivity interference fringes, we can quantitatively determine the refractive indices of GaN nanorod arrays as functions of light wavelength. We also propose a model for understanding the optical properties of GaN nanorod arrays in the transparent region. Using this model, good numerical fitting can be achieved for the reflectivity spectra.

  7. Visible and near infrared emitting thin film electroluminescent gallium nitride doped with rare earths

    NASA Astrophysics Data System (ADS)

    Kim, Joo Han

    Visible and near-infrared (NIR) light-emitting thin-film electroluminescent gallium nitride (GaN) doped with rare earth (RE) elements was studied. The rare-earth-doped GaN thin films were prepared by radio frequency (RF) planar magnetron co-sputtering of separate targets consisting of a GaN compound target and a metallic rare earth target in a pure nitrogen atmosphere. The luminescence of rare-earth-doped GaN was shown to be a strong function of its structure and properties, and growth parameters affected the structure and properties of the GaN host films. A phase transition from the thermodynamically stable wurtzite to the metastable zinc-blende structure at room temperature in GaN host films was observed upon increasing the impact energy of the bombarding species, thereby increasing the compressive stress in the GaN film. The switch from wurtzite to zinc-blende GaN occurred at a compressive internal stress of ˜1 GPa. The internal compressive stress above this threshold value apparently stabilizes the zinc-blende GaN phase at room temperature. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) showed that the impact by hyperthermal species yielded a highly condensed fibrous GaN microstructure with a smooth surface morphology due to annihilation of porosity by knock-on and bombardment-induced adatom mobility. X-ray diffraction and texture analyses showed that the GaN films deposited at a low pressure had a predominant cubic phase with a preferred crystallographic orientation of the [111] direction perpendicular to the surface of the film. X-ray rocking curve data revealed that cubic GaN films grown with a lower growth rate exhibited a more highly [111]-textured structure. Alternating-current thin-film electroluminescent (ACTFEL) devices were fabricated based on GaN doped with rare earth (RE) elements. Visible electroluminescent light emission peaks at 475 (blue), 530 (green), and 614 nm (red) were demonstrated at room temperature

  8. Modulated optical properties of nonpolar gallium nitride via surface in-situ functionalization with cysteamine assisted phosphoric acid

    NASA Astrophysics Data System (ADS)

    Wilkins, Stewart J.; Paskova, Tania; Ivanisevic, Albena

    2014-03-01

    In-situ functionalization of nonpolar a-plane gallium nitride (GaN) surface was achieved by adding cysteamine to phosphoric acid, aiming to modulate its optical properties. The emission properties and oxide formation were explored through surface characterization with atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and water contact angle. Nonpolar a-plane bulk GaN sample sliced from a GaN boule and nonpolar a-plane GaN thin layer heteroepitaxially grown on r-plane sapphire were used to elucidate the effects of in-situ functionalization of identical surface orientation of GaN crystals with different defect ensembles. The addition of cysteamine to the phosphoric acid solution was found to result in: (i) increased surface roughness, (ii) no change to hydrophobicity, (iii) decreased oxygen content at high solution temperatures and increased gallium and nitrogen content versus phosphoric acid solutions at similar temperatures without cysteamine. The in-situ functionalization resulted in enhanced PL intensity from the nonpolar bulk GaN, while the PL intensity from the nonpolar heteroepitaxially grown GaN layer on sapphire was significantly reduced. The opposite PL modulation was explained by the effects of different defects present in the two samples on the nonradiative recombination.

  9. Photocurrent spectroscopy of cadmium sulfide/plastic, cadmium sulfide/glass, and zinc telluride/gallium arsenide hetero-pairs formed with pulsed-laser deposition

    NASA Astrophysics Data System (ADS)

    Acharya, Krishna Prasad

    This dissertation presents photocurrent (PC) spectroscopy of thin-film cadmium sulfide (CdS) on plastic, CdS on glass, and zinc telluride (ZnTe) on gallium arsenide (GaAs) hetero-pairs. All samples have been prepared with pulsed-laser deposition (PLD) and the thesis is organized into three principal sections. The first section presents the PLD essentials and characterization of CdS thin films on transparent plastic substrates. The second part focuses on the exploitation of CdS films on glass to quench or modulate alternating photocurrent (APC) by additional constant blue light illumination. Finally, PC spectra modification of n-GaAs due to ZnTe PLD will be investigated. First, the merger of a transparent plastic substrate with thin-film CdS for photonic application was realized using low-temperature PLD, where low-temperature PLD means the substrates were not externally heated. Although plastic is not considered to be a favored substrate material for semiconductor thin-film formation, the deposited CdS film possessed good adhesion to the plastic substrates and showed a blue-shifted photosensitivity with peak at 2.54 eV. The CdS deposition rate was monitored at different laser fluences and the maximum rate was found at 2.68 J/cm2. The visualization of the surface using an atomic force microscope (AFM) revealed its mosaic structure and electron probe microanalysis showed that target composition was maintained in the film. The study of thickness distribution revealed that the film deposition area is significantly increased with increase in laser fluence. The achieved results demonstrate the capability of PLD to form novel heterostructures with appealing and useful technological properties such as plasticity and low weight. In the second part, APC control via blue light illumination employing thin-film PLD CdS on a glass is introduced. In fact, the APC driven through the CdS film in conjunction with bias was quenched when the sample was additionally illuminated with a

  10. Quantificaion of ion diffusion in gallium arsenide-based spintronic Light-Emitting Diode devices using time-of-flight secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Cogswell, Jeffrey Ryan

    Depth profiling using Secondary Ion Mass Spectrometry (SIMS) is a direct method to measure diffusion of atomic or molecular species that have migrated distances of nanometers/micrometers in a specific material. For this research, the diffusion of Mn, sequentially Ga ions, in Gallium Arsenide (GaAs)-based spin Light Emitting Diode (LED) devices is studied by quantitative Time-of-Flight (ToF) SIMS. The goal is to prove conclusively the driving force and mechanism behind Mn diffusion in GaAs by quantifying the diffusion of these ions in each device. Previous work has identified two competing processes for the movement of Mn in GaAs: diffusion and phase separation. The process is dependent on the temperature the sample is exposed to, either by post-annealing, or during the molecular beam epitaxy (MBE) growth process. The hypothesis is that Manganese Arsenide (MnAs) is thermodynamically more stable than randomly distributed Mn ions in GaAs, and that by annealing at a certain temperature, a pure MnAs layer can be produced from a GaMnAs layer in a working spin LED device. Secondly, the spin efficiencies will be measured and the difference will be related to the formation of a pure MnAs layer. The first chapter of this dissertation discusses the history of spintronic devices, including details on the established methods for characterization, the importance for potential application to the semiconductor industry, and the requirements for the full implementation of spintronic devices in modern-day computers. MnAs and GaMnAs devices are studied, their preparation and properties are described, and the study's experimental design is covered in the latter part of Chapter 1. Chapter 2 includes a review of diffusion in semiconductors, including the types of diffusion, mechanisms they follow, and the different established experimental methods for studying diffusion. The later sections include summaries of Mn diffusion and previous studies investigating Mn diffusion in different

  11. Growing Gallium Arsenide On Silicon

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Gouri

    1989-01-01

    Epitaxial layers of high quality formed on <111> crystal plane. Present work reports successful growth of 1- and 2-micrometer thick layers of n-type, 7-ohms per cm, 2-inch diameter, Si<111> substrate. Growth conducted in Riber-2300(R) MBE system. Both doped and undoped layers of GaAs grown. Chamber equipped with electron gun and camera for in-situ reflection high-energy-electron diffraction measurements. RHEED patterns of surface monitored continuously during slow growth stage.

  12. Metal contacts to gallium arsenide

    NASA Astrophysics Data System (ADS)

    Baenard, W. O.; Myburg, G.; Auret, F. D.; Goodman, S. A.; Meyer, W. E.

    1996-11-01

    In this paper, some aspects that determine the properties of Schottky and ohmic contacts to GaAs are discussed. For Schottky barrier diodes (SBD), we present results of a comprehensive study involving 41 different metals. We pay special attention to Ru and show that its thermal and chemical stability makes it ideal for use in devices operating above room temperature and for experiments involving annealing. Further, we discuss the effect of different metallization methods on SBD properties and show that methods which use energetic particles, such as electron beam deposition and sputter deposition, often result in inferior SBD properties—the consequence of electrically active defects introduced by the energetic particles at and close to the semiconductor surface. The advantages of using Ru as contact material to GaAs are that it forms high quality, thermally stable Schottky contacts to n-GaAs and thermally stable ohmic contacts with low specific contact resistance to p-GaAs. The versatile applicability of Ru contacts makes them extremely important for future use in devices such as heterojunction bipolar transistors and solid state lasers.

  13. GALLIUM ARSENIDE (GaAs)

    NASA Astrophysics Data System (ADS)

    Levinshtein, M. E.; Rumyantsev, S. L.

    The following sections are included: * Basic Parameters at 300 K * Band Structure and Carrier Concentration * Temperature Dependences * Dependences on Hydrostatic Pressure * Energy Gap Narrowing at High Doping Levels * Effective Masses * Donors and Acceptors * Electrical Properties * Mobility and Hall Effect * Transport Properties in High Electric Field * Impact Ionization * Recombination Parameters * Optical Properties * Thermal Properties * Mechanical Properties, Elastic Constants, Lattice Vibrations, Other Properties * References

  14. Gallium arsenide eyesafe laser rangefinder

    NASA Astrophysics Data System (ADS)

    Brun, Robert

    1990-07-01

    In the past terrestrial optoelectronic distance measurement in the kilometer range was only possible by marking targets with reflector prisms or by increasing the optical output power far beyond the eyesafety limits. These requirements are unacceptable for many measurement tasks and this paper describes how they can be avoided by using a low power semiconductor laser and modern signal processing techniques. 1. DESIGN GOALS A number of manufacturers have fielded optoelectronic rangefinders which must be supported by reflector prisms mounted on the target if distances beyond 100 m are to be measured. These devices based on semiconductor lasers are very accurate (to the order of mm) and because of their low optical output power they are generally eyesafe. Devices are also available for measurements without reflector prisms (non-cooperative targets) to large distances beyond 5000 m where poor target reflectivity and atmospheric attenuation are overcome by high power output usually from an NdYAG crystal laser. The very high intensity laser radiation however is dangerous to the human eye and therefore these devices are constrained to operate under rigorous safety measures. Between these two extremes there are numerous applications where not extreme range or accuracy but eyesafety non-cooperative targets small size and low cost are of primary importance. This is the case not only for civilian applications but also for military use e. g. in force-on-force exercises or special operations. Other design goals

  15. Generation of ammonia plasma using a helical antenna and nitridation of GaAs surface

    NASA Astrophysics Data System (ADS)

    Yasui, Kanji; Arayama, Tatsuro; Okutani, Satoshi; Akahane, Tadashi

    2003-05-01

    Using the ammonia (NH 3) plasma generated by a helical antenna surrounded by two magnetic coils, the transition of the discharge mode from low-density plasma to high-density one was observed. At the transition, the emission intensities from the H atoms and NH radicals especially increased in the optical emission spectroscopy, while the intensities of the other emission lines also increased abruptly. The nitridation of gallium arsenide (GaAs) surface was performed using the high-density NH 3 plasma, and the properties of the nitrided surface layer were compared with those nitrided by high-density N 2 plasma using the same apparatus. From the spectroscopic ellipsometry measurements, the thickness of the nitrided layer was estimated to be 16-18 nm, while that by N 2 was 3-4 nm. From the Ga 3d spectra, the contamination with oxygen in the nitridation layer by NH 3 plasma was less than that by N 2 plasma.

  16. Size effects in the thermal conductivity of gallium oxide (β-Ga{sub 2}O{sub 3}) films grown via open-atmosphere annealing of gallium nitride

    SciTech Connect

    Szwejkowski, Chester J.; Giri, Ashutosh; Donovan, Brian F.; Hopkins, Patrick E.; Creange, Nicole C.; Constantin, Costel; Sun, Kai

    2015-02-28

    Gallium nitride (GaN) is a widely used semiconductor for high frequency and high power devices due to of its unique electrical properties: a wide band gap, high breakdown field, and high electron mobility. However, thermal management has become a limiting factor regarding efficiency, lifetime, and advancement of GaN devices and GaN-based applications. In this work, we study the thermal conductivity of beta-phase gallium oxide (β-Ga{sub 2}O{sub 3}) thin films, a component of typical gate oxides used in such devices. We use time domain thermoreflectance to measure the thermal conductivity of a variety of polycrystalline β-Ga{sub 2}O{sub 3} films of different thicknesses grown via open atmosphere annealing of the surfaces of GaN films on sapphire substrates. We show that the measured effective thermal conductivity of these β-Ga{sub 2}O{sub 3} films can span 1.5 orders of magnitude, increasing with an increased film thickness, which is indicative of the relatively large intrinsic thermal conductivity of the β-Ga{sub 2}O{sub 3} grown via this technique (8.8 ± 3.4 W m{sup −1} K{sup −1}) and large mean free paths compared to typical gate dielectrics commonly used in GaN device contacts. By conducting time domain thermoreflectance (TDTR) measurements with different metal transducers (Al, Au, and Au with a Ti wetting layer), we attribute this variation in effective thermal conductivity to a combination of size effects in the β-Ga{sub 2}O{sub 3} film resulting from phonon scattering at the β-Ga{sub 2}O{sub 3}/GaN interface and thermal transport across the β-Ga{sub 2}O{sub 3}/GaN interface. The measured thermal properties of open atmosphere-grown β-Ga{sub 2}O{sub 3} and its interface with GaN set the stage for thermal engineering of gate contacts in high frequency GaN-based devices.

  17. Indium arsenide/gallium arsenide and gallium antimonide/gallium arsenide quantum dot solar cells

    NASA Astrophysics Data System (ADS)

    Laghumavarapu, Ramesh B.

    Solar cells are gaining increasing attention as alternative energy sources. For the last decade, many attempts have been made to increase the conversion efficiency and reduce the manufacturing cost of the solar cells. Many material systems and cell designs have been studied towards achieving these goals. This has resulted in systems that are either less efficient with low cost or more efficient with high cost. As there is a minimum amount by which the cost of the cell can be reduced, the majority of the research work in solar cell community has been focused on increasing the efficiency of single junction solar cells without substantial increase in the manufacturing cost. In this work the concept of "Intermediate band quantum dot solar cells" (proposed by Luque et al.) has been investigated using InAs/GaAs and GaSb/GaAs quantum dots (QDs). This scheme has the potential to increase the conversion efficiency over 63%, which is more than that of any single junction solar cell, by generation of additional current via sub-bandgap photon absorption. In QD solar cells multiple stacks of QD layers have been employed in the i-region of p-i-n solar cells. I-V characteristics of the QD solar cells have been studied and compared with that of GaAs control cells. The results from I-V measurements on InAs QD solar cells indicate that the strain compensation in QD solar cells has improved fill factor by 17%. It is also observed that the open circuit voltage, short circuit current and fill factor of both InAs and GaSb QD solar cells are reduced when compared to the respective values of the GaAs control cell. Both InAs and GaSb QD solar cells show an extended photo response compared to control cell indicating the contribution from QD absorption. This holds promise to increase the efficiency with proper device optimization and selection of the appropriate QD material system. Finally, the possibilities of carrier multiplication (CM) to increase the conversion efficiency in these dots are discussed.

  18. Non-Ideal Properties of Gallium Nitride Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Shan, Qifeng

    The spectacular development of gallium nitride (GaN) based light-emitting diodes (LEDs) in recent years foreshadows a new era for lighting. There are still several non-ideal properties of GaN based LEDs that hinder their widespread applications. This dissertation studies these non-ideal properties including the large reverse leakage current, large subthreshold forward leakage current, an undesired parasitic cyan luminescence and high-concentration deep levels in GaInN blue LEDs. This dissertation also studies the thermal properties of GaInN LEDs. Chapter 1 gives a brief introduction of non-ideal properties of GaN based LEDs. The leakage current of GaN based LEDs, defects in epitaxially grown GaN devices, and doping problems of p-type GaN materials are discussed. The transient junction temperature measurement technique for GaN based LEDs is introduced. The leakage current of an LED includes the subthreshold forward leakage current and the reverse leakage current. The leakage current of GaN based LEDs affects the reliability, electrostatic discharge resilience, and sub-threshold power consumption. In Chapter 2, the reverse leakage current of a GaInN LED is analyzed by temperaturedependent current-voltage measurements. At low temperature, the reverse leakage current is attributed to the variable-range-hopping conduction. At high temperature, the reverse leakage current is attributed to a thermally-assisted multi-step tunneling. The thermal activation energies (95 meV ~ 162 meV), extracted from the Arrhenius plot for the reverse current in the high-temperature range, indicate a thermally activated tunneling process. Additional room-temperature capacitance-voltage (C-V) measurements are performed to obtain information on the depletion width and doping concentration of the LED. The average internal electric field is estimated by the C-V measurements. The strong internal electric field enhances the thermal emission of electrons in the

  19. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide

    NASA Astrophysics Data System (ADS)

    Kerr, A. J.; Chagarov, E.; Gu, S.; Kaufman-Osborn, T.; Madisetti, S.; Wu, J.; Asbeck, P. M.; Oktyabrsky, S.; Kummel, A. C.

    2014-09-01

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al2O3 gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge. These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001).

  20. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide

    SciTech Connect

    Kerr, A. J.; Chagarov, E.; Kaufman-Osborn, T.; Kummel, A. C.; Gu, S.; Wu, J.; Asbeck, P. M.; Madisetti, S.; Oktyabrsky, S.

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al{sub 2}O{sub 3} gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge. These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001)

  1. Preparation of gallium nitride surfaces for atomic layer deposition of aluminum oxide.

    PubMed

    Kerr, A J; Chagarov, E; Gu, S; Kaufman-Osborn, T; Madisetti, S; Wu, J; Asbeck, P M; Oktyabrsky, S; Kummel, A C

    2014-09-14

    A combined wet and dry cleaning process for GaN(0001) has been investigated with XPS and DFT-MD modeling to determine the molecular-level mechanisms for cleaning and the subsequent nucleation of gate oxide atomic layer deposition (ALD). In situ XPS studies show that for the wet sulfur treatment on GaN(0001), sulfur desorbs at room temperature in vacuum prior to gate oxide deposition. Angle resolved depth profiling XPS post-ALD deposition shows that the a-Al2O3 gate oxide bonds directly to the GaN substrate leaving both the gallium surface atoms and the oxide interfacial atoms with XPS chemical shifts consistent with bulk-like charge. These results are in agreement with DFT calculations that predict the oxide/GaN(0001) interface will have bulk-like charges and a low density of band gap states. This passivation is consistent with the oxide restoring the surface gallium atoms to tetrahedral bonding by eliminating the gallium empty dangling bonds on bulk terminated GaN(0001).

  2. The electron affinity of gallium nitride (GaN) and digallium nitride (GaNGa): the importance of the basis set superposition error in strongly bound systems.

    PubMed

    Tzeli, Demeter; Tsekouras, Athanassios A

    2008-04-14

    The electron affinity of GaN and Ga2N as well as the geometries and the dissociation energies of the ground states of gallium nitrides GaN, GaN(-), Ga2N, and Ga2N(-) were systematically studied by employing the coupled cluster method, RCCSD(T), in conjunction with a series of basis sets, (aug-)cc-pVxZ(-PP), x=D, T, Q, and 5 and cc-pwCVxZ(-PP), x=D, T, and Q. The calculated dissociation energy and the electron affinity of GaN are 2.12 and 1.84 eV, respectively, and those of Ga2N are 6.31 and 2.53 eV. The last value is in excellent agreement with a recent experimental value for the electron affinity of Ga2N of 2.506+/-0.008 eV. For such quality in the results to be achieved, the Ga 3d electrons had to be included in the correlation space. Moreover, when a basis set is used, which has not been developed for the number of the electrons which are correlated in a calculation, the quantities calculated need to be corrected for the basis set superposition error.

  3. The Growth of Gallium Nitride Films via the Innovative Technique of Atomic Layer Epitaxy

    DTIC Science & Technology

    1989-06-01

    and since the two ma- terials are chemically similar (both being nitrides), the cubic structure might be maintained through to the growing film. The...graded layers were grown on sapphire and 1-SiC substrates. which resulted in layers having hexagonal and cubic structure respec- tively. The crystal

  4. Epitaxial growth of III-V nitrides and phase separation and ordering in indium gallium nitride alloys

    NASA Astrophysics Data System (ADS)

    Doppalapudi, Dharanipal

    The family of III-V nitrides are wide band-gap semiconductors with a broad range of opto-electronic applications in LEDs, laser diodes, UV detectors as well as high temperature/high frequency devices. Due to the lack of good quality native substrates, GaN is grown on foreign substrates that have a lattice and thermal mismatch with GaN. This results in a material with a high density of defects, which in turn adversely affects the opto-electronic properties of the epilayer. In this study, GaN films were epitaxially grown on various substrates (C-plane sapphire, A-plane sapphire, SiC and ZnO) by molecular beam epitaxy. Additionally, GaN homoepitaxy onto laterally overgrown thick GaN substrates was investigated. It was demonstrated that the polarity of the GaN film plays a major role in determining the properties of the films. The growth parameters were optimized to eliminate inversion domain boundaries, which result in domains of opposite polarity in the GaN lattice. For growth on A-plane sapphire, it was found that substrate nitridation and low temperature buffer deposition are critical in order to obtain good epitaxial growth, in spite of the relatively small mismatch between the film and substrate. A crystallographic model was developed to explain this observation. By optimizing growth parameters, GaN films with excellent structural, transport, optical and device properties were grown. The second part of this research involves growth of ternary alloys and superlattice structures, which are essential in the fabrication of many devices. It was found that the InN-GaN pseudo-binary system is not homogeneous over the entire composition range. Due to the mismatch between the tetrahedral radii of GaN and InN, InGaN alloys exhibited phase separation and long-range atomic ordering. Investigations of InxGa1-xN films grown over a wide range of compositions by XRD and TEM showed that the predominant strain relieving mechanism was phase separation in films with x > 0.2, and

  5. Magnetostrictive iron gallium thin films grown onto antiferromagnetic manganese nitride: Structure and magnetism

    NASA Astrophysics Data System (ADS)

    Mandru, Andrada-Oana; Corbett, Joseph P.; Richard, Andrea L.; Gallagher, James; Meng, Keng-Yuan; Ingram, David C.; Yang, Fengyuan; Smith, Arthur R.

    2016-10-01

    We report structural and magnetic properties of magnetostrictive Fe100 -xGax (x ≈ 15) alloys when deposited onto antiferromagnetic manganese nitride and non-magnetic magnesium oxide substrates. From X-ray diffraction measurements, we find that the FeGa films are single crystalline. Scanning tunneling microscopy imaging reveals that the surface morphologies are dictated by the growth temperature, composition, and substrate. The magnetic properties can be tailored by the substrate, as found by magnetic force microscopy imaging and vibrating sample magnetometry measurements. In addition to pronounced tetragonal deformations, depositing FeGa onto manganese nitride leads to the formation of stripe-like magnetic domain patterns and to the appearance of perpendicular magnetic anisotropy.

  6. Mechanical Resonance and Damping Properties of Gallium Nitride Nanowires in Selected-Area Growth Arrays Measured via Optical Bragg Scattering

    NASA Astrophysics Data System (ADS)

    Houlton, John; Brubaker, M. D.; Bertness, K. A.; Rogers, C. T.

    We report the use of optical Bragg scattering to measure the mechanical resonance frequencies and quality factors (Q) of gallium nitride (GaN) nanowires (NWs) in selected-area growth arrays. The GaN NWs are grown by catalyst-free molecular beam epitaxy on silicon (111) wafers. Hexagonal arrays of approximately 100 GaN NWs with pitch spacings of 400 - 1000 nm have been prepared. The NWs contained in such arrays have diameters ranging from 100-300 nm and lengths from 3 - 10 μm. A diode laser operating at 640 nm and 2 mW of optical power is used to perform Bragg scattering homodyne detection to passively read out the thermally induced Brownian mechanical motion of the NWs. The first order cantilever-mode mechanical resonance frequencies of these NWs have been measured to be between 2 - 12 MHz. We find that the optical readout via Bragg scattered light allows the simultaneous detection of all lowest order mechanical resonances in a given array. Q factors ranging from 1,000 - 12,000 have been seen at room temperature and 10-5 Torr pressures. Qs as high as 25,000 have been seen at temperatures of 80 K. These results show that the narrow mechanical resonances observed in freely-grown GaN NWs can also be seen in NWs prepared via selected-area growth. We gratefully acknowledge funding via NIST MSE Grant # 1553451.

  7. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns.

    PubMed

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-04-04

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

  8. Spectroscopic Ellipsometry Measurements of Wurtzite Gallium Nitride Surfaces as a Function of Buffered Oxide Etch Substrate Submersion

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Constantin, Costel; Duda, John; Hopkins, Patrick; Optical Studies of GaN interfaces Collaboration

    2013-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of silicon. Understanding the optical properties of GaN surfaces is imperative in determining the utility and applicability of this class of materials to devices. In this work, we present preliminary results of spectroscopic ellipsometry measurements as a function of surface root mean square (RMS). We used commercially available 5mm x 5mm, one side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a wurtzite crystal structure and they are slightly n-type doped. The GaN substrates were cleaned with Acetone (20 min)/Isopropanol(20 min)/DI water (20 min) before they were submerged into Buffered Oxide Etch (BOE) for 10s - 60s steps. This BOE treatment produced RMS values of 1-30 nm as measured with an atomic force microscope. Preliminary qualitative ellipsometric measurements show that the complex refractive index and the complex dielectric function decrease with an increase of RMS. More measurements need to be done in order to provide explicit quantitative results. This work was supported by the 4-VA Collaborative effort between James Madison University and University of Virginia.

  9. Current status and scope of gallium nitride-based vertical transistors for high-power electronics application

    NASA Astrophysics Data System (ADS)

    Chowdhury, Srabanti; Swenson, Brian L.; Hoi Wong, Man; Mishra, Umesh K.

    2013-07-01

    Gallium nitride (GaN) is becoming the material of choice for power electronics to enable the roadmap of increasing power density by simultaneously enabling high-power conversion efficiency and reduced form factor. This is because the low switching losses of GaN enable high-frequency operation which reduces bulky passive components with negligible change in efficiency. Commercialization of GaN-on-Si materials for power electronics has led to the entry of GaN devices into the medium-power market since the performance-over-cost of even first-generation products looks very attractive compared to today's mature Si-based solutions. On the other hand, the high-power market still remains unaddressed by lateral GaN devices. The current and voltage demand for high-power conversion application makes the chip area in a lateral topology so large that it becomes difficult to manufacture. Vertical GaN devices would play a big role alongside silicon carbide (SiC) to address the high-power conversion needs. In this paper vertical GaN devices are discussed with emphasis on current aperture vertical electron transistors (CAVETs) which have shown promising performance. The fabrication-related challenges and the future possibilities enabled by the availability of good-quality, cost-competitive bulk GaN material are also evaluated for CAVETs. This work was done at Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.

  10. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

    NASA Astrophysics Data System (ADS)

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-04-01

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

  11. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature

    PubMed Central

    Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung

    2016-01-01

    Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and −1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations. PMID:27220650

  12. Gallium nitride induces neuronal differentiation markers in neural stem/precursor cells derived from rat cerebral cortex.

    PubMed

    Chen, Chi-Ruei; Li, Yi-Chen; Young, Tai-Horng

    2009-09-01

    In the present study, gallium nitride (GaN) was used as a substrate to culture neural stem/precursor cells (NSPCs), isolated from embryonic rat cerebral cortex, to examine the effect of GaN on the behavior of NSPCs in the presence of basic fibroblast growth factor (bFGF) in serum-free medium. Morphological studies showed that neurospheres maintained their initial shape and formed many long and thick processes with the fasciculate feature on GaN. Immunocytochemical characterization showed that GaN could induce the differentiation of NSPCs into neurons and astrocytes. Compared to poly-d-lysine (PDL), the most common substrate used for culturing neurons, there was considerable expression of synapsin I for differentiated neurons on GaN, suggesting GaN could induce the differentiation of NSPCs towards the mature differentiated neurons. Western blot analysis showed that the suppression of glycogen synthase kinase-3beta (GSK-3beta) activity was one of the effects of GaN-promoted NSPC differentiation into neurons. Finally, compared to PDL, GaN could significantly improve cell survival to reduce cell death after long-term culture. These results suggest that GaN potentially has a combination of electric characteristics suitable for developing neuron and/or NSPC chip systems.

  13. Low-temperature growth of gallium nitride films by inductively coupled-plasma-enhanced reactive magnetron sputtering

    SciTech Connect

    Ni, Chih-Jui; Chau-Nan Hong, Franklin

    2014-05-15

    Gallium nitride (GaN) films were grown on sapphire substrate by reactive magnetron sputtering. Inductively coupled-plasma (ICP) source was installed between the substrate holder and the sputtering target to increase the plasma density and the degree of ionization of nitrogen gas. Liquid Ga and Ar/N{sub 2} were used as the sputtering target and sputtering gases, respectively. X-ray diffraction measurements confirmed that the authors could grow high quality GaN crystallites at 500 °C. However, the crystalline GaN (0002) peak remained even by lowering the growth temperature down to 300 °C. The N:Ga ratio of the film grown at 500 °C was almost 1:1, and the nitrogen composition became higher toward the 1:1 N:Ga ratio with increasing the growth temperature. The high degree of ionization induced by ICP source was essential to the growth of high crystalline quality GaN films.

  14. Optimized Spiral Metal-Gallium-Nitride Nanowire Cavity for Ultra-High Circular Dichroism Ultraviolet Lasing at Room Temperature.

    PubMed

    Liao, Wei-Chun; Liao, Shu-Wei; Chen, Kuo-Ju; Hsiao, Yu-Hao; Chang, Shu-Wei; Kuo, Hao-Chung; Shih, Min-Hsiung

    2016-05-25

    Circularly polarized laser sources with small footprints and high efficiencies can possess advanced functionalities in optical communication and biophotonic integrated systems. However, the conventional lasers with additional circular-polarization converters are bulky and hardly compatible with nanophotonic circuits, and most active chiral plasmonic nanostructures nowadays exhibit broadband emission and low circular dichroism. In this work, with spirals of gallium nitride (GaN) nanowires (NWRs) covered by a metal layer, we demonstrated an ultrasmall semiconductor laser capable of emitting circularly-polarized photons. The left- and right-hand spiral metal nanowire cavities with varied periods were designed at ultraviolet wavelengths to achieve the high quality factor circular dichroism metastructures. The dissymmetry factors characterizing the degrees of circular polarizations of the left- and right-hand chiral lasers were 1.4 and -1.6 (±2 if perfectly circular polarized), respectively. The results show that the chiral cavities with only 5 spiral periods can achieve lasing signals with the high degrees of circular polarizations.

  15. Application of gallium nitride nanostructures and nitrogen doped carbon spheres as supports for the hydrogenation of cinnamaldehyde.

    PubMed

    Kente, Thobeka; Dube, Sibongile M A; Coville, Neil J; Mhlanga, Sabelo D

    2013-07-01

    This paper reports on the synthesis and use of nanostructures of gallium nitride (GaN NSs) and nitrogen doped carbon spheres (NCSs) as support materials for the hydrogenation of cinnamaldehyde. This study provides the first investigation of GaN as a catalyst support in hydrogenation reactions. The GaN NSs were synthesized via chemical vapour deposition (CVD) in a double stage furnace (750 degrees C) while NCSs were made by CVD in a single stage furnace (950 degrees C) respectively. TEM analysis revealed that the GaN NSs were rod-like with average diameters of 200 nm, while the NCSs were solid with smoother surfaces, and with diameters of 450 nm. Pd nanoparticles (1 and 3% loadings) were uniformly dispersed on acid functionalized GaN NSs and NCS. The Pd nanoparticles had average diameters that were influenced by the type of support material used. The GaN NSs and NCSs were tested for the selective hydrogenation of cinnamaldehyde in isopropanol at 40 and 60 degrees C under atmospheric pressure. A comparative study of the activity of the nanostructured materials revealed that the order of catalyst activity was 3% Pd/GaN > 3% Pd/NCSs > 1% Pd/NCSs > 1% Pd/GaN. However, 100% selectivity to hydrocinnamaldehyde (HCALD) was obtained with 1% Pd/GaN at reasonable conversion rates.

  16. Indium gallium nitride-based ultraviolet, blue, and green light-emitting diodes functionalized with shallow periodic hole patterns

    PubMed Central

    Jeong, Hyun; Salas-Montiel, Rafael; Lerondel, Gilles; Jeong, Mun Seok

    2017-01-01

    In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results. PMID:28374856

  17. Recent developments in nitride chemistry

    SciTech Connect

    Niewa, R.; DiSalvo, F.J.

    1998-10-01

    The chemistry of ternary nitrides is reviewed with special focus on developments of the last two years (1996 and 1997). In particular, structures and properties of ternary and higher transition metal nitrides, main group nitrides, subnitrides, and nitride halides are compared, and a section on thermodynamics of ternary nitrides is included. Finally, methods for the preparation of gallium nitride single crystals are summarized.

  18. Low-energy ion beam-based deposition of gallium nitride

    SciTech Connect

    Vasquez, M. R.; Wada, M.

    2016-02-15

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.

  19. Simultaneous specimen current and time-dependent cathodoluminescence measurements on gallium nitride

    NASA Astrophysics Data System (ADS)

    Campo, E. M.; Hopkins, L.; Pophristic, M.; Ferguson, I. T.

    2016-06-01

    Time-dependent cathodoluminescence (CL) and specimen current (SC) are monitored to evaluate trapping behavior and evolution of charge storage. Examination of CL and SC suggests that the near band edge emission in GaN is reduced primarily by the activation of traps upon irradiation, and Gallium vacancies are prime candidates. At the steady state, measurement of the stored charge by empiric-analytical methods suggests that all available traps within the interaction volume have been filled, and that additional charge is being stored interstitially, necessarily beyond the interaction volume. Once established, the space charge region is responsible for the steady state CL emission and, prior to build up, it is responsible for the generation of diffusion currents. Since the non-recombination effects resulting from diffusion currents that develop early on are analogous to those leading to device failure upon aging, this study is fundamental toward a holistic insight into optical properties in GaN.

  20. Simultaneous specimen current and time-dependent cathodoluminescence measurements on gallium nitride

    SciTech Connect

    Campo, E. M. Hopkins, L.; Pophristic, M.; Ferguson, I. T.

    2016-06-28

    Time-dependent cathodoluminescence (CL) and specimen current (SC) are monitored to evaluate trapping behavior and evolution of charge storage. Examination of CL and SC suggests that the near band edge emission in GaN is reduced primarily by the activation of traps upon irradiation, and Gallium vacancies are prime candidates. At the steady state, measurement of the stored charge by empiric-analytical methods suggests that all available traps within the interaction volume have been filled, and that additional charge is being stored interstitially, necessarily beyond the interaction volume. Once established, the space charge region is responsible for the steady state CL emission and, prior to build up, it is responsible for the generation of diffusion currents. Since the non-recombination effects resulting from diffusion currents that develop early on are analogous to those leading to device failure upon aging, this study is fundamental toward a holistic insight into optical properties in GaN.

  1. Low-energy ion beam-based deposition of gallium nitride.

    PubMed

    Vasquez, M R; Wada, M

    2016-02-01

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.

  2. Low-energy ion beam-based deposition of gallium nitride

    NASA Astrophysics Data System (ADS)

    Vasquez, M. R.; Wada, M.

    2016-02-01

    An ion source with a remote plasma chamber excited by a 13.56 MHz radio frequency power was used for low-energy broad ion beam extraction. Optical emission spectral analyses showed the sputtering and postionization of a liquid gallium (Ga) target placed in a chamber separated from the source bombarded by argon (Ar) plasma guided by a bent magnetic field. In addition, an E × B probe successfully showed the extraction of low-energy Ga and Ar ion beams using a dual-electrode extractor configuration. By introducing dilute amounts of nitrogen gas into the system, formation of thin Ga-based films on a silicon substrate was demonstrated as determined from X-ray diffraction and X-ray reflectivity studies.

  3. Theoretical study of gallium nitride molecules, GaN2 and GaN4.

    PubMed

    Tzeli, Demeter; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D

    2008-09-18

    The electronic and geometric structures of gallium dinitride GaN 2, and gallium tetranitride molecules, GaN 4, were systematically studied by employing density functional theory and perturbation theory (MP2, MP4) in conjunction with the aug-cc-pVTZ basis set. In addition, for the ground-state of GaN 4( (2)B 1) a density functional theory study was carried out combining different functionals with different basis sets. A total of 7 minima have been identified for GaN 2, while 37 structures were identified for GaN 4 corresponding to minima, transition states, and saddle points. We report geometries and dissociation energies for all the above structures as well as potential energy profiles, potential energy surfaces and bonding mechanisms for some low-lying electronic states of GaN 4. The dissociation energy of the ground-state GaN 2 ( X (2)Pi) is 1.1 kcal/mol with respect to Ga( (2)P) + N 2( X (1)Sigma g (+)). The ground-state and the first two excited minima of GaN 4 are of (2)B 1( C 2 v ), (2)A 1( C 2 v , five member ring), and (4)Sigma g (-)( D infinityh ) symmetry, respectively. The dissociation energy ( D e) of the ground-state of GaN 4, X (2)B 1, with respect to Ga( (2)P) + 2 N 2( X (1)Sigma g (+)), is 2.4 kcal/mol, whereas the D e of (4)Sigma g (-) with respect to Ga( (4)P) + 2 N 2( X (1)Sigma g (+)) is 17.6 kcal/mol.

  4. Electrical properties of TiN on gallium nitride grown using different deposition conditions and annealing

    SciTech Connect

    Li, Liuan; Kishi, Akinori; Shiraishi, Takayuki; Jiang, Ying; Wang, Qingpeng; Ao, Jin-Ping

    2014-03-15

    This study evaluates the thermal stability of different refractory metal nitrides used as Schottky electrodes on GaN. The results demonstrate that TiN, MoSiN, and MoN possess good rectification and adhesion strength, with barrier heights of 0.56, 0.54, and 0.36 eV, respectively. After thermal treatment at 850 °C for 1 min, the TiN and MoN electrodes still exhibit rectifying characteristics, while the MoSiN degrades to an ohmic-like contact. For further study, several TiN films are deposited using different N{sub 2}/Ar reactive/inert sputtering gas ratios, thereby varying the nitrogen content present in the sputtering gas. Ohmic-like contact is observed with the pure Ti contact film, and Schottky characteristics are observed with the samples possessing nitrogen in the film. The average Schottky barrier height is about 0.5 eV and remains virtually constant with varying nitrogen deposition content. After examining Raman spectra and x-ray photoelectron spectroscopy results, the increase in the film resistivity after thermal treatment is attributed to oxidation and/or nitridation. Films deposited with a medium (40% and 60%) nitrogen content show the best film quality and thermal stability.

  5. Bulk gallium nitride based electronic devices: Schottky diodes, Schottky-type ultraviolet photodetectors and metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Yi

    Gallium Nitride (GaN) is one of most promising semiconductor materials for high power, high temperature and high frequency applications. Due to the lack of native substrates for homoepitaxial growth, GaN electronic devices have been conventionally fabricated on epitaxial GaN layers grown on foreign substrates, mostly sapphire. This scheme complicates the fabrication process and compromises the device performance due to the large amount of native defects within the heteroepitaxial layer. In order to fabricate devices with improved performance and simplified fabrication processes, it is desirable to utilize high quality bulk GaN substrates. Recent developments in Hydride Vapor Phase Epitaxy (HVPE) technology have enabled the successful growth of free-standing GaN wafers with very low dislocation densities. This dissertation reports some developments in the device fabrication, performance and simulation based on bulk GaN substrates. We have fabricated vertical geometry Schottky diodes with a full backside ohmic contact using a bulk GaN substrate. The absence of the sapphire substrate, improved ohmic contact scheme and the vertical transport mode greatly enhance the forward current conduction of the bulk GaN Schottky diode. The device also displays a high reverse breakdown voltage and ultrafast reverse recovery characteristics. The low dislocation density of the substrate allows the fabrication of Schottky-type ultraviolet photodetectors with ultralow dark currents. The large band gap of GaN provides the intrinsic "visible blindness" of the UV photodetector. The device displays a reasonably high responsivity and a good linearity of photocurrent with UV irradiance. We have also fabricated MOS capacitors using a thermally oxidized bulk GaN substrate. The thermal gallium oxide is characterized and its oxidation mechanism and etching process are explored. The thermal grown Ga2O 3/GaN interface displays a relatively lower interface density of state as compared to the

  6. High-Resolution Group III Nitride Microdisplays

    DTIC Science & Technology

    2011-12-14

    emissive displays based on gallium nitride micro-size LEDs may be suitable for ultra-portable products such as next- generation handheld projectors...semiconductors. Such devices would benefit from the outstanding physical properties of III- nitrides such as gallium nitride (GaN) and indium gallium ...projected image of a leopard from a green video graphics array indium gallium nitride (InGaN) microdisplay (640 480 pixels, each 12m in size with 15m

  7. Novel gallium nitride based microwave noise and power heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Chumbes, Eduardo Martin

    With the pioneering efforts of Isamu Akasaki of Meiji University and Shuji Nakamura of Nichia Chemical Industries in the late 1980's and early 1990's, the first long-lived candela-class blue and ultraviolet light emitting devices have finally come to fruition. Their success in conquering this Holy Grail in opto-electronics is due to their development of a new technology based remarkably on a class of semiconductor materials that has been practically ignored and overlooked by almost everyone for the past twenty years---the nitrides of Al, Ga and In and their alloys. The breakthroughs made from this new technology in the last decade of the 20th century has revolutionized and revitalized worldwide research and development efforts to the point where it is feasible for other important technologies such as high-density information storage, high-resolution full-color displays and efficient white light lamps and UV sensors to come much closer to realization. Equally important is the potential that this new technology can bring toward the development of efficient ultra-high power and high-temperature electronics that will revolutionize the aerospace and high-speed communication industries. Specifically, the large bandgap and strong polar properties of the group III-nitrides has at present allowed for the realization of simple doped and remarkably undoped AlGaN/GaN transistor structures on sapphire and SiC substrates with two-dimensional electron gas sheet densities significantly greater than that of conventional transistor structures based on GaAs and InP. This dissertation will look specifically at extending undoped AlGaN/GaN heterostructure field-effect transistors or HFETs towards more advanced system applications involving the integration of these devices onto a more advanced Si technology and looking at the feasibility of this integration. It will also address important issues similar devices on semi-insulating SiC substrates have in robust microwave low noise and

  8. Acidic ammonothermal growth of gallium nitride in a liner-free molybdenum alloy autoclave

    NASA Astrophysics Data System (ADS)

    Malkowski, Thomas F.; Pimputkar, Siddha; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji

    2016-12-01

    This paper discusses promising materials for use as internal, non-load bearing components as well as molybdenum-based alloys for autoclave structural components for an ammonothermal autoclave. An autoclave was constructed from the commercial titanium-zirconium-molybdenum (TZM) alloy and was found to be chemically inert and mechanically stable under acidic ammonothermal conditions. Preliminary seeded growth of GaN was demonstrated with negligible incorporation of transition metals (including molybdenum) into the grown material (<1017 cm-3). Molybdenum and TZM were exposed to a basic ammonothermal environment, leading to slight degradation through formation of molybdenum nitride powders on their surface at elevated temperatures (T>560 °C). The possibility of a 'universal', inexpensive, liner-free ammonothermal autoclave capable of exposure to basic and acidic chemistry is demonstrated.

  9. High-Luminosity Blue and Blue-Green Gallium Nitride Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Morkoc, H.; Mohammad, S. N.

    1995-01-01

    Compact and efficient sources of blue light for full color display applications and lighting eluded and tantalized researchers for many years. Semiconductor light sources are attractive owing to their reliability and amenability to mass manufacture. However, large band gaps are required to achieve blue color. A class of compound semiconductors formed by metal nitrides, GaN and its allied compounds AlGaN and InGaN, exhibits properties well suited for not only blue and blue-green emitters, but also for ultraviolet emitters and detectors. What thwarted engineers and scientists from fabricating useful devices from these materials in the past was the poor quality of material and lack of p-type doping. Both of these obstacles have recently been overcome to the point where high-luminosity blue and blue-green light-emitting diodes are now available in the marketplace.

  10. Development of wide-band gap indium gallium nitride solar cells for high-efficiency photovoltaics

    NASA Astrophysics Data System (ADS)

    Jani, Omkar K.

    Main objective of the present work is to develop wide-band gap InGaN solar cells in the 2.4--2.9 eV range that can be an integral component of photovoltaic devices to achieve efficiencies greater than 50%. The III-nitride semiconductor material system, which consists of InN, GaN, AlN and their alloys, offers a substantial potential in developing ultra-high efficiency photovoltaics mainly due to its wide range of direct-band gap, and other electronic, optical and mechanical properties. However, this novel InGaN material system poses challenges from theoretical, as well as technological standpoints, which are further extended into the performance of InGaN devices. In the present work, these challenges are identified and overcome individually to build basic design blocks, and later, optimized comprehensively to develop high-performance InGaN solar cells. One of the major challenges from the theoretical aspect arises due to unavailability of a suitable modeling program for InGaN solar cells. As spontaneous and piezoelectric polarization can substantially influence transport of carriers in the III-nitrides, these phenomena are studied and incorporated at a source-code level in the PC1D simulation program to accurately model InGaN solar cells. On the technological front, InGaN with indium compositions up to 30% (2.5 eV band gap) are developed for photovoltaic applications by controlling defects and phase separation using metal-organic chemical vapor deposition. InGaN with band gap of 2.5 eV is also successfully doped to achieve acceptor carrier concentration of 1018 cm-3. A robust fabrication scheme for III-nitride solar cells is established to increase reliability and yield; various schemes including interdigitated grid contact and current spreading contacts are developed to yield low-resistance Ohmic contacts for InGaN solar cells. Preliminary solar cells are developed using a standard design to optimize the InGaN material, where the band gap of InGaN is progressively

  11. Nitride semiconductors for ultraviolet detection

    NASA Astrophysics Data System (ADS)

    Davis, R. F.; Bremser, M. D.; Gruss, K.; Linthicum, K.; Ferry, B.

    1995-06-01

    Continued development and commercialization of optoelectronic devices, including light emitting diodes and semiconductor lasers produced from 3-5 gallium arsenide-based materials, has also generated interest in the much wider bandgap semiconductor mononitride materials containing aluminum, gallium, and indium. The majority of the studies have been conducted on pure gallium nitride thin films having the wurtzite structure, and this emphasis continues to the present day. The program objectives achieved in this reporting period have been (1) the growth of undoped, high resistivity and n- and p-type doped monocrystalline, GaN thin films on alpha(6H)-SiC(000l) wafers via organometallic vapor phase epitaxy (OMVPE), and their characterization via photoluminescence; (2) the growth and cathodoluminescence characterization of Al(x)Ga(1-x)N alloys and abrupt heterojunctions of these alloys; (3) the development and application of a novel NH3 cracker cell for gas source MBE to reduce film damage; and (4) the reactive ion etching of undoped GaN films via use of Cl-containing compounds.

  12. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride

    PubMed Central

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei

    2016-01-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) – another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics. PMID:26928396

  13. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics--a Comparative Study with Gallium Nitride.

    PubMed

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L; Roy, Ajit K; Luo, Tengfei

    2016-03-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN)--another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics.

  14. High sensitivity hydrogen sensing with Pt-decorated porous gallium nitride prepared by metal-assisted electroless etching.

    PubMed

    Duan, Barrett K; Bohn, Paul W

    2010-05-01

    A unique hydrogen sensor structure based on Pt-decorated porous gallium nitride (PGaN) was fabricated by a two-step process consisting of metal-assisted electroless etching to produce PGaN with highly anisotropic pores followed by electroless deposition of Pt in the pores from an ammoniacal PtCl(6)(2-) solution. The Pt-decorated PGaN structure contains 50-100 nm diameter nanopores which are 400 nm to 1 microm deep and filled with Pt islands. Both electroless etching and deposition steps are done in solution and allow for large-scale production. An AC four-point probe conductivity measurement was implemented at f = 1 kHz, a frequency where the impedance of Pt-PGaN is nearly entirely resistive, and the change in conductance upon H(2) exposure was measured for three sample types: PGaN with a surface sputtered layer of Pt only; unetched GaN (CGaN) with both sputtered and electrolessly deposited Pt; and PGaN with both sputtered and electrolessly deposited Pt. The hydrogen sensing performance of the Pt-filled PGaN sensor was more than an order of magnitude better than either of the other two sample types under all experimental conditions, an observation attributed to the significant increase in Pt-GaN interfacial area in the electrolessly decorated PGaN samples, exhibiting a response to H2 concentrations as low as 1 ppm. The conductance changes are ascribed to adsorption-induced changes in interfacial polarization that produce changes in band bending and thus to the width of the space charge region near the Pt-GaN interface.

  15. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics – a Comparative Study with Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Wu, Xufei; Lee, Jonghoon; Varshney, Vikas; Wohlwend, Jennifer L.; Roy, Ajit K.; Luo, Tengfei

    2016-03-01

    Wurtzite Zinc-Oxide (w-ZnO) is a wide bandgap semiconductor that holds promise in power electronics applications, where heat dissipation is of critical importance. However, large discrepancies exist in the literature on the thermal conductivity of w-ZnO. In this paper, we determine the thermal conductivity of w-ZnO using first-principles lattice dynamics and compare it to that of wurtzite Gallium-Nitride (w-GaN) – another important wide bandgap semiconductor with the same crystal structure and similar atomic masses as w-ZnO. However, the thermal conductivity values show large differences (400 W/mK of w-GaN vs. 50 W/mK of w-ZnO at room temperature). It is found that the much lower thermal conductivity of ZnO originates from the smaller phonon group velocities, larger three-phonon scattering phase space and larger anharmonicity. Compared to w-GaN, w-ZnO has a smaller frequency gap in phonon dispersion, which is responsible for the stronger anharmonic phonon scattering, and the weaker interatomic bonds in w-ZnO leads to smaller phonon group velocities. The thermal conductivity of w-ZnO also shows strong size effect with nano-sized grains or structures. The results from this work help identify the cause of large discrepancies in w-ZnO thermal conductivity and will provide in-depth understanding of phonon dynamics for the design of w-ZnO-based electronics.

  16. Irradiation effects of graphene-enhanced gallium nitride (GaN) metal-semiconductor-metal (MSM) ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Chiamori, Heather C.; Miller, Ruth; Suria, Ateeq; Broad, Nicholas; Senesky, Debbie G.

    2015-05-01

    Ultraviolet (UV) photodetectors are used for applications such as flame detection, space navigation, biomedical and environmental monitoring. Robust operation within large ranges of temperatures, radiation, salinity and/or corrosive chemicals require sensor materials with the ability to withstand and function reliably within these extreme harsh environments. For example, spacecraft can utilize a sun sensor (light-based sensor) to assist with determination of orientation and may be exposed to both ionizing radiation and extreme temperature swings during operation. Gallium nitride (GaN), a wide bandgap semiconductor material, has material properties enabling visible-blindness, tunable cutoff wavelength selection based on ternary alloy mole fraction, high current density, thermal/chemical stability and high radiation tolerance due to the strength of the chemical bond. Graphene, with outstanding electrical, optical and mechanical properties and a flat absorption spectrum from 300 to 2,500 nm, has potential use as a transparent conductor for GaN-based metal-semiconductor-metal (MSM) photodetectors. Here, graphene-enhanced MSM UV photodetectors are fabricated with transparent and conductive graphene interdigitated electrodes on thin film GaN-on-sapphire substrates serving as back-to-back Schottky contacts. We report on the irradiation response of graphene/GaN-based MSM UV photodetectors up to 750 krad total ionizing dose (TID) then tested under dark and UV light (365 nm) conditions. In addition, based on current-voltage measurements from 75 krad to 750 krad TID, calculated photodetector responsivity values change slightly by 25% and 11% at -5 V and -2 V, respectively. These initial findings suggest that graphene/GaN MSM UV photodetectors could potentially be engineered to reliably operate within radiation environments.

  17. The effect of gallium nitride on long-term culture induced aging of neuritic function in cerebellar granule cells.

    PubMed

    Chen, Chi-Ruei; Young, Tai-Horng

    2008-04-01

    Gallium nitride (GaN) has been developed for a variety of microelectronic and optical applications due to its unique electric property and chemical stability. In the present study, n-type and p-type GaN were used as substrates to culture cerebellar granule neurons to examine the effect of GaN on cell response for a long-term culture period. It was found that GaN could rapidly induce cultured neurons to exhibit a high phosphorylated Akt level after 20h of incubation. It was assumed that the anti-apoptotic effect of Akt phosphorylation could be correlated with cell survival, neurite growth and neuronal function for up to 35 days of incubation. Morphological studies showed GaN induced larger neuronal aggregates and neurite fasciculation to exhibit a dense fiber network after 8 days of incubation. Western blot analysis and immunocytochemical characterization showed that GaN still exhibited the expression of neurite growth and function, such as high levels of GAP-43, synapsin I and synaptophysin even after 35 days of incubation. In addition, survival of cerebellar granule neurons on GaN was improved by the analysis of lactate dehydrogenase (LDH) release from damaged cells. These results indicated that neuronal connections were formed on GaN by a gradual process from Akt activation and cell aggregation to develop neurite growth, fasciculation and function. Therefore, GaN offers a good model system to identify a well-characterized pattern of neuronal behavior for a long-term culture period, consistent with the development of a neurochip requiring the integration of biological system and semiconductor material.

  18. Analysis of Gain and Absorption Spectra of Gallium Nitride-based Laser Diodes

    NASA Astrophysics Data System (ADS)

    Melo, Thiago

    Laser diodes (LDs) based on the III-Nitride material system, (Al,In,Ga)N, stand to satisfy a number of application needs, and their huge market segment has been further growing with the use of LDs for full color laser projection. All commercially available GaN-based devices are based on the conventional c-plane (polar) orientation of this material. However, strong polarization fields caused by strained quantum-well (QW) layers on c-plane induce the quantum-confined Stark effect (QCSE), which leads to reduced radiative recombination rate and are aggravated when more indium is added into the QW(s) in order to achieve longer wavelengths. A promising solution for this is the use of nonpolar and semipolar crystal growth orientations. Elimination or mitigation of polarization-related fields within the QWs grown along these novel orientations is observed and one expects increased radiative recombination rate and stabilization of the wavelength emission with respect to the injection current. In order to have more insights on the advantages of using the novel crystal orientations of the III-Nitride material system, we compare the gain of LD structures fabricated from c-plane, nonpolar and semipolar GaN substrates. Using thesegmented contact method, single-pass gain spectra of LD epitaxial structures at wafer level are compared for the different crystal orientations as well as the single-pass absorption coefficient spectrum of the active region material and its dependence on reversed bias. Experimental gain spectra under continuous-wave (CW) operation of actual industry LDs fabricated from c-plane and nonpolar/semipolar GaN-based materials emitting wavelengths in the visible are then presented, using the Hakki-Paoli technique at high resolution. Measurements of the transparency current density, total losses and differential modal gain curves up to threshold are analyzed and compared between nonpolar/semipolar and c-plane LDs in violet and blue spectral regions regions. In a

  19. Strain compensated superlattices on m-plane gallium nitride by ammonia molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Fireman, Micha N.; Bonef, Bastien; Young, Erin C.; Nookala, Nishant; Belkin, Mikhail A.; Speck, James S.

    2017-08-01

    The results of tensile strained AlN/GaN, AlGaN/GaN, and compressive strained InGaN/GaN superlattices (SLs) grown by Ammonia MBE (NH3-MBE) are presented. A combination of atom probe tomography and high-resolution X-ray diffraction confirms that periodic heterostructures of high crystallographic quality are achieved. Strain induced misfit dislocations (MDs), however, are revealed by cathodoluminescence (CL) of the strained AlN/GaN, AlGaN/GaN, and InGaN/GaN structures. MDs in the active region of a device are a severe problem as they act as non-radiative charge recombination centers, affecting the reliability and efficiency of the device. Strain compensated SL structures are subsequently developed, composed of alternating layers of tensile strained AlGaN and compressively strained InGaN. CL reveals the absence of MDs in such structures, demonstrating that strain compensation offers a viable route towards MD free active regions in III-Nitride SL based devices.

  20. Investigation of indium gallium nitride facet-dependent nonpolar growth rates and composition for core-shell light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Gîrgel, Ionut; Edwards, Paul R.; Le Boulbar, Emmanuel; Coulon, Pierre-Marie; Sahonta, Suman-Lata; Allsopp, Duncan W. E.; Martin, Robert W.; Humphreys, Colin J.; Shields, Philip A.

    2016-01-01

    Core-shell indium gallium nitride (InGaN)/gallium nitride (GaN) structures are attractive as light emitters due to the large nonpolar surface of rod-like cores with their longitudinal axis aligned along the c-direction. These facets do not suffer from the quantum-confined Stark effect that limits the thickness of quantum wells and efficiency in conventional light-emitting devices. Understanding InGaN growth on these submicron three-dimensional structures is important to optimize optoelectronic device performance. In this work, the influence of reactor parameters was determined and compared. GaN nanorods (NRs) with both {11-20} a-plane and {10-10} m-plane nonpolar facets were prepared to investigate the impact of metalorganic vapor phase epitaxy reactor parameters on the characteristics of a thick (38 to 85 nm) overgrown InGaN shell. The morphology and optical emission properties of the InGaN layers were investigated by scanning electron microscopy, transmission electron microscopy, and cathodoluminescence hyperspectral imaging. The study reveals that reactor pressure has an important impact on the InN mole fraction on the {10-10} m-plane facets, even at a reduced growth rate. The sample grown at 750°C and 100 mbar had an InN mole fraction of 25% on the {10-10} facets of the NRs.